求函数值域的几种方法
函数值域的十种求法
函数值域的十种求法
1、通过定义域的极限来求函数值域:由于函数表示法中的变量x的取值范围是定义域,而函数值f(x)的取值范围则可以通过定义域极限的方法来求得。
2、通过函数定义关系来求函数值域:由于函数在定义域内有一定的定义关系,所以可以根据函数定义关系来求函数值域。
3、由于函数在定义域内有一定的性质,所以可以根据函数性质来求函数值域。
4、由于函数在定义域内有一定的对称性,所以可以根据函数的对称性来求函数值域。
5、由于函数在定义域内有一定的单调性,所以可以根据函数的单调性来求函数值域。
6、根据函数的奇偶性来求函数值域:如果函数在定义域内具有奇偶性,则可以根据函数的奇偶性来求函数值域。
7、由于函数在定义域内有一定的常数性,所以可以根据函数的常数性来求函数值域。
8、根据函数增减性来求函数值域:如果函数在定义域内具有增减性,则可以根据函数的增减性来求函数值域。
9、由于函数在定义域内有一定的循环性,所以可以根据函数的循环性来求函数值域。
10、根据函数的图像形状来求函数值域:如果函数在定义域内具有特定的图像形状,则可以根据函数的图像形状来求函数值域。
函数值域的13种求法
函数值域十三种求法1. 直接观察法对于一些比较简单的函数,其值域可通过观察得到。
例1. 求函数x 1y =的值域解:∵0x ≠∴0x 1≠显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-= ∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max = 故函数的值域是:[4,8]3. 判别式法(只有定义域为整个实数集R 时才可直接用)例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
可以采取如下方法进一步确定原函数的值域。
∵2x 0≤≤0)x 2(x x y ≥-+=∴21y ,0y min +==∴代入方程(1)解得:]2,0[22222x 41∈-+=即当22222x 41-+=时,原函数的值域为:]21,0[+注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
函数值域的十种求法
函数值域的十种求法函数值域是一种数学概念,它描述了一个函数的结果范围,是数学研究的基础。
求函数值域的方法有多种,每种方法都有不同的优劣。
本文介绍了求函数值域的十种方法,及其优势和劣势,以供参考。
一、定义法定义法是求取函数值域最为简单的方法,只要将函数的定义式扩大至所有可能被求出的范围即可。
定义法最大的优势在于可以精确求出函数值域,大大减少误差,使得函数值域的求解更有可靠性。
但是,定义法也有其缺点,即求解过程会很繁琐,在有多个参数的函数中,会消耗大量的计算时间。
二、图像法图像法是一种简单易行的求函数值域的方法,它只需要将函数的图像表示出来,然后从图像中观察出函数值域的范围即可。
图像法的优势在于求解速度快,只需要对函数的图像做一次有限次的绘制,就可以直观了解函数的值域,而无需进行耗时的计算。
但是,图像法本身并不能精确求出函数值域,无法判断一些细微的函数特征,从而可能导致求得的函数值域不够准确。
三、五行式五行式是一种常见的求函数值域的方法,它将参数组合为五个不同的行,分别代表不同的极限情况,然后从五行式中求取函数值域。
五行式的最大优势就在于可以根据函数本身的特征,从而排除掉一些不必要的计算,减少运算量,大大提高求解的效率。
但是,五行式也存在一定的局限性,它无法正确处理复杂的函数,也不能处理参数过多的函数。
四、三角形法三角形法是一种求函数值域的经典方法,它将参数抽象出来,将参数空间细分为多个三角形,并将每个三角形中的值域分别求取出来。
三角形法的最大优势在于可以将参数空间剖分为有结构的模块,并在不同模块之间建立联系,从而大大减少计算量。
但是,三角形法也有其不足,即它只能处理二元函数的值域求解,而且在一些复杂函数的情况下,其求解精度也无法保证。
五、基于函数本质的求法基于函数本质的求法是一种综合的求值域的方法,它的原理是从函数的定义本质出发,抽象出函数的特征,并对参数和函数值域之间的联系进行分析,最后求解出函数值域。
高考数学复习函数值域的13种求法
函数值域十三种求法1. 直接观察法利用已有的基本函数的值域观察直接得出所求函数的值域,对于一些比较简单的函数,如正比例,反比例,一次函数,指数函数,对数函数,等等,其值域可通过观察直接得到。
例1. 求函数x 1y =的值域解:∵0x ≠ ∴0x 1≠ 显然函数的值域是:),0()0,(+∞-∞例2. 求函数x 3y -=的值域 解:∵0x ≥3x 3,0x ≤-≤-∴故函数的值域是:]3,[-∞2. 配方法二次函数或可转化为形如c x bf x f a x F ++=)()]([)(2类的函数的值域问题,均可用配方法,而后一情况要注意)(x f 的范围;配方法是求二次函数值域最基本的方法之一。
