2015年中考数学专题复习第1讲:实数(含详细参考答案)

合集下载

第一单元 第一讲 实数+课件+2025年中考数学总复习人教版(山东)

第一单元 第一讲 实数+课件+2025年中考数学总复习人教版(山东)

【例2】(2024·北京中考)实数a,b在数轴上的对应点的位置如图所示,下列结论中
正确的是
(C)
A.b>-1
B.|b|>2
C.a+b>0
D.ab>0
【方法技巧】
借助数轴理解实数的性质
1.互为相反数的两个数所对应的点位于原点两侧,并且到原点的距离相等.
2.实数a的绝对值就是在数轴上这个数对应的点与原点的距离.
突破——光刻机,第一台28 nm工艺的国产光刻机即将交付.其中数据28 nm(即
0.000 000 028 m)用科学记数法可表示为_____________.
2.8×10-8
10
3.75×106
(5)3 749 000精确到万位:_____________.
11
知识要点
3.实数的运算
(1)数的乘方与开方
A.b+c>3
B.a-c<0
C.|a|>|c|
D.-2a<-2b
32
10.(多选题)(2024·潍坊中考)下列命题是真命题的有
( AC )
A.若a=b,则ac=bc
B.若a>b,则ac>bc
C.两个有理数的积仍为有理数
D.两个无理数的积仍为无理数
2(或3,答案不唯一)
11.(2024·滨州中考)写出一个比 3大且比 10小的整数_____________________.
运算名称
运算含义
相关结论
负数
负数的奇次幂是__________,负
数的乘方
相同因数
指数是正整数 求几个______________积的运算叫
做乘方
指数是0或负

2019年中考数学专题复习第一讲:实数(含详细参考答案)

2019年中考数学专题复习第一讲:实数(含详细参考答案)

2019年中考数学专题复习第一讲 实数(含详细参考答案)【基础知识回顾】 一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类:实数【名师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数,722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】 二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

2、近似数和有效数字:⎪ ⎪ ⎪⎪⎩⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 _ 零 正整数整数 有理数无限不循环小数 ⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数(a >0) (a <0)0 (a=0)一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

中考数学第1讲 实数(含答案)

中考数学第1讲 实数(含答案)

第1讲 实数【回顾与思考】(1)实数的有关概念{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数①实数: 和 统称实数, 和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

) ②有理数: 和 的统称.任何一个有绿树都可以写成分数pq的形式,其中p 和q 是整数且最大公约数是1。

③无理数:无限 叫无理数,常见的有三类:① ;② ;③ ;④对实数进行分类,应先 ,后 。

(2)数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可)。

和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

)(3)相反数: 实数的相反数是一对数(只有 的两个数,叫做互为相反数,零的相反数是 ). 从数轴上看,互为相反数的两个数所对应的点关于 对称.(4)绝对值①从数轴上看,一个数的绝对值就是 的距离。

⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a②一个正数的绝对值是 ,一个负数的绝对值是 ,零的绝对值是 。

(5)倒数: 实数a(a ≠0)的倒数是 (乘积为1的两个数,叫做互为倒数);零 倒数.(6)平方根:如果 ,即 ,那么这个数x 叫做做a 的平方根(也叫二次方根)。

一个正数有 平方根,且互为相反数;0的平方根是 ;负数 平方根。

(7)算术平方根:如果 ,即 ,那么这个正数x 叫做a 的算.术.平方根,即x a =;特别规定0的算术平方根是 。

即00=。

(8)立方根:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),一个正数的立方根是 ;0的立方根是 ;负数的立方根是 。

中考数学专题:实数与代数式

中考数学专题:实数与代数式

专题一 数与式中考要求:实数:借助数轴理解相反数、倒数、绝对值的意义及性质;掌握实数的分类、大小比较及混合运算;会用科学记数法、有效数字、精确度确定一个数的近似值;能用有理数估计一个无理数的大致范围.代数式:了解整式、分式、二次根式、最简二次根式的概念及意义; 会用提公因式法、公式法对整式进行因式分解; 理解平方根、算术平方根、立方根的意义及其性质; 根据整式、分式、二次根式的运算法则进行化简、求值.考查方式:本专题内容在中考中涉及数轴、相反数、绝对值等概念,多以填空题、选择题的形式出现. 科学记数法、近似数和有效数字往往与生产生活及科技领域中的实际问题相联系,具有较强的应用性,是中考的热点. 关于代数式的概念与运算,往往是单独命题,试题以填空题、选择题及计算题的形式出现,试题难度为中、低档. 试题设计有的带有开放探索性,覆盖面广,常常以大容量、小综合的形式考查灵活运用知识的能力.备考策略:1. 夯实基础,理清考点.2. 对课本中的典型和重点题目做变式、延伸.3. 注意一些跨学科的常识,加强学科整合.4. 关注中考的新题型.5. 关注课程标准中新增的目标.6. 探究性试题的复习步骤:(1)纯数字的规律探索.(2)结合平面图形探索规律.(3)结合空间图形探索规律,(4)探索规律方法的总结.第1课时 实数的概念课时核心问题:数系的扩张及实数相关概念的理解应用. 聚焦考点☆温习理解一、实数1. 有理数: ,它包括 、 .2. 无理数: .3. 实数及分类:注意:在理解无理数时,要注意“无限不循环”,归纳起来有四类:(1)开方开不尽的数,如(2)有特定意义的数,如圆周率π,或化简后含有π 的数,如π23+等; (3)有特定结构的数,如0.1010010001…等;(4)某些三角函数,如sin60o 等. 二、绝对值一个数的绝对值指的是表示.几何意义:一般地,数轴上表示叫做数a 的绝对值,记作|a |.代数意义:(1)正数的绝对值是 ;(2)负数的绝对值是 ;(3)零的绝对值是 .也可以写成:(0)||0(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩.说明:(1)|a |≥0,即|a |是一个非负数;(2)|a |概念中蕴含分类讨论思想;(3)“| |”有括号的作用.三、相反数叫做互为相反数. 零的相反数是零.从数轴上看, 互为相反数的两个数所对应的点关于原点对称. 若a 与b 互为相反数,则a +b =0, 反之也成立.四、倒数如果a 与b 互为倒数,则有ab =1,反之亦成立. 倒数等于本身的数是1和1-. 零没有倒数.五、平方根如果一个数的平方等于a(a≥0),那么这个数就叫做a的平方根(或二次方根). 一个正数有两个平方根,它们互为相反数;零的平方根是零;负数没有平方根. 正数a的平方根记作“”.正数a的正的平方根叫做a的算术平方根,记作“”.正数和零的算术平方根都只有一个,零的算术平方根是零.1.(0) ||(0)a aaa a⎧==⎨-<⎩≥.2.与2的联系:3.0)<0)aa>=⎩.六、立方根如果一个数的立方等于a, 那么这个数就叫做a的立方根(或a的三次方根). 一个正数有一个正的立方根;一个负数有一个负的立方根;零的立方根是零.注意:(1)=,说明三次根号内的负号可以移到根号外面;(2)=3.典例解析考点一、实数的分类【例1】下列实数是无理数的是().B. 1C. 0D.1-听课记录:【举一反三】1.下列四个实数中,是无理数的是().A. 0B. 3-D.3112. 下列选项中,属于无理数的是().A. 2B. πC. 32D. 2-3. 下列各数:227,π,cos60︒,0,,其中无理数的个数是().A. 1B. 2C. 3D. 4考点二、绝对值【例2】|2|-等于().A. 2B. 2-C.12D.12-听课记录:【举一反三】2的绝对值是().A. ±2B. 2C. 12D. 2-考点三、相反数【例3】5的相反数是().A. 5B. 5-C. 15D.15-听课记录:【举一反三】1. 2014的相反数是().A. 2014B. 2014-C.12014D.12014-2.15-的相反数是().A. 15B.15-C. 5D. 5-考点四、倒数【例4】12-的倒数是().A. B.C. D. 听课记录:【举一反三】1. 12的倒数是().A. 2B. 2-C. 12D. 12- 2. 14-的倒数是( ). A. -4B. 4C. 14D. 14- 考点五、平方根【例5】得( ).A. 100B. 10C.D. 10± 听课记录:【举一反三】1. 一个数的算术平方根是2,则这个数是 .2. 的平方根是 .3. 若2y =,则()y x y += .4. 若实数x , y 满足|4|0x -=,则以x , y 的值为等腰三角形的周长为 .5. 若1a <1-= .6. 2210b b ++=,则221||a b a +-= .7. 设1a =,a 在两个相邻整数之间,则这两个整数是 .第2课时 实数的计算课时核心问题:实数的灵活运算.聚焦考点☆温习理解一、实数大小的比较1. 数轴:规定了、、的直线叫做数轴. (画数轴时要注意上述三要素缺一不可)解题时要真正掌握数形结合思想,理解实数与数轴上的点是一一对应的,并且能灵活运用.2. 实数大小比较的几种常见方法.(1)数轴比较:数轴上的点所表示的数在右边的总比左边的大;(2)求差比较:设a, b为实数,有a-b>0⇔a>b;a-b<0⇔a<b;a-b=0⇔a=b.(3)求商比较:设a, b为两正实数,有a>1⇔a>b;ba<1⇔a<b;ba=1⇔a=b.b(4)绝对值比较法:设a, b为两负实数,则a a b>⇔<.b(5)平方比较法:设a,b为两负实数,则22a b a b >⇔<.二、科学计数法和近似数1. 有效数字:一个近似数四舍五入到哪一位,就说它精确到哪一位,这时,从左边第一个不是零的数字起到右边精确的数位止的所有数字,都叫做这个数的有效数字.2. 科学计数法:把一个数写成10n a ±⨯的形式,其中110a <≤,n 是整数,这种计数法叫做科学计数法.三、实数的运算1. 加法交换律:a b b a +=+.2. 加法结合律:()()a b c a b c ++=++.3. 乘法交换律:ab ba =.4. 乘法结合律:()()ab c a bc =.5. 乘法对加法的分配律:()a b c ab ac +=+.6. 实数的运算顺序:先算乘(开)方,再算乘除,最后算加减,如果有括号,就先算括号里面的. 典例解析考点一、实数的大小比较【例1】下列各数中,最大的数是( ).A. 0B. 2C.2-D.12- 听课记录:【举一反三】1. 下列各数中,最小的数是().A. 0B. 1 3C.13- D.3-2. 在数1,0,1,2--中,最小的数是().A. 1B. 0C. 1-D. 2-考点二、科学计数法与近似值【例2】“着力扩大投资,突破重点项目建设”是遵义经济社会发展的主要任务之一.据统计,遵义市2014年全社会固定资产投资达1762亿元,“1762亿”这个数用科学计数法表示为().A. 1762×108B. 1.762×1010C. 1.762×1011D. 1.762×1012听课记录:【举一反三】1. 据统计,2015年河南省旅游业总收入达到3875.5亿元. 若将“3875.5亿”用科学计数法表示为3.8755×10n,则n等于().A. 10B. 11C. 12D. 132. 将6.18×10-3化为小数是( ).A. 0.000618B. 0.00618C. 0.0618D. 0.6183. 20140000用科学计数法表示(保留3位有效数字)为 .考点三、实数的运算【例3】计算:201(π2014)sin 6023-⎛⎫+-+︒ ⎪⎝⎭.听课记录:【举一反三】1. 计算:2(2)(3)2-+-⨯.2. 2014(1)2sin 45--︒+-3. 计算:1011)23-⎛⎫-+-- ⎪⎝⎭.第3课时整 式 课时核心问题:整式的相关概念及运算.聚焦考点☆温习理解一、单项式1. 代数式.用运算符号把数或表示数的字母连接而成的式子叫做代数式. 单独的一个数或一个字母也是代数式.2. 单项式.只含有数字与字母的积的代数式叫做单项式.注意:单项式是由系数、字母、字母的指数构成的,其中系数不能用带分数表示. 例如,2143a b -就是错误的,应写成2133a b -. 一个单项式中,所有字母的指数的和叫做这个单项式的次数,如325a b c -是6次单项式.二、多项式1. 多项式.几个单项式的和叫做多项式,其中每个单项式叫做这个多项式的项,多项式中不含字母的项叫做常数项,多项式中次数最高项的次数为多项式的次数.统称为整式.用数值代替代数式中的字母,按照代数式指出的运算计算出的代数式的结果,叫做求代数式的值.注意:(1)求代数式的值,一般先化简再代入.(2)求代数式的值,有时求不出具体字母的值,此时需要利用技巧“整体”代入求值.2. 同类项.所含 ,并且 的项叫做同类项. 几个常数项也是同类项.3. 去括号法则:(1)括号前是“+”,把括号和它前面的“+”号一起去掉,括号里各项都.(2)括号前是“-”,把括号和它前面的“-”号一起去掉,括号里各项都.三、整式的运算法则整式的加减法:(1)去括号;(2)合并同类项.1. 幂的运算法则:(1)同底数幂相乘:m n m n⋅=(m, n都是整数,a≠0).a a a+(2)幂的乘方:()m n mn=(m, n都是整数,a≠0).a a(3)积的乘方:=⋅(n是整数,a≠0, b≠0).()n n nab a b(4)同底数幂相除:m n m n÷=(m, n都是整数,a≠0).a a a-2. 整式乘法.(1)单项式与单项式相乘,把作为积的因式,只在一个单项式里含有的字母,连同它的指数一起作为积的一个因式. (2)单项式乘多项式:m(a+b)=ma+mb.(3)多项式乘多项式:(a+b)(c+d)=ac+ad+bc+bd.3. 乘法公式.(1)平方差公式:(a+b)(a-b)=a2-b2.(2)完全平方公式:(a±b)2=a2±2ab+b2.4. 整式的除法:(1)单项式除以单项式:法则:(2)多项式除以单项式:法则:注意:(1)单项式乘单项式的结果仍然是单项式.(2)单项式与多项式相乘,结果是一个多项式,其项数与因式中多项式的项数相同.(3)计算时要注意符号问题,多项式的每一项都包括它前面的符号,同时还要注意单项式的符号.(4)多项式与多项式相乘的展开式中,有同类项的要合并同类项.(5)公式中的字母可以表示数,也可以表示单项式或多项式.(6)011(0),(0,)p pa a a a p a -=≠=≠为正数. (7)多项式除以单项式,先把这个多项式的每一项除以这个单项式,再把所得的商相加. 单项式除以多项式是不能这么计算的. 典例解析考点一、整式的加减运算【例1】下列计算正确的是( ).A. 2x -x =xB. 326a a a ⋅=C. (a -b )2=a 2-b 2D. (a +b )(a -b )=a 2+b 2听课记录:【举一反三】已知x 2-2=y ,则x (x -3y )+y (3x -1)-2的值是(). A.2- B. 0C. 2D. 4考点二、同类项的概念及合并同类项【例2】下列各式中,与2a 是同类项的是( ).A. 3aB. 2abC. 23a -D. a 2b听课记录:【举一反三】下列运算正确的是( ).A. 2323a a a +=B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a =考点三、幂的运算【例3】下列运算正确的是( ).A. 33a a a ⋅=B. 33()ab a b =C. 326()a a =D. 842a a a ÷=听课记录:【举一反三】1. 计算:2()ab 的结果是( ).A. 2abB. a 2bC. a 2b 2D. ab 22. 计算:63m m ⋅的结果是( ).A. m 18B. m 9C. m 3D. m 2考点四、整式的乘除法.【例4】计算:23(2)()a a ⋅-=.A. 312a -B. 36a -C. 12a 3D. 6a 2【例5】计算:2x (3x 2+1),正确的结果是(). A. 5x 3+2x B. 6x 3+1C. 6x 3+2xD. 6x 2+2x听课记录:【举一反三】1. 下列计算正确的是( ).A. 4416x x x ⋅=B. 325()a a =C. 236()ab ab =D. 23a a a +=2. 下列运算正确的是( ). A. 2323a a a += B. 2()a a a -÷=C. 326()a a a -⋅=-D. 236(2)6a a = 考点五、整式的混合运算及求值【例6】先化简,再求值:2(3)()()a a b a b a a b -++--,其中11,2a b ==-. 听课记录:【举一反三】1. 下列计算中,正确的是( ).A. 235a b ab +=B. 326(3)6a a =C. 623a a a ÷=D. 32a a a -+=-2. 下列运算正确的是( ). A. (m +n )2=m 2+n 2B. (x 3)2=x 5C. 5x -2x =3D. (a +b )(a -b )=a 2-b 23. 下列计算正确的是( ).A. (2a 2)4=8a 6B. a 3+a =a 4C. a 2÷a =aD. (a -b )2=a 2-b 24. 化简:2()()()2a b a b a b ab ++-+-.5. 化简:2(1)2(1)a a ++-.6. 已知x (x +3)=1,求代数式2x 2+6x -5的值为 .7. 先化简,再求值:(x +1)(2x -1)-(x -3)2,其中2x =-.。

