选修2-1 第二章 圆锥曲线 基础训练B组asjh
高中数学选修2-1圆锥曲线基础训练
[基础训练 A 组]
一、选择题
1. 已知椭圆 x2 + y 2 = 1上的一点 P 到椭圆一个焦点的距离为 3,则 P 到另一焦点距离( )
25 16
A. 2 B. 3 C. 5 D. 7 2.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为 18 ,焦距为 6 ,则椭圆的方程为( )
A. x 2 + y 2 = 1 B. x2 + y 2 = 1 C. x 2 + y 2 = 1或 x2 + y 2 = 1 D.以上都不对
4.抛物线 y2 = 6x 的准线方程为_____.
5.椭圆 5x2 + ky2 = 5 的一个焦点是 (0,2) ,那么 k =
。
三、解答题
1. k 为何值时,直线 y = kx + 2和曲线 2x2 + 3y2 = 6 有两个公共点?有一个公共点?
没有公共点?
2.在抛物线 y = 4x2 上求一点,使这点到直线 y = 4x − 5 的距离最短。
9 16
25 16
25 16
16 25
3.动点 P 到点 M (1,0) 及点 N (3,0) 的距离之差为 2 ,则点 P 的轨迹是( )
A.双曲线 B.双曲线的一支 C.两条准线间的距离为 d ,且 c = d ,那么它的离心率 e 等于( )
3.双曲线与椭圆有共同的焦点 F1 (0, −5), F2 (0,5) ,点 P(3, 4) 是双曲线的渐近线与椭圆的
一个交点,求渐近线与椭圆的方程。
4.若动点
P( x,
y) 在曲线
x2 4
+
y2 b2
= 1(b >
0)上变化,则
(完整word版)数学选修2-1《圆锥曲线与方程》复习训练题(含详细答案)
数学选修2-1《圆锥曲线与方程》复习训练题一、 选择题:本大题共12小题,每小题5分,共60分。
1曲线 与曲线 (0 <k<9) 具有( ) A 、相等的长、短轴 B 、相等的焦距C 、相等的离心率D 、相同的准线2、若k 可以取任意实数,则方程x 2+ky 2=1所表示的曲线不可能是( )A.直线B.圆C.椭圆或双曲线D.抛物线 3、如果抛物线y 2= ax 的准线是直线x=-1,那么它的焦点坐标为( )A .(1, 0)B .(2, 0)C .(3, 0)D .(-1, 0) 4、平面内过点A (-2,0),且与直线x=2相切的动圆圆心的轨迹方程是 ( ) A . y 2=-2x B . y 2=-4x C .y 2=-8x D .y 2=-16x5、双曲线虚轴的一个端点为M ,两个焦点为F 1、F 2,∠F 1MF 2=120°,则双曲线的离心率为 ( ) A .3 B .26 C .36 D .336、若椭圆的中心及两个焦点将两条准线之间的距离四等分,则椭圆的离心率为( )A 、B 、C 、D 、7、过点P (2,-2)且与22x -y 2=1有相同渐近线的双曲线方程是( )A .14222=-x yB .12422=-y xC .12422=-x yD .14222=-y x 8、抛物线214y x =关于直线0x y -=对称的抛物线的焦点坐标是( ) A 、(1,0) B 、1(,0)16 C 、(0,0) D 、1(0,)169、中心在原点,对称轴为坐标轴,离心率e =30x -=的双曲线方程是 ( )(A )22134x y -= (B )22153y x -= (C )22124x y -= (D )22142y x -= 10、椭圆上一点P 到一个焦点的距离恰好等于短半轴的长b ,且它的离心率e =192522=+y x 192522=-+-ky k x 21222333则P 到另一焦点的对应准线的距离为 ( ) (A)6 (B)3 (C)2(D) 11、已知双曲线 和椭圆 (a>0, m>b>0)的离心率互为倒数,那么以a 、b 、m 为边长的三角形是( ) A 、锐角三角形 B 、直角三角形 C 、钝角三角形 D 、等腰三角形12、过抛物线y 2=4x 的焦点作直线,交抛物线于A(x 1, y 1) ,B(x 2, y 2)两点,如果x 1+x 2=6,那么|AB|= ( ) A .8 B .10 C .6 D .4二、填空题:本大题共4小题,每小题4分,共16分,把答案填在题中的横线上。
高二数学选修2-1第二章《圆锥曲线》测试题56617
高二数学选修2-1第二章《圆锥曲线》测试题 班级: 姓名: 座号:评分:一.选择题:本大题共8题,每小题5分,共40分。
请将答案写在括号里。
1、已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( )A.k <1 B.k >2 C.k <1或k >2 D.1<k <2 2、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax其中和),它们所表示的曲线可能是( )A B C D3、设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,()A.必在圆222x y +=内B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能4、椭圆13610022=+y x上的点P 到它的左准线的距离是10,那么P 点到椭圆的右焦点的距离是 ( )A.15B.10C.12D.85、双曲线1322=-y x 的两条渐近线所成的锐角是 ( )A.30°B.45°C.60°D.75° 6、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132xx x =+, 则有()A.123FP FPFP += B.222123FP FP FP +=C.2132FPFP FP =+ D.2213FPFP FP =·7、双曲线22ax -22by =1的两条渐近线互相垂直,那么它的离心率为( )A.2 B.3C. 2D. 238、过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y xP y x P 两点,若621=+y y,则21P P 的值为 ( )A .5B .6C .8D .10 二、选择题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9、设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是 。
高中数学选修2-1第二章课后习题解答编辑版
新课程标准数学选修2—1第二章课后习题解答第二章 圆锥曲线与方程 2.1曲线与方程 练习(P37)1、是. 容易求出等腰三角形ABC 的边BC 上的中线AO 所在直线的方程是0x =.2、3218,2525a b ==.3、解:设点,A M 的坐标分别为(,0)t ,(,)x y . (1)当2t ≠时,直线CA 斜率 20222CA k t t-==-- 所以,122CB CA t k k -=-=由直线的点斜式方程,得直线CB 的方程为 22(2)2t y x --=-. 令0x =,得4y t =-,即点B 的坐标为(0,4)t -.由于点M 是线段AB 的中点,由中点坐标公式得4,22t tx y -==.由2t x =得2t x =,代入42ty -=,得422xy -=,即20x y +-=……①(2)当2t =时,可得点,A B 的坐标分别为(2,0),(0,2) 此时点M 的坐标为(1,1),它仍然适合方程①由(1)(2)可知,方程①是点M 的轨迹方程,它表示一条直线. 习题2.1 A 组(P37)1、解:点(1,2)A -、(3,10)C 在方程2210x xy y -++=表示的曲线上;点(2,3)B -不在此曲线上2、解:当0c ≠时,轨迹方程为12c x +=;当0c =时,轨迹为整个坐标平面. 3、以两定点所在直线为x 轴,线段AB 垂直平分线为y 轴,建立直角坐标系,得点M 的轨迹方程为224x y +=.4、解法一:设圆22650x y x +-+=的圆心为C ,则点C 的坐标是(3,0). 由题意,得CM AB ⊥,则有1CM AB k k =-.所以,13y yx x⨯=--(3,0)x x ≠≠ 化简得2230x y x +-=(3,0)x x ≠≠当3x =时,0y =,点(3,0)适合题意;当0x =时,0y =,点(0,0)不合题意.解方程组 222230650x y x x y x ⎧+-=⎪⎨+-+=⎪⎩, 得5,3x y == 所以,点M 的轨迹方程是2230x y x +-=,533x ≤≤. 解法二:注意到OCM ∆是直角三角形,利用勾股定理,得2222(3)9x y x y ++-+=, 即2230x y x +-=. 其他同解法一. 习题2.1 B 组(P37)1、解:由题意,设经过点P 的直线l 的方程为1x ya b+=. 因为直线l 经过点(3,4)P ,所以341a b+= 因此,430ab a b --=由已知点M 的坐标为(,)a b ,所以点M 的轨迹方程为430xy x y --=. 2、解:如图,设动圆圆心M 的坐标为(,)x y .由于动圆截直线30x y -=和30x y +=所得弦分别为AB ,CD ,所以,8AB =,4CD =. 过点M 分别 作直线30x y -=和30x y +=的垂线,垂足分别为E ,F ,则4AE =,2CF =.ME =,MF =.连接MA ,MC ,因为MA MC =, 则有,2222AE ME CF MF +=+所以,22(3)(3)1641010x y x y -++=+,化简得,10xy =. 因此,动圆圆心的轨迹方程是10xy =.2.2椭圆 练习(P42)1、14. 提示:根据椭圆的定义,1220PF PF +=,因为16PF =,所以214PF=. 2、(1)22116x y +=; (2)22116y x +=; (3)2213616x y +=,或2213616y x +=.3、解:由已知,5a =,4b =,所以3c =. (1)1AF B ∆的周长1212AF AF BF BF =+++.由椭圆的定义,得122AF AF a +=,122BF BF a +=. 所以,1AF B ∆的周长420a ==.(2)如果AB 不垂直于x 轴,1AF B ∆的周长不变化.这是因为①②两式仍然成立,1AF B ∆的周长20=,这是定值. 4、解:设点M 的坐标为(,)x y ,由已知,得直线AM 的斜率 1AM yk x =+(1)x ≠-; 直线BM 的斜率 1BM y k x =-(1)x ≠; 由题意,得2AMBMk k =,所以211y y x x =⨯+-(1,0)x y ≠±≠ 化简,得3x =-(0)y ≠因此,点M 的轨迹是直线3x =-,并去掉点(3,0)-.练习(P48)1、以点2B (或1B )为圆心,以线段2OA (或1OA 为半径画圆,圆与x 轴的两个交点分别为12,F F . 点12,F F 就是椭圆的两个焦点.这是因为,在22Rt B OF ∆中,2OB b =,22B F OA =所以,2OF c =. 同样有1OF c =. 2、(1)焦点坐标为(8,0)-,(8,0); (2)焦点坐标为(0,2),(0,2)-.3、(1)2213632x y +=; (2)2212516y x +=.4、(1)22194x y += (2)22110064x y +=,或22110064y x +=.5、(1)椭圆22936x y +=的离心率是3,椭圆2211612x y +=的离心率是12,12>,所以,椭圆2211612x y +=更圆,椭圆22936x y +=更扁;(2)椭圆22936x y +=,椭圆221610x y +=,因为35>,所以,椭圆221610x y +=更圆,椭圆22936x y +=更扁.6、(1)8(3,)5; (2)(0,2); (3)4870(,)3737--.7、7.习题2.2 A 组(P49)1、解:由点(,)M x y 10=以及椭圆的定义得,点M 的轨迹是以1(0,3)F -,2(0,3)F 为焦点,长轴长为10的椭圆.它的方程是2212516y x +=. 2、(1)2213632x y +=; (2)221259y x +=; (3)2214940x y +=,或2214940y x +=. 3、(1)不等式22x -≤≤,44y -≤≤表示的区域的公共部分;(2)不等式x -≤≤,101033y -≤≤表示的区域的公共部分. 图略.4、(1)长轴长28a =,短轴长24b =,离心率e =焦点坐标分别是(-,,顶点坐标分别为(4,0)-,(4,0),(0,2)-,(0,2);(2)长轴长218a =,短轴长26b =,离心率3e =,焦点坐标分别是(0,-,,顶点坐标分别为(0,9)-,(0,9),(3,0)-,(3,0).5、(1)22185x y +=; (2)2219x y +=,或221819y x +=;(3)221259x y +=,或221259y x +=. 6、解:由已知,椭圆的焦距122F F =.因为12PF F ∆的面积等于1,所以,12112P F F y ⨯⨯=,解得1P y =.代入椭圆的方程,得21154x +=,解得2x =±.所以,点P的坐标是(1)2±±,共有4个. 7、解:如图,连接QA . 由已知,得QA QP =. 所以,QO QA QO QP OP r +=+==. 又因为点A 在圆内,所以OA OP <根据椭圆的定义,点Q 的轨迹是以,O A 为焦点,r 为长轴长的椭圆. 8、解:设这组平行线的方程为32y x m =+. 把32y x m =+代入椭圆方程22149x y +=,得22962180x mx m ++-=. 