1一次函数的定义与图像
一次函数图像与性质
![一次函数图像与性质](https://img.taocdn.com/s3/m/ce302b1ff18583d049645913.png)
示 意 图
(1)k决定直线y=kx+b从左向右是什么趋势
(倾斜程度ቤተ መጻሕፍቲ ባይዱ,b决定它与y轴交点在哪个半轴,
k、b合起来决定直线y=kx+b经过哪几个象限;
注意看图识性,见数想形.
三、待定系数法求一次函数解析式
一次函数y=kx+b(k,b是常数,k≠0)中有两个待
定系数k,b,需要两个独立条件确定两个关于k,b的
5.直线l1:y=kx+b与直线l2:y=bx+k在同一坐标系中的 大致位置是( ).
7.已知一次函数y=kx+b的图象过点P(1,1),
与x轴交于点A,与y轴交于点B,且OA=3OB,
求一次函数的解析式.
8.如果一次函数当自变量的取值范围是-1<x<3时,
函数值的取值范围是-2<y<6,
求此函数的解析式.
一次函数的图像和性质
一、一次函数的定义
一般地,形如y=kx(k是常数,k≠0)的函数,
叫做正比例函数,其中k叫做比例系数. 说明:当b=0时,y=kx+b即y=kx,所以说正比例函数是
形如y=kx+b(k,b是常数,k≠0)的函数,叫做一次函数 一种特殊的一次函数.
一次函数的定义是根据它的解析式的形式特征给出的,
四、分段函数
对于某些量不能用一个解析式表示,而需要分情况
(自变量的不同取值范围)用不同的解析式表示,
因此得到的函数是形式比较复杂的分段函数.解题中要
注意解析式对应的自变量的取值范围,分段考虑问题.
说明:对于分段函数的问题,特别要注意相应的自变
量变化范围.
在解析式和图象上都要反映出自变量的相应取值范围.
一次函数的图象及性质
![一次函数的图象及性质](https://img.taocdn.com/s3/m/5ec3426a4a73f242336c1eb91a37f111f0850d51.png)
在某个点处,函数的导数为0,并且在该点左侧导数小 于0,右侧导数大于0,那么这个点就是极小值点。
一次函数的凹凸性
凹函数
如果在某个区间内,函数的二阶导数大于 0,那么这个函数在这个区间内是凹函数 。
VS
凸函数
如果在某个区间内,函数的二阶导数小于 0,那么这个函数在这个区间内是凸函数 。
04
一次函数与数列的关系
数列是一次函数图象上多个点的集合,表示在多个自变 量下函数的值的变化规律。通过对数列的研究,我们可 以找到一次函数图象上对应的多个点。
一次函数与数列的关系还表现在解决实际问题中,如等 差数列和等比数列的问题,通过建立一次函数模型可以 解决实际问题的最优解。
06
一次函数的扩展知识
一次函数与方程的关系还表现在求解未知数 的运算过程中,通过对方程的求解可以得到
一次函数的解析式。
一次函数与不等式的关系
不等式可以看作一次函数图象上某一段的横坐标,表 示在这一段上函数的值大于或小于零。通过对不等式 的求解,我们可以找到一次函数图象上对应的区间。
一次函数与不等式的关系还表现在解决实际问题中, 如时间、速度、价格等问题,通过建立一次函数不等 式模型可以解决实际问题的最优解。
为截距。
当自变量取值为`x`时,函数值 计算公式为`y = kx + b`。
绘制点
根据计算出的函数值和自变量的取值,绘制散点图。
对于每个自变量值,计算其对应的函数值,并在坐标系中绘制一个点。
连接点
使用线段或曲线连接散点图中的点。
对于一次函数,通常使用直线连接点,因为一次函数的图像是一条直线。
03
一次函数的应用
一次函数在代数中的应用
求解方程
一次函数
![一次函数](https://img.taocdn.com/s3/m/a49a0120f18583d0496459da.png)
y=2x过点A,当2x<kx+b<0时,x的取值范围是( )
A. B. C. D.
第4题图
第5题图
第6题图
7. 如图,直线y=kx+b交坐标轴于A(-3,0)、B(0,5)两点,当-
3<x<0时,y的取值 范围是
.
8. 如图,已知函数和的图象交点为,则不等式的解集为
.
9. 如图,已知函数和的图像交于点,则根据图像可得不等式的解集是
C.(1,-1)
D.(1,1)
5. 如图,已知直线y=kx+b经过第一、二、四象限,则直线y=bx-k过(
)
A.第一、二、四象限 B.第二、三、四象限 C.第一、三、四象限 D.第一、二、三象限 6. 在同一平面直角坐标系中,一次函数与正比例函数
(是常数,
且)
的图象只可能是( )
D 0 x
0 A y x 0 C x 0 B x y y y
是x的正比例函数.所以,正比例函数是一次函数的特例.
3、会画一次函数的图像,掌握当k和b取不同的值时一次函数图像所
经过的象限。 4、掌握一次函数的性质以及其在实际问题中的应用。 5、会解决一次函数与几何问题的综合问题。 【知识结构】 1、一次函数的概念与一般形式:y=kx+b(k、b为常数,k ≠ 0)。 2、一次函数的图像。 3、一次函数的性质。 4、一次函数与实际 问题的结合。 【重点知识解析】
到达点B,最后走下坡路到达工作单位,所用的时间与路程的关
系如图所示.下班后,如果他沿原路返回,且走平路、上坡路、
下坡路的速度分别保持和去上班时一致,那么他从单位到家门口
需要的时间是( )
A.12分钟 B.15分钟 C.25分钟
《一次函数》课件
![《一次函数》课件](https://img.taocdn.com/s3/m/af333ec5a1116c175f0e7cd184254b35effd1a60.png)
REPORTING
经济问题中的一次函数
总结词:经济模型
详细描述:一次函数在经济领域中常被用作简化经济模型,例如,消费和收入之 间的关系、生产成本和产量之间的关系等。通过一次函数,可以更直观地理解经 济现象和预测未来的经济趋势。
物理问题中的一次函数
总结词:物理定律
详细描述:在物理学中,许多定律和公式都可以用一次函数来表示,例如,重力与距离的关系、电流与电压的关系等。通过 一次函数,可以更准确地描述物理现象和预测实验结果。
2023
《一次函数最新》 ppt课件
REPORTING
2023
目录
• 一次函数简介 • 一次函数的表达式 • 一次函数的应用 • 一次函数的解析方法 • 一次函数的实际案例
2023
PART 01
一次函数简介
REPORTING
一次函数的定义
一次函数是形如y=kx+b的函 数,其中k和b是常数,k≠0。
一次函数在数学问题中的应用
线性规划
利用一次函数解决资源分 配问题,实现资源利用的 最大化。
代数方程求解
通过一次函数表示代数方 程,简化方程求解过程。
几何图形面积计算
利用一次函数计算几何图 形的面积,如三角形、矩 形等。
一次函数与其他数学知识的结合
与二次函数的结合
利用一次函数和二次函数的性质 ,解决更复杂的数学问题。
一次函数是线性函数的一种, 它的图像是一条直线。
一次函数在平面坐标系中表示 为一条直线,该直线经过点 (0,b)和斜率为k。
一次函数的图像
一次函数的图像是一 条直线,其斜率为k ,截距为b。
通过代入不同的x值 ,可以求出对应的y 值,从而得到函数的 图像。
一次函数图象与性质
![一次函数图象与性质](https://img.taocdn.com/s3/m/0c19bffdf021dd36a32d7375a417866fb84ac0d1.png)
一次函数可以用于找到最佳拟 合线,以更好地描述数据的趋 势。
线性回归
一次函数可以用于进行线性回 归分析,以预测未来的数据趋 势。
结论和要点
• 一次函数是数学中最基本的函数之一,具有稳定的线性关系。 • 斜率和截距是一次函数图象的重要特征。 • 平移和缩放操作可以改变一次函数图象的位置和形状。 • 一次函数在实际问题中有广泛的应用,可以帮助解决各种实际情况。
一次函数图象的平移和缩放
通过平移和缩放操作,可以改变一次函数的图象及其性质。
1
平移
平移操作可以改变一次函数图象的位置,例如向左或向右平移。
2
缩放
缩放操作可以改变一Байду номын сангаас函数图象的形状和大小,例如拉伸或收缩。
3
组合操作
平移和缩放操作可以组合使用,以实现更灵活的一次函数图象变换。
一次函数图象的应用
一次函数的图象和性质在实际问题中有许多应用,例如经济学、物理学和工程学等领域。
一次函数图象与性质
一次函数是数学中最基本的函数之一,它具有许多重要的性质和应用。本次 演示将介绍一次函数的定义、图象特点以及与实际问题的关系。
一次函数的定义和表达式
一次函数是指一个自变量的整数次数都是1的函数。通常以y = ax + b的形式表示,其中a和b是常 数。
1 自变量
一次函数的自变量通常表示为x,它可以是任意实数。
经济学
一次函数可以描述供需关 系、市场价格等经济现象。
物理学
一次函数可以描述速度、 位移等物理量与时间的关 系。
工程学
一次函数可以描述电路、 力学系统等工程问题。
一次函数与实际问题的关系
一次函数是解决实际问题的重要工具,它可以帮助我们理解和解决各种实际情况。
一次函数的图像和性质
![一次函数的图像和性质](https://img.taocdn.com/s3/m/83af1082c8d376eeafaa311f.png)
图象关系 图象平移得到,b>0,向上平移 b 个单位;b<0,向
下平移b个单位
图象确定
因为一次函数的图象是一条直线,由两点确定一条直 线可知画一次函数图象时,只要取两个点即可
第14讲┃ 考点聚焦
(2)正比例函数与一次函数的性质 函数 字母取值 图象 经过的象限
k>0
_一__、__三__象__限_
一次函数图象的
解即两函数图象的交点坐标
交点坐标
一条直线与坐标 轴围成的三角形
的面积
直线y=kx+b与x轴交点坐标为-bk,0,与y轴交
点为(0,b),三角形面积为S△=12-kb
×
|b|
第14讲┃ 考点聚焦 考点5 由待定系数法求一次函数的表达式
因在一次函数y=kx+b(k≠0)中有两个未知系数k和b,所 以要确定其关系式,一般需要两个条件,常见的是已知两点
图 11-1
B.m<1
C.m<0
D.m>0
[解析] 根据函数的图象可知m-1<0,求出m的取 值范围为m<1.故选B.