中考数学专题复习第1讲实数(含详细参考答案)

中考数学专题复习第1讲实数(含详细参考答案)

中考数学专题复习实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类: 实数【提醒:1、正确理解实数的分类。

如:2π是 数,不是 数,722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

2、近似数和有效数字: ⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 _ 零 正整数 整数 有理数无限不循环小数 ⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数 (a >0) (a <0)0 (a=0)一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

专题01 实数(第01期)-2015年中考数学试题分项版解析汇编(其他省区专版)(解析版)

专题01 实数(第01期)-2015年中考数学试题分项版解析汇编(其他省区专版)(解析版)

专题1 实数问题1.(2015甘肃省武威市)64的立方根是()A.4B.±4C.8D.±8考点:立方根.2.(2015甘肃省武威市)中国航空母舰“辽宁号”的满载排水量为67500吨,将数67500用科学记数法可表示为()A.0.675×105B.6.75×104C.67.5×103D.675×102【答案】B【解析】试题分析:67500=6.75×104 ,故选B.考点:科学记数法.3.(2015贵州省安顺市)|-2015|等于()1A.2015 B.-2015 C.±2015 D.2015【答案】A【解析】试题分析:由于一个负数的绝对值是它的相反数.所以:|-2015|=2015,故选:A考点:绝对值4.(2015内蒙古呼和浩特)以下四个选项表示某天四个城市的平均气温,其中平均气温最低的是( )A.-3℃B.15℃C.-10℃D.-1℃【答案】C【解析】试题分析:有理数的大小比较法则:0大于负数;0小于正数;正数大于负数;两个正数比较大小,绝对值大的数大;两个负数比较大小,绝对值大的数反而小.考点:有理数的大小比较.5.(2015黔西南州)下列各数是无理数的是( )A .4B .31-C .πD .1-考点:无理数的判定.6、(2015贵州省安顺市)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A .5×109千克B .50×109千克C .5×1010千克D .0.5×1011千克考点:科学记数法7.(2015贵州六盘水)下列说法正确的是( )A .22-=-B .0的倒数是0C .4的平方根是2D .-3的相反数是3【答案】D.【解析】试题分析:选项A 根据绝对值的代数意义可得|﹣2|=2,错误;选项B 根据倒数的定义可得0没有倒数,错误;选项C 根据平方根的定义可4的平方根为±2,错误;选项D 根据相反数的定义可得﹣3的相反数为3,正确,故答案选D.考点:平方根;相反数;绝对值;倒数.8.如图3,表示7的点在数轴上表示时,所在哪两个字母之间( )A .C 与DB .A 与BC .A 与CD .B 与C9.(2015贵州六盘水)下列运算结果正确的是( )A .7221)83(87=-⨯-B .1042.768.2-=--C .66.411.777.3-=-D .103102102101-<-10.(2015贵州六盘水)2014年10月24日,“亚洲基础设施投资银行”在北京成立,我国出资500亿美元...,这个数用科学记数法表示为 美元..【答案】5×1010.【解析】试题分析:科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.50000000000用科学记数法表示时,其中a=5,n 为所有的整数数位减1,即n=10.即500亿美元=5×1010美元. 考点:科学记数法.11、(2015贵州省安顺市)91的平方根是 .【答案】13±【解析】 试题分析:∵(13±)2=91,∴91的平方根是13±. 故答案为:13± 考点:平方根 12、(2015贵州省安顺市)计算:2013)3(-·=-2011)31( .13.(2015黔西南州)42500000用科学记数法表示为 .【答案】4.25×107【解析】试题分析:科学计数法是指:a ×10n ,且1≤a <10,n 为原数的整数位数减一.考点:科学计数法.14.(2015内蒙古 呼 和 浩 特 )某企业去年为国家缴纳税金达到4100000元,用科学记数法表示为__________元【答案】4.1×106【解析】试题分析:科学计数法是指a ×10n ,且1≤a <10,n 为原数的整数位数减一.考点:科学计数法15.(2015甘肃省武威市)(4分)计算:(π-5)0+4+(-1)2015-3tan60°. 【答案】-1【解析】试题分析:先计算0次幂,平方根,乘方,三角函数,然后按顺序进行即可.试题解析:原式=1+2-1-3×3 =2-3=-1.考点:实数的运算.16.(1) (5分)(2015内蒙古 呼 和 浩 特 )计算:63--11()3-+24 【解析】试题分析:首先根据绝对值、二次根式、负指数次幂的计算法则将各式进行计算,然后再进行实数的加减法计算;试题解析:(1)、原式=3-6-3+26=617.(2015贵州六盘水)(本小题8分)计算:201)2()3()21(30tan 323---+︒+--π.18.(2015黔西南州)(1)计算:8)21(45tan )20143(10+-︒-+--【解析】试题分析:首先根据零次幂、负指数次幂、三角函数、二次根式和绝对值的计算法则求出各式的值,然后进行实数的加减法计算;.试题解析:(1)、解:原式=1+1-2+22=2219.(1)(2015甘肃兰州)计算:21)2015(60tan 3201-+-+︒--π; 试题分析:(1)针对负整数指数幂,特殊角的三角函数值,零指数幂,绝对值、二次根式计算5个考点分别进行计算,然后根据实数的运算法则求得计算结果.试题解析:(1)原式=2113321++⨯-=-1. 【答案】(1)-1;20、(2015贵州省安顺市)(本题8分) 计算: 45sin 221)14.3(2102--+--⎪⎭⎫ ⎝⎛--π。

