结构力学力矩分配法新

合集下载

结构力学 力矩分配法

结构力学  力矩分配法

1.由转动刚度计算分配系数: μ
S
A
SAj
2.固端弯矩和不平衡力矩 R 计算:R
g M A
3.计算分配弯矩和传递弯矩: ' M 'jA CAj M 'Aj M Aj μ Aj ( R )
分配弯矩下划横线表示已平衡,箭头表示传递方向。
4.叠加求和,计算杆端弯矩: 5.校核。(结点平衡)
A
D
M A θA
B
则分配弯矩为:
M AB μAB M M AC μAC M M AD μAD M
C
(a )
分配系数的特点: 汇交于同一结点的各杆的分配系数之和等于 1。
训 练
10.图示结构,各杆线刚度均为I,用力矩分配法计 算时,分配系数μAB为( B )
1 A. 10
C.
1 4
1 B. 8 3 D. 8
应用条件:连续梁、无结点线位移的刚架 三概念:转动刚度、分配系数、传递系数 符号规定: 与位移法一致 单结点力矩分配法基本原理:

加刚臂,固定结点——去刚臂,放松结点——叠加
力矩分配法的步骤:
1.固定结点,计算分配系数 2.计算固端弯距,不平衡力矩 3.放松结点,计算分配弯矩、传递弯矩 4.叠加,求杆端弯矩,绘内力图
171.4
力矩分配法是直接计算 A 各杆的杆端弯矩。
解:
分配系数 μ
1 2 ql 200 8 100 kN/m 57.13 B EI 854 .73 m
C
EI 4m
固端弯矩M g 133.3
4 3 7 7 133.3 0
M图 ( kN m )
0 0 0
B结点一次 分配传递 38.09 76.17 57.13 M 总或 M 171.4 57.13 57.13

结构力学下多结点力矩分配法

结构力学下多结点力矩分配法

结构力学下多结点力矩分配法引言在结构力学中,力矩分配法是一种常见的分析方法,用于计算多结点约束下的力矩分配。

多结点力矩分配法通过将外加载荷分配给结构中的各个节点,以确定每个节点承载的力矩。

本文将介绍结构力学下的多结点力矩分配法的基本原理和计算方法。

原理多结点力矩分配法的原理基于以下假设:1.结构是一个刚体,可以忽略其变形。

2.结构中的每个节点都可以承受力矩,且力矩的分配是均匀的。

基于这些假设,我们可以将外加载荷分配给结构中的各个节点,并计算每个节点承载的力矩。

力矩的分配是根据节点间的刚性关系来确定的。

计算方法多结点力矩分配法可以通过以下步骤进行计算:1.确定结构的节点个数和节点编号。

2.根据结构的几何形状和边界条件,建立节点间的刚性关系。

3.将外加载荷均匀地分配给每个节点。

可以根据结构的几何形状和边界条件,考虑节点之间的距离和角度来确定各个节点的分配比例。

4.根据节点间的刚性关系,计算每个节点承载的力矩。

可以使用刚体平衡条件来计算力矩的分配。

5.检查计算结果的合理性。

根据结构的几何形状和边界条件,验证计算得到的力矩分配是否符合工程实际。

示例下面以一个简单的桁架结构为例,介绍多结点力矩分配法的计算方法。

假设桁架结构的节点个数为4,节点编号分别为1, 2, 3和4。

外加载荷为M,沿结构的纵向均匀分布。

根据桁架结构的几何形状和边界条件,建立节点间的刚性关系。

假设节点1和节点2之间的刚性系数为k1,节点2和节点3之间的刚性系数为k2,节点3和节点4之间的刚性系数为k3。

将外加载荷均匀地分配给每个节点。

假设节点1承载的力矩为M1,节点2承载的力矩为M2,节点3承载的力矩为M3,节点4承载的力矩为M4,可以得到以下关系:M1 + M2 + M3 + M4 = M根据节点间的刚性关系,可以得到以下关系:k1 * (M2 - M1) = 0k2 * (M3 - M2) = 0k3 * (M4 - M3) = 0通过这些关系,我们可以求解出每个节点承载的力矩。

