连续系统振动(a)-杆的纵向振动

合集下载

机械振动第7章-弹性体振动

机械振动第7章-弹性体振动

a
a
ni
2i 1
2l
E
i 1,2
Xi
(
x)
sin(
2i 2
1
x)
l
低应变测试及其应用
适用条件
判断基桩完整性.-质量检测(Quality Inspection)
基本假定
1.假定桩为细长的、无阻尼的弹性直杆; 2.假定桩产生轴向变形以后横截面仍保持为
平面,横截面上应力分布均匀。
➢ 基本原理
C1 C3 0
C3 C1
Y ' (0) 0 Y ' (l) 0
C2 C4 0 C4 C2
(chl cosl)C1 (shl sin l)C2 0
(shl sin l)C1 (chl cosl)C2 0
特征方程
coslchl 1
1l 4.730
2l 7.853
ni
i
l
E
Xi
(x)
sin
ix
l
2. 两端自由杆
i 1,2
dX (0) dX(l) 0
dx
dx
有C 0 及
n DSin n l 0
a
a
ω
n
0

Sin n
a
l
0
ni
i
l
E
Xi (x)
cos
i
l
x
3. 一端固定一端自由杆
X (0) 0
D0
dX(l) 0 dx
cos n l 0
a
n C cos n l 0
自由度,因而具有无限多个固有 频率和无限 多个主振型 。弹性体的任何振动形态也可 表示为各主振型的线 性叠加。因而对于弹性 体的动态响应分析,主振型叠加法仍然适用。

复习-连续系统的振动

复习-连续系统的振动
i
t
0 F ( ) sin[i (t )]d
u(x,t) Φi (x)Φi (x1)
i 1
i
t
0 F( )sin[i (t )]d
10
二、 梁的弯曲振动
1. 运动微分方程
2 x2
EI (x)
2u(x,t)
x2
A(x)
2u( x, t ) t 2
f
( x, t )
2. 均匀梁自由振动方程
的解耦方程
qi i2qi
l
0 f (x, y)Φidx
1
qi i
l
t
0 Φi 0 f (x, ) sin[i (t )]d dx
u(x,t) Φi
i1 i
l
0 Φi
t
0 f (x, )sin[i (t )]d dx
9
(2)集中荷载 设在x=x1处受集中力F(t)
q(t) Φi (x1)
dFi
dx
dx
0
l
0Fi AFidx Mi
l
0Fi
d dx
EA
dFi
dx
dx
i2 M i
6
8.初始条件的响应求解步骤 (1)根据边界条件求解固有频率和固有振型。 (2)对振型函数标准化(正则化)
l
0Fi AFidx Mi 1
(3)将初始条件变换到标准坐标
l
q0i 0 AΦiu(x, 0)dx
12
(3)自由端:弯矩和剪力为0,即
2u( x, t ) x2
0,
3u( x, t ) x3
0
(x=0或l)
(4)集中质量
(5)弹簧
利用截面法研究微单元体的平衡。

连续系统振动(a)-杆的纵向振动

连续系统振动(a)-杆的纵向振动
令: a0 F / A
2015年1月24 日 并考虑到: 《振动力学》
2 y 达朗贝尔 Adx 2 t 惯性力
y x
2 2 y 1 2 y a p ( x, t ) 弦的横向强迫振动方程 0 2 2 t x
a0 弹性横波的纵向传播速度
9
连续系统的振动 / 一维波动方程
( l ) 0 l cos 0 a0
u (l , t ) 0 x
频率方程
零固有频率对应的常值模态为杆的纵向刚性位移 x x 2015年1月24日 u ( x , t ) ( x ) q (t ) ( x ) c1 sin c2 cos 《振动力学》 a0 a0
2015年1月24日 《振动力学》
( x) (t ) q 2 a0 (常数) q(t ) ( x)
13
连续系统的振动 / 杆的纵向振动 记: 2
(t ) q 2 ( x) a0 q(t ) ( x)
''
q (t ) 2 q (t ) 0 2 ( x) ( a ) ( x) 0 0
i 1
2015年1月24日 《振动力学》 15
连续系统的振动 / 杆的纵向振动
几种常见边界条件下的固有频率和模态函数
(1)两端固定 特征:两端位移为零 边界条件: u(0, t ) (0)q(t ) 0
0 l
x
u(l , t ) (l )q(t ) 0
q(t )
不能恒为零
u ( x , t ) ( x ) q (t ) 19
连续系统的振动 / 杆的纵向振动
0 l
x
0 l
x

