Grain boundary characteristics and texture formation
6061铝合金中富铁相在均匀化过程中的相变机理

6061铝合金中富铁相在均匀化过程中的相变机理杜鹏;闫晓东;李彦利;沈健【摘要】采用金相(OM)、扫描电镜(SEM)、能谱(EDS)和透射电镜(TEM),研究6061铝合金中富铁相在均匀化过程中的转变和析出行为.结果表明:Mn元素直接参与6061铝合金中富铁相的相变过程,使富铁相由板条状的β-AlFeSi相转变成颗粒状的α-Al(FeMn)Si相,在560℃未发现明显的β-Al5FeSi→α-Al8Fe2Si的相变过程;在均匀化过程中,析出块状Al8Fe2Si相和颗粒状Al167.8Fe44.9Si23.9相,其中,Al167.8Fe44.9Si23.9相的析出速度受β-Al5FeSi→α-Al8Fe2Si的相变过程影响.%The phase transformation and precipitation behavior of iron-rich phase of 6061 aluminum alloy during the homogenization were investigated by optical microscopy(OM), scanning electronmicroscopy(SEM), energy dispersive spectrum(EDS) and transmission electron microscopy (TEM). The results show that the element of Mn is directly involved in the phase transformation of iron-rich phase during the homogenization, which makes the needle shaped β-AlFeSi phase transform into particle shaped α-Al(MnFe)Si phase. There is not evident phase transformation of β-Al5FeSi phase → α-Al8Fe2Si phase at 560 ℃. Block shaped phase Al8Fe2Si and granular shaped phaseAl167.8Fe44.9Si23.9 precipitate during the homogenization, and the precipitate rate of Al167.8Fe44.9Si23.9 phase is affected by the transition process ofβ-Al5FeSi phase → α-Al8Fe2Si phase.【期刊名称】《中国有色金属学报》【年(卷),期】2011(021)005【总页数】7页(P981-987)【关键词】6061铝合金;富铁相;相变;均匀化【作者】杜鹏;闫晓东;李彦利;沈健【作者单位】北京有色金属研究总院,北京,100088;北京有色金属研究总院,北京,100088;北京有色金属研究总院,北京,100088;北京有色金属研究总院,北京,100088【正文语种】中文【中图分类】TG166.36061铝合金作为一种中等强度铝合金,因其具有良好的塑性、耐蚀性和着色性能而广泛应用于建筑装饰、交通运输和航空航天等领域。
晶界特征分布和织构演变规律

晶界特征分布和织构演变规律Crystallographic grain boundaries play a crucial role in determining the mechanical and physical properties of polycrystalline materials. Understanding the distribution and evolution of these boundaries, also known as grain boundary characteristics, is essential for predicting material behavior and optimizing processing conditions.晶界特征是指晶粒之间的原子排列畸变形成的界面,可以分为普通晶界和高角度晶界两种类型。
普通晶界由于原子位移小,结构匹配良好,因此稳定性较强。
高角度晶界则具有更大的原子位移和结构错配,使其不稳定易于迁移。
The distribution of grain boundaries within a polycrystalline material can vary depending on factors such as the processing method, initial microstructure, and annealing treatments. In general, materials processed through severe plastic deformation techniques such as equal channel angular pressing or high-pressure torsion tend to exhibit more equiaxed grains with a higher density of low-angle grain boundaries.织构演变是指材料在加工过程中由于外力的作用下出现晶粒取向调整的过程。
高加热速度下温度对45#钢再结晶和晶界特征的影响

精 密 成 形 工 程第15卷 第11期156 JOURNAL OF NETSHAPE FORMING ENGINEERING2023年11月收稿日期:2023-07-11 Received :2023-07-11基金项目:国家自然科学基金(52265049);甘肃省高等学校产业支撑计划(2022CYZC-26);兰州理工大学红柳优秀青年支持计划(CGZH001)Fund :The National Natural Science Foundation of China (52265049); Industrial Support Program for Colleges and Universities in Gansu Province (2022CYZC-26); Lanzhou University of Technology Support Plan for Excellent Young Scholars (CGZH001) 引文格式:贾智, 王彤, 赵小龙, 等. 高加热速度下温度对45#钢再结晶和晶界特征的影响[J]. 精密成形工程, 2023, 15(11): 156-163.JIA Zhi, WANG Tong, ZHAO Xiao-long, et al. Effect of Temperature on Recrystallization and Grain Boundary Characteristics of 45# Steel at High Heating Rate[J]. Journal of Netshape Forming Engineering, 2023, 15(11): 156-163.高加热速度下温度对45#钢再结晶和晶界特征的影响贾智1a,1b ,王彤1a,1b ,赵小龙2,罗晓阳2,王慧芳1a,1b ,张鹏飞1a,1b ,汪彦江1a,1b(1.兰州理工大学 a.材料科学与工程学院 b.省部共建有色金属先进加工与再利用国家重点实验室,兰州 730050;2.酒钢集团宏兴钢铁股份有限公司 碳钢薄板厂,甘肃 嘉峪关 735100) 摘要:目的 针对45#钢的再结晶行为受退火工艺的影响较大这一问题,研究了2种加热速度下不同退火温度对45#钢再结晶行为、再结晶形核长大机制以及晶界特征分布的影响规律。
材料专业英语常见词汇

