1.2.1任意角的三角函数课件(一) 第一课时
1.2.1任意角的三角函数课件
小结: 小结:
(1)任意角的三角函数的定义; )任意角的三角函数的定义; (2)三角函数的定义域与三角函数值在各象限的符号; )三角函数的定义域与三角函数值在各象限的符号; (3)诱导公式一及其应用; 公式一及其应用; )诱导公式一及其应用 (4)体会定义过程中体现的数形结合的思想 )体会定义过程中体现的数形结合的思想.
-
(+)
(+ )
( )
-
ycos r
y a = tan x
求证:当且仅当下列不等式组成立时, 例3 求证:当且仅当下列不等式组成立时, 为第三象限角. 角 θ 为第三象限角
证明: 证明: 因为① 成立,所以 因为①式sin θ < 0 成立 所以 θ 角的终边可能位于第三 或第四象限,也可能位于y 轴的非正半轴上; 或第四象限,也可能位于 轴的非正半轴上; 又因为② 成立, 又因为②式 tan θ > 0 成立,所以角θ 的终边可能位于 第一或第三象限. 第一或第三象限 因为①②式都成立, 的终边只能位于第三象限. 因为①②式都成立,所以角θ 的终边只能位于第三象限 ①②式都成立 为第三象限角. 于是角 θ 为第三象限角 反过来请同学们自己证明. 反过来请同学们自己证明
探究: 探究:
1.三角函数的定义域 三角函数的定义域 三角函数
sin α cos α tan α
定义域
π α α ≠ kπ + ,k ∈ Z 2
R R
2.三角函数值在各象限的符号 三角函数值在各象限的符号
(+ ) ( )
(+ ) ( )
( )
-
(+ )
( )
-
(+)
-
1.2.1任意角的三角函数(1)
2 若a 0则r -17a, 于是
8a 8 15a 15 8a 8 sin , cos , tan 17a 17 17a 17 15a 15
3、已知角的终边在直线y 2 x上,求角的sin ,cos , tan 的值.
OP0 (3) 2 (4) 2 5
y
M0
M
Px, y
M 0 P0 4
OM 0 3
OM x MP y
O
x
OMP ∽ OM 0 P0
P0 3,4
于是, sin y y | MP | M 0 P0 4 ; 1 OP OP0 5 OM 0 x OM 3 cos x ; 1 OP OP0 5
P(a, b)
1
cos a
x
o
M
b tan a
同样的,我们可以利用单位圆来定 义任意角的三角函数。
任意角的三角函数定义
设 是一个任意角,它的终边与单位圆交于点P( x, y )
那么:(1)y 叫做
的正弦,记作 sin ,即 sin y ; (2)x 叫做 的余弦,记作 cos ,即 cos x ; y y tan (3) 叫做 的正切,记作 ,即 tan ( x 0)
y
MP b sin OP r
OM a cos OP r
﹒Pa, b
MP b tan OM a
o
﹒
M
x
问2:对于确定的角 ,这三个比值的大小和 P 点在角 的终边上的位置是否有关呢?
y
P
P(a,b)
﹒
M
《三角函数的概念》PPT教学课件(第1课时三角函数的概念)
象限.
(2)先判断已知角分别是第几象限角,再确定各三角函数值的符号,最
后判断乘积的符号.
栏目导航
25
(1)C
[因为点P在第四象限,所以有tan cos
α>0, α<0,
由此可判断角α终边
在第三象限.]
(2)[解] ①∵145°是第二象限角,
∴sin 145°>0,
∵-210°=-360°+150°,
终边关于
x
轴对称,若
sin
α=15,则
交于点P(x,y), 则角β的终边与单位圆相交于点
sin β=________.
Q(x,-y),
由题意知y=sin α=15,所以sin β
=-y=-15.]
栏目导航
4.求值:(1)sin 180°+cos 90°+tan 0°. (2)cos253π+tan-154π. [解] (1)sin 180°+cos 90°+tan 0°=0+0+0=0. (2)cos253π+tan-154π =cos8π+π3+tan-4π+π4 =cosπ3+tanπ4=12+1=32.
栏目导航
24
三角函数值符号的运用
【例 2】 (1)已知点 P(tan α,cos α)在第四象限,则角 α 终边在( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
(2)判断下列各式的符号:
①sin 145°cos(-210°);②sin 3·cos 4·tan 5.
[思路点拨] (1)先判断 tan α,cos α 的符号,再判断角 α 终边在第几
5.公式一
sin α cos α tan α
8
栏目导航
1.sin(-315°)的值是( )
高中数学 第一章 三角函数 1.2.1 第一课时 三角函数的定义与公式一学案 新人教A版必修4-新人
第一课时三角函数的定义与公式一预习课本P11~15,思考并完成以下问题(1)任意角的三角函数的定义是什么?(2)三角函数值的大小与其终边上的点P的位置是否有关?(3)如何求三角函数的定义域?(4)如何判断三角函数值在各象限内的符号?(5)诱导公式一是什么?[新知初探]1.任意角的三角函数的定义前提如图,设α是一个任意角,它的终边与单位圆交于点P(x,y)定义正弦y叫做α的正弦,记作sin α,即sin α=y 余弦x叫做α的余弦,记作cos α,即cos α=x正切yx叫做α的正切,记作tan α,即tan α=yx(x≠0)三角函数正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标或坐标的比值为函数值的函数,将它们统称为三角函数[点睛] 三角函数也是函数,都是以角为自变量,以单位圆上点的坐标(坐标的比值)为函数值的函数;三角函数值只与角α的大小有关,即由角α的终边位置决定.2.三角函数值的符号如图所示:正弦:一二象限正,三四象限负;余弦:一四象限正,二三象限负;正切:一三象限正,二四象限负.简记口诀:一全正、二正弦、三正切、四余弦.3.诱导公式一即终边相同的角的同一三角函数值相等.[点睛] 诱导公式一的实质是:终边相同的角,其同名三角函数的值相等.因为这些角的终边都是同一条射线,根据三角函数的定义可知这些角的三角函数值相等.[小试身手]1.判断下列命题是否正确.(正确的打“√”,错误的打“×”)(1)若α=β+720°,则cos α=cos β.( )(2)若sin α=sin β,则α=β.( )(3)已知α是三角形的内角,则必有sin α>0.( )答案:(1)√(2)×(3)√2.若sin α<0,tan α>0,则α在( )A.第一象限B.第二象限C.第三象限D.第四象限答案:C3.已知角α的终边与单位圆的交点P ⎝⎛⎭⎪⎫55,-255,则sin α+cos α=( )A .55B .-55C .255D .-255答案:B4.sin π3=________,cos 3π4=________.答案:32 -22三角函数的定义及应用[典例] 设a <0,角α的终边与单位圆的交点为P (-3a,4a ),那么sin α+2cos α的值等于( )A .25 B .-25C .15D .-15[解析] ∵点P 在单位圆上,则|OP |=1. 即-3a2+4a2=1,解得a =±15.∵a <0,∴a =-15.∴P 点的坐标为⎝ ⎛⎭⎪⎫35,-45.∴sin α=-45,cos α=35.∴sin α+2cos α=-45+2×35=25.[答案] A利用三角函数的定义求值的策略(1)已知角α的终边在直线上求α的三角函数值时,常用的解题方法有以下两种:法一:先利用直线与单位圆相交,求出交点坐标,然后再利用正、余弦函数的定义求出相应三角函数值.法二:在α的终边上任选一点P (x ,y ),P 到原点的距离为r (r >0).则sin α=yr,cosα=xr.已知α的终边求α的三角函数值时,用这几个公式更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.[活学活用]1.如果α的终边过点P (2sin 30°,-2cos 30°),那么sin α的值等于( ) A .12 B .-12C .-32D .-33解析:选C 由题意知P (1,-3), 所以r = 12+-32=2,所以sin α=-32. 2.已知角α的终边过点P (12,a ),且tan α=512,求sin α+cos α的值.解:根据三角函数的定义,tan α=a 12=512,∴a =5,∴P (12,5).这时r =13,∴sin α=513,cos α=1213,从而sin α+cos α=1713.三角函数值符号的运用[典例] (1)( ) A .第一象限 B .第二象限 C .第三象限D .第四象限(2)设α是第三象限角,且⎪⎪⎪⎪⎪⎪cos α2=-cos α2,则α2所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限[解析] (1)由sin θ<0,可知θ的终边可能位于第三或第四象限,也可能与y 轴的负半轴重合.由tan θ<0,可知θ的终边可能位于第二象限或第四象限,故θ的终边只能位于第四象限.(2)∵α是第三象限角,∴2k π+π<α<2k π+3π2,k ∈Z.∴k π+π2<α2<k π+3π4.∴α2在第二、四象限. 又∵⎪⎪⎪⎪⎪⎪cos α2=-cos α2,∴cos α2<0.∴α2在第二象限.[答案] (1)D (2)B对于已知角α,判断α的相应三角函数值的符号问题,常依据三角函数的定义,或利用口诀“一全正、二正弦、三正切、四余弦”来处理.[活学活用]1.