结构力学第9章__力矩分配法(新)

结构力学第9章__力矩分配法(新)

9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
第9章 渐进法及超静定力的影响线 9-1 力矩分配法的基本概念 9-2 单结点的力矩分配法 9-3 多结点的力矩分配法 9-4 计算结果的校核
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
M
1 M21 2 M12 M31 M13 M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
96 64 → 32
-23.6 ← -47.3 -47.3 → -23.6 14.2 9.4 → 4.7
-1.2 ← 0.7 0.5 →
-2.3 -2.3 → -1.2 0.3
-0.1 -0.2
200.9 -200.9
237.3 -237.3 87.7
200.9
237.3
87.7

结构力学第六章超静定结构的计算——力矩分配法

结构力学第六章超静定结构的计算——力矩分配法

《结构力学》习题集- 33 -第六章 超静定结构的计算——力矩分配法一、本章基本内容:1、基本概念:转动刚度、分配系数、传递系数、侧移刚度;(1)力矩分配法是以位移法为基础的一种渐进解法;(2)转动刚度与杆件的线刚度和远端支承情况有关;(3)杆件远端的支承情况不同,相应的传递系数也不同;(4)分配系数的值小于等于1,并且1=∑ik μ;(5)力矩分配法只适用于计算无结点线位移的结构。

2、固端力矩、结点不平衡力矩的计算;3、用力矩分配法计算多跨梁和无侧移刚架的一般步骤:(1)计算汇交于各结点的每一杆端的分配系数并确定传递系数;(2)求出各杆件的固端弯矩;(3)求出结点不平衡力矩,将其反号乘上各杆件的分配系数得到相应的分配弯矩。

然后,再将分配弯矩乘以传递系数,求出远端的传递弯矩。

按此步骤循环计算,直到不平衡力矩小到可以忽略不计为止。

(4)将每一杆端的固端弯矩、历次的分配弯矩和传递弯矩相加,求出最后杆端弯矩。

(5)校核最后杆端弯矩,作内力图。

二、习题:(一)、判断题(不作为考试题型):1、力矩分配法中的分配系数、传递系数与外来因素(荷载、温度变化等)有关。

2、若图示各杆件线刚度i 相同,则各杆A 端的转动刚度S 分别为:4 i , 3 i , i 。

AA A3、图示结构EI =常数,用力矩分配法计算时分配系数4 A μ= 4 / 11。

1l ll第六章 力矩分配法- 34 -4、图示结构用力矩分配法计算时分配系数μAB =12/,μAD =18/。

BCA D E =1i =1i =1i =1i5、用力矩分配法计算图示结构,各杆l 相同,EI =常数。

其分配系数μBA =0.8,μBC =0.2,μBD =0。

A B CD6、在力矩分配法中反复进行力矩分配及传递,结点不平衡力矩愈来愈小,主要是因为分配系数及传递系数< 1。

7、若用力矩分配法计算图示刚架,则结点A 的不平衡力矩为 −−M Pl 316。

工程力学-结构力学课件-8力矩分配法

工程力学-结构力学课件-8力矩分配法

40kN .m
求不平衡力矩
40kN.m
A EI
6m
C B EI
4m
MBu
20kN / m
40kN .m
60
60
M
u B

60
40

100kN .m
A
60 B
C
40

8 /17 9 /17
M F 60
60
分 配
23.5


47 53
M 83.5 13 53
§8-2多结点的力矩分配A q 12kN / m
对于同层柱等高,剪力分配系数可简化为按各柱的线刚度进行
分配,即
i
ii ii
顶层:
1
i1 ii

1 3
2
3
底层:
5
i5
2
0.4
ii 1.5 2 1.5
4
i4 ii
1.5 1.5 2 1.5
0.3
6
(2)计算各柱剪力
第8章 渐近法及其他算法简介
§8-1 力矩分配法的基本概念
力法、位移法:精确,求解方程。 力矩分配法是基于位移法,逐步逼近精确解 的近似方法。 单独使用时只能用于无侧移(无线位移)的 结构。
1.名词解释
B
q 1
C
M1B 3i ql2 / 8
M1A 4i ql 2 / 4
M1C i
1.8 3.5 2.6
… … ...
M1FA ql 2 / 8 150
M1F2 ql 2 / 12 100
S21 4i
S2B 3i