第14讲┃ 归类示例
► 类型之二 一次函数的图象的平移 命题角度: 1.一次函数的图象的平移规律; 2.求一次函数的图象平移后对应的关系式. [2012·衡阳] 如图11-2,一次函数y=kx+b的图
y随x增 大而增大
_一__、__二__、__四__象__限__ _二__、__三__、__四__象__限__
y随x增 大而减小
第14相交
__k_1_≠__k_2_⇔l1 和 l2 相交
+b1 和 l2:y=k2x 平行 +b2 的位置关系
y=kx (k≠0)
k<0
一次函数课件ppt
![一次函数课件ppt](https://img.taocdn.com/s3/m/b4f20466dc36a32d7375a417866fb84ae45cc3c4.png)
奇偶性
一次函数既不是奇函数也不是偶函数 ,因为它们的图像不关于原点或 y 轴 对称。
02 一次函数的表达式与系数
一次函数的表达式
01
一次函数的一般表达式为 $y = ax + b$,其中 $a$ 和 $b$ 是常 数,且 $a neq 0$。
02
当 $a > 0$ 时,函数为增函数; 当 $a < 0$ 时,函数为减函数。
已知函数与$x$轴和$y$轴的截距,使用截 距式$y = frac{x}{a} + frac{b}{a}$求函数解 析式。
一次函数的解题技巧
数形结合
利用函数图像直观理解 函数性质,如增减性、
最值等。
整体代入
在求解过程中,将表达 式整体代入,简化计算
。
分类讨论
根据不同情况分类讨论 ,得出不同情况下的函
斜率与图像
斜率决定了图像的倾斜程 度,当 a > 0 时,图像向 右倾斜;当 a < 0 时,图 像向左倾斜。
一次函数的性质
单调性
无界性
一次函数的单调性由斜率决定,当 a > 0 时,函数单调递增;当 a < 0 时 ,函数单调递减。
一次函数的值域是全体实数,即对于 任意实数 x,y = ax + b 总有一个对 应的值。
一次函数的系数
一次函数的斜率为 $a$,表示函数图 像的倾斜程度。
当 $a > 0$ 时,函数图像从左下到右 上倾斜;当 $a < 0$ 时,函数图像从 左上到右下倾斜。
一次函数的应用
一次函数在数学、物理、工程等领域都有广泛应用。
在实际生活中,一次函数可以用来描述一些简单的问题,如速度与时间的关系、 价格与数量的关系等。
第一讲 一次函数的概念与图象-【寒假预习】八年级数学核心考点+重难点讲练与测试(沪教版)(原卷版)
![第一讲 一次函数的概念与图象-【寒假预习】八年级数学核心考点+重难点讲练与测试(沪教版)(原卷版)](https://img.taocdn.com/s3/m/1caca5f051e2524de518964bcf84b9d528ea2c8d.png)
第01讲 一次函数的概念与图象目录考点一:识别一次函数考点二:一次函数图象考点三:一次函数图象与系数关系考点四:一次函数图象上的点的坐标特征考点五:一次函数图象与几何变换【基础知识】一、一次函数的概念(1) 一般地,解析式形如y kx b =+(k ,b 是常数,且0k ≠)的函数叫做一次函数;(2) 一次函数y kx b =+的定义域是一切实数;(3) 当0b =时,解析式y kx b =+就成为y kx =(k 是常数,且0k ≠),这时y 是x 的正比例函数,所以正比例函数是一次函数的特例;(4) 一般地,我们把函数y c =(为常数)叫做常值函数.它的自变量由所讨论的问题确定.二、一次函数的图像:一般地,一次函数y kx b =+(k ,b 是常数,且0k ≠)的图像是一条直线.一次函数y kx b =+的图像也称为直线y kx b =+,这时,我们把一次函数的解析式y kx b =+称为这一直线的表达式.画一次函数y kx b =+的图像时,只需描出图像上的两个点,然后过这两点作一条直线.三、 一次函数的截距:一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距,一般地,直线y kx b =+(0k ≠)与y 轴的交点坐标(0)b ,.直线y kx b =+(0k ≠)的截距是b .四、 一次函数图像的平移:一般地,一次函数y kx b =+(0b ≠)的图像可由正比例函数y kx =的图像平移得到.当0b >时,向上平移个单位;当0b <时,向下平移b 个单位.(函数平移口诀简记为:“上加下减,左加右减”)【考点剖析】一.一次函数的定义(共3小题)1.(2022春•杨浦区校级期中)以下函数中,属于一次函数的是()A.y=B.y=C.y=c(c为常数)D.y=kx+b(k、b为常数)2.(2022春•静安区校级期中)根据变量x、y的关系式,属于y是x的一次函数的是()①y=k(x﹣1)(k≠0)②y=1﹣(k≠0)③x﹣y=2(k≠0)④y=kx+(k≠0).A.①B.①②③C.①③D.全部都是.3.(2022春•闵行区校级月考)已知函数y=(m﹣3)x+3是一次函数,则m=.二.一次函数的图象(共6小题)4.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.5.(2021春•徐汇区期中)如图所示,一次函数y=mx+m的图象中可能是()A.B.C.D.6.(2021春•徐汇区校级月考)如图,已知一次函数y=kx+b(k、b为常数,k≠0)的图象,当y>﹣2时,x的取值范围为()A.x<1B.x>1C.x<0D.x>07.(2022春•徐汇区校级期中)一次函数y=kx+b的图象如图所示,当y>3时,x的取值范围是()A.x<0B.x>0C.x<2D.x>2.8.(2022春•闵行区校级期中)在直角坐标平面内,一次函数y=ax+b的图象如图所示,那么下列说法正确的是()A.当x>0时,y>﹣2B.当x<1时,y>0C.当x<0时,﹣2<y<0D.当x≥1时,y≤09.(2022春•嘉定区期中)如图是一次函数y=kx+b的图象,当x时,函数图象在x轴的上方.三.一次函数图象与系数的关系(共7小题)10.(2022春•杨浦区校级期末)若直线y=kx+b经过一、二、四象限,则直线y=bx﹣k的图象只能是图中的()A.B.C.D.11.(2022春•闵行区校级期中)如果一次函数y=(m﹣3)x+m的图象过第一、二、四象限,那么m的取值范围是.12.(2022春•徐汇区校级期中)一次函数y=(k+1)x﹣2的函数值y随自变量x的增大而减小,那么k 的取值范围是.13.(2022春•静安区校级期中)已知直线y=(1﹣3m)x+(2m﹣1)经过第二、三、四象限,则m的取值范围为.14.(2022春•嘉定区期中)一次函数y=(4﹣k)x+3,y随x的增大而减小,则k的取值范围是.15.(2022春•黄浦区校级期中)已知一次函数y=(2k﹣1)x+k的函数值y随x的值增大而增大,那么k 的取值范围是.16.(2022春•杨浦区校级期中)已知一次函数y=kx+k﹣1(其中k为常数且k≠0)的图象不经过第二象限,则k的取值范围是.四.一次函数图象上点的坐标特征(共8小题)17.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.318.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)19.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).20.(2022春•杨浦区校级期中)一次函数y=3x+b的图象过坐标点(﹣2,4),则该函数的截距为.21.(2022春•普陀区校级期中)一次函数y=﹣4x﹣2的图象与x轴的交点坐标是.22.(2022春•浦东新区校级期中)已知一次函数y=x﹣1的图象上有点A(2,a)和点P,且PO=P A,则点P的坐标为.23.(2022春•普陀区校级期中)已知一次函数y=2x+4的图象与x轴、y轴分别相交于点A、点B,在直线x=4上有一点C,连接AC、BC,三角形ABC是等腰三角形,则点C的坐标为.24.(2022春•静安区校级期中)直线y=kx+b经过A(﹣20,5)、B(10,20)两点,求这条直线与两坐标轴围成的三角形的面积是.五.一次函数图象与几何变换(共8小题)25.(2022春•闵行区校级期末)将直线y=2x﹣3沿y轴向上平移6个单位后,所得直线的解析式是.26.(2022春•奉贤区校级期末)如果将函数y=2x﹣2的图象平移,且经过(0,3),那么所得图象的函数解析式是.27.(2022春•静安区期中)将直线y=﹣2x﹣4向上平移5个单位,所得直线的表达式是.28.(2022春•黄浦区校级期中)将直线y=3x+2沿y轴向下平移个单位,那么平移后直线就经过点(0,﹣1).29.(2022春•杨浦区校级期中)将直线y=﹣3x向上平移1个单位,则平移后的新直线一定不经过第象限.30.(2022春•浦东新区校级期中)将直线y=﹣x﹣1向上平移4个单位所得的直线表达式为.31.(2022春•静安区校级期中)已知:如图所示,直线y=﹣x+4的与x轴、y轴分别交于点B和点A,将这条直线平移后与x轴、y轴分别交于点C和点D,且BA=CB.(1)求点C的坐标;(2)求CD所在直线的函数解析式.32.(2022春•长宁区校级期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.【过关检测】一.选择题(共7小题)1.(2022春•徐汇区校级期中)以下函数中,属于一次函数的是()A.y=x2+2B.y=kx+b(k、b是常数)C.y=D.y=2.(2022春•徐汇区期末)一次函数y=3(x﹣1)在y轴上的截距是()A.﹣1B.1C.﹣3D.33.