材料专业英语常见词汇(一Structure 组织Ceramic 陶瓷Ductility 塑性Stiffness 刚度Grain 晶粒Phase 相Unit cell 单胞Bravais lattice 布拉菲点阵Stack 堆垛Crystal 晶体Metallic crystal structure 金属性晶体点阵 Non-directional 无方向性Face-centered cubic 面心立方 Body-centered cubic 体心立方 Hexagonal close-packed 密排六方 Copper 铜Aluminum 铝Chromium 铬 Tungsten 钨Crystallographic Plane 晶面 Crystallographic direction 晶向 Property 性质 Miller indices 米勒指数Lattice parameters 点阵参数Tetragonal 四方的Hexagonal 六方的Orthorhombic 正交的Rhombohedra 菱方的Monoclinic 单斜的Prism 棱镜Cadmium 镉 Coordinate system 坐Point defec点缺陷 Lattice 点阵 Vacancy 空位Solidification 结晶Interstitial 间隙Substitution 置换Solid solution strengthening 固溶强化Diffusion 扩散Homogeneous 均匀的Diffusion Mechanisms 扩散机制Lattice distortion 点阵畸变Self-diffusion 自扩散Fick’s First Law菲克第一定律 Unit time 单位时间Coefficient 系数Concentration gradient 浓度梯度Dislocations 位错Linear defect 线缺陷Screw dislocation 螺型位错Edge dislocation 刃型位错Vector 矢量Loop 环路Burgers’vector柏氏矢量Perpendicular 垂直于Surface defect 面缺陷Grain boundary 晶界Twin boundary 晶界 Shear force 剪应力Deformation 变形Small ( or low) angel grain boundary 小角度晶界Tilt boundary 倾斜晶界Supercooled 过冷的Solidification 凝固Ordering process 有序化过程Crystallinity 结晶度Microstructure 纤维组织Term 术语Phase Diagram 相图Equilibrium 平衡Melt 熔化Cast 浇注Crystallization 结晶Binary Isomorphous Systems 二元匀晶相图Soluble 溶解Phase Present 存在相Locate 确定Tie line 连接线Isotherm 等温线Concentration 浓度Intersection 交点The Lever Law 杠杆定律Binary Eutectic System 二元共晶相图Solvus Line 溶解线Invariant 恒定Isotherm 恒温线Cast Iron 铸铁Ferrite 珠光体Polymorphic transformation 多晶体转变Austenite 奥氏体Revert 回复Intermediate compound 中间化合物Cementite 渗碳体Vertical 垂线Nonmagnetic 无磁性的Solubility 溶解度Brittle 易脆的Eutectic 共晶Eutectoid invariant point 共析点Phase transformation 相变Allotropic 同素异形体Recrystallization 再结晶Metastable 亚稳的Martensitic transformation 马氏体转变Lamellae 薄片Simultaneously 同时存在Pearlite 珠光体Ductile 可塑的Mechanically 机械性能Hypo eutectoid 过共析的Particle 颗粒Matrix 基体Proeutectoid 先共析Hypereutectoid 亚共析的Bainite 贝氏体Martensite 马氏体Linearity 线性的Stress-strain curve 应力-应变曲线Proportional limit 比例极限Tensile strength 抗拉强度Ductility 延展性Percent reduction in area 断面收缩率Hardness 硬度Modulus of Elasticity 弹性模量Tolerance 公差Rub 摩擦Wear 磨损Corrosion resistance 抗腐蚀性Aluminum 铝Zinc 锌Iron ore 铁矿Blast furnace 高炉Coke 焦炭Limestone 石灰石Slag 熔渣Pig iron 生铁Ladle 钢水包Silicon 硅Sulphur 硫Wrought 可锻的Graphite 石墨Flaky 片状Low-carbon steels 低碳钢Case hardening 表面硬化Medium-carbon steels 中碳钢Electrode 电极As a rule 通常Preheating 预热Quench 淬火Body-centered lattice 体心晶格Carbide 碳化物Hypereutectoid 过共晶Chromium 铬Manganese 锰Molybdenum 钼Titanium 钛Cobalt 钴Tungsten 钨Vanadium 钒Pearlitic microstructure 珠光体组织Martensitic microstructure 马氏体组织Viscosity 粘性Wrought 锻造的Magnesium 镁Flake 片状Malleable 可锻的Nodular 球状Spheroidal 球状Superior property 优越性Galvanization 镀锌Versatile 通用的Battery grid 电极板Calcium 钙Tin 锡Toxicity 毒性Refractory 耐火的Platinum 铂Polymer 聚合物Composite 混合物Erosive 腐蚀性Inert 惰性Thermo chemically 热化学Generator 发电机Flaw 缺陷Variability 易变的Annealing 退火Tempering 回火Texture 织构Kinetic 动力学Peculiarity 特性Critical point 临界点Dispersity 弥散程度Spontaneous 自发的Inherent grain 本质晶粒Toughness 韧性Rupture 断裂Kinetic curve of transformation 转变动力学曲线Incubation period 孕育期Sorbite 索氏体Troostite 屈氏体Disperse 弥散的Granular 颗粒状Metallurgical 冶金学的Precipitation 析出Depletion 减少Quasi-eutectoid 伪共析Superposition 重叠Supersede 代替Dilatometric 膨胀Unstable 不稳定Supersaturate 使过饱和Tetragonality 正方度Shear 切变Displacement 位移Irreversible 不可逆的金属材料工程专业英语acid-base equilibrium酸碱平衡acid-base indicator酸碱指示剂acid bath酸槽acid(Bessemer)converter酸性转炉acid brick酸性耐火砖acid brittleness酸洗脆性、氢脆性acid burden酸性炉料acid clay酸性粘土acid cleaning (同pickling)酸洗acid concentration酸浓度acid converter酸性转炉acid converter steel酸性转炉钢acid content酸含量acid corrosion酸腐蚀acid deficient弱酸的、酸不足的acid dip 酸浸 acid dip pickler(沉浸式) 酸洗装置acid(dip)tank酸液(浸洗)槽acid drain tank排酸槽acidless descaling无酸除鳞acid medium酸性介质acid mist酸雾acid-proof paint耐酸涂料(漆)acid-proof steel耐酸钢acid-resistant耐酸钢acid-resisting vessel耐酸槽acid strength酸浓度acid supply pump供酸泵acid wash酸洗acid value酸值acid wash solution酸洗液acieration渗碳、增碳Acm point Acm转变点(渗碳体析出温度)acorn nut螺母、螺帽acoustic absorption coefficient声吸收系数acoustic susceptance声纳actifier再生器action line作用线action spot作用点activated atom激活原子activated bath活化槽activated carbon活性碳activating treatment活化处理active corrosion活性腐蚀、强烈腐蚀active area有效面积active power有功功率、有效功率active product放射性产物active resistance有效电阻、纯电阻active roll gap轧辊的有效(或工作)开口度active state活性状态active surface有效(表)面activity coefficient激活系数、活度系数actual diameter(钢丝绳)实际直径actual efficiency实际效率actual error实际误差actual time实时actual working stress实际加工应力actuating device调节装置、传动装置、起动装置actuating lever驱动杆、起动杆actuating mechanism 动作机构、执行机构actuating motor驱动电动机、伺服电动机actuating pressure作用压力actuation shaft 起动轴actuator调节器、传动装置、执行机构acute angle锐角adaptive feed back control自适应反馈控制adaptive optimization自适应最优化adaptor接头、接合器、连结装置、转接器、附件材料科学基础专业词汇:第一章晶体结构原子质量单位Atomic mass unit (amu) 原子数Atomic number 原子量Atomic weight波尔原子模型Bohr atomic model 键能Bonding energy 库仑力Coulombic force共价键Covalent bond 分子的构型molecular configuration电子构型electronic configuration 负电的Electronegative 正电的Electropositive基态Ground state 氢键Hydrogen bond 离子键Ionic bond 同位素Isotope金属键Metallic bond 摩尔Mole 分子Molecule 泡利不相容原理Pauli exclusion principle 元素周期表Periodic table 原子atom 分子molecule 分子量molecule weight极性分子Polar molecule 量子数quantum number 价电子valence electron范德华键van der waals bond 电子轨道electron orbitals 点群point group对称要素symmetry elements 各向异性anisotropy 原子堆积因数atomic packing factor(APF) 体心立方结构body-centered cubic (BCC) 面心立方结构face-centered cubic (FCC)布拉格定律bragg’s law 配位数coordination number 晶体结构crystal structure晶系crystal system 晶体的crystalline 衍射diffraction 中子衍射neutron diffraction电子衍射electron diffraction 晶界grain boundary 六方密堆积hexagonal close-packed (HCP) 鲍林规则Pauling’s rules NaCl型结构NaCl-type structureCsCl型结构Caesium Chloride structure 闪锌矿型结构Blende-type structure纤锌矿型结构Wurtzite structure 金红石型结构Rutile structure萤石型结构Fluorite structure 钙钛矿型结构Perovskite-type structure尖晶石型结构Spinel-type structure 硅酸盐结构Structure of silicates岛状结构Island structure 链状结构Chain structure 层状结构Layer structure架状结构Framework structure 滑石talc 叶蜡石pyrophyllite 高岭石kaolinite石英quartz 长石feldspar 美橄榄石forsterite 各向同性的isotropic各向异性的anisotropy 晶格lattice 晶格参数lattice parameters 密勒指数miller indices 非结晶的noncrystalline多晶的polycrystalline 多晶形polymorphism 单晶single crystal 晶胞unit cell电位electron states(化合)价valence 电子electrons 共价键covalent bonding金属键metallic bonding 离子键Ionic bonding 极性分子polar molecules原子面密度atomic planar density 衍射角diffraction angle 合金alloy粒度,晶粒大小grain size 显微结构microstructure 显微照相photomicrograph扫描电子显微镜scanning electron microscope (SEM)透射电子显微镜transmission electron microscope (TEM) 重量百分数weight percent四方的tetragonal 单斜的monoclinic 配位数coordination number材料科学基础专业词汇:第二章晶体结构缺陷缺陷defect, imperfection 点缺陷point defect 线缺陷line defect, dislocation面缺陷interface defect 体缺陷volume defect 位错排列dislocation arrangement位错线dislocation line 刃位错edge dislocation 螺位错screw dislocation混合位错mixed dislocation 晶界grain boundaries 大角度晶界high-angle grain boundaries小角度晶界tilt boundary, 孪晶界twin boundaries 位错阵列dislocation array位错气团dislocation atmosphere 位错轴dislocation axis 位错胞dislocation cell位错爬移dislocation climb 位错聚结dislocation coalescence 位错滑移dislocation slip 位错核心能量dislocation core energy 位错裂纹dislocation crack位错阻尼dislocation damping 位错密度dislocation density原子错位substitution of a wrong atom 间隙原子interstitial atom晶格空位vacant lattice sites 间隙位置interstitial sites 杂质impurities弗伦克尔缺陷Frenkel disorder 肖脱基缺陷Schottky disorder 主晶相the host lattice 错位原子misplaced atoms 缔合中心Associated Centers. 自由电子Free Electrons电子空穴Electron Holes 伯格斯矢量Burgers 克罗各-明克符号Kroger Vink notation 中性原子neutral atom材料科学基础专业词汇:第二章晶体结构缺陷-固溶体固溶体solid solution 固溶度solid solubility 化合物compound间隙固溶体interstitial solid solution 置换固溶体substitutional solid solution金属间化合物intermetallics 不混溶固溶体immiscible solid solution转熔型固溶体peritectic solid solution 有序固溶体ordered solid solution无序固溶体disordered solid solution 固溶强化solid solution strengthening取代型固溶体Substitutional solid solutions 过饱和固溶体supersaturated solid solution 非化学计量化合物Nonstoichiometric compound材料科学基础专业词汇:第三章熔体结构熔体结构structure of melt过冷液体supercooling melt 玻璃态vitreous state软化温度softening temperature 粘度viscosity 表面张力Surface tension介稳态过渡相metastable phase 组织constitution 淬火quenching退火的softened 玻璃分相phase separation in glasses 体积收缩volume shrinkage材料科学基础专业词汇:第四章固体的表面与界面表面surface 界面interface 同相界面homophase boundary异相界面heterophase boundary 晶界grain boundary 表面能surface energy小角度晶界low angle grain boundary 大角度晶界high angle grain boundary共格孪晶界coherent twin boundary 晶界迁移grain boundary migration错配度mismatch 驰豫relaxation 重构reconstuction 表面吸附surface adsorption表面能surface energy 倾转晶界titlt grain boundary 扭转晶界twist grain boundary倒易密度reciprocal density 共格界面coherent boundary 半共格界面semi-coherent boundary 非共格界面noncoherent boundary 界面能interfacial free energy应变能strain energy 晶体学取向关系crystallographic orientation惯习面habit plane材料科学基础专业词汇:第五章相图相图phase diagrams 相phase 组分component 组元compoonent相律Phase rule 投影图Projection drawing 浓度三角形Concentration triangle冷却曲线Cooling curve 成分composition 自由度freedom相平衡phase equilibrium 化学势chemical potential 热力学thermodynamics相律phase rule 吉布斯相律Gibbs phase rule 自由能free energy吉布斯自由能Gibbs free energy 吉布斯混合能Gibbs energy of mixing吉布斯熵Gibbs entropy 吉布斯函数Gibbs function 热力学函数thermodynamics function热分析thermal analysis 过冷supercooling 过冷度degree of supercooling杠杆定律lever rule 相界phase boundary 相界线phase boundary line相界交联phase boundary crosslinking 共轭线conjugate lines相界有限交联phase boundary crosslinking 相界反应phase boundary reaction相变phase change 相组成phase composition 共格相phase-coherent金相相组织phase constentuent 相衬phase contrast 相衬显微镜phase contrast microscope相衬显微术phase contrast microscopy 相分布phase distribution相平衡常数phase equilibrium constant 相平衡图phase equilibrium diagram相变滞后phase transition lag 相分离phase segregation 相序phase order相稳定性phase stability 相态phase state 相稳定区phase stabile range相变温度phase transition temperature 相变压力phase transition pressure同质多晶转变polymorphic transformation 同素异晶转变allotropic transformation相平衡条件phase equilibrium conditions 显微结构microstructures 低共熔体eutectoid不混溶性immiscibility材料科学基础专业词汇:第六章扩散活化能activation energy 扩散通量diffusion flux 浓度梯度concentration gradient菲克第一定律Fick’s first law 菲克第二定律Fick’s second law 相关因子correlation factor 稳态扩散steady state diffusion 非稳态扩散nonsteady-state diffusion扩散系数diffusion coefficient 跳动几率jump frequency填隙机制interstitalcy mechanism 晶界扩散grain boundary diffusion短路扩散short-circuit diffusion 上坡扩散uphill diffusion 下坡扩散Downhill diffusion互扩散系数Mutual diffusion 渗碳剂carburizing 浓度梯度concentration gradient浓度分布曲线concentration profile 扩散流量diffusion flux 驱动力driving force间隙扩散interstitial diffusion 自扩散self-diffusion 表面扩散surface diffusion空位扩散vacancy diffusion 扩散偶diffusion couple 扩散方程diffusion equation扩散机理diffusion mechanism 扩散特性diffusion property 无规行走Random walk达肯方程Dark equation 柯肯达尔效应Kirkendall equation本征热缺陷Intrinsic thermal defect 本征扩散系数Intrinsic diffusion coefficient离子电导率Ion-conductivity 空位机制Vacancy concentration材料科学基础专业词汇:第七章相变过冷supercooling 过冷度degree of supercooling 晶核nucleus 形核nucleation形核功nucleation energy 晶体长大crystal growth 均匀形核homogeneous nucleation非均匀形核heterogeneous nucleation 形核率nucleation rate 长大速率growth rate热力学函数thermodynamics function 临界晶核critical nucleus临界晶核半径critical nucleus radius 枝晶偏析dendritic segregation局部平衡localized equilibrium 平衡分配系数equilibrium distributioncoefficient有效分配系数effective distribution coefficient 成分过冷constitutional supercooling引领(领先)相leading phase 共晶组织eutectic structure 层状共晶体lamellar eutectic伪共晶pseudoeutectic 离异共晶divorsed eutectic 表面等轴晶区chill zone柱状晶区columnar zone 中心等轴晶区equiaxed crystal zone定向凝固unidirectional solidification 急冷技术splatcooling 区域提纯zone refining单晶提拉法Czochralski method 晶界形核boundary nucleation位错形核dislocation nucleation 晶核长大nuclei growth斯宾那多分解spinodal decomposition 有序无序转变disordered-order transition马氏体相变martensite phase transformation 马氏体martensite材料科学基础专业词汇:第八、九章固相反应和烧结固相反应solid state reaction 烧结sintering 烧成fire 合金alloy 再结晶Recrystallization 二次再结晶Secondary recrystallization 成核nucleation 结晶crystallization子晶,雏晶matted crystal 耔晶取向seed orientation 异质核化heterogeneous nucleation 均匀化热处理homogenization heat treatment 铁碳合金iron-carbon alloy渗碳体cementite 铁素体ferrite 奥氏体austenite 共晶反应eutectic reaction固溶处理solution heat treatment。
回火工艺对奥氏体晶间腐蚀的影响