结构力学——力矩分配法

结构力学——力矩分配法

结构力学——力矩分配法结构力学是研究物体在外力作用下的变形和破坏行为的学科。

其中,力矩分配法是一种求解结构梁的内力和变形的常用方法之一、本文将介绍力矩分配法的基本理论和应用。

首先,对于结构力学的研究,我们需要了解一些基本概念。

力矩是由力的作用点与旋转轴之间的距离和力的大小决定的。

在结构力学中,我们通常考虑作用在梁上的力和力矩。

梁是一种常见的结构元件,可以将其看作是在两个固定点之间作用的力的集合。

在力矩分配法中,我们将梁分割成若干个小段,然后逐段计算每个小段的内力和变形。

假设有一根长度为L,截面形状均匀的梁,并且在两个固定点之间施加了一系列分布力。

我们可以将梁分割成n个小段,每个小段的长度为Δx=L/n。

接下来,我们需要计算每个小段的内力和变形。

首先,我们可以根据材料力学的基本原理得出梁的拉伸、压缩和弯曲的力学方程。

然后,我们可以根据小段的切线方向和切线上的任意一点来推导出该小段的内力和弯曲方程。

最后,我们将内力分量在小段两端的力矩分配系数和位置矩分配系数进行合成,从而得出该小段的内力和弯曲方程。

在力矩分配法中,一个重要的概念是力矩分配系数。

力矩分配系数是一个无量纲的参数,用来表示力和力矩在小段两端分配的比例。

在计算力矩分配系数时,我们可以根据梁的几何形状和分布力的位置,利用力矩的基本原理进行推导。

力矩分配系数是力矩分配法的核心,它可以帮助我们计算出每个小段的内力和变形。

在实际应用中,力矩分配法通常用于求解多跨梁的内力和变形。

我们可以将多跨梁分割成若干个小段,并根据力矩分配法计算出每个小段的内力和变形。

然后,我们可以将各个小段的内力和变形进行叠加,得出整个多跨梁的内力和变形。

需要注意的是,力矩分配法具有一定的局限性。

首先,它只适用于存在弯曲变形的梁,对于其他类型的结构,如框架和板,需要采用其他的分析方法。

其次,力矩分配法仅适用于分布力作用在梁的直线部分上,对于弯曲部分或非均匀分布力的情况,需要采用其他的方法进行分析。

结构力学——力矩分配法分解课件

结构力学——力矩分配法分解课件

THANK YOU
复杂结构的力矩分配法分析
总结词
需要对复杂结构进行精细的力矩分配
详细描述
对于复杂结构,如桥梁、高层建筑等,力矩分配法需要更加精细的分析。这需要对结构的各种参数进 行详细的计算和调整,包括转动刚度、分配系数、传递系数等。通过合理的简化模型和精细的计算, 可以获得结构的整体性能和局部细节,满足工程设计的需要。
应用范围
适用于具有刚性转动 部分的连续梁和框架
适用于具有弹性支撑 的连续梁和框架
适用于具有弹性转动 部分的连续梁和框架
适用条件
结构体系为连续梁或框架 结构具有刚性转动部分,且转动部分在分配力矩后不会出现弹性变形
结构具有弹性支撑,且弹性支撑在分配力矩后不会出现弹性变形
计算复杂度与精度要求
力矩分配法的计算复杂度取决于梁和框 架的自由度数量,自由度越多,计算越