连续系统的振动 振动力学课件

连续系统的振动 振动力学课件

(l )q(t )
C1
sin
l
a
2 q(t )
q(t) A cos(t )
q(t) A2 sin(t ) 2q(t)
2u t 2
(l)q(t)
C1 sin
l
a
2 q(t )
代入
EA u(l,t) W x g
2u(l, t 2
t
)
ku(l
,
t
)
0
2
EA cos l q t W 2 sin l q t k sin l q t 0
u(x, 0) u(x) u(x, 0) u(x) 确定
2.两端自由
特征:两自由端轴向力为零
即 FN (0,t) 0 FN (l,t) 0
EA u(0,t) 0, x
EA u(l,t) 0, x
'(0)qt 0
'(l)qt 0
' (0) 0
' (l) 0
2.两端自由
' (x)
W gkl 2
Eg
EA kl
W
lA
tan
a
l
EA
a
W 2 k
g
EA ( l)
lk a
Wa2 gkl 2
a
l
2
1
l
a
( l)2
a
1
讨论:(1)
W 0 右端只有弹簧k,
频率方程
tan l (l )
a
a
tanu u作图法得出
(2) W 0 k 0 即自由端情形
频率方程 cos l 0
2. 弹性弦横向振动
微段分析
以变形前弦的方向为 x轴,

杆的纵向振动

杆的纵向振动

返回首页
1 杆的纵向振动
1.1等直杆的纵向振动
实际的振动系统,都具有连续分布的质量与弹性,因此, 称之为弹性体系统。 同时符合理想弹性体的基本假设,即均匀、各向同性服从 虎克定律。 由于确定弹性体上无数质点的位置需要无限多个坐标,因 此弹性体是具有无限多自由度的系统,它的振动规律要用时间 和空间坐标的函数来描述,其运动方程是偏微分方程,但是在
返回首页
1 杆的纵向振动
1.2固有频率和主振型
2 2u 2 u a 2 t x2
解可以用x的函数U(x)与t的谐函数的乘积表示,即
u( x, t ) U ( x)( A cos pt B sin pt )
即为杆的主振动的一般形式。
返回首页
1 杆的纵向振动
1.2固有频率和主振型
p12 2 Al l 2 M a
Ml
对于基频情况,有 p EA 1 其中
EA 是不计杆本身质量时杆的抗压刚度,以上结果与不 l
计杆本身质量而将其看成是单自由度系统所得的结果相同。
返回首页
1 杆的纵向振动
1.3主振型的正交性
这里只讨论简单边界条件的杆的主振型的正交性。 因为不涉及主振型的具体形式,所以不对杆作任何设定。即杆的 质量密度、横截面积等都可以是x的函数。因此可写出杆的纵向 振动微分方程式为 2u u
U ( x) C cos px px D sin a a
1. 杆两端固定的情况 边界条件为
U (0) 0 , U (l ) 0
sin
C0 , D sin p l0 a
p l0 a
即两端固定杆的频率方程。由此解出固有频率为
ia π pi l (i 1,2, )

第4章:连续体的振动

第4章:连续体的振动

因为
C1 0
( i 1, 2, ) ( i 1, 2, )
2i 1 x 模态函数 i ( x ) Ci sin 2 l
亦可令这个常数为1,有
2i 1 x i ( x ) sin l 2
( i 0,1, 2,
)
STDU
DYNAMICS OF STRUCTURES
Dynamics of Structures
• Prof. Lanhe Wu • Shijiazhuang Tiedao Univ.
STDU
DYNAMICS OF STRUCTURES
第四章 连续系统的振动
具有连续分布的质量和弹簧系统称作连续系统或分布 质量系统。连续系统具有无限多个自由度,其动力学 方程为偏微分方程,只对一些简单情形才能求得精确 解。对于复杂的连续系统则必须利用各种近似方法简 化为离散系统求解。
EIy Sy 0
仍采用分离变量法,令 代入动力学方程,整理得到
y( x , t ) ( x ) q(t )
EI ( x ) ( x ) q q S ( x ) ( x )
DYNAMICS OF STRUCTURES
a 因为数学模型相同,以上在各种边界条件下导出的固有 频率和模态函数也完全适用于弦的横向振动、杆的扭转 振动和梁的剪切振动。关于这类系统的受迫振动本节不 作讨论,因为与下节梁的弯曲受迫振动的分析和计算方 法基本相同
相应的模态函数为 i ( x ) sin
将边界条件代入 ( x ) C1 sin a C 2 cos a 得到 C2 0 及频率方程
l
a
x
化作
tan
l