设△ABC 的三个内角为A ,B ,C ,则下列各组数中有意义且均为正值的是( ) A .tan A 与cos B B .cos B 与sin C C .sin C 与tan AD .tan A2与sin C解析:选D ∵0<A <π,∴0<A 2<π2,∴tan A2>0;又∵0<C <π,∴sin C >0.2.若角α是第二象限角,则点P (sin α,cos α)在第________象限. 解析:∵α为第二象限角, ∴sin α>0,cos α<0.∴P (sin α,cos α)位于第四象限. 答案:四诱导公式一的应用[典例] 计算下列各式的值:(1)sin(-1 395°)cos 1 110°+cos(-1 020°)sin 750°;(2)sin ⎝ ⎛⎭⎪⎫-11π6+cos 12π5·tan 4π. [解] (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin 45°cos 30°+cos 60°sin 30° =22×32+12×12 =64+14 =1+64. (2)原式=sin ⎝ ⎛⎭⎪⎫-2π+π6+cos ⎝⎛⎭⎪⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12.利用诱导公式求解任意角的三角函数的步骤[活学活用] 求下列各式的值:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4;(2)sin 810°+cos 360°-tan 1 125°. 解:(1)sin 25π3+tan ⎝ ⎛⎭⎪⎫-15π4=sin ⎝ ⎛⎭⎪⎫8π+π3+tan ⎝ ⎛⎭⎪⎫-4π+π4=sin π3+tan π4=32+1. (2)sin 810°+cos 360°-tan 1 125°=sin(2×360°+90°)+cos(360°+0°)-tan(3×360°+45°) =sin 90°+cos 0°-tan 45° =1+1-1 =1.层级一 学业水平达标1.若α=2π3,则α的终边与单位圆的交点P 的坐标是( )A .⎝ ⎛⎭⎪⎫12,32 B .⎝ ⎛⎭⎪⎫-12,32 C .⎝ ⎛⎭⎪⎫-32,12 D .⎝ ⎛⎭⎪⎫12,-32解析:选B 设P (x ,y ),∵角α=2π3在第二象限,∴x =-12,y =1-⎝ ⎛⎭⎪⎫-122=32, ∴P ⎝ ⎛⎭⎪⎫-12,32.2.若角α的终边上一点的坐标为(1,-1),则cos α为( ) A .1 B .-1 C .22D .-22解析:选C ∵角α的终边上一点的坐标为(1,-1),它与原点的距离r =12+-12=2,∴cos α=xr=12=22. 3.若三角形的两内角α,β满足sin αcos β<0,则此三角形必为( ) A .锐角三角形 B .钝角三角形 C .直角三角形 D .以上三种情况都可能解析:选B ∵sin αcos β<0,α,β∈(0,π), ∴sin α>0,cos β<0,∴β为钝角.4.代数式sin 120°cos 210°的值为( ) A .-34B .34C .-32D .14解析:选A 利用三角函数定义易得sin 120°=32, cos 210°=-32,∴s in 120°cos 210°=32×⎝ ⎛⎭⎪⎫-32=-34,故选A. 5.若角α的终边在直线y =-2x 上,则sin α等于( ) A .±15B .±55C .±255D .±12解析:选C 在α的终边上任取一点(-1,2),则r =1+4=5,所以sin α=yr=25=25 5.或者取P (1,-2),则r =1+4=5,所以sin α=y r =-25=-25 5. 6.tan ⎝⎛⎭⎪⎫-17π3=________. 解析:tan ⎝ ⎛⎭⎪⎫-17π3=tan ⎝ ⎛⎭⎪⎫-6π+π3=tan π3= 3. 答案: 37.已知角α的终边过点P (5,a ),且tan α=-125,则sin α+cos α=________.解析:∵tan α=a 5=-125,∴a =-12.∴r = 25+a 2=13.∴sin α=-1213,cos α=513.∴sin α+cos α=-713.答案:-7138.若角α的终边落在直线x +y =0上,则sin α|cos α|+|sin α|cos α=________.解析:当α在第二象限时,sin α|cos α|+|sin α|cos α=-sin αcos α+sin αcos α=0;当α在第四象限时,sin α|cos α|+|sin α|cos α=sin αcos α-sin αcos α=0.综上,sin α|cos α|+|sin α|cos α=0.答案:09.求下列三角函数值:(1)cos(-1 050°);(2)tan 19π3;(3)sin ⎝ ⎛⎭⎪⎫-31π4.解:(1)∵-1 050°=-3×360°+30°,∴cos(-1 050°)=cos(-3×360°+30°)=cos 30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan ⎝ ⎛⎭⎪⎫3×2π+π3=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin ⎝ ⎛⎭⎪⎫-31π4=sin ⎝⎛⎭⎪⎫-4×2π+π4=sin π4=22. 10.已知点M 是圆x 2+y 2=1上的点,以射线OM 为终边的角α的正弦值为-22,求cos α和tan α的值.解:设点M 的坐标为(x 1,y 1). 由题意,可知sin α=-22,即y 1=-22. ∵点M 在圆x 2+y 2=1上, ∴x 21+y 21=1,即x 21+⎝ ⎛⎭⎪⎫-222=1, 解得x 1=22或x 2=-22. ∴cos α=22或cos α=-22, ∴tan α=-1或tan α=1.层级二 应试能力达标1.已知角α的终边经过点(3a -9,a +2),且cos α≤0,sin α>0,则实数a 的取值范围是( )A .(-2,3]B .(-2,3)C .[-2,3)D .[-2,3]解析:选A 由cos α≤0,sin α>0可知,角α的终边落在第二象限内或y 轴的正半轴上,所以有⎩⎪⎨⎪⎧3a -9≤0,a +2>0,即-2<a ≤3.2.给出下列函数值:①sin(-1 000°);②cos ⎝ ⎛⎭⎪⎫-π4;③tan 2,其中符号为负的个数为( )A .0B .1C .2D .3解析:选B ∵-1 000°=-3×360°+80°, ∴-1 000°是第一象限角,则sin(-1 000°)>0; ∵-π4是第四象限角,∴cos ⎝ ⎛⎭⎪⎫-π4>0; ∵2 rad =2×57°18′=114°36′是第二象限角,∴tan 2<0.故选B. 3.若tan x <0,且sin x -cos x <0,则角x 的终边在( ) A .第一象限 B .第二象限 C .第三象限D .第四象限解析:选D ∵tan x <0,∴角x 的终边在第二、四象限,又sin x -cos x <0,∴角x的终边在第四象限.4.已知角α的终边经过点P (m ,-6),且cos α=-45,则m =( ) A .8B .-8C .4D .-4 解析:选B 由题意r =|OP |=m 2+-62=m 2+36,故cos α=mm 2+36=-45,解得m =-8. 5.已知角θ的顶点为坐标原点,始边为x 轴的正半轴,若P (4,y )是角θ终边上一点,且sin θ=-255,则y =________. 解析:|OP |=42+y 2.根据任意角三角函数的定义得,y42+y 2=- 255,解得y =±8.又∵sin θ=-255<0及P (4,y )是角θ终边上一点,可知θ为第四象限角,∴y =-8. 答案:-86.tan 405°-sin 450°+cos 750°=________.解析:原式=tan(360°+45°)-sin(360°+90°)+cos(2×360°+30°)=tan 45°-sin 90°+cos 30°=1-1+32=32. 答案:327.判断下列各式的符号:(1)sin 340°cos 265°;(2)sin 4tan ⎝⎛⎭⎪⎫-23π4. 解:(1)∵340°是第四象限角,265°是第三象限角,∴sin 340°<0,cos 265°<0,∴sin 340°cos 265°>0.(2)∵π<4<3π2,∴4是第三象限角, ∵-23π4=-6π+π4,∴-23π4是第一象限角. ∴sin 4<0,tan ⎝⎛⎭⎪⎫-23π4>0, ∴sin 4tan ⎝⎛⎭⎪⎫-23π4<0.8.已知1|sin α|=-1sin α,且lg(cos α)有意义. (1)试判断角α所在的象限. (2)若角α的终边上一点是M ⎝ ⎛⎭⎪⎫35,m ,且|OM |=1(O 为坐标原点),求m 的值及sin α的值.解:(1)由1|sin α|=-1sin α,所以sin α<0, 由lg(cos α)有意义,可知cos α>0,所以α是第四象限角.(2)因为|OM |=1,所以⎝ ⎛⎭⎪⎫352+m 2=1, 得m =±45. 又α为第四象限角,故m <0,从而m =-45, sin α=y r =m |OM |=-451=-45.。
1.2.1 三角函数的定义
新知探求 课堂探究
新知探求·素养养成
知识探究
1.三角函数的定义 在平面直角坐标系中,设α的终边上任意一点P的坐标是(x,y),它与原点 的距离是r(r=x 2 y 2 >0). (1)当α为锐角时,从下表中可以得到锐角三角函数的定义、定义域及函 数值的符号.