误差传递
由于传递系数和分配系数的近似 计算,可能会引入一定的误差,
影响分析结果的准确性。
计算复杂度
对于大型复杂结构,力矩分配法 的计算量可能会变得很大,需要
借助计算机辅助分析。
改进与发展方向
01
02
03
04
数值优化
通过改进算法和优化计算方法 ,提高力矩分配法的计算效率
和精度。
考虑非线性因素
将非线性因素纳入力矩分配法 中,以适应更广泛的结构类型
在力矩分配法中,将结构中的结点分为两类:基本结点和附属结点。基本结点是承 受力矩的结点,附属结点则是传递力矩的结点。
力矩分配法的原理是将所有结点的力矩自由度进行分配,通过调整传递系数来使各 结点的力矩平衡,从而求解出各个结点的位移。
刚度系数与传递系数
刚度系数是指单位力矩作用下结 点的位移,它反映了结点的刚度

7 力矩分配法 结构力学

7 力矩分配法 结构力学
中国地质大学(北京)结构力学课程系列七
第7章 力矩分配法
Moment Distribution Method
工程技术学院土木教研室
主要内容:
§9-1
力矩分配法的基本概念 点线位移刚架
§9-2 力矩分配法计算连续梁和无结
§9-3 超静定结构超静定结构小结
§9-1 力矩分配法的基本概念
一、转动刚度:
(3)计算分配弯矩 A 和传递弯矩
3m
40KN B EI 3m
16KN/m C EI 3m
1.分配系数 2.固端弯矩 -30 3.分配弯矩 传递弯矩 -2.4
' M BA 0.4 ( 12) 4.8 KNm
0.4 0.6 30 -18 -4.8 -7.2
0
0
' M BC 0.6 ( 12) 7.2 KNm
1 j
S1 j
S
(1)
M1 j 1 j M
ij
S ij
S
(i )
ij
S ij
S
(i )
M ij ij M
各杆的分配弯矩 Mij 各杆在i端的分配系数之和等于1。 校核分配系数的计算是否正确?
ij 1
(i )
三、传递系数:
• 传递系数:远端弯矩与近端(转动端)弯矩的 比值称为近端向远端的传递系数,简称传递系 数。用Cij表示。 • 传递弯矩:远端弯矩
(1) (1)
M1 j
S1 j
S14 M S
(1)
S
(1)
M
M1 j
S1 j
S
(1 )
M
各杆在1端的弯矩与该杆在1端的转 动刚度成正比。 下标 j 为汇交于1点的各杆之远端, j= 2、 3、 4、 5 各杆在1端的弯矩等于外力矩乘上 一个相应的系数 1j--分配系数。 下标 i 为近端、j 为汇交于 i 点的 各杆之远端。

结构力学第七章力矩分配法

结构力学第七章力矩分配法

§7-1 引言
➢ 力矩分配法是基于位移法的逐步逼近精确解的 近似方法。
➢ 力矩分配法可以避免解联立方程组,其计算精 度可按要求来控制。在工程中曾经广泛应用。
➢ 从数学上说,是一种异步迭代法。
➢ 单独使用时只能用于无侧移(线位移)的结构。
➢ 力矩分配法的理论基础是位移法,力矩分配法 中对杆端转角、杆端弯矩、固端弯矩的正负号 规定,与位移法相同(顺时针旋转为正号)。
1
远端铰支时: 3i A i B
C=0
1
远端定向时: i A i B
C=-1
与远端支承 情况有关
§7-2 力矩分配法的基本原理
例7-1 结构的A端、B端,C端的支撑及各杆刚度如图
所示,求SBA、SBC、SBD及CBA、CBC、CBD。
(a)
B
C
A EI
EI
EI l
D
l
l
(b) A
B EI
EI
θB C
结点B作用的力偶,按各杆的分配系数分配给各杆的近端;
可见:各杆B 端的弯矩与各杆B 端的转动刚度成正比。 例7-1 结构的A端、B端,C端的支撑及各杆刚度如图所示,求SBA、SBC、SBD及CBA、CBC、CBD。
近端弯矩MBA、MBC为
§7-2 力矩分配法的基本原理
利用结点B的力矩平衡条件∑MB=0,得
A
B
k=EI/l 3 l
A
θ =1
B
Δ =θ l
FyB=k
SAB
A
B
FyB EI/l
解:当A 端转动θ=1时,因AB杆是刚性转动,所以B 产
生向下的竖向位移Δ=l×θ=l ,弹簧反力FyB=kΔ=EI/l2 。则