例3. 求函数]2,1[x ,5x 2x y 2-∈+-=的值域 解:将函数配方得:4)1x (y 2+-=∵]2,1[x -∈由二次函数的性质可知:当x=1时,4y min =,当1x -=时,8y max =故函数的值域是:[4,8]评注:配方法往往需结合函数图象求值域.3. 判别式法(只有定义域为整个实数集R 时才可直接用) 对于形如21112222a xb xc y a x b x c ++=++(1a ,2a 不同时为0)的函数常采用此法,就是把函数转化成关于x 的一元二次方程(二次项系数不为0时),通过方程有实数根,从而根的判别式大于等于零,求得原函数的值域.对二次函数或者分式函数(分子或分母中有一个是二次)都可通用,但这类题型有时也可以用其他方法进行化简如:.112..22222222b a y 型:直接用不等式性质k+xbx b. y 型,先化简,再用均值不等式x mx nx 1 例:y 1+x x+xx m x n c y 型 通常用判别式x mx nx mx n d. y 型 x n法一:用判别式 法二:用换元法,把分母替换掉x x 1(x+1)(x+1)+1 1 例:y (x+1)1211x 1x 1x 1==++==≤''++=++++=+++-===+-≥-=+++例4. 求函数22x 1x x 1y +++=的值域 解:原函数化为关于x 的一元二次方程0x )1y (x )1y (2=-+-(1)当1y ≠时,R x ∈0)1y )(1y (4)1(2≥----=∆ 解得:23y 21≤≤ (2)当y=1时,0x =,而⎥⎦⎤⎢⎣⎡∈23,211 故函数的值域为⎥⎦⎤⎢⎣⎡23,21例5. 求函数)x 2(x x y -+=的值域解:两边平方整理得:0y x )1y (2x 222=++-(1) ∵R x ∈∴0y 8)1y (42≥-+=∆ 解得:21y 21+≤≤-但此时的函数的定义域由0)x 2(x ≥-,得2x 0≤≤由0≥∆,仅保证关于x 的方程:0y x )1y (2x 222=++-在实数集R 有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由 0≥∆求出的范围可能比y 的实际范围大,故不能确定此函数的值域为⎥⎦⎤⎢⎣⎡23,21。
求函数值域的方法大全
求函数值域的方法大全
1、极限法:极限法是求函数值域的一种重要技术,可以用来求函数
的极值。
原理是找到函数的变量的极限,在此极限处求函数的极值。
求极
限的方法有四种:求不等式的极限,求一元函数的极限,求二元函数的极限,求多元函数的极限。
2、求导法:求导法是求函数的最值的经典方法。
原理是求函数的导数,当导数当0的时候,其点处就会是极值点,可以分别求函数的一次导
数和二次导数,分析二次导数的符号可以判断函数的极值点属性,从而有
效解决函数求极值问题。
3、几何法:几何法是求函数最值问题的一种有效方法。
原理是利用
函数的图象特征,以图形分析的方法在实值空间中求解函数的极值、拐点,从而求函数的最值。
因为函数图象的研究具有直观性,使用几何法能够比
较快速地解决函数最值问题。
4、范数法:范数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
这种方法利用范数的基本性质,即大于等于零、对称
性以及三角不等式,一般使用二范数求解,其核心思想是将函数转化为范
数的格式,得出最值的解。
5、参数法:参数法是求函数值域的一种重要方法,可以用来求函数
的最大值和最小值。
求函数值域的十种常用方法
求函数值域的十种常用方法函数的值域是指函数在定义域上取到的所有可能的函数值的集合。
确定函数的值域是函数分析中的一个重要内容,对于了解函数的性质和作用有着重要的意义。
下面是常用的十种方法来确定一个函数的值域:1.通过求导数:对于一个实变函数,可以通过求导数找到函数的极值点和临界点,并确定函数在这些点的函数值,然后从中选择最大值和最小值作为函数的值域的边界值。
2.分析极限:通过求函数的极限可以确定函数的趋势和发散的情况,从而可以确定函数的值域。
3.分段函数的值域:对于一个分段函数,可以分析每个分段的值域,然后将这些值域合并在一起得到整个函数的值域。
4.利用平移、伸缩和翻转:通过对函数进行平移、伸缩和翻转等运算,可以改变函数的图像和函数值的取值范围,并进一步确定函数的值域。
5.利用对称性:如果函数具有对称性,如轴对称、中心对称等,可以利用对称性来确定函数的值域。
6.利用图像分析:通过绘制函数的图像,可以直观地观察函数的取值范围。
7.利用函数的性质:对于特定的函数,可以利用函数的性质,如增减性、单调性、周期性等来确定函数的值域。
8.利用函数的定义域:函数的值域一般不能超出其定义域,因此可以通过函数的定义域来确定其值域的范围。
9.利用复合函数的值域:如果函数可以表示为其他函数的复合,可以利用复合函数的值域和定义域来确定原函数的值域。
10.利用数学工具:如利用不等式、方程以及数列等数学工具来分析函数的取值范围和值域。
当然,以上只是常用的一些方法,对于一些特殊的函数,可能需要运用其他方法和技巧来确定其值域。
准确确定函数的值域需要结合具体的函数形式和问题的要求进行分析和计算。
函数值域求法大全
函数值域求法大全函数的值域是由定义域和对应法则共同确定。
确定函数的值域是研究函数不可缺少的重要一环。
本文介绍了十一种函数值域求法。
首先是直接观察法,对于一些简单的函数,可以通过观察得到其值域。
例如,对于函数y=1/x,由于x不等于0,因此函数的值域为(-∞,0)U(0,+∞)。
再比如,对于函数y=3-x,由于x的取值范围为(-∞,+∞),因此函数的值域为(-∞,3]。