回火工艺对奥氏体不锈钢晶间腐蚀倾向的影响摘要:不锈钢中的各种合金元素能够显著提高钢体的电极电位从而提高不锈钢的耐腐蚀性能。
通过将固溶处理后的材料进行回火可以使晶界附近的合金元素析出,从而使晶界处丧失耐腐蚀性。
用不同的回火工艺可以造成不同程度的合金元素析出,进而使晶界处的抗腐蚀能力产生区别。
一般来说,回火温度越低析出程度越小,温度越高析出程度越大,保温时间延长也有利于溶质析出。
析出产物的增多并沿晶界连续,使不锈钢的小晶间腐蚀倾向大大增加。
但是加热温度和保温时间超过一定限度后,Cr扩散速度和C的差距减小,并且晶界处析出的合金元素会反而向晶粒内部扩散,使腐蚀产物不再连续并减小晶间腐蚀倾向。
本实验对奥氏体不锈钢1Cr18Ni9Ti进行固溶处理并在450℃、680℃、800℃下进行不同的回火处理,对热处理后的试件做晶间腐蚀实验。
结果发现:固溶处理后该材料没有晶间腐蚀发生。
固溶处理的奥氏体不锈钢采用2h回火,随回火温度提高晶间腐蚀倾向增加,在680℃回火后抗晶间腐蚀性能最差,继续增加回火温度晶间腐蚀倾向减少。
680℃不同时间回火后,随保温时间延长晶间腐蚀倾向先增加后降低。
关键词:不锈钢固溶处理回火晶间腐蚀Influence of Tempering process on intergranularcorrosion tend of austenitic stainless steel Abstract:The various kinds of alloying elements in the stainless steel can greatly enhance the electrode potential of the steel, thereby improving the corrosion resistance of the material. By being tempered after the solution treatment, the stainless steel material will lose the alloying elements nearby the grain boundary, and thus lose the corrosion resistance greatly. Different tempering methods lead to a difference in degree in the alloying elements exhalation and thus a difference in the grain boundary corrosion resistance capability. Therefore we can compare the alloying elements exhalation caused by different tempering methods by observing the corrosion near the grain boundary. Solution treatment is a treatment of the pre-processing, and it can make the distribution of the alloying elements exhalation in the material more uniform. Generally speaking, the lower the tempering temperature is, the less the exhalation will be. The higher the tempering temperature is, the greater the exhalation will be. Insulation prolonged also conducive to solute exhalation. However, when the tempering temperature or the heat preservation time is above a certain value, the gap between the Cr and the C diffusion speed will be reduced and element precipitation near the grain boundary will diffuse into the internal grain in reverse, making the corrosion products no longer continuous and reducing the tendency of the intergranular corrosion.We conduct the solution treatment on the 1Cr18Ni9Ti austenitic stainless steel and conduct various tempering heat treatment under different temperature of 450℃、680℃、800℃.Finally we conduct the intergranular corrosion treatment on the specimens and get the results below. Firstly, the corrosion doesn’t happen after the solution treatment. Secondly, when the material get the 2h tempering treatment, as the tempering temperature increases, the tendency of the intergranular corrosion increases and it gets its worst corrosion resistance after the 680℃tempering treatment. That means if you continue increasing the treatment temperature, the tendency of the corrosion will be reduced in reverse. If we make the 680℃tempering temperature unchanged and change the tempering time, the corrosion tendency will be increased first and reduced later as the soaking time increases.Keywords: stainless steel solution treatment tempering intergranular corrosion目录第一章绪论 (4)1.1 1Cr18Ni9Ti的概况 (4)1.2 奥氏体不锈钢的晶间腐蚀 (4)1.2.1 晶间腐蚀的定义和特点 (4)1.2.2 合金元素对不锈钢晶间腐蚀的影响 (4)1.3 奥氏体不锈钢的热处理 (5)1.3.1 固溶处理 (5)1.3.2 敏化处理 (5)1.3.3 稳定化处理 (6)1.3.4 去应力处理 (6)1.4 加热温度和保温时间对奥氏体不锈钢晶间腐蚀的影响 (6)第二章实验方法 (7)2.1 实验材料及设备 (7)2.2 实验方法 (7)2.2.1热处理实验 (7)2.2.2晶间腐蚀实验 (7)第三章实验结果及分析 (9)3.1 回火温度对晶间腐蚀的影响 (9)3.2 回火时间对晶间腐蚀的影响 (11)第四章实验结论 (13)参考文献 (14)第一章绪论1.1 1Cr18Ni9Ti的概况1Cr18Ni9Ti钢属通用型铬—镍奥氏体不锈钢。
细晶氧化铝陶瓷基板的流延成型和显微结构控制研究