•9、要学生做的事,教职员躬亲共做;要学生学的知识,教职员躬亲共学;要学生守的规则,教职员躬亲共守。2021/9/122021/9/12Sunday, September 12, 2021 •10、阅读一切好书如同和过去最杰出的人谈话。2021/9/122021/9/122021/9/129/12/2021 11:37:38 AM •11、只有让学生不把全部时间都用在学习上,而留下许多自由支配的时间,他才能顺利地学习……(这)是教育过程的逻辑。2021/9/122021/9/122021/9/12Sep-2112-Sep-21 •12、要记住,你不仅是教课的教师,也是学生的教育者,生活的导师和道德的引路人。2021/9/122021/9/122021/9/12Sunday, September 12, 2021
原式= sin x + cos x + tan x =-1.当 x 是第三象限的角时, sin x cos x tan x
sin x<0,cos x<0,tan x>0,原式= sin x + cos x + tan x =-1. sin x cos x tan x
当 x 是第四象限的角时,sin x<0,cos x>0,tan x<0,
2.若sin θ>0,且tan θ<0,则θ是( )B (A)第一象限角 (B)第二象限角 (C)第三象限角 (D)第四象限角
《任意角和弧度制》三角函数PPT教学课件(第一课时任意角)
栏目 导引
第五章 三角函数
判断正误(正确的打“√”,错误的打“×”) (1)第一象限的角一定是正角.( × ) (2)终边相同的角一定相等.( × ) (3)锐角都是第一象限角.( √ ) (4)第二象限角是钝角.( × )
栏目 导引
第五章 三角函数
3.终边在直线 y=-x 上的角 β 的集合 S=________. 解析:由题意可知,终边在直线 y=-x 上的角有两种情况: ①当终边在第二象限时,可知{β|β=135°+k·360°,k∈Z}; ②当终边在第四象限时,可知{β|β=315°+k·360°,k∈Z}. 综合①②可得,终边在直线 y=-x 上的角的集合 S={β|β= 135°+k·180°,k∈Z}. 答案:{β|β=135°+k·180°,k∈Z}
栏目 导引
第五章 三角函数
2.如图,α,β 分别是终边落在 OA,OB 位置上的两 个角,且 α=60°,β=315°. (1)求终边落在阴影部分(不包括边界)的角 γ 的集 合; (2)求终边落在阴影部分(不包括边界),且在 0°~360°范围内 的角的集合. 解:(1)因为与角 β 终边相同的一个角可以表示为-45°,所以 阴 影 部 分 (不 包 括 边 界 )所 表 示 的 角 的 集 合 为 {γ|k·360 ° - 45 ° <γ<k·360°+60°,k∈Z}. (2){θ|0°≤θ<60°或 315°<θ<360°}.
别是( )
1.2.1任意角的三角函数的定义(第一课时)
第一章 三角函数 1.2 任意角的三角函数1.2.1 任意角的三角函数(第一课时)学习目标1.掌握任意角的三角函数的定义;2.已知角α终边上一点,会求角α的各三角函数值;3.记住三角函数的定义域及在各象限的符号.学习过程1.复习:初中锐角的三角函数是如何定义的?Rt △ABC 中,设A 的对边为a ,B 的对边为b ,C 的对边为c ,锐角A 的正弦、余弦、正切依次为sin A=,cos A= ,tan A= .2.探究:1.坐标法求三角函数.锐角α可放在坐标系中,在角α的终边上任取一点P (a ,b ),点P 与原点的距离r=,sin α= ;cos α= ;tan α= . 思考:对确定的锐角α,sin α,cos α,tan α的值是否随P 点在终边上的位置的改变而改变? 答案 不会.因为三角函数值是比值,其大小与点P (x ,y )在终边上的位置无关,只与角α的终边位置有关,即三角函数值的大小只与角有关..思考:怎样适当地选取P 点使比值简化?其中,以原点为圆心,以 为半径的圆为单位圆. 新知:1.任意角的三角函数.设α为一个任意角,它的终边与单位圆交于点P (x ,y ): 那么:(1)y 叫做α的正弦,记作sin α,即sin α=y ; (2)x 叫作α的余弦,记作cos α,即 ;(3)叫作α的正切,记作 ,即tan α=(x ≠0).三角函数:对于确定的角α,上面三个函数值都是唯一确定的,所以,正弦、余弦、正切都是以角为 ,以单位圆上点的坐标或坐标的比值为函数值的函数,我们将它们统称为三角函数.由于角的集合和实数集之间可以建立一一对应的关系,三角函数可以看成是自变量为实数的函数.3.正弦、余弦、正切函数值在各象限的符号思考 根据三角函数的定义,你能判断正弦、余弦、正切函数的值在各象限的符号吗? 答案 由三角函数定义可知,在平面直角坐标系中,设α是一个任意角,它的终边与单位圆交于点P (x ,y ),则sin α=y ,cos α=x ,tan α=yx (x ≠0).当α为第一象限角时,y >0, x >0,故sin α>0,cos α>0,tan α>0,同理可得当α在其他象限时三角函数值的符号,如图所示.梳理 记忆口诀:“一全正,二正弦,三正切,四余弦”.4.思考 当角α分别为30°,390°,-330°时,它们的终边有什么特点?它们的三角函数值呢?答案 它们的终边重合.由三角函数的定义知,它们的三角函数值相等. 梳理 诱导公式一典型例题【例1】求π的正弦、余弦和正切值.解:在直角坐标系中,作∠AOB=,∠AOB 的终边与单位圆的交点坐标为(,-),所以sin=-,cos,tan=-.【例2】已知角α的终边过点P 0(-3,-4),求角α的正弦、余弦和正切值. 解:sin α==-,cos α==-,tan α=.【例3】求证:当下列不等式组成立时,角α为第三象限角,反之也对.证明:如果sin α<0成立,那么角α的终边可能位于第三或第四象限,也可能与y 轴的非负半轴重合;如果tan α>0,则角α的终边位于第一或第三象限.所以,角α的终边只能位于第三象限.【例4】确定下列三角函数值的符号.(1)cos250°; (2)sin(-4π); (3)tan(-672°); (4)tan3π. 解:(1)因为250°是第三象限角,所以 cos250°<0; (2)因为-是第四象限角,所以sin(-)<0;(3)因为tan(-672°)=tan(48°-2×360°)=tan48°,而48°是第一象限角,所以tan(-672°)>0; (4)因为tan3π=tan(π+2π)=tan π,而π的终边在x 轴上,所以tan π=0. 【例5】求下列三角函数值. (1)sin1480°10'; (2)cos; (3)tan(-).解:(1)sin1480°10'=sin(40°10'+4×360°)=sin40°10'≈0.645; (2)cos =cos(+2π)=cos ;(3)tan(-)=tan(-2π)=tan.【例6】 已知θ终边上一点P (x,3)(x ≠0),且cos θ=1010x ,求sin θ,tan θ. 考点 任意角的三角函数 题点 用定义求三角函数的值 解 由题意知r =|OP |=x 2+9, 由三角函数定义得cos θ=x r =xx 2+9.又∵cos θ=1010x ,∴x x 2+9=1010x . ∵x ≠0,∴x =±1. 当x =1时,P (1,3), 此时sin θ=312+32=31010,tan θ=31=3.当x =-1时,P (-1,3), 此时sin θ=3(-1)2+32=31010,tan θ=3-1=-3.反思与感悟 (1)已知角α终边上任意一点的坐标求三角函数值的方法在α的终边上任选一点P (x ,y ),设P 到原点的距离为r (r >0),则sin α=y r ,cos α=xr .当已知α的终边上一点求α的三角函数值时,用该方法更方便.(2)当角α的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参数进行分类讨论.跟踪训练1 已知角α的终边过点P (-3a,4a )(a ≠0),求2sin α+cos α的值. 考点 任意角的三角函数 题点 用定义求三角函数的值 解 r =(-3a )2+(4a )2=5|a |.①若a >0,则r =5a ,角α在第二象限, sin α=y r =4a 5a =45,cos α=x r =-3a 5a =-35,∴2sin α+cos α=85-35=1.②若a <0,则r =-5a ,角α在第四象限, sin α=4a -5a =-45,cos α=-3a -5a =35,∴2sin α+cos α=-85+35=-1.综上所述,2sin α+cos α=±1.命题角度2 已知角α终边所在直线求三角函数值 【例7】 判断下列各式的符号: (1)sin145°cos(-210°);(2)sin3·cos4·tan5. 