其次是配方法,这是求二次函数值域最基本的方法之一。
例如,对于函数y=x^2-2x+5,将其配方得到y=(x-1)^2+4,由此可得出函数的值域为[4.+∞)。
还有判别式法,例如对于函数y=(1+x+x^2)/(1+x^2),可以将其化为关于x的一元二次方程,然后根据判别式的值来确定函数的值域。
除此之外,还有其他的函数值域求法,如利用导数、利用反函数、利用奇偶性等方法。
这些方法各有特点,应根据具体情况选择合适的方法来求解。
总之,确定函数的值域是研究函数的重要一环,掌握好函数值域的求法可以帮助我们简化运算过程,事半功倍。
换元法是一种数学方法,可以通过简单的换元将一个函数变为简单函数。
其中,函数解析式含有根式或三角函数公式模型是其题型特征之一。
换元法不仅在求函数的值域中发挥作用,也是数学方法中几种最主要方法之一。
例如,对于函数 $y=x+x^{-1}$,我们可以令 $x-1=t$,则$x=t+1$。
代入原函数,得到$y=t^2+t+1=(t+1)^2+\frac{1}{4}$。
由于 $t\geq 0$,根据二次函数的性质,当 $t=0$ 时,$y$ 取得最小值 $1$,当 $t$ 趋近于正无穷时,$y$ 也趋近于正无穷。
因此,函数的值域为 $[1,+\infty)$。
又如,对于函数 $y=x^2+2x+1-(x+1)^2$,我们可以将 $1-(x+1)^2$ 化简为 $\frac{1}{2}-\left(x+\frac{1}{2}\right)^2$,然后令 $x+1=\cos\beta$,则 $y=\sin\beta+\cos\beta+1$。
求值域的10种方法
求值域的10种方法值域是一个函数在定义域内所有可能的输出值的集合。
找到函数的值域通常是为了确定函数可能的取值范围,并且在数学和计算中都是非常重要的。
以下是求值域的10种方法:1.列举法列举法是最简单直接的方法。
通过观察函数的定义,给出一组有序的输出值,并将这些值组成一个集合。
这些值将构成函数的值域。
例如,对于函数f(x)=x^2,我们可以通过进行一系列的替换运算,然后给出输出值的集合{0,1,4,9,16,...}。
2.图像法在图像法中,我们首先绘制函数的图像,然后找到图像上所有纵坐标的值。
这些纵坐标的集合构成了函数的值域。
例如,对于函数f(x)=x^2,我们可以绘制一个抛物线形状的图像,然后观察所有纵坐标的值。
3.解析法解析法是通过使用代数表达式或方程来确定函数的值域。
例如,对于函数f(x)=x^2,我们可以使用代数方法将方程f(x)=y转化为x^2=y。
然后通过解这个方程,我们可以得到y可能的取值范围,即函数的值域。
4.图像逼近法在图像逼近法中,我们通过绘制函数的图像,并观察图像在最高和最低点之间所有可能的纵坐标值。
这些纵坐标的集合构成函数的值域。
5.猜测法猜测法是一种直觉方法,凭借对函数的直觉和理解猜测出其可能的取值范围。
这种方法通常需要一定的数学背景和经验,并且在实践中被广泛应用。
6.极值法在极值法中,我们通过找到函数的极大值和极小值来确定函数的值域。
极大值是函数图像的局部最高点,极小值是函数图像的局部最低点。
函数的值域就是极值点之间的所有可能的函数值。
7.夹逼法夹逼法是通过使用两个已知函数(夹逼函数)来夹住待求函数,然后确定待求函数的值域。
待求函数的值域将位于夹逼函数的值域之间。
8.对数法对数法是通过取函数的对数来确定函数的值域。
求函数的对数在一些问题中很有用,因为它可以将具有无穷大或无穷小解的问题转化为具有有限解的问题。
9.差集法差集法是通过找到函数定义域的补集,然后从全体实数集中去除差集的元素,得到函数的值域。
函数求值域的15种方法
函数求值域的15种方法求值域是数学中一个重要的概念,它可以用来确定函数在什么值上才能可以被定义。
它也可以用来判断函数是否具有极值以及极值在哪里。
求解函数域可以使用很多种方法,下面介绍15种求解函数域的方法。
1. 曲线图:用曲线图来求解函数域,通过分析函数的凹凸变化,以及变化的临界点来考虑函数的值域。
2. 区间法:分析函数的解析式,找出函数变量的取值范围,从而求出函数的定义域。
3. 限制法:通过限制函数的方程来求解函数域的大小,有助于函数属于哪个集合。
4. 线性变换:通过对函数值的线性变换,可以求解函数值的取值范围。
5. 积分法:根据求解函数值的积分值,来判断函数值的取值范围。
6. 求根法:通过求解函数的根,找出函数的定义域,计算出函数在一定范围内所具有的有效值。
7. 不等式法:分析函数的不等式,来求出函数的定义域。
8. 收敛法:通过检验函数的收敛性,来确定函数的定义域。
9. 极值法:通过分析函数的极值,找出函数的值域。
10. 极限法:通过求解函数的极限,来确定函数的值域。
11. 变分法:根据函数在不同变量上的变分,求出函数的定义域。
12. 拓扑法:根据不同拓扑形状,确定函数的定义域,计算出函数在一定范围内所具有的值。
13. 微分表示法:通过求解函数的微分,来确定函数的取值范围。
14. 二分法:通过分段求解函数的值,以二分的方式查找函数的值域。
15. 图解法:通过对函数的图解,计算出函数所具有的定义域。
以上就是15种求解函数域的方法。
上述15种方法都可以用来帮助我们求解函数域,可以根据不同的情况,适当选择不同的方法来解决问题。
