ENVI支持下地表温度反演
遥感反演地表温度

1、 裁剪出出济南市区2、 分别利用ENVI 、ERDAS 反演地表温度(LST )、NDVI ,对LST 进行彩色显示。
3、 分析LST 、NDVI 的关系。
反演公式具体流程:图像的DN 值 辐射亮度 辐射亮温 地表温度。
反演时从图像数值(DN )转换成绝对辐射亮度值时的公式、从辐射亮度值转成辐射亮温时的公式、从亮温转换成地表温度时的公式分别是:min min max 6255)(L L L DN L tm +-⨯=、 )1/ln(/12+=λL K K T 、 ερλl n )/(1T T T s += 其中:6tm L 为TM 传感器所接收到的辐射亮度(mW .cm -2s r-1.um -1),max L 、min L 分别是传感器所接收到的最大和最小的辐射强度,即对应于DN =255和DN =0时的最大和最小辐射强度。
对于Landsat5的TM 6波段,1K =60.77mW .cm -2s r-1.um -1,2K =1260.56K 。
S T 为地表温度(K );T 为辐射温度(K );λ为有效波谱范围内的最大灵敏度值,λ=11.5um ,ρ=/hc δ=1.438×10-2mk ,其中δ=1.38 ×10-23/J k ,为玻尔兹曼常数,h =6.626×10-34Js ,为Plank′s 常数,c =2.998 ×108/m s ,为光速。
一般地,有植被覆盖的地表取ε=0.95,没有植被覆盖的地表取ε=0.92(Weng ,2004[16])。
min L =0.1238255)(min max L L - =0.005632156 )1/ln(/12+=λL K K T 1260.56 / LOG ( 1 + 60.766 / $n8_fu )$n1_12736l / (1 + (0.0000115 * $n1_12736l /0.01438) * LOG (0.95 ) )。
(完整)基于单窗算法反演地表温度的ENVI操作教程

单窗算法反演地表温度教程1.1 算法原理1.1.1单窗算法单窗算法(MW 算法)是覃志豪于2001年提出的针对TM 数据只有一个热红外波段的地面温度反演算法。
经过众多学者验证,单窗算法具有很高的反演精度,且同样适用于ETM+和landsat 8数据。
公式如下:6666666666/)))1(()1((C T D T D C D C b D C a T a sensor s -++--+--=式中,LST 为地表温度(K ),T sensor 是传感器上的亮度温度(K ),T a 是大气平均温度(K );a 、b 为参考系数,当地表温度为0-70℃时,a = -67.355351,b = 0.458606;C 、D为中间变量,计算公式为:式中,为地表比辐射率,为地面到传感器的大气总透射率。
因此单窗算法反演地表温度的关键是计算得到亮度温度T senso 、地表比辐射率、大气透射率和大气平均作用温度T a 。
1.1.2参数计算1.1.2.1辐射亮温计算利用Planck 公式将图像像元对应传感器辐射强度值转换为对应的亮度温度值。
公式如下式中,T senso 为亮度温度值;影像预处理后得到的光谱辐射值,λL 单位为,K1 、K2为常量,可由数据头文件获取。
)/(2m sr m w μ⋅⋅计算图像辐射亮温之前,需采用辐射定标参数将像元灰度值DN转换为热辐射强度值,公式如下:式中,M L 为增益参数,A L 为偏移参数,该参数可直接在影像通文件数据中获取,且ENVI 软件中已经集成,不需要自己在查找。
1.1.2.2地表比辐射率计算根据覃志豪针对TM 影像提出的混合像元分解法来确定区域地表福辐射率。
对于城市区域,我们简单的将其分为水体、自然表面和建筑表面三种,因此针对混合像元尺度上的地表比辐射率通过下式来估算:式中,为混合像元的地表比辐射率;P V 为植被覆盖率;R V 为植被的温度比率;R M 为建筑表面的温度比率;V 表示植被法地表比辐射率,m 表示建筑表面的地表比辐射率;d表示辐射校正项。
ENVI下利用ETM+数据反演地表温度

ENVI下利用ETM+数据反演地表温度地表温度作为地球环境分析的重要指标,而遥感技术作为现代重要的对地观测手段,使得基于遥感图像的地表温度反演的研究越来越多。
主要的地表温度反演方法有:大气校正法,单窗算法,单通道法等等。
本文介绍用辐射传输方程法对地表温度进行反演。
技术流程:例子数据为2002年9月2日的襄樊市Landsat ETM+数据。
根据数据的特点以及地表温度反演研究的技术要求,采用的技术路线为:先对Landsat ETM+数据进行预处理:数据读取、辐射定标、大气校正、襄樊区域裁剪,利用大气校正,即:辐射传输方程法对其影像热红外波段数据进行操作反演,实现襄樊市地区的地表真实温度的反演研究。
具体的处理流程如下:具体的实现步骤如下:第一步:准备数据热红外数据使用的是Landsat的第六波段,已经做了传感器定标、几何校正、工程区裁剪,详细流程参考上面的流程图。
文件为TM6-rad-subset-jz-xiangfan.img。
由TM影像(已经过大气校正)生成的NDVI数据,已经利用主菜单->BasicTools->Resize Data(SFatial/SFectral)重采样为60米分辨率,与TMi6数据保持一致,文件名为:TM-NDVI-60m.img。
第二步:地表比辐射率计算物体的比辐射率是物体向外辐射电磁波的能力表征。
它不仅依赖于地表物体的组成,而且与物体的表面状态(表面粗糙度等)及物理性质(介电常数、含水量等)有关,并随着所测定的波长和观测角度等因素有关。
在大尺度上对比辐射率精确测量的难度很大,目前只是基于某些假设获得比辐射率的相对值,本文主要根据可见光和近红外光谱信息来估计比辐射率。
(一)植被覆盖度计算计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下:F V = (NDVI- NDVI S)/(NDVI V - NDVI S) (2)其中,NDVI为归一化差异植被指数,取NDVI V = 0.70和NDVI S = 0.00,且有,当某个像元的NDVI大于0.70时,F V取值为1;当NDVI小于0.00,F V取值为0。
遥感数字图像处理_地表反射率、温度的反演以及植被指数的计算