杆的纵向振动与轴的扭转振动

杆的纵向振动与轴的扭转振动

振动方向不同:杆的纵向振动方向 与杆的轴线方向平行而轴的扭转振 动方向则与轴的截面垂直。
实际应用场景
机械制造:在机械制造中杆的纵向振动与轴的扭转振动常常同时存在影响机器的正常运转。
交通运输:车辆、船舶等交通工具中的传动系统如发动机、变速箱等都涉及到杆的纵向振动 与轴的扭转振动。
建筑工程:在建筑工程中如桥梁、高层建筑等需要考虑到风、地震等外力作用下杆的纵向振 动与轴的扭转振动的影响。
对系统稳定性的影响
振动可能导致系统失稳产生共振现象 振动会加速系统各部件的疲劳损伤降低使用寿命 振动会影响系统的测量精度和控制稳定性 适当抑制振动可以提高系统的稳定性和可靠性
对系统效率的影响
振动会使系统中的 元件磨损导致效率 降低
振动会产生额外的 热量影响系统的热 效率
振动会干扰信号传 输影响系统的信息 传递效率
杆的纵向振动与轴的扭转振动在工 程实际中常常同时存在需要综合考 虑它们的耦合效应。
振动类型不同:杆的纵向振动是拉 伸或压缩振动轴的扭转振动是旋转 振动。
区别
振动频率不同:杆的纵向振动频率 通常较高而轴的扭转振动频率相对 较低。
添加标题
添加标题
添加标题
添加标题
影响因素不同:杆的纵向振动主要受 轴向力、阻尼和支撑的影响而轴的扭 转振动主要受扭矩、阻尼和转动惯量 的影响。
,
汇报人:
目录
定义与原理
添加标题
定义:杆的纵向振动是指杆在轴向方向上的振动是机械振动的一种形式。
添加标题
原理:当外力作用于杆的一端或杆本身的重力引起杆的轴向变形时杆的轴向会产生周期性的振动即杆的纵 向振动。这种振动可以通过弹性理论和动力学方程进行描述和预测。
影响因素

杆的纵向振动分析

杆的纵向振动分析

0 号I


体简圈。 若横向挠度是微小的, 则由于挠度引
起 的变化 可以忽 略不 计 。 用 牛 顿第 二 定律 并 应
切具有质量 和弹性 的物体都能产生振 动,
没挠度 n与与转角 0 均为微量 , 运动方程是 :
础 =T 0+ ( )一T O () 2
系统 的振 荡运 动一 般 可能 是 有 害 的 , 于有 害 的 对
维普资讯
29 第月 02 【 第 l)年31 卷 期
Ju a o hn沈阳航空工业学 院学报 l nier g o r l f eyn stt o A *nul g e n n S agl due f e ata E n i n o e
动的运动方程 。 这是一个二阶齐次偏微分方程 , 式 中的常数 C为纵波在杆 内的传播速度 , 故数学上 称为波动方程。
将式 (1 、 1) 1 ) (2 代回式 ( ) : 8 得
u x, ( t )= U )( ) ( t
3 运动方程 的解
设 方程 = 的解 为 () 8
其 中 d =p d m A x是微 单元 出 的质量 , 单 P为 位体积 的 质量 。 ( )式 代 入方 程 ( )化 简后 得 将 4 5
有频率。 从方程( ) 9 解出 T t ()为
o O O ( T() =C『ic 2OC Csn( 。 6 t sn t+CeS t= i C l )
式( a 代人式( ) 8) 7 井分离变量得
振动系统的杆纵 向振动是动力学分析中非常 重 要的问题 。 利用 本 文所 提 供 的方 法 在计 算 实 际
振 动问题 时是行之 有效 的。 参考文献 :
[ ] 美] S谢, ' 1: 】 ・ 【 E膝 尔著 , 沈立 钩 、 张景绐 详

第7章:连续系统的振动

第7章:连续系统的振动

兰州理工大学李有堂编著机械系统动力学第7章连续系统的振动7.1 引言实际的物理系统都是由弹性体组成的系统,通常为连续系统。

离散系统是连续系统的近似模型,当其近似程度不能满足实际要求时,必须增加模型的自由度,或者采用连续模型。

连续模型是离散模型自由度无限增加时的极限。

连续系统是具有无限多个自由度的系统。

主要讨论可以获得精确解的问题。

弦的横向振动、杆的纵向振动和扭转振动、梁的弯曲振动7.2 弦的横向振动⏹弦:只能承受拉力,而抵抗弯曲及压缩的能力很弱。

⏹钢索、电线、电缆和皮带等柔性体构件⏹假设:材料是均匀连续和各向同性的;材料变形在弹性范围,服从虎克定律;运动是微幅的如图所示为一段长度为l 、两端固定的弦的横向振动的模型,f (x ,t )是作用在弦上的载荷密度,弦的线密度为ρ。