考点 三角函数值在各象限的符号 题点 三角函数值在各象限的符号 解 (1)∵145°是第二象限角,∴sin145°>0. ∵-210°=-360°+150°,∴-210°是第二象限角, ∴cos (-210°)<0,∴sin145°cos(-210°)<0. (2)∵π2<3<π<4<3π2<5<2π,∴sin3>0,cos4<0,tan5<0, ∴sin3·cos4·tan5>0.反思与感悟 角的三角函数值的符号由角的终边所在位置确定,解题的关键是准确确定角的终边所在的象限,同时牢记各三角函数值在各象限的符号,记忆口诀:一全正,二正弦,三正切,四余弦.跟踪训练3 已知点P (tan α,cos α)在第三象限,则α是第________象限角. 考点 三角函数值在各象限的符号 题点 三角函数值在各象限的符号 答案 二解析 由题意知tan α<0,cos α<0, ∴α是第二象限角. 类型三 诱导公式一的应用 例4 求下列各式的值:(1)sin(-1395°)cos1110°+cos(-1020°)sin750°;(2)sin ⎝⎛⎭⎫-11π6+cos 12π5·tan4π. 考点 诱导公式一 题点 诱导公式一解 (1)原式=sin(-4×360°+45°)cos(3×360°+30°)+cos(-3×360°+60°)sin(2×360°+30°)=sin45°cos30°+cos60°sin30°=22×32+12×12=64+14=1+64. (2)原式=sin ⎝⎛⎭⎫-2π+π6+cos ⎝⎛⎭⎫2π+2π5·tan(4π+0)=sin π6+cos 2π5×0=12. 反思与感悟 利用诱导公式一可把负角的三角函数化为0到2π间的三角函数,也可把大于2π的角的三角函数化为0到2π间的三角函数,即实现了“负化正,大化小”. 跟踪训练4 求下列各式的值: (1)cos 25π3+tan ⎝⎛⎭⎫-15π4; (2)sin810°+tan765°-cos360°. 考点 诱导公式一 题点 诱导公式一解 (1)原式=cos ⎝⎛⎭⎫8π+π3+tan ⎝⎛⎭⎫-4π+π4 =cos π3+tan π4=12+1=32.(2)原式=sin(90°+2×360°)+tan(45°+2×360°)-cos360°=sin90°+tan45°-1=1+1-1=1.一、选择题1.(2017·长沙检测)sin(-315°)的值是( ) A .-22B .-12C.22D.12答案 C解析 sin(-315°)=sin(-360°+45°)=sin45°=22. 2.(2017·山西太原外国语学校月考)如果角α的终边过点P (2sin30°,-2cos30°),则sin α等于( )A.12B .-12C .-32D .-33 答案 C解析 由题意得P (1,-3),它与原点的距离r =12+(-3)2=2,∴sin α=-32. 3.已知sin θ<0,且tan θ<0,则θ为( )A .第一象限角B .第二象限角C .第三象限角D .第四象限角答案 D4.已知α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则x 的值为( ) A.3 B .±3 C .- 2 D .- 3答案 D解析 ∵cos α=x r =x x 2+5=24x ,∴x =0或2(x 2+5)=16,∴x =0或x 2=3,∴x =0(∵α是第二象限角,∴舍去)或x =3(舍去)或x =- 3.故选D. 5.(2017·嘉兴模拟)sin2·cos3·tan4的值( ) A .小于0 B .大于0 C .等于0 D .不存在 答案 A解析 ∵sin2>0,cos3<0,tan4>0, ∴sin2·cos3·tan4<0.6.(2017·湖州期末)点P 从点(1,0)出发,沿单位圆顺时针方向运动5π6弧长到达Q 点,则Q 点的坐标是( )A.⎝⎛⎭⎫-12,32B.⎝⎛⎭⎫-12,-32C.⎝⎛⎭⎫-32,-12D.⎝⎛⎭⎫-32,12 答案 C解析 根据题意可得:x Q =cos ⎝⎛⎭⎫-5π6=-32, y Q =sin ⎝⎛⎭⎫-5π6=-12. 则Q 点的坐标是⎝⎛⎭⎫-32,-12. 7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ的终边在( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 答案 C解析 由题意知sin θ+cos θ<0,且sin θcos θ>0,∴⎩⎪⎨⎪⎧sin θ<0,cos θ<0,∴θ为第三象限角. 二、填空题8.tan405°-sin450°+cos750°=________. 答案32解析 tan405°-sin450°+cos750°=tan(360°+45°)-sin(360°+90°)+cos(720°+30°)=tan45°-sin90°+cos30°=1-1+32=32. 9.(2017·绍兴柯桥区期末)已知α的顶点在原点,始边在x 轴上,终边与单位圆相交于点M ⎝⎛⎭⎫-32,12,则cos α=________. 答案 -3210.(2017·山东烟台一中期末)已知角α的终边经过点(3a -9,a +2),且sin α>0,cos α≤0,则实数a 的取值范围是________. 答案 (-2,3]解析 ∵点(3a -9,a +2)在角α的终边上, sin α>0,cos α≤0,∴⎩⎪⎨⎪⎧a +2>0,3a -9≤0,解得-2<a ≤3. 11.已知角θ的终边上有一点P (x ,-1)(x ≠0),且tan θ=-x ,则sin θ+cos θ=________. 答案 0或- 2解析 ∵θ的终边过点P (x ,-1)(x ≠0), ∴tan θ=-1x .又tan θ=-x , ∴x 2=1,即x =±1. 当x =1时,sin θ=-22,cos θ=22, 因此sin θ+cos θ=0; 当x =-1时,sin θ=-22,cos θ=-22, 因此sin θ+cos θ=- 2. 故sin θ+cos θ的值为0或- 2.12.已知角α的终边在直线y =3x 上,则sin α,cos α,tan α的值分别为________. 答案32,12,3或-32,-12, 3 解析 因为角α的终边在直线y =3x 上, 所以可设P (a ,3a )(a ≠0)为角α终边上任意一点, 则r =a 2+(3a )2=2|a |(a ≠0). 若a >0,则α为第一象限角,r =2a ,所以sin α=3a 2a =32,cos α=a 2a =12, tan α=3aa= 3. 若a <0,则α为第三象限角,r =-2a , 所以sin α=3a -2a =-32,cos α=-a 2a =-12,tan α=3aa= 3. 13.sin 72π+cos 52π+cos(-5π)+tan π4=________.答案 -1解析 原式=sin 32π+cos π2+cosπ+1=-1+0-1+1=-1.14.函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域是________________.答案 {-4,0,2}解析 由sin x ≠0,cos x ≠0知,x 的终边不能落在坐标轴上, 当x 为第一象限角时,sin x >0,cos x >0, sin x cos x >0,y =0;当x 为第二象限角时,sin x >0,cos x <0, sin x cos x <0,y =2;当x 为第三象限角时,sin x <0,cos x <0, sin x cos x >0,y =-4;当x 为第四象限角时,sin x <0,cos x >0, sin x cos x <0,y =2.故函数y =|sin x |sin x +|cos x |cos x -2|sin x cos x |sin x cos x 的值域为{-4,0,2}.三、解答题15.已知1|sin α|=-1sin α,且lg(cos α)有意义.(1)试判断角α所在的象限;(2)若角α的终边与单位圆相交于点M ⎝⎛⎭⎫35,m ,求m 的值及sin α的值. 解 (1)∵1|sin α|=-1sin α, ∴sin α<0.①∵lg(cos α)有意义, ∴cos α>0.②由①②得角α的终边在第四象限. (2)∵点M ⎝⎛⎭⎫35,m 在单位圆上, ∴⎝⎛⎭⎫352+m 2=1,解得m =±45. 又α是第四象限角,∴m <0,∴m =-45.由三角函数定义知,sin α=-45.达标检测1.α是第四象限角,则下列数值中一定是正值的是( ) A.sin αB.cos αC.tan αD.2.已知点P (tan α,cos α)在第三象限,则角α在( ) A.第一象限 B.第二象限 C.第三象限 D.第四象限3.已知角α的终边过点P (-1,2),则cos α的值为 .4.已知角α的终边过点(a ,2a )(a ≠0),求α的正弦、余弦和正切值.5.判断sin4·tan(-)的符号.参考答案复习:探究:1.坐标法求三角函数.锐角α可放在坐标系中,在角α的终边上任取一点P (a ,b ), 点P 与原点的距离r=,sin α=,cos α=,tan α=.由三角形相似,确定的α可对应相似的直角三角形,这三个比值对应相等,不会随P 在角的终边的位置改变而改变. 