土力学与数值方法:土的本构理论(1)
土力学第3章- 土的本构关系
(5) (6)
求a: 将公式(1)式 1 3
a b a
a
求导,切线模量Et为:
Et
1 3 a a a b a 2
(7)
令εa=0,则原点的切线模量,即初始切线模量为:
Ei
R
1 a
1
(8) 代入(1)、(7)式(消去a、b),
( 1 3 ) ult
1 b
(4)
若土样破坏时的偏应力(即强度)为(σ1-σ3)f,令Rf等于破坏时的偏应 力与极限值之比,称为破坏比:
Rf
Rf (4)式代入(5)式得(消去偏应力极限值):b 1 3 f
1 3 f 1 3 ult
2.八面体应力与应变的计算公式
可导出:
八面体法向应力
八面体剪应力
0 ( 1 2 3 ) ( x y z )
0
1 3 1 3
1 3
1 3
1 3 2 2 3 2 3 1 2
2 2 2 x
1 3
a
a b a
( 2)
3.非线形弹性模型
1 3 a
a b a
应力-应变双曲线函数 公式(1)还可以改成:
双曲线函数坐标变换
1 3
1 a
(3)
a
b
1 3
1 a
a
通过求a、b得到弹性模量E. 求b:
b
当轴向应变εa→∞时,偏应力趋向一极限值(σ1-σ3)ult
对于加工硬化材料,屈服应力是随着荷载的提高与变形的增大而提高的。 屈服面不同于破坏面,它不是一个固定的面,图中由A点提高到B点。
《土体本构模型》课件
06
土体本构模型的未来发展
考虑土体的非线性特性
非线性弹性模型
随着应力的增加,土体的弹性模量逐 渐减小,表现出非线性特性。未来本 构模型应考虑这种非线性行为,以更 准确地描述土体的力学性能。
非线性塑性模型
塑性变形是土体的一个重要特性,未 来本构模型应考虑塑性变形的非线性 行为,包括剪胀性、剪缩性和各向异 性等。
湿度影响
湿度变化会影响土体的力学性能,如湿胀干缩。未来本构模型应考虑湿度对土体 变形和强度的影响。
THANKS
感谢观看
02 砂土
由中、小颗粒的砂粒组成,具有较好的透水性和 稳定性。
03 粘性土
由细小的粘粒和粉粒组成,具有较高的粘聚力和 可塑性。
土的工程性质
压缩性
土在压力作用下体积缩小 的性质,与土的含水率和 孔隙比有关。
抗剪强度
土抵抗剪切破坏的能力, 与土的内摩擦角和粘聚力 有关。
渗透性
土中水分通过孔隙流动的 性质,与土的颗粒大小和 排列有关。
02
土体的基本性质
土的组成
01 矿物质颗粒
土由固体矿物质颗粒组成,其大小、形状和矿物 成分对土的性质有重要影响。
02 水
土中含有的水分对土的力学性质和工程稳定性具 有重要影响。
03 气体
土中存在的气体对土的压缩性和渗透性有一定影 响。
土的分类
01 砾石土
由大颗粒的砾石、卵石等组成,具有较高的承载 力和稳定性。
根据土的工程性质选择合适的本构模型
弹性模型
适用于土的应力-应变关系近似呈线性关系的情况 。
塑性模型
适用于土的应力-应变关系呈非线性关系的情况。
根据实际应用情况选择合适的本构模型
土的本构模型
d vp q M p d dp
d vp M 2 q p 2q p d dp
球应力张量与偏应力张量
土的本构关系
2 应力和应变 – 应力
z
C 等倾面
3 2
z
B x
1
A
y
x y
应力主轴坐标系
八面体面
土的本构关系
2 应力和应变 – 应力
z
C 2 oct 1 oct A y 3 平均主应力 广义剪应力
对八面体面ABC,作用在该面上的 正应力和剪应力分别称为八面体正 应力oct 和八面体剪应力oct:
土的本构关系
土的本构关系
1 概述
土的本构关系 Constitutive relationship 土的本构定律 Constitutive law 土的本构方程 Constitutive equation 土的数学模型 Mathematical model
是反映土的力学性状的数学表达式, 表示形式一般为应力—应变—强度— 时间的关系
• 土体处于极限平衡状态 • 滑动块体间力的平衡 • 刚体+理想塑性计算安全系数
现代土力 学分析方法
应力变形的 综合分析
计算机数值模拟计算 • 土体的本构模型 • 数值计算方法:有限元等 • 应力变形稳定的综合分析
模型试验:如离心机模型试验
本构关系与土力学分析方法
土的本构关系
2 应力和应变 – 应力
1.5 1.4 1.3
p0 , e0
a
e
1.5 1.4 1.3 1.2 1.1 1
p0 , e0
b
e
1.2 1.1 1 100 300 500 p/kPa 700 900
名词解释 土的本构关系
名词解释土的本构关系土的本构关系是土壤力学领域中广泛被研究的一个重要概念,它描述了土壤的物理和力学性质之间的关联。
在土壤工程和地基工程中,了解土的本构关系对于分析和设计土体的性能至关重要。
本文将探讨土的本构关系的定义、影响因素以及应用。