(2022春•静安区校级期中)如图,若k•b>0,且b+k>0,则一次函数y=kx+b的大致图象是()A.B.C.D.4.(2022春•嘉定区校级期中)下列各点在直线y=﹣2x+1上的是()A.(1,0)B.(2,0)C.(0,1)D.(0,)5.(2022春•徐汇区校级期中)函数y=x﹣3的图象不经过()A.第一象限B.第二象限C.第三象限D.第四象限6.(2022春•嘉定区校级期中)已知一次函数y=kx+b,k<0,b>0,那么下列判断中,正确的是()A.图象不经过第一象限B.图象不经过第二象限C.图象不经过第三象限D.图象不经过第四象限7.(2022春•普陀区校级期中)一次函数y=kx+k(k<0)的图象大致是()A.B.C.D.二.填空题(共20小题)8.若y=kx+4﹣x是一次函数,则k的取值范围是.9.(2021秋•金山区期末)已知正比例函数y=kx的图象经过点(2,﹣2),则y的值随着x的值增大而(填“增大”、“减小”、或“不变”).10.(2022春•青浦区校级期末)一次函数y=kx+2x+k2,若函数值y随自变量x的增大而减小,那么k的取值范围是.11.(2022春•上海期中)一次函数y=2(x﹣1)+3的图象在y轴上的截距是.12.(2022春•嘉定区期中)若直线y=﹣x﹣1的图象过点A(4,m),则m=.13.(2022春•黄浦区校级期中)若直线y=mx﹣2经过点(4,2),则该直线与两坐标轴围成的三角形的面积为.14.(2022春•奉贤区校级月考)已知经过点(1,﹣2)的直线y=kx+b是由y=3x+1向下平移后得到的,那么这条直线的解析式是.15.(2022春•徐汇区校级期中)已知一次函数y=(2m+1)x﹣1,且y的值随着x的值增大而减小,则m 的取值范围是.16.(2022春•静安区期中)把函数y=2x的图象向下平移3个单位,再向左平移2个单位,得到的函数图象解析式为.17.(2022春•浦东新区校级期中)已知一次函数y=kx+4(k≠0)的图象与两坐标轴围成的三角形面积为4,则k=.18.(2022春•徐汇区校级期中)直线y=kx+2经过点A(2,4),且交x轴于点B,在x轴上有一点C,若△ABC的面积为12,则C点坐标为.19.(2022春•徐汇区校级期中)一次函数y=﹣x+4与x轴交于点A,与y轴交于点B,将线段AB绕A 点逆时针旋转90°,使B点落在M点处,则M的坐标为.20.(2022春•浦东新区校级期中)点(a,b)在直线y=﹣2x+3上,则4a+2b﹣1=.21.(2022春•杨浦区校级期中)若函数y=4x+b的图象与两坐标轴围成的三角形面积为6,那么b=.22.(2022春•普陀区校级期中)一次函数y=﹣3x﹣6的图象与x轴的交点坐标是.23.(2022春•闵行区校级期中)如果关于x的一次函数y=(m﹣3)x+m的图象不经过第三象限,那么m 的取值范围.24.(2022春•虹口区期中)点A(1,3)(填“在”或“不在”)直线y=﹣x+2上.25.(2022春•闵行区校级月考)如果点A(﹣1,a),B(1,b)在直线y=﹣2x+m上,那么a b (填“>”、“<”或“=”).26.(2022春•奉贤区校级期末)当x=2时,不论k取任何实数,函数y=k(x﹣2)+3的值为3,所以直线y=k(x﹣2)+3一定经过定点(2,3);同样,直线y=(k﹣2)x+4k一定经过的定点为.27.(2015春•闸北区期中)已知:如图所示,直线y=﹣x+交x轴于点A,交y轴于点B,若点P 从点A出发,沿射线AB做匀速运动,点Q从点B出发,沿射线BO做匀速直线运动,两点同时出发,运动速度也相同,当△BPQ为直角三角形时,则点Q的坐标为.三.解答题(共7小题)28.(2022春•奉贤区校级月考)如图,一次函数y=x+3的函数图象与x轴,y轴分别交于点A,B.(1)若点P(﹣2,m)为第三象限内一个动点,请问△OPB的面积会变化吗?若不变,请求出面积;若变化,请说明理由.(2)在(1)的条件下,试用含m的代数式表示四边形APOB的面积;若△APB的面积是6,求m的值.29.(2021春•嘉定区校级期中)如图,直线l:y=﹣x+2与x轴、y轴分别交于A、B两点,在y轴上有一点C(0,4),动点M从A点以每秒1个单位的速度沿x轴向左移动.(1)求A、B两点的坐标;(2)求△COM的面积S与M的移动时间t之间的函数关系式;(3)当t为何值时△COM≌△AOB,并求此时M点的坐标.30.(2021春•浦东新区期中)如图,在平面直角坐标系xOy中,直线y=﹣x+4与x轴、y轴分别交于点A、点B,点D在y轴的负半轴上,若将△DAB沿直线AD折叠,点B恰好落在x轴正半轴上的点C处.(1)求AB的长;(2)求点C和点D的坐标;(3)y轴上是否存在一点P,使得S△P AB=S△OCD?若存在,直接写出点P的坐标;若不存在,请说明理由.31.(2021春•嘉定区校级期中)若直线分别交x轴、y轴于A、B两点,点P是该直线上的一点,PC⊥x轴,C为垂足.(1)求△AOB的面积.(2)如果四边形PCOB的面积等△AOB的面积的一半,求出此时点P的坐标.32.(2021春•徐汇区校级月考)在平面直角坐标系中,直线y=kx+b(k≠0)向上平移2个单位后与直线y=x重合,且直线y=kx+b(k≠0)与x轴交于点A,与y轴交于点B.(1)写出点B的坐标,求直线AB的表达式;(2)求△AOB的面积.33.(2021春•松江区月考)已知一次函数y=(2﹣k)x﹣k2+4.(1)k为何值时,y随x的增大而减小?(2)k为何值时,它的图象经过原点?34.(2021春•徐汇区期中)已知把直线y=kx+b(k≠0)沿着y轴向上平移3个单位后,得到直线y=﹣2x+5.(1)求直线y=kx+b(k≠0)的解析式;(2)求直线y=kx+b(k≠0)与坐标轴围成的三角形的周长.。
一次函数详解
![一次函数详解](https://img.taocdn.com/s3/m/187803a6988fcc22bcd126fff705cc1755275ff7.png)
一次函数
一次函数的定义
一般地,形如y=kx+b(k,b是常数,且k≠0)
的函数,叫做一次函数,其中x是自变量。当b=0 时,一次函数y=kx(k≠0),又叫做正比例函数 (正比例函数是一次函数的特例,一次函数包括 正比例函数)。
析式
形式是y=kx+b,判断一个函数是否是一次函数, 就是判断是否能化成这种形式。 注:一次函数一般形式 y=kx+b (k不为零) ① k不为零 ②x指数为1 ③ b取任意实数
图像
一次函数y=kx+b在直角坐标系中 的图像是一条直线。k是斜率(反 映直线对x轴的倾斜度)。
k>0时,图像从左到右上升,y随x 的增大而增大,经过的象限如图:
k<0时,图像从左到右下降,y 随x的增大而减小,经过的象限 如图:
性质
在一次函数上的任意一点P(x,y),都满足 等式:y=kx+b(k≠0)。
一次函数与y轴交点的坐标总是(0,b),与x轴 总是交于(-b/k,0),正比例函数的图像都是过 原点的。
最值
一般情况,一次函数没有最大值或最小值,但 是当自变量的取值范围有限制时,在端点可以 取到最大值或最小值。在应用题中要特别注意 自变量的取值范围。
过定点
正比例函数y=kx,过(0,0),(1,k) 一次函数y=kx+b,过(0,b),(-b/k,0) 例如直线y=kx-k,此时b=-k,套用(-b/k,0),可知y=kx-k 过定点(1,0)。 这种题也可以这样理解,对于y=kx-k,当x确定时y与k值有 关,所以y不确定,想过定点(x1,y1),需要使y与k无关。 由于参数k是字母,可以把它当作关于k的方程,即y=(x-1)k。 该方程有无数个解(无论k取何值,(x1,y1)都满足这个方程)
一次函数的图象课件
![一次函数的图象课件](https://img.taocdn.com/s3/m/e03b3d6bbc64783e0912a21614791711cc79798a.png)
欢迎来到一次函数的图象ppt课件!在这个课件中,我们会探讨一次函数的定 义和特点、标准式和一般式、图像特征、平移和伸缩、应用场景、解一次方 程以及一些练习题和总结。
一次函数的定义和特点
一次函数是一个线性函数,它的图像是一条直线。它的特点是斜率恒定,代 表着增长的速度或减少的速度。
一次函数可以用来描述速度、位移和时间之间的 关系。
3 工程学
4 统计学
Байду номын сангаас一次函数可以用来解决线性规划问题和最优化问 题。
一次函数可以用来拟合和预测数据。
解一次方程及应用
1
步骤二
2
计算斜率和截距的值。
3
步骤四
4
找到方程的解或应用特定的值。
步骤一
将方程转化为标准式。
步骤三
画出一次函数的图像。
练习题与总结
一次函数的标准式和一般式
一次函数的标准式为y = ax + b,其中a是斜率,b是截距。一般式为Ax + By + C = 0,其中A、B和C是常数。
一次函数的图像特征
斜率
斜率决定了直线的倾斜程度,正斜率表示向上增长,负斜率表示向下减小。
截距
截距表示直线与y轴的相交点,可以用来推测函数的起点或截距。
练习题
1. 求解方程 y = 2x + 3 的解。 2. 画出方程 y = -0.5x + 2 的图像。
总结
一次函数是数学中重要的概念,它具有线性的特点, 可以用来描述许多实际问题。通过学习一次函数,你 可以更好地理解数学和应用它们。
平行于坐标轴
一次函数的图像平行于坐标轴,这意味着x坐标和y坐标只有一个值会变化。
(完整版)一次函数的图像与性质
![(完整版)一次函数的图像与性质](https://img.taocdn.com/s3/m/cf3f86ed0b1c59eef8c7b4a4.png)