结构力学 第三十讲力矩分配法和近似法

结构力学 第三十讲力矩分配法和近似法

17.61 40
120
36 B
C
D
A
结点
BLeabharlann CD杆端 BA BC CB CD DC
M 17.61 17.61 52.32 52.32 93.84
二、分配法的解题步骤: (1)取与位移法相同的基本结构。 (2)求各结点处的分配系数μ。
(3)求固端弯矩之和的不平衡弯矩。
(4)列表进行力矩的分配和传递。 在某结点的分配弯矩下划一横线,表示该结
3)同一结点所有各杆杆端的分配系数之和应等于1;
4)不能同时放松相邻结点(因定不出其转动刚度和传 递系数),但可以同时放松所有不相邻的结点,以加快 收敛速度。
q 20kN / m F 100kN
例2:作最后M图。A EI 1 B EI 2 C EI 1 D
解:(1)求分配系数
1)
S BA
MB 36 20 16kN m
C结点:CB 0.6, CD 0.4
结点C的不平衡力矩
MC 20 80 60kN m
3)列表进行计算
结点
B
C
D
杆端 BA BC CB CD DC 0.5 0.5 0.6 0.4 M F 36 20 20 80 80
18 36 24 12
分 17 17 8.5
五、单结点结构(连续梁或刚架)的力矩分配法计算步 骤如下:
1)固定结点,形成位移法基本结构。算出各杆的固端 弯矩;汇交于结点各杆的分配系数和传递系数,并求 出结点的不平衡力矩(等于汇交于结点的各杆端的固端 弯矩之和,或等于附加刚臂的约束反力);
2)将不平衡力矩反号后,乘以各杆的分配系数,得到 相应各杆端的分配弯矩;
29.4 44
-7.3 2.9 4.4

结构力学公式(新)

结构力学公式(新)

1. 位移法:⎩⎨⎧=+∆+∆=+∆+∆0021221211212111P P F k k F k k 2. 力矩分配法:分配系数∑=AAjAi S S μ(S 为转动刚度),∑=1μ3. 矩阵位移法(后处理法):(1)桁架:[]⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎣⎡--------=αααααααααααααααααααααααα22222222)(sin cos sin sin cos sin cos sin cos cos sin cos sin cos sin sin cos sin cos sin cos cos sin cos l EA k e[]{}{}F k =∆, 其中{}()T 4321,,,∆∆∆∆=∆(2)连续梁:[]⎥⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎢⎣⎡+++=--n nn nn n i i i i i i i i i i i i i i i i K 420244200000000244200002442000024113322221111(n 为跨数),[]⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡++121121n n M M M K θθθ 4. 自振:(1)自振周期:gg W m k m T st ∆====πδπδππ2222 ,stgW gm m k ∆====δδω1(其中,T 为自振周期;ω为自振频率;δ为柔度系数;k 为刚度系数;W 为自重;st ∆=δW)注:k =产生单位位移所需施加的力;δ=单位力作用下产生的位移(2)柔度法:()()()⎥⎦⎤⎢⎣⎡--+±+=2121122211222211122211121421m m m m m m δδδδδδδδλ,111λω=,221λω=(21ωω≤),(3)刚度法:()⎥⎥⎦⎤⎢⎢⎣⎡--⎪⎪⎭⎫ ⎝⎛+±⎪⎪⎭⎫ ⎝⎛+=212112*********112221112421m m k k k k m k m k m k m k ω, (3)主振型:12122222111212211m m m m Y Y δωδωδδ-=--=(4)最大位移:()[]22max 11ωθ-=sty t yδF y st =(简谐荷载()t F tP θsin =)载常数:(1)两端固定,中间加集中荷载P ,2,2,8,8P Q P Q Pl M Pl M B A B A-=+=+=-= (2)两端固定,中间加均布荷载q ,2,2,12112122ql Q ql Q ql M ql M B A B A -=+=+=-=, (3)A 端(左端)固定,右端铰支,中间加集中荷载P ,P Q P Q M Pl M B A B A 165,1611,0,163-=+==-= (4)A 端(左端)固定,右端铰支,加均布荷载q ,ql Q ql Q M ql M B A B A 83,85,0,812-=+==-=。