1. 概念解释土的本构关系指的是土壤的应力应变关系,即土壤在受到不同应力作用下的变形和应力响应的规律。
它研究土壤的变形特性对外力作用的响应,通过建立应力与变形之间的关系来描述土体的力学行为。
2. 影响因素土的本构关系受多种因素的影响,包括土壤类型、粒径分布、含水量、应力路径等。
这些因素对土壤的物理和化学性质产生影响,从而影响土的力学行为和本构关系。
2.1 土壤类型不同类型的土壤具有不同的本构特性。
粘性土主要由黏土颗粒组成,其本构关系常表现为塑性变形,即变形与剪切应力呈非线性关系;而砂土和砾石土则常表现为弹性变形,变形与剪切应力近似线性关系。
2.2 粒径分布土壤的粒径分布对其本构关系也有重要影响。
粒径分布越均匀的土壤通常具有较为线性的本构关系,即变形与应力呈线性关系;而粒径分布不均匀的土壤,特别是含有较多细颗粒的土壤,其本构关系常具有一定的非线性特性。
2.3 含水量土壤的含水量是影响其本构关系的另一个重要因素。
随着含水量的增加,土壤的剪切强度逐渐减小,其本构关系也会发生变化。
水分的存在会改变土颗粒间的摩擦特性,从而影响土体的变形与剪切应力之间的关系。
2.4 应力路径土壤受到的应力路径也会对其本构关系产生影响。
应力路径是指土壤在承受外力时所经历的不同应力状态。
不同的应力路径会导致土壤的本构关系发生变化,即变形与应力呈非线性关系。
3. 应用和意义了解土的本构关系对于土壤工程和地基工程具有重要的应用价值。
通过研究土的本构关系,可以评估土壤的稳定性和承载力,指导地基设计和土壤改良工程。
3.1 地基设计在地基设计中,了解土的本构关系有助于准确评估土壤的变形和稳定性。
通过建立应力-应变模型,可以预测土壤的变形行为,为地基工程提供可靠的依据。
土的本构关系-推荐下载
本 构 关 系 “本构关系”是英文Constitutive Relation 的意译。
在力学中,本构关系泛指普遍的应力—应变关系。
因为在变形固体力学中,应力不只与应变有关.而且还与物体的加载历时(应力历史)、加载方式(或应力路径)以及温度和时间有关。
因此材科的本构关系或普遍的应力—应变关系可以表示为;应力路径等),,,(T t f ij ij εσ=式中t 为加载历时,T 为温度。
例如,弹性力学中的广义定律就是最简单的材料本构关系,它不计时间、温度和应力路径及应力历史的影响。
因此应力和应变之间存在着唯一对应的关系。
当材料应力超出弹性范围而进入塑性阶段时,应力和应变之间就没有唯一的对应关系,而是要受应力历史或应力路径的影响,这时材料的应力—应变关系就称为塑性本构关系。
塑性本构关系要比弹性本构关系复杂得多。
如果再考虑材科应力—应变关系随时间和温度的变化,本构关系持更加复杂。
本书所要讲的岩土本构关系主要是指与时间和温度无关的塑性本构关系。
各种本构关系的特点1.弹性本构关系类型和分类弹性本构关系可分为线弹性本构关系和非线性弹性本构关系 如图1所示,线弹性本构关系即一般的弹性力学,其应力—应变关系服从广义Hooke 定律。
非线性本构关系的应力—应变曲线是非线性的,但是加卸载仍然沿着一条曲线。
弹性本构关系的基本特征是:1) 应力和变形的弹性性质或可逆性;2) 应力与应变的单值对应关系或与应力路径相应力历史的无关性。
即无论材料单元在历史上受过怎样的加卸载过程或不同的应力施加路径,只要应力不超过弹性限度,应力与应变都是一一对应的;3) 应力与应变符合叠加原理;4) 正应力与剪应变、剪应力和正应变之间没有耦合关系。
因此,根据广义Hooke 定律有 (1)γτεσG K m m ==3式中,σm和τ分别为正应力和剪应力,εm和γ分别为平均应变和剪应变,K、G为体积弹性模量和剪切弹性模量。
(1)式说明:正应力只产生正应变或体应变,而对剪应变没有贡献。
土的本构结构
土的本构关系土体是天然地质材料的历史产物。
土是一种复杂的多孔材料,在受到外界荷载作用后,其变形具有以下特性:①土体的变形具有明显的非线性,如:土体的压缩试验e~p 曲线、三轴剪切试验的应力—应变关系曲线、现场承载板试验所得的p~s曲线等; ②土体在剪切应力作用下会产生塑性应变,同时球应力也引起塑性应变; ③土体尤其是软粘土,具有十分明显的流变特性;④由于土体的构造或沉积等原因,使土具有各向异性; ⑤紧砂、超固结粘土等在受剪后都表现出应变软化的特性; ⑥土体的变形与应力路径有关,证明不同的加载路径会出现较大的差别; ⑦剪胀性等。
为了更好地描述土体的真实力学—变形特性,建立其应力、应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即: 土体的本构关系。
自从Roscoe等人首次建立了剑桥模型以来, 土的本构关系的研究经历了一个蓬勃发展的阶段, 出现了一些具有实用价值的本构模型。