中考数学专题复习《实数》检测题真题(含答案)

中考数学专题复习《实数》检测题真题(含答案)

中考专题复习实 数1、有理数:像3、53-、119……这样的 或 。

2、数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注意上述规定的 三要素缺一不可)。

3、相反数:只有 不同的两个数,如a 的相反数是 ,0的相反数仍是 。

若a 与b 互为相反数,则 .4、绝对值:正数的绝对值是它 ,负数的绝对值是它的 ,0的绝对值是0.任何实数的绝对值都是 ,a ≧0.互为相反数的两个数的绝对值相等,a =a -。

5、倒数: 没有倒数。

正数的倒数是正数,负数的倒数是负数。

若a 与b 互为倒数,则 .6、有理数的四则混合运算:(1)先乘方,再乘除,最后加减; (2)同级运算,从左到右进行;(4)如有括号,先做括号内的运算,按 ,中括号, 依次进行。

7、乘方:求n 个 的积的运算,叫做乘方,乘方的结果叫做 。

在a n中,a 叫做 ,n 叫做 。

8、科学记数法:把一个数写做 的形式,其中101<≤a ,n 是整数,这种记数法叫做科学记数法。

9、平方根:如果一个数的平方等a ,那么这个数叫做a 的 或 ,0的平方根是0,负数 平方根。

a 的平方根记为a ±(a ≧0),读作“正负根号a ”,a 叫做被开方数。

10、算术平方根:如果一个正数的平方等于a ,那么这个正数叫做a 的 ,0的算术平方根为0。

a 的算术平方根记为a (a ≧0),读作“根号a ”,a 叫做被开方数。

11、立方根:如果一个数的立方等于a ,那么这个数叫做a 的 或 ,0的立方 根是0,正数的立方根是正数,负数的立方根是负数。

3a -=3a ,a 的立方根记为3a ,读作“三次根号a ”,a 叫做 ,3是 。

知识回顾12、无理数:像2、33、……这样的 。

13、实数: 和 统称为实数。

实数与数轴上的点 。

1.(2017湖南长沙,1)下列实数中,为有理数的是( ) A .B .C .D .12.(2017广东广州,1)如图1,数轴上两点表示的数互为相反数,则点表示的( )A . -6B .6C . 0D .无法确定3.(2017湖南长沙,3)据国家旅游局统计,2017年端午小长假全国各大景点共接待游客约为82600000人次,数据82600000用科学记数法表示为( ) A .B .C .D .4.(2017山东临沂,1)的相反数是( ) A .B .C .2017D .5.(2017浙江宁波,4)实数的立方根是 .6.(2017重庆A 卷,13)“渝新欧”国际铁路联运大通道全长11000千米,成为服务“一带一路”的大动脉之一,将数11000用科学记数法表示为 . 7.(2017重庆A 卷,14)计算:|﹣3|+(﹣1)2= . 8.(2017江苏徐州,9)的算术平方根是 . 9.(2017浙江嘉兴,17(1))计算:.10.(2017浙江台州,17)计算:.基础检测考点精讲1.有理数概念【例题1】(2017河南,1)下列各数中比1大的数是()A.2 B.0 C.-1 D.-3【答案】A,【解析】根据正数大于0,0大于负数,两个负数,绝对值大的反而小可得题目选项中的各数中比1大的数是2,故选A.【考点】有理数的大小比较.【变式】(2017重庆A卷,14)计算:|﹣3|+(﹣1)2= .【答案】4.【解析】|﹣3|+(﹣1)2=4【考点】有理数的混合运算.【例题2】(2017天津,1)计算的结果等于()A.2 B. C.8 D.【答案】A.【解析】根据有理数的加法法则即可得原式-2,故选A.【变式】(2017山东滨州,1)计算-(-1)+|-1|,结果为()A.-2 B.2 C.0 D.-1【答案】B.【解析】原式=1+1=2,故选B.【例题3】(2017山东日照,3)铁路部门消息:2017年“端午节”小长假期间,全国铁路客流量达到4640万人次.4640万用科学记数法表示为()A.4.64×105B.4.64×106C.4.64×107D.4.64×108【答案】C.【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值是易错点,由于4640万有8位,所以可以确定n=8﹣1=7.4640万=4.64×107.故选:C.【考点】科学记数法—表示较大的数.【变式】(2017辽宁沈阳,3)“弘扬雷锋精神,共建幸福沈阳”幸福沈阳需要830万沈阳人共同缔造。

2015年河北中考数学总复习课件(第1课时_实数的有关概念与大小比较)

2015年河北中考数学总复习课件(第1课时_实数的有关概念与大小比较)

冀考解读
课前热身
考点聚焦
冀考探究
第1课时┃ 实数的有关概念与大小比较
考点2 实数的有关概念 原点 、 ________ 正方向 和 (1) 数 轴 : 数 轴 的 三 要 素 包 括 ________ 实数 一一对应. __________ 单位长度 ;数轴上的点与________ (2)相反数:a 的相反数是________ -a ;a,b 互为相反数⇔ a+b=________ . 0 1 (3)倒数:a(a≠0)的倒数为________ ;a,b 互为倒数⇔ a ab=________(________ 没有倒数,故 ab≠________) . 1 0 0
3. 在实数-2, 0, 2, 3 中, 最小的实数是 ( A ) A.-2 B.0 C.2 D.3 4. 截至 2013 年 3 月底, 某市人口总数已达到 4230000 人. 将 4230000 用科学记数法表示为 ( B ) A.0.423×107 B.4.23×106 C.42.3×105 D.423×104
实数的大小比较 选择、填空 有理数的四则运算 选择、填空、解答 乘方与开方运算 选择、填空 实数中非负数的性质 选择、填空、解答
冀考解读 课前热身 考点聚焦
冀考探究
第1课时┃ 实数的有关概念与大小比较
课 前 热 身
1.下列各数中,为负数的是 A.0 B.-2 C.1 1 D. 2 ( B )
解 析
冀考解读
课前热身
考点聚焦
冀考探究
第1课时┃ 实数的有关概念与大小比较
考点4 平方根与立方根
类型 表示方法 a>0 a=0 a<0
a 的平方根 ± a
a 的算术平 方根 a
a 的立方根 3 a