一次函数的性质和图像目录一、函数的定义(一)、一次函数的定义函数。
(二)、正比例函数的定义二、函数的性质(一)、一次函数的性质(二)、正比例函数的性质三、函数的图像(一)、一次函数和正比例函数图像在坐标上的位置(二)、一次函数的图像1、一次函数图像的形状2、一次函数图像的画法(三)、正比例函数的图像1、正比例函数图像的形状2、正比例函数图像的画法3、举例说明正比例函数图像的画法四、k、b两个字母对图像位置的影响K、b两个字母的具体分工是:(一次项系数)k决定图象的倾斜度。
(常数项)b决定图象与y轴交点位置。
五、解析式的确定(一)一个点坐标决定正比,两个点坐标决定一次(二)用待定系数法确定解析式六、两条函数直线的四种位置关系两直线平行,k1= k2,b1≠b2两直线重合,k1= k2,b1=b2两直线相交,k1≠k2两直线垂直,k1×k2=-1(一)两条函数直线的平行(二)两条函数直线的相交(三)两条函数直线的垂直一次函数、反比例函数中自变量x前面的字母k称为比例系数这一节我们要学习正比例函数和一次函数。
一次函数的解析式是y=kx+b,如果当这个式子中的b=0时,式子就变成了正比例函数y=kx。
因此,正比例函数是一次函数当b=0时的特殊情况。
正是因为正比例函数实际上就是一次函数,所以把正比例函数和一次函数结合在一起来学习。
在正比例函数y=kx和反比例函数y=k/x中,由于函数y与自变量x之间有比例关系,就要在自变量x前面用字母系数k表示它们之间的比例关系,因而字母k就取名为比例系数。
确定了比例系数k就可以直接确定正比例函数或反比例函数的解析式。
但是,在一次函数y=kx+b和二次函数y=ax2+bx+c中,我们从观察解析式就可以看出,函数y与自变量x之间没有相直接对应的比例关系,因此这两种函数自变量x前面的k,就不能叫比例系数,只能叫常数。
若欲确定一次函数或二次函数的解析式时,题意仅已知常数k还不行,还需要其他常数如b、c等常数的协助。
一次函数的图像(解析版)
![一次函数的图像(解析版)](https://img.taocdn.com/s3/m/d3fe6604abea998fcc22bcd126fff705cc175c19.png)
5.4一次函数的图像一、一次函数的定义一般地,形如y kx b =+(k ,b 是常数,k ≠0)的函数,叫做一次函数.y kx = (k 为常数,且k ≠0)的函数,叫做正比例函数.其中k 叫做比例系数.要点:当b =0时,y kx b =+即y kx =,所以说正比例函数是一种特殊的一次函数.一次函数的定义是根据它的解析式的形式特征给出的,要注意其中对常数k ,b 的要求,一次函数也被称为线性函数.二、一次函数的图象与性质1.函数y kx b =+(k 、b 为常数,且k ≠0)的图象是一条直线:当b >0时,直线y kx b =+是由直线y kx =向上平移b 个单位长度得到的; 当b <0时,直线y kx b =+是由直线y kx =向下平移|b |个单位长度得到的. 2.一次函数y kx b =+(k 、b 为常数,且k ≠0)的图象与性质: 正比例函数的图象是经过原点(0,0)和点(1,k )的一条直线; 一次函数(0)y kx b k =+≠图象和性质如下:3. k 、b 对一次函数y kx b =+的图象和性质的影响:k 决定直线y kx b =+从左向右的趋势,b 决定它与y 轴交点的位置,k 、b 一起决定直线y kx b =+经过的象限.4. 两条直线1l :11y k x b =+和2l :22y k x b =+的位置关系可由其系数确定: (1)12k k ≠⇔1l 与2l 相交; (2)12k k =,且12b b ≠⇔1l 与2l 平行; 三、待定系数法求一次函数解析式一次函数y kx b =+(k ,b 是常数,k ≠0)中有两个待定系数k ,b ,需要两个独立条件确定两个关于k ,b 的方程,这两个条件通常为两个点或两对x ,y 的值.要点:先设出函数解析式,再根据条件确定解析式中未知数的系数,从而具体写出这个式子的方法,叫做待定系数法.由于一次函数y kx b =+中有k 和b 两个待定系数,所以用待定系数法时需要根据两个条件列二元一次方程组(以k 和b 为未知数),解方程组后就能具体写出一次函数的解析式. 四、分段函数对于某些量不能用一个解析式表示,而需要分情况(自变量的不同取值范围)用不同的解析式表示,因此得到的函数是形式比较复杂的分段函数.解题中要注意解析式对应的自变量的取值范围,分段考虑问题.要点:对于分段函数的问题,特别要注意相应的自变量变化范围.在解析式和图象上都要反映出自变量的相应取值范围.一、单选题1.已知正比例函数34y x =-,则下列各点在该函数图象上的是( )A .()4,3-B .()4,3--C .()2,1-D .()3,4-【答案】A【提示】将选项各点坐标代入,即可判断.【解答】A .当4x =时,=3y -,故点()4,3-在函数图象上,A 项符合题意; B .当4x =-时,33y =≠-,故点()4,3--不在函数图象上,B 项不符合题意; C .当2x =-时, 1.51y =≠,故点()2,1-不在函数图象上,C 项不符合题意; D .当3x =-时, 2.254y =≠,故点()3,4-不在函数图象上,D 项不符合题意; 故选:A .【点睛】本题主要考查了正比例函数图象上的点的坐标特征,掌握正比例函数的定义是解题的关键. 2.已知一次函数y kx b =+的图象经过点()2,1-,且平行于直线2y x =-,则b 的值为( ) A .2- B .1C .3-D .4【答案】C【提示】根据两直线平行,一次项系数相等求出k 的值,再利用待定系数法求解即可. 【解答】解:∵一次函数y kx b =+与直线2y x =-平行, ∴一次函数解析式为2y x b =-+,∵一次函数2y x b =-+经过点()21-,, ∴()122b =-⨯-+, ∴3b =-, 故选:C .【点睛】本题主要考查了一次函数图象的平移,求一次函数解析式,正确求出2k =-是解题的关键. 3.关于函数21y x =--,下列结论正确的是( ) A .图象必经过点()2,1- B .y 随x 的增大而增大C .当12x >时,0y < D .图象经过第一、二、三象限 【答案】C【提示】根据一次函数的性质可进行排除选项.【解答】解:由函数21y x =--可知:20k =-<,10b =-<,则y 随x 的增大而减小,且该函数图象经过第二、三、四象限,故B 、D 选项错误;当2x =-时,则()2213y =-⨯--=,所以函数图象经过点()2,3-,故A 选项错误; 当12x >-时,0y <,所以当12x >时,0y <说法正确;故选:C .【点睛】本题主要考查一次函数的图象与性质,熟练掌握一次函数的图象与性质是解题的关键.4.已知一次函数31(3)y mx x m =-+<的图像经过1)A y ,2)B y ,3(5,)C y ,则123,,y y y 的大小关系是( ) A .123y y y << B .132y y y <<C .321y y y <<D .231y y y <<【答案】D【提示】根据一次函数的增减性判断即可. 【解答】解:∵3m <, ∴(3)0k m =-<, ∴y 随x 的增大而减小,又∵点1)A y ,2)B y ,3(5,)C y 均在一次函数31(3)y mx x m =-+<的图像上,∵()()22277,525,2728===,∴7527<<, ∴231y y y <<, 故选:D .【点睛】本题考查了一次函数的性质,无理数的估算,熟练掌握一次函数的性质是解本题的关键. 5.三个正比例函数的表达式分别为①y ax =;②y bx =③y cx =,其在平面直角坐标系中的图像如图所示,则a ,b ,c 的大小关系为( )A .a b c >>B .c b >>aC .b a c >>D .b c >>a 【答案】C【提示】先根据函数图象经过的象限得出0a >,0b >,0c <,再根据直线越陡,k 越大得出答案. 【解答】解:∵y ax =和y bx =的图象经过一、三象限,y cx =的图象经过二、四象限, ∴0a >,0b >,0c <, ∵直线y bx =比直线y ax =陡, ∴b a >, ∴b a c >>, 故选:C .【点睛】本题考查了正比例函数的图象,当0k >时,函数图象经过一、三象限;当0k <时,函数图象经过二、四象限;直线越陡,k 越大.6.将直线21y x =+向下平移2个单位长度后,得到直线y kx b =+,则下列关于直线y kx b =+的说法正确的是( ) A .与x 轴交于点20(,) B .与y 轴交于点()0,1-C .y 随x 的增大而减小D .与两坐标轴围成的三角形的面积为12【答案】B【提示】首先根据函数图像平移法则,向下平移2个单位,则给函数解析式右端减2,即可得到平移后的直线方程;接下来根据一次函数图像的性质分析与坐标轴围成面积,交点坐标以及y 随x 的变化关系,即可得解.【解答】解:将直线21y x =+向下平移2个单位长度后得到直线21221y x x =+-=-,A 、直线21y x =-与x 轴交于1,02⎛⎫⎪⎝⎭,故本选项不合题意;B 、直线21y x =-与y 轴交于()0,1-,故本选项,符合题意;C 、直线21y x =-,y 随x 的增大而增大,故本选项不合题意;D 、直线21y x =-与两坐标轴围成的三角形的面积为1111224⨯⨯=,故本选项不合题意;故选:B .【点睛】本题主要考查一次函数的平移及性质,熟练掌握一次函数的图象和性质是解题的关键. 7.