这个方程根的判别式 223636(218)m m ∆=-- (1)由0∆>,得m -< 当这组直线在y轴上的截距的取值范围是(-时,直线与椭圆相交. (2)设直线与椭圆相交得到线段AB ,并设线段AB 的中点为(,)M x y .则 1223x x mx +==-. 因为点M 在直线32y x m =+上,与3mx =-联立,消去m ,得320x y +=.这说明点M 的轨迹是这条直线被椭圆截下的弦(不包括端点),这些弦的中点在一条直线上. 9、222213.525 2.875x y +=.(第7题)10、地球到太阳的最大距离为81.528810⨯km ,最下距离为81.471210⨯km. 习题2.2 B 组(P50)1、解:设点M 的坐标为(,)x y ,点P 的坐标为00(,)x y ,则0x x =,032y y =. 所以0x x =,023y y = ……①. 因为点00(,)P x y 在圆上,所以22004x y += ……②.将①代入②,得点M 的轨迹方程为22449x y +=,即22149x y +=所以,点M 的轨迹是一个椭圆与例2相比可见,椭圆也可以看作是由圆沿某个方向压缩或拉伸得到.2、解法一:设动圆圆心为(,)P x y ,半径为R ,两已知圆的圆心分别为12,O O .分别将两已知圆的方程 22650x y x +++=,226910x y x +--= 配方,得 22(3)4x y ++=, 22(3)100x y -+= 当P 与1O :22(3)4x y ++=外切时,有12O P R =+ ……① 当P 与2O :22(3)100x y -+=内切时,有210O P R =- ……②①②两式的两边分别相加,得1212O P O P +=12= ……③ 化简方程③.先移项,再两边分别平方,并整理,得 12x =+ ……④ 将④两边分别平方,并整理,得 22341080x y +-= ……⑤将常数项移至方程的右边,两边分别除以108,得2213627x y += ……⑥由方程⑥可知,动圆圆心的轨迹是椭圆,它的长轴和短轴长分别为12,12 ……①由方程①可知,动圆圆心(,)P x y 到点1(3,0)O -和点2(3,0)O 距离的和是常数12, 所以点P 的轨迹方程是焦点为(3,0)-、(3,0),长轴长等于12的椭圆.并且这个椭圆的中心与坐标原点重合,焦点在x 轴上,于是可求出它的标准方程. 因为 26c =,212a =,所以3c =,6a =(第4题)所以236927b =-=.于是,动圆圆心的轨迹方程为2213627x y +=. 3、解:设d 是点M 到直线8x =的距离,根据题意,所求轨迹就是集合12MF P M d ⎧⎫==⎨⎬⎩⎭ 由此得12=将上式两边平方,并化简,得 223448x y +=,即2211612x y +=所以,点M 的轨迹是长轴、短轴长分别为8,. 4、解:如图,由已知,得(0,3)E -,F 因为,,R S T 是线段OF ,,R S T '''是线段CF 所以,(1,0),(2,0),(3,0)R S T ;933(4,),(4,),(4,)424R S T '''.直线ER 的方程是33y x =-;直线GR '的方程是3316y x =-+.联立这两个方程,解得 3245,1717x y ==.所以,点L 的坐标是3245(,)1717.同样,点M 的坐标是169(,)55,点N 的坐标是9621(,)2525.由作图可见,可以设椭圆的方程为22221x y m n +=(0,0)m n >> ……①把点,L M 的坐标代入方程①,并解方程组,得22114m =,22113n =. 所以经过点,L M 的椭圆方程为221169x y +=. 把点N 的坐标代入22169x y +,得22196121()()11625925⨯+⨯=,所以,点N 在221169x y +=上.因此,点,,L M N 都在椭圆221169x y +=上.2.3双曲线 练习(P55)1、(1)221169x y -=. (2)2213y x -=. (3)解法一:因为双曲线的焦点在y 轴上所以,可设它的标准方程为22221y x a b -=(0,0)a b >>将点(2,5)-代入方程,得222541a b-=,即22224250a b a b +-= 又 2236a b +=解方程组 222222425036a b a b a b ⎧+-=⎪⎨+=⎪⎩ 令22,m a n b ==,代入方程组,得425036mn m n m n +-=⎧⎨+=⎩解得 2016m n =⎧⎨=⎩,或459m n =⎧⎨=-⎩第二组不合题意,舍去,得2220,16a b ==所求双曲线的标准方程为2212016y x -=解法二:根据双曲线的定义,有2a =所以,a = 又6c =,所以2362016b =-=由已知,双曲线的焦点在y 轴上,所以所求双曲线的标准方程为2212016y x -=. 2、提示:根据椭圆中222a b c -=和双曲线中222a b c +=的关系式分别求出椭圆、双曲线的焦点坐标.3、由(2)(1)0m m ++>,解得2m <-,或1m >- 练习(P61)1、(1)实轴长2a =24b =;顶点坐标为-;焦点坐标为(6,0),(6,0)-;离心率4e =. (2)实轴长26a =,虚轴长218b =;顶点坐标为(3,0),(3,0)-;焦点坐标为-;离心率e (3)实轴长24a =,虚轴长24b =;顶点坐标为(0,2),(0,2)-;焦点坐标为-;离心率e =(4)实轴长210a =,虚轴长214b =;顶点坐标为(0,5),(0,5)-;焦点坐标为;离心率5e =2、(1)221169x y -=; (2)2213628y x -=. 3、22135x y -= 4、2211818x y -=,渐近线方程为y x =±. 5、(1)142(6,2),(,)33-; (2)25(,3)4习题2.3 A 组(P61)1、把方程化为标准方程,得2216416y x -=. 因为8a =,由双曲线定义可知,点P 到两焦点距离的差的绝对值等于16. 因此点P 到另一焦点的距离是17.2、(1)2212016x y -=. (2)2212575x y -= 3、(1)焦点坐标为12(5,0),(5,0)F F -,离心率53e =; (2)焦点坐标为12(0,5),(0,5)F F -,离心率54e =;4、(1)2212516x y -=. (2)221916y x -=(3)解:因为ce a==222c a =,因此2222222b c a a a a =-=-=.设双曲线的标准方程为 22221x y a a -=,或22221y x a a -=.将(5,3)-代入上面的两个方程,得222591a a -=,或229251a a-=. 解得 216a = (后一个方程无解).所以,所求的双曲线方程为2211616x y -=.5、解:连接QA ,由已知,得QA QP =. 所以,QA QO QP QO OP r -=-==. 又因为点A 在圆外,所以OA OP >.根据双曲线的定义,点Q 的轨迹是以,O A 为焦点,r 为实轴长的双曲线.6、22188x y -=. 习题2.3 B 组(P62)1、221169x y -= 2、解:由声速及,A B 两处听到爆炸声的时间差,可知,A B 两处与爆炸点的距离的差,因此爆炸点应位于以,A B 为焦点的双曲线上.使,A B 两点在x 轴上,并且原点O 与线段AB 的中点重合,建立直角坐标系xOy . 设爆炸点P 的坐标为(,)x y ,则 34031020PA PB -=⨯=. 即 21020a =,510a =.又1400AB =,所以21400c =,700c =,222229900b c a =-=.因此,所求双曲线的方程为221260100229900x y -=. 3、22221x y a b-=4、解:设点11(,)A x y ,22(,)B x y 在双曲线上,且线段AB 的中点为(,)M x y .设经过点P 的直线l 的方程为1(1)y k x -=-,即1y kx k =+-把1y kx k =+-代入双曲线的方程2212y x -=得222(2)2(1)(1)20k x k k x k ------=(220k -≠) ……①所以,122(1)22x x k k x k +-==- 由题意,得2(1)12k k k -=-,解得 2k =. 当2k =时,方程①成为22430x x -+=.根的判别式162480∆=-=-<,方程①没有实数解.所以,不能作一条直线l 与双曲线交于,A B 两点,且点P 是线段AB 的中点.2.4抛物线 练习(P67)1、(1)212y x =; (2)2y x =; (3)22224,4,4,4y x y x x y x y ==-==-.2、(1)焦点坐标(5,0)F ,准线方程5x =-; (2)焦点坐标1(0,)8F ,准线方程18y =-;(3)焦点坐标5(,0)8F -,准线方程58x =; (4)焦点坐标(0,2)F -,准线方程2y =;3、(1)a ,2pa -. (2),(6,-提示:由抛物线的标准方程求出准线方程. 由抛物线的定义,点M 到准线的距离等于9,所以 39x +=,6x =,y =±练习(P72)1、(1)2165y x =; (2)220x y =;(3)216y x =-; (4)232x y =-. 2、图形见右,x 的系数越大,抛物线的开口越大. 3、解:过点(2,0)M 且斜率为1的直线l 的方程 为2y x =-与抛物线的方程24y x =联立 224y x y x=-⎧⎨=⎩解得1142x y ⎧=+⎪⎨=+⎪⎩2242x y ⎧=-⎪⎨=-⎪⎩ 设11(,)A x y ,22(,)B x y,则AB ===4、解:设直线AB 的方程为x a =(0)a >.将x a =代入抛物线方程24y x =,得24y a =,即y =±. 因为22AB y ==⨯==, 所以,3a =因此,直线AB 的方程为3x =.习题2.4 A 组(P73)1、(1)焦点坐标1(0,)2F ,准线方程12y =-;(2)焦点坐标3(0,)16F -,准线方程316y =;(3)焦点坐标1(,0)8F -,准线方程18x =;(4)焦点坐标3(,0)2F ,准线方程32x =-.2、(1)28y x =-; (2),或(4,-3、解:由抛物线的方程22y px =(0)p >,得它的准线方程为2px =-. 根据抛物线的定义,由2MF p =,可知,点M 的准线的距离为2p . 设点M 的坐标为(,)x y ,则 22p x p +=,解得32p x =. 将32px =代入22y px =中,得y =. 因此,点M的坐标为3()2p,3(,)2p.4、(1)224y x =,224y x =-; (2)212x y =-(图略)5、解:因为60xFM ∠=︒,所以线段FM所在直线的斜率tan60k =︒. 因此,直线FM 的方程为1)y x =-与抛物线24y x =联立,得21)142y x y x ⎧=-⎪⎨=⎪⎩将1代入2得,231030x x -+=,解得,113x =,23x =把113x =,23x =分别代入①得1y =,2y =由第5题图知1(,33-不合题意,所以点M 的坐标为.因此,4FM ==6、证明:将2y x =-代入22y x =中,得2(2)2x x -=,化简得 2640x x -+=,解得3x = 则321y =±= 因为OB k =,OA k 所以15195OB OA k k -⋅===-- 所以 OA OB ⊥7、这条抛物线的方程是217.5x y = 8、解:建立如图所示的直角坐标系,设拱桥抛物线的方程为22x py =-, 因为拱桥离水面2 m ,水面宽4 m 所以 222(2)p =--,1p =因此,抛物线方程为22x y =- ……①水面下降1 m ,则3y =-,代入①式,得22(3)x =-⨯-,x =这时水面宽为m.习题2.2 B 组(P74)1、解:设垂线段的中点坐标为(,)x y ,抛物线上相应点的坐标为11(,)x y .根据题意,1x x =,12y y =,代入2112y px =,得轨迹方程为212y px =. 由方程可知,轨迹为顶点在原点、焦点坐标为(,0)8p的抛物线.2、解:设这个等边三角形OAB 的顶点,A B 在抛物线上,且坐标分别为11(,)x y ,22(,)x y ,则 2112y px =,2222y px =.又OA OB =,所以 22221122x y x y +=+ 即221212220x x px px -+-=,221212()2()0x x p x x -+-= 因此,1212()(2)0x x x x p -++= 因为120,0,20x x p >>>,所以12x x = 由此可得12y y =,即线段AB 关于x 轴对称.(第8题)因为x 轴垂直于AB ,且30AOx ∠=︒,所以11tan303y x =︒=. 因为2112y x p=,所以1y =,因此12AB y ==.3、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+. 直线BM 的斜率 (1)1BM yk x x =≠-. 由题意,得2AM BM k k -=,所以,2(1)11y y x x x -=≠±+-,化简,得2(1)(1)x y x =--≠± 第二章 复习参考题A 组(P80)1、解:如图,建立直角坐标系,使点2,,A B F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的标准方程为22221(0)x y a b a+=>>.则 22a c OA OF F A -=-=63714396810=+=,22a c OB OF F B +=+=637123848755=+=解得 7782.5a =,8755c =所以 b ===用计算器算得 7722b ≈因此,卫星的轨道方程是2222177837722x y +=. 