虽然很多的理论为建立土的本构关系提供了有力的工具, 但是由于土是一种三相体材料, 在性质上既不同于固体也不同于液体, 是介于两者之间的特殊材料, 所以人们常借助于固体力学或流体力学理论, 同时结合工程实践经验来解决土工问题, 从而研究土的本构关系形成了自己一套独特的方法—半理论半经验的方法。
建立一个成功的本构关系关键有两点:第一要建立一个函数能较好地反映土在受力下的响应特征;第二要充分利用试验结果提供的数据比较容易地确定模型参数。
模型都需要满足以下基本条件:(1)不违背更高一级的基本物理原理(如热力学第一、第二定律)。
(2)建立在一定的力学理论基础之上(如弹性理论、塑性理论等)。
(3)模型参数能够通过常规试验求取。
从工程应用的角度出发,研究问题的精度就需要进行合理的控制,从而在计算精度与计算设备、计算难度、计算时间以及计算成本之间获得平衡。
另外,任何理论、方法都应以实践应用为目的,这样才具有价值。
综合上述两点,从工程应用的角度去分析各种土的本构关系是非常有必要的。
土的本构
ij
e ij
p ij
F 2 2 F ij
p ij
2015/10/16
广东工业大学岩土工程研究所
34
3.6 计入应变率效应的本构理论
• (3)Perzyna方程:
1 1 2 ij S ij ij 2G E
30
3.6 计入应变率效应的动本构理论
• 2.粘塑性模型
• • • (1) Bingham模型 (2) Hohenemser-Prager方程 (3) Perzna方程
2015/10/16
广东工业大学岩土工程研究所
31
3.6 计入应变率效应的本构理论
• 1、 粘弹性模型:
• (1)Maxwell模型(弹、粘性原件串联):
2015/10/16
广东工业大学岩土工程研究所
26
3.4 土的动力屈服、破坏条件及本构理论
• 1、土的动力屈服:砂土与粘土的区别 • • 屈服条件 强化现象
•
强化条件、加载条件
• 2、破坏条件 • 3、屈服条件与破坏条件的关系
•
•
特例:理想塑性状态
(1)应变率效应:⑴不计~;⑵计入~
• 4、土的动本构理论分类
2015/10/16 广东工业大学岩土工程研究所 29
3.6 计入应变率效应的本构理论
2
据此可建立土的动本构关系,
包括粘弹性和粘塑性两类:
• 1.粘弹性模型 • • (1)加载速度单调增加的粘弹性模型 (2)Maxwell和Kelvin模型
2015/10/16
广东工业大学岩土工程研究所
高等土力学教材 第六章 土工数值分析(一)土体稳定的极限平衡和极限分析
土工数值分析(一)土体稳定的极限平衡和极限分析目录1 前言 (2)2 理论基础-塑性力学的上、下限定理 (4)2.1 一般提法 (4)2.2 塑性力学的上、下限定理 (5)2.3 边坡稳定分析的条分法 (7)3 土体稳定问题的下限解-垂直条分法 (9)3.1 垂直条分法的静力平衡方程及其解 (9)3.2 数值分析方法 (11)3.3 垂直条分法的有关理论问题 (15)3.4 垂直条分法在主动土压力领域中的应用 (19)4 土体稳定分析的上限解-斜条分法 (23)4.1 求解上限解的基本方程式 (23)4.2 上限解和滑移线法的关系 (24)4.3 边坡稳定分析的上限解 (27)4.4 地基承载力的上限解 (27)5 确定临界滑动模式的最优化方法 (30)5.1 确定土体的临界失稳模式的数值分析方法 (30)5.2 确定最小安全系数的最优化方法 (31)6 程序设计和应用 (39)6.1 概述 (39)6.2 计算垂直条分法安全系数的程序S.FOR (39)6.3 计算斜条分法安全系数的程序E.FOR (53)1土工数值分析(一):土体稳定的极限平衡和极限分析法1前言边坡稳定、土压力和地基承载力是土力学的三个经典问题。
很多学者认为这三个领域的分析方法属于同一理论体系,即极限平衡分析和极限分析方法,因此,应该建立一个统一的数值分析方法。
Janbu 曾在1957年提出过土坡通用分析方法。
Sokolovski(1954)应用偏微分方程的滑移线理论提出了地基承载力、土压力和边坡稳定的统一的求解方法。
W. F. Chen (1975) 在其专著中全面阐述了在塑性力学上限和下限定理基础上建立的土体稳定分析一般方法。
但是,上述这些方法只能对少数具有简单几何形状、介质均匀的问题提供解答,故没有在实践中获得广泛的应用。
下面分析这三个领域分析方法的现状以及建立一个统一的体系的可能性。
有关边坡稳定分析的理论的研究工作,从早期的瑞典法,到适用的园弧滑裂面的Bishop简化法,到适用于任意形状、全面满足静力平衡条件的Morgenstern - Price法(1965),其理论体系逐渐趋于严格。
土的本构
q e
1
2
1 2 2 3 3 1 2 2
1 2 2
3J 2
谢谢!