操作方法及过程1、使用ENVI对landsat 7 ETM+原始数据进行辐射定标:①对1、2、3、4、5、7波段进行辐射定标。
利用ENVI中的File |Open External File |Landsat Geo TIFF with MetaData加载威武市Landsat ETM+原始影像数据中的_MTL文件,再利用Basic Tools |Preprocessing |Calibration Utilities |Landsat Calibration 在弹出的对话对话框中选择包含1、2、3、4、5、7波段的_MTL文件,将Calibration Type选为Radiance,然后选择输出路径保存为radiance。
②对61和62波段进行辐射定标。
步骤和上面的一样,只是选择输入文件时为包含61和62波段的_MTL文件,将结果保存为radiance_band6。
2、将BSQ格式的影像数据转化为BIL:利用Basic Tools |Convert Data,弹出对话框中选择Radiance,Output Interleave中选择BIL,选择输出路径保存为radiance_BIL。
3、使用FLAASH大气辐射校正模型进行地表反射率的计算:①利用Spectral |FLASSH弹出大气校正模型参数设置窗口如下:分别按照以上所示的内容进行参数设置,将输入文件设为radiance_BIL,输出文件设为flassh,设置Scene Center Location时,打开原始影像在头文件中找到行和列,算出中心行和列,利用Pixel Locator工具找到中心点的经纬度。
将Sensor Type设为Landsat TM7。
设置Ground Elevation时,利用裁剪工具在亚洲幅SRTM DEM影像数据中裁剪该地区的DEM数据,再用统计功能算出高程的平均值为2058m。
在头文件中找到Flight Data:1999年8月10日,Flight Time GTM:3时36分39秒。
地表温度反演实验报告

地表温度反演实验报告地表温度是指地球表面的温度,是一个重要的气象参数,对于气候变化、城市热岛效应等问题具有重要的影响。
地表温度反演是通过遥感技术获取地表温度信息的一种方法,可以有效地监测地表温度的变化情况。
本实验旨在利用卫星遥感数据,反演地表温度,并对结果进行分析和讨论。
实验方法:我们收集了MODIS卫星传感器获取的遥感数据,包括云量、地表温度等信息。
然后,利用反演算法对这些数据进行处理,得到地表温度的反演结果。
接着,我们将反演结果与实地观测数据进行对比分析,验证反演结果的准确性。
最后,我们对地表温度的空间分布特征进行研究,分析其与地形、植被覆盖等因素的关系。
实验结果:经过反演算法处理,我们得到了一幅地表温度的空间分布图。
从图中可以看出,地表温度在不同区域有明显的差异,一般来说,城市区域的地表温度要高于郊区和农田地区。
另外,我们还发现地形和植被覆盖对地表温度有一定的影响,高海拔地区的地表温度要低于低海拔地区,而植被茂密的地区地表温度相对较低。
实验分析:通过对地表温度的反演结果进行分析,我们可以发现地表温度的空间分布受到多种因素的影响,包括城市化程度、地形、植被覆盖等。
城市热岛效应导致城市区域地表温度升高,而高海拔地区地表温度较低,这些都是地表温度空间分布差异的原因之一。
植被覆盖可以降低地表温度,起到调节气候的作用。
结论:地表温度反演是一种有效的监测地表温度变化的方法,可以为气候研究、城市规划等领域提供重要的参考依据。
通过对地表温度的反演结果进行分析,可以更好地理解地表温度的空间分布特征,为环境保护和气候调控提供科学依据。
希望通过本实验的研究,能够更深入地探讨地表温度变化的规律,为未来的研究提供参考。
基于某单窗算法反演地表温度地ENVI操作教程

单窗算法反演地表温度教程1.1 算法原理1.1.1 单窗算法单窗算法(MW 算法)是覃志豪于2001年提出的针对TM 数据只有一个热红外波段的地面温度反演算法。
经过众多学者验证,单窗算法具有很高的反演精度,且同样适用于ETM+和landsat 8数据。
公式如下:式中,LST 为地表温度(K ),T sensor 是传感器上的亮度温度(K ),T a 是大气平均温度(K );a 、b 为参考系数,当地表温度为0-70℃时,a = -67.355351,b = 0.458606;C 、D 为中间变量,计算公式为:式中,为地表比辐射率,为地面到传感器的大气总透射率。
因此单窗算法反演地表温度的关键是计算得到亮度温度T senso 、地表比辐射率、大气透射率和大气平均作用温度T a 。
1.1.2 参数计算1.1.2.1 辐射亮温计算利用Planck 公式将图像像元对应传感器辐射强度值转换为对应的亮度温度值。
公式如下6666666666/)))1(()1((C T D T D C D C b D C a T a sensor s -++--+--=式中,T senso 为亮度温度值;λL 影像预处理后得到的光谱辐射值,单位为)/(2m sr m w μ⋅⋅,K1 、K2为常量,可由数据头文件获取。
计算图像辐射亮温之前,需采用辐射定标参数将像元灰度值DN 转换为热辐射强度值,公式如下:式中,M L 为增益参数,A L 为偏移参数,该参数可直接在影像通文件数据中获取,且ENVI 软件中已经集成,不需要自己在查找。
1.1.2.2 地表比辐射率计算根据覃志豪针对TM 影像提出的混合像元分解法来确定区域地表福辐射率。
对于城市区域,我们简单的将其分为水体、自然表面和建筑表面三种,因此针对混合像元尺度上的地表比辐射率通过下式来估算:式中,为混合像元的地表比辐射率;P V 为植被覆盖率;R V 为植被的温度比率;R M 为建筑表面的温度比率;V 表示植被法地表比辐射率,m 表示建筑表面的地表比辐射率;d 表示辐射校正项。
地表温度反演