根据实际情况,选择合适的方法,有助于我们获得更好的结果,但这也取决于我们是否能够正确掌握这些求解函数域的方法。
求函数值域的12种方法
求函数值域的12种方法函数的值域即为函数的输出值的集合。
在数学中,可以用多种方法来确定函数的值域。
1.输入法:根据函数的解析式,将不同的输入带入函数中,找出函数的输出值。
例如,对于函数$f(x)=x^2$,将不同的$x$值带入函数中,得到$f(1)=1$,$f(2)=4$,$f(3)=9$,...,通过这种方法可以找出函数的值域为正整数集合。
2. 虚拟增量法:给定函数的定义域,通过逐渐增加函数的输入值,观察函数的输出值是否有变化。
例如,对于函数$g(x) = \sqrt{x}$,可以从定义域中的最小值开始逐渐增加$x$的值,观察$\sqrt{x}$的变化,直到无法再增加$x$的值为止。
通过这种方法可以找出函数值域为非负实数集合。
3. 图像法:画出函数的图像,通过观察图像的高度范围找出函数的值域。
例如,对于函数$h(x) = \sin x$,可以画出其图像,观察图像的高度范围为$[-1, 1]$,则函数的值域为闭区间$[-1, 1]$。
4. 函数属性法:通过函数的性质推断出函数的值域。
例如,对于函数$f(x) = \frac{1}{x}$,可以通过观察函数的分母$x$的取值范围,推断出函数的值域为除去零的实数集合。
5. 求导法:对于可导函数,可以通过求导数来确定函数的值域。
例如,对于函数$f(x) = x^3 + 1$,求导得到$f'(x) = 3x^2$,由于$f'(x)$是一个二次函数,且开口向上,因此可以推断出函数$f(x)$的值域为$(-\infty, +\infty)$。
6. 函数复合法:对于复合函数,可以通过将函数复合起来,找出函数的值域。
例如,对于函数$f(x) = \sqrt{\sin x}$,可以将其分解为$f(x) = \sqrt{g(x)}$,其中$g(x) = \sin x$,由于$\sin x$的值域为$[-1, 1]$,因此$\sqrt{\sin x}$的值域为闭区间$[0, 1]$。
函数值域的求法
函数值域的求法求函数值域的方法有:直接法、单调性法、配方法、“∆判别式”法、部分分式法、换元法、数形结合法、有界性法、均值不等式法、最值法等.1.直接法:对于求基本函数(一次函数、二次函数、指数函数、对数函数、三角函数)的值域,可根据其性质直接求出值域.例如:二次函数2()(0)f x ax bx c a =++≠在闭区间[]q p ,上的值域(或最值). 当a >0时,二次函数()(0)f x ax bx c a =++≠图象的对称轴与闭区间[]q p ,的位置关系如下:图1 图2图3 图4分别观察上述4个图象,可得二次函数()(0)f x ax bx c a =++≠在区间[]q p ,上的单调性,由区间[]q p ,上的单调性可求得二次函数()(0)f x ax bx c a =++≠在闭区间[]q p ,上的最值(或值域). 因此,二次函数()(0)f x ax bx c a =++≠在闭区间[]q p ,上的最值问题有如下结论: (1) 当a >0时,若[]q p a bx ,2∈-=,则{}min max max ()(),()(),()2b f x f f x f p f q a =-=; 若[]q p abx ,2∉-=,则{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a <0时,若[]q p a bx ,2∈-=,则)()(max a b f x f -=,{}min ()min (),()f x f p f q =; 若[]q p abx ,2∉-=,则{}m a x ()m a x (),()f x f p f q =,{}min ()min (),()f x f p f q =. 例1、求14)(2-+=x x x f 在闭区间[]0,5-上的值域.解:∵)(x f 的图像是开口向上,对称轴为2-=x 的抛物线,∴5)2()(min -=-=f x f ,4)5()}0(),5(max{)(max =-=-=f f f x f因此,)(x f 在闭区间[]0,5-上的值域为 [-5,4] 2.单调性法:根据函数的定义域及单调性求函数值域.例如:求函数x k x x f +=)( )0(>k 的值域,就可用xkx x f +=)( )0(>k 的单调性:在k -[,)0,0(,]k 单调递减;在-∞(,]k -,k [,)∞+单调递增.下面用导数法证明xkx x f +=)(的单调性: ∵22))((1)(x k x k x x k x f -+=-=', ∴0))((0)(2>-+⇔>'x k x k x x f ,解得:∈x -∞(,)k -∪k (,)∞+;0))((0)(2<-+⇔<'x k x k x x f ,解得:∈x k -(,)0∪0(,)k .则)(x f 单调递减区间是k -[,)0,0(,]k ;单调递增区间是-∞(,]k -,k [,)∞+.例2、求1)(2+=x x x f 在闭区间[]3,5--上的值域解:∵211)1(11111)1()(2-+++=++-=++-=x x x x x x x f 设1+=x t ,由∈x []3,5--得∈t []2,4-- 则tt y 1+=在区间[]2,4--上递增. ∴∈y ⎥⎦⎤⎢⎣⎡--25,417. 