2.单位圆.不难想到,当r=1时形式上比较简单,即sin α=b ,cos α=a ,tan α=,而当r=1时,可构设一个以原点为圆心以单位长为半径的圆,角α的终边与圆的交点选为P 点.此时,点P 与原点的距离r=1.其中,以原点为圆心,以1个单位长度为半径的圆为单位圆. 新知:1.cos α=x ;tan α;自变量2.≠+k反思:在直角坐标系中,设α是一个任意角,α终边上任意一点P(除了原点)的坐标为(x,y),则sinα=,cosα=,tanα=.3.终边相同的角同一三角函数值相等.典型例题【例1】解:在直角坐标系中,作∠AOB=,∠AOB的终边与单位圆的交点坐标为(,-),所以sin=-,cos,tan=-.【例2】解:sinα==-,cosα==-,tanα=.【例3】证明:如果sinα<0成立,那么角α的终边可能位于第三或第四象限,也可能与y轴的非负半轴重合;如果tanα>0,则角α的终边位于第一或第三象限.所以,角α的终边只能位于第三象限.【例4】解:(1)因为250°是第三象限角,所以cos250°<0;(2)因为-是第四象限角,所以sin(-)<0;(3)因为tan(-672°)=tan(48°-2×360°)=tan48°,而48°是第一象限角,所以tan(-672°)>0;(4)因为tan3π=tan(π+2π)=tanπ,而π的终边在x轴上,所以tanπ=0.【例5】解:(1)sin1480°10'=sin(40°10'+4×360°)=sin40°10'≈0.645;(2)cos=cos(+2π)=cos;(3)tan(-)=tan(-2π)=tan.达标检测1.B2.B3.-4.当a>0时,sinα=,cosα=,tanα=2;当a<0时,sinα=-,cosα=-,tanα=2.5.略。
高中数学第一章三角函数1.2.1.1三角函数的定义省公开课一等奖新名师优质课获奖PPT课件
探究二
探究三
(1)解析:依题意,x2+
5
3
2
3
α=± ,tan α=
2
3
答案:
5
±3
5
±3
思维辨析
2 2
=1,解得
3
5
x=± 3 ,于是
2
sin α=3,cos
2 5
.
5
=±
2 5
5
±
(2) 解析:由已知得 x=-6,y=8,
8
10
所以 r= 2 + 2 =10,于是 sin θ=
8
-6
4
4
一
二
三
3.做一做:求值
(1)sin 780°;
25
(2)cos 4 π;
(3)tan
15
-4π
.
3
2
解:(1)sin 780°=sin(2×360°+60°)=sin 60°= .
25
π
π
2
(2)cos 4 π=cos 3 × 2π + 4 =cos4 = 2 .
15
π
π
(3)tan - 4 π =tan -2 × 2π + 4 =tan4=1.
第27页
探究一
探究二
探究三
思维辨析
忽视对参数的分类讨论致误
【典例】 角 α 的终边过点 P(-3a,4a),a≠0,则 cos
α=
.
错解因为 x=-3a,y=4a,所以 r= (-3)2 + (4)2 =5a,于是 cos
-3 3
α= 5 =-5.
错解错在什么地方?你能发现吗?怎样避免这类错误呢?
1.2 任意角的三角函数
b
a
高中同步新课标²数学
创新方案系列丛书
1 2.已知角 α 的终边与单位圆交于 P(x, ),则 cos α = 2 ________. 1 3 3 2 解析:由 x +4=1,得 x=± 2 ,故 cos α=x=± 2 . 3 答案:± 2
高中同步新课标²数学
创新方案系列丛书 考点3 三角函数值的符号问题
角函数值.
高中同步新课标²数学
创新方案系列丛书
1.求下列三角函数值. 17π 47π 17π (1)sin- ; (2)cos ; (3)tan- . 6 3 4
47π π π 1 解:(1)sin- 6 =sin-8π+6=sin = ; 6 2 π 17π π 2 (2)cos =cos4π+4=cos = ; 4 4 2 17π π (3)tan- 3 =tan-6π+3 =tan
1 解析:由三角函数定义知,sin α=-2. 1 答案:-2
高中同步新课标²数学
创新方案系列丛书
5.cos 6²tan 6的符号为________(填“正”、“负”或“不确
定”).
3π 解析:∵ <6<2π,∴6 是第四象限角. 2 ∴cos 6>0,tan 6<0,则 cos 6· tan 6<0. 答案:负
解析:②③④均错,①正确.
答案:A
高中同步新课标²数学
创新方案系列丛书
2.已知tan x>0,且sin x+cos x>0,那么角x是( A.第一象限角 B.第二象限角 C.第三象限角 )
D.第四象限角
解析:由tan x>0,得α为第一、三象限角.而α为第三象限角时,
1.2.1任意角三角函数
1.2.1任意角三角函数(命题人:乔更云 审题人:郑伟锋自主预习认真阅读教材P 11-14,回答下列问题: 1.任意角的三角函数(1)单位圆:在直角坐标系中,称以 为圆心,以 为半径的圆为单位圆.(2)锐角的三角函数:如图所示,在Rt △OAB 中,∠OAB =90°,OA =a ,AB =b ,OB =r ,设∠BOA =α,则有:示,α是任意角,以α的顶点O 坐标原点,以α的始边为x 轴的非负半轴,建立平面直角坐标系.设P (x ,y )是α的终边与单位圆的交点,则有:(4)定义:当a = (k ∈Z )时,tan α无意义.除此之外,对于每一个确定的α,都分别有 确定的正弦值、余弦值、正切值与之对应,所以这三个对应法则都是以角α为 ,以单位圆上点的坐标或坐标的比值为函数值的函数,分别叫做正弦函数、余弦函数、正切函数,这三个函数统称为,分别记作y =sin x ,y =cos x ,y =tan x .典例讲解[例1] 已知角的终边落在直线y =2x 上,求sin α,cos α,tan α的值.变式1 (1)求2π3的正弦、余弦和正切值.(2)已知角α的终边经过点P (3,4),求sin α,cos α,tan α.(3)已知角α的终边过点P (5,a ),且tan α=-125,求sin α-cos α的值.[例2]确定下列各式的符号:(1)sin105°·cos230°;(2)sin 7π8·tan7π8;(3)cos6·tan6.变式2. (1)若sinθ>0且tanθ<0,则θ是()A.第一象限角B.第二象限角C.第三象限角D.第四象限角(2)判断下列三角函数值的符号:(1)in(-670°)cos1230°;(2)sin8·cos8.[例3]求下列各式的值.(1)cos 253π+tan(-154π);(2)sin810°+tan765°-cos360°.变式3求下列三角函数值:(1)cos(-1050°);(2)tan19π3;(3)sin(-31π4).[例4]已知角α的终边上一点P(4t,-3t)(t≠0),求α的各三角函数值.例5已知sinα=12,求出角α的取值集合.变式5.利用单位圆,求使下列不等式成立的x的取值范围:(1)sin x≤12;(2)tan x≤1;(3)cos x≥22.1.2.1任意角三角函数 课后作业 1.若sin α<0且tan α>0,则α的终边在( )A .第一象限B .第二象限C .第三象限D .第四象限2.若角α的终边过点(-3,-2),则( )A .sin αtan α>0B .cos αtan α>0C .sin αcos α>0D .sin αcos α<0 3.cos1110°的值为( ) A.12 B.32 C .-12 D .-32 4.已知P (2,-3)是角θ终边上一点,则tan(2π+θ)等于( )A.32B.23 C .-32 D .-23 5.cos 2201.2°可化为( ) A .cos201.2° B .-cos201.2° C .sin201.2° D .tan201.2°6.已知角α的终边经过点P (m ,-3),且cos α=-45,则m 等于( )A .-114 B.114 C .-4 D .4P 在第二或三象限,所以m <0,则m =-4.7.如果点P (sin θ+cos θ,sin θcos θ)位于第二象限,那么角θ所在的象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8.α是第二象限角,P (x ,5)为其终边上一点,且cos α=24x ,则sin α的值为( )A.104B.64C.24 D .-1049.如果α的终边过点P (2sin30°,-2cos30°),则sin α的值等于( )A.12 B .-12 C .-32 D .-33 10.函数y =|sin x |sin x +cos x |cos x |+|tan x |tan x 的值域是( )A .{-1,1,3}B .{1,3}C .{-1,3}D .R 11.已知11π6的正弦线为MP ,正切线为AT ,则有( )A .MP 与AT 的方向相同B .|MP |=|AT |C .MP >0,AT <0D .MP <0,AT >012已知sin α>0,tan α<0,则α的( ) A .