2、解:由题意,得 12a c R r a c R r -=+⎧⎨+=+⎩, 解此方程组,得1221222R r r a r r c ++⎧=⎪⎪⎨-⎪=⎪⎩因此卫星轨道的离心率21122c r r e a R r r -==++. 3、(1)D ; (2)B .4、(1)当0α=︒时,方程表示圆.(2)当090α︒<<︒时,方程化成2211cos y x α+=. 方程表示焦点在y 轴上的椭圆. (第1题)(3)当90α=︒时,21x =,即1x =±,方程表示平行于y 轴的两条直线.(4)当90180α︒<≤︒时,因为cos 0α<,所以22cos 1x y α+=表示双曲线,其焦点在x 轴上. 而当180α=︒时,方程表示等轴双曲线. 5、解:将1y kx =-代入方程224x y -=得 2222140x k x kx -+--= 即 22(1)250k x kx -+-= ……① 222420(1)2016k k k ∆=+-=-令 0∆<,解得2k >,或2k <- 因为0∆<,方程①无解,即直线与双曲线没有公共点,所以,k 的取值范围为k >,或k <6、提示:设抛物线方程为22y px =,则点B 的坐标为(,)2p p ,点C 的坐标为(,)2pp -设点P 的坐标为(,)x y ,则点Q 的坐标为(,0)x .因为,PQ y ==2BC p =,OQ x =.所以,2PQ BC OQ =,即PQ 是BC 和OQ 的比例中项.7、解:设等边三角形的另外两个顶点分别是,A B ,其中点A 在x 轴上方.直线FA 的方程为 )32py x =-与22y px =联立,消去x ,得 220y p --=解方程,得 12)y p =,22)y p =把12)y p =代入)2py x =-,得 17(2x p =+.把22)y p =代入)32py x =-,得 27(2x p =-.所以,满足条件的点A 有两个17((2))2A p p +,27((2))2A p p -.根据图形的对称性,可得满足条件的点B 也有两个17((,2))2B p p +-,27((,2))2B p p --所以,等边三角形的边长是112)A B p =,或者222(2A B p =. 8、解:设直线l 的方程为2y x m =+.把2y x m =+代入双曲线的方程222360x y --=,得221012360x mx m +++=.1265m x x +=-,2123610m x x += ……①由已知,得 21212(14)[()4]16x x x x ++-= ……②把①代入②,解得 3m =±所以,直线l 的方程为23y x =±9、解:设点A 的坐标为11(,)x y ,点B 的坐标为22(,)x y ,点M 的坐标为(,)x y .并设经过点M 的直线l 的方程为1(2)y k x -=-,即12y kx k =+-.把12y kx k =+-代入双曲线的方程2212y x -=,得 222(2)2(12)(12)20k x k k x k ------=2(0)k -≠. ……①所以,122(12)22x x k k x k +-==- 由题意,得2(12)22k k k -=-,解得4k = 当4k =时,方程①成为 21456510x x -+=根的判别式25656512800∆=-⨯=>,方程①有实数解. 所以,直线l 的方程为47y x =-.10、解:设点C 的坐标为(,)x y .由已知,得 直线AC 的斜率 (5)5AC yk x x =≠-+ 直线BC 的斜率 (5)5BCy k x x =≠-由题意,得AC BC k k m =. 所以,(5)55y y m x x x ⨯=≠±+- 化简得,221(5)2525x y x m-=≠± 当0m <时,点C 的轨迹是椭圆(1)m ≠-,或者圆(1)m =-,并除去两点(5,0),(5,0)-; 当0m >时,点C 的轨迹是双曲线,并除去两点(5,0),(5,0)-;11、解:设抛物线24y x =上的点P 的坐标为(,)x y ,则24y x =.点P 到直线3y x =+的距离d ===当2y =时,d此时1x =,点P 的坐标是(1,2).12、解:如图,在隧道的横断面上,以拱顶为原点、拱高所在直线为y 轴 (向上),建立直角坐标系.设隧道顶部所在抛物线的方程 为22x py =-因为点(4,4)C -在抛物线上 所以 242(4)p =--解得 24p =-为24x y =-.设0.5EF h =+. 则(3, 5.5)F h -把点F 的坐标代入方程24x y =-,解得 3.25h =. 答:车辆通过隧道的限制高度为3.2 m.第二章 复习参考题B 组(P81)1、12PF F S ∆=2、解:由题意,得1PF x ⊥轴.把x c =-代入椭圆方程,解得 2b y a=±. 所以,点P 的坐标是2(,)b c a -(第12题)(第4题)直线OP 的斜率21b k ac=-. 直线AB 的斜率2b k a =-.由题意,得2b bac a =,所以,b c =,a =. 由已知及1F A a c =+,得a c +=所以(1c +=c =所以,a =,b =因此,椭圆的方程为221105x y +=. 3、解:设点A 的坐标11(,)x y ,点B 的坐标22(,)x y .由OA OB ⊥,得12120x x y y +=.由已知,得直线AB 的方程为25y x =-+. 则有 12125()250y y y y -++= ……①由25y x =-+与22y px =消去x ,得250y py p +-= ……② 12y y p +=-,125y y p =- ……③ 把③代入①,解得54p = 当54p =时,方程②成为245250y y +-=,显然此方程有实数根. 所以,54p = 4、解:如图,以连接12,F F 的直线为x 轴,线段12F F 的中点为原点,建立直角坐标系.对于抛物线,有176352922922p=+=, 所以,4584p =,29168p =.对于双曲线,有2080529c a c a +=⎧⎨-=⎩解此方程组,得775.5a =,1304.5c = 因此,2221100320b c a =-=.所以,所求双曲线的方程是221601400.31100320x y -=(775.5)x ≥.因为抛物线的顶点横坐标是 (1763)(1763775.5)987.5a --=--=- 所以,所求抛物线的方程是 29168(987.5)y x =+ 答:抛物线的方程为29168(987.5)y x =+,双曲线的方程是221601400.31100320x y -=(775.5)x ≥. 5、解:设点M 的坐标为(,)x y由已知,得 直线AM 的斜率 (1)1AM yk x x =≠-+ 直线BM 的斜率 (1)1BM yk x x =≠- 由题意,得2AM BM k k +=,所以2(1)11y y x x x +=≠±-+,化简,得21(1)xy x x =-≠± 所以,点M 轨迹方程是21(1)xy x x =-≠±.6、解:(1)当1m =时,方程表示x 轴;(2)当3m =时,方程表示y 轴;(3)当1,3m m ≠≠时,把方程写成22131x y m m +=--. ①当13,2m m <<≠时,方程表示椭圆; ②2m =时,方程表示圆;③当1m <,或3m >时,方程表示双曲线.7、以AB 为直径的圆与抛物线的准线l 相切.证明:如图,过点,A B 分别作抛物线22(0)y px p =>的准线l 的 垂线,垂足分别为,D E .由抛物线的定义,得 AD AF =,BE BF =.所以,AB AF BF AD BE =+=+.设AB 的中点为M ,且过点M 作抛物线22(0)y px p =>的准线l 的垂线,垂足为C .显然MC ∥x 轴,所以,MC 是直角梯形ADEB 的中位线. 于是,11()22MC AD BE AB =+=. 因此,点C 在以AB 为直径的圆上.又MC l ⊥,所以,以AB 为直径的圆与抛物线的准线l 相切. 类似地,可以证明:对于椭圆,以经过焦点的弦为直径的圆与相应的准线相离; 对于双曲线,以经过焦点的弦为直径的圆与相应的准线相交.(第7题)。
高二年级数学选修2_1第二章《圆锥曲线》检测试题整理
圆锥曲线一.选择题:本大题共8题,每小题5分,共40分。
请将答案写在括号里。
1、已知方程11222=-+-k y k x 的图象是双曲线,那么k 的取值范围是( ) A.k <1 B.k >2 C.k <1或k >2 D.1<k <22、已知方程0,,0(022>≠≠=++=+c b a ab c by ax ab by ax 其中和),它们所表示的曲线可能是( )A B C D3、设椭圆22221(0)x y a b a b +=>>的离心率为1e 2=,右焦点为(0)F c ,,方程20ax bx c +-=的两个实根分别为1x 和2x ,则点12()P x x ,( )A.必在圆222x y +=内B.必在圆222x y +=上C.必在圆222x y +=外D.以上三种情形都有可能 4、椭圆13610022=+y x 上的点P 到它的左准线的距离是10,那么P 点到椭圆的右焦点的距离是( )A.15B.10C.12D.85、双曲线1322=-y x 的两条渐近线所成的锐角是 ( )A.30°B.45°C.60°D.75°6、已知抛物线22(0)y px p =>的焦点为F ,点111222()()P x y P x y ,,,,333()P x y ,在抛物线上,且2132x x x =+, 则有( ) A.123FP FP FP += B.222123FP FP FP += C.2132FP FP FP =+D.2213FP FP FP =·7、双曲线22a x -22by =1的两条渐近线互相垂直,那么它的离心率为( )A. 2B.3C. 2D.238、过抛物线y x 42=的焦点F 作直线交抛物线于()()222111,,,y x P y x P 两点,若621=+y y ,则21P P 的值为 ( )A .5B .6C .8D .10二、选择题:本大题共6小题,每小题5分,共30分.把答案填在题中横线上.9、设中心在原点的椭圆与双曲线2 x 2-2y 2=1有公共的焦点,且它们的离心互为倒数,则该椭圆的方程是 。
(数学选修2-1)第二章 圆锥曲线 [综合训练B组]及答案
(数学选修2-1)第二章 圆锥曲线 [综合训练B 组]及答案一、选择题1.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )A .()+∞,0B .()2,0C .()+∞,1D .()1,02.以椭圆1162522=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .1481622=-y x B .127922=-y x C .1481622=-y x 或127922=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠21π=Q PF ,则双曲线的离心率e 等于( )A .12-B .2C .12+D .22+4.21,F F 是椭圆17922=+y x 的两个焦点,A 为椭圆上一点,且∠02145=F AF ,则 Δ12AF F 的面积为( ) A .7 B .47 C .27 D .257 5.以坐标轴为对称轴,以原点为顶点且过圆096222=++-+y x y x 的圆心的抛物线的方程是( )A .23x y =或23x y -= B .23x y =C .x y 92-=或23x y = D .23x y -=或x y 92=6.设AB 为过抛物线)0(22>=p px y 的焦点的弦,则AB 的最小值为( )A .2pB .pC .p 2D .无法确定二、填空题1.椭圆22189x y k +=+的离心率为12,则k 的值为______________。
2.双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为______________。
3.若直线2=-y x 与抛物线x y 42=交于A 、B 两点,则线段AB 的中点坐标是______。
4.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。
5.若双曲线1422=-m y x 的渐近线方程为x y 23±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22221x y a b+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,则AB OM k k ⋅=____________。
高中数学选修2-1(人教B版)第二章圆锥曲线与方程2.2知识点总结含同步练习题及答案
y2 x2 + =1 a2 a2 − c 2
①
由椭圆的定义可知,2a > 2c,即 a > c,所以,a2 − c 2 > 0 . − − − − − − 当点 M 的横坐标为 0 时,即点在 y 轴上,此时 |OM | = √a2 − c 2 ,令
y2 x2 − − − − − − b = |OP | = √a2 − c 2 ,那么 ① 式就是 + = 1 (a > b > 0) a2 b2
椭圆
5
4
解: 如图所示,由题意知椭圆的右焦点 F2 的坐标为 (c, 0),将 x = c 代入椭圆方程得
y=±
所以 A(c,
b2 . a
b2 b2 ) ,B(c, − ). a a −→ − −→ −→ − − −→ − b2 b2 因为 OA ⋅ OB = 0 ,OA = (c, ),OB = (c, − ) ,所以 a a c2 − (
)
A.2
8
B.4
C.6
D.