因此,1)(2+=x x x f 在闭区间[]3,5--上的值域是⎥⎦⎤⎢⎣⎡--29,425.3.部分分式法:把分式函数化成只有分母中含有自变量的分式型函数,只要求出分母的取值范围,就可求得函数的值域.求y =b ax dcx ++(a 0≠)型函数的值域常用此法. 例3、求函数y =123+-x x (0>x )的值域解:12127211227)12(21123+∙-=+-+=+-=x x x x x y ,∵ 0>x ,∴ 112>+x , 得11210<+<x ,∴ 213<<-y . 则所求函数的值域是{y|213<<-y }.4.配方法:求可转化为二次型函数的值域问题常用此方法.像函数c x bf x af x F ++=)()()(2 (0≠a )的值域问题可用此法 例4、求4sin 3sin 2+-=x x y 的值域 解 ∵47)23(sin 2+-=x y , 又∵1sin 1≤≤-x , ∴21)23(sin 25-≤-≤-x ⇒425)23(sin 412≤-≤x ⇒82≤≤y .∴所求函数的值域是[2,8]5.“∆判别式”法:把函数式转化为关于x 的二次方程0),(=y x F ,通过方程有实根,判别式∆0≥,从而求得原函数的值域. 求y =fex dx cbx ax ++++22(a 、d 不同时为零)型函数的值域常用此法.例5、求122+--=x x xx y 的值域.解:由122+--=x x xx y ,得 0)1()1(2=+-+-y x y x y .① 当1=y 时,方程无解, ∴1≠y .② 当1≠y 时,∵R x ∈,∴ 必须 △0)1(4)1(2≥---=y y y ,解得 131≤≤-y . 又∵1≠y ,∴所求函数的值域是{y|131<≤-y } 6.换元法:通过换元,把求复杂函数值域的问题转化为求基本函数值域的问题.例6、函数12+-=x x y 的值域 解:令012≥+=x t ,则)1(212-=t x ;∴1)1(21)1(2122--=--=t t t y , ∵ 0≥t ,∴ 1-≥y .则所求函数的值域是{y|1-≥y }.7.数形结合法:利用函数所表示的几何意义,借助于几何方法来求函数的值域.例7、求函数y =xx cos 2sin +的值域解:∵ y =x x cos 2sin +的值可理解为动点A(cos x ,sin x )与定点P(-2,0)连线的斜率.而动点A 的轨迹为单位圆O ,∴当PA 与⊙O 相切时,y 有最值。
求函数值域常见的五种方法
求函数值域常见的五种方法求函数的值域是函数学习的一个难点,求值域时涉及到的知识和方法较多,下面介绍几种常用的方法供参考.一、 判别式法思路:将函数式整理成一元二次方程的形式,借用判别式求值域.例1 求函数的4312--=x x y 值域. 解:原式整理成01432=---y yx yx , )4()41()1(∞+⋃-⋃--∞∈,,,x ,且0≠y ,∴0)14(492≥++=∆y y y .解得0≥y 或254-≤y . 当 254-=y 时,)41(23,-∈=x . 又0≠y , ∴所求函数的值域是),0(]254--+∞⋃∞,(. 二、 配方法例2 求函数x x y 21-+=的值域. 解:由已知得2121)21(21+-+--=x x y 1)121(212+---=x∴所求函数的值域是]1-,(∞. 三、 单调性法思路:利用函数的图象和性质求解.例3 当)0,21(-∈x 时,求函数)1lg()1lg(x x y -++=的值域.解:由已知得)1lg(2x y -=, ∵)0,21(-∈x ,∴)41,0(2∈x . 又2x -在)0,21(-∈x 上递增, ∴)1,43(12∈-x . 又u y lg =在)1,43(上递增, ∴)0,43(lg )1lg(2∈-x ,原函数的值域为)0,43(lg . 四、 反函数法例4 求函数xx y -+=11的值域. 解:∵函数的定义域是{}1,0|≠≥x x x 且,由原函数变形得011≥+-=y y x , ∴1≥y 或1-<y .∴函数的值域为),1[)1,(+∞⋃--∞.五、 换元法例5 求函数x x y --=1的值域。
解:令x t -=1,则)0(12≥-=t t x ,那么45)21(2++-=t y . ∵1≥t 时,y 在),0[+∞上递减, ∴当t ≥0时,]1,(-∞∈y .∴原函数的值域是]1,(-∞.。
高中数学函数值域的求法(9种)
函数值域的求法求函数的值域时,要明确两点:一是函数值域的概念,二是函数的定义域和对应关系。
常用的方法有:观察法、换元法、配方法、判别式法、数形结合法、分离常数法、反表示法、中间变量值域法等。
(1)观察法:有的函数结构并不复杂,可以通过对解析式的简单变形和观察,利用熟知的函数的值域求出函数的值域。
如函数211xy +=的值域{}10|≤<y y 。
(2)换元法:运用换元,将已知的函数转化为值域容易确定的另一函数,从而求得原函数的值域。
例如:形如d cx b ax y +±+=(d c b a ,,,均为常数,0≠ac )的函数常用此法。
(3)配方法:若函数是二次函数的形式,即可化为()02≠++=a c bx ax y 型的函数,则可通过配方后再结合二次函数的性质求值域,但要注意给定区间上二次函数最值得求法。
