1.材料结构的基本知识
《材料科学基础》名词解释

《材料科学基础》名词解释第一章材料结构的基本知识1、晶体材料的组织:指材料由几个相(或组织单元)组成,各个相的相对量、尺寸、形状及分布。
第二章材料的晶体结构1、空间点阵:将理想模型中每个原子或原子团抽象为纯几何点,无数几何点在三维空间规律排列的阵列2、同素异构:是指有些元素在温度和压力变化时,晶体结构发生变化的特性3、离子半径:从原子核中心到其最外层电子的平衡距离。
4、离子晶体配位数:在离子晶体中,与某一考察离子邻接的异号离子的数目称为该考察离子的配位数。
5、配位数:晶体结构中任一原子周围最近邻且等距离的原子数6、致密度:晶体结构中原子体积占总体积的百分数;第三章高分子材料的结构1、聚合度:高分子化合物的大分子链是出大量锥告连成的。
大分子链中链节的重复次数叫聚合度2、官能度:指在一个单体上能和别的单体发生键合的位置数目3、加聚反应:由一种或多种单体相互加成而连接成聚合物的反应;4、缩聚反应:由一种或多种单体相互混合而连接成聚合物,同时析出(缩去)某种低分子物质(如水、氨、醉、卤化氢等)的反应;5、共聚:由两种或两种以上的单休参加聚合而形成聚合物的反应。
第四章晶体缺陷1、晶体缺陷:实际晶体中与理想的点阵结构发生偏差的区域;2、位错密度:晶体中位错的数量,是单位体积晶体中所包含的位错线总长度;3、晶界:同一种相的晶粒与晶粒的边界;4、晶界内吸附:少量杂质或合金元素在晶体内部的分布是不均匀的,它们常偏聚于晶界,称这种现象为晶界内吸附;第五章材料的相结构及相图1、固溶体:当合金相的晶体结构保持溶剂组元的晶体结构时,这种相就称为一次固溶体或端际固溶体,简称固溶体。
2、拓扑密堆积:如两种不同大小的原子堆积,利用拓扑学的配合规律,可得到全部或主要由四面体堆垛的复合相结构,形成空间利用率很高、配位数较大(12、14、15、16等)一类的中间相,称为拓扑密堆积。
3、电子浓度:固溶体中价电子数目e与原子数目之比。
4、间隙相:两组元间电负性相差大,且/1≤0.59具有简单的晶体结构的中间相5、间隙化合物:两组元间电负性相差大,且/≥0.59所形成化合物具有复杂的晶体结构。
第一部分 材料结构的基本知识

第一部分材料引言材料的结构分四个层次:原子结构、原子结合键、材料中原子的排列、晶体材料的显微组织。
1.1 原子结构(atomic structure)◆物质的组成:物质是由无数微粒(分子、原子、离子)按一定方式聚集而成的集合体。
◆原子结构:原子是由原子核(由带正电荷的质子和呈电中性的中子组成)和核外电子(带负电荷)构成。
一、原子的电子排列原子是由原子核及其核外电子构成的,电子绕着原子核在一定的轨道上旋转。
电子运动的轨道由四个量子数(quantum number)决定的:主量子数n(电子层)、轨道量子数l(电子亚壳层)、磁量子数m(轨道数)、自旋角动量量子数ms(自旋方向)。
核外电子的分布与四个量子数有关,且服从两个基本原理:(1)Pauli不相容原理(Pauli principle) :一个原子中不可能存在四个量子数完全相同的两个电子。
(1)能量最低原理:电子总是优先占据能量低的轨道,使系统处于最低能量状态。
二、元素周期表及性能的周期性变化1.2 原子间的结合键(binding bond)按结合力大小分为一次键和二次键两类。
一次键(化学键或主价键):金属键、离子键、共价键二次键(物理键或次价键):范德华键、氢键一、一次键(化学键、主价键)1.金属键(metallic bond)特点:电子共有化,没有方向性和饱和性。
特性:(1)良好的导电、导热性;(1)正的电阻温度系数;(3)不透明,具有金属光泽;(4)具有较高的强度和良好的塑性;(5)金属之间的溶解性(固溶能力)。
2.离子键(ionic bond)特点:结合力较强;硬度、熔点高;绝缘;有饱和性而没有方向性。
3.共价键(covalent bond)特点:(1)结合极为牢固(1)有明显的方向性、饱和性(3)结构稳定(4)熔点高(5)硬而脆二、二次键(物理键、次价键)靠原子之间的偶极吸引力结合而成1.范德华键特点:(1)没有方向性、饱和性(1)键力低于一次键。
材料结构的基本知识

磁量子数 考虑自旋 各壳层 规第的状 量子数后 总电子数 的状态数目 态数目 1 2 2(=2×12) 1 2 8(=2×22) 3 6 1 3 5 1 3 5 7 2 6 10 2 6 10 14
3
3s 3p 3d 4s 4p 4d 4f
18(=2×32)
4
32(=2×42)
原子核外电子的分部与四个量子数 有关,且服从下述两个基本原理:
负性很强的原子之间形成一个桥梁,把 两者结合起来,形成氢键。所以氢键可 表达为: X–H——Y 三、混合键 实际材料中单一结合键并不多,大 部分材料的内部原子结合键往往是各种 键的混合。例如: (1)ⅣA族的Si、Ge、Sn元素的结合
是共价键与金属键的混合。 (2)陶瓷化合物中出现离子键与共价键 混合的情况。
的相互吸引而结合起来的称金属键。
二、二次键
1、范德瓦耳斯键 当原子和分子相互靠近时,一个原 子的偶极矩将会影响另一个原子的电子 分布,电子密度在靠近第一个原子的正 电荷处更高些,这样使两个原子相互静 电吸引,体系就处于较低的能量状态。