解:B 由椭圆定义可知,|P F1 | + |P F2 | = 2a = 10 ,所以 |P F2 | = 2a − |P F1 | = 4 .
y2 x2 + = 1: k−3 5−k (1)若方程表示圆,求 k 的取值范围; (2)若方程表示椭圆,求 k 的取值范围; (3)若方程表示焦点在 x 轴的椭圆,求 k 的取值范围; (4)若方程表示焦点在 y 轴的椭圆,求 k 的取值范围.
所以椭圆的标准方程为
2 2
6 5 2 2 y c x √5 (4)把方程 4x 2 + 9y 2 = 36 化为 + = 1 ,则其焦距为2√5 .由题意知 = 9 4 a 5 ,而 c = √5 ,所以 a = 5 , b 2 = a2 − c 2 = 20 . y2 y2 x2 x2 故椭圆方程为 + =1 或 + =1 . 25 20 25 20 y2 1 x2 ,则 m =______. + = 1 的离心率为 4 m 2 16 解: 3 或 3 − − − 1 √− 4− − m 当焦点在 x 轴上时, = ,解得 m = 3 ; 2 2 − − − − 1 16 √− m − 4 当焦点在 y 轴上时, . = ,解得 m = − − 2 3 √m 16 综上, m = 3 或 m = . 3 y2 x2 已知椭圆 + = 1(a > b > 0) ,过椭圆的右焦点作 x 轴的垂线交椭圆于 A ,B 两点, a2 b2 −→ − −→ − 若 OA ⋅ OB = 0 ,求椭圆的离心率 e .
高中数学选修2-1(人教B版)第二章圆锥曲线与方程2.1知识点总结含同步练习题及答案
第二章 圆锥曲线与方程 2.1 曲线与方程
一、学习任务 了解曲线与方程的对应关系;了解求曲线方程的一般步骤,能求一些简单曲线的方程. 二、知识清单
轨迹与轨迹方程 曲线系
三、知识讲解
1.轨迹与轨迹方程 描述: 一般地,一条曲线可以看成动点依某种条件运动的轨迹,所以曲线的方程又常称为满足某种条件 的点的轨迹方程. 在平面直角坐标系中,如果曲线 C 与方程 F (x, y) = 0 之间具有如下关系: (1)曲线 C 上点的坐标都是方程 F (x, y) = 0 的解; (2)以方程 F (x, y) = 0 的解为坐标的点都是曲线 C 上. 那么,曲线 C 叫做方程 F (x, y) = 0 的曲线,方程 F (x, y) = 0 叫做曲线 C 的方程. 例题: 设圆 C : (x − 1)2 + y 2 = 1 ,过原点 O 作圆的任意弦,求所作弦的中点的轨迹方程. 解:解法一:直接法.
所以 P 点轨迹方程为 (x −
1 2 1 ) + y 2 = (0 < x ≤ 1). 2 4
A 、B 是抛物线 y 2 = 4ax(a > 0) 上的两动点,且 OA ⊥ OB ,OP ⊥ AB 于点 P ,求动点 P 的轨迹. 解:设点 P 的坐标为 (x, y) ,直线 OA 的方程为 y = kx ,显然 k ≠ 0,则直线 OB 的方 1 程为 y = − x.由 k { y 2= kx, y = 4ax,
1+λ 4 11 ,代入 ① 式整理得 4x − 3y + 2 = 0 ,即 = ,所以 λ = − 2+λ 3 7
求解下列各题: (1)求过两圆 x 2 + y 2 + 6x − 4 = 0 和 x2 + y 2 + 6y − 28 = 0 的交点,且圆心在直线 x − y − 4 = 0 上的圆的方程; (2)求经过圆 C1 :x 2 + y 2 − 6x = 0 与圆 C2 :x2 + y 2 = 4 的交点,且经过点 P (2, −2) 的圆 C 的方程. 解:(1)设所求的圆的方程为 x 2 + y 2 + 6x − 4 + λ(x2 + y 2 + 6y − 28) = 0(λ ≠ −1),即
高二数学选修2-1第二章圆锥曲线-知识点+习题+答案汇编
第二章 圆锥曲线与方程1、平面内与两个定点1F ,2F 的距离之和等于常数(大于12F F )的点的轨迹称为椭圆.这两个定点称为椭圆的焦点,两焦点的距离称为椭圆的焦距.3、设M 是椭圆上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.4、平面内与两个定点1F ,2F 的距离之差的绝对值等于常数(小于12F F )的点的轨迹称为双曲线.这两个定点称为双曲线的焦点,两焦点的距离称为双曲线的焦距.7、设M 是双曲线上任一点,点M 到1F 对应准线的距离为1d ,点M 到2F 对应准线的距离为2d ,则1212F F e d d M M ==.8、平面内与一个定点F 和一条定直线l 的距离相等的点的轨迹称为抛物线.定点F 称为抛物线的焦点,定直线l 称为抛物线的准线. 9、过抛物线的焦点作垂直于对称轴且交抛物线于A 、B 两点的线段AB ,称为抛物线的“通径”,即2p AB =. 10、焦半径公式:若点()00,x y P 在抛物线()220y px p =>上,焦点为F ,则02pF x P =+; 若点()00,x y P 在抛物线()220y px p =->上,焦点为F ,则02pF x P =-+;若点()00,x y P 在抛物线()220x py p =>上,焦点为F ,则02pF y P =+;若点()00,x y P 在抛物线()220x py p =->上,焦点为F ,则02pF y P =-+.圆锥曲线测试题一、选择题:1.已知动点M 的坐标满足方程|12512|1322-+=+y x y x ,则动点M 的轨迹是( ) A. 抛物线 B.双曲线C. 椭圆D.以上都不对2.设P 是双曲线19222=-y ax 上一点,双曲线的一条渐近线方程为1,023F y x =-、F 2分别是双曲线的左、右焦点,若5||1=PF ,则=||2PF ( ) A. 1或5 B. 1或9C. 1D. 93、设椭圆的两个焦点分别为F 1、、F 2,过F 2作椭圆长轴的垂线交椭圆于点P ,若△F 1PF 2为等腰直角三角形,则椭圆的离心率是( ).C. 21 4.过点(2,-1)引直线与抛物线2x y =只有一个公共点,这样的直线共有( )条A. 1B.2C. 3D.45.已知点)0,2(-A 、)0,3(B ,动点2),(y y x P =⋅满足,则点P 的轨迹是 ( ) A .圆 B .椭圆C .双曲线D .抛物线6.如果椭圆193622=+y x 的弦被点(4,2)平分,则这条弦所在的直线方程是( ) 02=-y x 042=-+y x C 01232=-+y x D 082=-+y x 7、无论θ为何值,方程1sin 222=⋅+y x θ所表示的曲线必不是( )A. 双曲线B.抛物线C. 椭圆D.以上都不对8.方程02=+ny mx 与)02>n mx 的曲线在同一坐标系中的示意图应是(二、填空题:9.对于椭圆191622=+y x 和双曲线19722=-y x 有下列命题: ① 椭圆的焦点恰好是双曲线的顶点; ②双曲线的焦点恰好是椭圆的顶点; ③ 双曲线与椭圆共焦点; ④椭圆与双曲线有两个顶点相同. 其中正确命题的序号是 .10.若直线01)1(=+++y x a 与圆0222=-+x y x 相切,则a 的值为 11、抛物线2x y -=上的点到直线0834=-+y x 的距离的最小值是 12、抛物线C: y 2=4x 上一点Q 到点B(4,1)与到焦点F 的距离和最小,则点Q 的坐标 。
(数学选修2-1)第二章 圆锥曲线
(数学选修2-1)第二章 圆锥曲线[基础训练A 组] 一、选择题1、已知椭圆1162522=+y x 上的一点P 到椭圆一个焦点的距离为3,则P 到另一焦点距离为( ) A .2 B .3 C .5 D .72.若椭圆的对称轴为坐标轴,长轴长与短轴长的和为18,焦距为6,则椭圆的方程为( )A .116922=+y x B .1162522=+y x C .1162522=+y x 或1251622=+y x D .以上都不对 3.动点P 到点)0,1(M 及点)0,3(N 的距离之差为2,则点P 的轨迹是( )A .双曲线B .双曲线的一支C .两条射线D .一条射线4.设双曲线的半焦距为c ,两条准线间的距离为d ,且d c =,那么双曲线的离心率e 等于( ) A .2 B .3 C .2 D .3 5.抛物线x y 102=的焦点到准线的距离是( )A .25 B .5 C .215 D .10 6.若抛物线28y x =上一点P 到其焦点的距离为9,则点P 的坐标为( )。
A .(7,B .(14,C .(7,±D .(7,-± 二、填空题1.若椭圆221x my +=_______________. 2.双曲线的渐近线方程为20x y ±=,焦距为10,这双曲线的方程为_______________。
3.若曲线22141x y k k+=+-表示双曲线,则k 的取值范围是 。
4.抛物线x y 62=的准线方程为_____.5.椭圆5522=+ky x 的一个焦点是)2,0(,那么=k 。
三、解答题1.k 为何值时,直线2y kx =+和曲线22236x y +=有两个公共点?有一个公共点?没有公共点?2.在抛物线24y x =上求一点,使这点到直线45y x =-的距离最短。
3.双曲线与椭圆有共同的焦点12(0,5),(0,5)F F -,点(3,4)P 是双曲线的渐近线与椭圆的一个交点,求渐近线与椭圆的方程。
高中数学选修2-1 第二章 圆锥曲线(B卷)
