MK60DN512ZVLQ10

合集下载

基于ADRC-PID串级控制算法的直立智能车

基于ADRC-PID串级控制算法的直立智能车

中图分类号 :TP39
文献标识码 :A
文章编号 :2095-1302(2021)01-0051-03
0引言
对于电磁循迹直立智能车在赛道上不断修正路线时电磁 信号变化大,外部干扰敏感时系统无法保持稳定,以及参数 调整不便等问题,本文提出了基于串级自抗扰控制算法的直 立智能车系统。传统智能车一般采用经典 PID、自适应模糊 PID、神经网络等控制算法,这些方法成熟,易于实现,但 各自存在不足之处。一方面,参数调整困难,传统 PID 控制 是根据得到的误差来逐步减少偏离量以达到控制目的,而理 想控制效果则来源于有效的误差值和良好的参数,所以受输 入信号品质和参数影响较大。另一方面,调整好的 PID 参数 并不能有效的自适应系统和周围环境中的干扰变量,在传统 智能车程序中,实际采集到的电磁信号在车速过快的情况下 会“跳变”,此时以期望目标值与实际值做差得到误差值的 方法不太合理,传统 PID 控制算法基于得到的误差值在进 行输出限幅后无法使系统快速反应。此外,用于智能车的模 糊 PID 和神经网络算法实际调参和获得训练集比较麻烦。为 了更快地调试参数和提高直立智能车对外界环境的抗干扰能 力,提出 ADRC-PID 串级控制算法。实验结果证明,直立智 能车有较强的抗干扰性,可实现自主循迹。
1.2 驱动模块
图 2 电源模块
收稿日期:2020-03-14 修回日期:2020-05-07
直立智能车需要驱动 2 个电机并实现正反转,为提高
2021年 / 第1期 物联网技术 51
Copyright©博看网 . All Rights Reserved.
智能处理与应用
将谐振电路采集的感应电压作为方向引导指标,将输入 值进行归一化处理后,通过左右电感差比和相应算法得到误 差值,使用增量式 PD(也可以只有 P 参数)作为方向外环进 行控制,通过陀螺仪采集的角速度作为 PD 方向内环控制车模 方向,最终使得直立智能车中线始终保持在预定电磁线上 [2]。 2.2 速度 PI 控制器设计

浙江赛区-摄像头组-杭州电子科技大学信息工程学院-杭电信工摄像头一队

浙江赛区-摄像头组-杭州电子科技大学信息工程学院-杭电信工摄像头一队

第九届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:杭州电子科技大学信息工程学院队伍名称:杭电信工摄像头1队参赛队员:赵勇林玉彪杨平贝带队老师:李金新余皓珉关于技术报告和研究论文使用授权的说明本人完全了解第九届“飞思卡尔”杯全国大学生智能汽车竞赛关保留、使用技术报告和研究论文的规定,即:参赛作品著作权归参赛者本人,比赛组委会和飞思卡尔半导体公司可以在相关主页上收录并公开参赛作品的设计方案、技术报告以及参赛模型车的视频、图像资料,并将相关内容编纂收录在组委会出版论文集中。

参赛队员签名:赵勇、林玉彪、杨平贝带队教师签名:李金新、余皓珉日期:2014/08/10摘要本文介绍了杭州电子科技大学信息工程学院的队员们在准备此次比赛中的成果。

本次比赛采用大赛组委会提供的1:16仿真车模,硬件平台采用带MK60DN512ZVLQ10单片机的K60环境,软件平台为Keil开发环境。

文中介绍了本次我们的智能车控制系统软硬件结构和开发流程,整个智能车涉及车模机械调整,传感器选择,信号处理电路设计,控制算法优化等许多方面。

整辆车的工作原理是先将小车的控制周期中提取出相应的时间片,相应的时间片用来控制车体的平衡,留下的时间片用来控制速度和转向,由CCD摄像头采集赛道信息至主板的硬件二值化模块进行信号处理,并递送二值化视频信息到单片机,再由单片机对二值化视频信号进行计算分析,运用我们自己的软件程序对赛道信息进行提取并选择最佳路径,通过对电机的精确控制从而实现小车在赛道上精彩漂亮的飞驰!为了进一步提高小车在运行时的稳定性和速度,我们组在软件方面使用了多套方案进行比较。

更新了SD卡技术实时存储赛道信息。

硬件上为了稳定的考虑,采用了以前比较稳定的方案,但是在电源部分做了调整,使得整车的电源裕度更大,硬件鲁棒性更强。

为更好的分析调车数据,我们继承并且改进上届的上位机,用C#软件编写了新的上位机程序来进行车模调试,很大程度上提高了调车效率。

基于多频电力载波技术在配网“低电压”监测中的应用

基于多频电力载波技术在配网“低电压”监测中的应用

基于多频电力载波技术在配网“低电压”监测中的应用摘要:通过研究基于多频电力载波技术的配网“低电压”监测系统,改进现有电压监测装置,应用多频电力载波通信技术,使其具备确定每个低压用户所在相序的功能,可以快速、准确地将台区用户资料划分清晰,为开展线损、电压分台区考核提供依据,建立健全了台区承包机制,充分调动了台区管理人员的工作积极性,准确找到台区电压质量低、线损高的源头并制定、落实“低电压”整改相关措施,使企业获得了良好的经济效益和社会效益[1]。

关键词:载波;相序;电压监测仪1 引言近年来,用电负荷快速增长,广大农村地区,甚至部分城市区域因供电线路长、变压器容量小、电网老化等原因导致线路压降过大、供电损耗大等问题,局部严重地区末端电压仅为几十伏,造成用户的用电设备不能正常使用,严重地影响了居民用户的生活。

为分析造成此种现象的确切原因并最终解决以上问题,传统的方法是安装电压监测仪[2],实时监测供电端和用户端的电压。

由于电压监测仪为单相电压监测记录、统计仪表,它有一个明显的缺陷:只能记录单个安装点的电压情况,不能准确分析造成此种现象的原因。

低压配电网线路相别、电压压降监测分析系统,不仅能够监测低压电网的线路首、末端电压,统计电网电压合格率,同时还能分别监测A、B、C每一相线路压降,绘制电压、压降曲线,统计分析压降产生的规律和造成的影响,而且能够查清用户的台区和相别属性,为实现台区精细化管理提供真实准确的基础数据。

为更加科学合理地配置线路资源,节能降耗;同时也为“低电压”治理、整改提供科学决策。

2 电压监测终端硬件构思基于变压器台区相序识别的电压监测终端主要作用为电压监测仪,由三相电压监测、相序识别终端和单相载波电压监测仪构成,如图1所示:图1 系统结构图2.1 监测主机硬件低压配电网线路相别、电压压降监测终端主机采用ARM架构的微控制器,加上电源电路、电压采集电路、信号调理电路、载波通信电路、多机通信电路、人机交互电路,构成了一个完整的硬件结构,如图2所示。

基于K60单片机的SDRAM控制模型设计及实现

基于K60单片机的SDRAM控制模型设计及实现

基于K60单片机的SDRAM控制模型设计及实现作者:周成龙张艺丹易澄来源:《计算机光盘软件与应用》2013年第16期摘要:本文阐述了无SDRAM控制器环境中使用单片机K60的GPIO口驱动SDRAM的硬件组成和软件设计,并测试了该系统的主要性能,给出了该系统的应用举例,具有低功耗、功能齐全、人机界面友好等优点。

关键词:SDRAM;单片机;MK60DN512ZVLQ10;存储管理;控制程序中图文分类号:TP368随着集成电路技术与工艺的发展进步,单片机应用领域也逐渐扩广,进入到社会生产生活的方方面面。

在某些成本敏感的应用场合迫切需要具有速度高、容量大的深度嵌入式系统,技术的进步,使得以低廉的价格获得高性能,低功耗单片机成为可能。

借助极高的接口速度,我们就可以使用普通GPIO口在没有SDRAM控制器的廉价单片机上实现软件驱动SDRAM。

1 硬件介绍1.1 单片机Kinetis系列是飞思卡尔(Freescale)公司于2010年下半年推出的业内首款基于ARM Cortex.M4内核的微控制器,K60系列是Kinetis系列的第一阶段产品之一[1]。

K60具有丰富的外设接口:(1)高速16位模数转换器;(2)12位数模转换器,带有片上模拟电压参考;(3)多个高速比较器和可编程增益放大器;(4)低功耗触摸感应功能,通过触摸能将器件从低功耗状态唤醒;(5)多个串行接口,包括UART;(6)强大灵活的定时器;(7)片外系统扩展和数据存储选项。

1.2 SDRAM本文选用Hynix的H57V2562GTR-60C 256Mb SDRAM,其为4M x 4Bank x16bit组织结构。

操作SDRAM的主要命令[2]有:MRS (Mode Register Set,模式寄存器设置),NOP (No Operation,空操作),BA(Bank Active,存储器激活),RD(Read,读,可设置是否自动预充电),WR(Write,写,可设置是否自动预充电),PB(Precharge Bank,预充电存储器,可设置全部/选定Bank),BS(Burst stop,停止突发传输),DQM(DQM,数据掩码),AR(Auto Refresh,自动刷新),BRSW(Burst-Read Single-Write,突发读单一写),SR(Self Refresh,自刷新,进入/退出),PPD(Precharge Power Down,掉电预充电,可设置进入/退出),CSS(Clock Suspend,时钟挂起可设置进入/退出)。