正电中心 电子云
原子核 a) 原子核 电子云
负电 中心
极化分子 间的作用力
一、一次键
离子键——当两类原子结合时,金属原 子的外层电子很可能转移到非金属原子 外壳层上,使两者都得到稳定的电子结 构,从而降低体系的能量,此时金属原 子和非金属原子分别形成正离子和负离 子,正负离子间相互吸引,使原子结合 在一起,这就是离子键。(如NaCl)
共价键——价电子数为4或5个的ⅣA、 ⅤA族元素,离子化比较困难,在这种 情况下,相邻原子间可以共同组成一个 新的电子轨道,由两个原子中各有一个 电子共用,利用共享电子对来达到稳定 的电子结构。这就是共价键。 金属键——金属原子很容易失去外壳层 电子而具有稳定的电子壳层,形成带正 电的阳离子,由正离子和自由电子之间
材料科学基础课后习题 第1-第4章

《材料科学基础》课后习题答案第一章材料结构的基本知识4. 简述一次键和二次键区别答:根据结合力的强弱可把结合键分成一次键和二次键两大类。
其中一次键的结合力较强,包括离子键、共价键和金属键。
一次键的三种结合方式都是依靠外壳层电子转移或共享以形成稳定的电子壳层,从而使原子间相互结合起来。
二次键的结合力较弱,包括范德瓦耳斯键和氢键。
二次键是一种在原子和分子之间,由诱导或永久电偶相互作用而产生的一种副键。
6. 为什么金属键结合的固体材料的密度比离子键或共价键固体为高?答:材料的密度与结合键类型有关。
一般金属键结合的固体材料的高密度有两个原因:(1)金属元素有较高的相对原子质量;(2)金属键的结合方式没有方向性,因此金属原子总是趋于密集排列。
相反,对于离子键或共价键结合的材料,原子排列不可能很致密。
共价键结合时,相邻原子的个数要受到共价键数目的限制;离子键结合时,则要满足正、负离子间电荷平衡的要求,它们的相邻原子数都不如金属多,因此离子键或共价键结合的材料密度较低。
9. 什么是单相组织?什么是两相组织?以它们为例说明显微组织的含义以及显微组织对性能的影响。
答:单相组织,顾名思义是具有单一相的组织。
即所有晶粒的化学组成相同,晶体结构也相同。
两相组织是指具有两相的组织。
单相组织特征的主要有晶粒尺寸及形状。
晶粒尺寸对材料性能有重要的影响,细化晶粒可以明显地提高材料的强度,改善材料的塑性和韧性。
单相组织中,根据各方向生长条件的不同,会生成等轴晶和柱状晶。
等轴晶的材料各方向上性能接近,而柱状晶则在各个方向上表现出性能的差异。
对于两相组织,如果两个相的晶粒尺度相当,两者均匀地交替分布,此时合金的力学性能取决于两个相或者两种相或两种组织组成物的相对量及各自的性能。
如果两个相的晶粒尺度相差甚远,其中尺寸较细的相以球状、点状、片状或针状等形态弥散地分布于另一相晶粒的基体内。
如果弥散相的硬度明显高于基体相,则将显著提高材料的强度,同时降低材料的塑韧性。
第1章 材料结构的基本知识

一、离子键
1、定义
由于正、负离子间的库仑引力而形成。
氯化钠是典型的离子键 结合,钠原子将其3s态电 子转移至氯原子的3d态上, 这样两者都达到稳定的电 子结构,正的钠离子与负 的氯离子相互吸引,稳定 地结合在一起(图1-4)
当IA、IIA族金属和ⅦA、ⅥA族的非金 属原子结合时,金属原子的外层电子很可 能转移至非金属原子外壳层上、使两者都 得到稳定的电子结构,从而降低了体系的 能量; 此时金属原子和非金属原子分别形成正 离子与负离子,正、负离子间相互吸引, 使原子结合在一起,这就是离子键。
© 2003 Brooks/Cole Publishing / Thomson Learning™
2、特点
1)正负离子相间排列,正负电 荷数相等;
2)键能最高,结合力很大; 3)性能: 硬度高、强度大; 热膨胀系数小,在常温下的 导电性很差;
脆性较大。
3、典型材料:陶瓷材料。
二、共价键
图1-3 原子间结合力
根据物理学,力(F)和能量(E)之间的转 换关系:
dE F dx
E Fdx
0
x
在作用力等于零的平衡距离下能量应该
达到最低值,表明在该距离下体系处于稳
定状态。
当两个原子无限远时, 原子间不发生作用,作用 能可视为零。 当距离在吸引力作用下 靠近时,体系的位能逐渐 下降,到达平衡距离时, 位能最低; 当原子距离进一步接近, 就必须克服反向排斥力, 使作用能重新升高。 平衡距离下的作用能定 义为原子的结合能E0。
2、性能
它没有饱和性和方向性;
良好的导电性、导热性、正的
电阻温度系数;
具有良好的塑性。
3、典型材料:各种金属。
四、范德瓦尔键
材料科学基础知识点

材料科学基础第零章材料概论该课程以金属材料、陶瓷材料、高分子材料及复合材料为对象,从材料的电子、原子尺度入手,介绍了材料科学理论及纳观、微观尺度组织、细观尺度断裂机制及宏观性能。
核心是介绍材料的成分、微观结构、制备工艺及性能之间的关系。
主要内容包括:材料的原子排列、晶体结构与缺陷、相结构和相图、晶体及非晶体的凝固、扩散与固态相变、塑性变形及强韧化、材料概论、复合材料及界面,并简要介绍材料科学理论新发展及高性能材料研究新成果。
材料是指:能够满足指定工作条件下使用要求的,就有一定形态和物理化学性状的物质。