T ——弦上的张力,近似为常量;——时刻t 张力T 与x 轴的夹角 ——时刻t 弦上x 处的横向位移量(,)x t (,)y x t沿y 方向的运动微分方程为22(,)sin (,)sin (,)y x t T x dx t T x t dx t θθρ∂+-=∂对于微幅振动sin tan yxθθθ∂≈≈≈∂(,)(,)x dx t x t dxxθθθ∂+=+∂2222(,)(,)y x t y x t T x tρ∂∂=∂∂T αρ=22222(,)(,)y x t y x t x tα∂∂=∂∂弦的振动微分方程◆ 是一个偏微分方程◆ 对离散系统,运动是一种“同步运动”◆ 弹性体系统即连续系统也应为同步运动,同时达到极大值,同时过零点,因而整个弦的形状在振动中保持不变◆ 弦上各点随时间变化的位移可以分解为两部分的乘积22222(,)(,)y x t y x t x tα∂∂=∂∂(,)()()y x t Y x t Φ=分离变量确定整条弦线在空间的形状,与时间无关,弦的振型函数确定弦上各点位移随时间的变化规律,与空间坐标无关,弦的振动方式✓当 达到极值时,弦上各点位移同时达到极值 ✓当 为零时,弦上各点同时回到平衡位置()t Φ()t Φ(,)()()y x t Y x t Φ=x x Y t Φx t x y ∂∂=∂∂)()(),(2222)()(),(xx Y t Φx t x y ∂∂=∂∂t t Φx Y t t x y ∂∂=∂∂)()(),(2222)()(),(tt Φx Y t t x y ∂∂=∂∂方程左边仅为空间坐标的函数,右边仅为时间的函数,左右两边要保持相等,只有一种可能,就是两边均等于一个常数22222()1()()()Y x t Y x x t tαΦΦ∂∂=∂∂22222(,)(,)y x t y x t x tα∂∂=∂∂222222)()(1)()(n tt Φt Φx x Y x Y ωα-=∂∂=∂∂222()()0n t t tΦωΦ∂+=∂2222()()0n Y x Y x x ωα∂+=∂()sin()n t C t Φωϕ=+()sin cos n nY x A x B xωωαα=+弦的主振型是谐波曲线 (,)()()y x t Y x t Φ=()sin()n t C t Φωϕ=+()sin cos n nY x A x B xωωαα=+12(,)(sin cos )sin()n n n y x t C x C x t ωωωϕαα=++弦的运动规律是正弦曲线C 1、C 2、ωn 、为待定系数 ωn 、C 2——两个端点的边界条件确定、C 1——振动的初始条件确定 )sin(cos sin ),(ϕωαωαω+⎪⎭⎫ ⎝⎛+=t x B x A C t x y n n n ϕϕ弦的两端固定,其边界条件为(0,)(,)0y t y l t ==弦的两端固定,其边界条件为12(,)(sin cos )sin()n nn y x t C x C x t ωωωϕαα=++210, sin 0n lC C ωα==sin 0n l ωα=n lk ωπα=弦振动的特征方程,即频率方程nk k k Tl lαππωρ==第k 阶固有频率✓连续系统固有频率的取值和离散系统固有频率的取值一样,只取某几个特定的数值。

连续系统振动-杆的纵向振动PPT课件

连续系统振动-杆的纵向振动PPT课件
x
达朗贝尔原理:
2019年10月15日
Sdx
2u t 2
(F

F x
dx) F

p(x,t)dx
7
p( x, t )
0 x dx l
连续系统的振动 / 一维波动方程
x
u(x,t)
杆上距原点 x 处截面
在时刻 t 的纵向位移
横截面上的内力: F ES ES u
x
达朗贝尔原理:
a02
2u x 2

1
S
p(x,t)
(2)弦的横向振动 (3)轴的扭转振动
2y t 2

a02
2y x 2

1

p(x,t)
2
t 2
a02
2
x2

1
Ip
p( x, t )
虽然它们在运动表现形式上并不相同,但它们的运动微 分方程是类同的,都属于一维波动方程
2019年10月15日 12
连续系统的振动 / 杆的纵向振动
• 固有频率和模态函数
p( x, t ) x
0
以等直杆的纵向振动为对象
l
2u t 2
a02
2u x 2

1
S
p(x,t)
a0 E /
2u t 2

a02
2u x 2
自由振动
假设杆的各点作同步运动: u(x,t) (x)q(t)
圆截面杆的扭转振动强迫振动方程 等直杆,抗扭转刚度 GIp 为常数
I
p
dx
2
t 2
2019年2t210月 1a5日02
2
x2

杆的纵向振动

杆的纵向振动

2u u A 2 ( EA ) q( x, t ) t x x
2u E 2u 1 ( ) 2 q( x, t ) EA是常数,可写成 2 x A t
这是杆作纵向受迫振动方程, 常称为波动方程。
E 表示弹性波 a 沿杆的纵向 传播的速度
2
返回首页
1 杆的纵向振动
1.2固有频率和主振型
2u E 2u 1 ( ) 2 q( x, t ) 2 x A t
q( x, t ) 0
得到杆的纵向自由振动微分方程为
2 2u 2 u a 2 t x2
系统是无阻尼的,因此可象解有限多个自由度系统那样 ,假设一个主振动模态即设系统按某一主振型振动时,其 上所有质点都做简谐运动。 可见杆上所有的点将同时经过平衡位置,并同时达到极 限位置。
U i ( x) Di sin
iπ x l
(i 1,2, )
返回首页
1 杆的纵向振动
1.2固有频率和主振型
pi
ia π l
(i 1,2, )
U i ( x) Di sin
iπ x l
(i 1,2, )
分别令i =1,2,3,可得系统的前三阶 固有频率和相应的主振型为
aπ π , U 1 ( x) D1 sin x ; l l 2a π 2π p2 , U 2 ( x) D2 sin x; l l 3a π 3π p3 , U 3 ( x) D3 sin x. l l p1
返回首页
1 杆的纵向振动
1.1等直杆的纵向振动
实际的振动系统,都具有连续分布的质量与弹性,因此, 称之为弹性体系统。 同时符合理想弹性体的基本假设,即均匀、各向同性服从 虎克定律。 由于确定弹性体上无数质点的位置需要无限多个坐标,因 此弹性体是具有无限多自由度的系统,它的振动规律要用时间 和空间坐标的函数来描述,其运动方程是偏微分方程,但是在