余弦线方向向右,正切线方向向下 B .余弦线方向向右,正切线方向向上 C .余弦线方向向左,正切线方向向下 D .余弦线方向向上,正切线方向向左 13.使得lg(cos θ·tan θ)有意义的角θ是第________象限角.14.已知角α的终边过点(3a -9,a +2)且cos α≤0,sin α>0,求实数a 的取值范围.15.求下列各式的值: (1)sin 25π3+tan(-23π4);(2)sin 1170°+cos360°-tan 125°.16.已知1|sin α|=-1sin α,且lgcos α有意义.(1)试判断角α所在的象限;(2)若角α的终边上一点是M (35,m ),且|OM |=1(O 为坐标原点),求m 的值及sin α的值.18.(2011~2012·黑龙江五校联考)已知角θ的终边上有一点P (-3,m ),且sin θ=24m ,求cos θ与tan θ的值.1.2.1任意角三角函数(第一课时)1.(1)原点,单位长度(2) (3)y, x y/x (4) 唯一,自变量,三角函数例 1 [解析] 当角的终边在第一象限时,在角的终边上取点P (1,2),由r =|OP |=12+22=5,得sin α=25=255,cos α=15=55,tan α=21=2.当角的终边在第三象限时,在角的终边上取点Q (-1,-2),由r =|OQ |=(-1)2+(-2)2=5,得:sin α=-25=-255,cos α=-15=-55,tan α=-2-1=2. 变式1(1) 因为角2π3的终边与单位圆的交点为(-12,32),所以sin 2π3=32,cos 2π3=-12,tan 2π3=- 3.(2)x =3,y =4,得 由r =32+42=5.∴sin α=y r =45,cos α=x r =35,tan α=y x =43. (3)由正切函数定义得: a 5=-125,∴a =-12,r =52+(-12)2=13 ∴sin α=a 13=-1213,cos α=513 ∴sin α-cos α=-1213-513=-1713.π2+k π例2(1)∵105°、230°分别为第二、第三象限角,∴sin105°>0,cos230°<0. 于是sin105°·cos230°<0. (2)∵π2<7π8<π,∴7π8是第二象限角,则sin 7π8>0,tan 7π8<0. ∴sin7π8·tan 7π8<0. (3)∵3π2<6<2π,∴6是第四象限角.变式2(1)B,(2) (1)∵-670°=-2×360°+50°,∴-670°是第一象限角,∴sin(-670°)>0.又1230°=3×360°+150°, ∴1230°是第二象限角,∴cos1230°<0,∴sin(-670°)cos1230°<0. (2)∵52π<8<3π,即8 rad 的角是第二象限角,∴sin8>0,cos8<0.∴sin8·cos8<0.例3(1)∵-670°=-2×360°+50°,∴-670°是第一象限角,∴sin(-670°)>0.又1230°=3×360°+150°, ∴1230°是第二象限角,∴cos1230°<0,∴sin(-670°)cos1230°<0. (2)∵52π<8<3π,即8 rad 的角是第二象限角,∴sin8>0,cos8<0.∴sin8·cos8<0.变式3(1)∵-1050°=-3×360°+30°, ∴cos(-1050°)=cos(-3×360°+30°)=cos30°=32. (2)∵19π3=3×2π+π3,∴tan 19π3=tan(3×2π+π3)=tan π3= 3.(3)∵-31π4=-4×2π+π4,∴sin(-31π4)=sin(-4×2π+π4)=sin π4=22.例4因为点P 的坐标是(4t ,-3t )且t ≠0, 所以r =|PO |=(4t )2+(-3t )2=5|t |. 当t >0时,α是第四象限角,r =|PO |=5t .sin α=y r =-3t 5t =-35,cos α=x r =4t 5t =45,tan α=y x =-3t 4t =-34;当t <0时,α是第二象限角,r =|PO |=-5t ,sin α=y r =-3t -5t =35,cos α=x r =4t -5t =-45,tan α=y x =-3t 4t =-34. 例5[解析] 已知角α的正弦值,可知MP =12,则P 点纵坐标为12.所以在y 轴上取点(0,12),过这点作x 轴的平行线y =12,交单位圆于P 1、P 2两点,则OP 1、OP 2是角α的终边,因而角α的集合为{α|α=2k π+π6或α=2k π+5π6,k ∈Z },如图:变式5[解析] (1)如图所示,在0~2π内作出正弦值等于12的角:π6和56π.在图中所示的阴影区域内的每一个角x ,其正弦值都满足sin x ≤12,所以不等式sin x ≤12的解集为:{x |5π6+2k π≤x ≤136π+2k π,k ∈Z }.(2)如图所示,在0~2π内作出正切值等于1的角:π4和5π4,则在图中所示的阴影区域内的每个角x (不包括终边在y 轴上的角)均满足tan x ≤1.课后作业答案1. C [解析] 由于sin α<0,则α的终边在第三或四象限,又tan α>0,则α的终边在第一或三象限,所以α的终边在第三象限.2 C [解析] ∵角α的终边过点(-3,-2),∴sin α<0,cos α<0,tan α>0,∴sin αcos α>0,故选C.3 B [解析] cos1110°=cos(3×360°+30°)=cos30°=32. 4 C [解析] tan(2π+θ)=tan θ=-32=-32. 5 B [解析] ∵201.2°是第三象限角,∴cos201.2°<0,6 C [解析] 由题意得cos α=mm 2+9=-45,解得m =±4.又cos α=-45<0,则α的终边在第二或三象限,则点P 在第二或三象限,所以m <0,则m =-4.7. C [解析] 由于点P (sin θ+cos θ,sin θcos θ)位于第二象限,则⎩⎪⎨⎪⎧sin θ+cos θ<0,sin θcos θ>0,所以有sin θ<0,cos θ<0,所以θ是第三象限角.8 A [解析] ∵|OP |=x 2+5,∴cos α=xx 2+5=24x ,又因为α是第二象限角,∴x <0,得x =- 3∴sin α=5x 2+5=104,故选A.9 C [解析] ∵P (1,-3),∴r =12+(-3)2=2,∴sin α=-32.10 C [解析] ∵该函数的定义域是{x |x ∈R 且x ≠k π2,k ∈Z},∴当x 是第一象限角时,y =3;当x 是第二象限角时,y =1-1-1=-1;当x 是第三象限角时,y =-1-1+1=-1;当x 是第四象限角时,y =-1+1-1=-1.综上,函数的值域是{-1,3}. 11[答案] A[解析] 三角函数线的方向和三角函数值的符号是一致的.MP =sin 11π6<0,AT =tan11π6<0.12[答案] C[解析] ∵sin α>0,tan α<0,∴α是第二象限角.∴cos α<0.∴余弦线方向向左,正切线方向向下.13 一或二,12 -33, 13 ±2在角α终边上任取一点P (x ,y ),则y =x ,当x >0时,r =x 2+y 2=2x ,sin α+cos α=y r +x r =22+22=2,当x <0时,r =x 2+y 2=-2x ,sin α+cos α=y r +x r =-22-22=- 2.,14 ∵cos α≤0,sin α>0,∴角α的终边在第二象限或y 轴非负半轴上,∵α终边过(3a -9,a +2),∴⎩⎪⎨⎪⎧3a -9≤0a +2>0,∴-2<a ≤3. 15(1)sin25π3+tan(-23π4)=sin(8π+π3)+tan(-6π+π4)=sin π3+tan π4=32+1=3+22.(2)sin1170°+cos360°-tan1125° =sin(3×360°+90°)+cos(0°+360°)-tan(3×360°+45°)=sin90°+cos0°-tan45°=1+1-1=1.16(1)由1|sin α|=-1sin α可知sin α<0,∴α是第三或第四象限角或终边在y 轴的负半轴上的角.由lgcos α有意义可知cos α>0, ∴α是第一或第四象限角或终边在x 轴的正半轴上的角.综上可知角α是第四象限的角. (2)∵|OM |=1,∴(35)2+m 2=1,解得m =±45. 又α是第四象限角,故m <0, 从而m =-45.由正弦函数的定义可知 sin α=y r =m |OM |=-451=-45.18 (1)当m =0时,cos θ=-1,tan θ=0; (2)当m =5时,cos θ=-64,tan θ=-153; (3)当m =-5时,cos θ=-64,tan θ=153.。
高中数学必修四-《三角函数的定义》课件
360° =2π ____rad
180° = _____rad π
π 180 1° = _____rad
3.设扇形的半径为 r,弧长为 l, α 为其圆心角的 弧度数.