1、TM/ETM波段的热辐射传导方程:B6(T6)=t6(q)[e6B6(Ts)+(1-e6)I6~]+I6_Ts是地表温度;T6是TM6的亮度温度;t6是大气透射率;e6是地表辐射率。
B6(T6)表示TM6遥感器所接收到的热辐射强度;B6(Ts)是地表在TM6波段区间内的实际热辐射强度,直接决取于地表温度;I6~和I6_分别是大气在TM6波段区间内的向上和向下热辐射强度。
2、化简后最终的单窗体算法模型为:Ts={a(1-C-D)+[b(1-C+D)+C+D]T6-DTa}/C式中C6=t6e6(e6为比辐射率,t6为透射率)D6=(1-t6)[1+t6(1-e6)]a =-67.355351,b=0.4586063、大气平均作用温度Ta的近似估计温度换算:T=t+273.15本图为7月份拍摄,对于中纬度夏季平均大气Ta=16.0110+0.92621T0取乌鲁木齐市平均气温为25摄氏度时Ta = 312.157534、大气透射率t6的估计t6=0.974290-0.08007w,0.4≤w≤1.6。
w为水分含量,单位(g/cm2),这里,取w=1.0,计算得到t6=0.894225、地表比辐射率的估计典型地表类型的比辐射率ew=0.995ev=0.986em=0.970Pv=[(NDVI- NDVIs)/(NDVIv- NDVIs)]2NDVI 为归一化植被指数, 取NDVIv=0.70 和NDVIs=0(分别取自5%及95%数据)e surface=0.9625+0.0614Pv-0.0461Pv^26、像元亮度温度计算T6=K2/ln(1+K1/L6)其中:K1=607.76,K2=1260.56(覃志豪,用陆地卫星TM6数据演算地表温度的单窗算法);L6为遥感器接收的辐射强度。
7、遥感器接收的辐射强度计算L6=(15.303-1.238)*b1/255.0+1.238 (覃志豪,用陆地卫星TM6数据演算地表温度的单窗算法);b1为第六波段像元灰度值(DN值)。
地表温度反演步骤

地表温度反演是通过遥感技术获取地表温度的过程。
以下是一般的地表温度反演步骤:
1. 数据收集:选择适合的遥感数据源,如热红外遥感数据或者微波遥感数据。
这些数据可以来自于卫星、飞机或无人机等。
2. 大气校正:由于大气在传输过程中对热辐射的吸收和散射作用,会影响到地表温度的观测。
因此,需要进行大气校正,以消除大气效应并准确估算地表温度。
3. 辐射学模型:建立辐射学模型,将已经校正的遥感数据与地表温度之间的物理关系联系起来。
这个模型通常基于不同波段的辐射亮温和地表温度之间的经验关系。
4. 晴空辐射和云覆盖修正:如果存在云覆盖,需要对遥感数据进行修正,以排除云的干扰。
这可以通过晴空辐射率和云覆盖率的估计来实现。
5. 地表温度反演:利用辐射学模型和修正后的遥感数据,通过数学计算反演地表温度。
这个过程可以是基于物理模型的解析方法,也可以是基于统计回归或机器学习的统计方法。
6. 优化和验证:对反演得到的地表温度进行优化和验证。
可以与已知的地面观测数据进行比较,评估反演结果的精确性和可靠性。
需要注意的是,地表温度反演是一个复杂的过程,涉及到多种因素和技术手段。
具体步骤可能会根据数据源、研究目的和数据处理软件的不同而有所变化。
基于某单窗算法反演地表温度地ENVI操作教程

单窗算法反演地表温度教程1.1 算法原理1.1.1 单窗算法单窗算法(MW 算法)是覃志豪于2001年提出的针对TM 数据只有一个热红外波段的地面温度反演算法。
经过众多学者验证,单窗算法具有很高的反演精度,且同样适用于ETM+和landsat 8数据。
公式如下:式中,LST 为地表温度(K ),T sensor 是传感器上的亮度温度(K ),T a 是大气平均温度(K );a 、b 为参考系数,当地表温度为0-70℃时,a = -67.355351,b = 0.458606;C 、D 为中间变量,计算公式为:式中,为地表比辐射率,为地面到传感器的大气总透射率。
因此单窗算法反演地表温度的关键是计算得到亮度温度T senso 、地表比辐射率、大气透射率和大气平均作用温度T a 。
1.1.2 参数计算1.1.2.1 辐射亮温计算利用Planck 公式将图像像元对应传感器辐射强度值转换为对应的亮度温度值。
公式如下6666666666/)))1(()1((C T D T D C D C b D C a T a sensor s -++--+--=式中,T senso 为亮度温度值;λL 影像预处理后得到的光谱辐射值,单位为)/(2m sr m w μ⋅⋅,K1 、K2为常量,可由数据头文件获取。
计算图像辐射亮温之前,需采用辐射定标参数将像元灰度值DN 转换为热辐射强度值,公式如下:式中,M L 为增益参数,A L 为偏移参数,该参数可直接在影像通文件数据中获取,且ENVI 软件中已经集成,不需要自己在查找。
1.1.2.2 地表比辐射率计算根据覃志豪针对TM 影像提出的混合像元分解法来确定区域地表福辐射率。
对于城市区域,我们简单的将其分为水体、自然表面和建筑表面三种,因此针对混合像元尺度上的地表比辐射率通过下式来估算:式中,为混合像元的地表比辐射率;P V 为植被覆盖率;R V 为植被的温度比率;R M 为建筑表面的温度比率;V 表示植被法地表比辐射率,m 表示建筑表面的地表比辐射率;d 表示辐射校正项。
利用envi反演地表温度