如求函数32+-=x x y 的值域,因为()2212≥+-=x y ,所以所求函数的值域为[)∞+,2。
(4)判别式法:求形如fex dx c bx ax y ++++=22(f e d c b a ,,,,,不同时为0)的值域,常利用去分母的形式,把函数转化为关于x 的一元二次方程,通过方程有实根,判别式0≥∆,求出y 的取值范围,即得到函数的值域。
(5)数形结合法:有些函数的图像比较容易画出,可以通过函数的图像得出函数的值域;或者分段函数也常用画出函数图像的方法判断出函数的值域。
例如:12--+=x x y 。
(6)分离常数法:形如()0≠++=a b ax d cx y 的函数,经常采用分离常数法,将bax d cx ++变形为()b ax a bc d a c b ax a bcd b ax ac +-+=+-++,再结合x 的取值范围确定b ax a bcd +-的取值范围,从而确定函数的值域。
如求函数112+-=x x y 的值域时,因为132+-=x y ,且013≠+x ,所以2≠y ,所以函数的值域为{}2,|≠∈y R y y 且。
求值域的十种方法
求函数值域的十种方法一.直接法(观察法):对于一些比较简单的函数,其值域可通过观察得到。
例 1 .求函数的值域。
【解析】∵ ,∴ ,∴函数的值域为。
【练习】1 .求下列函数的值域:① ;② ;③ ;,。
【参考答案】① ;② ;③ ;。
二.配方法:适用于二次函数及能通过换元法等转化为二次函数的题型。
形如的函数的值域问题,均可使用配方法。
例 2 .求函数()的值域。
【解析】。
∵ ,∴ ,∴ ,∴ ,∴ 。
∴函数()的值域为。
例 3 .求函数的值域。
【解析】本题中含有二次函数可利用配方法求解,为便于计算不妨设:配方得:利用二次函数的相关知识得,从而得出:。
说明:在求解值域 ( 最值 ) 时,遇到分式、根式、对数式等类型时要注意函数本身定义域的限制,本题为:。
例 4 .若,试求的最大值。
【分析与解】本题可看成第一象限内动点在直线上滑动时函数的最大值。
利用两点,确定一条直线,作出图象易得:, y=1 时,取最大值。
【练习】2 .求下列函数的最大值、最小值与值域:① ;② ;③ ;④ ;,;。
【参考答案】① ;② ;③ ;④ ;;三.反函数法:反函数的定义域就是原函数的值域,利用反函数与原函数的关系,求原函数的值域。
适用类型:分子、分母只含有一次项的函数 ( 即有理分式一次型 ) ,也可用于其它易反解出自变量的函数类型。
例 5 .求函数的值域。
分析与解:由于本题中分子、分母均只含有自变量的一次型,易反解出,从而便于求出反函数。
反解得,故函数的值域为。
【练习】1 .求函数的值域。
2 .求函数,的值域。
【参考答案】 1 .;。
四.分离变量法:适用类型 1 :分子、分母是一次函数的有理函数,可用分离常数法,此类问题一般也可以利用反函数法。
例 6 :求函数的值域。
解:∵ ,∵ ,∴ ,∴函数的值域为。
适用类型 2 :分式且分子、分母中有相似的项,通过该方法可将原函数转化为为( 常数 ) 的形式。
例 7 :求函数的值域。
函数求值域15种方法
函数求值域15种方法方法一:对于已知函数,可以通过求函数的表达式来确定函数的值域。
例如对于f(x)=x^2+1需要求值域,可以将其表示为y=x^2+1,然后观察x和y的关系,可以得到y的值域为[1,+∞)。
方法二:对于一些简单的函数,可以使用数学知识来确定其值域。
例如对于 f(x) = sin(x),由于正弦函数的值域为[-1, 1],因此 f(x) 的值域也是[-1, 1]。
方法三:对于复合函数,可以通过将内部函数的值域代入外部函数中来确定整个函数的值域。
例如对于f(x)=√(x^2+1),内部函数g(x)=x^2+1的值域为[1,+∞),将值域代入外部函数,可以得到f(x)的值域也是[1,+∞)。
方法四:对于分段函数,可以分别求解不同区间上函数的值域,然后将这些值域合并得到整个函数的值域。
例如对于f(x)={x,x<0;x^2,x≥0},可以分别求解x<0和x≥0的情况,得到f(x)的值域为(-∞,0]∪[0,+∞)。
方法五:利用函数的奇偶性来确定函数的值域。
如果函数是奇函数,即f(-x)=-f(x),那么函数的值域关于原点对称;如果函数是偶函数,即f(-x)=f(x),那么函数的值域关于y轴对称。
根据函数的奇偶性可以推断出函数的值域。
方法六:利用函数的周期性来确定函数的值域。
如果函数有周期T,那么函数的值域在一个周期内是相同的。
可以通过观察函数的图像或者函数的性质来确定函数的周期,并进一步确定函数的值域。
方法七:利用函数的极限来确定函数的值域。
可以求函数在正无穷和负无穷的极限,根据极限的性质来确定函数的值域。
如果函数在正无穷的极限是一个确定的值,那么函数的值域是有界的;如果函数在正无穷的极限趋近于正无穷,那么函数的值域是无界的。
方法八:利用函数的导数来确定函数的值域。
可以求函数的导数,然后分析导函数的正负性和极值点,从而确定函数的值域。
如果导函数在一些区间内始终大于零,那么函数在该区间上是单调递增的,可以确定函数的值域;如果导函数在一些区间内始终小于零,那么函数在该区间上是单调递减的,可以确定函数的值域。
函数值域的十五种求法
1. 直接观察法对于一些比较简单的函数,通过对函数定义域、性质的观察,结合函数的解析式,求得函数的值域例1. 求函数的值域。