第42卷第9期2023年9月硅㊀酸㊀盐㊀通㊀报BULLETIN OF THE CHINESE CERAMIC SOCIETY Vol.42㊀No.9September,2023细晶氧化铝陶瓷基板的流延成型和显微结构控制研究邓佳威1,熊新锐1,徐协文1,刘㊀鹏1,杨现锋1,谢志鹏2(1.长沙理工大学材料科学与工程学院,长沙㊀410004;2.清华大学材料学院新型陶瓷与精细工艺国家重点实验室,北京㊀100083)摘要:采用砂磨工艺获得了亚微米氧化铝复合粉体,用于制备微晶氧化铝陶瓷基板,研究了浆料组成对浆料流变学性质㊁生坯密度㊁生坯应力-应变行为的影响,以及烧结制度对平均晶粒尺寸和基板抗弯强度的影响㊂结果表明,固相含量㊁R 值(增塑剂和黏结剂的质量比)和分散剂用量等关键因素决定了流延浆料的流变学性质㊂R 值增大导致生坯强度和密度降低,提高固相含量有利于增加最大可流延厚度,优化工艺条件下可制备0.16~1.20mm 的坯片㊂当烧结温度为1550ħ㊁升温速率为2.5ħ/min㊁保温时间为60min 时,制备的陶瓷基板平均晶粒尺寸为1.1μm 左右,晶粒尺寸分布均匀,抗弯强度达到(440ʃ25)MPa㊂关键词:氧化铝;陶瓷基板;流延成型;晶粒尺寸;烧结制度中图分类号:TQ174㊀㊀文献标志码:A ㊀㊀文章编号:1001-1625(2023)09-3306-09Tape Casting and Microstructure Controlling of Fine Grained Al 2O 3Ceramic SubstrateDENG Jiawei 1,XIONG Xinrui 1,XU Xiewen 1,LIU Peng 1,YANG Xianfeng 1,XIE Zhipeng 2(1.School of Materials Science and Engineering,Changsha University of Science &Technology,Changsha 410004,China;2.State Key Laboratory of New Ceramic and Fine Processing,School of Materials Science and Engineering,Tsinghua University,Beijing 100083,China)Abstract :The submicron Al 2O 3composite powder was obtained by sand milling process,which was used to prepare fine grained Al 2O 3ceramic substrates.The effect of slurry composition on rheological properties of slurry,bulk density and stress-strain behavior of green tape was investigated,and the influence of sintering schedule on average grain size and flexural strength of ceramic substrate was also studied.The results show that key factors such as solid content,R value (mass ratio of plasticizer to binder)and dispersant dosage determine the rheological properties of slurry.The increase of R value leads to the reduction of tensile strength and density of green tape,and the increase of solid content is beneficial to increase the possible maximum casting thickness.Under the optimized process conditions,0.16~1.20mm green sheets can be prepared.At a sintering temperature of 1550ħ,a heating rate of 2.5ħ/min and a holding time of 60min,the average grain size of the prepared ceramic substrate is about 1.1μm,the grain size distribution is uniform,and the flexural strengthreaches (440ʃ25)MPa.Key words :Al 2O 3;ceramic substrate;tape casting;grain size;sintering schedule 收稿日期:2023-05-11;修订日期:2023-05-29基金项目:国家自然科学基金(52172063);江西省重点研发计划(20232BBE50029)作者简介:邓佳威(1994 ),男,硕士研究生㊂主要从事工程陶瓷材料方面的研究㊂E-mail:180****6393@通信作者:杨现锋,博士,教授㊂E-mail:yangxfcsut@0㊀引㊀言氧化铝陶瓷具有原料来源丰富㊁价格低廉㊁绝缘性高㊁耐热冲击㊁抗化学腐蚀及机械强度高等优点,是一种综合性能优异的陶瓷基片材料,占陶瓷基片材料总量的80%以上㊂国内电子封装领域的氧化铝基板年需求量超过100万平方米㊂在功率器件㊁5G 通信㊁压力传感器等领域,高性能96(Al 2O 3质量分数约为96%)和第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3307㊀99(Al 2O 3质量分数达到99%)氧化铝陶瓷基板得到了广泛应用㊂为适应器件高功率㊁高密度封装和长寿命的要求,氧化铝基板需要具备更高的热导率㊁抗弯强度㊁介电常数㊁可靠性以及更低的介质损耗[1-2]㊂陶瓷基板的流延成型主要采用有机流延浆料或水系流延浆料体系㊂有机流延浆料采用二元或三元共沸溶剂体系,具有挥发速度快㊁浆料稳定㊁坯体缺陷尺寸小以及与其他有机添加剂相容性好等优点,在氧化铝基板的工业化生产中得到广泛应用㊂但有机流延体系所用的有机溶剂对人体和环境有害,对尾气处理要求高,限制了其进一步应用㊂水系流延体系使用水代替有机溶剂,虽然克服了有机流延体系的环境危害问题,但是存在水与有机添加剂相容性较差的问题,流延浆料极易发生沉降,并且由于水中羟基含量较高,粉体团聚现象明显㊂此外,由于水的挥发速度较慢,干燥过程中容易发生干裂和翘曲现象[3-4]㊂细晶化是提高氧化铝基板性能的主要途径,细晶氧化铝陶瓷的显微结构更均匀,机械性能和可靠性显著提升[5-6]㊂氧化铝粉体的颗粒大小和粒度分布是影响氧化铝陶瓷显微结构的首要因素,粒度分布窄的亚微米氧化铝粉体有利于制备细晶氧化铝陶瓷[7-8]㊂此外,采用纳米级的烧结助剂或者采用新型的烧结助剂也是降低烧结温度和控制氧化铝晶粒尺寸的主要途径[9-10]㊂影响氧化铝陶瓷晶粒大小的另外一个决定性因素是烧结制度,研究者一般采用低温烧结或者二步烧结㊁放电等离子体烧结㊁震荡压力烧结等特种烧结技术来抑制氧化铝晶粒长大,从而获得细晶结构[11-15]㊂然而,这些研究主要关注单一影响因素对氧化铝陶瓷显微结构的影响,而高性能细晶氧化铝陶瓷基板的制备需要建立粉体特征㊁浆料流变学性质㊁烧结制度和力学性能之间的关联㊂本文采用砂磨+喷雾干燥工艺,获得粒度分布集中的亚微米氧化铝粉体并使助烧剂均匀分散,然后研究了有机溶剂组成对浆料流变学性质和成型性能的影响;重点通过优化烧结制度获得微晶化显微结构并分析了烧结制度对基片抗弯强度的影响,采用透射电子显微镜分析了烧结助剂的分布与存在形式,旨在为高性能氧化铝陶瓷基板的材料设计和工艺优化提供参考㊂1㊀实㊀验1.1㊀原㊀料采用Alteo 公司的氧化铝粉体(P662LSB),D 50为3.4μm㊂流延成型采用有机溶剂体系,包括无水乙醇(国药集团药业股份有限公司)㊁乙酸乙酯(国药集团药业股份有限公司)和乙酸丁酯(国药集团药业股份有限公司)㊂有机黏结剂采用聚乙烯醇缩丁醛(PVB,国药集团药业股份有限公司)㊂增塑剂采用邻苯二甲酸二丁酯(DBP,国药集团药业股份有限公司)㊂烧结助剂为CaCO 3(上海亮江钛白化工制品有限公司,D 50为300nm)㊁纳米SiO 2(江苏天行新材料有限公司,D 50为60nm)㊁纳米MgO(宣城晶瑞新材料有限公司,D 50为100nm)㊂分散剂为蓖麻油(CHO)和三油酸甘油酯(GTO)㊂按照Al 2O 396%+CaO 1%+MgO 1%+SiO 22%的质量比在砂磨机(长沙西丽纳米研磨科技有限公司,XL-1L,0.8mm 锆球,转速1200r /min)中研磨40min,得到的浆料通过喷雾干燥制得原料粉体㊂氧化铝粉体和砂磨后粉体的粒度分布㊁颗粒形貌分别如图1㊁2所示㊂砂磨后,原料粉体的D 50为0.8μm㊂图1㊀砂磨处理前后粉体的粒度分布曲线Fig.1㊀Particle size distribution of powder before and after sand milling3308㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图2㊀砂磨处理前后粉体的SEM照片Fig.2㊀SEM images of powder before and after sand milling1.2㊀试验过程将原料粉体和溶剂在行星球磨机中混合120min,转速为600r/min,然后加入黏结剂和增塑剂继续混合120min,转速为600r/min,最后将转速降至300r/min混合30min得到流延成型用的浆料㊂得到的浆料在真空除泡机(TPJ,北京东方泰阳科技有限公司)上除泡,除泡后在流延成型机(LYJ-253-3,北京东方泰阳科技有限公司)上流延得到生坯片㊂将生坯片裁剪后放入排胶炉中排胶,然后在马弗炉中进行常压烧结㊂排胶制度为:在0~200ħ以0.5ħ/min的速率升温,在200~600ħ以1ħ/min的速率升温,达到600ħ后保温120min㊂1.3㊀测试与表征采用排水法测试材料的体积密度㊂采用电脑式伺服拉压力试验机(PT-1176,东莞市宝大仪器有限公司)测试流延生坯片(13mmˑ1.4mmˑ2.0mm)的拉伸强度和应力-应变曲线㊂切割烧结后的基片,得到13mmˑ1.0mmˑ2.0mm的样品,测试基片材料的三点抗弯强度㊂采用旋转流变仪(DHR-2,TA,美国)测试浆料的流变学性质㊂对陶瓷基本表面进行抛光研磨后,在马弗炉中进行热腐蚀处理(1200ħˑ0.5h),然后使用场发射扫描电子显微镜(Hitachi,S4800,日本)观察晶粒形貌并采用ImageproPlus软件统计测量晶粒平均尺寸㊂采用透射电子显微镜(Tecnai,F30,日本)分析表征晶界结构和助烧剂元素的分布状况㊂2㊀结果与讨论2.1㊀浆料组成对浆料流变学性质的影响浆料黏度是陶瓷粉体-液相分散体系内部复杂相互作用的综合反映,是影响流延坯片质量的重要参数㊂本文研究了固相含量㊁R值和分散剂含量对浆料黏度的影响,剪切黏度随剪切速率的变化曲线如图3所示㊂流延成型过程中,剪切速率可以通过膜带速率和刀口高度之比进行估算㊂对于本研究制备的浆料,当剪切速率在1~3s-1时,表观黏度-剪切速率曲线陡峭,剪切速率轻微变化就会导致黏度剧烈变化,对流延过程产生不利影响㊂固相含量是影响流延浆料黏度的首要因素㊂由图3(a)可知,当固相含量由26%(体积分数)增大到28%时,浆料黏度显著增大㊂图3(b)为不同R值时剪切黏度随剪切速率的变化㊂由图可知,随着R值增大,浆料黏度显著降低㊂这是因为增塑剂小分子插入黏结剂聚乙烯醇缩丁醛(PVB)高分子链之间,增加了长链的距离,起到了润滑作用从而降低了黏度㊂图3(c)分别采用了蓖麻油(CHO)㊁三油酸甘油酯(GTO)和CHO与GTO的混合分散剂(质量比1ʒ1),考察了不同分散剂对浆料流变学性质的影响,可以发现GTO的引入可以显著降低浆料的黏度㊂但当单独采用GTO时,由于GTO的引入量较高,GTO在润湿粉体表面的同时,显著减弱了粉体颗粒之间的粘合力,导致生坯容易出现开裂缺陷㊂因此本研究采用GTO和CHO复合分散剂[16]㊂2.2㊀坯片流延成型本研究接着探讨了R值对流延生坯拉伸强度㊁体积密度和应力-应变行为的影响,结果如图4所示㊂由图4(a)可知,随着R值增大,生坯片的拉伸强度呈下降趋势,这是由于在黏结剂和增塑剂总量不变的情况第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3309㊀下,R 值增大意味着黏结剂PVB 降低,而黏结剂PVB 是生坯强度的主要决定因素㊂此外,R 值增大,生坯片的密度也明显下降,这是因为增塑剂DBP 的密度低于黏结剂PVB,添加总质量不变的情况下,R 值增大,增塑剂和黏结剂的体积增加,生坯片的密度下降㊂图4(b)为各R 值下坯片的应力-应变曲线㊂结果表明R 值为60时,生坯片可以承受更大的应变而不断裂,展现了更好的柔韧性㊂图3㊀浆料组成对流变学行为的影响Fig.3㊀Influence of suspension composition on rheologybehavior 图4㊀R 值对生坯性能的影响Fig.4㊀Influence of R value on properties of greentape 图5㊀不同固相含量浆料的最大流延厚度及干燥收缩Fig.5㊀Maximum tape thickness and drying shrinkage of suspension with different solid content 在基片的流延成型中,一般通过调节浆料的黏度来满足不同厚度基片的制备㊂本文对比研究了不同固相含量能够流延成型的最大基片厚度及其对应的干燥收缩,结果如图5所示㊂随着固相含量的增加,浆料黏度增加,可以成型的基片最大厚度变大㊂当固相含量为22%时,最大厚度约为0.6mm,对应收缩率接近75%;固相含量为28%时,可以制备得到完好的基片生坯,其厚度约为1.4mm,对应收缩率约为55%㊂以流延刀口高度2.5mm 为例,不同固相含量流片坯片外观如图6所示㊂当固相含量较低(22%和24%)时,由于浆料黏度较低,无法保持较厚液膜的稳定摊平,液膜厚度不一致㊂另外溶剂含量高,干燥收缩大,会导致干燥后的坯片出现开裂㊂当固相含量为30%时,浆料黏度过高,无法完成流延㊂对于固相含量3310㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷26%和28%的浆料,黏度适中,可以得到外观质量好㊁无明显缺陷的坯片㊂但是,高黏度浆料中容易裹挟气泡,干燥过程中可能导致坯片表面出现针孔,需要通过添加消泡剂或者改善球磨和除泡工艺以消除此类缺陷㊂图7所示为优化工艺条件下得到的0.16~1.20mm 生坯片㊂图6㊀不同固相含量浆料的坯片照片(刀口厚度2.5mm)Fig.6㊀Green blank made from suspension with different solid content (blade height:2.5mm)图7㊀不同厚度的生坯片Fig.7㊀Green blank with different thickness 2.3㊀烧结制度对基板显微结构和抗弯强度的影响氧化铝陶瓷基板的致密度㊁晶粒尺寸及均匀性直接影响基板的强度㊁韧性和可靠性㊂烧结过程中氧化铝晶粒的生长对温度非常敏感,易快速生长或各向异性生长㊂本文研究了烧结温度㊁保温时间和升温速率三个关键因素对氧化铝陶瓷基板显微结构的影响㊂图8为不同烧结温度下的基板的断片显微结构及晶粒尺寸分布统计㊂当烧结温度为1530和1550ħ㊁保温时间为60min㊁升温速率为2ħ/min 时,平均晶粒尺寸约1.1μm,晶粒尺寸分布均匀㊂当烧结温度为1570ħ时,出现了明显的异常长大,平均晶粒尺寸超过3.4μm㊂烧结基板的体积密度测试结果表明,当烧结温度为1530ħ时,基片的密度为95%,烧结温度为1550ħ时,相对密度达到98%㊂因此,选择烧结温度为1550ħ,分别研究保温时间和升温速率对基片显微结构的影响㊂图9为不同保温时间和升温速率下的断面SEM 照片及晶粒尺寸分布㊂由图9(a)㊁(b)可知,延长保温时间会明显导致晶粒长大和晶粒尺寸分布不均匀㊂当保温时间为120min 时,平均晶粒尺寸超过3μm㊂由图9(c)可知,当升温速率降低至1ħ/min 时,平均晶粒尺寸增大到3.39μm㊂因此,降低升温速率也不利于抑制氧化铝晶粒的长大㊂助烧剂在氧化铝陶瓷的烧结过程中扮演着重要角色,本文采用透射电子显微镜表征了晶界结构和助烧剂元素的分布状态,如图10所示㊂由图10(a)可知,两个氧化铝晶粒之间的相邻晶界和三角晶界处存在非结晶的玻璃相区域㊂图10(b)所示区域的元素分布如图10(c)~(f)所示㊂对比发现,Ca 和Mg 元素主要富集在三角晶界处形成玻璃相㊂Mg 元素均匀分布在样品中,没有参与玻璃相的形成㊂图10(f)中显示的ZrO 2颗粒由砂磨介质磨损引入,ZrO 2颗粒的引入能够起到应力诱导相变增韧的效果㊂图11所示为烧结制度对基板抗弯强度的影响㊂对比分析可知,抗弯强度的变化与晶粒平均尺寸的变化规律呈明显的相关性,平均晶粒细小的基板对应较高的抗弯强度㊂在烧结温度为1550ħ㊁升温速率为第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3311㊀2ħ/min㊁保温时间为60min 时,抗弯强度达到(440ʃ25)MPa,达到同类产品的先进水平㊂图12为该条件下制备的80mm ˑ80mm ˑ1.0mm 陶瓷基板,外观平整,无明显翘曲和变形㊂图8㊀不同温度下烧结基板的断面SEM 照片和晶粒尺寸分布Fig.8㊀SEM images and grain size distribution of fracture surface of substrate sintered at differenttemperatures3312㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷图9㊀不同保温时间和升温速率下烧结基板的断面SEM 照片和晶粒尺寸分布Fig.9㊀SEM images and grain size distribution of fracture surface of substrate sintered at different holding time and heatingrate 图10㊀氧化铝基板晶界区域结构的TEM 照片和断面元素分布Fig.10㊀TEM images and element distribution of grain boundary structure in Al 2O 3substrate第9期邓佳威等:细晶氧化铝陶瓷基板的流延成型和显微结构控制研究3313㊀图11㊀烧结温度㊁保温时间和升温速率对陶瓷基板抗弯强度的影响Fig.11㊀Influences of sintering temperature,holding time and heating rate on flexural strength of ceramicsubstrate 图12㊀氧化铝陶瓷基板照片(80mm ˑ80mm ˑ1.0mm)Fig.12㊀Image of Al 2O 3ceramic substrate (80mm ˑ80mm ˑ1.0mm)3㊀结㊀论1)采用砂磨方法制备得到的亚微米复合粉体D 50为0.8μm,采用PVB 作为黏结剂,DBP 作为增塑剂,GTO 和CHO 作为复合分散剂,制备了最高固相体积分数为28%的适合流延成型的浆料,通过优化工艺制备了0.16~1.20mm 的坯片㊂R 值增大导致生坯强度和密度降低,合适的R 值为60㊂2)烧结基板的平均晶粒尺寸与烧结温度㊁保温时间和升温速率等参数紧密相关㊂在烧结温度为1550ħ㊁升温速率为2ħ/min㊁保温时间为60min 时,制备的陶瓷基板平均晶粒尺寸在1.1μm 左右,晶粒尺寸分布均匀,抗弯强度达到(440ʃ25)MPa㊂参考文献[1]㊀MA M,WANG Y,NAVARRO-CÍA M,et al.The dielectric properties of some ceramic substrate materials at terahertz frequencies[J].Journalof the European Ceramic Society,2019,39(14):4424-4428.[2]㊀VALDEZ-NAVA Z,KENFAUI D,LOCATELLI M L,et al.Ceramic substrates for high voltage power electronics:past,present and future[C]//2019IEEE International Workshop on Integrated Power Packaging (IWIPP),Toulouse,France,2019.[3]㊀KRISHNAN P P R,VIJAYAN S,WILSON P,et al.Aqueous tape casting of alumina using natural rubber latex binder [J ].CeramicsInternational,2019,45(15):18543-18550.[4]㊀吕子彬,海㊀韵,吕金玉,等.陶瓷基片流延成型用浆料研究进展[J].武汉理工大学学报,2021,43(6):7-14.LYU Z B,HAI Y,LYU J Y,et al.Research of slurry in ceramic substrate casting[J].Journal of Wuhan University of Technology,2021,43(6):7-14(in Chinese).[5]㊀KAMBALE K R,MAHAJAN A,BUTEE S P.Effect of grain size on the properties of ceramics[J].Metal Powder Report,2019,73(3):130-136.[6]㊀TENG X,LIU H,HUANG C.Effect of Al 2O 3particle size on the mechanical properties of alumina-based ceramics[J].Materials Science &3314㊀陶㊀瓷硅酸盐通报㊀㊀㊀㊀㊀㊀第42卷Engineering A,2007,452(5):545-551.[7]㊀LEE H M,HUANG C Y,WANG C J.Forming and sintering behaviors of commercialα-Al2O3powders with different particle size distribution andagglomeration[J].Journal of Materials Processing Tech,2009,209(2):714-722.[8]㊀李建忠,张㊀勇,徐大余.氧化铝粉体性能对流延法生产陶瓷基板的影响[J].硅酸盐通报,2011,30(2):345-347+366.LI J Z,ZHANG Y,XU D Y.Influence of alumina raw materials on ceramic slices fabricated by tape casting[J].Bulletin of the Chinese Ceramic Society,2011,30(2):345-347+366(in Chinese).[9]㊀KZAB C,RHA B,GDAB C,et al.Effects of fine grains and sintering additives on stereolithography additive manufactured Al2O3ceramic[J].Ceramics International,2020,47(2):2303-2310.[10]㊀YANG Y,MA M,ZHANG F,et al.Low-temperature sintering of Al2O3ceramics doped with4CuO-TiO2-2Nb2O5composite oxide sintering aid[J].Journal of the European Ceramic Society,2020,40(15):5504-5510.[11]㊀KATARÍNA B A,B D G,PETER V B,et al.Grain growth suppression in alumina via doping and two-step sintering[J].CeramicsInternational,2015,41(9):11975-11983.[12]㊀GAO L,HONG J S,MIYAMOTO H,et al.Bending strength and microstructure of Al2O3ceramics densified by spark plasma sintering[J].Journal of the European Ceramic Society,2000,20(12):2149-2152.[13]㊀HAN Y,LI S,ZHU T,et al.Enhanced properties of pure alumina ceramics by oscillatory pressure sintering[J].Ceramics International,2017,44(5):5238-5241.[14]㊀LI J,YE Y,LI J,et al.Densification and grain growth of Al2O3nanoceramics during pressure less sintering[J].Journal of the AmericanCeramic Society,2010,89(1):139-143.[15]㊀侯清健,游㊀韬,王子鸣,等.烧结升温速率对低温共烧陶瓷基板性能的影响[J].硅酸盐通报,2022,41(3):1039-1043.HOU Q J,YOU T,WANG Z M,et al.Effect of sintering heating rate on properties of low temperature co-fired ceramic substrate[J].Bulletin of the Chinese Ceramic Society,2022,41(3):1039-1043(in Chinese).[16]㊀吕子彬,郭恩霞,海㊀韵,等.分散剂对低温共烧陶瓷流延浆料流变性能的影响[J].硅酸盐通报,2022,41(11):3979-3989.LYU Z B,GUO E X,HAI Y,et al.Effects of dispersants on rheological properties of LTCC casting slurry[J].Bulletin of the Chinese Ceramic Society,2022,41(11):3979-3989(in Chinese).。
钢轨焊接接头超声探伤缺陷分析