按基本组成分为:金属、陶瓷、高分子、复合材料金属材料是由金属元素或以金属元素为主,通过冶炼方法制成的一类晶体材料,如Fe、Cu、Ni等。
原子之间的键合方式是金属键。
陶瓷材料是由非金属元素或金属元素与非金属元素组成的、经烧结或合成而制成的一类无机非金属材料。
它可以是晶体、非晶体或混合晶体。
原子之间的键合方式是离子键,共价键。
聚合物是用聚合工艺合成的、原子之间以共价键连接的、由长分子链组成的髙分子材料。
它主要是非晶体或晶体与非晶体的混合物。
原子的键合方式通常是共价键。
复合材料是由二种或二种以上不同的材料组成的、通过特殊加工工艺制成的一类面向应用的新材料。
其原子间的键合方式是混合键。
材料选择:密度弹性模量:材料抵抗变形的能力强度:是指零件承受载荷后抵抗发生破坏的能力。
韧性:表征材料阻止裂纹扩展的能力功能成本结构(Structure)性质(Properties)加工(Processing)使用性能(Performance)在四要素中,基本的是结构和性能的关系,而“材料科学”这门课的主要任务就是研究材料的结构、性能及二者之间的关系。
宏观结构←显微镜下的结构←晶体结构←原子、电子结构重点讨论材料中原子的排列方式(晶体结构)和显微镜下的微观结构(显微组织)的关系。
以及有哪些主要因素能够影响和改变结构,实现控制结构和性能的目的。
ch1 材料结构的基本知识[1]
![ch1 材料结构的基本知识[1]](https://img.taocdn.com/s3/m/ec354219a216147917112813.png)
根据量子力学,各个壳层的S态、P态中电子的充 满程度对该壳层的能量水平起着重要作用。
价电子: 电负性:用来 衡量原子吸引 电子能力的参 数。
§1.2 原子间的结合键(interatomic bonding)
第一章 材料结构的基本知识
材料的分类
按使用性能分: 结构材料: (强度、塑性、韧性等 力学性能) 功能材料: (电、磁、光、热等 物理性能) 按组成分: 金属材料 (metals) 陶瓷材料 (ceramics)
高分子材料 (polymers)
复合材料 (composites)
材料科学与工程的四个要素 材料使用 性 能 performa nce
2.合金:指两种或两种以上的金属或金属与非金属 经熔炼、烧结或用其它方法组合而成的具有金属特 性的物质。如:铜镍合金、碳钢、合金钢、铸铁
组元:组成合金的最基本的、独立的物质。 如:Cu-Ni合金,Fe-FeS合金 二元合金:如:Fe-C二元系合金 三元合金:如:Fe-C-Cr三元系合金 多元合金
Cl与Na形成离子键
一种材料由两种原子组成, 且一种是金属,另一种是 非金属时容易形成离子键 的结合(如左图)。由NaCl 离子键的形成可以归纳出 离子键特点如下: 1.金属原子放弃一个外 层电子,非金属原子得到 此电子使外层填满,结果 双双变得稳定。 2.金属原子失去电子带 正电荷,非金属原子得到 电子带负电荷,双双均成 为离子。 3. 离子键的大小在离子 周围各个方向上都是相同 的,所以,它没有方向性
§1.1
原子结构
一、原子的电子排列
核外电子的分布与四个量子数有关,且服从两个基本 原理: 1.Pauli不相容原理(Pauli principle) :一个原子中 不可能存在四个量子数完全相同的两个电子。 2.能量最低原理:电子总是优先占据能量低的轨道,使 系统处于最低能量状态。
材料结构

核外电子的排布( n )规律
能量最低原理( principle)电子总是占据能量最低的壳层 能量最低原理(Minimum Energy principle)电子总是占据能量最低的壳层 1s-2s-2p-3s-3p-4s-3d-4p-5s-4d-5p1s-2s-2p-3s-3p-4s-3d-4p-5s- 4d-5p Pauli不相容原理(Pauli Exclusion principle): 2n2 不相容原理( principle): Pauli不相容原理 全充满 Hund原则(Hund' Rule)半充满 原则( Hund原则 Hund' Rule) 自旋方向相同 全空
特点
1:在形成共价键时,为使电子云达到最大限度 在形成共价键时, 的重叠,共价键就有方向性, 的重叠,共价键就有方向性,键的分布严格服从 键的方向性 方向性; 键的方向性; 2:当一个电子和另一个电子配对以后就不再 和第三个电子配对了, 和第三个电子配对了,成键的公用电子对数 目是一定的,这就是共价键的饱和性 饱和性。 目是一定的,这就是共价键的饱和性。 由于共价键具有方向性,配位数比较小, 由于共价键具有方向性,配位数比较小,同时 共价键的结合比较牢固,因此其结构较稳定, 共价键的结合比较牢固,因此其结构较稳定, 熔点较高,硬度较大。 熔点较高,硬度较大。
原子序数= 原子序数=核电荷数 周期序数= 周期序数=电子壳层数 主族序数=最 外 层 电 子数 主族序数= 零族元素最外层电子数为8(氦为2) 零族元素最外层电子数为 (氦为 )