力矩分配法步骤

力矩分配法步骤

力矩分配法步骤一、力矩分配法概述力矩分配法是一种常用的结构力学计算方法,通过将外力作用于结构的力矩分配到各个构件上,进而求解结构的内力和变形。

本文将介绍力矩分配法的基本步骤,以帮助读者理解并运用该方法。

二、确定支座反力在应用力矩分配法之前,首先需要确定结构的支座反力。

通过平衡条件和约束条件,可以求解出支座反力的大小和方向。

三、选择适当的截面根据结构的几何形状和材料力学性质,选择适当的截面进行内力计算。

一般情况下,选择在结构中能够产生最大弯矩或剪力的截面进行计算。

四、计算截面的惯性矩根据所选截面的几何形状,计算出截面的惯性矩。

惯性矩是描述截面抗弯刚度大小的物理量,计算时需要考虑截面形状和材料的分布。

五、计算截面的受力矩根据外力作用点与截面的相对位置关系,计算出截面上的受力矩。

受力矩的计算需要考虑外力的大小和方向,以及结构的几何形状。

六、应用力矩分配公式根据力矩分配法的基本原理,将截面上的受力矩按比例分配到各个构件上。

分配的比例通常根据截面的惯性矩和构件的刚度来确定。

七、计算构件的内力根据分配到各个构件上的受力矩和构件的刚度,计算出各个构件的内力。

一般情况下,根据受力矩的大小和方向可以确定构件的弯矩和剪力。

八、计算构件的变形根据构件的内力和材料的力学性质,计算出构件的变形。

变形的计算可以采用弹性力学的基本理论,考虑构件的材料性质和几何约束条件。

九、检验计算结果对于复杂的结构系统,需要对计算结果进行检验。

可以通过平衡条件、力的平行四边形法则和位移相容性等原理来检验计算结果的准确性。

十、总结力矩分配法是一种常用的结构分析方法,可以用于求解结构的内力和变形。

通过确定支座反力、选择适当的截面、计算截面的惯性矩、计算截面的受力矩、应用力矩分配公式、计算构件的内力、计算构件的变形和检验计算结果等步骤,可以较为准确地分析结构的力学性能。

但需要注意,在应用力矩分配法时要考虑结构的实际情况和假设条件,以得到合理的计算结果。

结构力学中的力矩分配法

结构力学中的力矩分配法

160kN C
3m 0.5 0.5 +112.5 -23.7 -1.2
A i=2
3m 分配系数 固端弯矩 0.0 B点一次分、传 0.0 点一次分、 点一次分 C点一次分、传 点一次分、 点一次分 B点二次分、传 0.0 点二次分、 点二次分 C点二次分、传 点二次分、 点二次分 B点三次分、传 0.0 点三次分、 点三次分 C点第三次分配 点第三次分配 最后弯矩 0.0
二、计算步骤
1、确定各结点处杆端力矩的分配系数、传递系数。 确定各结点处杆端力矩的分配系数、传递系数。 计算个杆端的固端弯矩。 2、计算个杆端的固端弯矩。 3、逐次循环放松各结点,以使结点弯矩平衡,直至结点 逐次循环放松各结点,以使结点弯矩平衡, 上的传递弯矩小到可以略去不计为止。 上的传递弯矩小到可以略去不计为止。 4、将各杆端的固端弯矩与历次分配弯矩、传递弯矩相加, 将各杆端的固端弯矩与历次分配弯矩、传递弯矩相加, 即得各杆端的最后弯矩。 即得各杆端的最后弯矩。
= 4 i12 φ1 = S 12 ϕ 1 = 3 i13 φ1 = S 13 ϕ 1 = i14 φ1 = S 14 ϕ 1 = 4 i15 φ1 = S 15 ϕ 1 − − − (a)
第6章 章
(2)由结点1的平衡条件: (2)由结点1的平衡条件: 由结点