落锤试验是钢轨焊接接头断口质量验证常用的 方 法 ,按 照 TB/T 1632—2014《钢轨焊接》规定的落 锤试验标准进行试验。锤 质 量 为 1 〇〇〇kg,落锤高
装 备 机 械 2021 No.2
— 75 —
质量•检测
Quality • Inspection
度 为 5.2 m,支 距 为 1 m。试 件 长 度 为 1.3 01,焊缝 居 中 ,试件温度为2 5 尤 落 锤 时 一 锤 击 断 ,落 锤 试 验 结 果 不 合 格 。落 锤 断 口 宏 观 形 貌 及 断 裂 起 源 分 别 如 图 4 、图 5 所示。
在 钢 轨 焊 接 过 程 屮 ,由 于 钢 轨 焊 接 端 面 被 氧 化 , 形成了含有氧、硅 、锰等元素的非金属复合氧化物 非 金 属 复 合 氧 化 物 熔 点 高 ,在 焊 缝 组 织 冷 却 结 晶 过 程 中 ,非金属复合氧化物周围的基体组织冷却收缩, 在 非 金 属 复 合 氧 化 物 周 围 形 成 孔 洞 、微 裂 纹 等 缺 陷 , 造成钢轨焊缝金属组织结构不连续钢轨焊接接头 的 孔 洞 、微裂纹缺陷使超声探伤产生缺陷回波,落锤 一锤击断。
探 头 进 行 扫 查 ,用 一 次 波 扫 查 钢 轨 底 脚 下 部 ,用二次 波扫查钢轨底脚上部。4 区 为 钢 轨 轨 头 部 分 ,可从 轨头两侧用尺=〇. 8 ~ 1 横 波 探 头 进 行 型 扫 查 ,从
斜探头\
钢轨
内部缺陷
图 2 值示意图
3 回波显示与缺陷定位
武汉焊轨基地焊接的攀钢U75V60N热轧钢轨焊 接接头,焊 机 为 瑞 士 产 GAAS80/580直流闪光焊机。 钢 轨 焊 接 接 头 经 粗 铣 、焊 后 热 处 理 、24 h 时效热处 理 、矫 直 、精铣后,进行超声探伤。探 伤 仪 器 为 CTS1010H T 型 手 工 探 伤 仪 ,通 过 手 工 扫 查 方 式 探 伤 。
ni基合金中al元素和nb元素扩散速率

ni基合金中al元素和nb元素扩散速率【知识】深度解析NI基合金中Al元素和Nb元素扩散速率导语:本文将着重探讨NI基合金中Al元素和Nb元素扩散速率的相关问题,通过全面评估和分析,帮助读者深入理解这一主题。
本文将从简到繁、由浅入深地介绍,以确保读者对主题有全面、深刻和灵活的理解。
1. 背景介绍1.1 NI基合金的应用领域NI基合金是一类基于镍元素构成的合金材料,由于其优异的耐腐蚀性、高温强度、低温韧性和优良的机械性能,被广泛应用于航空航天、化工、能源等领域。
1.2 Al元素和Nb元素在NI基合金中的作用Al元素和Nb元素是NI基合金中常见的合金元素,在合金性能和微观结构调控中发挥重要作用。
Al元素可提高合金的抗腐蚀性和高温强度;而Nb元素则对合金的晶粒尺寸和相变行为产生显著影响。
2. Al元素和Nb元素扩散速率的研究进展2.1 实验方法及研究手段通过实验手段,研究人员可以定量分析Al元素和Nb元素在NI基合金中的扩散速率。
常用的实验方法包括扩散偶实验、扩散层厚度测量等。
利用电子显微镜、能谱仪等先进设备,可以对扩散过程进行详细观察和结构分析。
2.2 影响Al元素和Nb元素扩散速率因素Al元素和Nb元素在NI基合金中的扩散速率受多种因素的影响,如温度、合金成分、晶粒尺寸等。
具体而言,温度是影响扩散速率的重要因素,高温条件下扩散速率显著增加。
合金成分中的其他元素也可能对扩散速率产生影响。
3. Al元素和Nb元素扩散速率的机理探讨3.1 Al元素扩散机理关于Al元素在NI基合金中的扩散机理,学界存在不同的理论解释,其中一种观点认为,Al元素通过晶界、空隙或其他扩散通道扩散。
合金的微观结构和合金元素间的相互作用也对Al元素扩散过程具有重要影响。
3.2 Nb元素扩散机理相比于Al元素,Nb元素在NI基合金中的扩散机理研究较少。
目前,学界普遍认为,Nb元素主要通过体扩散的方式在NI基合金中传输。
然而,对于Nb元素在合金微观结构中的具体扩散路径及机理的研究仍然存在一定的争议和不确定性。
原位tem第二相颗粒与晶界的交互作用

原位tem第二相颗粒与晶界的交互作用1.金属材料中的晶界对第二相颗粒的分布和形貌有重要影响。
The grain boundaries in metal materials have a significant influence on the distribution and morphology of the second phase particles.2.第二相颗粒与晶界之间的相互作用会影响材料的力学性能。
The interaction between the second phase particles and the grain boundaries can affect the mechanical properties of the material.3.晶界可以作为第二相颗粒的核心区域,影响其生长行为。
The grain boundaries can serve as the nucleation sites for the second phase particles, affecting their growth behavior.4.第二相颗粒在晶界附近的生长受到晶界能及界面张力的影响。
The growth of second phase particles near the grain boundaries is influenced by the grain boundary energy and interfacial tension.5.晶界可以限制第二相颗粒的生长方向,导致其形貌发生变化。
The grain boundaries can constrain the growth direction of the second phase particles, resulting in changes in their morphology.6.第二相颗粒的分布在晶界附近呈现出非均匀性。
快速测定小麦、高粱、玉米容重方法的探讨

Vol.45.Q.3May, 2018文章编号:l 〇〇2-8110(2018)05-0109-03第45卷第3目2 0 1 8年5月酿酒LIQUORMAKING快速测定小麦、高粱、玉米容重方法的探讨丁小亮1,郭乾玲1,董婉婉1 (怀闪闪1,孙珍坤1,汤有宏',2(1.安黴古井贡酒股份有限公司,安黴亳州236820;2.安黴省固态发酵工程技术研究中心,安黴亳州236820)摘要:依据GB /T 0498-2O 1!粮油检验容重测定,粮食容重可采用谷物容重器进行测定,现用谷物容重电脑水分测定仪进行容重测定与国标法对比发现其精密度及准确度都有较大差异。
关键词:容重;谷物容重测定仪法;谷物容重电脑水分测定仪法 中图分类号:TS 241.21; TS 2O 7.3文献标识码:BDiscussion on Rapid Determination of Bulk Density of Wheat, Sorghum andMaizeDING Xiaoliang^GUO Qianling^DONG Wanwan'HUAI Shanshan'SUN Zhenkun#,TANG Youhong 1,2(1.Anhui GujingGongjiu Co . Ltd ., Bozhou , Anhui 236820, China ;2.Anhui Solid-state fermentation of Engineering Technology Research Center , Bozhou , Anhui 236820, China )Abstract : Based on the GB /T 5498-2013 grain and oil inspection bulk density determination , grain bulk density can be measured by grainbulk density device , now using grain bulk density computer moisture meter to determine the bulk density , compared with the national standard method found that its precision and accuracy are higher than the national standard requirements .Key words:bulk density ; g rain bulk density measuring instrument ; grain bulk density computer moisture meter method1引言如今粮食问题在国家、社会中十分突出,粮食 是保障人民群众生活的重要基础,对于社会主义市 场经济发展起到重要的作用。
为提高高温合金的蠕变程度的方法

为提高高温合金的蠕变程度的方法Improving the creep resistance of high-temperature alloys is a significant challenge in materials science and engineering. 高温合金的蠕变抗性是材料科学和工程领域面临的重大挑战之一。
Creep is the tendency of a material to slowly deform under stress at high temperatures, which can lead to component failure in applications such as gas turbines, nuclear reactors, and aerospace components. 蠕变是材料在高温下受力逐渐发生变形的趋势,这可能导致在燃气涡轮机、核反应堆和航天器件等应用中出现零部件失效。
Therefore, finding effective methods to enhance the creep resistance of high-temperature alloys is crucial for ensuring the reliability and performance of these critical applications. 因此,寻找提高高温合金蠕变抗性的有效方法对于确保这些关键应用的可靠性和性能至关重要。
One approach to improving the creep resistance of high-temperature alloys is through alloy composition and microstructure design. 通过合金成分和微观结构设计来提高高温合金的蠕变抗性是一种方法。
多菌种固态发酵法提高燕麦全谷物的蛋白质营养品质