分别称为应力状态的第一个不变量、第二个不变量、第三 个不变量。同时,根据主应力与应力状态的六个分量之间 的关系,第一、第二、第三应力不变量还可以表示为
I1 x y z
2 2 2 I 2 x y y z z x xy yz zx
等式右端的第一个应力张量称为应力球张量,第二个应 力张量称为应力偏张量。采用张量下标表示法可表示为
m 0 0 0
m
0
1 当i j时 式中 ij 0 当i j时
0 0 m ij m
(1-7)
x m xy xz s x s xy s xz y m yz s yz s y s yz ij m ij yx zx zy z m s zx s zy s z
m p
1 1 1 x y z 1 2 3 I1 3 3 3
(1-5)
于是应力张量可以分解为两个分量
0 x m xy xz m 0 ij 0 0 m yz y m yz (1-6) 0 0 m zx zy z m
sx J 3 s yx s zx
s xy sy s zy
s xz s yz sz
(1-11)
分别称为应力偏张量的第一、第二、底三不变量。当取坐标 轴与主应力方向一致时,式(1-11)简化为
土的本构模型
土的本构模型
土的本构模型与力场的关系:(静)电场、磁场与重力场(按相关关系)
力使土颗粒产生变形,变形导致力的疏散与分布变化,改便土颗粒的承载力,不同形状有不同的承载力。
当土颗粒达到极限形状时,产生极限承载力,(土的变形就是塑性和屈服的体现),随后土颗粒解体为一定数量的下一单位级别的小颗粒,即内部静电力小于外力,导致主体的结构变化。
而土颗粒变形过程——屈服或塑性,就是外力大于内力时,结构变化,导致内力进一步减少。
土的剪切,就是摩擦力与静电力的变化,切向力大于摩擦力(作用力)和静电力(场力)之和,而且摩擦产生损伤,使摩擦面向摩擦力减小的趋势变化。
而磁场和重力场。
第1章 岩土本构理论与数值模型-
目 录第一章岩土本构理论与数值模型第二章岩土工程问题的有效应力原理和有限元法§2.1总应力和有效应力§2.2有效应力分析基本方程§2.3饱和土的静力固结有限元法§2.4饱和土的动力分析有限元法第三章岩土类介质的本构模型§3.1应力张量,不变量,应力空间§3.2 弹性模型§3.3 Mohr-Coulomb模型§3.4 修正的Drucker-Prager模型§3.5 如何由实验标定参数§3.6 Drucker-Prager塑性与蠕变的耦合模型§3.7 修正的剑桥(Cam-clay)模型§3.8 修正的帽子模型§3.9 与蠕变耦合的帽子塑性模型§3.10 基础的极限分析算例§3.11 节理材料模型§3.12 边坡稳定问题第四章饱和土与非饱和土的渗流应力耦合分析§4.1非饱和土的有效应力§4.2饱和土和非饱和土的渗流——应力耦合分析§4.3分析类型与用法§4.4饱和土渗流和固结算例§4.5非饱和土渗流算例§4.6水坝的稳态渗流和应力分析算例§4.7湿化分析算例§4.8大变形瞬态固结问题算例§4.9降雨入渗条件下非饱和土边坡分析第五章构造有限元模型的若干问题§5.1广义平面单元§5.2地应力问题§5.3位移——孔压耦合分析中的初始应力§5.4考虑管道——土体相互作用的PSI单元(Pipe-Soil Interaction)§5.5无限元§5.5.1静力计算原理§5.5.2静力分析无限元§5.5.3用无限元进引动力分析的若干问题第六章边坡稳定的剪切带计算§6.1剪切带对计算力学构成的严峻挑战§6.2梯度塑性理论下考虑应变转化Drucker-Prager屈服准则§6.3梯度塑性理论的有限元格式§6.4节点缩减积分梯度塑性单元§6.5剪切带计算§6.6结论第一章岩土本构理论与数值模型岩土工程分析有很长的历史,早期的分析建立在观察和经验的基础上,经过长期的努力,已逐步形成一些经验计算公式和基于简化模型的解析分析方法。
(完整版)土的本构模型综述
土的本构模型综述1 土本构模型的研究内容土体是天然地质材料的历史产物。