即:
M
1
= 0
M12
M M13
1
M− M12 − M13 − M14 − M15 = 0
第6章 章
2、传递系数(Cij) 传递系数( 杆件远端弯矩与近端弯矩之比称为传递系数。 杆件远端弯矩与近端弯矩之比称为传递系数。
C ij = M ji M ij
4iφA EI A φA 3iφA EI A φA l iφA EI A φA l

结构力学(第四章)-力矩分配法

结构力学(第四章)-力矩分配法
C M AB = CM BA = 28.6
C M CB = 0
0 0
配 传 递
最终杆端弯矩: 最终杆端弯矩 M AB = 100 28.6 = 128.6 q = 12kN / m 42.9 M BA = 100 57.1 = 42.9 M BC = 0 42.9 = 42.9 128 .6 M CB = 0
C d M AB = CM BA = 0.5 × ( 57.1) = 28.6 C d M CB = CM BC = 0 × ( 42.9) = 0
传递弯矩
与远端支承 情况有关
固定状态: 固定状态 F M AB = ql 2 / 12 = 100kN .m F M BA = 100kN .m F F M BC = M CB = 0 放松状态: 放松状态 d u M BA = BA ( M B ) = 57.1 d u M BC = BC ( M B ) = 42.9
1
ql / 8
2
12
2
100 0 -57.1 -42.9 -6.1 3.5 2.6
0 0 0
28.6
100
-28.6 -57.1 -42.9
21.4 6.1 -9.2 -12.2 -6.1 1.8 6.1 1.8 3.5 2.6
分 配 传 递
0
M 0
A
0
q = 12 kN / m
40.3
2
B
… … ...
A
M
d BA
B
u MB
B
u MB
C
u d d M B + M BA + M BC = 0 1 u ( M B ) B = S BA + S BC
B
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
9-1力矩分配法的基本概念
M
4
2 i12 1
i14
i13
3
4i12Δ1
2i12Δ1
i13Δ1 i13Δ1
3i14Δ1
M12 4i121 M13 i131 M14 3i141
M21 2i121 M31 i131 M41 0
9-1力矩分配法的基本概念
根据平衡条件
M 0
1
M12 M13 M14 M
100kN
5m 100kN
5m
B
C
EI=常数
A
D
5m 5m
141.6
250 66.6
250 116.7
M图 (kNm)
33.2
结点 A
B
C
D
杆端 AB BA BC CB CD DC
分配 系数
0.5 0.5 0.5 0.5
固端 弯矩 -125
125
-125 125
-31.2 -62.5 -62.5 -31.2
D
10m
1/2 1/2
-100
16 42 42
-6.7 3.3 3.4
-0.5 0.2 0.3
16/25 9/25
-100+50 100
32 18 21 -13.4 -7.6 1.7 -1.1 -0.6
杆端弯矩 23 23
45.5 54.5
46 54
40.2 -40.2
40
100
100
9-3 多结点的力矩分配——渐进运算
0.5 0.3
22.9 45.7 54.3 40.3 40.3 100 -100
9-3 多结点的力矩分配——渐进运算
100
45.7
40.3
100
22.9
54.3
9-3 多结点的力矩分配——渐进运算
100kNm
8kN/m 100kNm
A
分配系数 固端弯矩
分配 与 传递
EI
B
EI C
10m
10m
0.75EI
M ik Sik 1
4iik 远端为固定端
S ik
3iik iik
远端为铰支端 远端为平行支链杆
0 远端为自由端
2 分配系数:与转动刚度成正比
ik
Sik Sik
i
ik 1
i
3 传递系数:近端发生转角时,远端弯矩与近端弯矩的比值.
Cik
M ki M ik
1
2
0
远端为固定端 远端为铰支端
分配
7.8 15.6 15.6 7.8

-2 -3.9 -3.9 -2
传递 0.5 1
1 0.5
-0.3 -0.2
杆端 弯矩 -116.7 141.6 -141.6 66.6 -66.6 -33.2
9-3 多结点的力矩分配——渐进运算
100kN
12.5kN
5m 100kN
M 1 4i12 i13 3i14
M12
4i12
4i12 i13 3i14
M
M13
4i12
i13 i13
3i14
M
M14
4i12
3i12 i13
3i14
M
M 21
1 2
M12
M31 M13
M41 0 M14
9-1力矩分配法的基本概念
1 转动刚度:梁端发生单位转角产生的弯矩。