如图中表示一次函数y mx n =+与正比例函数y mnx =(m 、n 是常数,mn≠0)图象的是( )A .B .C .D .【答案】C【提示】根据“两数相乘,同号得正,异号得负”分两种情况讨论m 、n 的符号,然后根据m 、n 同正时,同负时,一正一负或一负一正时,利用一次函数的性质进行判断.【解答】解:①当0mn >,y mnx =过一,三象限,m ,n 同号,同正时y mx n =+过一,二,三象限,同负时过二,三,四象限;②当0mn <时,y mnx =过二,四象限,m ,n 异号,则y mx n =+过一,三,四象限或一,二,四象限.观察图象,只有选项C 符合题意, 故选:C .【点睛】此题主要考查了一次函数的图象性质,要掌握它的性质才能灵活解题. 一次函数y kx b =+的图象有四种情况:①当00k b >>,,函数y kx b =+的图象经过第一、二、三象限; ②当00k b ><,,函数y kx b =+的图象经过第一、三、四象限; ③当00k b <>,时,函数y kx b =+的图象经过第一、二、四象限; ④当00k b <<,时,函数y kx b =+的图象经过第二、三、四象限.8.已知一次函数y kx b =+(0k ≠),如表是x 与y 的一些对应数值,则下列结论中正确的是( )A .y 随x 的增大而增大B .函数的图象向上平移4个单位长度得到2y x =-的图象C .函数的图象不经过第三象限D .若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y < 【答案】C【提示】首先把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,解方程组,即可求得一次函数的解析式,再根据一次函数的性质即可解答.【解答】解:把04x y =⎧⎨=⎩、12x y =⎧⎨=⎩分别代入解析式,得42b k b =⎧⎨+=⎩ 解得24k b =-⎧⎨=⎩故该一次函数的解析式为24y x =-+,故该函数图象经过一、二、四象限,不经过第三象限,故C 正确;20k <,∴y 随x 的增大而减小,故A 错误;若()11,A x y ,()22,B x y 两点在该函数图象上,且12x x <,则12y y >,故D 错误; 将该函数的图象向上平移4个单位长度得到28y x =-+的图象,故B 错误;故选:C .【点睛】本题考查了求一次函数的解析式及一次函数的性质,熟练掌握和运用一次函数的性质是解决本题的关键. 9.如图,直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,,点()2P n ,在直线l 上,已知M 是x 轴上的动点.当以A ,P ,M 为顶点的三角形是直角三角形时,点M 的坐标为( )A .()2,0-或()3.0B .()2,0或()3.0C .()1,0或()4.0D .()2,0或()4.0 【答案】B【提示】根据题意,可以求得点A 点B 和点P 的坐标,设出点M 的坐标再根据分类讨论的方法结合勾股定理即可求得点M 的坐标. 【解答】解:∵直线l :12y x m =+交x 轴于点A ,交y 轴于点()01B ,∴当0y =,102x m +=,1012m ⨯+=, 解得1m =,2x =-,∴点A 坐标为(20)-,, ∵点()2P n ,在直线l 上 ∴当2y =,1212n =+, 解得2n =,即()22P ,设M 点坐标为()0a ,当AM PM ⊥ 时,此时点P 与点M 横坐标相同,即2a n == , ∴(20)M ,; ②当AP PM ⊥时,此时()222AM a =+ ,()2224PM a =-+ ,222[(2(2)]220AP =--+= ,根据勾股定理得()()2224202a a -++=+,解得,3a =,∴(30)M ,;综上所述∴(20)M ,或(30)M ,; 故选B .【点睛】本题考查一次函数图像上点的坐标特征,动点中的直角三角形,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.10.已知直线483y x =-+与x 轴、y 轴分别交于点A 和点B ,M 是OB 上的一点,若将ABM 沿AM折叠,点B 恰好落在x 轴上的点B '处,则直线AM 的函数解析式是( )A .142y x =-+ B .243y x =-+ C .132y x =-+ D .133y x =-+【答案】C【提示】先求出点,A B 的坐标,从而得出,OA OB 的长度,运用勾股定理求出AB 的长度,然后根据折叠的性质可知,AB AB MB MB ''==,OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=,运用勾股定理列方程得出OM 的长度,即点M 的坐标已知,运用待定系数法求一次函数解析式即可.【解答】解:当0x =时,4883y x =-+=,即(0,8)B ,当0y =时,6x =,即(6,0)A ,所以226810AB AB '=+=,即(4,0)B '-,设OM x =,则8B M BM BO MO x '==-=-,1064B O AB AO ''=-=-=, ∴在Rt B OM '中,B O OM B M ''+=, 即2224(8)x x +=-, 解得:3x =, ∴(0,3)M , 又(6,0)A ,设直线AM 的解析式为y kx b =+,则063k b b =+⎧⎨=⎩,解得123k b ⎧=-⎪⎨⎪=⎩, ∴直线AM 的解析式为132y x =-+.故选:C .【点睛】本题考查了一次函数与坐标轴的交点问题,折叠的性质,勾股定理,待定系数法求一次函数解析式,根据题意得出(0,3)M 的坐标是解本题的关键.二、填空题11.正比例函数()32y a x =-的图象过第一、三象限,则a 的取值范围是______. 【答案】23a >##23a <【提示】根据正比例函数的图象经过第一、三象限,得k>0,即320a ->,计算即可得解. 【解答】解:由正比例函数()32y a x =-的图象经过第一、三象限, 可得:320a ->,则23a >.故答案为:23a >.【点睛】本题考查了正比例函数的性质,对于正比例函数y=kx (k≠0),当k>0时,图象经过一、三象限,y 随x 的增大而增大;当k<0时,图象经过二、四象限,y 随x 的增大而减小. 12.已知直线1L :26y x =-,则直线1L 关于x 轴对称的直线2L 的函数解析式是______. 【答案】26y x =-+##62y x =-【提示】直接根据关于x 轴对称的点横坐标不变纵坐标互为相反数进行解答即可. 【解答】解:∵关于x 轴对称的点横坐标不变纵坐标互为相反数, ∴直线1L :y=2x-6与直线2L 关于x 轴对称, 则直线2L 的解析式为-y=2x-6,即y=-2x+6. 故答案为:y=-2x+6.【点睛】本题考查的是一次函数的图象与几何变换,熟知关于x 轴对称的点的坐标特点是解答此题的关键.13.如图,正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),当2x <时,1y ___________2y (填“>”或“<”)【答案】<【提示】根据两函数图象及交点坐标,即可解答.【解答】解:正比例函数11y k x =和一次函数22y k x b =+的图象相交于点2,1A (),∴由图象可知:当2x <时,12y y <, 故答案为:<.【点睛】本题考查了利用函数图象比较函数值的大小,采用数形结合的思想是解决此类题的关键. 14.已知(,1)A n n +、(1,4)B n n -+、(,)C m t 是正比例函数y kx =图象上的三个点,当3m >时,t 的取值范围是______. 【答案】9t <-【提示】根据,A B 两点在y kx = 上求出k 得出该正比例函数解析式后,由单调性判断即可.【解答】将点A 与点B 代入y kx = ,得:141n knn k n +=⎧⎨+=-⎩() , 两式相减,得:3k =- , 3y x ∴=-,∴ y 随x 的增大而减小,当3m = 时,339t =-⨯=-, ∴ 当m >3时,t <-9,故答案为:t <-9.【点睛】本题考查函数解析式的求解与正比例函数的性质,将未知点代入求出解析式为关键,属于中等题.15.在平面直角坐标中,点()3,2A --、()1,2B --,直线()0y kx k =≠与线段AB 有交点,则k 的取值范围为______. 【答案】232k ≤≤##223x ≥≥ 【提示】因为直线y =kx (k≠0)与线段AB 有交点,所以当直线y =kx (k≠0)过()1,2B --时,k 值最大;当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,然后把B 点和A 点坐标代入y =kx (k≠0)可计算出对应的k 的值,从而得到k 的取值范围. 【解答】解:∵直线y =kx (k≠0)与线段AB 有交点,∴当直线y =kx (k≠0)过B (﹣1,﹣2)时,k 值最大,则有﹣k =﹣2,解得k =2; 当直线y =kx (k≠0)过A (﹣3,﹣2)时,k 值最小,则﹣3k =﹣2,解得k =23, ∴k 的取值范围为232k ≤≤.故答案为:232k ≤≤. 【点睛】本题考查了一次函数图象与系数的关系,一次函数图象上点的坐标特征,解题的关键是熟悉一次函数图象的性质.16.