高中数学选修2-1 第二章圆锥曲线(B卷)试卷一、选择题(共16题;共48分)1.若曲线上C的点的坐标满足方程f(x,y)=0,则下列说法正确的是()A.曲线C的方程是f(x,y)=0B.方程f(x,y)=0的曲线是CC.坐标不满足方程f(x,y)=0的点都不在曲线C上D.坐标满足方程f(x,y)=0的点都在曲线C上【答案】C【考点】曲线方程【解析】利用逆否命题我们可以判定选项C是已知的逆否命题,真值相同.2.与点A(-1,0)和点B(1,0)连线的斜率之和为-1的动点P的轨迹方程是()A.x2+y2=3B.x2+2xy=1(x≠±1)C.y=D.x2+y2=9(x≠0)【答案】B【考点】曲线方程【解析】设P(x,y),∵,∴,整理得x2+2xy=1(x≠±1).3.椭圆的两焦点为F1(-4,0)、F2(4,0),点P在椭圆上,若△PF1F2的面积最大为12,则椭圆方程为() A.B.C.D.【答案】B【考点】椭圆的定义,椭圆的方程【解析】=×8b=12,∴b=3,又∵c=4,∴a2=b2+c2=25,∴椭圆的标准方程为.4.若方程表示焦点在y轴上的椭圆,则实数m的取值范围是()A.-9<m<25B.8<m<25C.16<m<25D.m>8【答案】B【考点】椭圆的方程【解析】依题意有解得8<m<25,即实数m的取值范围是8<m<25,故选B.5.椭圆与双曲线有相同的焦点,则a的值是()A.B.1或-2C.1或D.1【答案】D【考点】双曲线的方程【解析】由于a>0,0<a2<4,且4-a2=a+2,所以可解得a=1,故选D.6.设点A是抛物线y2=4x上一点,点B(1,0),点M是线段AB中点.若|AB|=3,则点M到直线x=-1的距离为()A.5B.C.2D.【答案】D【考点】抛物线的定义,抛物线的方程,抛物线的性质【解析】如下图,过A、M、B分别作l:x=-1的垂线,垂足分别为P,N,Q,则MN=(AP+BQ)=×(3+2)=.故选D.7.抛物线y=x2上到直线2x-y=4距离最近的点的坐标是()A.B.(1,1)C.D.(2,4)【答案】B【考点】抛物线的方程【解析】设P(x,y)为抛物线y=x2上任一点,则P到直线2x-y=4的距离d===.∴当x=1时,d有最小值,此时,P(1,1).8.直线y=kx-k+1与椭圆的位置关系为()A.相切B.相交C.相离D.不确定【答案】B【考点】直线与椭圆位置关系【解析】直线y=kx-k+1恒过定点(1,1).又∵<1,∴点(1,1)在椭圆内部.∴直线y=kx-k+1与椭圆相交.故选B.9.已知椭圆x2+my2=1的离心率e∈,则实数m的取值范围是()A.B.C.∪D.∪【答案】C【考点】椭圆的性质【解析】椭圆标准方程为.当m>1时,e2=1-∈,解得m>;当0<m<1时,e2==1-m∈,解得0<m<,故实数m的取值范围是∪.10.已知双曲线方程为过P(1,0)的直线l与双曲线只有一个公共点,则l的条数为()A.4B.3C.2D.1【答案】B【考点】直线与双曲线的位置关系【解析】数形结合知,过点P(1,0)有一条直线l与双曲线相切,有两条直线与渐近线平行,这三条直线与双曲线只有一个公共点.11.已知直线l1:4x-3y+6=0和直线l2:x=-1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是()A.2B.3C.D.【答案】A【考点】抛物线的定义,抛物线的方程,抛物线的性质【解析】直线l2:x=-1为抛物线y2=4x的准线,由抛物线的定义知,P到l2的距离等于P到抛物线的焦点F(1,0)的距离,故本题化为在抛物线上找一个点P使得P到点F(1,0)和直线l1的距离之和最小,最小值为F(1,0)到直线l1:4x-3y+6=0的距离,即d min==2,故选择A.12.已知椭圆(a>b>0),M,N是椭圆上关于原点对称的两点,P是椭圆上任意一点,且直线PM,PN的斜率分别为k1,k2,若,则椭圆的离心率e为()A.B.C.D.【答案】C【考点】直线与椭圆位置关系【解析】设P(x,y),M(x0,y0),N(-x0,-y0),则,,依题意有.又因为点P,M,N在椭圆上,所以,,两式相减,得,即,所以,即,解得.13.椭圆的焦距是2,则m的值是()A.5B.3或8C.3或5D.20【答案】C【考点】椭圆的方程,椭圆的性质【解析】2c=2,c=1,故有m-4=12或4-m=12,∴m=5或m=3且同时都大于0,故答案为C.14.直线y=x+1被椭圆所截得的弦的中点坐标是()A.B.C.D.【答案】C【考点】直线与椭圆位置关系【解析】把y=x+1代入椭圆方程,整理得3x2+4x-2=0,所以弦的中点坐标(x0,y0)满足x0==-,y0=x0+1=-+1=.15.等轴双曲线的中心在原点,焦点在轴上,与抛物线的准线交于、两点,=,则的实轴长为()A.B.C.4D.8【答案】C【考点】直线与双曲线的位置关系【解析】由题设知抛物线的准线为:,设等轴双曲线方程为:,将代入等轴双曲线方程解得,∵=,∴,解得a=2,∴的实轴长为4,故选C.16.如图,中心均为原点O的双曲线与椭圆有公共焦点,M,N是双曲线的两顶点.若M,O,N将椭圆长轴四等分,则双曲线与椭圆的离心率的比值是()A.3B.2C.D.【答案】B【考点】定点、定值与探索问题【解析】椭圆的长轴为2a,双曲线的长轴为,由M,O,N将椭圆长轴四等分,则,即,又因为双曲线与椭圆有公共焦点,设焦距均为c,则双曲线的离心率为,,.故选B.二、解答题(共6题;共52分)17.已知F1,F2为椭圆(0<b<10)的左、右焦点,P是椭圆上一点.(1).|PF1|·|PF2|的最大值()A.10B.40C.100D.400【答案】C【考点】椭圆的定义【解析】由题意得|PF1|+|PF2|=20,则|PF1|·|PF2|≤=100,当且仅当|PF1|=|PF2|时,等号成立,故(|PF1|·|PF2|)max=100.(2).若∠F1PF2=60°且△F1PF2的面积为,则b的值为()A.4B.8C.16D.1【答案】B【考点】椭圆的定义【解析】∵=|PF1|·|PF2|sin 60°=,∴|P F1|·|PF2|=.①又②由①②得c=6,则b==8.18.已知双曲线的两焦点为F1、F2.(1).若点M在双曲线上,且则M点到x轴的距离( )A.B.C.3D.2【答案】A【考点】双曲线的定义【解析】不妨设M在双曲线的右支上,M点到x轴的距离为h,则MF1⊥MF2,设|MF1|=m,|MF2|=n,由双曲线定义知,m-n=2a=8,①又m2+n2=(2c)2=80,②由①②得m·n=8,∴mn=4=|F1F2|·h,∴h=.(2).若双曲线C与已知双曲线有相同焦点,且过点(,2),则双曲线C的方程( ) A.B.C.D.【答案】D【考点】双曲线的方程【解析】设所求双曲线C的方程为=1(-4<λ<16),由于双曲线C过点(,2),所以,解得λ=4或λ=-14(舍去).∴所求双曲线C的方程为19.如下图,已知椭圆(a>b>0),F1,F2分别为椭圆的左、右焦点,A为椭圆的上顶点,直线AF2交椭圆于另一点B.(1).若∠F1AB=90°,则椭圆的离心率()A.B.C.D.【答案】D【考点】椭圆的性质【解析】由∠F1AB=90°及椭圆的对称性知b=c,则e===.(2).若椭圆的焦距为2,且=2,则椭圆的方程()A.B.C.D.【答案】A【考点】椭圆的方程【解析】由已知a2-b2=1,设B(x,y),A(0,b),则=(1,-b),=(x-1,y),由=2,即(1,-b)=2(x-1,y),解得x=,y=-,则,得a2=3,因此b2=2,方程为.20.如下图所示,抛物线关于x轴对称,它的顶点在坐标原点,点P(1,2),A(x1,y1),B(x2,y2)均在抛物线上.(1).则该抛物线的方程( )A.y2=xB.y2=4xC.y2=8xD.y2=16x【答案】B【考点】抛物线的方程【解析】由已知条件,可设抛物线的方程为y2=2px(p>0).∵点P(1,2)在抛物线上,∴22=2p×1,解得p=2.故所求抛物线的方程是y2=4x.(2).当PA与PB的斜率存在且倾斜角互补时,则y1+y2的值为( )A.-2B.-4C.-8D.2【答案】B【考点】抛物线的方程【解析】设直线PA的斜率为k PA,直线PB的斜率为k PB,则,,∵PA与PB的斜率存在且倾斜角互补,∴由A(x1,y1),B(x2,y2)均在抛物线上,得∴,∴y1+2=-(y2+2).∴y1+y2=-4.21.已知直线l经过抛物线y2=4x的焦点F,且与抛物线相交于A、B两点.(1).若|AF|=4,点A的坐标( )A.(3,2)B.(3,-2)C.(3,2)或(3,-2)D.(2,2)或(2,-2)【答案】C【考点】抛物线的定义,抛物线的方程【解析】由y2=4x,得p=2,其准线方程为x=-1,焦点F(1,0).设A(x1,y1),B(x2,y2).由抛物线的定义可知,从而x1=4-1=3.代入y2=4x,解得y1=±2.∴点A的坐标为(3,2)或(3,-2).(2).线段AB的长的最小值( )A.2B.4C.6D.8【答案】B【考点】抛物线的定义,抛物线的方程,抛物线的性质,直线与抛物线的位置关系【解析】当直线l的斜率存在时,设直线l的方程为y=k(x-1).与抛物线方程联立,得消去y,整理得k2x2-(2k2+4)x+k2=0,∵直线与抛物线相交于A、B两点,则k≠0,并设其两根为x1,x2,∴x1+x2=2+.由抛物线的定义可知,|AB|=x1+x2+p=4+>4.当直线l的斜率不存在时,直线l的方程为x=1,与抛物线相交于A(1,2),B(1,-2),此时|AB|=4,∴|AB|≥4,即线段AB的长的最小值为4.22.椭圆C:(a>b>0)的左、右焦点分别是F1、F2,离心率为,过F1且垂直于x轴的直线被椭圆C截得的线段长为1.(1).椭圆C的方程( )A.B.C.+y2=1D.【答案】C【考点】椭圆的方程【解析】由已知得e==,+=1,又c2=a2-b2,所以a2=4,b2=1.故椭圆C的方程为:+y2=1.(2).点P是椭圆C上除长轴端点外的任一点,连接PF1,PF2,设∠F1PF2的角平分线PM交C的长轴于点M(m,0),则m的取值范围( )A.(-1,1)B.(-2,2)C.(-3,3)D.【答案】D【考点】椭圆的定义,椭圆的方程【解析】方法一如下图,由题意知=即==,整理得:m=(|PF1|-2).又a-c<|PF1|<a+c,即2-<|PF1|<2+.∴-<m<.故m的取值范围为m∈.方法二由题意知:=,即=.设其中≠4,将向量坐标化得:m(4-16)=3-12x0.所以m=x0,而x0∈(-2,2),所以m∈.(3).在(2)的条件下,过点P作斜率为k的直线l,使得l与椭圆C有且只有一个公共点,设直线PF1、PF2的斜率分别为k1、k2,若k≠0,则+的值为()A.-2B.-4C.-8D.2【答案】C【考点】椭圆的方程,直线与椭圆位置关系【解析】设P(x0,y0)(y0≠0),则直线l的方程为y-y0=k(x-x0).2-1)=0.所以Δ=64(ky0-k2x0)2-16(1+4k2)(-2kx0y0+k2-1)=0.即(4-)k2+2x0y0k+1-=0.又+=1,所以16k2+8x0y0k+=0.故k=-,又+=+=. 所以==·=-8. 所以为定值,这个定值为-8.。
苏教版高中数学选修2-1第二章圆锥曲线同步练习(三)
高中数学学习材料金戈铁骑整理制作第二章 圆锥曲线 同步练习(三)一、选择题1.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .12(,)44±B .12(,)84±C .12(,)44D .12(,)842.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( ) A .20 B .22 C .28 D .243.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在 抛物线上移动时,使MA MF +取得最小值的M 的坐标为( ) A .()0,0 B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,24.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( )A .1222=-y xB .1422=-y xC .13322=-y xD .1222=-y x 5.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--)6.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .3二、填空题1.椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 。