1.遥感数据预处理影像数据均经过精确地理校正,并具有相同的投影坐标系统(WGS84),Landsat TM5数据中TM l~5波段为多光谱波段,空间分辨率为30m,第6波段为热红外波段,空间分辨率为120米,经过重采样统一为30米。
利用ENVI5.0SP3软件自带Radiometric Calibration 工具对多光谱波段进行辐射定标(同时以区域矢量边界为辅助数据,对经过辐射定标的影像进行裁剪)。
2.地表温度反演Landsat TM5影像第6波段为热红外辐射波段,接收的热红外强度与地表温度高低正相关,可转化为地表的实际温度。
按照以下步骤对地表温度进行反演:○1黑体辐射亮度值(Tb:Brightness Temperature):利用ENVI5.0SP3软件平台Band Math工具,通过公式(3-1)将TM热红外波段(第六波段)像元值D N值转变为黑体的辐射亮温值:Lλ=L MIN+L MAX−L MIN255∗D N(3-1)式中,D N为像元灰度值;Lλ为地物在光谱λ处(单位μm,文中λ取波段中间值11.45μm)处的热辐射值(单位:W·m-2·sr-1·μm-1),L MIN表示TM热红外波段D N为0时的热辐射亮度值,L MAX表示TM 热红外波段D N为最大值时的热辐射值。
L MIN =1.2378 W·m-2·sr-1·μm-1,L MAX=15.303W·m-2·sr-1·μm-1。
假设热红外波段在不同下垫面的地表发射率相同,利用普朗克公式反函数公式(3-2)将计算得出的热辐射值Lλ转换成传感器端的有效亮温(Tb):T b=K2ln(1+K1Lλ)(3-2)式中,Tb为有效亮温值,K1、K2为定标系数,其中K1=607.76 W·m-2·sr-1·μm-1,K2=1260.56K ○2地表比辐射率(ε):利用ENVI5.0SP3软件平台快速大气校正工具(QUAC)对经过裁剪的辐射定标后的多光谱波段数据进行大气校正,通过公式(3-3)获得归一化植被指数(NDVI:Normalized Difference Vegetation Index)NDVI=NIR−RNIR+R(3-3)式中,NIR和R分别是TM影像的近红外波段(波段4)和红光波段(波段3)的灰度值(D N)在获取的归一化植被指数(NDVI)基础上,采用混合像元分解法计算植被覆盖度(Pv),依据经验值,当NDVI>0.5时,下垫面为植被,植被覆盖度(Pv)取1;当NDVI<0.2时,下垫面为裸露土地,植被覆盖度(Pv)取0;当0.2≤NDVI≤0.5时,依照公式(3-4)计算植被覆盖度(Pv)。
遥感应用模型作业四_地表温度反演

高
低
(a)MODIS 影像 NDVI 计算
(b)支持向量机分类结果
图 2-1 MODIS 影像 NDIV 计算与监督分类(山西省)
表 3-3 劈窗算法计算温度与 MODIS 温度产品 LST No. 影像行号 影像列号 劈窗算法温度值(K) LST 产品温度值(K) 绝对误差
劈窗算法主要利用在一个大气窗口的两个临近红外通道(MODIS 的 L1B 数据第 2 和 19 波段),存在与大气影响密切相关的大气吸收、散射信息来进行大气纠正。地表温度同亮度 温度和发射率之间呈线性关系,地表温度可以用相邻的两个波段的亮度温度(MODIS 的 L1B 数据第 31 和 32 波段)来线性表示,而表达式的系数是由通道发射率决定的,它们不依赖于 大气状况。
MODIS 影像计算 NDVI 与监督分类的具体过程分别《作业二》中 2.2 节监督分类和 4.2 节 MODIS 影像 NDVI 计算,有详细叙述。
2.2 等密度模型的植被覆盖率计算
植被覆盖率根据不同的地物类别,选择等密度模型或非等密度模型计算。在 MODIS 1KM 的像元尺度下,水体的植被覆盖度可看做 0,裸地和植被的可看作等密度模型,根据 NDVI 进行计算,等密度模型中的 fg 为当前像元的植被覆盖率,计算公式如下:
1、MODIS 数据及其预处理
1.1 数据要求:
实验数据采用 MODIS 的 L1B 级数据实现劈窗算法对温度的反演,MODIS 的地表温度产 品 LST 数据用于与劈窗算法得到的温度像对比。成像时间为 2012 年 11 月 3 日,成像区域为 中国中东部。
陆地表面亮温、反射率的反演