解:∵∴显然函数的值域是:2. 配方法配方法是求二次函数值域最基本的方法之一。
例2. 求函数的值域。
解:将函数配方得:∵由二次函数的性质可知:当x=1时,,当x=-1时,故函数的值域是:[4,8]3. 判别式法例3. 求函数的值域。
解:两边平方整理得:(1)∵∴解得:但此时的函数的定义域由,得由,仅保证关于x的方程:在实数集R有实根,而不能确保其实根在区间[0,2]上,即不能确保方程(1)有实根,由求出的范围可能比y的实际范围大,故不能确定此函数的值域为。
可以采取如下方法进一步确定原函数的值域。
∵∴∴代入方程(1)解得:即当时,原函数的值域为:注:由判别式法来判断函数的值域时,若原函数的定义域不是实数集时,应综合函数的定义域,将扩大的部分剔除。
4. 反函数法直接求函数的值域困难时,可以通过求其原函数的定义域来确定原函数的值域。
例4. 求函数值域。
解:由原函数式可得:则其反函数为:,其定义域为:故所求函数的值域为:5. 函数有界性法直接求函数的值域困难时,可以利用已学过函数的有界性,反客为主来确定函数的值域。
例5. 求函数的值域。
解:由原函数式可得:,可化为:即∵∴即解得:故函数的值域为6. 函数单调性法例6. 求函数的值域。
解:令则在[2,10]上都是增函数所以在[2,10]上是增函数当x=2时,当x=10时,故所求函数的值域为:例7. 求函数的值域。
解:原函数可化为:令,显然在上为无上界的增函数所以,在上也为无上界的增函数所以当x=1时,有最小值,原函数有最大值显然y>0,故原函数的值域为7. 换元法通过简单的换元把一个函数变为简单函数,其题型特征是函数解析式含有根式或三角函数公式模型,换元法是数学方法中几种最主要方法之一,在求函数的值域中同样发挥作例8. 求函数的值域。
求函数值域的十三种方法
求函数值域的十三种方法求函数值域是数学中常见的问题,通过求函数值域可以了解函数的取值范围,对于解决实际问题和理论分析都有重要意义。
下面将介绍求函数值域的十三种方法。
一、观察法观察法是最直观的方法,通过观察函数的定义域和性质,可以初步确定函数的值域。
例如,对于一个关于实数的二次函数,如果其开口向上,则可以判断其值域为大于等于最低点的y坐标的实数集合。
二、代数法代数法是通过运用代数运算的方法求函数值域。
例如,对于一个有理函数,可以通过求其对应的分式函数的极限来确定函数的值域。
三、图像法图像法是通过绘制函数的图像来求函数值域。
通过观察图像的变化趋势,可以确定函数的值域。
例如,对于一个周期函数,可以通过绘制其一个周期内的图像,然后根据图像的波动范围确定函数的值域。
四、导数法导数法是通过求函数的导数来求函数值域。
通过分析导数的增减性和极值点,可以确定函数的值域。
例如,对于一个单调递增函数,其值域为整个定义域;对于一个有界函数,其值域为一个闭区间。
五、反函数法反函数法是通过求函数的反函数来求函数值域。
通过求反函数的定义域,可以得到函数的值域。
例如,对于一个严格单调增函数,其反函数的定义域即为函数的值域。
六、极限法极限法是通过求函数的极限来求函数值域。
通过分析函数的极限可以确定函数的趋势和边界,从而确定函数的值域。
例如,对于一个无界函数,可以通过求其极限来确定函数的值域。
七、积分法积分法是通过求函数的积分来求函数值域。
通过分析函数的积分可以确定函数的曲线下面积,从而确定函数的值域。
例如,对于一个连续非负函数,可以通过求其积分来确定函数的值域。
八、级数法级数法是通过求函数级数的和来求函数值域。
通过分析级数的收敛性和和的性质,可以确定函数的值域。
例如,对于一个幂级数函数,可以通过求级数的收敛域来确定函数的值域。
九、微分方程法微分方程法是通过求函数满足的微分方程来求函数值域。
通过求微分方程的解析解或数值解,可以确定函数的值域。
高中数学求函数值域的10种常见方法
高中数学求函数值域的10种常见方法
一、显函数法:
须先将函数写成显函数的形式,然后通过分析函数表达式的特征,确定其值域。
二、图像法:
一般通过函数的图像来确定其值域,可以在纸上绘制函数的图像,或者利用数学软件进行绘图分析。
三、函数增减性:
通过函数的增减性来确定其值域,即分析函数在定义域上的单调性。
四、函数的周期性:
若函数具有周期性,则值域受周期性的限制。
五、函数的有界性:
若函数在定义域上有上下界,则其值域也受到该有界性的限制。
六、反函数法:
通过求函数的反函数,获得原函数的值域。
七、导数法:
通过求函数的导数,分析其在定义域内的极值和拐点,得出值域的上下界。
八、极限法:
通过求函数在定义域两端的极限,确定函数值域的范围。
九、变量替换法:
可将复杂的函数转化为简单的函数,通过分析简单函数的值域,确定复杂函数的值域。
十、函数值的性质:
根据函数的性质和定义,通过推理和证明,确定函数值域。
以上是求函数值域的十种常见方法,根据不同的题目和函数形式,我们可以选择适用的方法来解决问题。
在实际应用中,经常需要综合运用多种方法来确定函数的值域。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中数学中求函数值域的几种方法
汝南双语学校赵保刚
函数的值域及其求法是近几年高考考查的重点内容之一.本节主要帮助考生灵活掌握求值域的各种方法,并会用函数的值域解决实际应用问题.