-1.8
56.4 -4.8 51.6

70.2
C↓ -2.4
9-2 单结点的力矩分配——基本运算
56.4
70.2
51.6
4.8
2.4
M图(kNm)
9-2 单结点的力矩分配——基本运算
例题
0.8 0.2
Bi C
qi
l
A l
ql2/12 -4ql2/60
-ql2/60
ql2/60 -ql2/60
C
ql2/60 ql2/60
ql2/60
M图
7ql2/60
-ql2/12
-2ql2/60
-7ql2/60 A
9-2 单结点的力矩分配——基本运算
练习
i
i
k
i
Sik=4iik
k
i
Sik=4iik
k Sik=3iik
k
Sik=0
i
k
Sik=4iik
i
k
EI=∞ K
Sik=Kl2
l
i
k Sik=4iik
9-2 单结点的力矩分配——基本运算
1 远端为平行支链杆
9-2 单结点的力矩分配——基本运算
例题
M
ii
ii
4/7 3/7
固端弯矩
-M
分配、传递 2M/7
← 4M/7 3M/7

0
杆端弯矩 2M/7
4M/7 3M/7
0
M图
2M/7
4M/7 3M/7
9-2 单结点的力矩分配——基本运算
q
例题
il
i
l
4/7 3/7
固端弯矩 分配、传递 2ql2/56 杆端弯矩 2ql2/56
2
1.5 4 3 2 4 1.5 4
0.3
100 22 M AD 52 48kNm
AC
23
24 2 4 1.5 4
0.4
1 M AB 8 3016 60kNm
100 2 32
M DA
52
72kN m
AB AC AD
B
0.3 0.4 0.3
D
A
60
-48
72
-3.6 -4.8 -3.6
9-2 单结点的力矩分配——基本运算
例题
12kN/m
i
6m
16kN
2i
3m
3m
0.4 0.6
固端弯矩 -36
36 -18
分配、传递 -3.6
← -7.2 -10.8 →
0
最后M -39.6
28.8
M图
(kNm)
9-2 单结点的力矩分配——基本运算
例题
i
l
固端弯矩 分配、传递 FPl/2
杆端弯矩 FPl/2
M图 FPl/2
2i l
10
-FPl FPl 0 FPl -FPl
FPl
FP 0
9-2 单结点的力矩分配——基本运算
例题
4m
30kN/m B i=2
4m
100kN
D
A
i=1.5
i=2
C
3m
2m
9-2 单结点的力矩分配——基本运算
AB
2
3
23 2 4 1.5 4
0.3
AD
← 4ql2/56 ← 4ql2/56
-ql2/8 3ql2/56 -4ql2/56
4ql2/56
M图 4ql2/56
→0 →0
9-2 单结点的力矩分配——基本运算
①求固端弯矩; ②将会交于结点的固端弯矩之和按分配系数分配给每一个杆端。 ③各杆按各自的传递系数向远端传递。 ④将固端弯矩和分配(或传递的弯矩)相加,得杆端最后弯矩。
分配 与 传递
杆端弯矩
1/2 1/2 4/7 3/7
10
-100
-200/3 200/3 -100
50 50 → 25 16.7 ← 33.3 7.2 ← 14.3 10.7 → 5.4
-3.6 - 3.6 → 1.8 -2.7 ← -5.4
1.3 ← 2.6 1.9 → 1
-0.7 - 0.6 → -0.3 -0.5 ← -1
q
i l
Mik=-ql2/12 Mki=ql2/12
k
9-2 单结点的力矩分配——基本运算
4m
练习
100kNm i
i i
i
50kNm
12kN/m
4m
练习
4m
i
i

l
l
4m Δ
9-3 多结点的力矩分配——渐进运算
100kNm
EI
EI
10m
10m
8kN/m
0.75EI 10m
10kN 10m
分配系数 固端弯矩
相关文档
最新文档