连续系统的振动课件

连续系统的振动课件
形函数与插值函数 构造形函数和插值函数,将节点位移表示为单元 内任意一点位移的函数,实现连续系统振动的离 散化描述。
连续系统振动仿真实例
弦振动仿真
建立弦的有限元模型,通过求解特征值和特征向量,得到弦的自振频率和振型,分析弦的振动特性。
梁弯曲振动仿真
建立梁的有限元模型,考虑剪切变形和转动惯量的影响,计算梁的自振频率和振型,揭示梁的弯曲振动规律。
拓扑优化
通过改变结构拓扑形态来优化振动特性,如减少 质量、提高刚度等。
形状优化
优化结构件的形状以降低振动幅度,例如改变梁 截面形状、板厚度分布等。
参数优化
针对特定连续系统,通过调整参数(如阻尼系数、 刚度分布等)实现振动性能的优化。
06
实验与测量技术
振动测量原理及设备
01
振动测量原理
02
振动测量设备
基于牛顿第二定律与连续系统的振 动特性,推导连续系统的偏微分方 程。
偏微分方程的形式
详细解释偏微分方程中各项的物理 意义,如惯性项、阻尼项和弹性项。
波动方程的推导与解析
01
02
03
波动方程的推导
从偏微分方程出发,通过 引入波动假设,推导连续 系统的波动方程。
波动方程的解析解
利用数学方法求解波动方 程,得到通解,并分析通 解的物理意义。
03
连续系统振动的应用实例
弦的振动与音乐乐器
振动弦上的波传播
当弦受到激励振动时,振动以波 的形式在弦上传播,形成驻波或 行波。这种波传播的现象是音乐
乐器发音的基础。
乐器中的弦振动
许多乐器如吉他、小提琴、钢琴 等都利用弦的振动发声。不同乐 器的音色和音调可以通过调整弦 的张力、长度、直径等参数来实

结构动力学 连续弹性体的振动(与“坐标”有关文档共69张)

结构动力学 连续弹性体的振动(与“坐标”有关文档共69张)

aa
aa
U ' 0 0 A' A' 0
a
U ' l B' sin l 0
aa
B
'
不恒为零,所以
sin
a
l
0
第13页,共69页。
sin l 0 l n , n 0,1, 2...
a
a
n
n
l
a
代入振型函数为
Un x
Bn'
cos n
a
x
Bn'
cos
n
l
x
对应的第 n 阶主振动为
(2)固支点
固支点处转角、位移均被锁住,为零
y x,t 0
y x,t 0
x
x 0或
第23页,共69页。
(3)自由端 力与力矩均为零
M
EI
2 y x2
0
x 0,
Q
M x
EI
3 y x3
0
x 0,
(4)梁端有弹性支承
弹性梁端剪力等于弹性恢复力, 弹性恢复力与
位移正向相反,右端截面的剪力也与位移正向相反,
3 y EI x3 0
第25页,共69页。
(5)梁端有集中质量力 梁端弯矩为零
2Y ,t
EI 2x2 0 梁端剪力等于惯性力,右端剪力与惯性力均与位移
正向相反,所以二者同号
EI
3 y x3
,t
M
2 y t 2
,t
对位移或转角施加的约束 称为几何边界条件。
对剪力和弯矩施加的约束 称为力边界条件。
2 y t 2
q( x, t )
第20页,共69页。

连续系统习题解答(稍后还会上传一个较详细的解答)

连续系统习题解答(稍后还会上传一个较详细的解答)