二、具体操作步骤:
2. 根据文献,查找Landsat5的各个波段的Gain和 Bias值,注意不同的波段对应着不同的Gain和 Bias值。根据以下公式计算出Lλ 3. 查找图像获取日期的日地距离修正系数d,各个 波段对应的Esun值,热红外的查找K1和K2即可 5. 根据以上计算的Lλ、日地距离修正系数d、 Esun 值,并通过查找的太阳高度角计算出其天顶角, 根据公式出其他波段的计算过程与以上过程类似,注意第 6波段为热红外波段的发射数据,需要输入温度反 演的公式,通过公式计算后得出的是亮度温度的 结果,不是热力学温度,单位为K。 2. Landsat7 ETM+的计算与以上的类似,具体的 图像获取日期、太阳高度角等信息需重新查找, 其计算公式中的Gain,Bias、Esun、d、K1、K2 的值要按照Landsat7 ETM+的表进行查找。
三、在ENVI中的操作步骤
1. 打开要计算的图像 2. 输入要计算的公式(TM的第123457波段记录的 是反射数据,第6波段为热红外波段的发射数据) 3. 选择要计算的波段 4. 设置输出的地址和名称 下面就以波段1为例, 下面就以波段 为例,演示一下计算的过程 为例
经过计算,图像的数据变已经为0-1 的反射率数据了
3. 转换为亮温
二、具体操作步骤:
1. 用写字板打开一幅遥感图像的头文件,查找其中 包含的卫星和传感器类型、图像获取时间(注意不 是图像的处理时间)、太阳高度角等信息。本例中 的头文件名为L5122036_03620060502_MTL.txt, 查找结果如下: SPACECRAFT_ID = "Landsat5" SENSOR_ID = "TM" ACQUISITION_DATE = 2006-05-02 SUN_AZIMUTH = 128.0488069 SUN_ELEVATION = 62.0513641
反演地表温度 程序代码

pro LST_inversionout_name=LST_inversion(irimg_file,nirimg_file,tirimg_file,ndvifilepath,pvfilepath,emfilepath) endfunction LST_inversion,irimg_file,nirimg_file,tirimg_file ,ndvifilepath,pvfilepath,emfilepath;,t,tp compile_opt idl2envi,/restore_base_save_filesenvi_batch_init,log_file='batch.txt';打开红光波段影像; irimg_file = dialog_pickfile(title='打开红光波段影像')irimg_file='F:\HJ-1B温度反演\2010.9.20\3波段裁剪'ndvifilepath='G:\NDVI'pvfilepath='G:\PV'emfilepath='G:\比辐射率'ENVI_OPEN_FILE,irimg_file,r_fid=ir_fidIF (ir_fid EQ -1) THEN BEGINENVI_BATCH_EXITENDIF;读取影像ENVI_FILE_QUERY, ir_fid, ns=ns,nl=nl,$nb=nb , dims=dimsmap_info=envi_get_map_info(fid=ir_fid)proinfo=envi_get_projection(fid=ir_fid)b1= envi_get_data(fid=ir_fid,dims=dims,pos=0);打开近红外波段影像; nirimg_file = dialog_pickfile(title='打开近红外波段影像')nirimg_file='F:\HJ-1B温度反演\2010.9.20\4波段裁剪'ENVI_OPEN_FILE,nirimg_file,r_fid=nir_fidIF (nir_fid EQ -1) THEN BEGINENVI_BATCH_EXITENDIFENVI_FILE_QUERY, nir_fid, ns=ns,nl=nl,$nb=nb , dims=dimsmap_info=envi_get_map_info(fid=nir_fid)proinfo=envi_get_projection(fid=nir_fid)b2 =envi_get_data(fid=nir_fid, dims=dims, pos=0); tirimg_file = dialog_pickfile(title='打开辐射定标后的热红外波段影像')tirimg_file='F:\HJ-1B温度反演\2010.9.20\定标掩膜'ENVI_OPEN_FILE,tirimg_file,r_fid=tir_fidIF (tir_fid EQ -1) THEN BEGINENVI_BA TCH_EXITENDIFENVI_FILE_QUERY, tir_fid, ns=ns,nl=nl,$nb=nb , dims=dimsmap_info=envi_get_map_info(fid=tir_fid)proinfo=envi_get_projection(fid=tir_fid)b3 =envi_get_data(fid=tir_fid, dims=dims, pos=0)b1=float(b1)b2=float(b2)b3=float(b3)b5=b2+b1b4=b2-b1;计算NDVINDVI=fltarr(ns*nl)rr=where(b5 eq 0,count, COMPLEMENT=B_C)NDVI[rr]=0NDVI[B_C]=b4[B_C]/float(b5[B_C])NDVI=reform(NDVI,ns,nl)if n_elements(ndvifilepath) ne 0 then beginmap_info1=envi_get_map_info(fid=nir_fid)envi_write_envi_file,NDVI,r_fid=fid1,map_info=map_info1,out_name=ndvifilepathendifb4=NDVI;计算植被覆盖度Pv=(b4 gt 0.7)*1+(b4 lt 0.0)*0+(b4 ge 0 and b4 le 0.7)*((b4-0.0)/(0.7-0.0))if n_elements(pvfilepath) ne 0 then beginmap_info2=envi_get_map_info(fid=nir_fid)envi_write_envi_file,PV,r_fid=fid1,map_info=map_info2,out_name=pvfilepathendifb5=Pv;计算比辐射率e=(b4 le 0)*0.995+(b4 gt 0 and b4 lt 0.7)*(0.9589+0.086*b5-0.0671*b5^2)+(b4 ge 0.7)*(0.9625+0.0614*b5-0.0461*b5^2)if n_elements(emfilepath) ne 0 then beginmap_info3=envi_get_map_info(fid=nir_fid)envi_write_envi_file,e,r_fid=fid1,map_info=map_info3,out_name=emfilepathendifb4=e;对于TM:k2=1260.56,k1=607.76;对于ETM:k2=1282.71,k1=666.09;对于环境卫星:k2=1245.58,k2=579.20;case str of;'HJ-1B':k2=1245.58,k2=579.20;'TM':k2=1260.56,k1=607.76;'ETM+':k1=,k2=1282.71,k1=666.09;;endcase;计算地表温度TS=fltarr(ns*nl)rr=where(b3 eq 0,count, COMPLEMENT=B_C);当b3=0时对TS赋值为0TS[rr]=0TS[B_C]=(1/(float(0.74*b4[B_C])))*((-63.1885)*(1-(float(0.74*b4[B_C]))-((1-0.74)*(1+(1-b4[B _C])*0.74)))+(0.44411*(1-(float(0.74*b4[B_C]))-((1-0.74)*(1+(1-b4[B_C])*0.74)))+((1-0.74)*(1 +(1-b4[B_C])*0.74))$+(float(0.74*b4[B_C])))*(1260.56/(alog(607.76/b3[B_C]+1)))-((1-0.74)*(1+(1-b4[B_C])*0.74))* (16.0110+0.92621*290))TS=reform(TS,ns,nl)out_name = 'G:\TS'envi_write_envi_file,TS,r_fid=fid1,map_info=map_info,out_name=out_name;,/in_memory;envi_output_to_external_format,dims=dims,fid=fid1,out_name=out_name,pos=[0],/tiff; envi_file_mng,fid=fid1,/removereturn,out_nameend。
利用envi反演地表温度