中考数学总复习 基础讲练 第1讲 实数(含答案点拨) 新人教版

中考数学总复习 基础讲练 第1讲 实数(含答案点拨) 新人教版

第1讲实数考纲要求命题趋势1.理解有理数、无理数和实数的概念,会用数轴上的点表示有理数.2.借助数轴理解相反数和绝对值的意义,会求一个数的相反数、倒数与绝对值.3.理解平方根、算术平方根、立方根的概念,会求一个数的算术平方根、平方根、立方根.4.理解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数,会用科学记数法表示一个数.5.熟练掌握实数的运算,会用各种方法比较两个实数的大小.实数是中学数学重要的基础知识,中考中多以选择题、填空题和简单的计算题的形式出现,主要考查基本概念、基本技能以及基本的数学思想方法.另外,命题者也会利用分析归纳、总结规律等题型考查考生发现问题、解决问题的能力.知识梳理一、实数的分类实数⎩⎪⎪⎨⎪⎪⎧⎭⎪⎬⎪⎫有理数⎩⎪⎨⎪⎧整数⎩⎪⎨⎪⎧零负整数分数⎩⎪⎨⎪⎧正分数负分数有限小数或无限循环小数无理数⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫负无理数无限不循环小数二、实数的有关概念及性质1.数轴(1)规定了______、________、____________的直线叫做数轴;(2)实数与数轴上的点是一一对应的.2.相反数(1)实数a的相反数是____,零的相反数是零;(2)a与b互为相反数⇔a+b=____.3.倒数(1)实数a(a≠0)的倒数是____;(2)a与b互为倒数⇔______.4.绝对值(1)数轴上表示数a的点与原点的______,叫做数a的绝对值,记作|a|.(2)|a|=⎩⎪⎨⎪⎧a>0,a=0,a<0.5.平方根、算术平方根、立方根 (1)平方根①定义:如果一个数x 的平方等于a ,即x 2=a ,那么这个数x 叫做a 的平方根(也叫二次方根),数a 的平方根记作______.②一个正数有两个平方根,它们互为________;0的平方根是0;负数没有平方根. (2)算术平方根①如果一个正数x 的平方等于a ,即x 2=a ,那么这个正数x 叫做a 的算术平方根,a 的算术平方根记作____.零的算术平方根是零,即0=0.②算术平方根都是非负数,即a ≥0(a ≥0).③(a )2=a (a ≥0),a 2=|a |=⎩⎪⎨⎪⎧a a ≥0,-a a <0.(3)立方根①定义:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),数a 的立方根记作______.②任何数都有唯一一个立方根,一个数的立方根的符号与这个数的符号相同. 6.科学记数法、近似数、有效数字 (1)科学记数法把一个数N 表示成______(1≤a <10,n 是整数)的形式叫做科学记数法.当N ≥1时,n 等于原数N 的整数位数减1;当N <1时,n 是一个负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数位上的零).(2)近似数与有效数字一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位,这时从______第1个不为0的数字起,到末位数字止,所有的数字都叫做这个近似数的有效数字.三、非负数的性质 1.常见的三种非负数|a |≥0,a 2≥0,a ≥0(a ≥0). 2.非负数的性质(1)非负数的最小值是零;(2)任意几个非负数的和仍为非负数;(3)几个非负数的和为0,则每个非负数都等于0. 四、实数的运算 1.运算律(1)加法交换律:a +b =______.(2)加法结合律:(a +b )+c =________. (3)乘法交换律:ab =____.(4)乘法结合律:(ab )c =______.(5)乘法分配律:a (b +c )=__________. 2.运算顺序(1)先算乘方,再算乘除,最后算加减;(2)同级运算,按照从____至____的顺序进行;(3)如果有括号,就先算小括号里的,再算中括号里的,最后算大括号里的.3.零指数幂和负整数指数幂(1)零指数幂的意义为:a 0=____(a ≠0);(2)负整数指数幂的意义为:a -p=______(a ≠0,p 为正整数). 五、实数的大小比较 1.实数的大小关系在数轴上表示两个数的点,右边的点表示的数总比左边的点表示的数____.正数大于零,负数小于零,正数大于一切负数;两个负数比较,绝对值大的反而小. 2.作差比较法(1)a -b >0⇔a >b ;(2)a -b =0⇔a =b ;(3)a -b <0⇔a <b . 3.倒数比较法若1a >1b,a >0,b >0,则a <b .4.平方法因为由a >b >0,可得a >b ,所以我们可以把a 与b 的大小问题转化成比较a 和b 的大小问题.(提示:本书[知识梳理]栏目答案见第122~123页) 自主测试1.-2的倒数是( )A .-12B ..12C .-2D .22.-2的绝对值等于( )A .2B .-2C .12D .-123.下列运算正确的是( )A .-|-3|=3B .⎝ ⎛⎭⎪⎫13-1=-3C .9=±3D .3-27=-34.2012年世界水日主题是“水与粮食安全”.若每人每天浪费水0.32 L ,那么100万人每天浪费的水,用科学记数法表示为( )A .3.2×107 LB .3.2×106LC .3.2×105 LD .3.2×104L5.已知实数m ,n 在数轴上的对应点的位置如图所示,则下列判断正确的是( )A .m >0B .n <0C .mn <0D .m -n >06.计算:|-5|+16-32.考点一、实数的分类【例1】四个数-5,-0.1,12,3中为无理数的是( )A .-5B .-0.1C .12D . 3解析:因为-5是整数属于有理数,-0.1是有限小数属于有理数,12是分数属于有理数,3开不尽方是无理数,故选D. 答案:D方法总结 一个数是不是无理数,应先计算或者化简再判断.有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.触类旁通1 在实数5,37,2,4中,无理数是( )A .5B .37C . 2D . 4考点二、相反数、倒数、绝对值与数轴【例2】(1)-15的倒数是__________;(2)(-3)2的相反数是( )A .6B .-6C .9D .-9(3)实数a ,b 在数轴上的位置如图所示,化简|a +b |+b -a2=__________.解析:(1)-15的倒数为1-15=-5;(2)因为(-3)2=9,9的相反数是-9,故选D ;(3)本题考查了绝对值,平方根及数轴的有关知识. 由图可知,a <0,b >0,|a |>|b |,所以a +b <0,b -a >0,原式=-a -b +b -a =-2a . 答案:(1)-5 (2)D (3)-2a方法总结 1.求一个数的相反数,直接在这个数的前面加上负号,有时需要化简得出. 2.解有关绝对值和数轴的问题时常用到字母表示数的思想、分类讨论思想和数形结合思想.3.相反数是它本身的数只有0;绝对值是它本身的数是0和正数(即非负数);倒数是它本身的数是±1.触类旁通2 下列各数中,相反数等于5的数是( ) A .-5 B .5C .-15D .15考点三、平方根、算术平方根与立方根【例3】(1)(-2)2的算术平方根是( ) A .2 B .±2 C .-2 D . 2 (2)实数27的立方根是__________.解析:(1)(-2)2的算术平方根,即-22=|-2|=2; (2)27的立方根是327=3. 答案:(1)A (2)3方法总结 1.对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)算术平方根a 具有双重非负性:①被开方数a 是非负数,即a ≥0;②算术平方根a 本身是非负数,即a ≥0. 2.(3a )3=a ,3a 3=a .触类旁通3 4的平方根是( ) A .2 B .±2 C .16 D .±16考点四、科学记数法、近似数、有效数字 【例4】2012年安徽省有682 000名初中毕业生参加中考,按四舍五入保留两位有效数字,682 000用科学记数法表示为( )A .0.69×106B .6.82×105C .0.68×106D .6.8×105解析:用科学记数法表示的数必须满足a ×10n(1≤|a |<10,n 为整数)的形式;求近似数时注意看清题目要求和单位的换算;查有效数字时,要从左边第1个非零数查起,到精确到的数为止.682 000=6.82×105≈6.8×105.答案:D方法总结 1.用科学记数法表示数,当原数的绝对值大于或等于1时,n 等于原数的整数位数减1;当原数的绝对值小于1时,n 是负整数,它的绝对值等于原数中左起第一位非零数字前零的个数.2.取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑.3.用科学记数法表示的近似数,乘号前面的数(即a )的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.触类旁通4 某种细胞的直径是5×10-4毫米,这个数是( ) A .0.05毫米 B .0.005毫米 C .0.000 5毫米 D .0.000 05毫米 考点五、非负数性质的应用【例5】若实数x ,y 满足x -2+(3-y )2=0,则代数式xy -x 2的值为__________.解析:因为x -2≥0,(3-y )2≥0,而x -2+(3-y )2=0,所以x -2=0,3-y =0,解得x =2,y =3,则xy -x 2=2×3-22=2.答案:2方法总结 常见的非负数的形式有三种:|a |,a (a ≥0),a 2,若它们的和为零,则每一个式子都为0.触类旁通5 若|m -3|+(n +2)2=0,则m +2n 的值为( ) A .-4 B .-1 C .0 D .4 考点六、实数的运算【例6】计算:(1)2-1+3cos 30°+|-5|-(π-2 011)0.(2)(-1)2 011-⎝ ⎛⎭⎪⎫12-3+⎝⎛⎭⎪⎫cos 68°+5π0+|33-8sin 60°|.(1)分析:2-1=12,cos 30°=32,|-5|=5,(π-2 011)0=1.解:原式=12+3×32+5-1=12+32+5-1=6.(2)分析:⎝ ⎛⎭⎪⎫12-3=(2-1)-3=23=8,⎝⎛⎭⎪⎫cos 68°+5π0=1,sin 60°=32.解:原式=-1-8+1+⎪⎪⎪⎪⎪⎪33-8×32=-8+ 3. 点拨:(1)根据负整数指数幂的意义可把负整数指数幂转化为正整数指数幂运算,即a -p=1ap (a ≠0).(2)a 0=1(a ≠0).方法总结 提高实数的运算能力,首先要认真审题,理解有关概念;其次要正确、灵活地应用零指数、负整数指数的定义、特殊角的三角函数、绝对值、相反数、倒数等相关知识及实数的六种运算法则,根据运算律及顺序,选择合理、简捷的解题途径.要特别注意把好符号关.考点七、实数的大小比较【例7】比较2.5,-3,7的大小,正确的是( ) A .-3<2.5<7 B .2.5<-3<7 C .-3<7<2.5 D .7<2.5<-3解析:由负数小于正数可得-3最小,故只要比较2.5和7的大小即可,由2.52<(7)2,得2.5<7,所以-3<2.5<7. 答案:A方法总结 实数的各种比较方法,要明确应用条件及适用范围.如:“差值比较法”用于比较任意两数的大小,而“商值比较法”一般适用于比较符号相同的两个数的大小,还有“平方法”、“倒数法”等.要依据数值特点确定合适的方法.触类旁通6在-6,0,3,8这四个数中,最小的数是( ) A .-6 B .0 C .3 D .81.(2012湖北黄石)-13的倒数是( )A .13B .3C .-3D .-132.(2012江苏南京)下列四个数中,负数是( )A .|-2|B .(-2)2C .- 2D .-223.(2012北京)首届中国(北京)国际服务贸易交易会(京交会)于2012年6月1日闭幕,本届京交会期间签订的项目成交总金额达60 110 000 000美元.将60 110 000 000用科学记数法表示应为( )A .6.011×109B .60.11×109C .6.011×1010D .0.6011×10114.(2012四川南充)计算2-(-3)的结果是( ) A .5 B .1 C .-1 D .-55.(2012四川乐山)计算:⎪⎪⎪⎪⎪⎪-12=__________. 6.(2012重庆)计算:4+(π-2)0-|-5|+(-1)2 012+⎝ ⎛⎭⎪⎫13-2.1.下列各数中,最小的数是( )A .0B .1C .-1D .- 2 2.若|a |=3,则a 的值是( )A .-3B .3C .13D .±33.下列计算正确的是( )A .(-8)-8=0B .⎝ ⎛⎭⎪⎫-12×(-2)=1 C .-(-1)0=1 D .|-2|=-24.如图,数轴上A ,B 两点对应的实数分别为1和3,若点A 关于点B 的对称点为C ,则点C 所表示的实数是( )A .23-1B .1+ 3C .2+ 3D .23+15.(1)实数12的倒数是____.(2)写出一个比-4大的负无理数__________.6.若将三个数-3,7,11表示在数轴上,其中能被如图所示的墨迹覆盖的数是__________.7.定义一种运算☆,其规则为a ☆b =1a +1b,根据这个规则,计算2☆3的值是__________.8.如图,物体从点A 出发,按照A →B (第1步)→C (第2步)→D →A →E →F →G →A →B →…的顺序循环运动,则第2 012步到达点________处.9.计算:|-2|+(-1)2 012-(π-4)0.参考答案导学必备知识 自主测试1.A 1-2=-12.2.A3.D A 中-|-3|=-3,B 中⎝ ⎛⎭⎪⎫13-1=3,C 中9=3.4.C 0.32×100万=320 000=3.2×105.5.C 因为从数轴可知:m 小于0,n 大于0,则mn <0,m -n <0.6.解:|-5|+16-32=5+4-9=0. 探究考点方法触类旁通1.C 因为5是整数,37是分数,4=2是整数.触类旁通2.A 因为5的相反数是-5,-15的相反数是15,15的相反数是-15.触类旁通3.B触类旁通4.C 因为0.05=5×10-2,0.005=5×10-3,0.000 5=5×10-4,0.000 05=5×10-5,故选C.触类旁通5.B 因为|m -3|≥0,且(n +2)2≥0,又因为|m -3|+(n +2)2=0,所以m -3=0且n +2=0.所以m =3,n =-2,所以m +2n =3+2×(-2)=-1.触类旁通6.A 因为根据正数大于0,0大于负数,正数大于负数,解答即可. 品鉴经典考题1.C ∵-3×⎝ ⎛⎭⎪⎫-13=1,∴-13的倒数是-3. 2.C A 中,|-2|=2,是正数,故本选项错误;B 中,(-2)2=4,是正数,故本选项错误;C 中,-2<0,是负数,故本选项正确;D 中,(-2)2=4=2,是正数,故本选项错误.3.C 因为科学记数法的形式为a ×10n,用科学记数法表示较大的数,其规律为1≤a<10,n 是比原数的整数位数小1的正整数,所以60 110 000 000=6.011×1010.4.A 原式=2+3=5. 5.12 根据负数的绝对值是它的相反数,得⎪⎪⎪⎪⎪⎪-12=12. 6.解:原式=2+1-5+1+9=8. 研习预测试题1.D 因为正数和0都大于负数,2>1,两个负数比较大小,绝对值大的反而小,所以-2最小.2.D 绝对值为3的数有+3和-3两个,且互为相反数.3.B (-8)-8=-16,⎝ ⎛⎭⎪⎫-12×(-2)=1,-(-1)0=-1,|-2|=2.4.A 因为数轴上A ,B 两点对应的实数分别为1和3, 所以OA =1,OB = 3.所以AB =OB -OA =3-1.由题意可知,BC =AB =3-1.所以OC =OB +BC =3+(3-1)=23-1. 5.(1)2 (2)-4+2(答案不唯一)6.7 因为-3<0,11>3,1<7<3. 7.56 因为2☆3=12+13=36+26=56. 8.A 由题意知,每隔8步物体到达同一点,因为2 012÷8=251余4,所以第2 012步到达A 点.9.解:原式=2+1-1=2.。