机械振动与动力学_8 习题解答
频率方程:
tan
ω
c
L=
2( I 0 I s ) 1 − (I
2 0 2 s
ω
c
c2 ω ω 2 GI s L 2kt 当 Is << I0 时, tan L ≈ L ≈ → 0 , ω2 ≈ = ω ρ I0 ρ I0 c c ( I0 I s ) c
I )
ω
2

tan
θ (0, t ) = 0 , GI p
∂θ ( L, t ) = T0 sin ωt ∂x
θ ( x, t ) = Q ( x )sin ωt
d 2Q ( x ) ω ω + k 2Q ( x ) = 0 , k = = 2 dx c G ρ
代入运动方程和边界条件得:
Q (0) = 0 ,
dQ ( L) T0 = dx GI p
ω
c
L=
2( I 0 I s ) (I
2 0
ω
c −1
c2 2
I )
2 s
ω2
8.3 长度为 L 的轴一端固定,另一端自由,扭矩 T0 sinωt 施加于自由端,求轴的稳 态响应。设轴截面的抗扭刚度为 GIp,密度为 ρ。 解:
运动方程: 边界条件: 设稳态响应为
∂ 2θ G ∂ 2θ = ρ ∂x 2 ∂t 2
由此解得:
Q( x) =
T0 T sin kx sin kx , θ ( x, t ) = 0 sin ωt GI p k cos kL GI p k cos kL
8.4 初始状态静止,长度为 l、两端固定、张力为 T 的弦中央受一阶跃力 P 作用, 计算弦在 P 力作用下的振动位移响应。 解:

机械振动6连续系统的振动2杆的纵向振动

机械振动6连续系统的振动2杆的纵向振动

例如杆的质量等于M, 有
a LA 1 1 L M AL / 3 L E

M 0.866 E M M /3 L
与前文所解得的:
a1 0.86 E 1 , L L
相比,误差仅为0.7%, 可以说,只要杆的质量不大于附加
质量,那么在实际应用中据此计算基频,已经足够准确了。
《振动力学》
i x (2i 1) x U i ( x) cos , U i ( x) sin L 2L
10
例6.2-1 求上端固定、下端有一质量块M的等直杆作纵向振动 O 的固有频率和固有振型。
解:上端固定,其边界条件:
L
EA
u (0, t ) 0, U (0) 0, 下端附质量M,在振动时产生对杆端的惯性力 M : u ( L, t ) 2u ( L, t ) x EA M , x t 2 u ( L, t ) dU ( L) 2u ( L, t ) (t ) 2U ( L) F (t ), 而 F (t ), U ( L ) F x dx t 2 x x dU ( L) 2 U ( x) C sin D cos EA MU ( L), a a dx L L 2 D 0, EA cos M sin , 2016年1月11日 a a a 11
D 0, C sin
U ( x) C sin
sin
x
a
D cos
x
a
L
a
0
L
a
0
L
a
i
i
ia i L L
E

(i 1,2,)
所以振型函数:

连续系统

连续系统
(4.3.9)式的解的形式是:
2
(4.3.9)
( y ) C1 sin t C2 cos y a a
(4.3.10)
其中, C1 与 C2 是待定系数,它们由轴的边界条件决定。常见的扭转振动时轴的边界条件 为: 自由端:
y 0 时,GJ (0, t ) GJ (0)T (t ) 0 ,即 (0) 0 y l 时,GJ (l , t ) GJ (l )T (t ) 0 , 即 (l ) 0
3
但是在工程中有实际意义的,只有有限个低阶频率。
X i ( x) Ai sin
前三阶主振型如图 4.2-3(a)所示。
(2i 1) x 2l
(i 1, 2,3,)
(1) (2) (3)
f (1) f (2) f (3)
(a)
图 4.2-3
(b)
如果 k ,该边界相当于固定边界,频率方程为
(4.3.8)
关于(4.3.6)式,只有某些典型的轴,如 I ( y ) / GJ ( y ) 可按某种函数形式表达时,才可 假定 1/ a I ( y ) / GJ ( y ) , 则 (4.3.6) 能找到精确解答。 对于均匀轴,I ( y ) 与 GJ ( y ) 是常数,
2
式可改写成:
( y ) ( y ) 0 a
( y, t ) ( y, t ) I ( y )
(4.3.2)
( y, t ) 代表扭转角加速度。 其中, I ( y ) 代表单位长度的梁对扭转轴的转动惯量;
将(4.3.2)式代入(4.3. 1b )式中,并引用扭角与力矩 M 的关系式,得到扭转自由振 动的微分方程:
2 [GJ ( y ) ] I ( y ) 2 0 y y t

第十二次课第四章连续体的振动

第十二次课第四章连续体的振动

第四章连续体的振动§4.2 杆的纵向振动例:有一根 x =0 端为自由、x =l 端处为固定的杆,固定端承受支撑运动 td t u g ωsin )(=d 为振动的幅值试求杆的稳态响应。