核电荷 ,原子半径 ↑ ↓ 同周期元素: 右, → 同周期元素:左 右,金属性 ,非金属性 ↓ ↑ 电离能 ,失电子能力 ,得电子能力 ↑ ↓ ↑ 最外层电子数相同, 最外层电子数相同,电子层数 ,原子半径 ↑ ↑ 同主族元素:上 下,金属性 ,非金属性 同主族元素: →下, ↑ ↓ 电离能 ,失电子能力 ,得电子能力 ↓ ↑ ↓
材料科学基础 ppt课件

(1)弹性模量是材料应力-应变曲线上弹性变 形段的斜率,在拉伸变形中通常称它为杨式模量 ,以E表示。而结合键能是影响弹性模量的主要 因素,结合键能越大,则“弹簧”越“硬”,原 子之间距离的移动所需要的外力就越大,即弹性 模量越大。如金刚石具有最高的弹性模量值, E=1000GPa;其他一些工程陶瓷如碳化物、氧化 物等结合键能也较高,它们的弹性模量为250600GPa;由金属键结合的金属材料,弹性模量略 低些,一般约为70-350GPa;而聚合物由于二次 键的作用,弹性模量仅为0.7-3.5GPa。
离子% 结 )= [-1 e 合 -1 4(X A 键 X B )( 2 1% 00
另一种混合键表现为两种类型的键独立 纯在例如一些气体分子以共价键结合,而 分子凝聚则依靠范德瓦力。聚合物和许多 有机材料的长链分子内部是共价键结合, 链与链之间则是范德瓦力或氢键结合。石 墨碳的上层为共价键结合,而片层间则为 范德瓦力二次键结合。
氢键具有饱和性和方向性,氢键在高分子材料中特别重要。Fra bibliotek (3)混合键
对于某一具体材料而言,似乎只具有单一 的结合键,如金属应为金属键,ⅣA族元素应为 共价键,电负性不同的元素应结合成离子键。然 而,实际材料中单一结合键的情况并不是很多, 大部分材料的内部原子结合键往往是各种键的混 合。
陶瓷化合物中出现离子键和共价键混合的 情况很常见,通常金属正离子与非金属离子所组 成的化合物不是纯粹的离子化合物,它们的性质 不能仅用离子键理解。化合物中离子键的比例取 决于组成元素中电负性差。电负性差相差越大, 则离子键比例越高。鲍林推荐以下公式来确定化
一.材料使用时间划分:石器时代→青铜器时代→ 铁器时代→水泥时代→钢时代→硅时代→新材料 时代
材料科学基础--材料结构的基本知识

等温等容 ΔA T、V<0 自发过程 等温等压 ΔG T、P<0 自发过程 两种自由能的表达式为:
A=U–TS G=H–TS
U——内能 H——焓 S——熵 T——热力学温度 反应速率ν与热力学温度T之间满足:
返回
下页
第一节 原子结构
一、原子的电子排列
原子 ——可看成是原子核及分布在核 周围的电子组成。
原子核 ——中子和质子组成,核的体 积很小,集中了原子的绝大部 分质量。
电子 ——绕着原子核在一定的轨道 上旋转质量虽可忽略,但电子 的分部却是原子结构中最重要 的问题,它不仅决定单个原子 的行为,也对工程材料内部原 子的结合及某些性能起着决定 性作用。
二、元素周期表及性能的周期性变化
原子周期律——早在1869年,俄国化 学家已发现了元素性质是按原子相对 质量的增加而程周期性的变化。这正 是由于原子核外电子的排列是随原子 序数的增加呈周期性变化。 族——周期表上竖的各列。同一族元 素具有相同的外壳层电子数,同一族 元素具有非常相似的化学性能。
过渡元素——周期表中部的ⅢB~ⅧB对 应着内壳层电子逐渐填充的过程,把这 些内壳层未填满的元素称过渡元素。
一、一次键
离子键——当两类原子结合时,金属原 子的外层电子很可能转移到非金属原子 外壳层上,使两者都得到稳定的电子结 构,从而降低体系的能量,此时金属原 子和非金属原子分别形成正离子和负离 子,正负离子间相互吸引,使原子结合 在一起,这就是离子键。(如NaCl)
共价键——价电子数为4或5个的ⅣA、 ⅤA族元素,离子化比较困难,在这种 情况下,相邻原子间可以共同组成一个 新的电子轨道,由两个原子中各有一个 电子共用,利用共享电子对来达到温定 的电子结构。这就是共价键。 金属键——金属原子很容易失去外壳层 电子而具有稳定的电子壳层,形成带正 电的阳离子,由正离子和自由电子之间
材料科学基础第一章材料结构的基本知识

1、对物理性能的影响 1) 熔点:共价键、离子键的最高
,高分子材料
的最低. 2) 密度:金属键的25 最高,共价键
2、对力学性能的影响 (1) 强度:结合键强,则强度
也高,但还受组织的影响. (2) 塑韧性:金属键最好,共
价键、离子键最低. (3) 弹性模量:共价键、离子
键最高,金属键次之,二次键 最低
26
第三节 原子排列方式
• 晶体与非晶体 • 原子排列的研究方法 一、晶体与非晶体 1、晶体
原子(原子团或分子)在空间有规则的周期 性重复排列的固体。
一般情况下,金属、大多数陶瓷、少 数高分子材料为晶体。
27
• 非晶体:
排列无序,不存在长程的周期 规则排列。
二氧化硅结构示意图 28
• 材料最终得到什么结构,必须综合考虑 结构形成的热力学条件和动力学条件。
1、热力学条件 结构形成时必须沿着36 能量降低的方向进
• 等温等容过程:
亥姆过霍程兹自由能变化A,T, V 0
自发
•吉布等斯温自等由压能过变程化:G,T, P 0
程
自发过
2、动力学条件
反应速度。
化学反应动力学的Arhennius方程:
一、一次键 1、离子键 • 通过正负离子间相互吸引力
使原子结合的结10 合键.