1.遥感数据预处理影像数据均经过精确地理校正,并具有相同的投影坐标系统(WGS84),Landsat TM5数据中TM l~5波段为多光谱波段,空间分辨率为30m,第6波段为热红外波段,空间分辨率为120米,经过重采样统一为30米。
利用ENVI5.0SP3软件自带Radiometric Calibration 工具对多光谱波段进行辐射定标(同时以区域矢量边界为辅助数据,对经过辐射定标的影像进行裁剪)。
2.地表温度反演Landsat TM5影像第6波段为热红外辐射波段,接收的热红外强度与地表温度高低正相关,可转化为地表的实际温度。
按照以下步骤对地表温度进行反演:○1黑体辐射亮度值(Tb:Brightness Temperature):利用ENVI5.0SP3软件平台Band Math工具,通过公式(3-1)将TM热红外波段(第六波段)像元值D N值转变为黑体的辐射亮温值:Lλ=L MIN+L MAX−L MIN255∗D N(3-1)式中,D N为像元灰度值;Lλ为地物在光谱λ处(单位μm,文中λ取波段中间值11.45μm)处的热辐射值(单位:W·m-2·sr-1·μm-1),L MIN表示TM热红外波段D N为0时的热辐射亮度值,L MAX表示TM 热红外波段D N为最大值时的热辐射值。
L MIN =1.2378 W·m-2·sr-1·μm-1,L MAX=15.303W·m-2·sr-1·μm-1。
假设热红外波段在不同下垫面的地表发射率相同,利用普朗克公式反函数公式(3-2)将计算得出的热辐射值Lλ转换成传感器端的有效亮温(Tb):T b=K2ln(1+K1Lλ)(3-2)式中,Tb为有效亮温值,K1、K2为定标系数,其中K1=607.76 W·m-2·sr-1·μm-1,K2=1260.56K ○2地表比辐射率(ε):利用ENVI5.0SP3软件平台快速大气校正工具(QUAC)对经过裁剪的辐射定标后的多光谱波段数据进行大气校正,通过公式(3-3)获得归一化植被指数(NDVI:Normalized Difference Vegetation Index)NDVI=NIR−RNIR+R(3-3)式中,NIR和R分别是TM影像的近红外波段(波段4)和红光波段(波段3)的灰度值(D N)在获取的归一化植被指数(NDVI)基础上,采用混合像元分解法计算植被覆盖度(Pv),依据经验值,当NDVI>0.5时,下垫面为植被,植被覆盖度(Pv)取1;当NDVI<0.2时,下垫面为裸露土地,植被覆盖度(Pv)取0;当0.2≤NDVI≤0.5时,依照公式(3-4)计算植被覆盖度(Pv)。
基于卫星遥感数据的地表温度遥感反演与应用

基于卫星遥感数据的地表温度遥感反演与应用地表温度是地球表面的温度,它是地球气候系统中重要的参数之一。
随着卫星遥感技术的发展,利用遥感数据来反演地表温度的方法越来越受到关注,并在气候研究、环境监测、农业等领域得到广泛应用。
基于卫星遥感数据的地表温度反演主要利用热红外波段的遥感数据,如MODIS、Landsat等卫星传感器获取的热红外数据。
地表温度反演的基本原理是利用地表辐射热红外能量的辐射率与温度之间的关系,通过对热红外波段的辐射定量测量,推算出地表温度。
地表温度的反演方法主要包括基于辐射平衡原理的方法和基于物理模型的方法。
基于辐射平衡原理的方法是利用卫星遥感数据中的辐射率,通过辐射平衡方程计算地表温度。
基于物理模型的方法则是基于热辐射传输和能量平衡的物理原理,建立地表辐射和能量平衡方程,通过求解方程组来反演地表温度。
除了以上两种基础的反演方法,还有一些改进的算法被提出,如基于统计模型、基于遥感与气象资料联用等方法。
这些方法在提高地表温度反演精度和空间分辨率方面都具有一定的优势。
地表温度的遥感反演有着广泛的应用价值。
首先,在气候研究领域,地表温度是评估气候变化和研究城市热岛效应的重要指标之一。
通过对地表温度的长期观测和分析,可以揭示气候变化的趋势和规律,提供科学依据为气候预测和气候变化的评估。
其次,地表温度的反演可以应用于环境监测。
地表温度是环境质量和生态环境状况的重要反映指标之一。
通过对地表温度的监测和分析,可以评估土地利用变化对环境的影响,监测水资源的分布和变化,提供科学依据为环境保护和生态建设提供支持。
再次,在农业领域,地表温度的反演可以应用于农作物生长监测和病虫害预测。
由于农作物在不同生长阶段有不同的温度需求,通过观测地表温度可以评估农作物的生长状态和需水量,为农田水利管理提供科学依据;同时,通过地表温度的监测还可以预测农作物病虫害的发生程度,提前采取相应的防治措施,为农业生产提供技术支持和指导。
专题二:ENVI下利用ETM+数据反演地表