定义域、对应法则、值域是函数构造的三个基本“元件”。
平时数学中,实行“定义域优先”的原则,无可置疑。
然而事物均具有二重性,在强化定义域问题的同时,往往就削弱或谈化了,对值域问题的探究,造成了一手“硬”一手“软”,使学生对函数的掌握时好时坏,事实上,定义域与值域二者的位置是相当的,绝不能厚此薄彼,何况它们二者随时处于互相转化之中(典型的例子是互为反函数定义域与值域的相互转化)。
如果函数的值域是无限集的话,那么求函数值域不总是容易的,反靠不等式的运算性质有时并不能奏效,还必须联系函数的奇偶性、单调性、有界性、周期性来考虑函数的取值情况。
才能获得正确答案,从这个角度来讲,求值域的问题有时比求定义域问题难。
实践证明,如果加强了对值域求法的研究和讨论,有利于对定义域内函数的理解,从而深化对函数本质的认识。
若有非空数集A到B的映射f:A→B,则函数:y=f(x)(x∈A,y∈B)的值域是自变量x在f作用
下的函数值y的集合C,很明显,C B,求函数值域的方法要随函数式的变化而灵活掌握,同时应注重数形结合,等价转换,分类讨论等重要数学思想的理解与运用。
下面通过八个方面的例题来加以说明。
题型一定义法
要深刻领会映射与函数值域的定义。
例1.已知函数f:A→B(A,B为非空数集),定义域为M,值域为N,则A,B,M,N的关系:()。
A.M=A,N=B B.M N,N=B
C.M=A,N B D.M A,N B
说明:函数的定义域是映射f:A→B中的原象集合A,而值域即函数值的集合是集合B的子集。
故:应有M=A,N B,选C。
例2.已知函数f(x)=2log2x的值域是[-1,1],求函数y=f-1(x)的值域。
分析:要求反函数的值域,只需求原函数的定义域。
解:由已知可得
f(x)∈[-1,1],,解之得,
即函数y=f-1(x)的值域是。
题型二利用均值定理求函数的值域
例3.若函数的定义域是(0,+∞),求值域。
解:∵,
∴,则
当且仅当时取“=”。
因此,函数的值域是。
例4.已知x+2y=1,x,y∈R+,求的最小值。
解:由已知x+2y=1,x,y∈R+,则有
当且仅当,即时取等号,故的最小值是。
说明:利用重要不等式均值定理求函数值域,要注意三条原则:一正数,二定值,三取等。
题型三配方法
形如y=ax2+bx+c(a≠0)的函数常用配方法求函数的值域,要注意x的取值范围。
例5.设(a∈R),如果x∈(-∞,1)时,f(x)有意义,求a的取值范围。
解:由题知,当x∈(-∞,1)时,要使函数f(x)有意义,需满足不等式:,即1+2x+a×4x>0恒成立,分离常数得
由于,因而。
故a的取值范围是。
题型四换元法
通过代数换元法或者三角函数换元法,把无理函数、指数函数、对数函数等超越函数转化为代数函数来求函数值域的方法。
例6.已知函数f(x)的值域是。
求的值域。
解:∵,
∴。
故,
令,则,
有,,
由于y=g(t)在时单调递增,
∴当时,;
当时,。
∴的值域是。
题型五判别式法
形如的函数值域,可变形为
(dy-a)x2+(ey-b)x+(fy-c)=0 (1)
当dy-a≠0时,(1)式为关于x的一元二次方程,由于函数的定义域为非空数集,故方程(1)有实根,因而Δ=(ey-b)2-4(dy-a)(by-c)≥0.....(2),再通过不等式(2)求y的最大值和最小值。
此法称为判别式法
例7.求函数的值域。
解:由已知得,
(y-1)x2+(1-y)x+y=0.
当y=1时,方程(y-1)x2+(1-y)x+y=0无解,
∴y≠1,
又∵x∈R,则Δ=(1-y)2-4y(y-1)≥0
解之得。
又因为y≠1,
故函数值域为。
说明:利用判别式法求函数的值域,一是方程二次项系数为0的情形要特别讨论;二是要看函数的定义域是否满足x ∈R 。
如果x 有特定的范围限制时,往往要综合运用判别式和韦达定理等,方能求出y 的值域。
题型六 利用函数的单调性求函数的值域
例8.求函数的值域。
解:函数的定义域为,函数y=x 和函数 在 上均为单调递增函数。
故。
因此,函数
的值域是。
题型七 数形结合法 通过函数图象,把求函数值域的问题转化为求直线的斜率或距离的范围问题。
例9. 已知:实数x,y ∈R ,满足(x-2)2+y 2=3,求的最值。
解: 如图,因为,可看作是动点P(x ,y)与原点O(0,0)连线的斜率,而动点P(x ,y)在圆(x-2)2+y 2=3上,于是依数形结合法,可得 的最大值为,最小值为 。
说明:数形结合是解决求值域和最值问题的重要方法。
运用图形的直观性,通过数形结合使抽象问题直观化;复杂问题简单化;综合问题浅显化,充分训练发散思维。
题型八 实际应用
设m 是实数,记M ={m |m >1},f (x )=log 3(x 2-4mx +4m 2+m +1
1 m ). (1)证明:当m ∈M 时,f (x )对所有实数都有意义;反之,若f (x )对所有实数x 都有意义,
则m ∈M .
(2)当m ∈M 时,求函数f (x )的最小值.
(3)求证:对每个m ∈M ,函数f (x )的最小值都不小于1.
(1)证明:先将f (x )变形:f (x )=log 3[(x -2m )2+m +1
1-m ], 当m ∈M 时,m >1,∴(x -m )2+m +
1
1-m >0恒成立,故f (x )的定义域为R . 反之,若f (x )对所有实数x 都有意义,则只须x 2-4mx +4m 2+m +1
1-m >0,令Δ<0,即16m 2
-4(4m 2+m +1
1-m )<0,解得m >1,故m ∈M . (2)解析:设u =x 2-4mx +4m 2+m +1
1-m ,∵y =log 3u 是增函数,∴当u 最小时,f (x )最小. 而u =(x -2m )2+m +11-m ,显然,当x =m 时,u 取最小值为m +11-m ,此时f (2m )=log 3(m +11-m )为最小值.
(3)证明:当m ∈M 时,m +
11-m =(m -1)+ 11-m +1≥3,当且仅当m =2时等号成立. ∴log 3(m +1
1-m )≥log 33=1. 以上是对函数值域的一些常用求法,仅供大家在教学或学习中用以参考。
若要想真正得以提高,我们必须在数学复习中对求值域的常用方法和一般技能进行系统整理,深化训练。
那样才能让学生真正熟练掌握。