直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点,两直线相交于x 轴上同一点A . (1):m n =________(2)若8ABC S =△,点A 的坐标是______________ 【答案】 2:3 ()4,0或()4,0-【提示】根据两直线相交同一点,则横坐标相同,即可;设A 的坐标为:()0a ,,根据8ABC S =△,则12ABCSBC a =⨯⨯,解出a ,即可. 【解答】∵直线8y mx =-和直线12y nx =-相交x 轴上同一点A ∴08mx =-,012nx =-∴直线8y mx =-与x 轴的交点为8,0m ⎛⎫⎪⎝⎭,直线12y nx =-与x 轴的交点为12,0n ⎛⎫ ⎪⎝⎭∴812m n= ∴:2:3m n =;设A 的坐标为:()0a , ∵8ABC S =△ ∴12ABCSBC a =⨯⨯ ∵直线8y mx =-与直线12y nx =-分别交y 轴于B ,C 两点 ∴点()0,8B -,()0,12C - ∴1482ABCSa =⨯⨯= ∴4a =∴4a =±∴点A 的坐标为()4,0或()4,0-. 故答案为:2:3;()4,0或()4,0-.【点睛】本题考查一次函数的知识,解题的关键是掌握一次函数图象与性质.17.已知一次函数(0)y kx b k =+≠的图象经过点A(3,0),与y 轴交于点B ,O 为坐标原点. 若△AOB 的面积为6,则该一次函数的解析式为_____________ .【答案】443y x =--或443y x =+【提示】分两种情况:当点B 在y 轴正半轴时,当点B 在y 轴负半轴时,然后利用待定系数法进行计算即可解答.【解答】解:点(3,0)A ,3OA ∴=,AOB ∆的面积为6,∴162OA OB ⋅=, ∴1362OB ⨯⋅=,4OB ∴=,(0,4)B ∴或(0,4)-,将(3,0)A ,(0,4)B 代入(0)y kx b k =+≠得: 304k b b +=⎧⎨=⎩,解得:434k b ⎧=-⎪⎨⎪=⎩, ∴一次函数的解析式为:443y x =-+,将(3,0)A ,(0,4)B -代入(0)y kx b k =+≠得:304k b b +=⎧⎨=-⎩,解得:434k b ⎧=⎪⎨⎪=-⎩, ∴一次函数的解析式为:443y x =-,综上所述:一次函数的解析式为:443y x =-+或443y x =-,故答案为:443y x =-+或443y x =-.【点睛】本题考查了待定系数法求一次函数解析式,一次函数的性质,一次函数图象上点的坐标特征,分两种情况讨论是解题的关键.18.如图,在平面直角坐标系xOy 中,直线4y x =-+与坐标轴交于A ,B 两点,OC AB ⊥于点C ,P 是线段OC 上的一个动点,连接AP ,将线段AP 绕点A 逆时针旋转45︒,得到线段'AP ,连接'CP ,则线段'CP 的最小值为______.【答案】222-【提示】由点P 的运动确定P '的运动轨迹是在与x 轴垂直的一段线段MN ,当线段'CP 与MN 垂直时,线段'CP 的值最小.【解答】解:由已知可得()()0,44,0A B , ∴三角形OAB 是等腰直角三角形,OC AB ⊥,()2,2C ∴,又P 是线段OC 上动点,将线段AP 绕点A 逆时针旋转45︒, P 在线段OC 上运动,所以P'的运动轨迹也是线段,当P 在O 点时和P 在C 点时分别确定P'的起点与终点,'P ∴的运动轨迹是在与x 轴垂直的一段线段MN ,∴当线段'CP 与MN 垂直时,线段'CP 的值最小,在AOB 中,4AO AN ==,42AB =424NB ∴=,又Rt HBN 是等腰直角三角形,422HB ∴=-('24422CP OB BH ∴=--=---=.故答案为2.【点睛】此题考查了直角三角形的性质,一次函数图象上点的坐标特点,动点运动轨迹的判断,垂线段最短,熟练掌握一次函数图象的性质是解题的关键.三、解答题19.已知一次函数()2312y k x k =--+.(1)当k 为何值时,图像与直线29y x =+的交点在y 轴上? (2)当k 为何值时,图像平行于直线2y x =-? (3)当k 为何值时,y 随x 的增大而减小? 【答案】(1)1k = (2)0k = (3)2k <【提示】(1)先求出直线29y x =+与y 轴的交点坐标,把此点坐标代入所求一次函数的解析式即可求出k 的值;(2)根据两直线平行时其自变量的系数相等,列出方程,求出k 的值即可; (3)根据比例系数0<时,数列出不等式,求出k 的取值范围即可. 【解答】(1)解:当0x =时,9y =,∴直线29y x =+与y 轴的交点坐标为()09,, ∵一次函数()2312y k x k =--+的图像与直线29y x =+的交点在y 轴上, ∴()203129k k -⨯-+=, 解得:1k =;(2)解:∵一次函数()2312y k x k =--+的图像平行于直线2y x =-,即直线2y x =-向上或向下平移312k -+个单位后的图像与一次函数()2312y k x k =--+的图像重合,∴22k -=-且3120k -+≠,20k -≠, 解得:0k =.(3)解:∵y 随x 的增大而减小,解得:2k <.【点睛】本题考查一次函数图像上点的坐标特征及函数性质,图形平移等知识点.熟练掌握一次函数的性质是题的关键.20.如图,直线OA 经过点()4,2A --.(1)求直线OA 的函数的表达式;(2)若点()12,P n 和点()25,Q n 在直线OA 上,直接写出12n n 、的大小关系; (3)将直线OA 向上平移m 个单位后经过点()2,4M ,求m 的值. 【答案】(1)12y x = (2)12n n < (3)m=3【提示】(1)设函数解析式为y kx =,将()4,2A --代入函数解析式中,可求出k 的值; (2)根据函数的增减性分析即可;(3)先求出平移后的函数解解析式,由此可求出m 的值. (1)解:设函数解析式为y kx =,将()4,2A --代入函数解析式中得:24k -=-,12k =, 故函数解析式为:12y x =; (2)解:∵0k >,∴y 随x 的增大而增大, ∵()12,P n ,()25,Q n 中,2<5,(3)解:设平移后函数解析式为:12y x b =+, 将()2,4M 代入函数解析式中得:1422b =⨯+,解得:3b =, 故函数的解析式为:132y x =+, 故m=3.【点睛】本题考查根据函数图象求正比例函数的解析式,求函数的增减性,函数图象的平移. 21.如图,在平面直角坐标系xOy 中,直线1l 经过点O 和点A ,将直线1l 绕点O 逆时针旋转90︒,再向上平移2个单位长度得到直线2l .求直线1l 与2l 的解析式.【答案】直线1l 的解析式是2y x =;直线2l 的解析式是122y x =-+ 【提示】根据A 点坐标,利用待定系数法求直线1l 的解析式;同理求出旋转90︒后的直线解析式,再根据“上加下减”求出向上平移2个单位后的解析式.【解答】解:由图象可知:点A 的坐标是(2,4),点A 逆时针旋转90︒后得到点A '的坐标是(4,2)-, 设直线1l 的解析式是1y k x =, 则可得:124k =, 解得:12k =,故直线1l 的解析式是2y x =.设直线1l 绕点O 逆时针旋转90︒后的直线解析式是2y k x =, 把点(4,2)A '-代入2y k x =,得242k -=,解得212k =-,即12y x =-.故可得直线2l 的解析式是122y x =-+. 【点睛】本题考查一次函数的旋转与平移,解题的关键是能够利用待定系数法求函数解析式,并掌握函数图象平移的规律. 22.如图,直线13342y x =+与x 轴、y 轴分别交于点A 、B .直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,.(1)求直线CD 的解析式;(2)判断ACD 的形状,并说明理由. 【答案】(1)39y x =-+(2)ACD 是等腰三角形,理由见解析【提示】(1)先求出点C 的坐标,然后利用待定系数法求出直线CD 的解析式即可; (2)先求出点A 的坐标,进而求出AC CD AD 、、的长即可得到答案.【解答】(1)解:∵直线2y kx b =+经过()30D ,,与直线13342y x =+交于点()3C m ,, ∴33342m =+,∴2m =,∴点C 的坐标为()23,, ∴2330k b k b +=⎧⎨+=⎩,∴39k b =-⎧⎨=⎩,∴直线CD 的解析式为39y x =-+; (2)解:ACD 是等腰三角形,理由如下: 对于13342y x =+,当0y =时,2x =-,∴点A 的坐标为()20-,, ∴()()22522035AD AC ==--+-=,,()()22233010CD =-+-=,∴AD AC =,∴ACD 是等腰三角形.【点睛】本题主要考查了求一次函数解析式,勾股定理,等腰三角形的判定,熟知待定系数法求一次函数解析式是解题的关键.23.如图,在平面直角坐标系中,一次函数3124y x =-+与两坐标轴分别交于A ,B 两点,OM AB ⊥,垂足为点M .(1)求点A ,B 的坐标; (2)求OM 的长;(3)存在直线AB 上的点N ,使得12OAN OAB S S ∆∆=,请求出所有符合条件的点N 的坐标. 【答案】(1)A (160),,B (0)12,; (2)9.6OM =; (3)N (86),或(246)-,.【提示】(1)利用坐标轴上点的特点直接得出点A ,B 坐标; (2)利用三角形的面积的计算即可求出OM ;(3)设出点N 的坐标,利用三角形的面积列方程求解即可. 