2.双曲线221tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为___。
3.若直线2y kx =-与抛物线28y x =交于A 、B 两点,若线段AB 的中点的横坐标是2,则AB =______。
4.若直线1y kx =-与双曲线224x y -=始终有公共点,则k 取值范围是 。
苏教版高中数学选修2-1第二章圆锥曲线同步练习(三).docx
第二章 圆锥曲线 同步练习(三)一、选择题1.若抛物线x y =2上一点P 到准线的距离等于它到顶点的距离,则点P 的坐标为( )A .12(,)44±B .12(,)84±C .12(,)44D .12(,)842.椭圆1244922=+y x 上一点P 与椭圆的两个焦点1F 、2F 的连线互相垂直, 则△21F PF 的面积为( ) A .20 B .22 C .28 D .243.若点A 的坐标为(3,2),F 是抛物线x y 22=的焦点,点M 在 抛物线上移动时,使MA MF +取得最小值的M 的坐标为( ) A .()0,0 B .⎪⎭⎫⎝⎛1,21 C .()2,1 D .()2,2 4.与椭圆1422=+y x 共焦点且过点(2,1)Q 的双曲线方程是( )A .1222=-y xB .1422=-y xC .13322=-y xD .1222=-y x 5.若直线2+=kx y 与双曲线622=-y x 的右支交于不同的两点,那么k 的取值范围是( ) A .(315,315-) B .(315,0) C .(0,315-) D .(1,315--) 6.抛物线22x y =上两点),(11y x A 、),(22y x B 关于直线m x y +=对称,且2121-=⋅x x ,则m 等于( ) A .23 B .2 C .25D .3二、填空题1.椭圆14922=+y x 的焦点1F 、2F ,点P 为其上的动点,当∠1F P 2F 为钝角时,点P 横坐标的取值范围是 。
2.双曲线221tx y -=的一条渐近线与直线210x y ++=垂直,则这双曲线的离心率为___。
3.若直线2y kx =-与抛物线28y x =交于A 、B 两点,若线段AB 的中点的横坐标是2,则AB =______。
4.若直线1y kx =-与双曲线224x y -=始终有公共点,则k 取值范围是 。
高中数学选修2-1第二章《圆锥曲线》强化训练试题(无答案)
高中数学学习材料 (灿若寒星 精心整理制作)一、基础练习1.双曲线的实轴长与虚轴长之和等于其焦距的2倍,且一个顶点的坐标为(0,2),则双曲线的标准方程为( ) A.x 24-y 24=1 B.y 24-x 24=1 C.y 24-x 28=1 D.x 28-y 24=1 2.(2011福建)设圆锥曲线r 的两个焦点分别为F1,F2,若曲线r 上存在点P 满足2:3:4::2211 PF F F PF ,则曲线r 的离心率等于( ) A .23,21 B .2,32 C .2,21D .23,32 3.已知椭圆x 23m 2+y 25n 2=1和双曲线x 22m 2-y 23n 2=1有公共的焦点,那么双曲线的渐近线方程是( )A .x =±152yB .y =±152xC .x =±34yD .y =±34x4.若双曲线x 29-y 2m =1的渐近线方程为y =±53x ,则双曲线焦点F 到渐近线的距离为( )A. 5B.14 C .2 D .2 55.若双曲线C :x 2-y 2b 2=1(b >0)的顶点到渐近线的距离为22,则双曲线的离心率e =( )A .2 B.2 C .3 D. 36.如果双曲线x 2a 2-y 2b2=1的两条渐近线互相垂直,则双曲线的离心率为( )A.2 B .2 C.3 D .2 27.双曲线x 2a 2-y2b2=1 (a >0,b >0)的左、右焦点分别是F 1、F 2,过F 1作倾斜角为30°的直线,交双曲线右支于M 点,若MF 2垂直于x 轴,则双曲线的离心率为 ( )A. 6B. 3C. 2D.338.(2010·辽宁,9)设双曲线的一个焦点为F ,虚轴的一个端点为B ,如果直线FB 与该双曲线的一条渐近线垂直,那么此双曲线的离心率为( )A. 2B. 3C.3+12D.5+129.已知双曲线x 2a 2-y 2b 2=1和椭圆x 2m 2+y 2b2=1(a >0,m >b >0)的离心率互为倒数,那么以a 、b 、m 为边的三角形是( )A .锐角三角形B .直角三角形C .钝角三角形D .锐角或钝角三角形10.(2010·浙江理,8)设F 1,F 2分别为双曲线x 2a 2-y 2b2=1(a >0,b >0)的左、右焦点.若在双曲线右支上存在点P ,满足|PF 2|=|F 1F 2|,且F 2到直线PF 1的距离等于双曲线的实轴长,则该双曲线的渐近方程为( ) A .3x ±4y =0 B .3x ±5y =0 C .4x ±3y =0 D .5x ±4y =011.直线y =13(x -72)与双曲线x29-y 2=1,交点个数是( )A .0B .1C .2D .4 12.已知双曲线x 2a 2-y2b2=1与直线y =2x 有交点,则双曲线的离心率的取值范围是( )A .(1,5)B .(1,5)∪(5,+∞)C .(5,+∞)D .[5,+∞)13.(2008·安徽)已知双曲线x 2n -y 212-n=1的离心率为3,则n =________.14.设中心在原点的双曲线与椭圆x 22+y 2=1有公共焦点,且它们的离心率互为倒数,则该双曲线的方程为________.15.(2008·江西)已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线方程为y =±33x ,若顶点到渐近线的距离为1,则双曲线方程为________.16.如图所示,ABCDEF 为正六边形,则以F 、C 为焦点,且经 过A 、E 、D 、B 四点的双曲线的离心率为___________________________________________________.17.双曲线的中心在原点,实轴在x 轴上,与圆x 2+y 2=5交于点P (2,-1),如果圆在点P 的切线平行于双曲线的左顶点与虚轴的一个端点的连线,求双曲线的方程.18.F 1、F 2是双曲线的左、右焦点,P 是双曲线上一点,且∠F 1PF 2=60°,S △PF 1F 2=123,又离心率为2.求双曲线的方程.19.已知双曲线的中心在原点,焦点F 1、F 2在坐标轴上,离心率为2,且过点(4,-10). (1)求此双曲线的方程;(2)若点M (3,m )在双曲线上,求证:MF 1⊥MF 2;(3)求△F 1MF 2的面积. 20.已知双曲线C x 24-y 2=1,P 是C 上的任意点.(1)求点P 到双曲线C 的两条渐近线的距离的乘积;(2)设点A 的坐标为(3,0),求|P A |的最小值. 二、能力提升1.(2009·四川)已知双曲线x 22-y 2b 2=1(b >0)的左右焦点分别为F 1、F 2,其一条渐近线方程为y =x ,点P (3,y 0)在该双曲线上,则PF 1→·PF 2→=( ) A .-12B .-2C .0D .43.设a >1,则双曲线x 2a 2-y 2(a +1)2=1的离心率e 的取值范围是( )A .(2,2)B .(2,5)C .(2,5)D .(2,5)4.已知双曲线中心在原点,且一个焦点为F (7,0),直线y =x -1与其相交于M ,N 两点,MN 中点的横坐标为-23,则此双曲线方程是( ) A.x 23-y 24=1 B.x 24-y 23=1 C.x 25-y 22=1 D.x 22-y 25=1 5.已知双曲线x 2a 2-y 2b 2=1(a >0,b >0)的两条渐近线均和圆C :x 2+y 2-6x +5=0相切,且双曲线的右焦点为圆C 的圆心,则该双曲线的方程为( )A.x 25-y 24=1B.x 24-y 25=1C.x 23-y 26=1 D.x 26-y 23=16.已知双曲线x 2a 2-y 2b 2=1 (a >0,b >0)的左、右焦点分别为F 1(-c,0),F 2(c,0).若双曲线上存在点P ,使sin ∠PF 1F 2sin ∠PF 2F 1=ac ,求该双曲线的离心率的取值范围. 三、体验高考1.(2013北京)若双曲线22221x y a b-=的离心率为3,则其渐近线方程为 ( )A .y =±2xB .y =2x ±C .12y x =± D .22y x =± 2 .(2013福建)双曲线2214x y -=的顶点到其渐近线的距离等于( ) A .25 B .45C .255D .4553 .(2013广东)已知中心在原点的双曲线C 的右焦点为)0,3(F ,离心率等于23,在双曲线C 的方程是( )A .22145x y -=B .22145x y -=C .22125x y -= D .22125x y -=4 .(2013新课标)已知双曲线C :22221x y a b -=(0,0a b >>)的离心率为52,则C 的渐近线方程为 ( )A .14y x =±B .13y x =± C .12y x =± D .y x =±5 .(2013湖北)已知04πθ<<,则双曲线22122:1cos sin x y C θθ-=与222222:1sin sin tan y x C θθθ-=的 ( ) A .实轴长相等B .虚轴长相等C .焦距相等D .离心率相等6 .( 2013天津)已知椭圆2222:1(0)x y C a b a b+=>>的离心率为32.双曲线221x y -=的渐近线与椭圆C 有四个交点,以这四个交点为顶点的四边形的面积为16,则椭圆C 的方程为 ( ) A .22182x y += B .221126x y += C .221164x y += D .221205x y += 7 .(2013江西)过点(2,0)引直线l 与曲线21y x =+相交于A,B 两点,O 为坐标原点,当∆AOB 的面积取最大值时,直线l 的斜率等于 ( )A .33B .33-C .33±D .3-8 .(2013年高考四川卷(理))抛物线24y x =的焦点到双曲线2213yx -=的渐近线的距离是 ( ) A .12B .32C .1D .39 .(2013浙江)如图,21,F F 是椭圆14:221=+y x C 与双曲线2C 的公共焦点,B A ,分别是1C ,2C 在第二、四象限的公共点.若四边形21BF AF 为矩形,则2C 的离心率是( )OxyA BF 1F 2(第9题图)A .2B .3C .23 D .26 10 .