循迹打靶智能小车开题报告

循迹打靶智能小车开题报告
整体方案由整体到局部设计,预计第一阶段完成课题供求分析,第二阶段采用恒温烙铁、热风枪等工具完成方案选择和具体方案设计,最后采用示波器、万用表等进行综合调试和检测,使用EDA软件Altium Designer_09进行原理图设计和PCB板集实现。
三、毕业设计(论文)预期成果及创新
随着现代科技的不断进步,军事上对快速、精准的巡逻警戒车辆要求已经越来越高,这就催生了智能巡检的迅速发展,关于智能小车的研究也就越来越受人关注,有很好的发展前景。
[12]李广弟.单片机基础[M].北京:北京航空航天大学出版社,1994:6-28.
二、毕业设计(论文)方案
本项目采用飞思卡尔半导体公司MK60DN512ZVLQ10的Cotex—M4系列MCU为核心来完成小车的寻迹、光电瞄准、激光炮定位并射击等功能。根据课题要求,小车打靶系统可划分为火炮控制部分和信号检测部分。其中信号检测部分主要包括路面信息检测模块和光源搜索探测模块;控制部分包括小车电机驱动模块、炮塔电机驱动模块、控制器模块、显示模块和计时模块。系统采用四轮驱动的简易坦克车,并在其上安装由伺服电机驱动的可以自由旋转的炮塔,在炮塔上安装激光笔以代替火炮。本题的任务是控制坦克沿靶场中预先设置的轨迹,快速寻迹行进,并同时以光电方式瞄准光靶,实现激光打靶。打靶采用激光炮与光敏传感器合体安装的方式来实现光电瞄准和激光炮控制。此种方案可以极大地减小编程的难度,使功能实现更加高效。
车体采用模型车,具有良好的机械结构和可加工性,采用PWM信号和转向信号通过组合逻辑电路和大功率MOS管控制电机可以比较好的实现对电机的控制;数字红外光电传感器检测黑线采用状态机制,传感器不同的组合状态实现寻迹。寻迹模块的传感器采用的是高发射功率红外电二极管和高灵敏度光电晶体管组成的红外对管ST188构成的电路。检测距离可调整的范围在4—13mm,采用的是非接触式的检测方法。在小车的前面距地面一定距离安装红外对管传感器,小车在行驶在白色地面上时,红外发射管发射红外信号,经过白色地面反射后被接收管接受,一旦接收到信号,红外对管的输出端将输出低电平。当传感器检测到黑线时,红外发射管发射出红外信号,红外信号被黑色吸收,将输出高电平。将传感器检测到的输出信号送入到LM339比较器,将计较的输出信号送入到I/O端口,判断小车轨迹的位置,来控制转动。打靶部分采用光敏三极管3DU33检测靶标光强,安装在圆盘周围的光敏三极管的电压值采样并进行比较找出光线最亮的方向实现激光瞄准;通过日本双叶株式会社S3010伺服电机实现激光炮的方向控制。最终使模型小车实现探测、循迹、打靶等基本功能。

飞思卡尔杯全国大学生智能汽车竞赛技术报告_摄像头组

飞思卡尔杯全国大学生智能汽车竞赛技术报告_摄像头组

第十届"飞思卡尔"杯全国大学生智能汽车竞赛技术报告第十届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告学校:电子科技大学摘要本文设计的智能车系统以MK60DN512ZVLQ10微控制器为核心控制单元,通过CMOS摄像头检测赛道信息,使用模拟比较器对图像进行硬件二值化,提取黑色引导线,用于赛道识别;通过编码器检测模型车的实时速度,使用PID控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。

关键字:MK60DN512ZVLQ10,CMOS,PIDAbstractIn this paper we will design a smart car system based on MK60DN512ZVLQ10as the micro-controller unit. We use a CMOS image sensor to obtain lane image information. Then convert the original image into the binary image by the analog comparator circuit in order to extract black guide line for track identification. An inferred sensor is used to measure the car`s moving speed. We use PID control method to adjust the rotate speed of driving electromotor and direction of steering electromotor, to achieve the closed-loop control for the speed and direction.Keywords: MK60DN512ZVLQ10,CMOS,PID目录摘要 (II)Abstract (III)目录............................................................................................................................ I V 引言.. (1)第一章系统总体设计 (2)1.1系统概述 (2)1.2整车布局 (3)第二章机械系统设计及实现 (4)2.1智能车机械参数调节 (4)2.1.1 前轮调整 (4)2.1.2其他部分调整 (6)2.2底盘高度的调整 (7)2.3编码器的安装 (7)2.4舵机转向结构的调整 (8)2.5摄像头的安装 (9)第三章硬件系统设计及实现 (11)3.1 MK60DN512ZVLL10主控模块 (12)3.2电源管理模块 (12)3.3 摄像头模块 (14)3.4电机驱动模块 (15)3.5测速模块 (16)3.6陀螺仪模块 (16)3.7灯塔检测模块 (16)3.8辅助调试模块 (17)第四章软件系统设计及实现 (19)4.1赛道中心线提取及优化处理 (19)4.1.1原始图像的特点 (19)4.1.2赛道边沿提取 (20)4.1.3推算中心 (21)4.1.4路径选择 (23)4.2 PID 控制算法介绍 (23)4.2.1位置式PID (24)4.2.2增量式PID (25)4.2.3 PID参数整定 (25)4.3转向舵机的PID控制算法 (25)4.4驱动电机的PID控制算法 (26)第五章系统开发及调试工具 (27)5.1开发工具 (27)5.2上位机图像调试 (27)5.3SD卡模块 (27)5.3.1SD卡介绍 (27)5.3.2 SPI总线介绍 (28)5.3.3软件实现 (28)第六章模型车的主要技术参数 (30)结论 (31)参考文献 (I)附录A:电原理图 (II)附录B:程序源代码................................................................................................... I V引言随着科学技术的不断发展进步,智能控制的应用越来越广泛,几乎渗透到所有领域。

k60

k60

• • • • •
通用寄存器R0~R12 堆栈指针R13 连接寄存器R14(LR) 程序计数寄存器R15 特殊功能寄存器(程序状态字、中断、控 制)
• 串行外设接口(SPI,Serial Peripheral Interface) 是Freescale公司推出的一种同步串行通讯接口, 用于微处理器和外围扩展芯片之间的串行连接。 SPI全双工主--从连接,四线同步传输。从机,主 机(串行时钟)。主入从出 ,主出从如。低功耗 模式。选择从机:主机将该从机的选择线拉低。 • I2C:在硬件上,二线制的I2C串行总线使得各IC 只需最简单的连接,而且总线接口都集成在IC中, 不需另加总线接口电路。支持多主控。主机提供 时钟信号,每个设备有独立地址。采用了独特的 寻址约定,规定了起始信号后的第一个字节为寻 址字节,用来寻址被控器件,并规定数据传送方 向。半双工。
• 控制器局域网CAN(Controller Area Network):CAN网络上的任何一个节点均 可作为主节点主动地与其他节点交换数据; CAN网络节点的信息帧可以分出优先级, 这为有实时性要求的控制提供了方便; CAN的物理层及数据链路层有独特的设计 技术,使其在抗干扰以及错误检测等方面 的性能大大提高。
K60可选择的芯片类型
芯片类型 CPU频 率 (MHz) 100 100 100 100 100 100 引脚 数 封装 Flash容 量(KB) 程序空间 (KB) EEPRO M(KB) SRAM(K B) GPIO
MK60N256VLQ100 MK60X256VLQ100 MK60N512VLQ100 MK60N256VMD100 MK60X256VMD100 MK60N512VMD100
144 144 144 144 144 144

基于“飞思卡尔”单片机MK60DN512ZVLQ10的智能车设计

基于“飞思卡尔”单片机MK60DN512ZVLQ10的智能车设计
度反馈处理。 4 . 1 控 制 算 法 设 计 P I D控制器将偏差 的比例( P ) 、 积分( I ) 和微分( D ) 通过线性组合构
成控制量 , 对被控对象进行控制。在计算控制系统中, 采用数字 P I D 控制器 , 规律 为 : e ( k ) =r ( k ) 一c ( k ) ( 1 )
决策, 1 9 9 9 , 1 4 ( 2 ) : 1 7 7 — 1 8 0 . 图 1 系 统 总体 结构 图 3 硬 件 电 路 设 计
硬件电路 主要包括最小系统板 , 核心板和驱动板 。
3 . 1电源 模 块
供电分为四个部分 : 电机驱动 、 核心板 、 舵机与摄像头 。电机驱 动 电压直接 由电池压提供 , 选择 L M2 9 4 0提供 5 V稳 压 , 线路简单 , 稳 定 性 好 。选 择 L M2 9 4 1芯 片 作 为 6 V稳 压 芯 片 给 舵 机 供 电 。 A MS 1 1 1 7的线 性度好 , 效 率高 , 作为 3 . 3 V稳 压芯片 , 给摄像 头和液
晶供 电。 3 . 2电机驱动模块 驱动电路的主要指标是 能通过 大电流 , 因此选用极低导通阻抗 和转换速率快 的 I R F 3 2 0 5为智能 车驱 动 电机提 供控制 和驱 动 。另
外, 设计栅极驱动 电路可以提高 P WM控制方式 的调制频率 , 减少 电 枢 电流脉动 , 提高 电路工作的可靠性 。 4 系统软件设计 软件包括图像采 集 、 图像处理 、 舵机 控制 、 电机速度控制 以及速

1 0 8 ・
科 技 论 坛
基于“ 飞思卡尔” 单片机M K 6 0 D N 5 1 2 Z V L Q 1 0 的智能车设计
张 瑾 孟利利 梁剑飞 ( 扬 州大学 广陵学院。 江苏 扬州 2 2 5 0 0 9 )

惠普彩色激光多功能打印机用户指南说明书

惠普彩色激光多功能打印机用户指南说明书
HP Color LaserJet Pro MFP M479
䐙ㄨㇸ≈
/videos/LaserJet /support/colorljM479MFP
HP Color LaserJet Pro M479 用户指南
版权与许可
© Copyright 2019 HP Development Company, L.P.
2 纸盘 .......................................................................................................................................................................................................... 17 简介 .......................................................................................................................................................................................... 17 将纸张装入纸盘 1 ................................................................................................................................................................ 18 简介 ..................................................................................................................................................................... 18 将纸张装入纸盘 1(多用途纸盘) ............................................................................................................ 18 纸盘 1 纸张方向 ............................................................................................................................................... 20 将纸张装入纸盘 2 ................................................................................................................................................................ 22 简介 ..................................................................................................................................................................... 22 将纸张装入纸盘 2 ........................................................................................................................................... 22 纸盘 2 纸张方向 ............................................................................................................................................... 24 将纸张装入纸盘 3 ................................................................................................................................................................ 26 简介 ..................................................................................................................................................................... 26Fra bibliotek商标说明

飞思卡尔智能车电磁组技术报告

飞思卡尔智能车电磁组技术报告

第十届“飞思卡尔”杯全国大学生智能汽车竞赛技术报告摘要本文以第十届全国大学生智能车竞赛为背景,介绍了基于电磁导航的智能赛车控制系统软硬件结构和开发流程。

该系统以Freescale半导体公司32 位单片机MK60DV510ZVLQ100为核心控制器,使用IAR6.3程序编译器,采用LC选频电路作为赛道路径检测装置检测赛道导线激发的电磁波来引导小车行驶,通过增量式编码器检测模型车的实时速度,配合控制器运行PID控制等控制算法调节驱动电机的转速和转向舵机的角度,实现了对模型车运动速度和运动方向的闭环控制。

同时我们使用集成运放对LC选频信号进行了放大,通过单片机内置的AD采样模块获得当前传感器在赛道上的位置信息。

通过配合Visual Scope,Matlab等上位机软件最终确定了现有的系统结构和各项控制参数。

实验结果表明,该系统设计方案可使智能车稳定可靠运行。

关键字:MK60DV510ZVLQ100,PID控制,MATLAB,智能车第十届全国大学生智能汽车邀请赛技术报告目录第一章引言 (5)第二章系统方案设计 (6)2.1系统总体方案的设计 (6)2.2系统总体方案设计图 (6)电磁传感器模块 (7)控制器模块 (7)电源管理模块 (7)编码器测速模块 (7)舵机驱动模块 (8)起跑线检测模块 (8)人机交互模块 (8)测距模块 (8)第三章机械结构调整与优化 (8)3.1智能车前轮定位的调整 (8)主销后倾角 (9)3.1.2主销内倾角 (9)3.1.3 前轮外倾角 (10)3.1.4 前轮前束 (10)3.2 舵机的安装 (11)3.3编码器安装 (12)3.4车体重心调整 (12)3.5传感器的安装 (13)3.6测距模块的安装 (14)第四章硬件电路设计 (15)4.1单片机最小系统 (15)4.2电源管理模块 (16)4.3电磁传感器模块模块 (17)4.3.1 电磁传感器的原理 (17)4.3.2 信号的检波放大 (18)4.4编码器接口 (19)4.5舵机驱动模块 (20)4.6电机驱动模块 (20)4.7人机交互模块 (21)第五章控制算法设计说明 (22)5.1主要程序流程 (22)5.2赛道信息采集及处理 (23)5.2.1 传感器数据滤波及可靠性处理 (23)5.2.2 位置偏差的获取 (25)5.3 控制算法实现 (27)5.3.1 PID算法原理简介 (27)5.3.2基于位置式PID的方向控制 (31)5.3.3 基于增量式PID和棒棒控制的速度控制 (31)5.3.4 双车距离控制和坡道处理 (33)第六章系统开发与调试 (34)6.1开发环境 (34)6.2上位机显示 (35)6.3车模主要技术参数 (36)第七章存在的问题及总结 (37)7.1 制作成果 (37)7.2问题与思考 (37)7.3不足与改进 (37)参考文献 (38)附录A 部分程序代码 (39)第十届全国大学生智能汽车邀请赛技术报告第一章引言随着科学技术的不断发展进步,智能控制的应用越来越广泛,几乎渗透到所有领域。

MK60最小系统板使用说明书

MK60最小系统板使用说明书

MK60系统板模块使用说明书一简介:K60系列微控制器具有IEEE 1558以太网,全速和高速USB 2.0 On—The—Go带设备充电探测、硬件加密以及防篡改探测能力,具有丰富的模拟、通信、定时和控制外设,从100LQFP封装256KB闪存开始可扩展到256MAPBGA 1MB内存。

大内存的K60系列微控制器还提供可选的单精度浮点单元、NAND闪存控制器和DRAM控制器。

144脚LQFP封装的K60的引脚分布图如图1所示,很多引脚都是功能复用引脚,至于引脚选择哪个功能取决于相关寄存器的配置。

图1 K60 144 LQFP引脚分布图由功能框图可知,K60含有的功能模块包括:串行通信UART、GPIO、定时器、A/D、D/A、CMP、TSI、SPI、I2C、I2S、CAN、USB、SDHC以及存储模块。

不同单片机的相同功能模块用法是基本一样的,因此,这里的UART、GPIO、定时器、A/D、SPI、CAN与XS128的功能模块用法是一样的,CMP与XS128的PWM模块功能类似,都可以输出PWM波形。

关于其他模块的功能这里不再进行介绍,请大家参考K60的datasheet或者reference manual。

二模块特点:1.模块将单片机的引脚基本上全部引出,便于进行二次开发;2.模块电源设计了过流和过压保护,进一步增加系统抗电压和电流冲击能力;3.特别提醒大家的是,该模块不和5V接口兼容,所以使用时一定要小心,别直接使用5V电源供电,否则可能烧坏模块。

三模块使用注意事项◆板子为镀金板,使用过程中要轻拿轻放同时不要用手触摸金面,因为手上汗液容易引起金面氧化,产品使用久了,易导致接触不良等故障;◆产品放置时,因为焊接元器件个别高度凸出,因此不要有其它重物压在上面,以防压坏电路板上的贴片元件,进而影响板子性能;◆电路板存放温度不要超过55°,湿度小于60%;◆板子放置不要靠近潮湿地方,以防板子受潮影响使用,如果板子受潮,请将板子至于通风干燥地方进行干燥处理,如空调下,利用空调热风进行干燥;◆由于板子的引脚是裸露设计,请不要用手触摸相关引脚,以防静电损坏芯片引脚,影响板子性能.◆电路板使用前,必须检查所接电源是否在说明书规定的范围内,以防电压太高击穿关键芯片,影响板子性能;◆电路板使用时,注意不要将电源接反.四 K60的非I/O功能介绍像电源类的引脚以及用于复位及JTAG的引脚我们可以称为非I/O引脚,即这些引脚是不能当作一般I/O口使用的,非I/O引脚的总结及功能如表3-1所示。

MK60DN512ZVLQ10资料

MK60DN512ZVLQ10资料

K60P144M100SF2 K60 Sub-Family Data SheetSupports the following:MK60DN256ZVLQ10,MK60DX256ZVLQ10,MK60DN512ZVLQ10,MK60DN256ZVMD10,MK60DX256ZVMD10,MK60DN512ZVMD10Features•Operating Characteristics–Voltage range: 1.71 to 3.6 V–Flash write voltage range: 1.71 to 3.6 V–Temperature range (ambient): -40 to 105°C•Performance–Up to 100 MHz ARM Cortex-M4 core with DSPinstructions delivering 1.25 Dhrystone MIPS perMHz•Memories and memory interfaces–Up to 512 KB program flash memory on non-FlexMemory devices–Up to 256 KB program flash memory onFlexMemory devices–Up to 256 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices–Up to 128 KB RAM–Serial programming interface (EzPort)–FlexBus external bus interface•Clocks– 3 to 32 MHz crystal oscillator–32 kHz crystal oscillator–Multi-purpose clock generator•System peripherals–Multiple low-power modes to provide poweroptimization based on application requirements –Memory protection unit with multi-masterprotection–16-channel DMA controller, supporting up to 63request sources–External watchdog monitor–Software watchdog–Low-leakage wakeup unit •Security and integrity modules–Hardware CRC module to support fast cyclicredundancy checks–Hardware random-number generator–Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms–128-bit unique identification (ID) number per chip•Human-machine interface–Low-power hardware touch sensor interface (TSI)–General-purpose input/output•Analog modules–Two 16-bit SAR ADCs–Programmable gain amplifier (PGA) (up to x64)integrated into each ADC–Two 12-bit DACs–Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input–Voltage reference•Timers–Programmable delay block–Eight-channel motor control/general purpose/PWMtimer–Two 2-channel quadrature decoder/general purposetimers–IEEE 1588 timers–Periodic interrupt timers–16-bit low-power timer–Carrier modulator transmitter–Real-time clockFreescale Semiconductor Document Number: K60P144M100SF2 Data Sheet: Technical Data Rev. 7, 02/2013 Freescale reserves the right to change the detail specifications as may berequired to permit improvements in the design of its products.© 2011–2013 Freescale Semiconductor, Inc.•Communication interfaces–Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability –USB full-/low-speed On-the-Go controller with on-chip transceiver–Two Controller Area Network (CAN) modules–Three SPI modules–Two I2C modules–Six UART modules–Secure Digital host controller (SDHC)–I2S moduleTable of Contents1Ordering parts (5)1.1Determining valid orderable parts (5)2Part identification (5)2.1Description (5)2.2Format (5)2.3Fields (5)2.4Example (6)3Terminology and guidelines (6)3.1Definition: Operating requirement (6)3.2Definition: Operating behavior (7)3.3Definition: Attribute (7)3.4Definition: Rating (8)3.5Result of exceeding a rating (8)3.6Relationship between ratings and operatingrequirements (8)3.7Guidelines for ratings and operating requirements (9)3.8Definition: Typical value (9)3.9Typical value conditions (10)4Ratings (11)4.1Thermal handling ratings (11)4.2Moisture handling ratings (11)4.3ESD handling ratings (11)4.4Voltage and current operating ratings (11)5General (12)5.1AC electrical characteristics (12)5.2Nonswitching electrical specifications (12)5.2.1Voltage and current operating requirements (13)5.2.2LVD and POR operating requirements (14)5.2.3Voltage and current operating behaviors (14)5.2.4Power mode transition operating behaviors (16)5.2.5Power consumption operating behaviors (17)5.2.6EMC radiated emissions operating behaviors (20)5.2.7Designing with radiated emissions in mind (21)5.2.8Capacitance attributes (21)5.3Switching specifications (21)5.3.1Device clock specifications (21)5.3.2General switching specifications (21)5.4Thermal specifications (22)5.4.1Thermal operating requirements (22)5.4.2Thermal attributes (23)6Peripheral operating requirements and behaviors (24)6.1Core modules (24)6.1.1Debug trace timing specifications (24)6.1.2JTAG electricals (25)6.2System modules (28)6.3Clock modules (28)6.3.1MCG specifications (28)6.3.2Oscillator electrical specifications (30)6.3.332 kHz Oscillator Electrical Characteristics (32)6.4Memories and memory interfaces (33)6.4.1Flash electrical specifications (33)6.4.2EzPort Switching Specifications (37)6.4.3Flexbus Switching Specifications (38)6.5Security and integrity modules (41)6.6Analog (41)6.6.1ADC electrical specifications (41)6.6.2CMP and 6-bit DAC electrical specifications (49)6.6.312-bit DAC electrical characteristics (51)6.6.4Voltage reference electrical specifications (54)6.7Timers (55)6.8Communication interfaces (55)6.8.1Ethernet switching specifications (55)6.8.2USB electrical specifications (57)6.8.3USB DCD electrical specifications (57)6.8.4USB VREG electrical specifications (58)6.8.5CAN switching specifications (58)6.8.6DSPI switching specifications (limited voltagerange) (59)6.8.7DSPI switching specifications (full voltagerange) (60)6.8.8Inter-Integrated Circuit Interface (I2C) timing (62)6.8.9UART switching specifications (63)6.8.10SDHC specifications (63)6.8.11I2S switching specifications (64)6.9Human-machine interfaces (HMI) (67)6.9.1TSI electrical specifications (67)7Dimensions (68)7.1Obtaining package dimensions (68)8Pinout (68)8.1K60 Signal Multiplexing and Pin Assignments (68)8.2K60 Pinouts (74)9Revision History (76)1Ordering parts1.1Determining valid orderable partsValid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to and perform a part number search for the following device numbers: PK60 and MK60.2Part identification2.1DescriptionPart numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.2.2FormatPart numbers for this device have the following format:Q K## A M FFF R T PP CC N2.3FieldsThis table lists the possible values for each field in the part number (not all combinations are valid):2.4ExampleThis is an example part number:MK60DN512ZVMD103Terminology and guidelines3.1Definition: Operating requirementAn operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.3.1.1ExampleThis is an example of an operating requirement:3.2Definition: Operating behaviorAn operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.3.2.1ExampleThis is an example of an operating behavior:3.3Definition: AttributeAn attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.3.3.1ExampleThis is an example of an attribute:3.4Definition: RatingA rating is a minimum or maximum value of a technical characteristic that, if exceeded,may cause permanent chip failure:•Operating ratings apply during operation of the chip.•Handling ratings apply when the chip is not powered.3.4.1ExampleThis is an example of an operating rating:3.5Result of exceeding a rating40302010Measured characteristicOperating ratingF a i l u r e s i n t i m e (p p m )The likelihood of permanent chip failure increases rapidly assoon as a characteristic begins to exceed one of its operating ratings.3.6Relationship between ratings and operating requirementsper a ti n g r a t i n g(m a x.)pe r a ti n gr e qu i r e m en t(m a x.)per a ti n g r eq u i r e m e n t (m i n .)pe r a t i n g r a t i n g (m i n.)Operating (power on)an d l i n g r a t i ng (m a x .)an d l i n g ra t ing (m i n .)Handling (power off)3.7Guidelines for ratings and operating requirementsFollow these guidelines for ratings and operating requirements:•Never exceed any of the chip’s ratings.•During normal operation, don’t exceed any of the chip’s operating requirements.•If you must exceed an operating requirement at times other than during normaloperation (for example, during power sequencing), limit the duration as much as possible.3.8Definition: Typical valueA typical value is a specified value for a technical characteristic that:•Lies within the range of values specified by the operating behavior•Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed.3.8.1Example 1This is an example of an operating behavior that includes a typical value:3.8.2Example 2This is an example of a chart that shows typical values for various voltage and temperature conditions:0.900.951.00 1.051.10500100015002000250030003500400045005000150 °C 105 °C 25 °C –40 °CV DD (V)I (μA )D D _S T O P T J 3.9Typical value conditionsTypical values assume you meet the following conditions (or other conditions asspecified):4Ratings4.1Thermal handling ratings1.Determined according to JEDEC Standard JESD22-A103, High Temperature Storage Life.2.Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for NonhermeticSolid State Surface Mount Devices.4.2Moisture handling ratings1.Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for NonhermeticSolid State Surface Mount Devices.4.3ESD handling ratings1.Determined according to JEDEC Standard JESD22-A114, Electrostatic Discharge (ESD) Sensitivity Testing Human BodyModel (HBM).2.Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method forElectrostatic-Discharge-Withstand Thresholds of Microelectronic Components.3.Determined according to JEDEC Standard JESD78, IC Latch-Up Test.4.4Voltage and current operating ratings1.Analog pins are defined as pins that do not have an associated general purpose I/O port function.5General5.1AC electrical characteristicsUnless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.Figure 1. Input signal measurement referenceAll digital I/O switching characteristics assume:1.output pins•have C L=30pF loads,•are configured for fast slew rate (PORTx_PCRn[SRE]=0), and•are configured for high drive strength (PORTx_PCRn[DSE]=1)2.input pins•have their passive filter disabled (PORTx_PCRn[PFE]=0)5.2Nonswitching electrical specifications5.2.1Voltage and current operating requirements1.All 5 V tolerant digital I/O pins are internally clamped to V SS through an ESD protection diode. There is no diodeconnection to V DD. If V IN is less than V DIO_MIN, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V DIO_MIN-V IN)/|I ICDIO|.2.Analog pins are defined as pins that do not have an associated general purpose I/O port function. Additionally, EXTAL andXTAL are analog pins.3.All analog pins are internally clamped to V SS and V DD through ESD protection diodes. If V IN is less than V AIO_MIN or greaterthan V AIO_MAX, a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V AIO_MIN-V IN)/|I ICAIO|. The positive injection current limiting resistor is calculated as R=(V IN-V AIO_MAX)/|I ICAIO|. Select the larger of these two calculated resistances if the pin is exposed to positive and negative injection currents.4.Open drain outputs must be pulled to VDD.5.2.2LVD and POR operating requirements1.Rising thresholds are falling threshold + hysteresis voltage5.2.3Voltage and current operating behaviors1.Typical values characterized at 25°C and VDD = 3.6 V unless otherwise noted.2.Open drain outputs must be pulled to V DD .3.Analog pins are defined as pins that do not have an associated general purpose I/O port function.4.Digital pins have an associated GPIO port function and have 5V tolerant inputs, except EXTAL and XTAL.5.Internal pull-up/pull-down resistors disabled.6.Characterized, not tested in production.7.Examples calculated using V IL relation, V DD , and max I IND : Z IND =V IL /I IND . This is the impedance needed to pull a high signal to a level below V IL due to leakage when V IL < V IN < V DD . These examples assume signal source low = 0 V.8.Measured at V DD supply voltage = V DD min and Vinput = V SS 9.Measured at V DD supply voltage = V DD min and Vinput = V DDDigital inputI 5.2.4Power mode transition operating behaviorsAll specifications except t POR , and VLLSx →RUN recovery times in the following table assume this clock configuration:•CPU and system clocks = 100 MHz •Bus clock = 50 MHz •FlexBus clock = 50 MHz •Flash clock = 25 MHz •MCG mode: FEI1.Normal boot (FTFL_OPT[LPBOOT]=1)5.2.5Power consumption operating behaviors1.The analog supply current is the sum of the active or disabled current for each of the analog modules on the device. Seeeach module's specification for its supply current.2.100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.All peripheral clocks disabled.3.100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. Allperipheral clocks enabled.4.Max values are measured with CPU executing DSP instructions.5.25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocksdisabled. Code executing from flash.7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocksenabled but peripherals are not in active operation. Code executing from flash.8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocksdisabled.9.Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.10.Includes 32kHz oscillator current and RTC operation.5.2.5.1Diagram: Typical IDD_RUN operating behaviorThe following data was measured under these conditions:•MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies.•USB regulator disabled•No GPIOs toggled•Code execution from flash with cache enabled•For the ALLOFF curve, all peripheral clocks are disabled except FTFL5.2.6EMC radiated emissions operating behaviors1.Determined according to IEC Standard 61967-1, Integrated Circuits - Measurement of Electromagnetic Emissions, 150kHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among themeasured orientations in each frequency range.2.V DD =3.3 V, T A = 25 °C, f OSC = 12 MHz (crystal), f SYS = 96 MHz, f BUS = 48MHz3.Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and WidebandTEM Cell Method5.2.7Designing with radiated emissions in mindTo find application notes that provide guidance on designing your system to minimize interference from radiated emissions:1.Go to .2.Perform a keyword search for “EMC design.”5.2.8Capacitance attributes5.3Switching specifications5.3.1Device clock specifications5.3.2General switching specificationsThese general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, and I2C signals.1.This is the minimum pulse width that is guaranteed to pass through the pin synchronization circuitry. Shorter pulses may ormay not be recognized. In Stop, VLPS, LLS, and VLLSx modes, the synchronizer is bypassed so shorter pulses can be recognized in that case.2.The greater synchronous and asynchronous timing must be met.3.This is the minimum pulse width that is guaranteed to be recognized as a pin interrupt request in Stop, VLPS, LLS, andVLLSx modes.4.75 pF load5.15 pF load5.4Thermal specifications5.4.1Thermal operating requirements5.4.2Thermal attributes1.Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method EnvironmentalConditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).2.Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board .3.Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits , with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.4.Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).6Peripheral operating requirements and behaviors6.1Core modules6.1.1Debug trace timing specificationsFigure 3. TRACE_CLKOUT specificationsTRACE_CLKOUTTRACE_D[3:0]Figure 4. Trace data specifications6.1.2JTAG electricalsTCLK (input)Figure 5. Test clock input timingTCLKData inputsData outputsData outputsData outputsFigure 6. Boundary scan (JTAG) timingTCLKTDI/TMSTDOTDOTDOFigure 7. Test Access Port timingTRSTFigure 8. TRST timing6.2System modulesThere are no specifications necessary for the device's system modules.6.3Clock modules6.3.1MCG specifications1.This parameter is measured with the internal reference (slow clock) being used as a reference to the FLL (FEI clockmode).2.These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.3.The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation(Δf dco_t) over voltage and temperature should be considered.4.These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.5.The resulting clock frequency must not exceed the maximum specified clock frequency of the device.6.This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.7.Excludes any oscillator currents that are also consuming power while PLL is in operation.8.This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics ofeach PCB and results will vary.9.This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.6.3.2Oscillator electrical specificationsThis section provides the electrical characteristics of the module.1.V DD=3.3 V, Temperature =25 °C2.See crystal or resonator manufacturer's recommendation3.C x,C y can be provided by using either the integrated capacitors or by using external components.4.When low power mode is selected, R F is integrated and must not be attached externally.5.The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to anyother devices.1.Other frequency limits may apply when external clock is being used as a reference for the FLL or PLL.2.When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, itremains within the limits of the DCO input clock frequency.3.Proper PC board layout procedures must be followed to achieve specifications.4.Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S registerbeing set.NOTEThe 32 kHz oscillator works in low power mode by default andcannot be moved into high power/gain mode.6.3.332 kHz Oscillator Electrical CharacteristicsThis section describes the module electrical characteristics.1.When a crystal is being used with the 32 kHz oscillator, the EXTAL32 and XTAL32 pins should only be connected torequired oscillator components and must not be connected to any other devices.1.Proper PC board layout procedures must be followed to achieve specifications.2.This specification is for an externally supplied clock driven to EXTAL32 and does not apply to any other clock input. Theoscillator remains enabled and XTAL32 must be left unconnected.3.The parameter specified is a peak-to-peak value and V IH and V IL specifications do not apply. The voltage of the appliedclock must be within the range of V SS to V BAT.6.4Memories and memory interfaces6.4.1Flash electrical specificationsThis section describes the electrical characteristics of the flash memory module.6.4.1.1Flash timing specifications — program and eraseThe following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.1.Maximum time based on expectations at cycling end-of-life.1.Assumes 25 MHz flash clock frequency.2.Maximum times for erase parameters based on expectations at cycling end-of-life.3.For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.1.Typical data retention values are based on measured response accelerated at high temperature and derated to a constant25°C use profile. Engineering Bulletin EB618 does not apply to this technology. Typical endurance defined in Engineering Bulletin EB619.2.Cycling endurance represents number of program/erase cycles at -40°C ≤ T j ≤ 125°C.3.Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cyclingendurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.6.4.1.5Write endurance to FlexRAM for EEPROMWhen the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.The bytes not assigned to data flash via the FlexNVM partition code are used by the flash memory module to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.Writes_subsystem =× Write_efficiency × n EEPROM – 2 × EEESPLIT × EEESIZEEEESPLIT × EEESIZEnvmcycdwhere•Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)•EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;entered with the Program Partition command•EEESPLIT — FlexRAM split factor for subsystem; entered with the ProgramPartition command•EEESIZE — allocated FlexRAM based on DEPART; entered with the ProgramPartition command•Write_efficiency —•0.25 for 8-bit writes to FlexRAM•0.50 for 16-bit or 32-bit writes to FlexRAM•n nvmcycd — data flash cycling endurance (the following graph assumes 10,000cycles)Figure 9. EEPROM backup writes to FlexRAM6.4.2EzPort Switching SpecificationsEZP_CKEZP_CSEZP_Q (output)EZP_D (input)Figure 10. EzPort Timing Diagram6.4.3Flexbus Switching SpecificationsAll processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency.The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.1.Specification is valid for all FB_AD[31:0], FB_BE/BWE n, FB_CS n, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,and FB_TS.2.Specification is valid for all FB_AD[31:0] and FB_TA.1.Specification is valid for all FB_AD[31:0], FB_BE/BWE n, FB_CS n, FB_OE, FB_R/W,FB_TBST, FB_TSIZ[1:0], FB_ALE,and FB_TS.2.Specification is valid for all FB_AD[31:0] and FB_TA.Figure 11. FlexBus read timing diagramFigure 12. FlexBus write timing diagram6.5Security and integrity modulesThere are no specifications necessary for the device's security and integrity modules.6.6Analog6.6.1ADC electrical specificationsThe 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30.All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.1.Typical values assume V DDA = 3.0 V, Temp = 25 °C, f ADCK = 1.0 MHz, unless otherwise stated. Typical values are forreference only, and are not tested in production.2.DC potential difference.3.This resistance is external to MCU. To achieve the best results, the analog source resistance must be kept as low aspossible. The results in this data sheet were derived from a system that had < 8 Ω analog source resistance. The R AS /C AS time constant should be kept to < 1 ns.4.To use the maximum ADC conversion clock frequency, the ADHSC bit must be set and the ADLPC bit must be clear.5.For guidelines and examples of conversion rate calculation, download the ADC calculator tool.V ASSIMPLIFIEDINPUT PIN EQUIVALENTFigure 13. ADC input impedance equivalency diagram。

盲人智能过街辅助系统设计方案

盲人智能过街辅助系统设计方案

盲人智能过街辅助系统设计-机械制造论文盲人智能过街辅助系统设计王少华1,2吴向东1潘金平1朱磊1覃人波1(1.天津职业技术师范大学,中国天津300222;2.天津市交通安全与控制协同创新中心,中国天津300222)【摘要】介绍了基于飞思卡尔K60单片机的盲人智能过街辅助系统。

在详细分析盲人过街需求的基础上,采用IAR6.3开发平台进行程序设计,基于飞思卡尔K60芯片设计硬件模块,进行超声波和红外测障测距,通过OV7725鹰眼摄像头实现斑马线视频图像采集。

实验室实验结果表明,该系统能够保证盲人走在斑马线中间区域并可避免与障碍物相撞,可有效应用于盲人过街辅助。

关键词盲人;过街;辅助系统;飞思卡尔K60【Abstract】ThispaperintroducesanintelligentintersectioncrossingassistsystemforThe BlindbasedonFreescaleK60.Onthebasisofadetailedanalysisoftheneedsoft heblindmanwhentheyacrossthestreet,ituseIAR6.3developmentplatformf orprogramming,designbasedonhardwaremodulebasedonFreescaleK60c hip,detectswhetherthereexistobstacleswithinadistanceinfrontbymeansofultr asonicandinfraredandachievezebravideoimagebyOV7725Hawkeyecamer a.TheLaboratorytestresultsshowthatthesystemcouldensurethatblindpeo plecanwalkonthecenterofzebraandavoidobstacles,willbehelpfultoassistbl indpeopletoacrossthestreet.【Keywords】Theblind。

自平衡车的电流环串级PID控制设计

自平衡车的电流环串级PID控制设计

自平衡车的电流环串级PID控制设计林嘉裕;戴廷飞;熊慧【期刊名称】《单片机与嵌入式系统应用》【年(卷),期】2017(17)5【摘要】为了解决两轮自平衡电动车用传统占空比控制无法实现对转矩的精确控制问题,本文采用飞思卡尔微处理器MK60DN512ZVLQ10,卡尔曼滤波算法获取车身倾角实时最优值,基于电流环的串级PID控制来调节直流电机.电流传感器精度能达到1%左右,系统受扰动后,此方法调节时间更短、超调量更小、鲁棒性更强.实验结果表明,直接转矩控制在快速性、稳定性和抗扰性等方面明显优于传统占空比控制.%In order to solve the problem that the traditional duty cycle control of two-wheeled self-balancing electric vehicle can not realize the accurate control of torque,the design uses MK60DN512ZVLQ10 as the core,the real-time inclination angle of vehicle body is obtained by kalman filter algorithm,the loop cascade PID control is used to regulate the DC motor.The accuracy of the current sensor can reach about 1%,when the system is disturbed,this method has the shorter settling time,the smaller overshoot and the stronger robustness.So the direct torque control is superior to conventional duty control in terms of fastness,stability and immunity.【总页数】5页(P63-67)【作者】林嘉裕;戴廷飞;熊慧【作者单位】天津工业大学电气工程与自动化学院,天津 300387;天津工业大学电气工程与自动化学院,天津 300387;天津工业大学电气工程与自动化学院,天津300387【正文语种】中文【中图分类】TP212.9;TP273【相关文献】1.四旋翼飞行器串级PID控制设计与实现 [J], 靳亚磊;李虹;李昕涛2.从学前教育的科学性谈儿童平衡力的培养\r——以COHESION凝动儿童平衡车(滑步车)俱乐部为例 [J], 曹惠容;李润中;吕朋林3.基于串级PID控制的两轮自平衡车控制系统设计 [J], 杨皓明;赵唯4.从学前教育的科学性谈儿童平衡力的培养--以COHESION凝动儿童平衡车(滑步车)俱乐部为例 [J], 曹惠容; 李润中; 吕朋林5.幼儿平衡车运动课程干预对幼儿体质的影响研究——以徐州幼儿园平衡车课程为例 [J], 洪金玲; 韩新宇因版权原因,仅展示原文概要,查看原文内容请购买。

健康监测手环系统的设计

健康监测手环系统的设计

健康监测手环系统的设计张长春;胡乃瑞;袁怀通;李露【摘要】本文针对儿童、老人每天户外运动,出行活动运动状态、生命体征以及安全定位监测问题,设计一款运动手环监测系统,本系统采用MK60单片机作为主控芯片,通过对MPU6050三轴加速度陀螺仪传感器与心率传感器采集到的数据的处理与分析,能够实时监测人体运动状态及心跳数据,采用GPS模块获取位置信息,并通过OLED液晶显示各项数据,还具有对人体提醒和报警的功能.该系统结构简单,功能种类多,灵敏度高,系统检测数据准确度高,成本低廉,具有简单方便实用特点.【期刊名称】《电子测试》【年(卷),期】2019(000)011【总页数】3页(P50-52)【关键词】MK60单片机;脉搏心率检测;MPU6050加速度传感器;GPS定位【作者】张长春;胡乃瑞;袁怀通;李露【作者单位】沈阳航空航天大学,辽宁沈阳,110000;沈阳航空航天大学,辽宁沈阳,110000;沈阳航空航天大学,辽宁沈阳,110000;沈阳航空航天大学,辽宁沈阳,110000【正文语种】中文0 引言随着社会竞争的日趋激烈,年轻人的工作压力逐渐增大,他们很少有时间关注老人和小孩的出行活动和生命体征问题,例如由于运动量较少引起的肥胖问题、老年人的跌倒报警问题、运动状态监测和热量消耗问题、心率和运动量的测量问题[1~4],为了解决上述问题,本文设计一款运动手环安全监测系统——运动手环,目前已有一些文献[5~8]研究关于智能手环在健康医疗、跌倒监测、人体走路运动量消耗和人体运动动作的捕捉方面的应用,与前人研究相比,本系统具有计步、定位和监测生命体征的功能,它可以通过计步器的功能计算出一个人行走的步数,通过GPS定位功能确定运动的距离,从而可以确定消耗的卡路里数,方便人们把握自身和家庭成员的运动情况。

该健康监测手环系统主要由MPU6050三轴加速度陀螺仪传感器、脉冲心率传感器、GPS定位模块、OLED显示模块和MK60N512VMD100单片机五部分组成。

可识别道路中黄白双色中间线的智能循迹小车设计

可识别道路中黄白双色中间线的智能循迹小车设计

可识别道路中黄白双色中间线的智能循迹小车设计刘宝民;张博涵;董文超;李小华;谢斌;高尚【摘要】主要研究了智能循迹小车循两种颜色线行驶的设计问题.小车以K60单片机为主控,PD算法和舵机结合为小车提供方向,PID算法和电机结合来调节小车的速度,7971芯片搭建驱动电路来驱动电机.通过Open Mv摄像头进行捕捉道路信息,根据摄像头传回的道路信息来判断如何行驶.最后,通过实验验证了设计方案的可行性.【期刊名称】《辽宁科技大学学报》【年(卷),期】2018(041)002【总页数】7页(P145-150,160)【关键词】智能循迹小车;图像采集处理;K60单片机;黄白双色循迹【作者】刘宝民;张博涵;董文超;李小华;谢斌;高尚【作者单位】辽宁科技大学电子与信息工程学院,辽宁鞍山 114051;辽宁科技大学电子与信息工程学院,辽宁鞍山 114051;辽宁科技大学电子与信息工程学院,辽宁鞍山 114051;辽宁科技大学电子与信息工程学院,辽宁鞍山 114051;辽宁科技大学电子与信息工程学院,辽宁鞍山 114051;辽宁科技大学电子与信息工程学院,辽宁鞍山 114051【正文语种】中文【中图分类】TP242随着电子技术的进步,越来越多的电子爱好者开始制作智能小车,有的小车可以通过遥控控制,有的小车可以通过蓝牙控制,也有的小车可以根据路线循迹行驶。

目前循迹小车已经有了大量成果,例如文献[1]中的智能车能在以采集双线为路径识别的条件下稳定快速地行驶并完成自主循迹;文献[2]设计的智能车系统采用PID控制算法对舵机转向和电机速度进行反馈控制,可实现智能车在跑道上平稳快速行驶;文献[3]对数字式PID进行了改进,并结合了硬件模拟电路控制和单片机程序控制再通过单片机程序软件逐步精细优化,实现了平衡车稳定、灵活、高效的行驶;文献[4]设计的速度控制系统可以使智能小车在跑道上更快更稳的运行,在速度调节上具有更好的灵活性;文献[5]证明了智能车舵机控制转向和霍尔控制测速优化方案具有可行性和实用性。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

K60P144M100SF2 K60 Sub-Family Data SheetSupports the following:MK60DN256ZVLQ10,MK60DX256ZVLQ10,MK60DN512ZVLQ10,MK60DN256ZVMD10,MK60DX256ZVMD10,MK60DN512ZVMD10Features•Operating Characteristics–Voltage range: 1.71 to 3.6 V–Flash write voltage range: 1.71 to 3.6 V–Temperature range (ambient): -40 to 105°C•Performance–Up to 100 MHz ARM Cortex-M4 core with DSPinstructions delivering 1.25 Dhrystone MIPS perMHz•Memories and memory interfaces–Up to 512 KB program flash memory on non-FlexMemory devices–Up to 256 KB program flash memory onFlexMemory devices–Up to 256 KB FlexNVM on FlexMemory devices – 4 KB FlexRAM on FlexMemory devices–Up to 128 KB RAM–Serial programming interface (EzPort)–FlexBus external bus interface•Clocks– 3 to 32 MHz crystal oscillator–32 kHz crystal oscillator–Multi-purpose clock generator•System peripherals–10 low-power modes to provide power optimization based on application requirements–Memory protection unit with multi-masterprotection–16-channel DMA controller, supporting up to 64request sources–External watchdog monitor–Software watchdog–Low-leakage wakeup unit •Security and integrity modules–Hardware CRC module to support fast cyclicredundancy checks–Hardware random-number generator–Hardware encryption supporting DES, 3DES, AES, MD5, SHA-1, and SHA-256 algorithms–128-bit unique identification (ID) number per chip•Human-machine interface–Low-power hardware touch sensor interface (TSI)–General-purpose input/output•Analog modules–Two 16-bit SAR ADCs–Programmable gain amplifier (PGA) (up to x64)integrated into each ADC–Two 12-bit DACs–Three analog comparators (CMP) containing a 6-bit DAC and programmable reference input–Voltage reference•Timers–Programmable delay block–Eight-channel motor control/general purpose/PWMtimer–Two 2-channel quadrature decoder/general purposetimers–IEEE 1588 timers–Periodic interrupt timers–16-bit low-power timer–Carrier modulator transmitter–Real-time clockFreescale Semiconductor Document Number: K60P144M100SF2 Data Sheet: Technical Data Rev. 6, 9/2011 Freescale reserves the right to change the detail specifications as may berequired to permit improvements in the design of its products.© 2010–2011 Freescale Semiconductor, Inc.•Communication interfaces–Ethernet controller with MII and RMII interface to external PHY and hardware IEEE 1588 capability –USB full-/low-speed On-the-Go controller with on-chip transceiver–Two Controller Area Network (CAN) modules–Three SPI modules–Two I2C modules–Six UART modules–Secure Digital host controller (SDHC)–I2S moduleTable of Contents1Ordering parts (5)1.1Determining valid orderable parts (5)2Part identification (5)2.1Description (5)2.2Format (5)2.3Fields (5)2.4Example (6)3Terminology and guidelines (6)3.1Definition: Operating requirement (6)3.2Definition: Operating behavior (7)3.3Definition: Attribute (7)3.4Definition: Rating (8)3.5Result of exceeding a rating (8)3.6Relationship between ratings and operatingrequirements (8)3.7Guidelines for ratings and operating requirements (9)3.8Definition: Typical value (9)3.9Typical value conditions (10)4Ratings (10)4.1Thermal handling ratings (11)4.2Moisture handling ratings (11)4.3ESD handling ratings (11)4.4Voltage and current operating ratings (11)5General (12)5.1AC electrical characteristics (12)5.2Nonswitching electrical specifications (12)5.2.1Voltage and current operating requirements (13)5.2.2LVD and POR operating requirements (14)5.2.3Voltage and current operating behaviors (14)5.2.4Power mode transition operating behaviors (15)5.2.5Power consumption operating behaviors (16)5.2.6EMC radiated emissions operating behaviors (19)5.2.7Designing with radiated emissions in mind (20)5.2.8Capacitance attributes (20)5.3Switching specifications (20)5.3.1Device clock specifications (20)5.3.2General switching specifications (21)5.4Thermal specifications (21)5.4.1Thermal operating requirements (21)5.4.2Thermal attributes (22)6Peripheral operating requirements and behaviors (23)6.1Core modules (23)6.1.1Debug trace timing specifications (23)6.1.2JTAG electricals (24)6.2System modules (27)6.3Clock modules (27)6.3.1MCG specifications (27)6.3.2Oscillator electrical specifications (29)6.3.332kHz Oscillator Electrical Characteristics (31)6.4Memories and memory interfaces (32)6.4.1Flash (FTFL) electrical specifications (32)6.4.2EzPort Switching Specifications (37)6.4.3Flexbus Switching Specifications (38)6.5Security and integrity modules (41)6.6Analog (41)6.6.1ADC electrical specifications (41)6.6.2CMP and 6-bit DAC electrical specifications (49)6.6.312-bit DAC electrical characteristics (52)6.6.4Voltage reference electrical specifications (55)6.7Timers (56)6.8Communication interfaces (56)6.8.1Ethernet switching specifications (56)6.8.2USB electrical specifications (58)6.8.3USB DCD electrical specifications (58)6.8.4USB VREG electrical specifications (59)6.8.5CAN switching specifications (59)6.8.6DSPI switching specifications (limited voltagerange) (60)6.8.7DSPI switching specifications (full voltagerange) (61)6.8.8I2C switching specifications (63)6.8.9UART switching specifications (63)6.8.10SDHC specifications (63)6.8.11I2S switching specifications (64)6.9Human-machine interfaces (HMI) (66)6.9.1TSI electrical specifications (66)7Dimensions (67)7.1Obtaining package dimensions (67)8Pinout (68)8.1K60 Signal Multiplexing and Pin Assignments (68)8.2K60 Pinouts (74)9Revision History (76)1Ordering parts1.1Determining valid orderable partsValid orderable part numbers are provided on the web. To determine the orderable part numbers for this device, go to and perform a part number search for the following device numbers: PK60 and MK60.2Part identification2.1DescriptionPart numbers for the chip have fields that identify the specific part. You can use the values of these fields to determine the specific part you have received.2.2FormatPart numbers for this device have the following format:Q K## A M FFF R T PP CC N2.3FieldsThis table lists the possible values for each field in the part number (not all combinations are valid):2.4ExampleThis is an example part number:MK60DN512ZVMD103Terminology and guidelines3.1Definition: Operating requirementAn operating requirement is a specified value or range of values for a technical characteristic that you must guarantee during operation to avoid incorrect operation and possibly decreasing the useful life of the chip.3.1.1ExampleThis is an example of an operating requirement, which you must meet for the accompanying operating behaviors to be guaranteed:3.2Definition: Operating behaviorAn operating behavior is a specified value or range of values for a technical characteristic that are guaranteed during operation if you meet the operating requirements and any other specified conditions.3.2.1ExampleThis is an example of an operating behavior, which is guaranteed if you meet the accompanying operating requirements:3.3Definition: AttributeAn attribute is a specified value or range of values for a technical characteristic that are guaranteed, regardless of whether you meet the operating requirements.3.3.1ExampleThis is an example of an attribute:3.4Definition: RatingA rating is a minimum or maximum value of a technical characteristic that, if exceeded,may cause permanent chip failure:•Operating ratings apply during operation of the chip.•Handling ratings apply when the chip is not powered.3.4.1ExampleThis is an example of an operating rating:3.5Result of exceeding a rating40302010Measured characteristicOperating ratingF a i l u r e s i n t i m e (p p m )The likelihood of permanent chip failure increases rapidly assoon as a characteristic begins to exceed one of its operating ratings.3.6Relationship between ratings and operating requirements–∞∞pe r at i ng o r h a n d l i n g r at i n g (m a x .)pe r a ti n g re q ui r e m e n t (m a x .)per a ti n g re q u i r em en t (mi n .)p e r a t i n g o r h a n d l in g r a t i n g (mi n .)3.7Guidelines for ratings and operating requirementsFollow these guidelines for ratings and operating requirements:•Never exceed any of the chip’s ratings.•During normal operation, don’t exceed any of the chip’s operating requirements.•If you must exceed an operating requirement at times other than during normal operation (for example, during power sequencing), limit the duration as much as possible.3.8Definition: Typical valueA typical value is a specified value for a technical characteristic that:•Lies within the range of values specified by the operating behavior•Given the typical manufacturing process, is representative of that characteristic during operation when you meet the typical-value conditions or other specified conditions Typical values are provided as design guidelines and are neither tested nor guaranteed.3.8.1Example 1This is an example of an operating behavior that includes a typical value:3.8.2Example 2This is an example of a chart that shows typical values for various voltage and temperature conditions:0.900.951.001.051.10500100015002000250030003500400045005000150 °C 105 °C 25 °C –40 °CV DD (V)I (μA )D D _S T O P T J 3.9Typical value conditionsTypical values assume you meet the following conditions (or other conditions asspecified):4Ratings4.1Thermal handling ratings2.Determined according to IPC/JEDEC Standard J-STD-020, Moisture/Reflow Sensitivity Classification for NonhermeticSolid State Surface Mount Devices.4.2Moisture handling ratingsSolid State Surface Mount Devices.4.3ESD handling ratingsModel (HBM).2.Determined according to JEDEC Standard JESD22-C101, Field-Induced Charged-Device Model Test Method forElectrostatic-Discharge-Withstand Thresholds of Microelectronic Components.4.4Voltage and current operating ratings5General5.1AC electrical characteristicsUnless otherwise specified, propagation delays are measured from the 50% to the 50% point, and rise and fall times are measured at the 20% and 80% points, as shown in the following figure.Figure 1. Input signal measurement referenceAll digital I/O switching characteristics assume:1.output pins•have C L=30pF loads,•are configured for fast slew rate (PORTx_PCRn[SRE]=0), and•are configured for high drive strength (PORTx_PCRn[DSE]=1)2.input pins•have their passive filter disabled (PORTx_PCRn[PFE]=0)5.2Nonswitching electrical specifications5.2.1Voltage and current operating requirementsSSconnection to V DD. If V IN greater than V DIO_MIN (=V SS-0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If this limit cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V DIO_MIN-V IN)/|I IC|.2.Analog pins are defined as pins that do not have an associated general purpose I/O port function.3.All analog pins are internally clamped to V SS and V DD through ESD protection diodes. If V IN is greater than V AIO_MIN(=V SS-0.3V) and V IN is less than V AIO_MAX(=V DD+0.3V) is observed, then there is no need to provide current limiting resistors at the pads. If these limits cannot be observed then a current limiting resistor is required. The negative DC injection current limiting resistor is calculated as R=(V AIO_MIN-V IN)/|I IC|. The positive injection current limiting resistor is calcualted as R=(V IN-V AIO_MAX)/|I IC|. Select the larger of these two calculated resistances.5.2.2LVD and POR operating requirements5.2.3Voltage and current operating behaviors2.Measured at V DD supply voltage = V DD min and Vinput = V SS3.Measured at V DD supply voltage = V DD min and Vinput = V DD5.2.4Power mode transition operating behaviorsAll specifications except t POR, and VLLSx→RUN recovery times in the following table assume this clock configuration:•CPU and system clocks = 100 MHz•Bus clock = 50 MHz•FlexBus clock = 50 MHz•Flash clock = 25 MHz5.2.5Power consumption operating behaviorseach module's specification for its supply current.2.100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock . MCG configured for FEI mode.All peripheral clocks disabled.3.100MHz core and system clock, 50MHz bus and FlexBus clock, and 25MHz flash clock. MCG configured for FEI mode. Allperipheral clocks enabled.4.Max values are measured with CPU executing DSP instructions.5.25MHz core and system clock, 25MHz bus clock, and 12.5MHz FlexBus and flash clock. MCG configured for FEI mode.6. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocksdisabled. Code executing from flash.7. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocksenabled but peripherals are not in active operation. Code executing from flash.8. 2 MHz core, system, FlexBus, and bus clock and 1MHz flash clock. MCG configured for BLPE mode. All peripheral clocksdisabled.9.Data reflects devices with 128 KB of RAM. For devices with 64 KB of RAM, power consumption is reduced by 2 μA.10.Includes 32kHz oscillator current and RTC operation.5.2.5.1Diagram: Typical IDD_RUN operating behaviorThe following data was measured under these conditions:•MCG in FBE mode for 50 MHz and lower frequencies. MCG in FEE mode at greater than 50 MHz frequencies•USB regulator disabled•No GPIOs toggled•Code execution from flash with cache enabled•For the ALLOFF curve, all peripheral clocks are disabled except FTFL5.2.6EMC radiated emissions operating behaviorskHz to 1 GHz Part 1: General Conditions and Definitions and IEC Standard 61967-2, Integrated Circuits - Measurement of Electromagnetic Emissions, 150 kHz to 1 GHz Part 2: Measurement of Radiated Emissions—TEM Cell and Wideband TEM Cell Method. Measurements were made while the microcontroller was running basic application code. The reported emission level is the value of the maximum measured emission, rounded up to the next whole number, from among themeasured orientations in each frequency range.2.V DD =3.3 V, T A = 25 °C, f OSC = 12 MHz (crystal), f SYS = 96 MHz, f BUS = 48 MHz3.Specified according to Annex D of IEC Standard 61967-2, Measurement of Radiated Emissions—TEM Cell and WidebandTEM Cell Method5.2.7Designing with radiated emissions in mindTo find application notes that provide guidance on designing your system to minimize interference from radiated emissions:1.Go to .2.Perform a keyword search for “EMC design.”5.2.8Capacitance attributes5.3Switching specifications5.3.1Device clock specifications5.3.2General switching specificationsThese general purpose specifications apply to all signals configured for GPIO, UART, CAN, CMT, IEEE 1588 timer, and I2C signals.2.This is the shortest pulse that is guaranteed to be recognized.3.75pF load4.15pF load5.4Thermal specifications5.4.1Thermal operating requirements5.4.2Thermal attributesConditions—Natural Convection (Still Air), or EIA/JEDEC Standard JESD51-6, Integrated Circuit Thermal Test Method Environmental Conditions—Forced Convection (Moving Air).2.Determined according to JEDEC Standard JESD51-8, Integrated Circuit Thermal Test Method Environmental Conditions—Junction-to-Board .3.Determined according to Method 1012.1 of MIL-STD 883, Test Method Standard, Microcircuits , with the cold plate temperature used for the case temperature. The value includes the thermal resistance of the interface material between the top of the package and the cold plate.4.Determined according to JEDEC Standard JESD51-2, Integrated Circuits Thermal Test Method Environmental Conditions—Natural Convection (Still Air).6Peripheral operating requirements and behaviors6.1Core modules6.1.1Debug trace timing specificationsFigure 3. TRACE_CLKOUT specificationsTRACE_CLKOUTTRACE_D[3:0]Figure 4. Trace data specifications6.1.2JTAG electricalsTCLK (input)Figure 5. Test clock input timingTCLKData inputsData outputsData outputsData outputsFigure 6. Boundary scan (JTAG) timingTCLKTDI/TMSTDOTDOTDOFigure 7. Test Access Port timingTRSTFigure 8. TRST timing6.2System modulesThere are no specifications necessary for the device's system modules.6.3Clock modules6.3.1MCG specificationsmode).2.These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=0.3.The resulting system clock frequencies should not exceed their maximum specified values. The DCO frequency deviation(Δf dco_t) over voltage and temperature should be considered.4.These typical values listed are with the slow internal reference clock (FEI) using factory trim and DMX32=1.5.The resulting clock frequency must not exceed the maximum specified clock frequency of the device.6.This specification applies to any time the FLL reference source or reference divider is changed, trim value is changed,DMX32 bit is changed, DRS bits are changed, or changing from FLL disabled (BLPE, BLPI) to FLL enabled (FEI, FEE, FBE, FBI). If a crystal/resonator is being used as the reference, this specification assumes it is already running.7.Excludes any oscillator currents that are also consuming power while PLL is in operation.8.This specification was obtained using a Freescale developed PCB. PLL jitter is dependent on the noise characteristics ofeach PCB and results will vary.9.This specification applies to any time the PLL VCO divider or reference divider is changed, or changing from PLL disabled(BLPE, BLPI) to PLL enabled (PBE, PEE). If a crystal/resonator is being used as the reference, this specification assumes it is already running.6.3.2Oscillator electrical specificationsThis section provides the electrical characteristics of the module.DD2.See crystal or resonator manufacturer's recommendation3.C x,C y can be provided by using either the integrated capacitors or by using external components.4.When low power mode is selected, R F is integrated and must not be attached externally.5.The EXTAL and XTAL pins should only be connected to required oscillator components and must not be connected to anyother devices.2.When transitioning from FBE to FEI mode, restrict the frequency of the input clock so that, when it is divided by FRDIV, itremains within the limits of the DCO input clock frequency.3.Proper PC board layout procedures must be followed to achieve specifications.4.Crystal startup time is defined as the time between the oscillator being enabled and the OSCINIT bit in the MCG_S registerbeing set.6.3.332kHz Oscillator Electrical CharacteristicsThis section describes the module electrical characteristics.any other devices.6.4Memories and memory interfaces6.4.1Flash (FTFL) electrical specificationsThis section describes the electrical characteristics of the FTFL module.6.4.1.1Flash timing specifications — program and eraseThe following specifications represent the amount of time the internal charge pumps are active and do not include command overhead.2.Maximum times for erase parameters based on expectations at cycling end-of-life.3.For byte-writes to an erased FlexRAM location, the aligned word containing the byte must be erased.25°C use profile. Engineering Bulletin EB618 does not apply to this technology.2.Data retention is based on T javg = 55°C (temperature profile over the lifetime of the application).3.Cycling endurance represents number of program/erase cycles at -40°C ≤ T j ≤ 125°C.4.Write endurance represents the number of writes to each FlexRAM location at -40°C ≤Tj ≤ 125°C influenced by the cyclingendurance of the FlexNVM (same value as data flash) and the allocated EEPROM backup per subsystem. Minimum and typical values assume all byte-writes to FlexRAM.6.4.1.5Write endurance to FlexRAM for EEPROMWhen the FlexNVM partition code is not set to full data flash, the EEPROM data set size can be set to any of several non-zero values.The bytes not assigned to data flash via the FlexNVM partition code are used by the FTFL to obtain an effective endurance increase for the EEPROM data. The built-in EEPROM record management system raises the number of program/erase cycles that can be attained prior to device wear-out by cycling the EEPROM data through a larger EEPROM NVM storage space.While different partitions of the FlexNVM are available, the intention is that a single choice for the FlexNVM partition code and EEPROM data set size is used throughout the entire lifetime of a given application. The EEPROM endurance equation and graph shown below assume that only one configuration is ever used.Writes_subsystem =× Write_efficiency × n EEPROM – 2 × EEESPLIT × EEESIZEEEESPLIT × EEESIZEnvmcycdwhere•Writes_subsystem — minimum number of writes to each FlexRAM location for subsystem (each subsystem can have different endurance)•EEPROM — allocated FlexNVM for each EEPROM subsystem based on DEPART;entered with Program Partition command•EEESPLIT — FlexRAM split factor for subsystem; entered with the Program Partition command•EEESIZE — allocated FlexRAM based on DEPART; entered with Program Partition command•Write_efficiency —•0.25 for 8-bit writes to FlexRAM•0.50 for 16-bit or 32-bit writes to FlexRAM •n nvmcycd — data flash cycling enduranceFigure 9. EEPROM backup writes to FlexRAM 6.4.2EzPort Switching SpecificationsEZP_CKEZP_CSEZP_Q (output)EZP_D (input)Figure 10. EzPort Timing Diagram6.4.3Flexbus Switching SpecificationsAll processor bus timings are synchronous; input setup/hold and output delay are given in respect to the rising edge of a reference clock, FB_CLK. The FB_CLK frequency may be the same as the internal system bus frequency or an integer divider of that frequency. The following timing numbers indicate when data is latched or driven onto the external bus, relative to the Flexbus output clock (FB_CLK). All other timing relationships can be derived from these values.and FB_TS.2.Specification is valid for all FB_AD[31:0] and FB_TA.and FB_TS.2.Specification is valid for all FB_AD[31:0] and FB_TA.Figure 11. FlexBus read timing diagramFigure 12. FlexBus write timing diagram6.5Security and integrity modulesThere are no specifications necessary for the device's security and integrity modules.6.6Analog6.6.1ADC electrical specificationsThe 16-bit accuracy specifications listed in Table 27 and Table 28 are achievable on the differential pins ADCx_DP0, ADCx_DM0, ADCx_DP1, ADCx_DM1, ADCx_DP3, and ADCx_DM3.The ADCx_DP2 and ADCx_DM2 ADC inputs are connected to the PGA outputs and are not direct device pins. Accuracy specifications for these pins are defined in Table 29 and Table 30.All other ADC channels meet the 13-bit differential/12-bit single-ended accuracy specifications.DDA ADCK reference only and are not tested in production.2.DC potential difference.3.This resistance is external to MCU. The analog source resistance should be kept as low as possible in order to achieve thebest results. The results in this datasheet were derived from a system which has <8 Ω analog source resistance. The R AS /C AS time constant should be kept to <1ns.4.To use the maximum ADC conversion clock frequency, the ADHSC bit should be set and the ADLPC bit should be clear.5.For guidelines and examples of conversion rate calculation, download the ADC calculator tool: /files/soft_dev_tools/software/app_software/converters/ADC_CALCULATOR_CNV.zip?fpsp=1V ASSIMPLIFIEDINPUT PIN EQUIVALENTFigure 13. ADC input impedance equivalency diagramREFH DDA2.Typical values assume V DDA =3.0 V, Temp = 25°C, f ADCK = 2.0 MHz unless otherwise stated. Typical values are forreference only and are not tested in production.3.The ADC supply current depends on the ADC conversion clock speed, conversion rate and the ADLPC bit (low power).For lowest power operation the ADLPC bit should be set, the HSC bit should be clear with 1MHz ADC conversion clock speed.4. 1 LSB = (V REFH - V REFL)/2N5.ADC conversion clock <16MHz, Max hardware averaging (AVGE = %1, AVGS = %11)6.Input data is 100 Hz sine wave. ADC conversion clock <12MHz.7.Input data is 1 kHz sine wave. ADC conversion clock <12MHz.Figure 14. Typical ENOB vs. ADC_CLK for 16-bit differential modeFigure 15. Typical ENOB vs. ADC_CLK for 16-bit single-ended modeDDA ADCKreference only and are not tested in production.2.ADC must be configured to use the internal voltage reference (VREF_OUT)3.PGA reference is internally connected to the VREF_OUT pin. If the user wishes to drive VREF_OUT with a voltage otherthan the output of the VREF module, the VREF module must be disabled.4.For single ended configurations the input impedance of the driven input is R PGAD/25.The analog source resistance (R AS), external to MCU, should be kept as minimum as possible. Increased R AS causes dropin PGA gain without affecting other performances. This is not dependent on ADC clock frequency.6.The minimum sampling time is dependent on input signal frequency and ADC mode of operation. A minimum of 1.25µstime should be allowed for F in=4 kHz at 16-bit differential mode. Recommended ADC setting is: ADLSMP=1, ADLSTS=2 at8 MHz ADC clock.7.ADC clock = 18 MHz, ADLSMP = 1, ADLST = 00, ADHSC = 18.ADC clock = 12 MHz, ADLSMP = 1, ADLST = 01, ADHSC = 1DDA ADCK2.This current is a PGA module adder, in addition to and ADC conversion currents.3.Between IN+ and IN-. The PGA draws a DC current from the input terminals. The magnitude of the DC current is a strongfunction of input common mode voltage (V CM) and the PGA gain.4.Gain = 2PGAG5.After changing the PGA gain setting, a minimum of 2 ADC+PGA conversions should be ignored.6.Limit the input signal swing so that the PGA does not saturate during operation. Input signal swing is dependent on thePGA reference voltage and gain setting.6.6.2CMP and 6-bit DAC electrical specificationsDDparator initialization delay is defined as the time between software writes to change control inputs (Writes to DACEN,VRSEL, PSEL, MSEL, VOSEL) and the comparator output settling to a stable level.3. 1 LSB = V reference/64。

相关文档
最新文档