【解答】(1)解:令0x =, ∴12y =, ∴B (0)12,, 令0y =, ∴31204x -+=,∴16x =, ∴A (160),;(2)解:由(1)知,A (160),,B (0)12,, ∴1612OA OB ==,,∴196202OAB S OA OB AB =⨯===,△,∵OM AB ⊥, ∴11209622OAB S AB OM OM =⨯=⨯⨯=△, ∴9.6OM =;(3)解:由(2)知,96OAB S =△,16OA =, ∵直线AB 上的点N , ∴设N 3(12)4m m -+,, ∵12OAN OAB S S =△△, ∴111||16||8||9648222OAN N N N S OA y y y =⨯=⨯⨯=⨯=⨯=△,∴38|12|484m ⨯-+=,∴8m =或24m =, ∴N (86),或(246)-,. 【点睛】此题是一次函数综合题,主要考查了坐标轴上点的特点,三角形的面积公式,绝对值方程的求解,列出方程是解本题的关键,是一道比较简单的基础题目.24.当m ,n 为实数,且满足1m n +=时,就称点(),m n 为“和谐点”,已知点()0,7A 在直线l :y x b =+,点B ,C 是“和谐点”,且B 在直线l 上. (1)求b 的值及判断点()2,1F -是否为“和谐点”; (2)求点B 的坐标;(3)若AC =C 的横坐标. 【答案】(1)7b =,点()2,1F -是“和谐点”(2)()34B -,(3)点C 的横坐标为1或7-【提示】(1)将点()0,7A 代入直线l :y x b =+,可得b 的值,根据“和谐点”的定义即可判断; (2)点B 是“和谐点”,所以设出点B 的横坐标,表示出纵坐标,因为点B 在直线l :7y x =+上,把点B 代入解析式中求得横坐标,进而求得点B 的坐标;(3)点C 是“和谐点”,所以设出点C 的横坐标为c ,表示出纵坐标1c -,根据勾股定理即可得出当52AC =时对应的点C 的横坐标.【解答】(1)解:∵点A 在直线y x b =+上, ∴把()0,7A 代入y x b =+, ∴7b =,∵点()2,1F -,()211+-=, ∴点()2,1F -是“和谐点”; (2)解:∵点B 是“和谐点”,∴设点B 的横坐标为p ,则纵坐标为1p -,点B 的坐标为(),1p p -, ∵点B 在直线l :7y x =+上,∴把点(),1B p p -代入y=x+7得,3p =-, ∴14p -=,∴()34B -,; (3)解:设点C 的横坐标为c , ∵点C 是“和谐点”, ∴纵坐标1c -,当52AC =时,()221752AC c c =+--=, 解得7c =-或1,∴点C 的横坐标为1或7-.【点睛】本题考查待定系数法求解析式,一次函数图象上点的坐标特征,根据定义判断一个点是不是“和谐点”,勾股定理等知识,理解新定义是解题的关键.25.对于函数y x b =+,小明探究了它的图象及部分性质.下面是他的探究过程,请补充完整:(1)自变量x 的取值范围是 ;(2)令b 分别取0,1和2-,所得三个函数中的自变量与其对应的函数值如下表,则表中m 的值是 ,n 的值是 .(3)根据表中数据,补全函数y x =,1y x =+,2y x =-的图象;(4)结合函数y x =,1y x =+,2y x =-的图象,写出函数y x b =+中y 随x 的变化的增减情况;(5)点11(,)x y 和点22(,)x y 都在函数y x b =+的图象上,当12>0x x 时,若总有12<y y ,结合函数图象,直接写出1x 和2x 大小关系.【答案】(1)任意实数(2)3,1-(3)见解析(4)当0x>时,函数y 随x 的增大而增大,当<0x 时,函数y 随x 的增大而减小(5)210x x <<或120x x <<【提示】(1)根据解析式即可确定自变量取值范围;(2)把2x =-代入1y x =+,求得3m =,把=1x -代入2y x =-,求得1n =-;(3)根据表格数据补全函数y x =,1y x =+,2y x =-的图像即可;(4)观察图像即可求得;(5)根据图像即可得到结论.【解答】(1)解:函数y x b =+中,自变量x 可以是全体实数,故答案为:全体实数;(2)解:把2x =-代入1y x =+,得3y =,把=1x -代入2y x =-,得1y =-,∴3,1m n ==-,故答案为:3,1-;(3)解:补全函数y x =,1y x =+,2y x =-的图像如下:(4)解:由图知,当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; 故答案为:当0x >时,函数y 随x 的增大而增大,当0x <时,函数y 随x 的增大而减小; (5)解:∵点11(,)x y 和点22(,)x y 都在函数y x b =+的图像上,当120x x >时,∴点11(,)x y 和点22(,)x y 在y 轴的同一侧,观察图像,当120x x >时,若总有12y y <,即210x x <<或120x x <<.【点睛】本题考查了通过列表法和解析式法对函数的性质进行分析,画出函数图像,并研究和总结函数的性质;数形结合是解题的关键.。
一次函数的图象(描点)
![一次函数的图象(描点)](https://img.taocdn.com/s3/m/00526b227f21af45b307e87101f69e314332fa31.png)
一次函数的表示方法
01
02
03
点斜式
通过已知的点$(x_1, y_1)$和斜率$k$,可以表 示为$y-y_1=k(x-x_1)$。
两点式
通过已知的两个点$(x_1, y_1)$和$(x_2, y_2)$,可 以表示为$frac{y-y_1}{xx_1}=frac{y_2-y_1}{x_2x_1}$。
一般式
一次函数的标准形式为 $y=kx+b$,其中$k$和 $b$是常数,且$k neq 0$。
02 一次函数的图象
一次函数图象的形状
线性形状
一次函数的图像是一条直线,这是因为一次函数的一般形式为y=kx+b,其中k 和b为常数,k不为0。
斜率与截距
一次函数的图像有确定的斜率和截距,斜率是k,截距是b。斜率决定了图像的 倾斜程度,截距决定了图像与y轴的交点位置。
实际问题举例
一次函数图象在经济学、物理学、工程学等领域都有广泛的应用。例如,在经济学中, 消费和收入之间的关系可以用一次函数来表示,通过分析这种关系可以了解消费者的消
费习惯和预测未来的消费趋势。
应用价值
一次函数图象能够直观地表示两个变量之间的线性关系,帮助人们更好地理解和分析实 际问题。
对未来研究的展望
一次函数图象可以用来描述物体在恒力作用下的匀速直线运 动,如速度与时间的关系。
弹簧问题
弹簧的伸长量与作用力之间的关系也可以用一次函数来表示 ,通过图象可以直观地分析弹簧的弹力与形变量之间的关系 。
一次函数图象在数学问题中的应用
线性规划
一次函数图象可以用来表示线性规划 问题中的约束条件和目标函数,通过 图象可以直观地分析最优解。
一次函数的图象(描点)
一次函数的图像课件
![一次函数的图像课件](https://img.taocdn.com/s3/m/5651d39051e2524de518964bcf84b9d528ea2cc8.png)
图像是一条直线,其上每一个点 的坐标 $(x, y)$ 都满足该函数的 解析式。
解析式中参数对图像的影响
$k$ 的影响
当 $k > 0$ 时,图像为上升直线;当 $k < 0$ 时,图像为下降直线。
$b$ 的影响
当 $b > 0$ 时,图像与 $y$ 轴交于 正半轴;当 $b < 0$ 时,图像与 $y$ 轴交于负半轴。
如果将一次函数的x替换 为x+h(h>0),则图 像向左移动h个单位。
如果将一次函数的x替换 为x-h(h>0),则图像
向右移动h个单位。
03 一次函数的应用
一次函数在实际生活中的应用
一次函数在经济学中的应用
一次函数可以用来描述经济活动中的关系,例如成本与产量的关 系、价格与需求的关系等。
一次函数在物理学中的应用
截距
一次函数的截距为b,表示函数图像 与y轴的交点。当b>0时,交点在y轴 的正半轴上;当b<0时,交点在y轴的 负半轴上。
一次函数图像的平移
上平移
下平移
左平移
右平移
如果一次函数的b值增加 (即向上平移),则图 像向上移动相应的距离。
如果一次函数的b值减小 (即向下平移),则图 像向下移动相应的距离。
在物理学中,一次函数可以用来描述线性关系,例如速度与时间的 关系、力与位移的关系等。
一次函数在统计学中的应用
在统计学中,一次函数可以用来拟合数据,例如线性回归分析等。
一次函数在数学题目中的应用
一次函数在代数题中的应用
在代数题目中,一次函数可以用来解决方程和不等式问题,例如求解一元一次方 程、一元一次不等式等。
描点,最后将这些点连接成一条直线。
第11节 一次函数的图象和性质
![第11节 一次函数的图象和性质](https://img.taocdn.com/s3/m/676c82a04b73f242336c5f9c.png)
,与 y 轴的截距为﹣ ,
由于该直线不通过第一象限,所以得到:
即
,
由①得到 a 与 b 同号;由②得到 b 与 c 同号.所以 a,b,c 同号. 故选 D
4.设 b>a,将一次函数 y=bx+a 与 y=ax+b 的图象画在同一平面直角坐标系内,则 有一组 a,b 的取值,使得下列 4 个图中的一个为正确的是( )
典例分析:
例 3:(1)直线 y=kx+b 通过第一、三、四象限,则有( )
A.k>0,b>0 B.k>0,b<0 C.k<0,b>0 D.k<0,b<0
解:若直线 y=kx+b 通过第一、三、四象限, 则必有 k>0,b<0, 故选:B.