(2013大纲版)椭圆22:143x y C +=的左、右顶点分别为12,A A ,点P 在C 上且直线2PA 的斜率的取值范围是[]2,1--,那么直线1PA 斜率的取值范围是 ( ) A .1324⎡⎤⎢⎥⎣⎦,B .3384⎡⎤⎢⎥⎣⎦,C .112⎡⎤⎢⎥⎣⎦,D .314⎡⎤⎢⎥⎣⎦, 11.(2013新课标)已知椭圆2222:1(0)x y E a b a b+=>>的右焦点为(3,0)F ,过点F 的直线交椭圆于,A B 两点.若AB 的中点坐标为(1,1)-,则E 的方程为 ( )A .2214536x y += B .2213627x y += C .2212718x y += D .221189x y += 12.(天津2013)已知双曲线)0,0(12222>>=-b a b y a x 的左右焦点为21,F F ,P 为双曲线右支上的任意一点,若||||221PF PF 的最小值为8a,则双曲线的离心率的取值范围是_________.13.(2013福建)椭圆2222:1(0)x y a b a bΓ+=>>的左.右焦点分别为12,F F ,焦距为2c,若直线3()y x c =+与椭圆Γ的一个交点M 满足12212MF F MF F ∠=∠,则该椭圆的离心率等于__________14.(2013江苏)在平面直角坐标系xOy 中,椭圆C 的标准方程为)0,0(12222>>=+b a by a x ,右焦点为F ,右准线为l ,短轴的一个端点为B ,设原点到直线BF 的距离为1d ,F 到l 的距离为2d ,若126d d =,则椭圆C 的离心率为_______15.(2013江西)抛物线22(0)x py p =>的焦点为F,其准线与双曲线22133x y -=相交于,A B 两点,若ABF ∆为等边三角形,则P =_____________16.(2013湖南卷)设12,F F 是双曲线2222:1(0,0)x y C a b a b-=>>的两个焦点,P 是C 上一点,若216,PF PF a +=且12PF F ∆的最小内角为30,则C 的离心率为 ___。
高中数学(人教B版,选修2-1)第二章圆锥曲线与方程本章练测.docx
高中数学学习材料唐玲出品第二章 圆锥曲线与方程 (人教B 版选修2-1)建议用时 实际用时满分 实际得分120分钟150分一、选择题(本题共12小题,每小题5分,共60分) 1.若椭圆22221(0)x y a b a b+=>>的离心率是32,则双曲线22221x y a b-=的离心率是( )A .54B .52C .32D .54 2.方程213x y =-表示的曲线是( )A .双曲线B .椭圆C .双曲线的一部分D .椭圆的一部分 3.设抛物线的焦点为F ,准线为l ,P 为抛物线上一点,P A ⊥l ,A 为垂足,如果直线AF 的斜率为 ,那么|PF |=( )A.4B.8C.8D.164.以椭圆的左焦点为焦点的抛物线的标准方程是( ) A. B. C. D.5.已知双曲线中心在原点且一个焦点为(7,0)F ,直线1y x =-与其交于M N 、两点,MN 中点的横坐标为23-,则此双曲线的方程是( )A .22134x y -= B .22143x y -= C .22152x y -= D .22125x y -= 6.已知A (3,2),B (-4,0),P 是椭圆 上一点,则|P A |+|PB |的最大值为( ) A.10 B.10- C.10+ D.10+2 7.已知椭圆22221(0)x y a b a b +=>>,直线交椭圆于两点,△的面积为(为原点),则函数( ) A.是奇函数 B.是偶函数C.不是奇函数,也不是偶函数D.奇偶性与有关8.以椭圆的右焦点为圆心的圆恰好过椭圆的中心,交椭圆于点,椭圆的左焦点为,且直线与此圆相切,则椭圆的离心率为( ) A .22B .32C .2-3D .3-1 9.双曲线22221x y a b -=的左焦点为,顶点为,是双曲线上任意一点,则分别以线段、为直径的两圆位置关系为( ) A .相交 B .相切C .相离D .以上情况都有可能10.已知方程22ax by ab +=和0ax by c ++=,其中,ab ≠0,a ≠b ,c >0,它们所表示的曲线可能是下列图象中的( )11.已知抛物线上一点0到其焦点的距离为5,双曲线的左顶点为,若双曲线的一条渐近线与直线平行,则实数的值是( )A .B .C .D .12.椭圆的左、右焦点分别为,为椭圆上任一点,且的最大值的取值范围是,其中,则椭圆的离心率的取值范围是( )A .⎣⎡⎦⎤14,12B .⎣⎡⎦⎤12,22C .⎝⎛⎭⎫22,1 D .⎣⎡⎭⎫12,1二、填空题(本题共4小题,每小题4分,共16分)13.已知椭圆221x ym n+=与双曲线2x p -2y q 有共同的焦点,是椭圆和双曲线的一个交点,则 . 14.双曲线的一条准线是,则的值为________. 15.若点O 和点F 分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为 .16.若过两点(,0)A a 和(0,)B a 的直线与抛物线223y x x =--没有交点,那么实数a 的取值范围是_________.三、解答题(本题共6小题,共74分) 17.(本小题满分12分)已知椭圆22221x y a b +=(0)a b >>的离心率63e =,过点和的直线与原点的距离为32. (1)求椭圆的方程.(2)已知定点,若直线 与椭圆交于两点.问:是否存在,使以为直径的圆过点?请说明理由.18.(本小题满分12分)已知抛物线方程为y px p 22(0)=>,直线l x y m +=:过抛物线的焦点且被抛物线截得的弦长为3,求的值.A BC D19.(本小题满分12分) 设双曲线22221x ya b-=的离心率为,若右准线与两条渐近线相交于两点,为右焦点,△为等边三角形.(1)求双曲线的离心率的值;(2)若双曲线被直线截得的弦长为22b ea,求双曲线的方程.20.(本小题满分12分)已知椭圆的离心率,短轴长为2.设是椭圆上的两点,向量m=,n= ,且m·n=0,O为坐标原点.(1)求椭圆的方程.(2)试问:△AOB的面积是否为定值?如果是,请给予证明;如果不是,请说明理由.21.(本小题满分12分)已知椭圆C的中心在原点,焦点在x轴上,离心率等于,它的一个顶点恰好是抛物线的焦点.(1)求椭圆C的方程.(2)点P(2,3),Q(2,-3)在椭圆上,A、B 是椭圆上位于直线PQ两侧的动点.(ⅰ)若直线AB的斜率为,求四边形APBQ面积的最大值;(ⅱ)当A、B运动时,满足∠APQ=∠BPQ,试问直线AB的斜率是否为定值,请说明理由. 22.(本小题满分14分)设分别为椭圆:22221x ya b+=(0)a b>>的左、右两个焦点.(1)若椭圆上的点到两点的距离之和等于,写出椭圆的方程和焦点坐标.(2)设点是(1)中所得椭圆上的动点,求线段的中点的轨迹方程.(3)已知椭圆具有性质:若是椭圆上关于原点对称的两个点,点是椭圆上任意一点,当直线、的斜率都存在,并记为、时,那么与之积是与点位置无关的定值.试对双曲线22221x ya b-=写出类似的性质,并加以证明.第二章圆锥曲线与方程 (人教B版选修2-1)答题纸得分:_________一、选择题题号1234567 8 9 10 11 12 答案二、填空题13. 14. 15. 16.三、解答题17.18.19.20.21.22.第二章圆锥曲线与方程 (人教B版选修2-1)答案一、选择题1.B解析:由椭圆22221(0)x ya ba b+=>>的离心率为,得.设,则,.又双曲线中,.2.D解析:方程可化为.3.B解析:由已知条件及抛物线的定义知△PAF为正三角形,∴|PF|=|AF|= =8.若直线与曲线总有公共点,则不论取何值,,即,所以,所以.4.D 解析:由椭圆的方程知,,∴,∴抛物线的焦点为(-2,0),∴抛物线的标准方程是.5.D解析:设双曲线方程为.将代入,整理得.由根与系数的关系得,则.又,解得,,所以双曲线的方程是6.C解析:易知B为椭圆的左焦点,因为 <1,所以点A在椭圆内.设椭圆的右焦点为E(4,0),根据椭圆的定义可得,|PB|+|PE|=2a=10,故有|PA|+|PB|=|PA|+10-|PE|=10+(|PA|-|PE|).当P、A、E三点不共线时,有|PA|-|PE|<|AE|;当P位于射线AE与椭圆的交点处时,有|PA|-|PE|=|AE|;当P位于射线EA与椭圆的交点处时,有|PA|-|PE|=-|AE|;故有-|AE|≤|PA|-|PE|≤|AE|.而|AE|= = ,所以|PA|+|PB|=10+(|PA|-|PE|)∈[10- ,10+ ].7.B解析:设是直线与椭圆相交所得的△的面积,由椭圆的对称性可知,所以是偶函数.8.D解析:由题意得,,.在直角三角形中,,即,整理得.等式两边同除以,得,即,解得或(舍去).故9.B解析:如图所示,设的中点为,若在双曲线左支上,则,即圆心距为两圆半径之和,此时两圆外切;若在双曲线右支上,同理可求得,此时两圆内切,所以两圆位置关系为相切.10.B解析:方程可化成,可化成.对于A:由双曲线图象可知:,,∴,即直线的斜率应大于0,故错;对于C:由椭圆图象可知:,,∴,即直线的斜率应小于0,故错;同理错.所以选B.11. B 解析:依题意知,所以,所以,所以,点的坐标为.又,所以直线的斜率为.由题意得,解得.12. B 解析:设,,,则,,.又可看做点到原点的距离的平方,所以,所以=.由题意知,即,则.二、填空题13. 解析:因为椭圆221x y m n+=与双曲线221x y p q -=有共同的焦点, 所以其焦点位于轴上,由其对称性可设在双曲线的右支上,左、右焦点分别为, 由椭圆以及双曲线的定义可得, , 由①②得,.所以.14. 解析:由题意可知双曲线的焦点在轴上,所以.双曲线方程可化为, 因此,,.因为准线是,所以,即, 解得.15.6 解析:由题意,得F (-1,0), 设点,,则有 =1,解得= . 因为=,,=,,所以此二次函数对应的抛物线的对称轴为=-2, 因为-2≤≤2,所以当=2时,取得最大值 +2+3=6. 16. 解析:过两点的直线方程为,与抛物线联立并消去得.因为直线与抛物线没有交点,所以方程无解,即,解得. 三、解答题17.解:(1)直线的方程为.依题意得解得所以椭圆方程为2213x y +=.(2)假若存在这样的值,由得22(13)1290k x kx +++=,所以22(12)36(13)0k k D =-+>. ① 设11()C x y ,、22()D x y ,,则 ②而212121212(2)(2)2()4y y kx kx k x x k x x =++=+++×.当且仅当时,以为直径的圆过点,则1212111y y x x =-++×, 即1212(1)(1)0y y x x +++=,所以21212(1)(21)()50k x x k x x +++++=. ③将②式代入③式整理解得76k =.经验证,76k =使①成立. 综上可知,存在76k =,使得以为直径的圆过点. 18.解:由直线l 过抛物线的焦点,得直线l 的方程为 由消去,得2220y py p +-=.