1 1 2 l· r = __________ · α· r αr 则 l= ______ ,S 扇= ______ 2 2
思考感悟
2.三角函数在各象限的符号由什么来确定?
提示:由三角函数定义可知三角函数在各象限的
符号由角α 终边上任意一点的坐标来确定.
课堂互动讲练
考点突破 三角函数的定义及应用
三角函数定义是学好三角函数的最基础工具, 利用定义解决问题是我们必须掌握的基本方 法.
例1
已知角α 的终边过点P(-3a,4a)(a≠0),
变式训练 3 求下列函数的定义域. (1)y= sinx· tanx; 2 (2)y= lgsinx+ 9- x .
解: (1)∵sinx· tanx≥ 0, ∴ sinx 与 tanx 同号或 sinx· tanx= 0,故 x 是第 一、四象限的角或终边在 x 轴上的角. ∴函数的定义域为 π π { x|2kπ- < x< 2kπ+ 或 x= kπ, k∈ Z} . 2 2 sinx> 0 (2)由题意得 , 2 9- x ≥ 0源自例2 判断下列各式的符号:
15π 13π (1)sin145° cos( - 210° ) ; (2)sin tan( - ); 7 3 (3)sin1· cos2· tan3.
【思路点拨】 明确各角所在的象限,进而判断 三角函数的符号.
【 解 】 (1) ∵ 145° 是 第 二 象 限 的 角 , ∴ sin 145° >0. ∵- 210° =- 360° + 150° ,∴- 210° 是第二象限 的角, ∴ cos(- 210° )<0. ∴ sin 145° cos(- 210° )<0. 15π π 15π (2)∵ = 2π+ ,∴ 是第一象限的角, 7 7 7 15π ∴ sin >0. 7
高中数学必修四 第一章三角函数 1.2.1.1 三角函数的定义
解析:角
α
的终边在
y
轴的非负半轴上,则
α=2kπ+
π 2
(������∈Z),所以
tan α 无意义.
答案:A
【做一做 1-2】 若角 α 的终边与单位圆相交于点
2 2
,-
2 2
,
则 sin ������的值为( )
A.
2 2
B.
−
2 2
C.
1 2
D.
−1
解析:x=
2 2
,
������
=
−
2 2
,
则sin
题型一 题型二 题型三 题型四
解:(1)∵-670°=-2×360°+50°,
∴-670°是第一象限角,
∴sin(-670°)>0.
又1 230°=3×360°+150°,
∴1 230°是第二象限角,
∴cos 1 230°<0,
∴sin(-670°)cos 1 230°<0.
(2)∵
5π 2
<
8
<
(2)∵
5π 4
是第三象限角,
4π 5
是第二象限角,
11π 6
是第四象限角,∴
sin
5π 4
<
0,
cos
4π 5
<
0,
tan
11π 6
<
0,
∴sin
54π·cos
45π·tan
11π 6
<
0,
式子符号为负.
(3)∵191°角为第三象限角,∴tan 191°>0,cos 191°<0,
高一数学1[1].2.1任意角三角函数_教学课件
主页
x
P0
1. 2. 1任意角的三角函数 (一) 任意角的三角函数 一
的终边过点P(【2】已知角 的终边过点 -12, 5), 则 】已知角θ的终边过点
5 sin θ = _____; 13
12 cos θ = _____; 13
5 tan θ = _____ . 12
求角α 例2.已知角 终边经过点 0(-3, -4),求角 的正 2.已知角α 终边经过点P 已知角 求角 余弦和正切值. 弦,余弦和正切值.
解: ∵x= -3, y=- 4, = =
∴ r = (3) + (4) = 5.
2 2
y
O
y 4 sin ∴ α = = = 4; r 5 5
cos α = x = 3 = 3 ; r 5 5
C.±3 ±
D. 5
b = 3 , ∴ cos α = x = 2 r 5 b + 16
解得 b = 3.
主页
1. 2. 1任意角的三角函数 (一) 任意角的三角函数 一
知识结构
三角函数的定义 任意角的 三角函数 三角函数的符号 定义域和值域 诱导(周角 公式一 诱导 周角)公式一 周角
主页
1. 2. 1任意角的三角函数 (一) 任意角的三角函数 一
α
O x 角 的终边在第一象限上
α
M
角的正弦,余弦,正切与 点的选取有关吗 点的选取有关吗? 角的正弦,余弦,正切与P点的选取有关吗?为 什么
答案
思考:角的终边如果在第二象限,第三象限,第四象限 思考:角的终边如果在第二象限,第三象限, 呢? 如果角的终边落在坐标轴上呢? 如果角的终边落在坐标轴上呢?
必修四第一章 三角函数1.2.1第一课时
(2)若 cosθ<0 且 sinθ>0,则2θ是第
象限角.
A.一
数
学 必
C.一或三
修
④
·
人
教
A
版
B.三 D.任意象限角
( C)
返回导航
第一章 三角函数
[解析] (1)①π2<3<π,π<4<32π,32π<5<2π,
∴sin3>0,cos4<0,tan5<0,∴sin3·cos4·tan5>0.
②注意到角的终边为射线,所以应分两种情况处理,取射线上任意一点坐标
(a,b),则对应角的正弦值 sinα= a2b+b2,余弦值 cosα= a2a+b2,正切值 tanα数 学Fra bibliotek必=ab.
修 ④
(2)当角 α 的终边上点的坐标以参数形式给出时,要根据问题的实际情况对参
·
人 教
数进行分类讨论.
A
版
返回导航
数 学 必 修 ④ · 人 教 A 版
返回导航
第一章 三角函数
3.已知α是第三象限角,设sinαcosα=m,则有
A.m>0
B.m=0
C.m<0
D.m的符号不确定
(A)
4.(2018·江西高安中学期末)已知角α的终边经过P(1,2),则tanα·cosα等于 25 _____5_.
数 学 必
[解析] 由三角函数的定义,tanα=yx=2,cosα=xr= 55,∴tanα·cosα=255.
人 教
函数值的函数,我们将它们统称为三角函数(trigonometric function).
A
版
高中数学 第一章 三角函数 1.2.三角函数的定义课件
12/12/2021
第二十页,共五十页。
(2)因为角 α 的终边过点(a,2a)(a≠0), 所以 r= 5|a|,x=a,y=2a.
当
a>0
时,sinα=yr=
2a =2 5a
5 5,cosα=xr=
a= 5a
55,tanα
=yx=2aa=2;
当
a<0
时,sinα=yr=-2a5a=-2 5
5,cosα=xr=- a
原点的距离为 r,则 sinα=
y r ,cosα=
x r ,tanα=
y x.
12/12/2021
第八页,共五十页。
[答一答] 1.三角函数值的大小与点 P 在终边上的位置是否有关?
提示:三角函数值是比值,是一个实数,这个实数的大小与 点 P(x,y)在终边上的位置无关,只与角 α 的终边位置有关,即 三角函数值的大小只与角有关.
12/12/2021
第六页,共五十页。
12/12/2021
第七页,共五十页。
知识点一 三角函数的定义
[填一填] (1)单位圆:圆心是 原点 ,半径长为
单位长度 .
(2)定义:设任意角 α 的终边与单位圆交于点 P(x,y),则 sinα
=
y ,cosα=
x ,tanα= yx(x≠0) .