(2)若 ac<0,bc<0,则直线 ax+by+c=0 的图形只能是( )
A.
B.
C.
D.
解:由题意知,函数的解析式即 y=﹣ x﹣ ,∵ac<0,bc<0,∴a•b>0,
∴﹣ <0,﹣ >0,故直线的斜率小于 0,在 y 轴上的截距大于 0,
故选 C.
练习:
1.若 a+b=0,则直线 y=ax+b 的图象可能是( )
A.
B.
C.
解:根据题意,得;
当 x=1 时,y=a+b=0,
(4)直线 y=kx+b(k≠0)与 x 轴的交点为(-kb,0),与 y 轴的交点为(0,b).
典例分析:
例 1:已知函数 y=(2m﹣1)x+1﹣3m,当 m 为何值时.
(1)这个函数为正比例函数; (2)这个函数为一次函数; 解:∵函数 y=(2m﹣1)x+1﹣3m, (3)函数值 y 随 x 的增大而减小(;1)当 1﹣3m=0,即 m= 时,这个函数为正比例函数; (4)这个函数图象与直线 y=x+(1 的2)交当点2m在﹣1x≠轴0,上即.m 时,这个函数为一次函数;
八年级数学一次函数的图象和性质
![八年级数学一次函数的图象和性质](https://img.taocdn.com/s3/m/ff53ca4991c69ec3d5bbfd0a79563c1ec4dad76b.png)
描点作图
将计算出的点在坐标轴上 标出,并使用平滑的曲线 连接这些点。
一次函数图象的特点
线性关系
一次函数图象是一条直线,函数 值随自变量的变化而均匀变化。
斜率
一次函数的斜率表示函数值随自 变量变化的速率,斜率k>0时, 函数值随自变量增大而增大;斜 率k<0时,函数值随自变量增大
而减小。
y轴上的截距
05 练习与巩固
基础练习题
2、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是( )
3、已知一次函数$y = kx + b(k neq 0)$的图象经过第一、三、四 象限,则$k$的取值范围是____.
1、已知函数$y = (2m + 1)x + m - 3$,若这个函数的图象不经过第 二象限,则$m$的取值范围是 ____.
一次函数的表示方法
一次函数可以用解析式表示为 $y=kx+b$,其中$k$是斜率,$b$是 截距。
也可以通过表格或图象来表示一次函 数的关系。
一次函数的基本性质
斜率
斜率$k$决定了函数的增减性,当$k>0$时,函数随$x$ 的增大而增大;当$k<0$时,函数随$x$的增大而减小。
单调性
一次函数的单调性由斜率决定,斜率$k>0$时,函数为增 函数;斜率$k<0$时,函数为减函数。
一次函数与坐标轴的关系
一次函数与x轴的交点
当y=0时,x的值即为与x轴的交点。
一次函数与坐标轴围成的三角形面积
可以通过截距和与x轴交点来计算三角形面积。
04 一次函数的应用
一次函数在实际问题中的应用
一次函数的定义与图像
![一次函数的定义与图像](https://img.taocdn.com/s3/m/0ddb1b3e0740be1e640e9a13.png)
《数学思维与能力训练》辅导讲义姓名 辅导时间一次函数的定义与图像【知识要点】1、一次函数的定义形如y = kx + b (k ≠0) 的函数叫做一次函数;它的定义域是一切实数。
2、常值函数函数y = c (c 为常数) 叫做常值函数;它的自变量由所讨论的问题确定 3、一次函数的图像一次函数y = kx + b (k ≠0) 的图像是一条直线,一次函数y = kx + b 的图像也称为直线y = kx + b ,这时,我们把一次函数的解析式y = kx + b 称为一直线的表达式 4、直线的截距一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距;直线y = kx + b (k ≠0) 与y 轴的交点坐标是 (0,b),直线y = kx + b (k ≠0) 的截距是b 。
5、直线的平移与平行一次函数y = kx + b (b ≠0) 图像可由正比例函数y = kx 的图像平移得到。
当b > 0时,向上平移b 个单位;当b < 0时,向下平移 | b | 个单位如果b 1≠b 2,那么直线 y = kx + b 1与直线y = kx + b 2 平行;反之,如果直线y = k 1x + b 1与直线y = k 2x + b 2 平行,那么k 1 = k 2,b 1≠b 2 【夯实基础】 一.填空题1.已知一次函数()31f x x =+,若()5f a =-,则=a .2.已知12(2)2k y k k xk -=-++是一次函数,则k = .3.已知y 与4x -1成正比例,且当x = 3时,y = 6,写出y 与x 的函数关系式 .4.对于一次函数32--=x y ,当x _______时,图象在x 轴下方.5.函数2(5)y x =+的图象是由2y x =向______平移______个单位而得到.6.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= .7.已知一次函数y x a =-+与y x b =+的图象相交于点(m ,8),则a b +=_________.8.已知直线b kx y +=的截距是-2,且它与x 轴的交点是(4,0),则此直线与坐标轴围成的三角形的面积是 .9.将直线14+=x y 的图象向下平移3个单位长度,得到直线___ ________10.如图,一次函数y kx b =+的图象经过A 、B 两点, 与x 轴交于点C ,则此一次函数的解析式为__________, △AOC 的面积为_________二.选择题1.下列函数中,一次函数是( )()12A y x=+ ()50B s t -= ()221C y x =+ ()D y k x b =+2.下列给出的四个点中,不在直线23y x =-上的是( )()(1,1)A - ()(0,3)B - ()(2,1)C ()(1,5)D -3.直线24y x =+与y 轴交点的坐标是( )()(2,0)A ()(2,0)B - ()(0,4)C ()(0,4)D -三.简答题1.已知函数2(1)1y m x m =++-(1)当m 取什么值时,y 是x 的正比例函数? (2)当m 取什么值时,y 是x 的一次函数?2.已知直线b kx y +=经过(0,5),-且与坐标轴所围成的三角形的面积为425,求该直线的表达式?3.已知一次函数的图像如图所示, (1)当4y <时,求自变量x 的取值范围. (2)当1x >-时,求y 的取值范围 (3)在x 轴上方的点的横坐标的取值范围(4)在点P 下一侧的直线上的点的纵坐标的取值范围。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《数学思维与能力训练》辅导讲义
姓名 辅导时间
一次函数的定义与图像
【知识要点】
1、一次函数的定义
形如y = kx + b (k ≠0) 的函数叫做一次函数;它的定义域是一切实数。
2、常值函数
函数y = c (c 为常数) 叫做常值函数;它的自变量由所讨论的问题确定 3、一次函数的图像
一次函数y = kx + b (k ≠0) 的图像是一条直线,一次函数y = kx + b 的图像也称为直线y = kx + b ,这时,我们把一次函数的解析式y = kx + b 称为一直线的表达式 4、直线的截距
一条直线与y 轴的交点的纵坐标叫做这条直线在y 轴上的截距,简称直线的截距;直线y = kx + b (k ≠0) 与y 轴的交点坐标是 (0,b),直线y = kx + b (k ≠0) 的截距是b 。
5、直线的平移与平行
一次函数y = kx + b (b ≠0) 图像可由正比例函数y = kx 的图像平移得到。
当b > 0时,向上平移b 个单位;当b < 0时,向下平移 | b | 个单位
如果b 1≠b 2,那么直线 y = kx + b 1与直线y = kx + b 2 平行;反之,如果直线y = k 1x + b 1与直线y = k 2x + b 2 平行,那么k 1 = k 2,b 1≠b 2 【夯实基础】 一.填空题
1.已知一次函数()31f x x =+,若()5f a =-,则=a .
2.已知1
2(2)2k y k k x k -=-++是一次函数,则k = .
3.已知y 与4x -1成正比例,且当x = 3时,y = 6,写出y 与x 的函数关系式 .
4.对于一次函数32--=x y ,当x _______时,图象在x 轴下方.
5.函数2(5)y x =+的图象是由2y x =向______平移______个单位而得到.
6.直线b kx y +=与15+-=x y 平行,且经过(2,1),则k= ,b= .
7.已知一次函数y x a =-+与y x b =+的图象相交于点(m ,8),则a b +=_________.
8.已知直线b kx y +=的截距是-2,且它与x 轴的交点是(4,0),则此直线与坐标轴围成的三角形的面积是 .
9.将直线14+=x y 的图象向下平移3个单位长度,得到直线___ ________
10.如图,一次函数y kx b =+的图象经过A 、B 两点, 与x 轴交于点C ,则此一次函数的解析式为__________, △AOC 的面积为_________
二.选择题
1.下列函数中,一次函数是( )
()1
2A y x
=
+ ()50B s t -= ()221C y x =+ ()D y k x b =+ 2.下列给出的四个点中,不在直线23y x =-上的是( )
()(1,1)A - ()(0,3)B - ()(2,1)C ()(1,5)D -
3.直线24y x =+与y 轴交点的坐标是( )
()(2,0)A ()(2,0)B - ()(0,4)C ()(0,4)D -
三.简答题
1.已知函数2(1)1y m x m =++-
(1)当m 取什么值时,y 是x 的正比例函数? (2)当m 取什么值时,y 是x 的一次函数?
2.已知直线b kx y +=经过(0,5),-且与坐标轴所围成的三角形的面积为4
25
,求该直线的表达式?
3.已知一次函数的图像如图所示, (1)当4y <时,求自变量x 的取值范围. (2)当1x >-时,求y 的取值范围 (3)在x 轴上方的点的横坐标的取值范围
(4)在点P 下一侧的直线上的点的纵坐标的取值范围。