L7 ETM+ 波段特性选择band6的原因P34
地球自身的辐射主要 集中在长波,即6微米 以上的热红外区段。
该区段太阳辐射的影 响几乎可以忽略不计, 只考虑地表自身的热 辐射。
普朗克公式的反函数
在获取温度为TS的黑体在热红外波段的辐射亮度后, 根据普朗克公式的反函数,求得地表真实温度TS:
TS = K2/ln(K1/ B(TS)+ 1)
对于ETM+,K1 =666.09W/(m2· μm),K2 =1282.71K。 sr· 利用ENVI主菜单->Basic Tools->Band Math,在公式输 入栏中输入: (1282.71)/alog(666.09/b1 +1)-273 b1:温度为T的黑体在热红外波段的辐射亮度值。 得到真实的地表温度值,单位是摄氏度。
ENVI下利用ETM+数据 反演地表温度
/s/blog_764b1 e9d0100r484.html 3/18/2013
反演(retrieve)
/view/750178.htm 遥感上的反演 基于模型知识的基础上,依据可测参数 值去反推目标的状态参数。或者说,根据 观测信息和前向物理模型,求解或推算描 述地面实况的应用参数(或目标参数)。
技术路线
第一步:准备数据 第二步:地表比辐射率计算 第三步:计算相同温度下黑体的辐射亮度值 第四步:反演地表温度 第五步:结果浏览与输出
扩展阅读
黑体及黑体辐射(P19) /view/27417.htm
所谓黑体是指入射的电磁波全部被吸收,既没有 反射,也没有透射( 当然黑体仍然要向外辐射)。
遥感反演地表温度