l x 0)(t u g §4.2 杆的纵向振动解: l x 0t d t u g ωsin )(=方程建立 dx u dx x u u u g ∂-∂+)(22xu Sdx ∂∂ρdx x F F ∂∂+F 微段分析应变: xu u dx u dx x u u u g g ∂-∂=-∂-∂+=)(])([ε内力: xu u ES ES F g ∂-∂==)(ε达朗贝尔原理: F dx F F u Sdx -∂+=∂)(2ρ),(t x u 杆上距原点 x 处截面在时刻 t 的纵向位移 22)(u u ES u S g -∂=∂ρl x 0td t u g ωsin )(=令: 代入方程: 2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*g u u u +=*即: **''g Su ESu Su ρρ-=-2sin Sd tρωω=-设解为: ∑∞==1*)()(i i i t q x u φ)(x i φ为归一化的正则模态 ,...5,3,1,2cos 2)(==i x li l x i πφ代入方程,得: tSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞=l x0t d t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρgu u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x l i l x i πφtSd ESq q S i i i i i ωωρφφρsin )(2,...5,3,1''=-∑∞= )(x j φ用 乘上式,并沿杆长积分:⎰∑⎰⎰=-∞=lj i l j i i l j i idx t Sd dx ES q dx S q 0210''0sin )(φωωρφφφφρ 利用正交性: t d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*∑∞==1*)()(i i i t q x u φ,...5,3,1,2cos 2)(==i x li l x i πφt d i l l q q i i i i ωωπωsin )1(2222/)1(2--=+ 模态稳态解: t d i l l q i i i i ωπηωωsin )1(222/)1(22--=2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=l x 0td t u g ωsin )(=2222)(x u u ES t u S g ∂-∂=∂∂ρg u u u -=*2)/(11i i ωωη-=t lx i d i E l u i i i ωπηπωρsin 2cos )1(16,...5,3,132/)1(322*∑∞=--=t d l x i i E l u u u i i i gωπηπωρsin 2cos )1(161 ,...5,3,12/)1(3322*⎥⎦⎤⎢⎣⎡-+=+=∑∞=-小结1. 建立动力学方程2. 根据边界条件求解固有频率和模态3. 变量分离4. 代入动力学方程,并利用正交性条件得到模态空间方程5. 物理空间初始条件转到模态空间6. 模态空间方程求解7. 返回物理空间,得解)()(),(1t q x t x u i i i φ∞=∑=)(2t Q q q j j j j =+ω )(,x i i φω)0(),0(j j q q )(t q j )()(),(1t q x t x u i i i φ∞=∑=物理空间问题 模态空间问题 )()(),(1t q x t x u i i i φ∞=∑=模态叠加法§4.3圆轴的扭转振动取圆轴的轴心线作为x 轴,图示轴任一 x 截面处的转角表示为θ(x ,t ) 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