(3)一般地,设角 α 终边上任意一点 P 的坐标为(x,y),它与
12/12/2021
第二十三页,共五十页。
[变式训练 1] (1)如果角 α 的终边经过点 P- 23,12,则 sinα
=
1 2
,cosα=
-
3 2
,tanα=
-
3 3
§1.2.1-1 任意角的三角函数(一)
重庆市万州高级中学 曾国荣 wzzxzgr@
§1.2.1-1 任意角的三角函数(一)
教学目标:
1.理解并掌握任意角三角函数的定义.
2.理解三角函数是以实数为自变量的函数.
3.掌握正弦、余弦、正切函数的定义域.
教学重、难点:
1.任意角三角函数的定义.
§1.2.1-1 任意角的三角函数(一)
4) 例3.已知角的终边经过点 P0 (3,,求角的正弦、 余弦和正切值 .
解:由已知可得 OP0 (3) 2 (4) 2 5 设角 的终边与单位圆交于 P( x, y ) , M 分别过点 P 、 0 作 x 轴的垂线 MP、 0 P0 P
2013-1-11
重庆市万州高级中学 曾国荣 wzzxzgr@
9
§1.2.1-1 任意角的三角函数(一)
⑤定义域:
y y 1)对于正弦函数 sin ,因为r>0,所以 r 恒有 ry
意义,即取任意实数, 恒有意义,也就是说sin r 恒有意义,所以正弦函数的定义域是R; 2)类似地可写出余弦函数的定义域R ; y y 3)对于正切函数 tan ,因为x=0时, 无意义,即 x x tan 无意义,又当且仅当角的终边落在纵轴上时, y 才有x=0,所以当的终边不在纵轴上时, 恒有意 x 义,即tan 恒有意义,所以正切函数的定义域是: k ( k Z) 2 2013-1-11 10 重庆市万州高级中学 曾国荣 wzzxzgr@
b 邻边 cos A r 斜边 a 对边 tan A b 邻边
A (0, ) 2
思考:角的范围已经推广,那么对任意角是否也能 像锐 角一样定义其三种三角函数呢?
任意角的三角函数(第1课时)
第一课时:任意角的三角函数(第1课时)编写人:潘有金审核人:张广泉审批:苏自先学习目标:1.理解并掌握任意角三角函数的定义;2.理解三角函数是以实数为自变量的函数;3.掌握正弦、余弦、正切函数的定义域;4.掌握三角函数的值在各个象限的符号。
5.掌握公式(一),体会三角函数值“周而复始”的变化规律。
预习案一、教材助读认真阅读课本P 11 –P15 ,完成下列问题1.在初中,我们学习了锐角三角函数。
锐角三角函数是如何定义的?3.在直角坐标系中,我们称_________________________的圆为单位圆。
4. 设α是一个任意角,它的终边与单位圆交于点P(x,y),那么⑴y叫做α的______,记作sinα,即sinα=____.⑵x叫做α的______,记作cosα,即cosα=____.⑶y叫做α的______,记作tanα,即tanα=____.x6..三角函数值在各个象限的符号sin αcos αtan α7.根据三角函数的定义可知:终边相同的角的同一个三角函数的值相等,由此得到公式(一)二、预习自测(牛刀小试)1.已知角α的终边与单位圆的交点为P,12-),则tan α=( )A. B. 12-C. -2.下列三角函数值中,小于0的是( ) A. sin156° B. cos450° C. tan178πD.tan (165π-) 3.已知角θ的终边经过点P (-12,5)求角θ的各三角函数值。
三、我的疑惑在下面记下预习中的困惑在课上和同学讨论或向老师请教第一课时:任意角的三角函数(第1课时)导学案一、学始于疑同学们首先认真独立思考如下问题问题1.锐角三角函数是以角为自变量,以比值为函数值的函数。
在直角坐标系中,能不能用终边上点的坐标来表示锐角三角函数呢?问题2. 对于任意角α,能不能用终边上点的坐标来定义角α三角函数呢?二、质疑探究小组内讨论上述问题,准备展示,将组内不能解决的问题用小纸条交给老师探究一锐角三角函数与锐角终边上点的坐标的关系探究二任意角三角函数的定义设α是一个任意角,它的终边上任意一点P的坐标为(x,y),点P与原点的距离为r(r=),则:sinα=yr ;cosα=xr;tanα=yx.探究三单位圆探究四任意角的三角函数与单位圆的关系设α是一个任意角,它的终边与单位圆交于点P(x,y),那么⑴y叫做α的正弦,记作sinα,即sinα=y;⑵x叫做α的余弦,记作cosα,即cosα=x;⑶yx 叫做α的正切,记作tanα,即tanα=yx.探究四弧度制下,三角函数的定义域探究五三角函数值在各个象限的符号探究六公式(一)因为终边相同的角的同一个三角函数值相等,由此得到公式(一) sin(α+k ²360°)=sin α cos(α+k ²360°)= cos αtan(α+k ²360°)=tan α 其中k ∈Z三、拓展提升例1.已知角α的终边经过点P (-3,-4),求角α的正弦、余弦和正切值例2.利用定义求53π的正弦、余弦和正切值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
课后作业
课本 第20页 习题1.2 A组 3、4题.
3
的终边与单位圆的交点坐标为
,
1 3 ( , ) 2 2
,
y
5 3
5 3 所以 sin 3 2
5 1 cos 3 2
5 tan 3 3
o
﹒
A
x
﹒B
练习1:P15 第1题 练习2:求角
的三个三角函数值
练习 3、P15 第3题
角α 弧度 数 sinα
cosα tanα
安化一中:蒋凯彬
1.2.1任意角的三角函数
复习回顾
P 1、在初中我们是如何定义锐角三角函数的?
sin
c
b
O
a
cos
tan
M
b c a c b a
新课
导入
2.在直角坐标系中如何用坐标表示锐角三角函数?
P
b
O y
a
M
x
新课
导入
其中 : OM a MP b OP r a 2 b 2
1 3 P( , ) 2 2
M O
x
若已知角α的终边一点的坐标,则先判断点是否在单位圆上,
若是则直接利用定义求三角函数值。若不是呢,如何求?例
如P为 时 请大家课后讨论。 (1, 3 )
实例
例2
剖析
求 5 的正弦、余弦和正切值. 3 5 ,易知 AOB 解:在直角坐标系中,作 AOB
x x
正弦、余弦、正切都是以角为自变量,以单位圆上的点的坐标
或坐标的比值为函数值的函数,我们将它们统称为三角函数.
实例剖析
例1:如图已知角α的终边上一点是 P( 求角α的正弦、余弦和正切值。 解:根据任意角的三角函数定义:
1 3 , ) 2 2
y
3 sin 2
tan 3
点评:
1 cos 2
a
b a
o
M
MP tan OM
4.用单位圆定义任意角的三角函数
设 是一个任意角,它的终边
与单位圆交于一点
的终边
y
P ( x, y )
x
A(1,0)
p ( x, y )
,那么
o
(2)x 叫做 的余弦,记作
(1) y 叫做 的正弦,记作
sin ,即
sin y
cos ,即 cos x y y ( x 0) (3) 叫做 的正切,记作 tan ,即 tan
OM a cos OP r
﹒Pa, b
r
MP b tan OM a
o
﹒
M x
3.锐角三角函数(在单位圆中)
以原点O为圆心,以单位长度为半径的圆叫单位圆
OP r 1 a b
2
2
y
P(a, b)
1
MP sin OP OM cos OP
x
b
0° 90° 180° 270° 360° 30° 45° 60° 0 0
1 0
2
0
-1 0
3 2
2
0
1 0
6
1 2
4
2 2 2 2
3
3 2
1 2
1
0 不存 在
-1
0 不存 在
3 2
3 3
1
3
归纳
总结
1. 内容总结: ①三角函数的概念。 ②研究三角函数概念的方法。 2 .方法总结: 运用了定义法、数形结合法解题。
OM cos OP
﹒
M
O
M
x
MP tan OM
M P OP OM OP M P OM
新课
导入
其中 : OM a MP b OP r a 2 b 2
y
2.在直角坐标系中如何用坐标表示锐角三角函数?
MP b sin OP r
y
2.在直角坐标系中如何用坐标表示锐角三角函数?
MP b sin OP r
OM a cos OP r
﹒Pa, b
r
MP b tan OM a
o
﹒
M x
诱思
ห้องสมุดไป่ตู้
探究
如果改变点P在终边上的位置,这三个比值会改变吗?
y
P
P(a,b)
OMP ∽ OM P
MP sin OP