• 例如:NaCl, MgO 对于 NaCl: Na:1S22S22P63S1 Cl: 1S22S22P63S23P5 Na 原子失去一个外层电子,变成
正离子,带正电 Cl 原子得到一个外层电子,变成
负离子,带负电
11
12
第一章 材料结构的基本知识
结构分4个层次: • 原子结构 • 结合键 • 原子的排列 • 显微组织
材料结构的基本知识

材料结构的基本知识目录一、材料结构概述 (2)1. 材料结构定义与重要性 (3)2. 材料结构分类 (4)3. 材料结构研究的意义 (5)二、材料的基本结构类型 (6)1. 晶体结构 (7)1.1 晶体结构定义与特点 (8)1.2 晶体结构的分类 (9)1.3 典型晶体结构实例 (11)2. 非晶体结构 (12)2.1 非晶体结构定义与特点 (13)2.2 非晶体结构的形成原因 (14)2.3 典型非晶体结构实例 (15)三、材料结构的表征与检测 (16)1. 微观结构表征 (17)1.1 光学显微镜观察 (18)1.2 电子显微镜观察 (19)1.3 X射线衍射分析 (20)2. 宏观结构检测 (22)2.1 硬度测试 (23)2.2 强度测试 (25)2.3 耐磨性测试 (26)四、材料结构对性能的影响 (28)1. 晶体结构对材料性能的影响 (29)2. 非晶体结构对材料性能的影响 (29)3. 结构与性能的关系分析 (30)五、材料结构设计的方法与趋势 (32)1. 传统材料结构设计方法 (33)2. 现代材料结构设计方法 (34)3. 材料结构设计的发展趋势 (36)六、材料结构的优化与应用 (37)1. 优化材料结构的途径与方法 (39)2. 材料结构优化在各个领域的应用实例 (40)3. 材料结构优化对产业发展的影响 (42)一、材料结构概述材料结构是研究和设计各种材料的物理、力学和化学特性的过程,以满足特定应用场景的需求。
材料结构的基本知识包括材料的分类、性能、制备方法以及在不同工程领域的应用等方面。
本文档将对这些方面进行简要介绍,以帮助读者了解材料结构的基本概念和原理。
根据材料的性质和用途,可以将材料分为以下几类:金属材料(如钢、铝、铜等)、非金属材料(如陶瓷、玻璃、塑料等)、复合材料(由两种或多种材料组成的具有特殊性能的材料)以及新型材料(如纳米材料、生物材料等)。
材料性能是指材料在外力作用下所表现出的物理、力学和化学特性。
材料科学基础ppt

第一章 材料结构的基本知识
一、原子的电子排列
第一节 原子结构
原子
原子核
中子 质子
核外电子
原子的结构示意图
原子的运动轨道是有四个量子数所确定的,它们分别为主量子数、次量子数、磁 量子数以及自旋量子数。四个量子数中最重要的是主量子数n(n=1、2、3、4·····),
正方晶系: d h k 1 / l h [ /a ) ( 2 ( k /b ) 2 ( l/c ) 2 ] 1 /2
六方晶系:
d h k 1 / l4 / [ 3 ( h 2 h k k 2 ) /a 2 ( l/c ) 2 ] 1 /2
第二节 纯金属的晶体结构
一. 典型金属的晶体结构
金属晶体中的结合键是金属键,由于金属键没有方向性和饱和性,使大多数金属晶 体都具有排列紧密、对称性高的简单晶体结构。最常见的典型金属通常具有面心立方(A1 或fcc)、体心立方(A2或bcc)和蜜排六方(A3或hcp)三种晶体结构。
四. 晶面间距
1. 晶面间距:相邻两平行晶面间的距离。
2. 计算公式
对于各晶系的简单点阵,晶面间距与晶面指数 (hkl) 和点阵常数(a,b,c)之间有如下
关系:
立方晶系:
dhk la/h ቤተ መጻሕፍቲ ባይዱ2k2l2]1/2
四方晶系:
d h k1 l/h [2 (k 2 )/a 2 ( l/c )2 ] 1 /2
二.材料性能与内部结构的关系
材料的不同性能都是由其内部结构决定的。从材料的内部结构来看,可分为四个 层次:原子结构、结合键、原子的排列方式(晶体和非晶体)以及显微组织。
石德珂材料科学简答题

《材料科学基础》简答题第一章材料结构的基本知识1、说明结构转变的热力学条件与动力学条件的意义。
答:结构转变的热力学条件决定转变是否可行,是结构转变的推动力,是转变的必要条件;动力学条件决定转变速度的大小,反映转变过程中阻力的大小。
2、说明稳态结构与亚稳态结构之间的关系。
答:稳态结构与亚稳态结构之间的关系:两种状态都是物质存在的状态,材料得到的结构是稳态或亚稳态,取决于转交过程的推动力和阻力(即热力学条件和动力学条件),阻力小时得到稳态结构,阻力很大时则得到亚稳态结构。