)2
(
x)
0
通解: q(t) a sin(t )
(
x)
c1
sin
x
a0
c2
cos
x
a0
c1, c2 , 由杆的边界条件确定 (确定杆纵向振动的形态,称为模态 )
(杆的边界条件确定固有频率)
与有限自由度系统不同,连续系统的模态为坐标的连续函 数 ,表示各坐标振幅的相对比值
由频率方程确定的固有频率 i 有无穷多个 (下面讲述)
x
达朗贝尔原理:
2020年3月20日
Sdx
2u t 2
(F
F x
dx) F
p(x,t)dx
7
《振动力学》
p( x, t )
0 x dx l
连续系统的振动 / 一维波动方程
x
u(x,t)
杆上距原点 x 处截面
在时刻 t 的纵向位移
横截面上的内力: F ES ES u
x
达朗贝尔原理:
Sdx
2u t 2
(F
F x
dx)
F
p(x,t)dx
S
2u t 2
x
(ES
u ) x
p(x,t)
杆的纵向强迫振动方程
等直杆ES 为常数
2u t 2
a02
2u x 2
1
S
p(x,t)
2020年3月a200日 E / 弹性纵波沿杆的纵向传播速度
8
《振动力学》
连续系统的振动 / 一维波动方程
(2)弦的横向振动
弦的定义: 很细长 弦两端固定,以张力 F 拉紧
机械振动理论
连续系统的振动
-实际振动系统都是连续体,具有连续分布的质量与弹性, 又称连续系统或分布参数系统
-确定连续体上无数质点的位置需要无限多个坐标,因此 连续体是具有无限多自由度的系统
-连续体的振动要用时间和空间坐标的函数来描述,其运 动方程不再像有限多自由度系统那样是二阶常微分方程 组,它是偏微分方程
连续系统的振动 / 杆的纵向振动
只对具有简单边界条件的杆讨论主振型的正交性
杆可以是变截面或等截面
质量密度及截面积 S 等都可以是 x 的函数
动力方程 :
S
2u t 2
x
(ES
u ) x
p( x, t )
自由振动:
S
2u t 2
x
(ES
u ) x
主振动 : u(x,t) (x)a sin(t )
)
x
p( x, t )
圆截面杆的扭转振动强迫振动方程
等直杆,抗扭转刚度 GIp 为常数
p( x, t )
x dx
x
微段 dx 受力
pdx
T
T T dx x
I
p
dx
2
t 2
2020年2t23月20a日02
2
x2
1
I p
p( x, t )
G 剪切弹性波的
a0 纵向传播速度
11
《振动力学》
小结:
微段分析
0
x
p( x, t ) dx l
连续系统的振动 / 一维波动方程
dx
u u dx
x
x
u p(x,t)dx
F
F F dx
x
u(x,t) :杆上距原点 x 处截面 t 时刻的纵向位移
微段应变:
(u
u x
dx) u
u
dx
x
Sdx
2u x 2
达朗贝尔 惯性力
横截面上内力: F ES ES u
(0) 0
c2 0
0
ku(l,t) ES u (l,t) x
k(l) ES (l,t)
x
k sin l ES cos l
a0
a0
a0
kx
l
u(x,t) (x)q(t)
(x)
c1
sin
x
a0
c2
cos
x
a0
tg(l / a0 ) ES 常数
l / a0
kl
频率方程
振型函数:
2020年3月20日
自由端轴向力为零
x
l
边界条件 : u(0,t) 0 (0) 0
ES u(l,t) 0 x
(l) 0
c2 0
cos l 0 频率方程
a0
固有频率:i
( 2i 1) 2
a
l
,
i 1,2,...
或:
i
i 2
a
l
,
i 1,3,5,...
模态函数:i (x)
ci sin(
2i 1
2l
x),
q(t)
(0) 0
(l) 0
不能恒为零
c2 0
固有频率:
i
ia0
l
sin l 0 频率方程
a0
(i 0,1,2, ) 无穷多个
模态函数:
i (x)
ci sin
ix
l
(i 0,1,2, )
由于零固有频率对应的模态函数为零,因此零固有频率除去
2020年3月20日 《振动力学》
(x)
c1
达朗贝尔原理:
Adx 2 y F ( dx) F p(x,t)dx
t 2
x
令: a0 F / A 并考20虑20年到3:月20日 y
《振动力学》 x
2 y t 2
a02
2y x 2
1
p(x,t)
弦的横向强迫振动方程
a0 弹性横波的纵向传播速度
9
连续系统的振动 / 一维波动方程
杆的纵向振动
0
x
0
x
l
l
(0) 0 (l) 0
边界条件
(l) 0 (0) 0
l
cos 0 a0
频率方程
i
i 2
a
l
,
i 1,3,5,...
固有频率
i (x)
ci
sin(
i
2l
x),
i 1,3,5,... 模态函数
2020年3月20日 《振动力学》
cos l 0
i (x)
ci
sin
a0
x
22
《振动力学》
例: 一均质杆,左端固 定,右端与一集中 质量M固结
连续系统的振动 / 杆的纵向振动
0
M
x
l
推导系统的频率方程
边界条件: u(0,t) 0
2020年3月20日 《振动力学》
M
2u t 2
(l , t )
ES
u x
(l , t )
自己推导!
23
主振型的正交性
q(t) :运动规律的时间函数 (x) :杆上距原点 x 处的截面的纵向振动振幅
2020年3月20日
q(t) q(t)
a02
( x) (x)
(常数)
13
《振动力学》
连续系统的振动 / 杆的纵向振动
q(t) q(t)
a02
'' (x) (x)
记: 2
q(t) 2q(t) 0
(
x)
(
a0
l 0
j
(ESi)dx
i2
l
0 Si jdx
分部积分:
l
0 j (ESi)dx
j
(ESi)
l 0
l 0
ESi j dx
任一端上总有 0 或 0 成立
2020年3月20日
l 0
ESi
j dx
i2
l
0 Si jdx
25
《振动力学》
连续系统的振动 / 杆的纵向振动
(ESi) i2Si
0,1,2, )
ix
(i 0,1,2, l
)
频率方程和固有频率两端固定杆的情况相同
零固有频率对应的常值模态为杆的纵向刚性位移
2020年3月20(日x)
《振动力学》
c1
sin
x
a0
c2
cos
x
a0
u(x,t) (x)q(t)
17
连续系统的振动 / 杆的纵向振动
(3)一端固定,一端自由
0
特征:固定端位移为零
I
p
dx
2
t 2
达朗贝尔 惯性力偶
截面处扭矩 T
2020年3月20日
《振动力学》
I pdx :微段绕轴线的转动惯量
10
连续系统的振动 / 一维波动方程
达朗贝尔原理:
I
p
dx
2
t 2
(T
T x
dx) T
pdx
0
I p
2
t 2
T x
p( x, t )
材料力学:
T
GI p
x
I p
2
t 2
x (GI p
2020年3月20日 14
《振动力学》
连续系统的振动 / 杆的纵向振动
2u t 2
a02
2u x 2
q(t) a sin(t )
u(x,t) (x)q(t)
(x)
c1
sin
x
a0
c2
cos
x
a0
i
一一对应
i (x)
第 i 阶主振动:
u(i) (x, t) aφi i (x) sin(it i ), (i 1,2 )
a0
i
i 2
a
l
,
i 1,3,5,...
i (x)
相关文档
最新文档