土是一种复杂的多孔材料,在受到外部荷载作用后,其变形具有非线性、流变性、各向异性、剪胀性等特点。
为了更好地描述土体的真实力学—变形特性,建立其应力应变和时间的关系,在各种试验和工程实践经验的基础上提出一种数学模型,即为土体的本构关系。
自Roscoe等1958~1963年创建剑桥模型以来,各国学者相继提出了数百个土的本构模型,包括不考虑时间因素的线弹性模型、非线弹性模型、弹塑性模型和考虑时间因素的流变模型等。
本文将结合土本构模型的研究进程,综合分析已建立的经典本构模型,指出各种模型的优缺点和适用性,并对土本构模型的未来研究趋势进行展望。
2 土的本构模型的研究进程早期的土力学中的变形计算主要是基于线弹性理论的。
在线弹性模型中,只需两个材料常数即可描述其应力应变关系,即E和v或K和G或λ和μ。
其中邓肯张双曲线模型是研究最多、应用最广的非线弹性模型。
20世纪50年代末~60年代初,土塑性力学的发展为土的本构模型的研究开辟了一条新的途径。
Drucker等(1957年)提出在Mohr-Coulomb锥形屈服面上再加一组帽形屈服面,Roscoe等(1958年~1963年)建立了第一个土的本构模型——剑桥模型,标志着土的本构模型研究新阶段的开始。
70年代到80年代,计算机技术的迅速发展推动了非线性力学理论、数值计算方法和土工试验的发展,为在岩土工程中进行非线性、非弹性数值分析提供了可能性,各国学者提出了上百种土的本构模型,包括考虑多重屈服面的弹塑性本构模型和考虑土的变形及内部应力调整的时间效应的粘弹塑性模型。
此外,其他本构模型如土的结构性模型、内时本构模型等也是从不同角度描述土本构关系,有的学者则借用神经网络强大的自组织、自学习功能来反演土的本构关系。
3 几种经典的土本构模型3.1 Mohr-Coulomb(M-C)理想弹塑性模型Coulomb 在土的摩擦试验、压剪试验和三轴试验的基础上,于1773年提出了库仑破坏准则,即剪应力屈服准则,它认为当土体某平面上剪应力达到某一特定值时,就进入屈服。
土的本构模型
§1 土工试验与测试
1.3.2邓肯-张双曲线模型 到目前为止,国内外学者提出的土体本构模型不 计其数,但是真正广泛用于工程实际的模型却为数不 多,邓肯-张模型为其中之一。该模型是一种建立在增 量广义虎克定律基础上的非线性弹性模型,可经反映 应力~应变关系的非线性,模型参数只有8个,且物 理意义明确,易于掌握,并可通过静三轴试验全部确 定,便于在数值计算中运用,因而,得到了广泛地应 用。
3
Pa
)n
(14)
将式(13)和式(14)代入式(12)则得到任一应力 (σ1,σ3)时的切线模量的邓肯-张计算公式:
R f ( 1 3 )(1 sin ) Et Kpa ( ) 1 pa 2c cos 2 3 sin
3
2
n
(15)
图1.3.11 静三轴试验仪
主要试验步骤为: ①记录体变管的初始读数; ②对试样加围压σ3,并在围压下固结,并记下排 水管的读数; ③开动马达,合上离合器,按0.0065%/min的剪 切应变速对试样加载。按百分表读数为O,30,6O,90, 120,150,180,210,240,300,360,420,480,540, 600,660⋯的间隙记读排水管读数和量力环量表读数, 直到试样破坏为止。取低应变速率的目的是保应变并非完全全符合所假定的双 曲线,往往在开始和最后接近破坏的一段,将(σ1σ3)~ε1应力应变双曲线关系转换成[ε1 /(σ1σ3)]~ε1直线关系时,试验数据对线性关系有偏 离,为了减少人为因素,使整体符合得好,在取a (直线的截距,a=1/Ei)值和b(b=1/(σ1-σ3)ult)值 时,使直线通过应力水平S=70%及S=95%的点,据此 可获得表2的结果。由表2可绘出[ε1 /(σ1-σ3)]~ ε1的关系直线(如图1.3.14所示)。由图3可确定a、 b值,并进一步得到Ei、Rf值(见表3).