遥感地学分析实验报告成绩:姓名:学号:班级:题目:课程实验报告要求一、实验目的掌握并熟悉band math的操作,对建筑用地分离用的几个建筑指数;学会面对对象分类;学会反演地表温度。
二、实验准备软件准备:ENVI5.1数据准备:中等分辨率数据AA、高分辨率数据qb_colorado.img、热岛监测band6三、实验步骤1.中等分辨率数据中城市范围的提取:(1)加载数据AA,首先在BAND MATH里面计算图像的NDVI值其公式:(float(b1)-float(b2))/(float(b1)+float(b2)),正确输入公式后点击OK;在接下来的界面中为公式中b1和b2赋予相应的波段,及近红外波段和红色波段,选择合适的路径即可点击OK;结果如图:(2)同样用上述发放计算图像的归一化建筑指数(NDBI值),公式同样使用前面所用,但是后面给b1和b2赋予第五和第四波段就行,同样选择合适的路径即可;结果如图:(3)利用前面所计算的NDVI和NDBI值计算改进的归一化裸露指数(MNDBI),MNDBI= NDBI+(1-NDVI),首先在BAND MATH中输入一下公式并b1和b2赋予NDBI的波段和NDVI的波段;结果如图:(3)同样使用上述方法计算城镇用地指数(ULI)计算公式为ULI=NDBI and NDVI,同样在BAND MATH中输入公式并赋予相应的波段,在设置好输出路径即可;结果如图:(4)三种指数的阈值的设置,通过查看三种指数的直方图可以为每种指数的分离建筑用地提取合适的阈值;通过查看NDBI的阈值设置为0.035,并将其在band math中进行二值化;通过查看MNDBI的阈值设置为0.681,并将其在band math中进行二值化;通过查看ULI的阈值设置为0.004,并将其在band math中进行二值化;(5)将三种指数的二值化图像在ARCMAP中成图,即可简单的比较三种指数的优劣;2.高分辨率图像中城市范围的提取(1)加载图像qb_colorado.img,打开FEATURE EXTRACTION工具选择待分类数据,点击NEXT进入下一步;(2)设置分割和合并阈及模板大小等参数如下,点击NEXT进入下一步;(3)添加分类类型并选择合适的样本,并为每种类型选择相应的属性,最后选择合适的分类方法;(4)预览图如下;(5)设置导出图像的类型,此处导出矢量图,设置好参数和路径点击FINISH即可;(6)结果如图;3.城市热岛遥感监测(1)辐射定标:将DN值(即图像灰度值)转换为光谱辐射亮度L,利用公式b1*0.055158+1.2378在band math中计算辐亮度;B1赋予第六波段;结果:(2)地表比辐射率E,此处先计算NDVI,方法同上即可,此处不再赘述;计算植被覆盖度Fv 采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下:FV = (NDVI-NDVIS)/(NDVIV- NDVIS)其中,NDVI 为归一化差异植被指数,取NDVIV = 0.25 和NDVIS =0.022,且有,当某个像元的NDVI 大于0.25 时,FV 取值为1;当NDVI小于0.022,FV 取值为0。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
[转载]ENVI下利用ETM+数据反演地表温度
(2012-05-15 08:31:18)
转载▼
标签:
转载
原文地址:ENVI下利用ETM+数据反演地表温度作者:ENVIIDL
地表温度作为地球环境分析的重要指标,而遥感技术作为现代重要的对地观测手段,使得基于遥感图像的地表温度反演的研究越来越多。
主要的地表温度反演方法有:大气校正法,单窗算法,单通道法等等。
本文介绍用辐射传输方程法对地表温度进行反演。
技术流程:
例子数据为2002年9月2日的襄樊市Landsat ETM+数据。
根据数据的特点以及地表温度反演研究的技术要求,采用的技术路线为:先对Landsat ETM+数据进行预处理:数据读取、辐射定标、大气校正、襄樊区域裁剪,利用大气校正,即:辐射传输方程法对其影像热红外波段数据进行操作反演,实现襄樊市地区的地表真实温度的反演研究。
具体的处理流程如下:
具体的实现步骤如下:
第一步:准备数据
热红外数据使用的是Landsat的第六波段,已经做了传感器定标、几何校正、工程区裁剪,详细流程参考上面的流程图。
文件为TM6-rad-subset-jz-xiangfan.img。
由TM影像(已经过大气校正)生成的NDVI数据,已经利用主菜单->Basic Tools-
>Resize Data(SFatial/SFectral)重采样为60米分辨率,与TMi6数据保持一致,文件名为:TM-NDVI-60m.img。
第二步:地表比辐射率计算
物体的比辐射率是物体向外辐射电磁波的能力表征。
它不仅依赖于地表物体的组成,
而且与物体的表面状态(表面粗糙度等)及物理性质(介电常数、含水量等)有关,并随着所测
定的波长和观测角度等因素有关。
在大尺度上对比辐射率精确测量的难度很大,目前只是
基于某些假设获得比辐射率的相对值,本文主要根据可见光和近红外光谱信息来估计比辐
射率。
(一)植被覆盖度计算
计算植被覆盖度Fv采用的是混合像元分解法,将整景影像的地类大致分为水体、植被和建筑,具体的计算公式如下:
F V = (NDVI- NDVI S)/(NDVI V - NDVI S) (2)
其中,NDVI为归一化差异植被指数,取NDVI V = 0.70和NDVI S = 0.00,且有,当某
个像元的NDVI大于0.70时,F V取值为1;当NDVI小于0.00,F V取值为0。
利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:
(b1 gt 0.7)*1+(b1 lt 0.)*0+(b1 ge 0 and b1 le 0.7)*((b1-0.0)/(0.7-0.0))b1:选择NDVI图像
得到植被盖度图像。
(二)地表比辐射率计算
根据前人的研究,将遥感影像分为水体、城镇和自然表面3种类型。
本专题采取以下方法计算研究区地表比辐射率:水体像元的比辐射率赋值为0.995,自然表面和城镇像元的比辐射率估算则分别根据下式(3)(4)进行计算:
εsurface = 0.9625 + 0.0614F V - 0.0461F V2 (3)
εbuilding = 0.9589 + 0.086F V - 0.0671F V2 (4)
式中,εsurface和εbuilding分别代表自然表面像元和城镇像元的比辐射率。
利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:
(b1 le 0)*0.995+(b1 gt 0 and b1 lt 0.7)*(0.9589 + 0.086*b2 - 0.0671*b2^2)+(b1 ge
0.7)*(0.9625 + 0.0614*b2 - 0.0461*b2^2)
b1:NDVI值;
b2:植被覆盖度值。
得到地表比辐射率数据。
第三步:计算相同温度下黑体的辐射亮度值
辐射传输方程法,又称大气校正法,其基本思路为:首先利用与卫星过空时间同步的大气数据来估计大气对地表热辐射的影响。
然后把这部分大气影响从卫星高度上传感器所观测到的热辐射总量中减去。
从而得到地表热辐射强度.再把这一热辐射强度转化为相应的地表温度.
卫星传感器接收到的热红外辐射亮度值Lλ由三部分组成:大气向上辐射亮度L↑,地面的真实辐射亮度经过大气层之后到达卫星传感器的能量;大气向下辐射到达地面后反射的能量。
卫星传感器接收到的热红外辐射亮度值的表达式可写为(辐射传输方程):
Lλ = [ε·B(T S) + (1-ε)L↓]·τ + L↑ (4)
这里,ε为地表辐射率,T S为地表真实温度,B(T S)为普朗克定律推到得到的黑体在T S 的热辐射亮度,τ为大气在热红外波段的透过率。
则温度为T的黑体在热红外波段的辐射亮度B(T S)为:
B(T S) = [Lλ - L↑- τ·(1-ε)L↓]/τ·ε (5)
在NASA官网(/)中输入成影时间以及中心经纬度,则会提供上式中所需要的参数。
本专题输入的数据是襄樊市地区2002年9月2日北京时间10:30成像的Landsat7 ETM+影像,影像中心的经纬度为:32.51N, 111.81 E。
得到下图参数图: 大气在热红外波段的透过率τ为0.6,大气向上辐射亮度L↑为3.39 W/(m2·sr·μm),大气向下辐射
亮辐射亮度L↓为5.12W/(m2·sr·μm)。
图4. 41 2002年9月2日Landsat ETM+数据的大气辅助参数利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:(b2-3.39-0.6*(1-b1)*5.12)/(0.6*b1)
b1:60m分辨率的地表比辐射率值;
b2:表示热红外波段大气校正后的辐射定标值。
得到了温度为T的黑体在热红外波段的辐射亮度值。
第四步:反演地表温度
在获取温度为T S的黑体在热红外波段的辐射亮度后,根据普朗克公式的反函数,求得
地表真实温度T S:
T S = K2/ln(K1/ B(T S)+ 1)
对于ETM+,K1 =666.09W/(m2·sr·μm),K2 =1282.71K。
利用ENVI主菜单->Basic Tools->Band Math,在公式输入栏中输入:
(1282.71)/alog(666.09/b1 +1)-273
b1:温度为T的黑体在热红外波段的辐射亮度值。
得到真实的地表温度值,单位是摄氏度。
第五步:结果浏览与输出
在DisFlay中显示温度值,是一个灰度的单波段图像。
(1)选择Tools->Color MaFFing->Density Slice,单击Clear Range按钮清除默认区间。
(2)选择OFions->Add New Ranges,增加以下四个区间:
● 39℃以上,红色
● 35℃至39℃,黄色
● 30℃至35℃,绿色
●低于30℃,蓝色
(3)单击Apply。
(4) 选择File->OutFut Range to Class Image,可以将反演结果输出。
图4. 42 地表温度反演结果
地表温度反演结果可以用于很多地方,如城市热岛监测、计算土壤湿度指数(NDVI/T)等。