由题意得p p 22(2)40D =+>,212122,y y p y y p +=-=-.设直线与抛物线交于1122(,),(,),A x y B x y 则||3AB =. ,解得.19.解:(1)双曲线的右准线的方程为2a c ,两条渐近线方程为by x a=?.所以两交点坐标为2a ab P c c 骣÷ç÷ç÷ç÷ç桫,、2a ab Q c c 骣÷ç÷ç-÷ç÷ç桫,. 设直线与轴的交点为,因为△为等边三角形,则有3||||2MF PQ =, 所以232a ab abc c c c 骣÷ç÷-=+ç÷ç÷桫×,即223c a abc c-=, 解得3b a =,.所以2ce a==. (2)由(1)得双曲线的方程为222213x y a a -=.把3y ax a =+代入得2222(3)2360a x a x a -++=. 依题意所以26a <,且23a ¹.所以双曲线被直线截得的弦长为2222221212121212()()(1)()(1)[()4]l x x y y a x x a x x x x =-+-=+-=++-4222221224(3)(1)(3)a a a a a --=+-g . 因为2212b e l a a ==.所以2422227212144(1)(3)a a a a a -=+-×, 整理得4213771020a a -+=, 所以22a =或25113a =. 所以双曲线的方程为22126x y -=或221313151153x y -=.20.解:(1)由题意知解得 ∴椭圆的方程为=1. (2)∵≠,设AB 的方程为y =kx +b . 由即=0, ∴∴∵,.∵ m ·n =0,∴=0, ∴)=0,代入整理得=4, ∴ S = =1.∴△AOB 的面积为定值1.21. 解:(1)设椭圆C 的方程为=1(a >b >0), 由椭圆的一个顶点为=8 y 的焦点,则b =2 . 由 = ,,得a =4,∴椭圆C 的方程为 =1. (2)(ⅰ)设,,,,直线AB 的方程为y = x +t ,代入 =1,得-12=0, 由解得-4<t <4.由根与系数的关系得=-t ,.四边形APBQ 的面积S = ×6×||=3 , ∴当t =0时,=12 .(ⅱ)若∠APQ =∠BPQ ,则PA 、PB 的斜率之和为0,设直线PA 的斜率为k ,则PB 的斜率为-k ,PA 的直线方程为y -3=k (x -2), 由① 入②整理得,同理PB 的直线方程为y -3=-k (x -2),可得==, ∴,, = = = ,∴ AB 的斜率为定值 .22.解:(1)椭圆的焦点在轴上,由椭圆上的点到两点的距离之和是4,得,即.又点312A 骣÷ç÷ç÷ç÷桫,在椭圆上,因此22232112b骣÷ç÷ç÷÷ç桫+=,得,于是. 所以椭圆的方程为22143x y +=,焦点,.(2)设椭圆上的动点,线段的中点满足111,22x y x y -+==,即,.因此=22(21)(2)143x y ++,即2214123y x 骣÷ç÷++=ç÷ç÷桫为所求的轨迹方程. (3)类似的性质为:若是双曲线22221x y a b-=上关于原点对称的两个点,点是双曲线上任意一点,当直线的斜率都存在,并记为时,那么与之积是与点位置无关的定值. 证明如下:设点的坐标为,则点的坐标为,其中22221m n a b -=.又设点的坐标为,由,PM PN y n y n k k x m x m -+==-+,得2222y n y n y n x m x mx m -+-?-+-.将22222222,b b y x b n aa=-=代入得22b a.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学选修2-1 第二章 圆锥曲线
[综合训练B 组]
一、选择题
1.如果222=+ky x 表示焦点在y 轴上的椭圆,那么实数k 的取值范围是( )
A .()+∞,0
B .()2,0
C .()+∞,1
D .()1,0
2.以椭圆
116
252
2=+y x 的顶点为顶点,离心率为2的双曲线方程( ) A .
1481622=-y x B .12792
2=-y x C .
1481622=-y x 或127
92
2=-y x D .以上都不对 3.过双曲线的一个焦点2F 作垂直于实轴的弦PQ ,1F 是另一焦点,若∠2
1π
=
Q PF ,
则双曲线的离心率e 等于( )
A .12-
B .2
C .12+
D .22+
4.21,F F 是椭圆17
922=+y x 的两个焦点,A 为椭圆上一点,且∠0
2145=F AF ,则 Δ12AF F 的面积为( ) A .7 B .
47 C .27 D .2
57 5.以坐标轴为对称轴,以原点为顶点且过圆09622
2
=++-+y x y x 的圆心的抛物线的方程是( )
A .2
3x y =或2
3x y -= B .2
3x y =
C .x y 92
-=或2
3x y = D .2
3x y -=或x y 92
=
6.设AB 为过抛物线)0(22
>=p px y 的焦点的弦,则AB 的最小值为( )
A .
2
p
B .p
C .p 2
D .无法确定
二、填空题
1.椭圆
22
189
x y k +=+的离心率为12,则k 的值为______________。
2.双曲线2288kx ky -=的一个焦点为(0,3),则k 的值为______________。
3.若直线2=-y x 与抛物线x y 42=交于A 、B 两点,则线段AB 的中点坐标是______。
4.对于抛物线24y x =上任意一点Q ,点(,0)P a 都满足PQ a ≥,则a 的取值范围是____。
5.若双曲线1422=-m y x 的渐近线方程为x y 23
±=,则双曲线的焦点坐标是_________. 6.设AB 是椭圆22
221x y a b
+=的不垂直于对称轴的弦,M 为AB 的中点,O 为坐标原点,
则AB OM k k ⋅=____________。
三、解答题
1.已知定点(2,3)A -,F 是椭圆
22
11612
x y +=的右焦点,在椭圆上求一点M , 使2AM MF +取得最小值。
2.k 代表实数,讨论方程2
2
280kx y +-=所表示的曲线
3.双曲线与椭圆
136
272
2=+y x 有相同焦点,且经过点(15,4),求其方程。
4. 已知顶点在原点,焦点在x 轴上的抛物线被直线21y x =+截得的弦长为15, 求抛物线的方程。
参考答案:
一、选择题
1.D 焦点在y 轴上,则2221,20122y x k k k
+=>⇒<< 2.C 当顶点为(4,0)±时,22
4,8,43,
11648x y a c b ===-=; 当顶点为(0,3)±时,22
3,6,33,
1927
y x a c b ===-= 3.C Δ12PF F 是等腰直角三角形,21212,22PF F F c PF c ===
121
2,2222,2121
c PF PF a c c a e a -=-==
==+- 4. C 12122122,6,6F F AF AF AF AF =+==-
22202
2112112112cos4548AF AF F F AF F F AF AF =+-⋅=-+
2211117
(6)48,,2
AF AF AF AF -=-+=
1727222222
S =⨯⨯⨯=
5.D 圆心为(1,3)-,设2
2
1
1
2,,6
3
x py p x y ==-=-; 设22
92,,92
y px p y x ==
= 6.C 垂直于对称轴的通径时最短,即当,,2
p
x y p ==±min 2AB p =
二、填空题
1.54,4-或 当89k +>时,22
2891,484
c k e k a k +-==
==+; 当89k +<时,22
29815
,944
c k e k a --==
==- 2.1- 焦点在y 轴上,则22811,()9,181y x k k k k k
-=-+-==---
3.(4,2) 22
1212124,840,8,442
y x x x x x y y x x y x ⎧=-+=+=+=+-=⎨=-⎩
中点坐标为1212
(
,)(4,2)22
x x y y ++= 4.(],2-∞ 设2(,)4t Q t ,由PQ a ≥得222222
(),(168)0,4
t a t a t t a -+≥+-≥
221680,816t a t a +-≥≥-恒成立,则8160,2
a a -≤≤
5. (7,0)± 渐近线方程为2
m
y x =±
,得3,7m c ==,且焦点在x 轴上
6. 22b a - 设1122
(,),(,)A x y B x y ,则中点1212(,)22x x y y M ++,得2121
,AB y y k x x -=- 2121OM
y y k x x +=+,222122
21
AB OM y y k k x x -⋅=-,222222
11,b x a y a b += 2
2
2
2
22
22,b x a y a b +=得2
2
2
2
2
221
21
()()0,b x x a y y -+-=即222
212
2
221y y b x x a
-=-- 三、解答题
1.解:显然椭圆
22
11612
x y +=的14,2,2a c e ===,记点M 到右准线的距离为MN 则
1
,22
MF
e MN MF MN ===,即2AM MF AM MN +=+ 当,,A M N 同时在垂直于右准线的一条直线上时,2AM MF +取得最小值,
此时3y y M A ==,代入到
22
11612
x y +=得23x M =± 而点M 在第一象限,(23,3)M ∴
2.解:当0k <时,曲线
22
184y x k
-=-为焦点在y 轴的双曲线; 当0k =时,曲线2
280y -=为两条平行的垂直于y 轴的直线;
当02k <<时,曲线22
184x y k
+=为焦点在x 轴的椭圆; 当2k =时,曲线224x y +=为一个圆;
当2k >时,曲线
22
184y x k
+=为焦点在y 轴的椭圆。
3.解:椭圆2213627y x +=的焦点为(0,3),3c ±=,设双曲线方程为22
2219y x a a
-=- 过点(15,4),则
22161519a a
-=-,得2
4,36a =或,而29a <, 2
4a ∴=,双曲线方程为22
145
y x -=。
4.解:设抛物线的方程为2
2y px =,则22,21
y px
y x ⎧=⎨
=+⎩消去y 得 2121221
4(24)10,,24
p x p x x x x x ---+=+=
= 2212121215()4AB k x x x x x x =+-=+-221
5(
)41524
p -=-⨯=, 则
2
23,4120,2,64
p p p p p -=--==-或 22412y x y x ∴=-=,或。