稳态结构能量最低,热力学上最稳定,亚稳态结构能量高,热力学上不稳定,但向稳定结构转变速度慢,能保持相对稳定甚至长期存在。
但在一定条件下,亚稳态结构向稳态结构转变。
3、说明离子键、共价键、分子键和金属键的特点。
答:离子键、共价键、分子键和金属键都是指固体中原子(离子或分子)间结合方式或作用力。
离子键是由电离能很小、易失去电子的金属原子与电子亲合能大的非金属原于相互作用时,产生电子得失而形成的离子固体的结合方式。
共价键是由相邻原子共有其价电子来获得稳态电子结构的结合方式。
分子键是由分子(或原子)中电荷的极化现象所产生的弱引力结合的结合方式。
当大量金属原子的价电子脱离所属原子而形成自由电子时,由金属的正离子与自由电子间的静电引力使金属原子结合起来的方式为金属键。
4、原子中的电子按照什么规律排列?答:原子核周围的电子按照四个量子数的规定从低能到高能依次排列在不同的量于状态下,同一原子中电子的四个量子数不可能完全相等。
第二章材料的晶体结构1、在一个立方晶胞中确定6个表面面心位置的坐标。
6个面心构成一个正八面体,指出这个八面体各个表面的晶面指数、各个棱边和对角线的晶向指数。
解八面体中的晶面和晶向指数如图所示。
图中A、B、C、D、E、F为立方晶胞中6个表面的面心,由它们构成的正八面体其表面和棱边两两互相平行。
ABF面平行CDE面,其晶面指数为(111);ABE 面平行CDF 面,其晶面指数为(111);ADF 面平行BCE 面,其晶面指数为(111);ADE 面平行BCF 面,其晶面指数为(111)。
材料科学基础复旦大学材料科学系

《材料科学基础》考试大纲考生可选择化学卷或物理卷化学卷大纲第一章: 晶体结构基础和晶体化学1. 晶体结构与点阵2. 宏观对称性3. 布拉维点阵与晶系4. 点群5. 微观对称性和空间群6. 结构的晶体化学描述第二章: 晶体中的缺陷1. 缺陷的分类2. 点缺陷的符号表示3. 本征缺陷4. 杂质缺陷5. 电子与空穴,施主与受主6. 点缺陷的局域能级7. 点缺陷与氧分压8. 点缺陷生成热力学10.线缺陷和面缺陷的基本概念和分类第三章: 扩散1. Fick定律2. 无规行走3. 扩散机理4. 空位机理的自扩散系数5. 自扩散的活化能与频率因子6. 扩散与杂质浓度的关系7. 非整比化合物的自扩散系数第四章: 固溶体1. 固溶体的概念及分类2. 固溶体生成热力学3. 置换固溶体4. 组份缺陷型固溶体5. 固溶体的研究方法6. 固溶体的相图第五章: 相转变1. 重构型相变和移位型相变2. 相转变的热力学分类3. 相转变的动力学4. 晶体化学与相转变第六章: 离子导体和固体电解质1. 典型的离子晶体2. 固体电解质3.β-Al2O3离子导体4. 阴离子导体第七章:磁性材料1.磁性材料分类2.磁性材料的结构与性质物理卷大纲第一章、材料结构的基本知识1.原子结构2.原子结合键3.原子排列方式4.晶体材料的组织第二章、材料中的晶体结构1.晶体学基础2.纯金属的晶体结构3.离子晶体的结构4.共价晶体的结构第三章、晶体缺陷1.点缺陷2.位错的基本概念3.位错的能量及交互作用4.晶体中的界面第四章、材料的相结构及相图1.材料的相结构2.二元相图及其类型3.复杂相图分析4.相图的热力学基础5.三元系相图及其类型第五章、材料的凝固与气相沉积1.材料凝固时晶核的形成2.材料凝固时晶体的生长3.固溶体合金的凝固4.共晶合金的凝固5.制造工艺与凝固组织6.用凝固法材料的制备技术7.材料非晶态8.材料的气-固转变9.气相沉积法的材料制备技术第六章、扩散与固体相变1.扩散定律及其应用2.扩散机制3.影响扩散的因素与扩散驱动力4.几个特殊的有关扩散的实际问题5.固态相变中的形核6.固态相变的晶体成长7.扩散型相变8.无扩散相变第七章、材料的变形与断裂1.金属变形概述2.金属的弹性变形3.滑移与孪晶变形4.单晶体的塑性变形5.多晶体的塑性变形6.纯金属的变形强化7.合金的变形与强化8.冷变形金属的组织与性能9.金属的断裂10.冷变形金属的回复阶段11.冷变形金属的再结晶12.金属的热变形、蠕变与超塑性13.陶瓷晶体的变形第八章、固体材料的电子结构与物理性能1.固体的能带理论2.半导体3.材料的磁性4.材料的光学性能5.材料的热学性能6.功能材料举例。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
金属键——金属原子很容易失去外壳层电子而具有 稳定的电子壳层,形成带正电的阳离子,由正离子 和自由电子之间的相互吸引而结合起来的称金属键。
价电子在金属中自由运 金属原子的特点 最外层价电子少,易失去 动,成为与若干正离子 失去外 相吸引的电子云 金属原子 正离子 层电子
价电子 围绕金属正离子运动的电子云 由金属正离子和自由电子之间相互作用而 将所有的离子结合在一起的方式
固态物质
按原子在空 间的排列方式
晶体
非晶体
各向异性——晶体由于其空间不同方向上的原子排 列不同,沿着不同方向上所测得的性能数据亦不同, 这种性质称晶体的各向异性。 各向同性——非晶体在各个方向上的原子排列可视 为相同,沿任何方向测得的性能是一致的,表现为 各向同性。 从液态到非晶态固体是一个渐变过程,既无确 定的熔点,又无体积的突变。这说明非晶态转变只 不过是液态的简单冷却过程,随温度的下降,液态 的粘度越来越高,当其流动性完全消失时则称固相。 液体向晶体的转变还具有结构转变,这一原子 重排过程是通过在液体中不断形成有序排列的小晶 核及晶核的逐渐生长实现的。
——绕着原子核在一定的轨道上旋转质量
虽可忽略,但电子的分部却是原子结构中最 重要的问题,它不仅决定单个原子的行为, 也对工程材料内部原子的结合及某些性能起 着决定性作用。
电子运动的轨道: 由四个量子数决定,分别是主量子数、次量 子数、磁量子数及自旋量子数。 主量子数——决定电子离核远近和能量高低的主 要参数。 次量子数——量子轨道并不一定总是球形的,次 量子数反映了轨道的形状,各轨道在原子核周围 的角度分布不同。它也影响轨道的能级,按s、p、 d、f依次升高。
凝固与结晶 凝 固:指物质从液态经冷却转变为固态的过程;
凝固后的固态物质可以是晶体,也可以是非晶体
结 晶:通过凝固形成晶体物质的过程,是原子从不规则排
列状态(液态)过渡到规则排列状态(晶体状态)的过程 金属的凝固过程 玻璃的凝固过程 结晶过程
性能发生突变
逐渐变化
非晶体凝固过程
T0
纯金属的冷却曲线 冷却曲线:测定液体金属冷却时温度和时间的变化关 系作出的曲线
一、一次键
离子键——当两类原子结合时,金属原子的外层电
子很可能转移到非金属原子外壳层上,使两者都得
到稳定的电子结构,从而降低体系的能量,此时金 属原子和非金属原子分别形成正离子和负离子,正 负离子间相互吸引,使原子结合在一起,这就是离 子键。(如NaCl)
NaCl、MgO等都是典 型的离子键化合物 Na Na+
二、元素周期表及性能的周期性变化
原子周期律——早在1869年,俄国化学家已发现 了元素性质是按原子相对质量的增加而成周期性 的变化。这正是由于原子核外电子的排列是随原 子序数的增加呈周期性变化。 族——周期表上竖的各列。同一族元素具有相同 的外壳层电子数,同一族元素具有非常相似的化 学性能。
过渡元素——周期表中部的ⅢB~ⅧB对应着内壳层 电子逐渐填充的过程,把这些内壳层未填满的元素 称过渡元素。
磁量子数——确定了轨道的空间取向,以m表示。 没有外磁场时,处于同一亚壳层而空间取向不同 的电子具有相同的能量,但在外加磁场下,不同 空间取向轨道的能量会略有所差别。 自旋量子数——ms=+1/2,–1/2,表示在每个状态 下可以存在自旋方向相反的两个电子。
主量子数 次量子数 壳层序号 亚壳层状 态 1s 1 2s 2 2p
第一章
第一节 第二节 第三节 第四节 第五节
材料结构的基本知识
原子结构 原子结合键 原子排列方式 晶体材料的组织 材料的稳态结构与亚稳态结构
第一节
原子结构
一、原子的电子排列
原子 ——可看成是原子核及分布在核周围的电 子组成。 原子核 ——中子和质子组成,核的体积很小, 集中了原子的绝大部分质量。 电子
亚稳态结构
——能量相对较高的结构则称亚 稳态结构
结构转变的热力学条件:结构形成时必须沿 着能量降低的方向进行。 热力学第二定律对这种自发过程的叙述为: 只有那些使体系自由能A减小的过程才能自发进 行,可表示为: 等温等容 ΔA T、V<0 自发过程 等温等压 ΔG T、P<0 自发过程 两种自由能的表达式为: A=U–TS G=H–TS
(3)金属键使金属材料具有良好的导电性和导热 性,而由非金属键结合色陶瓷、聚合物均在固态下 不导电。
2、力学性能 结合键是影响弹性模量的主要因素。结合键能 越大,弹性模量越大,材料的强度越大。
第三节
原子排列方式
一、晶体与非晶体 晶体中原子的排列是有序的,即原子按某种特 定方式在三维空间内呈周期性规则重复排列。而非 晶体内部原子的排列是无序的。这种排列上的差异 造成性能上的不同:
液体
结晶的基本过程
晶核不断形成 结晶过程 晶核不断长大 液体冷却到 经过一段时间 T0温度以下 (称为孕育期)
一些尺寸极小、 原子规则排列 不断生核 液体完全消失 的小晶体
晶核
各个方向生长 出现新的晶核 多晶体结构 晶 体
不断长大
每一个晶核
一个小晶粒
图1-12 结晶过程示意图及相应的多晶体组织
二、原子排列的研究方 法
X–H——Y
三、混合键
实际材料中单一结合键并不多,大部分材料 的内部原子结合键往往是各种键的混合。例如: (1)ⅣA族的Si、Ge、Sn元素的结合是共价键与 金属键的混合。 (2)陶瓷化合物中出现离子键与共价键混合的情 况。
四、结合键的本质与原子间距
固体原子中存在两种力:吸引力和排斥力。 它们随原子间距的增大而减小。当距离很远时, 排斥力很小,只有当原子间接近至电子轨道互相 重叠时斥力才明显增大,并超过了吸引力。在某一
U——内能 H——焓 S——熵 T——热力学温度
反应速率ν与热力学温度T之间满足: ν=Aexp –Q RT (图1-18)
R——气体常数;Q——过程的激活能
能 量 始态 O
图1-18
激活 能
终态
反 应 速 度
O
状态(位置)
激活能的物理意义
温度T 扩散激活能Q
图1-19 反应速率随激活 能减小呈指数关系上升
正电中心 电子云
原子核 a) 原子核 电子云
负电 中心
极化分子 间的作用力
+
b)
–
c)
a)理论的电子云分布 合
b)原子偶极矩的产生 c)原子(或分子)间的范德瓦耳斯键结
2、氢键
氢键的本质与范德瓦耳斯键一样,只是氢原 子起了关键作用。氢原子只有一个电子,当氢原 子与一个电负性很强的原子X结合成分子时,氢 原子的一个电子转移至该原子壳层上;分子的氢 离子侧实质上是一个裸露的质子,对另个电负性 较大的原子Y表现出较强的吸引力,这样,氢原 子便在两个电负性很强的原子之间形成一个桥梁, 把两者结合起来,形成氢键。所以氢键可表达为:
总结
各个元素所表现的行为或性质一定会呈现同 样的周期性变化,因为原子结构从根本上决定了原 子间的结合键,从而影响元素的性质。
第二节
原子结合键
键的形成——在凝聚状态下,原子间距离十分接近, 便产生了原子间的作用力,使原子结合在一起,就 形成了键。 键分为一次键和二次键: 一次键——结合力较强,包括离子键、共价键和金 属键。 二次键——结合力较弱,包括范德瓦耳斯键和氢键。
图1-4 金刚石的共价结合及其方向性
Si 原子
Si的4个共价键
通过共价键结合的材料的特点
高强度 高硬度 高熔点
脆性大 导电性 较差
共价健本身很强,而且键之间有固 定的方向关系,所以,当具有共价 键的晶体发生弯曲时,不能像具有 金属健的原子那样彼此位置跟随发 生改变,而是其键必受到破坏,因 此,材料硬而脆
距离下引力和斥力相等,这一距离r0相当于原子的平衡距 离,称原子间距。
力(F)核能量(E)之间的转换关系: F= E= ∫
dE dχ
∞ 0
Fdχ
五、结合键与性能
1、物理性能 (1)熔点的高低代表了材料稳定性的程度。共价 键、离子键化合物的熔点很高这是陶瓷材料比金 属材料具有更高热稳定性的根本原因。二次键结 合的材料熔点一定偏低,如聚合物等。 (2)材料的密度与结合键类型有关。金属有高的 密度,陶瓷材料的密度很低。聚合物由于其是二 次键结合密度最低。
图1-13 X射线在原子面AA′和BB′上的衍射
图1-14 X射线衍射分析示意及衍射分布图 a) X射线衍射分析示意图 b) SiO2晶体及非晶体的衍射分布图
第四节 晶体材料的组织
材料的组织——指各种晶粒的组合特征,即各种晶 粒的相对量、尺寸大小、形状及分布等特征。 一、组织的显示与观察 宏观组织——粗大的组织用肉眼即能观察到。 显微组织——用金相显微镜或电子显微镜观察到的 组织。
结晶时的过冷现象
金属的实际结晶温度低于理论结晶温度的现象
T0 T 理论结晶温度(熔点) 过冷是结晶
的必要条件
T
T0
实际结晶温度 T0 - T
过冷度△T
注:对于某种金属来说,过冷度不 是恒定值,它的大小与冷却速度有 关,冷却速度越大,过冷度也越大, 则金属的实际结晶温度越低。
由于在结晶 时释放出结 晶潜热 纯金属的冷却曲线
弥散强化——组织中两个相的晶粒尺度相差甚远, 尺寸较细的相以球状、点状、片状或针状等形态 弥散地分布于另一相的基体内(图1-17b)。大 幅度地提高材料的强度。 第二相在基体相的晶界上分布是一种常见的 组织特征(图1-17c)。
第五节 材料的稳态结构与亚稳态结构
稳态结构
——同一材料在不同条件下可以得到 不同的结构,其中能量最低的结构称 稳态结构。
磁量子数 考虑自旋 各壳层 规第的状 量子数后 总电子数 的状态数目 态数目 1 2 2(=2×12) 1 2 8(=2×22) 3 6 1 3 5 1 3 5 7 2 6 10 2 6 10 14