3 土的本构理论-1
2.等效应力 的特点
与空间坐标轴的选取无关;
J2
意义下衡量的
各正应力增加或减少同一数值(也就是叠加一个静水应力
状态)时 数值不变,即与应力球张量无关;
j ( j 1,2,3)全反号时 的数值不变。 高等土力学
3. S ij 空间
S ij 空间指的是以 S 的九个分量为坐标轴的九维偏应力空间; ij
用张量符号表示: 其中:
ij m ij sij ,
(3 5)
1 0 0 ij 0 1 0 0 0 1
1,当i j, ij 0,当i j,
(3 6)
高等土力学
或
应力与应变-应力分析
应力球张量
土的本构理论
——与单元体的体积变形有关
土的本构理论
在静水压力作用下,应力—应变间服从弹性规律,且不会屈 服、不会产生塑性变形。
不产生塑性变形的部分 应力 产生塑性变形的部分
反映静水“压力”:
2.平均正应力:
1 1 高等土力学 m = ( 11 + kk 22 + 33 ) = 3 3 (3 - 4)
应力与应变-应力分析
高等土力学
土的本构关系的概念
Constitutive law:
Stress-strain relationship
Stress-strain-strength relationship Stress-strain-time relationship
土的本构理论
T t
(3 10) (3 11) (3 12)
应力与应变-应力分析
土的基本特性及本构关系与强度理论
土的基本特性及本构关系与强度理论一、本文概述本文旨在深入探讨土的基本特性、本构关系以及强度理论,以增进对土壤力学行为的理解,并为土木工程、地质工程、环境工程等领域提供理论基础和实践指导。
土作为自然界中广泛存在的介质,其力学特性对于工程结构的稳定性和安全性至关重要。
因此,研究土的基本特性、建立合理的本构关系以及探索强度理论,对于预防地质灾害、优化工程设计、提高施工效率等方面都具有重要的意义。
本文首先对土的基本特性进行概述,包括土的分类、物理性质、化学性质以及力学性质等方面。
在此基础上,进一步探讨土的本构关系,即土的应力-应变关系,包括弹性、弹塑性和塑性等方面。
通过对土的本构关系的深入研究,可以更准确地描述土的力学行为,为工程实践提供理论支持。
本文还将重点介绍土的强度理论,包括土的抗剪强度、抗压强度等方面。
土的强度理论是土力学中的核心内容之一,它对于评估土的承载能力、预测土的变形和破坏等方面具有重要的指导作用。
通过对土的强度理论的深入研究,可以为工程实践提供更加准确、可靠的理论依据。
本文将系统介绍土的基本特性、本构关系以及强度理论,以期为提高土木工程、地质工程、环境工程等领域的理论水平和实践能力做出贡献。
二、土的基本特性土是一种由固体颗粒、液体水和气体组成的三相体,其特性受到这些组成部分的性质、相对含量以及它们之间的相互作用的影响。
土的基本特性主要包括其物质组成、物理性质、力学性质和环境特性。
物质组成:土主要由固体颗粒(如砂粒、粘土粒等)、水和气体组成。
固体颗粒的大小、形状和分布决定了土的粒度特征和结构特性。
物理性质:土的物理性质包括密度、含水率、孔隙率、饱和度等。
这些性质对于理解土的力学行为和环境响应至关重要。
例如,密度反映了土体的紧实程度,含水率则影响了土的塑性和流动性。
力学性质:土的力学性质是指在外部荷载作用下土的应力-应变关系和强度特性。
土的力学性质受到其物质组成、物理状态和环境条件的影响。
第二章 土的本构关系
「Stable property」 versus 「Variable property*」 *) due to changes in : a) dry density; deposition condition; degree of saturation; & so on b) effective confining pressure and strong effects of recent stress-strain history
Plaxis有限元法
有限元法,是用有限个单元体 所构成的离散化结构,代替原 来的连续体结构,来分析应力 变形。这些单元体只在结点处 有力的联系。材料的应力应变关系可表示为:
{ } [ D]{ }
[ K ]{d } {R}
土体的应力-应变关系叫本构关 系,是非线性的。所以矩阵[D] 就不是常量,而随应力或应变 改变,由此推得的劲度矩阵[K] 也随应力或变形而变。
0
-2
4 15
Axial strain, 1 (%)
Fig. 4.22(a)
Volumetric strain, vol (%)
σ1 direction δ
90
o
Ticino Sand