2015年中考数学真题分类汇编 实数

2015年中考数学真题分类汇编 实数

实数一.选择题(共30小题)1.(2015•大庆)a2的算术平方根一定是()A.a B.C.D.﹣a 考点:算术平方根.分析:根据算术平方根定义,即可解答.解答:解:.故选:B.点评:本题考查了对算术平方根定义的应用,能理解定义并应用定义进行计算是解此题的关键,难度不是很大.2.(2015•酒泉)64的立方根是()A.4 B.±4 C.8 D.±8考点:立方根.分析:如果一个数x的立方等于a,那么x是a的立方根,根据此定义求解即可.解答:解:∵4的立方等于64,∴64的立方根等于4.故选A.点评:此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.3.(2015•河北)下列说法正确的是()A.1的相反数是﹣1 B.1的倒数是﹣1C.1的立方根是±1 D.﹣1是无理数考点:立方根;相反数;倒数;无理数.分析:根据相反数、倒数、立方根,即可解答.解答:解:A、1的相反数是﹣1,正确;B、1的倒数是1,故错误;C、1的立方根是1,故错误;D、﹣1是有理数,故错误;故选:A.点评:本题考查了相反数、倒数、立方根,解决本题的关键是熟记相反数、倒数、立方根的定义.4.(2015•新疆)下列各数中,属于无理数的是()A.B.﹣2 C.0 D.考点无理数.:分析:根据无理数的三种形式求解.解答:解:是无理数,﹣2,0,都是有理数.故选A.点评:本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.5.(2015•长沙)下列实数中,为无理数的是()A.0.2 B.C.D.﹣5 考点:无理数.分析:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数,据此判断出无理数有哪些即可.解答:解:∵﹣5是整数,∴﹣5是有理数;∵0.2是有限小数,∴0.2是有理数;∵,0.5是有限小数,∴是有理数;∵是无限不循环小数,∴是无理数.故选:C.点评:此题主要考查了无理数和有理数的特征和区别,要熟练掌握,解答此题的关键是要明确:有理数能写成有限小数和无限循环小数,而无理数只能写成无限不循环小数.6.(2015•泰州)下列4个数:、、π、()0,其中无理数是()A.B.C.πD.()0考点:无理数;零指数幂.分析:根据无理数是无限不循环小数,可得答案.解答:解:π是无理数,故选:C.点评:本题考查了无理数,无理数是无限不循环小数,有理数是有限小数或无限循环小数.7.(2015•绥化)在实数0、π、、、﹣中,无理数的个数有()A.1个B. 2个C. 3个D. 4个考点:无理数.分析:根据无理数是无限不循环小数,可得答案.解答:解:π,是无理数,故选:B.点评:本题考查了无理数,无理数是无限不循环小数.8.(2015•福州)a的相反数是()A.B.C.﹣a D.考点:实数的性质.分析:根据相反数的概念解答即可.解答:解:a的相反数是﹣a.故选:C.点评:本题考查了相反数的意义,只有符号不同的两个数互为相反数,0的相反数是0.一个数的相反数就是在这个数前面添上一个“﹣”号.9.(2015•成都)实数a,b在数轴上对应的点的位置如图所示,计算﹣的结果为()A.B.a﹣b C.b﹣a D.﹣a﹣b 考点:实数与数轴;绝对值.分析:根据绝对值的意义:非负数的绝对值是它本身,负数的绝对值是它的相反数.同时注意数轴上右边的数总大于左边的数,即可解答.解答:解:由数轴可得:a<0<b,>,∴a﹣b<0,∴﹣﹣(a﹣b)﹣a,故选:C.点评:此题主要考查了实数与数轴的之间的对应关系及绝对值的化简,应特别注意:根据点在数轴上的位置来正确判断出代数式的值的符号.10.(2015•金华)如图,数轴上的A、B、C、D四点中,与数﹣表示的点最接近的是()A.点A B.点B C.点C D.点D考点:实数与数轴;估算无理数的大小.分析:先估算出≈1.732,所以﹣≈﹣1.732,根据点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,即可解答.解答:解:∵≈1.732,∴﹣≈﹣1.732,∵点A、B、C、D表示的数分别为﹣3、﹣2、﹣1、2,∴与数﹣表示的点最接近的是点B.故选:B.点评:本题考查的是实数与数轴,熟知实数与数轴上各点是一一对应关系是解答此题的关键.11.(2015•温州)给出四个数0,,﹣1,其中最小的是()A .0 B . C .1D . ﹣1考点:实数大小比较. 分析: 正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.解答:解:根据实数比较大小的方法,可得﹣1<0<,∴四个数0,,﹣1,其中最小的是﹣1.故选:D .点评: 此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.12.(2015•北京)实数a ,b ,c ,d 在数轴上的对应点的位置如图所示,这四个数中,绝对值最大的是()A .a B .b C. c D . d考点:实数大小比较.分析:首先根据数轴的特征,以及绝对值的含义和性质,判断出实数a ,b ,c ,d 的绝对值的取值范围,然后比较大小,判断出这四个数中,绝对值最大的是哪个数即可. 解答: 解:根据图示,可得3<<4,1<<2,0<<1,2<<3, 所以这四个数中,绝对值最大的是a .故选:A .点评:此题主要考查了实数大小的比较方法,以及绝对值的非负性质的应用,要熟练掌握,解答此题的关键是判断出实数a ,b ,c ,d 的绝对值的取值范围. 13.(2015•威海)已知实数a ,b 在数轴上的位置如图所示,下列结论错误的是( )A .<1< B . 1<﹣a <b C . 1<<b D . ﹣b <a <﹣1考点:实数大小比较;实数与数轴.分析:首先根据数轴的特征,判断出a 、﹣1、0、1、b 的大小关系;然后根据正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,逐一判断每个选项的正确性即可. 解解:根据实数a ,b 在数轴上的位置,可得答:a<﹣1<0<1<b,∵1<<,∴选项A错误;∵1<﹣a<b,∴选项B正确;∵1<<,∴选项C正确;∵﹣b<a<﹣1,∴选项D正确.故选:A.点评:(1)此题主要考查了实数与数轴,要熟练掌握,解答此题的关键是要明确:实数与数轴上的点是一一对应关系.任意一个实数都可以用数轴上的点表示;反之,数轴上的任意一个点都表示一个实数.数轴上的任一点表示的数,不是有理数,就是无理数.(2)此题还考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.14.(2015•新疆)估算﹣2的值()A.在1到2之间B.在2到3之间C.在3到4之间D.在4到5之间考点:估算无理数的大小.分析:先估计的整数部分,然后即可判断﹣2的近似值.解答:解:∵5<<6,∴3<﹣2<4.故选C.点评:此题主要考查了无理数的估算能力,现实生活中经常需要估算,估算应是我们具备的数学能力,“夹逼法”是估算的一般方法,也是常用方法.15.(2015•天津)估计的值在()A.在1和2之间B.在2和3之间C.在3和4之间D.在4和5之间考点:估算无理数的大小.专题:计算题.分析:由于9<11<16,于是<<,从而有3<<4.解答:解:∵9<11<16,∴<<,∴3<<4.故选C.点评:本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.16.(2015•嘉兴)与无理数最接近的整数是()A. 4 B. 5 C. 6 D. 7考点:估算无理数的大小.分析:根据无理数的意义和二次根式的性质得出<<,即可求出答案.解答:解:∵<<,∴最接近的整数是,=6,故选:C.点评:本题考查了二次根式的性质和估计无理数的大小等知识点,主要考查学生能否知道在5和6之间,题目比较典型.17.(2015•资阳)如图,已知数轴上的点A、B、C、D分别表示数﹣2、1、2、3,则表示数3﹣的点P应落在线段()A.上B.上C.上D.上考点:估算无理数的大小;实数与数轴.分析:根据估计无理数的方法得出0<3﹣<1,进而得出答案.解答:解:∵2<<3,∴0<3﹣<1,故表示数3﹣的点P应落在线段上.故选:B.点评:此题主要考查了估算无理数的大小,得出的取值范围是解题关键.18.(2015•六盘水)如图,表示的点在数轴上表示时,所在哪两个字母之间()A.C与D B.A与B C.A与C D.B与C考点:估算无理数的大小;实数与数轴.专题:计算题.分析:确定出7的范围,利用算术平方根求出的范围,即可得到结果.解答:解:∵6.25<7<9,∴2.5<<3,则表示的点在数轴上表示时,所在C和D两个字母之间.故选A点评:此题考查了估算无理数的大小,以及实数与数轴,解题关键是确定无理数的整数部分即可解决问题.19.(2015•安徽)与1+最接近的整数是()A.4 B. 3 C. 2 D. 1考点:估算无理数的大小.分析:由于4<5<9,由此根据算术平方根的概念可以找到5接近的两个完全平方数,再估算与1+最接近的整数即可求解.解答:解:∵4<5<9,∴2<<3.又5和4比较接近,∴最接近的整数是2,∴与1+最接近的整数是3,故选:B.点评此题主要考查了无理数的估算能力,估算无理数的时候,“夹逼法”是估算的一般方法,也是常用方法:.20.(2015•南京)估计介于()A.0.4与0.5之间B. 0.5与0.6之间C. 0.6与0.7之间D. 0.7与0.8之间考点:估算无理数的大小.分析:先估算的范围,再进一步估算,即可解答.解答:解:∵ 2.235,∴﹣1≈1.235,∴≈0.617,∴介于0.6与0.7之间,故选:C.点评:本题考查了估算有理数的大小,解决本题的关键是估算的大小.21.(2015•杭州)若k<<1(k是整数),则()A. 6 B. 7 C. 8 D. 9考点:估算无理数的大小.分析:根据=9,=10,可知9<<10,依此即可得到k的值.解答:解:∵k<<1(k是整数),9<<10,∴9.故选:D.点评:本题考查了估算无理数的大小,解题关键是估算的取值范围,从而解决问题.22.(2015•衡阳)计算(﹣1)0﹣2|的结果是()A.﹣3 B. 1 C.﹣1 D. 3考点:实数的运算;零指数幂.专题:计算题.分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,计算即可得到结果.解答:解:原式=1+2=3.故选D.点评:此题考查了实数的运算,熟练掌握运算法则是解本题的关键.23.(2015•北海)计算2﹣1+的结果是()A.0 B. 1 C. 2 D.2考点:实数的运算;负整数指数幂.专题:计算题.分析:原式利用负整数指数幂法则计算,计算即可得到结果.解答:解:原式1,故选B点评:此题考查了实数的运算,以及负整数指数幂,熟练掌握运算法则是解本题的关键.24.(2015•潍坊)在|﹣2|,20,2﹣1,这四个数中,最大的数是()A.|﹣2| B.20C.2﹣1D.考点:实数大小比较;零指数幂;负整数指数幂.分析:正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,首先求出|﹣2|,20,2﹣1的值是多少,然后根据实数比较大小的方法判断即可.解答:解:|﹣22,20=1,2﹣1=0.5,∵,∴,∴在|﹣2|,20,2﹣1,这四个数中,最大的数是|﹣2|.故选:A.点评:(1)此题主要考查了实数大小比较的方法,要熟练掌握,解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.(2)此题还考查了负整数指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a﹣(a≠0,p为正整数);②计算负整数指数幂时,一定要根据负整数指数幂的意义计算;③当底数是分数时,只要把分子、分母颠倒,负指数就可变为正指数.(3)此题还考查了零指数幂的运算,要熟练掌握,解答此题的关键是要明确:①a0=1(a≠0);②00≠1.25.(2015•常州)已知,,,则下列大小关系正确的是()A.a>b>c B.c>b>a C.b>a>c D.a>c>b 考点:实数大小比较.专题:计算题.分析:将a,b,c变形后,根据分母大的反而小比较大小即可.解答:解:∵,,,且<<,∴>>,即a>b>c,故选A.点评:此题考查了实数比较大小,将a,b,c进行适当的变形是解本题的关键.26.(2015•武汉)在实数﹣3,0,5,3中,最小的实数是()。