多菌种固态发酵法提高燕麦全谷物的蛋白质营养品质吴 寒1,芮 昕2,李春阳1,夏秀东1,董明盛2,*(1.江苏省农业科学院农产品加工研究所,江苏南京 210014;2.南京农业大学食品科技学院,江苏南京 210095)摘 要:研究植物乳杆菌70810与米根霉在燕麦全谷物基质中共固态发酵特性及对燕麦营养价值的影响,利用平板计数法和高效液相色谱法分别测定乳酸菌的生长情况和真菌麦角固醇含量,利用十二烷基硫酸钠-聚丙烯酰胺凝胶电泳、考马斯亮蓝法和邻苯二甲醛法测定发酵过程中燕麦蛋白质的水解情况。
结果表明:燕麦全谷物基质中,随着植物乳杆菌70810和米根霉共同发酵时间的延长,乳酸菌活菌数和麦角固醇含量逐渐增加,72 h分别达到(8.46±0.04)(lg(CFU/g))和(137.04±6.13)μg/g,其中活菌计数结果比植物乳杆菌70810单独发酵时提高了7.14%;pH值由5.34±0.12降低至3.74±0.04,总酸质量分数由(0.23±0.02)%增加至(1.08±0.08)%;蛋白质发生明显水解,发酵至72 h,可溶性蛋白(以牛血清白蛋白当量计)含量为(11.58±0.16)mg/g,分子质量小于10 kDa肽(以胰酪蛋白胨当量计)含量为(366.51±1.30)mg/g。
发酵后的燕麦蛋白具有更高的营养价值,氨基酸组成更为合理,赖氨酸含量显著增加,必需氨基酸指数提高至75.63±0.10,蛋白质生物价提高至70.74±0.13。
关键词:多菌种;固态发酵;燕麦全谷物;蛋白质;营养价值Improved Protein Nutritional Quality of Whole Oat Grains by Solid State Fermentation with Mixed StrainsWU Han1, RUI Xin2, LI Chunyang1, XIA Xiudong1, DONG Mingsheng2,*(1. Institute of Agro-Product Processing, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China;2. College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China)Abstract: In this paper, the solid state fermentation of whole oat grains was carried out by simultaneous inoculation with Lactobacillus plantarum 70810 (L. plantarum 70810) and Rhizopus oryzae (R. oryzae). Our aim was to evaluate fermentation characteristics and the effect of mixed fermentation on the protein nutritional quality of oat. Bacterial growth and ergosterol content were investigated by plate count method and high-performance liquid chromatography (HPLC), respectively. Proteolysis during the fermentation process was measured using sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE), the Bradford assay and the o-phthaldialdehyde (OPA) method. Results showed that the number of viable bacterial cells and ergosterol content gradually increased during mixed culture fermentation, reaching (8.46 ± 0.04) (lg(CFU/g)), 7.14% higher than that of pure culture fermentation with L. plantarum 70810, and (137.04 ± 6.13) μg/g at 72 h, respectively. pH value decreased from 5.34 ± 0.12 to 3.74 ± 0.04, and total acidity increased from (0.23 ± 0.02)% to (1.08 ± 0.08)%. As significant proteolysis occurred at 72 h , the soluble protein content (calculated as bovine serum albumin equivalent) was raised to (11.58 ± 0.16) mg/g, and the content of peptides (calculated as casein tryptone equivalent) with molecular mass lower than 10 kDa reached its highest value of (366.51 ± 1.30) mg/g. Fermented oat had higher protein nutritional value and improved amino acid composition with a significant increase in lysine content.In addition, the essential amino acid index (EAAI) increased to 75.63 ± 0.10, and the protein biological value (BV) to70.74 ± 0.13 after mixed culture fermentation as compared to pure culture fermentation.Keywords: double strains; solid state fermentation; whole oat grains; oat protein; nutritional valueDOI:10.7506/spkx1002-6630-201816025中图分类号:TS210.4 文献标志码:A 文章编号:1002-6630(2018)16-0168-08收稿日期:2017-06-28基金项目:国家自然科学基金青年科学基金项目(31501460);江苏省自然科学基金面上研究项目(BK20161376);江苏省农科院农产品加工研究所科研基金项目(013036611703)第一作者简介:吴寒(1989—),女,助理研究员,硕士,研究方向为食品微生物与生物技术、营养与功能食品。
粮食主产区(河南)粮食生产时空变化特征及其因素贡献分析

粮食安全是关系我国经济发展和政治稳定的战略性问题[1-2],2021年,我国粮食总产量达到68 285万t,粮食主产省份粮食总产量达53 602万t,占全国粮食总产量比重为78.5%。
2023年,中央一号文件提出要抓紧抓好粮食和重要农产品稳产保供,确保全国粮食产量保持在0.65万亿kg 以上,各省(自治区、直辖市)doi:10.16736/41-1434/ts.2024.2.001作者简介:吴涛(1993—),男,硕士,工程师,研究方向为时空信息及其应用。
通信作者:郭保稳(1980—),男,硕士,高级工程师,研究方向为卫星应用。
E -mail:****************。
粮食主产区(河南)粮食生产时空变化特征及其因素贡献分析Analysis of Spatial and Temporal Characteristics of Grain Production and its Factor Contribution in theMajor Grain-producing Area (He 'nan)◎ 吴 涛,宋 江,付绍敏,郭保稳(北京航天长城卫星导航科技有限公司,北京 100000)WU Tao, SONG Jiang, FU Shaomin, GUO Baowen(Beijing Aerospace Great Wall Satellite Navigation Technology Co., Ltd., Beijing 100000, China)摘 要:本研究以河南省为粮食主产区的典型代表,根据1978—2021年的统计数据,运用GIS 技术和LMDI 模型定量,分析了河南省粮食生产时空变化的特征及其省域内部粮食生产的贡献因素,提出了具有针对性的政策建议,旨在为河南省粮食生产布局优化以及区域粮食可持续发展,提供理论依据。
关键词:时空变化;因素贡献;粮食生产;粮食主产区Abstract:This study takes Henan Province as a typical representative of the main grain production area. Based on statistical data from 1978 to 2021, GIS technology and LMDI model were used to quantitatively analyze the spatiotemporal changes in grain production in Henan Province and the contributing factors of grain production within the province. Targeted policy recommendations were proposed, aiming to provide theoretical basis for optimizing the layout of grain production in Henan Province and promoting sustainable regional grain development.Keywords:spatiotemporal change; factor contribution; food production; major grain producing area 中图分类号:F307.11都要稳住面积、主攻单产、力争多增产。
中国小麦种质资源主要品质鉴定英语

中国小麦种质资源主要品质鉴定英语The main quality identification of Chinese wheat germplasm resources includes the following aspects:1. Morphological characteristics: This involves the observation and analysis of the external features of the wheat plant, such as plant height, leaf shape, spike morphology, and grain size. These characteristics help in identifying the different varieties of wheat and understanding their adaptability to different environments.2. Agronomic traits: This includes the evaluation of various agronomic characteristics such as yield potential, resistance to diseases and pests, and tolerance to abiotic stresses like drought and heat. These traits are crucial in determining the overall performance and productivity of the wheat varieties.3. Physiological and biochemical properties: This involves the analysis of physiological and biochemical parameters such as photosynthetic capacity, water and nutrient use efficiency, and grain quality attributes.These properties provide insights into the metabolic processes and nutritional value of the wheat varieties.4. Genetic and molecular markers: With the advancementof biotechnology, genetic and molecular markers are increasingly being used for the quality identification of wheat germplasm. These markers help in understanding the genetic diversity, gene expression patterns, and molecular basis of important traits in wheat.5. Quality evaluation: This includes the assessment of various quality parameters of wheat grains such as protein content, gluten strength, starch properties, and baking quality. These parameters are essential for determining the end-use quality of wheat varieties for food and industrial purposes.中国小麦种质资源主要品质鉴定包括以下几个方面:1. 形态特征:这涉及对小麦植株外部特征的观察和分析,如株高、叶片形态、穗形态和颗粒大小。
关于边界互融的作文

关于边界互融的作文英文回答:Boundary integration refers to the process of merging and blending different cultures, ideas, and perspectives that exist along borders. It involves breaking down barriers and fostering a sense of unity and understanding among diverse groups of people. This concept isparticularly relevant in today's globalized world, where interactions between different nations and cultures are increasingly common.One example of boundary integration is the European Union (EU). The EU was established with the aim of promoting peace, stability, and economic cooperation among its member states. By removing trade barriers and allowing the free movement of goods, services, and people, the EU has facilitated the integration of different European countries. This integration has not only brought economic benefits, but also fostered cultural exchange andunderstanding among Europeans.Another example is the United States, a country known for its cultural diversity. The United States is often referred to as a "melting pot" because it has welcomed immigrants from all over the world. These immigrants bring with them their own languages, traditions, and customs, which contribute to the rich tapestry of American culture. The integration of different cultures has not only enriched American society, but also led to the development of unique cultural expressions, such as jazz, hip-hop, and Tex-Mex cuisine.Boundary integration is not limited to political or geographical boundaries. It can also occur within communities or organizations. For instance, workplaces that embrace diversity and inclusion are more likely to benefit from the different perspectives and ideas that employees from diverse backgrounds bring. This can lead to innovation and improved problem-solving. Similarly, educational institutions that promote multiculturalism and encourage students from different backgrounds to interact with oneanother can foster a more inclusive and tolerant society.中文回答:边界互融是指将存在于边界上的不同文化、思想和观点融合在一起的过程。
基于DSCCR_生产工艺的终轧温度对轧制过程中低碳钢组织与性能影响分析

第 12 期第 113-122 页材料工程Vol.51Dec. 2023Journal of Materials EngineeringNo.12pp.113-122第 51 卷2023 年 12 月基于DSCCR 生产工艺的终轧温度对轧制过程中低碳钢组织与性能影响分析Effect of finish rolling temperature on microstructure and properties of low carbon steel based on DSCCR production process李朝阳1,赵志鹏2*,田鹏3,梁晓慧3,王书桓1*,康永林3(1 华北理工大学 冶金与能源学院,河北 唐山 063210;2 北京科技大学 钢铁共性技术协同创新中心,北京100083;3 北京科技大学 材料科学与工程学院,北京100083)LI Chaoyang 1,ZHAO Zhipeng 2*,TIAN Peng 3,LIANG Xiaohui 3,WANG Shuhuan 1*,KANG Yonglin 3(1 School of Metallurgy and Energy ,North China University of Scienceand Technology ,Tangshan 063210,Hebei ,China ;2 Collaborative Innovation Center of Steel Technology ,University of Science and Technology Beijing ,Beijing 100083,China ;3 School of Materials Science and Engineering ,University of Science and TechnologyBeijing ,Beijing 100083,China )摘要:基于东华连铸连轧生产线(Donghua steel continuous casting rolling ,DSCCR )分别进行终轧温度为880,820 ℃和780 ℃的热轧实验,研究终轧温度对低碳钢组织和性能的影响。
铜单晶体冷轧形变微观组织结构

ISSN 100020054CN 1122223 N 清华大学学报(自然科学版)J T singhua U niv (Sci &Tech ),2005年第45卷第6期2005,V o l .45,N o .619 377922794铜单晶体冷轧形变微观组织结构吴廷坤, 刘 伟(清华大学材料科学与工程系,北京100084)收稿日期:2004204226基金项目:国家自然科学基金项目资助(50001005)作者简介:吴廷坤(19802),男(汉),海南,硕士研究生。
通讯联系人:刘伟,副教授,E 2m ail :liuw @tsinghua .edu .cn摘 要:研究金属材料塑性变形的滑移模式及微观组织结构的演变过程。
利用电子背散射衍射(EBSD )技术,表征了铜单晶体的形变微观组织结构。
在不同的应变量下,铜单晶体的形变微观组织结构存在着明显的差别。
低应变量(20%)下,其形变微观组织结构主要是高密度位错墙;应变量增高至50%时,其形变微观组织结构中还出现了微带、位错胞及位错胞块。
不同应变量下的微观组织结构的差异,主要由不同的形变阶段,晶体的滑移模式不同造成。
关键词:电子背散射衍射(EBSD );单晶;形变组织中图分类号:O 721文献标识码:A文章编号:100020054(2005)0620792203M icrostructure of cold rolledsi ngle crysta l CuWU Tingkun ,L I U W e i(D epart men t of M ater ials Sc ience and Engi neer i ng ,Tsi nghua Un iversity ,Be ij i ng 100084,Chi na )Abstract :T his paper repo rts on the m icro structure of co ld ro lled singlecrystal Cu m easured using fully autom atic electronbackscattered diffracti on (EBSD ).D ifferent size reducti ons resulted in different m icro structures .20%reducti on resulted in mo stly the dense dislocati on w all m icro structure .R educti ons of up to 50%m icroband created cells and cell block s in the m icro structure .T he m icro structure changes betw een samp les is due to changes in the sli p model during defo rm ati on .Key words :electronback scattereddiffracti on(EBSD );singlecrystal;m icro structure20世纪90年代以来,晶体微区取向分析技术取得了很大的发展。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Grain boundary characteristics and texture formation in a medium carbon steel during its austenitic decompositionin a high magnetic fieldY.D.Zhanga,b,C.Eslingb,*,J.S.Lecomte b ,C.S.He a ,X.Zhao a ,L.ZuoaaKey Laboratory of Electromagnetic Processing of Materials (Ministry of Education),Northeastern University,Shenyang 110004,PR ChinabLETAM,CNRS-UMR 7078,University of Metz,Ile du Saulcy,57045Metz,Moselle,FranceReceived 12April 2005;received in revised form 30July 2005;accepted 2August 2005Available online 19September 2005AbstractA 12-T magnetic field has been applied to a medium plain carbon steel during the diffusional decomposition of austenite and the effect of a high magnetic field on the distribution of misorientation angles,grain boundary characteristics and texture formation in the ferrite produced has been investigated.The results show that a high magnetic field can cause a considerable decrease in the fre-quency of low-angle misorientations and an increase in the occurrence of low R coincidence boundaries,in particular the R 3of fer-rite.This may be attributed to the elevation in the transformation temperature caused by the magnetic field and,therefore,the reduction of the transformation stress.The wider temperature range for grain growth offers longer time to the less mobile R bound-aries to enlarge their areas.Moreover,the magnetic field can enhance the transverse field-direction fiber (Æ001æi TFD).It can be assumed that the effects of the field were caused by the dipolar interaction between the magnetic moments of Fe atoms.Ó2005Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.Keywords:EPM-electromagnetic processing of materials;Phase transformation;Misorientation;Coincidence site lattice boundary;Texture1.IntroductionThe application of a high magnetic field to the dif-fusion-controlled phase transformation from austenite to ferrite and then pearlite in steels has been the ob-ject of great attention in the area of electromagnetic processing of metallic materials.As the saturation magnetization of the parent and product phases are different,the application of an external magnetic field can modify the Gibbs free energy of phases and then affect the phase equilibrium and transformation speed.The issue has been addressed so far from the thermo-dynamic,kinetic and metallurgical points of view.The results have shown that there is considerable influenceof the magnetic field.It was observed that the mag-netic field applied is likely to raise the austenite/ferrite equilibrium temperature [1–6],accelerate the proeutec-toid transformation [6–9],enhance the amount of the ferrite produced [4,6,10],and cause the ferrite grains to align in the field direction [10–13].However,no comprehensive study of the influence of a high mag-netic field on the characteristics of grain boundaries and texture formation in the phases produced by the diffusional decomposition of austenite was available so far.Deepening these aspects is most likely to per-mit a better understanding of the way a magnetic field impacts solid phase transformations.In addition,it will probably yield basic and valuable information leading to an extension of magnetic field application to exert microstructure and property control on metal-lic materials.1359-6454/$30.00Ó2005Acta Materialia Inc.Published by Elsevier Ltd.All rights reserved.doi:10.1016/j.actamat.2005.08.007*Corresponding author.Tel.:+33387315390;fax:+33387315377.E-mail address:esling@letam.univ-metz.fr (C.Esling).Acta Materialia 53(2005)5213–5221In that context,a hot-forged medium plain-carbon steel was selected and treated without and with the application of a high magneticfield and its influence on the distribution of misorientation angles,grain boundary character distribution(GBCD)and texture of the resulting ferrite was investigated.2.ExperimentalThe material used in this study was a medium plain carbon steel with chemical composition(wt.%)0.49%C, 0.027%Si,0.074%Mn,0.24%Cr,0.0093%P,0.0086%S and bal.Fe.Specimens of dimensions30·10·2mm were cut from a hot forged bar of an ingot with their lon-gitudinal direction either parallel or perpendicular to the forging deformation direction.They werefirst water-quenched after complete austenitization at860°C to re-fine the microstructure.They were then re-austenitized at 870°C for10min and cooled at a rate of23.5°C/min without and with a12-T magneticfield.The magnetic field was applied either parallel or perpendicular to the previous deformation direction(DD)to identify the spe-cific influence of the magneticfield.The specimens were placed in the central(zero magnetic force)region.The above-mentioned specimens were then cut out in their longitudinal direction for further analysis.The transformed microstructure was observed with a JEOL JSM6500F scanning electron microscope(SEM)and a Philips CM200LaB6cathode transmission electron microscope(TEM)and the orientation imaging analysis was carried out with the samefield emission gun SEM equipped with HKLÕs Channel5software.TheÔbeam-controlledÕmode was applied with a0.4l m step.Three different areas were selected on each sample and,to ob-tain a reliable statistical representation of the results,the total area analyzed covered no less than2000ferrite grains and pearlite colonies.As the Kikuchi patterns from the cementite were of low quality,the cementite was not properly indexed by electron backscattering rmation from pearlite colonies was pro-vided only by its lamellar ferrite and each of them was identified simply as an independent ferrite grain or a part of a proeutectoid ferrite grain,considering that all the ferrite lamellas showed misorientations lower than 10°.The total indexing rate for each area measured was around93%,of which less than1%was indexed as cementite.On this basis,the microstructure,misorien-tation angle distribution,coincidence site lattice(CSL) boundary occurrence and texture were analyzed.3.ResultsThe microstructures of the specimens cooled at 23.5°C/min without and with a12-T magneticfield are shown in Fig.1.In both cases–without and with the field–the microstructures are seen to be composedof Fig.1.SEM secondary electron micrographs of specimens austenitized at870°C for10min and cooled at23.5°C/min without and with a12-T magneticfield.The equiaxed grain areas are proeutectoid ferrite grains and the lamellar areas are pearlite.The deformation direction(DD)is horizontal.(a)0T;(b)12-Tfield direction(FD)i DD and(c)12T,FD^DD.5214Y.D.Zhang et al./Acta Materialia53(2005)5213–5221homogeneously distributed ferrite(equiaxed)and pearl-ite(lamellar).The application of a magneticfield has re-duced effect on the morphology of the microstructure.However,the magneticfield applied shows consider-able influence on the substructure of the ferrite pro-duced.The distribution of misorientation angles in ferrite in the specimens submitted or not to a magnetic field is shown in Fig.2.The misorientation angle distri-bution in a random cubic polycrystal is also displayed for comparison.It can be seen that,as a whole,low-angle misorientations(2–10°)is considerably less fre-quent in the specimens treated with the magneticfield. TEM observation shows that there exists in both the non-field-treated andfield-treated specimens a large amount of dislocation tangles or pile-ups and networks in both proeutectoid ferrite(Fig.3(a1)and(b1))and lamellar ferrite,especially in front of the cementite (Fig.3(a2)and(b2)).This suggests that the low angle misorientations are caused by these dislocations shown in Fig.3.Moreover,TEM observation shows that the networks of dislocations in the two kinds offield-treated specimens(FD i DD and FD^DD)are similar to those in the non-field-treated specimens.This indi-cates that the magneticfield does not impact the dislo-cation arrangement.Fig.4shows the frequency of ferrite CSL boundaries in the specimens cooled without and with the magnetic field.For comparison,the frequency of CSL boundaries in a random polycrystal[14]has also been plotted.It can be seen that,in the presence of thefield,the cases of low R(R3–R29)[15]boundaries,especially R3boundaries, are more numerous than those observed without the magneticfield.This result is consistent with the corre-sponding result obtained with a nanocrystalline nickelFig.3.TEM bright-field micrographs of specimens austenitized at870°C for10min and cooled at23.5°C/min:(a)without and(b)with a12-T magneticfield(FD i DD).Y.D.Zhang et al./Acta Materialia53(2005)5213–52215215sample[15]and a cold-rolled Fe-9at.%Co alloy an-nealed under a magneticfield,as shown by Watanabe et al.[16].The corresponding locations of R3bound-aries,for instance,are shown with black lines in Fig.5. The distribution of boundary length and mean length L,computed as an average of70–100R3boundaries ineach area measured,is shown in Fig.6and Table1.It can be seen in Figs.5and6and from the data in Table 1that,when afield is applied,most R3boundaries are longer than those obtained without the magneticfield. This suggests that the higher frequency of R boundaries is to be related to their larger boundary areas infield-treated specimens.The results supplied by further anal-ysis on distribution of ferrite grain sizes and mean grain size in the non-field andfield-treated specimens are dis-played in Fig.7and Table1.It can be seen that the frac-tion of large grains(>9l m)(Fig.7)and the mean grain sizes(Table1)in thefield-treated specimens are higher than that observed in the non-field-treated specimen. This shows that the larger R3boundary areas are related to larger grain sizes in thefield-treated specimens and thefield applied has some effect on grain growth.The inverse polefigures of the specimens treated without and with the magneticfield and the correspond-ing sample coordinates are shown in Fig.8.It can be clearly seen that there is an enhancement of theÆ001æfiber texture component along the transversefield direc-tion(TFD)in the twofield-treated specimens(FD i DD and FD^DD).This shows that the enhancement of this fiber component is solely due to the presence of thefield, and not to prior deformation.The grains with their Æ001æparallel to the TFD(Æ001æi TFD grains)in the field-treated specimens are identified by using the ‘‘texture component’’function of Channel5andFig.5.Orientation maps of specimens austenitized at870°C for10min and cooled at23.5°C/min without and with a12-Tfield.The deformation direction(DD)is horizontal.(a)0T;(b)12T,FD i DD;(c)12T,FD^DD.Black lines display the R3boundaries.5216Y.D.Zhang et al./Acta Materialia53(2005)5213–5221displayed in blue in Fig.9.As the magneticfield was ap-plied either along the prior deformation direction(DD) or perpendicular to DD(or i TD),TFD has correspond-ingly two orientations,i.e.parallel to TD or to DD.So, for comparison,in the non-field-treated specimen,the correspondingÆ001æi TD or DD grains were identified and displayed in the samefigure.A10°deviation from the exactÆ001æi TFD orientation is allowed according to the spreading degree of theÆ001æi TFDfiber compo-nent in the inverse polefigures in Fig.8.By comparing Fig.9(b)with(a)and(d)with(c),it can be seen that, when afield is applied,theÆ001æi TFD grains(in blue)cover a larger area than theÆ001æi TD orÆ001æi DD grains in the non-field-treated specimen.The formation of thisfiber component could be the result of either a preferential nucleation or preferential grain growth of Æ001æi TFD grains,or both.To clarify this point,the percentage(numberwise)ofÆ001æi TFD grains in rela-tion to the total grain population,their average size in eachfield-treated specimen,and the corresponding per-centage ofÆ001æi TD(or DD)in the non-field-treated specimens have been analyzed with Channel5.The re-sults are given in Table2.For comparison,the mean grain size of the total population in each specimen is also given(in brackets).It can be seen that,when afield is applied,the percentage ofÆ001æi TFD grains is higher than that in the non-field-treated specimen.Moreover, in the latter case,the average size of theÆ001æi TD or Æ001æi DD grains is either close to or slightly smaller than the average computed over all grains,whereas,in thefield-treated specimens,the average size of the Æ001æi TFD grains is higher than the average value of the whole population.This suggests that the formation of theÆ001æi TFDfiber component is related to both preferential nucleation and preferential grain growth.4.DiscussionWith fully austenitized medium carbon steels,austen-ite is transformedfirst into equiaxed ferrite(called pro-eutectoid ferrite)between the Ar3and Ar1temperature, and then into pearlite(consisting of alternately distrib-uted eutectoid ferrite and cementite lamellae)below Ar1during the subsequent cooling,as seen in Fig.1.Given the same amount of Fe atoms,the volume of bcc ferrite is larger than that of fcc austenite.This gener-ates a transformation stress and thus strain.The trans-formation stress is temperature-dependent for a given cooling rate.This stress increases with the decreas-ing temperature for transformation.When the stressTable1Mean length L of R3boundaries and mean grain size d of ferrite inspecimens austenitized at870°C for10min and cooled at23.5°C/minwithout and with a12-Tfield0T12T,FD i DD12T,FD^DDL(l m) 5.968.6210.20d(l m)14.0515.5715.34Y.D.Zhang et al./Acta Materialia53(2005)5213–52215217accumulates up to a specific threshold,it can be released through the deformation of the softest phases,i.e.ferrite in the case of austenite-to-ferrite and then ferrite-to-pearlite transformation [17].This stress rises when pearl-ite is formed as the process involves the development of two phases with different crystal structures and therefore different volume changes.Moreover,the cementite lamellae are embedded in alternation in the eutectoid fer-rite.This transformation strain accounts for the forma-tion of a large amount of dislocations observed in both proeutectoid and,especially,eutectoid ferrite,which re-sults in low angle misorientations,as shown in Fig.2.Applying the Johnson–Mehl equation,the volume fraction f of a product phase during solid-state phasetransformation is determined by its nucleation rate _N,growth rate v and transformation time t ,i.e.,f ¼1Àexp ÀA 4_Nv 3t 4;ð1Þwhere A is the shape factor of the nuclei.By taking the features of phase transformation in medium carbonsteels into account,the kinetic equation of proeutectoid ferritic transformation from austenite can be expressed as [18]ln t ¼B ln ln11ÀfþC Q RT þE r 3D G 2V ÀF ln x c Àxx c Àx a ;ð2Þwhere B ,C ,E ,R and F are constants,Q is the activationenergy for diffusion,T is the absolute temperature,r is the interfacial energy,D G V is the driving force of the transformation or Gibbs free energy difference between the parent and the product phase,x c and x a are the car-bon solubility of austenite and ferrite at T ,and x is the carbon content in the initial austenite.When a high mag-netic field is applied,both parent austenite and product ferrite can be magnetized to some extent and the corre-sponding Gibbs free energy is thus lowered [11].Since the degree of magnetization of ferrite is higher than that of austenite [4],the decrease in the Gibbs free energy is larger for ferrite than for austenite,which results in addi-tional magnetic Gibbs free energy difference between fer-rite and austenite or additional driving force D G M .InFig.8.Inverse pole figures of specimens treated without and with a 12-T magnetic field and corresponding sample coordinates.(a)0T;(b)12T,FD i DD and (c)12T,FD ^DD.5218Y.D.Zhang et al./Acta Materialia 53(2005)5213–5221this case,D G V in Eq.(2)should be replaced by D G V +D G M .D G M is negative,i.e.,has the same sign as D G V and contributes by more than 15%to the sum of D G V +D G M [6].As a consequence,the incubation time for the transformation from austenite to ferrite is re-duced.This kinetic characteristic can be easily illustrated with the CCT diagram of the steel,as shown in Fig.10.By reducing the incubation time,the magnetic field shifts the starting and finishing lines of the transformation to the left (Fig.10).Consequently,the transformation is shifted towards the higher temperature area.By elevating the transformation temperature,the transformation stress is reduced.As a result,less transformation strain is created and the number of low-angle misorientations is correspondingly decreased by the application of the magnetic field (Fig.2).The application of the magnetic field has also a con-siderable effect on the occurrence of the coincidence site lattice (CSL)boundaries as shown in Fig.4.It in-creases the frequency of almost all low R boundaries,especially R 3.It is known that different types of grain boundaries have different energy and mobility.The random high-angle boundaries have high energy and high mobility,whereas some low R boundaries –espe-cially the R 3boundaries –have low energy and low mobility [19].For grains with different types of bound-aries,the growth through boundary migration will cause the low mobility types to enlarge their boundary areas whereas the high mobility types will shrink [20].Hence,after growth,the proportion of low mobility boundaries will increase.In the present work,the transformation from austenite to ferrite and pearlite in this material,without applying a field,ends at about 650°C.Ferrite grains continue to grow after the trans-formation.Therefore,the proportion of the various types of ferrite grain boundaries start changing.As the magnetic field can raise the transformation temper-ature,both proeutectoid and eutectoid ferrite in the field-treated specimens grow within a wider tempera-ture range.As a result,the proportion of low mobility R boundaries,especially R 3,obtained under the mag-netic field is raised.In this case,the higher frequency of R boundaries shown in Fig.4under the magnetic field is the result of excessive grain growth.Table 2Percentage (numberwise)and mean size of grains with their Æ001æparallel to TFD in the field-treated specimens and grains with Æ001æparallel to either TD or DD in the non-field-treated specimen12T,FD i DD (TFD i TD)0T,(Æ001æi TD)12T,FD ^DD (TFD i DD)0T,(Æ001æi DD)Percentage (numberwise)(%)7.895.007.315.52Mean grain size (l m)17.56(15.57)14.04(14.05)16.93(15.34)13.46(14.06)Fig.9.Orientation micrographs of specimens austenitized at 870°C for 10min and cooled at 23.5°C/min without and with a 12-T magnetic field,showing the crystallographic orientation of ferrite grains by color.The deformation direction is horizontal.(a)0T,blue:Æ001æi TD;(b)12T,FD i DD,blue:Æ001æi TFD (or TD);(c)0T,blue:Æ001æi DD;(d)12T,FD ^DD,blue:Æ001æi TFD (or DD).(For interpretation of the references to colour in this figure legend,the reader is referred to the web version of this article.)Y.D.Zhang et al./Acta Materialia 53(2005)5213–52215219The applied magneticfield also clearly enhances the Æ001æfiber texture component along the TFD,and this appears in both cases FD i DD and FD^DD,as seen in Fig.8.This result is quite different from the result found in the cold-rolled steels annealed under a magneticfield. In those cases,the enhancement of theÆ001æcompo-nent appeared along thefield direction(FD)[16,21–23].According to the analysis in[21],the anisotropic magnetization in different crystallographic directions accounts for the formation ofÆ001æi FDfiber compo-nent.Nuclei with theÆ001ædirections(easiest magneti-zation direction)parallel to thefield direction have the largest driving force for recrystallization.However,in the present work,the enhancement of theÆ001æcompo-nent appears in the TFD,which suggests that thefield acts in a different way.It is well known that each iron atom carries a magnetic moment.Under the magnetic field applied,these moments tend to align along thefield direction,as schematically illustrated in Fig.11(a). Then,there exists a dipolar interaction between neigh-boring atoms.Let the magnetic moment of each atom be m and the distance between two neighboring atoms r.The magnetic moments align along thefield direction, as shown in Fig.11(b).The dipolar interaction energy E D can then be obtained by rearranging the related equations in[24]E D¼Àlm24p3cos2hÀ1r3;ð3Þwhere l0is the vacuum magnetic permeability.E D is h-and r-dependent.The variation of the geometrical factor3cos2hÀ1r3in Eq.(3)as a function of h for different r values has been calculated and is shown in Fig.12.It can be5220Y.D.Zhang et al./Acta Materialia53(2005)5213–5221seen that,when h=0°or180°,i.e.,the pairs of moments aligned are parallel to FD,E D is minimum(negative); whereas,when h=90°,i.e.,the pairs aligned are parallel to TFD,E D is maximum(positive).Therefore,the atoms attract each other along the FD,but repel each other along the TFD.Correlatively,the distance be-tween neighboring atoms tends to decrease along FD and increase along TFD.This atomic spacing increase in TFD may mitigate the solution distortion of carbon atoms in some specially orientated grains,thus affecting their nucleation and growth.In ferrite,the carbon atoms are located in the octahedral interstices,as shown in Fig.13.The interstices areflattened in theÆ001ædirec-tion.The occupation of this interstice by the carbon atom submits neighboring iron atoms to an expansion stress along theÆ001ædirection.This gives rise to lattice distortion and creates distortion energy.If theÆ001ædirection of a grain is parallel to the TFD,the lattice dis-tortion energy is reduced by increasing the atomic spac-ing in theÆ001ædirection due to dipolar repulsion. Consequently,the nucleation and growth of those grains is most energetically favored by the magneticfield,and theÆ001æi TFD component is enhanced.5.Conclusions1.The magneticfield considerably lowers the occur-rence of the low angle misorientations in ferrite.This is attributed to the rise of the transformation temper-ature by the magneticfield and hence the decrease of the transformation stress and thus strain.2.The magneticfield strongly raises the frequency ofR3–29coincidence boundaries in ferrite,especially the R3boundaries.This occurs through selective area enlargement of low-mobility boundaries during the growth stage.3.The magneticfield enhances theÆ001ætexture com-ponent along the TFD.This is a result of the prefer-ential nucleation and growth of grains withÆ001æparallel to the TFD,as a consequence of the dipolar interaction of the magnetic moments carried by the iron ferrite atoms.AcknowledgementsThis study wasfinancially supported by the National Science Fund for Distinguished Young Scholars(Grant No.50325102),the key project of National Natural Sci-ence Foundation of China(Grant No.50234020),and the TRAPOYT in Higher Education Institutions of MOE,PRC.The authors also gratefully acknowledge the support obtained in the frame of the Chinese–French Coopera-tive Research Project(PRA MX04-02).The authors are grateful of Mr.P.Barges(IRSID ARCELOR RESEARCH)for the help of TEM work. References[1]Ghosh AK,Roy MN.Trans Indian Inst Met1987;40:329.[2]Joo HD,Kim SU,Shin NS,Koo YM.Mater Lett2000;43:225.[3]Guo H,Enomoto M.Mater Trans JIM2000;41:911.[4]Choi J-K,Ohtsuka H,Xu Y,Choo W-Y.Scripta Mater2000;43:211.[5]Peters CT,Miodownik AP.Scripta Metall1973;7:955.[6]Zhang YD,He CS,Zhao X,Zuo L,Esling C,He JC.J MagnMagn Mater2005;294:267.[7]Enomoto M,Guo H,Tazuke Y,Abe YR,Shimotomai M.MetallMater Trans2001;32A:445.[8]Zhang YD,He CS,Zhao X,Esling C,Zuo L.Adv Eng Mater2004;6:310.[9]Zhang YD,He CS,Zhao X,Zuo L,Esling C,He JC.J MagnMagn Mater2004;284:287.[10]Shimotomai M,Maruta K.Scripta Mater2000;42:499.[11]Shimotomai M,Maruta K,Mine K,Matsui M.Acta Mater2003;51:2921.[12]Maruta K,Shimotomai M.J Cryst Growth2002;237–239:1802.[13]Ohtsuka H,Xu Y,Wada H.Mater Trans JIM2000;41:907.[14]Zuo L,Esling C.Scripta Metall Mater1995;32:937.[15]Harada K,Tsurekawa S,Watanabe T,Palumbo G.Scripta Mater2003;49:367.[16]Watanabe T,Suzuki Y,Tanii S,Oikawa H.Philos Mag Lett1990;62:9.[17]Pandi R,Yue S.ISIJ Int1994;34:270.[18]Chang HB,Li ZG,Hsu TY,Ruan XY.Acta Metall Sinica(English Lett)1998;11:207.[19]Humphreys FJ,Hatherly M.Recrystallization and related anneal-ing phenomena.New York(NY):Pergamon Press;1995.p.300ff.[20]Zhang YD,Vincent G,Dewobroto N,Germain L,Zhao X,ZuoL,et al.J Mater Sci2005;40:905.[21]Martikainen HO,Lindroos VK.Scand J Metall1981;10:3.[22]Masahashi N,Matsuo M,Watanabe K.J Mater Res1998;13:457.[23]He CS,Zhang YD,Zhao X,Zuo L,He JC,Watanabe K,et al.Adv Eng Mater2003;5:579.[24]Cyrot M et al.Magne´tisme.Grenoble:Presses Universitaires deGrenoble;1999.p.37,65.Y.D.Zhang et al./Acta Materialia53(2005)5213–52215221。