第二节 弹性非线性模型
第三节 弹塑性模型
第四节 非线性有限元分析 第五节 土体非线性分析中的几个问题
(八)各向异性
地基土一般是水平向成层。水平和竖直方向土的结构存在差异, 应力应变关柔也不例外。原生各向异性。 应力状态不同,引起新的各向异性。 各向异性反映到本构关系式上,就是刚度矩阵[D]或柔度矩阵[C]为 非对称矩阵。
8 -16
45
o
Principal stress ratio, R=''3
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1
-
3
1
(
1
-
3)f
(
1
-
3) ult
1 O
双曲线应力-应变关系
• 切线弹性模量 Et 基于三轴排水试验建立起来的非线性模型,对于正常固 结粘性土、松砂及中密砂,具有应变硬化特征,偏应力 q=σ1-σ3与轴应变ε1之间的关系可以用双曲线进行拟合, 可表示为:
ζ1 ζ 3 ε1 a bε1
土的变形特性:
非线性和非弹性 塑性体积应变和剪胀性 塑性剪应变 硬化和软化 应力路径和应力历史对变形的影响 中主应力对变形的影响 高固结压力的影响 各向异性
在简单应力条件下,可以通过试验的方法确定土的 本构关系,但在复杂应力条件下试验就比较困难,因此, 根据简单应力条件下得到的结果,结合理论分析的方法 建立复杂应力条件下的本构关系,求得普遍形式的本构 方程。 弹性理论 弹塑性理论
R f ( ζ1 ζ 3 ) ζ3 2 1 K p 1 R S E a f L ( ζ ζ ) p 1 3 f ζ ζ3 a SL 1 ( ζ1 ζ 3 ) f
2
n
代入Et公式中后,得到:
ζ3 E t K E pa p a
第四章:土的本构理论
土的本构关系又称为本构模型,即描述土的应力- 应变-关系的数学表达式。土的σ -ε 关系很复杂,具有 非线性、粘弹塑性,同时强度发挥程度、应力历史以及 土的组成状态和结构等对其都有影响。 已建立的本构模型很多,重要的有以下几类: 弹性模型-----Winkler、弹性半空间、分层地基模型 非线性弹性模型-----D-C模型 弹塑性模型------剑桥模型 粘弹性模型 边界面模型 内蕴时间模型
偏应变张量
由此得到B-G形式的本构关系:
球应力 偏应力
球应变
ζ m Bε v 3 Bε m sij 2Ge ij
偏应变
或合并: ζij 3Bεm δij 2Geij Dijkl εkl 或 ζ Dε
其中 或
2 Dijkl B G δij δkl 2Gδik δ jl 3
将轴应变ε1、Ei、 (σ1-σ3)ult的表达式代入到切线模量公式 里,得到: 应力水平
ζ3 Et K E pa p a
n
破坏应力(σ1-σ3)f可根据M-C破坏准则确定:
( ζ1 ζ 3 ) f 2c cos 2ζ 3 sin 1 sin
ζy ζz ζx 1 εx ν hh νvh , γ xy η xy Eh Eh Ev Gh ζy ζz ζx 1 εy ν hh νvh , γ yz η yz Eh Eh Ev Gv ζy ζz ζx 1 εz ν hv ν hv , γ zx η zx Ev Eh Eh Gv
B 4G/ 3 B 2G/ 3 B 2G/ 3 0 0 0 B 4 G/ 3 B 2 G/ 3 0 0 0 B 4G/ 3 0 0 0 D 对 G 0 0 称 G 0 G
同样,独立的弹性常数只有2个,相互可以换算。
• 弹性常数 变形模量 E0:土的变形具有非线性特征,只有在一定 范围内才可以近似地应用线弹性模型,而且土的变形几 乎从开始就包含塑性变形,因此,土的弹性常数一般采 用变形模量。 压缩模量Es:变形模量E0是在无侧限条件下得到的, 压缩模量Es则是在有侧限条件下得到的,两者可以互换。
弹性模量E:车辆、振动荷载作用下,大部分变形是可 逆的弹性变形,采用压缩模量或变形模量式,计算结果 偏大,应采用弹性模量。
Gh
Eh E , νhv h νvh 2(1 νhh ) Ev
各向同性介质
• E-ν形式的本构关系 材料在各向同性条件下,本构方程即为广义虎克定律:
1 1 ζ x ν (ζ y ζ z ) , γ xy η xy E G 1 1 εy ζ y ν(ζz ζ x ) , γ yz η yz E G 1 1 εz ζ z ν(ζx ζ y ) , γ zx η zx E G εx
ζ m Bs εv 3 Bs εm sij 2Gs eij
σm 割线剪切模量 sij 切线剪切模量
切线体积模量
Bs Bs (εm )
Gs Gs (eij )
2eij
增量形式
dζ m 3 Bt dε m ds ij 2G t de ij