2015年陕西省中考数学总复习课件:第1讲 实数及其运算

2015年陕西省中考数学总复习课件:第1讲 实数及其运算

(5)科学记数法 , 近似数:
±a ×10 n __(1≤a<10, 科学记数法就是把一个数表示成 __
n 是整数 )的形式;一个近似数 ,__四舍五入 __到哪一位 ,
就说这个数精确到哪一位.
要点梳理
(6)平方根,算术平方根,立方根:
如果x2=a,那么x叫做a的平方根,记作
x=± a
3
;正数a的正的平方根,叫做
1 . (1)(2013· 安顺 ) 下列各数中 , 3.14159 , -
1- 4.(2014· 陕西)计算:(- ) 2=__9__. 3 5 . (2014· 陕 西 ) 用 科 学 计 算 器 计 算 : 31 + 3tan56 ° ≈ __10.02__.(结果精确到 0.01) 6.(2013· 陕西)计算:(- 2) 3+( 3-1)0=__-7__. 7 . (2013· 陕 西 ) 比 较 大 小 : 8cos31 ° __>__ 35 .( 填 “>”“=” “<”) 8.(2012· 陕西)计算:2cos45°- 3 8+(1- 2)0=__-5 2+ 1__. 9.(2012· 陕西)用科学计算器计算: 7sin69°≈__2.47__.(精 确到 0.01)
中括号 ,最后算 大括号
,再算
乘除 ,最后算 加减 ,如果有括号,先算 小括号 ,
再算
,同级运算
应 从左到右依次进行

数形结合思想
数形结合思想是指将数(量)与(图)形结合起来进行分
析、研究、解决问题的一种思想策略.“数无形,少
直观;形无数,难入微.”数形结合思想可以使问题
化难为易、化繁为简.
分类讨论思想
陕 西 省

(完整版)中考数学复习专题精品导学案:第1讲实数含答案详解,推荐文档

(完整版)中考数学复习专题精品导学案:第1讲实数含答案详解,推荐文档
2013 年中考数学专题复习第一讲 实数(含详细参考答案)
【基础知识回顾】
一、实数的分类:
1、按实数的定义分类:实数有理数整数正整零数
_
负分数 正无理数
无理数
2、按实数的正负分类:
有限小数或无限循环数
无限不循环小数
实数 【名师提醒:1、正确理解
正实实 正无理数 零 负有理数
负实实
实数的分类。如: 2 是
A.0
B. 3
C.
﹣2
1.B
D. 2 7
考点二、实数的有关概念。
例 2 (2012•乐ft)如果规定收入为正,支出为负.收入 500 元记作 500 元,那么支出 237 元应记作( )
A.﹣500 元 B.﹣237 元
C.237 元
D.500 元
思路分析:根据题意 237 元应记作﹣237 元.
2
,所以数字
2, 1,
, 83, cos 45 , 0.32中无理数的有:
2
3
2, ,cos 45 ,共 3 个.
故选 C.
点评:此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式:①开方开 不尽的数,②无限不循环小数,③含有 π 的数。
对应训练
1.(2012•盐城)下面四个实数中,是无理数的为( )
考点一:无理数的识别。
例 1 (2012•六盘水)实数 2, 1, 3
A.
1 B.
, 38, cos 45 o,0.3&2&中是无理数的个数有(
2 C.
3 D. 4
)个.
思路分析:先把cos 45 化为 2 ,再根据无理数的定义进行解答即可。根据无理数的三 2
种形式,结合所给的数据判断即可.

专题01 实数(第01期)-2015年中考数学试题分项版解析汇编(各省统一命题版)(原卷版)

专题01 实数(第01期)-2015年中考数学试题分项版解析汇编(各省统一命题版)(原卷版)

一、选择题:1. (2015.上海市,第1题,3分)下列实数中,是有理数的为……………………………( ).A 、2;B 、34;C 、π;D 、0.2. (2015.安徽省,第1题,4分)在-4,2,-1,3这四个数中,比-2小的数是( )A .-4B .2C .-1D .33.(2015.安徽省,第2题,4分)计算8×2的结果是( )A .10B .4C . 6D .24.(2015.安徽省,第3题,4分)移动互联网已经全面进入人们的日常生活.截止2015年3月,全国4G 用户总数达到1.62亿,其中1.62亿用科学记数法表示为( )A .1.62×104B .1.62×106C .1.62×108D .0.162×1095.(2015.安徽省,第5题,4分)与1+5最接近的整数是( )A .4B .3C .2D .16.(2015.河北省,第1题,3分)计算:3-2×(-1)=( )A.5B.1C.-1D.67. (2015.河北省,第2题,3分)下列说法正确的是( )A.1的相反数是-1B.1的倒数是-1C.1的立方根是±1D.-1是无理数8.(2015.河南省,第1题,3分)下列各数中最大的数是( ). A. 5 B.3 C. π D. -89. (2015.河南省,第3题,3分)据统计,2014年我国高新技术产品出口总额达40570亿元,将数据40570亿用科学记数法表示为( ).A. 4.0570×109B. 0.40570×1010C. 40.570×1011D. 4.0570×101210.(2015.宁夏,第1题,3分)下列计算正确的是 ( )A . 325+=B . 1232÷=C . 1(5)5-=D . 2(31)2-=11. (2015.宁夏,第2题,3分)生物学家发现了一种病毒的长度约为0.00000432毫米.数据0.00000432用科学记数法表示为( )A. 0.432×10-5B. 4.32×10-6C. 4.32×10-7D.43.2×10-712.(2015.重庆市A卷,第1题,4分)在—4,0,—1,3这四个数中,最大的数是() A. —4 B. 0 C. —1 D. 313.(2015.重庆市A卷,第3题,4分)化简12的结果是()A. 43B. 23C. 32D. 2614. (2015.重庆市B卷,第1题,4分)-3的绝对值是( )A.3 B.-3 C.13D.13-15. (2015.重庆市B卷,第5题,4分)计算322-的值是( ) A.2 B.3 C.2 D.22 16. (2015.天津市,第1题,3分)计算(-18)÷6的结果等于( )(A)-3 (B)3 (C)13-(D)1317. (2015.天津市,第4题,3分)据2015年5月4日《天津日报》报道,“五一”三天假期,全市共接待海内外游客约2 270 000人次.将2 270 000用科学记数法表示应为( )(A)70.22710⨯(B)62.2710⨯(C)522.710⨯(D)422710⨯18. (2015.天津市,第6题,3分)估计11的值在( )(A)1和2之间(B)2和3之间(C)3和4之间(D)4和5之间19. (2015.北京市,第1题,3分)截止到2015年6月1日,北京市已建成34个地下调蓄设施,蓄水能力达到140000立方米.将140000用科学记数法表示应为()A.14×104B.4×105C.1.4×106D.0.14×10620. (2015.北京市,第2题,3分)实数a,b,c,d在数轴上的对应点的位直如图所示,这四个数中,绝对值最大的是()A.aB.bC.cD.d二、填空题:1、(2015.上海市,第7题,4分)计算:22-+=_______.2.(2015.安徽省,第11题,5分)-64的立方根是 .3. (2015.河北省,第17题,3分)若|a |=20150,则a =____.4. (2015.河南省,第9题,3分)计算:(-3)0+3-1= .5.(2015.重庆市A 卷,第13题,4分)我国“南仓”级远洋综合补给舰满载排水量为37000吨,把数37000用科学记数法表示为 .6.(2015.重庆市A 卷,第14题,4分)计算:020152-= .7. (2015.重庆市B 卷,第13题,4分)据不完全统计,我国常年参加志愿者服务活动的志愿者超过65000000人,把65000000用科学计数法表示为_______.8. (2015.重庆市B 卷,第15题,4分)计算:02(3.142)(3)-+- =___________.9. (2015.陕西省,第11题,3分).将实数605-,,,π由小到大用“<” 号连起来,可表示为_________________。

中考数学:1.1-实数(含答案)

中考数学:1.1-实数(含答案)

第一篇基础知识梳理第一章数与式§1.1实数A组2015年全国中考题组一、选择题1.(2015·浙江湖州,1,3分)-5的绝对值是()A.-5 B.5 C.-15 D.15解析∵|-5|=5,∴-5的绝对值是5,故选B.答案 B2.(2015·浙江嘉兴,1,4分)计算2-3的结果为() A.-1 B.-2 C.1 D.2解析2-3=-1,故选A.答案 A3.(2015·浙江绍兴,1,4分)计算(-1)×3的结果是() A.-3 B.-2 C.2 D.3解析(-1)×3=-3,故选A.答案 A4.(2015·浙江湖州,3,3分)4的算术平方根是() A.±2 B.2 C.-2 D. 2解析∵4的算术平方根是2,故选B.答案 B5.(2015·浙江宁波,3,4分)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学记数法可表示为() A.0.6×1013元B.60×1011元C.6×1012元D.6×1013元解析6万亿=60 000×100 000 000=6×104×108=6×1012,故选C.答案 C6.(2015·江苏南京,5,2分)估计5-12介于()A.0.4与0.5之间B.0.5与0.6之间C.0.6与0.7之间D.0.7与0.8之间解析∵5≈2.236,∴5-1≈1.236,∴5-12≈0.618,∴5-12介于0.6与0.7之间.答案 C7.(2015·浙江杭州,2,3分)下列计算正确的是() A.23+26=29B.23-26=2-3C.26×23=29D.26÷23=22解析只有“同底数的幂相乘,底数不变,指数相加”,“同底数幂相除,底数不变,指数相减”,故选C.答案 C8.★(2015·浙江杭州,6,3分)若k<90<k+1(k是整数),则k=() A.6 B.7 C.8 D.9解析∵81<90<100,∴9<90<100.∴k=9.答案 D9.(2015·浙江金华,6,3分)如图,数轴上的A,B,C,D四点中,与表示数-3的点最接近的是 ()A.点A B.点B C.点C D.点D解析∵-3=-1.732,∴表示-3的点与表示-2的点最接近.答案 B二、填空题10.(2015·浙江宁波,13,4分)实数8的立方根是________. 解析 ∵23=8,∴8的立方根是2. 答案 211.(2015·浙江湖州,11,4分)计算:23×⎝ ⎛⎭⎪⎫122=________.答案 212.(2015·四川巴中,20,3分)定义:a 是不为1的有理数,我们把11-a称为a 的差倒数,如:2的差倒数是11-2=-1,-1的差倒数是11-(-1)=12.已知a 1=-12,a 2是a 1的差倒数,a 3是a 2的差倒数,a 4是a 3的差倒数,……,以此类推,则a 2 015=________.解析 根据“差倒数”的规定进行计算得:a 1=-12,a 2=23,a 3=3,a 4= -12,……,三个数一循环,又2 015÷3=671……2,∴a 2 015=23.答案 23三、解答题13.(2015·浙江嘉兴,17(1),4分)计算:|-5|+4×2-1. 解 原式=5+2×12=5+1=6.14.(2015·浙江丽水,17,6分)计算:|-4|+(-2)0-⎝ ⎛⎭⎪⎫12-1.解 原式=4+1-2=3.15.(2015·浙江温州,17(1),5分)计算:2 0150+12+2×⎝ ⎛⎭⎪⎫-12.解 原式=1+23-1=2 3.16.(2015·浙江衢州,17,6分)计算:12-|-2|+(1-2)0-4sin 60° 解 原式=23-2+1-23=-1.B 组 2014~2011年全国中考题组一、选择题1.(2013·浙江舟山,1,3分)-2的相反数是( )A .2B .-2C.12D .-12解析 -2的相反数是2,故选A. 答案 A2.(2014·云南,1,3分)⎪⎪⎪⎪⎪⎪-17=( )A .-17 B.17C .-7D .7解析 由绝对值的意义可知:⎪⎪⎪⎪⎪⎪-17=-⎝ ⎛⎭⎪⎫-17=17.故选B.答案 B3.★(2013·安徽,1,4分)-2的倒数是 ( )A .-12B.12C .2D .-2解析 ∵-2×(-12)=1,∴-2的倒数是-12. 答案 A4.(2013·浙江温州,1,4分)计算:(-2)×3的结果是 ( )A .-6B .1C .1D .6解析 根据有理数的乘法运算法则进行计算,(-2)×3=-2×3=-6.故选A. 答案 A5.(2014·浙江绍兴,1,4分)比较-3,1,-2的大小,正确的是 ( )A .-3<-2<1B .-2<-3<1C .1<-2<-3D .1<-3<-2解析 ∵||-3>||-2,∴-3<-2.∴-3<-2<1.故选A. 答案 A6.(2013·浙江丽水,1,3分)在数0,2,-3,-1.2中,属于负整数的是( ) A .0B .2C .-3D .-1.2解析 根据负整数的定义,属于负整数的是-3.7.(2014·浙江宁波,2,4分)宁波轨道交通1号线、2号线建设总投资253.7亿元.其中253.7亿用科学记数法表示为( )A .253.7×108B .25.37×109C .2.537 ×1010D .2.537 ×1011解析 253.7亿=253.7×108=2.537 ×1010,故选C. 答案 C8.(2014·浙江丽水,1,3分)在数23,1,-3,0中,最大的数是 ( )A.23B .1C .-3D .0解析 在数23,1,-3,0中,按从大到小的顺序排列为1>23>0>-3,故选B. 答案 B9.★(2013·山东德州,1,3分)下列计算正确的是( )A.⎝ ⎛⎭⎪⎫13-2=9 B.(-2)2=-2 C .(-2)0=-1D .|-5-3|=2解析 A 中,⎝ ⎛⎭⎪⎫13-2=1⎝ ⎛⎭⎪⎫132=119=9;B 中,(-2)2=4=2;C 中,(-2)0=1;D 中,|-5-3|=|-8|=8.故选A. 答案 A10.(2014·浙江台州,4,3分)下列整数中,与30最接近的是 ( )A .4B .5C .6D .7解析 由25<30<36,可知25<30<36,即5<30<6.又∵30.25=5.5,30<30.25,可知30更接近5.故选B. 答案 B 二、填空题11.(2013·浙江宁波,13,3分)实数-8的立方根是________. 解析 ∵(-2)3=-8,∴-8的立方根是-2.12.(2013·湖南永州,9,3分)钓鱼岛列岛是我国固有领土,共由8个岛屿组成,其中最大的岛是钓鱼岛,面积约为4.3平方公里,最小的岛是飞濑岛,面积约为0.000 8平方公里,请用科学记数法表示飞濑岛的面积约为________平方公里.解析 在0.000 8中,8前面有4个0,则0.000 8=8×10-4. 答案 8×10-413.(2014·河北,18,3分)若实数m ,n 满足||m -2+(n -2 014)2=0,则m -1+n 0=________.解析 ∵||m -2+(n -2 014)2=0,∴m -2=0,n -2 014=0,即m =2,n =2 014.∴m -1+n 0=2-1+2 0140=12+1=32.故答案为32. 答案 32 三、解答题14.(2014·浙江金华,17,6分)计算:8-4cos 45°+(12)-1+||-2. 解8-4cos 45°+(12)-1+||-2=22-4×22+2+2=22-22+4=4.15.(2014·浙江丽水,17,6分)计算:(-3)2+||-4×2-1-(2-1)0. 解 原式=3+4×12-1=3+2-1=4.16.★(2013·山东滨州,20,7分)(计算时不能使用计算器) 计算:33-(3)2+(π+3)0-27+|3-2|. 解 原式=3-3+1-33+2-3=-3 3.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015年中考数学专题复习第一讲 实数【基础知识回顾】一、实数的分类:1、按实数的定义分类: 实数 有限小数或无限循环数2、按实数的正负分类: 实数【名师提醒:1、正确理解实数的分类。

如:2π是 数,不是 数,722是 数,不是 数。

2、0既不是 数,也不是 数,但它是自然数】二、实数的基本概念和性质1、数轴:规定了 、 、 的直线叫做数轴, 和数轴上的点是一一对应的,数轴的作用有 、 、 等。

2、相反数:只有 不同的两个数叫做互为相反数,a 的相反数是 ,0的相反数是 ,a 、b 互为相反数⇔3、倒数:实数a 的倒数是 , 没有倒数,a 、b 互为倒数⇔4、绝对值:在数轴上表示一个数的点离开 的距离叫做这个数的绝对值。

a =因为绝对值表示的是距离,所以一个数的绝对值是 数,我们学过的非负数有三个: 、 、 。

【名师提醒:a+b 的相反数是 ,a-b 的相反数是 ,0是唯一一个没有倒数的数,相反数等于本身的数是 ,倒数等于本身的数是 ,绝对值等于本身的数是 】三、科学记数法、近似数和有效数字。

1、科学记数法:把一个较大或较小的数写成 的形式叫做科学记数法。

其中a 的取值范围是 。

2、近似数和有效数字:⎪ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎪ ⎪ ⎩ ⎪ ⎪ ⎪ ⎨ ⎧ ⎩ ⎨ ⎧ ⎪ ⎩ ⎪ ⎨ ⎧ 正无理数 无理数 负分数 _ 零 正整数 整数 有理数无限不循环小数 ⎩⎨⎧⎩⎨⎧负有理数负零正无理数正实数实数 (a >0)(a <0) 0 (a=0)一般的,将一个数四舍五入后的到的数称为这个数的近似数,这时,从 数字起到近似数的最后一位止,中间所有的数字都叫这个数的有效数字。

【名师提醒:1、科学记数法不仅可以表示较大的数,也可以表示较小的数,其中a 的取值范围一样,n 的取值不同,当表示较大数时,n 的值是原整数数位减一,表示较小的数时,n 是负整数,它的绝对值等于原数中左起第一个非零数字前零的个数(含整数数位上的零)。

2、近似数3.05万是精确到 位,而不是百分位】四、数的开方。

1、若x 2=a(a 0),则x 叫做a 的 ,记做±a ,其中正数a 的 平方根叫做a 的算术平方根,记做 ,正数有 个平方根,它们互为 ,0的平方根是 ,负数 平方根。

2、若x 3=a,则x 叫做a 的 ,记做3a ,正数有一个 的立方根,0的立方根是 ,负数 立方根。

【名师提醒:平方根等于本身的数有 个,算术平方根等于本身的数有 ,立方根等于本身的数有 。

】【重点考点例析】考点一:无理数的识别。

例1 (六盘水)实数312,,,8,cos 45,0.323o &&中是无理数的个数有( )个. A . 1 B . 2 C . 3 D . 4点评:此题考查了无理数的定义,属于基础题,关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数。

对应训练1.(盐城)下面四个实数中,是无理数的为( )A .0B .3C .﹣2D .27考点二、实数的有关概念。

例2 (乐山)如果规定收入为正,支出为负.收入500 元记作500元,那么支出237元应记作( )A .﹣500元B . ﹣237元C . 237元D . 500元.点评: 此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示. 例3 (遵义)﹣(﹣2)的值是( )A .﹣2B . 2C . ±2D . 4点评: 本题考查了相反数的意义,一个数的相反数就是在这个数前面添上“﹣”号:一个正数的相反数是负数,一个负数的相反数是正数,0的相反数是0.例4 (扬州)﹣3的绝对值是( )A .3B . ﹣3C . ﹣3D .点评: 此题主要考查了绝对值的定义,规律总结:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.例5 (黄石)13-的倒数是( ) 点评: 此题考查倒数的定义:若两个数的乘积是1,我们就称这两个数互为倒数.例6 (怀化)64的立方根是( )A .4B . ±4C . 8D . ±8点评: 此题主要考查了求一个数的立方根,解题时应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.例7 (荆门)若29x y -+与|3|x y --互为相反数,则x+y 的值为( )A .3B . 9C . 12D . 27点评: 本题主要考查了非负数的性质,初中阶段有三种类型的非负数:绝对值、偶次方、二次根式(算术平方根).当它们相加和为0时,必须满足其中的每一项都等于0.对应训练2.(丽水)如果零上2℃记作+2℃,那么零下3℃记作( )A .﹣3℃B . ﹣2℃C . +3℃D . +2℃ 3.(张家界)﹣2012的相反数是( )A .﹣2012B . 2012C .12012-D .120124.(铜仁地区)|﹣2012|= .5.(常德)若a 与5互为倒数,则a=( )A .15B . 5C . ﹣5D .156.(株洲)8的立方根是( )A .2B . ﹣2C . 3D . 4 7.(广东)若x ,y 为实数,且满足|x ﹣3|+=0,则()2012的值是 .考点三、实数与数轴。

例8 (乐山)如图,A 、B 两点在数轴上表示的数分别为a 、b ,下列式子成立的是( )A .ab >0B .a+b <0C .(b-1)(a+1)>0D .(b-1)(a-1)>0点评:本题考查了数轴.由于引进了数轴,我们把数和点对应起来,也就是把“数”和“形”结合起来,二者互相补充,相辅相成,把很多复杂的问题转化为简单的问题,在学习中要注意培养数形结合的数学思想.对应训练8.(常德)实数a ,b 在数轴上的位置如图所示,下列各式正确的是( )A .a+b >0B .ab >0C .|a|+b <0D .a-b >0考点四、科学记数法。

例9 (潍坊)许多人由于粗心,经常造成水龙头“滴水”或“流水”不断.根据测定,一般情况下一个水龙头“滴水”1个小时可以流掉3.5千克水,若1年按365天计算,这个水龙头1年可以流掉( )千克水.(用科学记数法表示,保留3个有效数字)A .3.1×104B .0.31×105C .3.06×104D .3.07×104.点评:此题主要考查了有理数的乘法在实际生活中的应用以及科学记数法的表示方法。

用科学记数法表示一个数的方法是:(1)确定a :a 是只有一位整数的数;(2)确定n :当原数的绝对值≥10时,n 为正整数,n 等于原数的整数位数减1;当原数的绝对值<1时,n 为负整数,n 的绝对值等于原数中左起第一个非零数前零的个数(含整数位数上的零).对应训练9.(鸡西)2012年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有691万人以不同方式向她表示问候和祝福,将691万人用科学记数法表示为 人.(结果保留两个有效数字)【聚焦山东中考】一、选择题1.(临沂)16-的倒数是( ) A .6 B . ﹣6 C .16D . 16- 1.(青岛)﹣2的绝对值是( ) A .12- B . ﹣2 C .12 D . 22.(济宁)在数轴上到原点距离等于2的点所标示的数是( )A .-2B .2C .±2D .不能确定3.(聊城)在如图所示的数轴上,点B 与点C 关于点A 对称,A 、B 两点对应的实数分别是3和-1,则点C 所对应的实数是( )A .13+B .23+C .231-D .231+4.(烟台)的值是( ) A .4 B . 2 C . ﹣2 D . ±25.(日照)据新华社报道:在我国南海某海域探明可燃冰储量约有194亿立方米.194亿用科学记数法表示为( )A .1.94×1010B .0.194×1010C .19.4×109D .1.94×1096.(济南)2012年伦敦奥运会火炬传递路线全长约为12800公里,数字12800用科学记数法表示为()A.1.28×103B.12.8×103C.1.28×104D.0.128×1057.(泰安)已知一粒米的质量是0.000021千克,这个数字用科学记数法表示为()A.21×10-4千克B.2.1×10-6千克C.2.1×10-5千克D.21×10-4千克二、填空题8.(德州)﹣1,0,0.2,17,3中正数一共有个.9.(青岛)为改善学生的营养状况,中央财政从2011年秋季学期起,为试点地区在校生提供营养膳食补助,一年所需资金约为160亿元,用科学记数法表示为元.【备考真题过关】一、选择题1.(陕西)如果零上5℃记作+5℃,那么零下7℃可记作()A.﹣7℃B.+7℃C.+12℃D.﹣12℃2.(河北)下列各数中,为负数的是()A.0 B.﹣2 C.1D.1 23.(义乌市)﹣2的相反数是()A.2 B.﹣2 C.±2 D.1 2 -4.(江西)﹣1的绝对值是()A.1 B.0C.﹣1 D.±1 5.(襄阳)一个数的绝对值等于3,这个数是()A.3 B.﹣3 C.±3 D.1 36.(宜昌)如图,数轴上表示数-2的相反数的点是()A.点P B.点QC.点M D.点N7.(攀枝花)﹣3的倒数是()A.3 B.﹣3 C.13D.13-8.(黄冈)下列实数中是无理数的是()A.4B.38C.0πD.29.(丽水)如图,数轴的单位长度为1,如果点A,B表示的数的绝对值相等,那么点A表示的数是()A.﹣4 B.﹣2C.0 D.410.(毕节地区)实数a、b在数轴上的位置如图所示,下列式子错误的是()A.a<b B.|a|>|b|C .-a <-bD .b-a >011.(遵义)据有关资料显示,2011年遵义市全年财政总收入202亿元,将202亿用科学记数法可表示( )A .2.02×102B .202×108C .2.02×109D .2.02×101012.(南京)PM2.5是大气压中直径小于或等于0.0000025m 的颗粒物,将0.0000025用科学记数法表示为( )A .0.25×10-5B .0.25×10-6C .2.5×10-5D .2.5×10-613.(恩施州)恩施生态旅游初步形成,2011年全年实现旅游综合收入908600000元.数908600000用科学记数法表示(保留三个有效数字),正确的是( )A .9.09×109B .9.087×1010C .9.08×109D .9.09×10814.(达州)今年我市参加中考的学生人数约为6.01×104人.对于这个近似数,下列说法正确的是( )A .精确到百分位,有3个有效数字B .精确到百位,有3个有效数字C .精确到十位,有4个有效数字D .精确到个位,有5个有效数字15.(台湾)如图,数在线的A 、B 、C 、D 四点所表示的数分别为a 、b 、c 、d ,且O 为原点.根据图中各点位置,判断|a-c|之值与下列何者不同?( )A .|a|+|b|+|c|B .|a-b|+|c-b|C .|a-d|-|d-c|D .|a|+|d|-|c-d|二.填空题16.(连云港)某药品说明书上标明药品保存的温度是(20±2)℃,该药品在 ℃范围内保存才合适.17.(上海)计算1|1|2-== . 18.(湘潭)5月4日下午,胡锦涛总书记在纪念中国共产主义青年团成立90周年大会上指出:希望广大青年坚持远大理想、坚持刻苦学习、坚持艰苦奋斗、坚持开拓创新、坚持高尚品行.我国现有约78000000名共青团员,用科学记数法表示为 名.19.(绥化)已知1纳米=0.000000001米,则2012纳米用科学记数法表示为 米.20.(玉林)某种原子直径为1.2×10-2纳米,把这个数化为小数是 纳米.21.(资阳)为了保护人类居住环境,我国的火电企业积极做好节能环保工作.2011年,我国火电企业的平均煤耗继续降低,仅为330000毫克/千瓦时,用科学记数法表示并保留三个有效数字为 毫克/千瓦时.22.(泰州)如图,数轴上的点P 表示的数是-1,将点P 向右移动3个单位长度得到点P ′,则点P ′表示的数是 .23.(广安)实数m 、n 在数轴上的位置如图所示,则|n-m|= .24.(娄底)写出一个x 的值,使|x ﹣1|=x ﹣1成立,你写出的x 的值是 .25.(哈尔滨)化简:9= .26.(张家界)已知2(3)20x y y -++-=,则x+y= .。

相关文档
最新文档