•次弹性模型 超弹性模型与Cauchy弹性模型都有与应力路径无关的假 定,应力-应变之间存在一一对应的关系。实际上,土的 变形与应力路径有关,次弹性模型放松要求,采用应力 或应变路径在增量意义上的最小弹性性质,本构方程为:
从中解出应力分量:
ζ x λev 2Gε x , η xy Gγ xy ζ ij λεv δij 2Gεij ζ y λev 2Gε y , η yz Gγ yz , ζ Dε ζ z λev 2Gε z , η zx Gγ zx
n
包含5个参数:KE、n、c、φ、Rf
2
R f (1 sin )(ζ1 ζ 3 ) 1 2 c cos 2 ζ sin 3
k、n为试验常数,正常固结粘性土,n=10,一般情况下 在0.2~1.0之间;k值随土类变化大,可能小于100,也可 能大于数千。
模型的一般说明
•Green超弹性模型 超弹性模型假定,材料在一定的应力或应变状态下,具 有唯一的能量密度函数Ω(σij)或W(εij)且二阶可微,本构 方程为:
ζ ij W Ω 或 εij εij ζ ij
将具有该性质的材料称超弹性材料。
增量型本构方程:
ζ ij
割线弹性张量
2W es dζ ij dεkl dεkl Dijkl dεkl εkl εij εkl εij 2Ω es dεij dζ kl dζ kl C ijkl dζ kl ζ kl ζ ij ζ kl
将ε1代入上式:
νt
G、F 、d为试验参数
G F lg (ζ 3 /pa ) d ( ζ1 ζ 3 ) 1 n K p ( ζ /p ) [ 1 R ( ζ ζ )( 1 sin )/( 2 c cos 2 ζ sin )] E a 3 a f 1 3 3
根据试验资料,Janbu提出Ei与围压σ3之间的关系:
ζ3 Ei ζ3 E i K E pa 或 lg lg K n lg E p p pa a a
n
为确定极限偏应力,引入破坏比Rf
Rf ( ζ1 ζ 3 ) f (ζ1 ζ 3 )ult
(Rf值一般为0.75~1.00)
4.1 线性弹性理论
线性弹性理论假定变形是可逆的,应力与应变一一对应。
横观同性介质(竖向与横向异性)
具有一个对称轴,如取z轴作为对称轴,与该轴垂直的xy 平面内各方向具有相同的弹性参数,再根据假定正应力 不引起剪应变,剪应力不引起正应力,一个剪应力分量 仅产生一个剪应变分量,在小应变假设下叠加原理,可 以得到本构方程:
λ 2G D
λ λ 2G 对
0 λ 0 0 0 νE λ λ 2G 0 0 0 (1 ν )(1 2ν ) , G 0 0 E G 2(1 ν ) 称 G 0 G λ 0 0
对于各向同性材料,独立的弹性常数只有2个,另外,剪 应变不引起体积应变。
a、b:试验常数
1 将上式改写: ζ1 ζ 3 a/ε1 b 1 1 ( ζ ζ ) 或 b 令ε1→∞, 1 3 ult b (ζ1 ζ 3 )ult
偏应力极限值
在常规三轴试验里,通常σ3为常数,则切线模量可定义 为:
dζ1 d (ζ1 ζ 3 ) 1 bε1 a Et 2 dε1 dε1 a bε1 (a bε1 ) (a bε1 )2
模型评价与应用
由于在一定的荷载范围内,土的应力-应变曲线近似直 线,用线弹性模型进行分析简单易行,有些情况下能得 到满足精度要求的结果。 广义虎克定律未能反映土的压硬性和剪胀性,前者表 示应力球张量对应变偏张量的影响,后者反映应力偏张 量对应变球张量的影响。
4.2 非线性弹性理论
非线性是土的基本变形特性之一,非线性弹性模型考虑 了土的非线性特性,但与应力历史与应力路径无关,加 载与卸载仍按同一路径进行,变形是可逆的。
根据定义:
νt
dε3 f dε1 (1 dε1 )2
令ε1=0,得到初始切线泊桑比: νi f 根据试验,初始泊桑比与围压有关,假定如下:
ζ3 ν i G F lg p a
G、F 为试验参数
可以得到切线泊桑比的表达式:
νt νi G F lg (ζ 3 /pa ) (1 dε1 )2 (1 dε1 )2
破坏时的偏应力(σ1-σ3)f,砂性土取试验曲线Δσ-ε1的峰值, 粘性土取ε1=15%~20%对应的(σ1-σ3)值。
1
-
3
(
砂性土
1
-
3)f
粘性土
1 O
破坏时的偏应力值
• 切线泊桑比 νt(应用较少) 根据试验,有建议轴应变与侧向应变之间的关系为:
ε3 ε1 f 1 dε1
f、d 为试验参数
超弹性模型适用于比例加载情况。 •Cauchy弹性模型 模型假定当前的应力或应变张量唯一地取决于当前的应 变或应力张量,与到达此应变或应力的历史无关。本构 方程为: