最新生存分析统计学
预后的统计学评价方法(生存分析)
生存分析中的基本概念(2)
❖ 截尾值 (censored value)
随访中由于某种原因未观察到病人的明确结局 (即终点事件), 无法得知该病人的确切生存时间,这些对象的观察值称为截尾值, 又称删失值
它提供的生存时间的信息不完全 常用符号“ + ”表示,如140+天
生存资料的数据特征
➢ 完全数据:已知事件发生的起始时间和结束时间,能获得 完整信息的数据。
➢ 不完全数据(截尾数据):只能获得事件发生的起始时间 或结束时间,得到的部分信息的数据。一般在数据后面加 “+”用以表示。
1 资料收集-随访
2 几个基本概念 3 生存分析的内容和基本方法
随访内容
➢ 明确开始随访的时间 ➢ 随访的结局和终止随访的时间 ➢ 记录影响生存时间的有关因素
多组间的生存率比较方法
(方法选择途径)
“Options”对话框 “Compare Factors”对话框
SPSS操作步骤(K-M法)
Analyze Survival Kaplan-Meier Time框 选入时间变量time Status框 选入结局变量outcome Define Event 按钮 Single value 框输入 1 Continue Optionns 按钮 勾选 Survivla tables 、Mean and median survial、
➢ 截尾原因无偏性; ➢ 生存时间尽可能精确。
Life table
Kaplan-Meiຫໍສະໝຸດ r共同点非参数分析方法、一般用于单因素分析
适用条件 大样本资料
大样本、小样本资料
分组生存资料
未分组生存资料
卫生统计学:生存分析
条件生存概率和生存率的计算
例:手术治疗100例食管癌患者,术后1、 2、3年的死亡数分别为10、20、30,若无 截尾数据,试求各年条件生存概率及逐年 生存率。 生存率计算方法:
直接法 概率乘法定理
由例子可看出,生存率与条件生存概 率不同。条件生存概率是单个时段的 结果,而生存率实质上是累积条件生 存概率(cumulative probability of survival),是多个时段的累积结果。 例如,3年生存率是第1年存活,第2年 也存活,第3年还存活的可能性。
42 42 45+
Survival Functions
1.0
.8
.6
.4
组别
乙疗法组
.2
乙疗法组-censored
甲疗法组
0.0
甲疗法组-censored
0
10
20
30
40
50
生存时间
三、中位生存期
中位生存期(median survival time) 又称半数生存期,表示恰好有50%的 个体尚存活的时间。 中位生存期越长,表示疾病的预后越
比较:对不同处理组生存率进行比较,如 比较不同疗法治疗脑瘤的生存率,以了解 哪种治疗方案较优。
影响因素分析:目的是为了探索和了解影 响生存时间长短的因素,或平衡某些因素 影响后,研究某个或某些因素对生存率的 影响。如为改善脑瘤病人的预后,应了解 影响病人预后的主要因素,包括病人的年 龄、性别、病程、肿瘤分期、治疗方案等。
量化值
X1
性别
女=0
男=1
X2 年龄(岁) <40=1
40-60=2
≥60=3
X3 组织学分类
统计学中的生存分析方法及其应用
统计学中的生存分析方法及其应用生存分析是一种重要的统计学方法,其主要目的是对研究对象的生存时间或者事件发生的风险进行评估和预测。
这种方法广泛运用于医学、生物学、环境科学、金融等领域,具有很高的实用价值。
一、生存分析的基本概念生存分析是一种描述和评估时间至某一事件发生或死亡的方法,其中时间被视作自变量。
在生存分析中,通常使用两个重要的概念:生存函数和风险函数。
生存函数表示在某个时间点的时候还存活下来的概率,而风险函数表示在某个时间点会发生某事件的概率。
二、生存分析的数据类型在生存分析中,通常有两种类型的数据:截尾数据和完整数据。
截尾数据是指在研究结束前,有些病例可能还没有出现感兴趣的事件,这些数据被称作右截尾数据。
而完整数据是指所有的病例都出现了感兴趣的事件。
三、生存分析中的统计模型生存分析中常用的模型包括Kaplan-Meier模型和Cox比例风险模型。
Kaplan-Meier模型是一种非参数模型,它可以处理截尾数据和完整数据的生存数据,通常用来估计生存函数。
而Cox比例风险模型是一种常见的半参数模型,它可以处理完整数据的生存数据,并用于比较不同因素对生存时间影响的大小。
四、生存分析的应用在医学科学中,生存分析主要应用于对患者生存的评估、疾病预后及治疗效果的评价,同时还可用于研究环境因素、遗传因素和生活方式等因素对于生存时间的影响。
在金融行业中,生存分析也被广泛应用于预测产品的寿命、经济周期等因素对投资回报的影响。
总的来说,生存分析方法在不同领域中具有广泛的应用前景和重要意义。
不论是医疗专业还是金融投资领域,通过生存分析可以更加清晰地了解生存时间和事件发生情况的规律性,更好地评估风险,为决策提供更加可靠的数据支持。
统计学中的生存分析技术
统计学中的生存分析技术生存分析是统计学中一个重要的技术,用于研究个体或群体在特定条件下的生存时间。
它可以帮助我们了解各种事件(如死亡、失业、疾病等)发生的概率和时间。
生存分析技术有多种方法,其中最常用的是卡普兰-迈尔曲线和考克斯比例风险模型。
1. 卡普兰-迈尔曲线卡普兰-迈尔曲线是一种常用的生存分析方法,它可以帮助我们估计在不同时间点上存活的概率。
该方法可以应用于各种涉及生存时间的研究,比如医学研究、流行病学研究和工程研究等。
卡普兰-迈尔曲线通过对事件发生时间进行排序,然后根据事件发生的时间和状态(生存与否)来计算每个时间点的生存概率。
通过绘制曲线,我们可以观察到在不同时间点上生存概率的变化情况。
2. 考克斯比例风险模型考克斯比例风险模型是另一种经常用于生存分析的方法。
它可以帮助我们分析个体或群体在不同条件下面临事件发生的风险。
考克斯比例风险模型基于风险比例的概念,即相对于某个基准组群,其他组群的风险大小。
它假定个体的风险与其特征和其他因素相关,通过对不同因素进行建模,我们可以估计每个因素对生存时间的影响。
3. 应用案例生存分析技术在许多领域都有广泛的应用。
以下是一些常见的案例:3.1 医学研究生存分析技术在医学研究中具有重要意义。
例如,研究某种疾病的患者生存时间可以帮助医生了解疾病的进展情况和预后。
通过对疾病特征和治疗方式等因素进行分析,可以为患者提供更好的治疗方案。
3.2 肿瘤学研究肿瘤学研究是生存分析技术的一个重要应用领域。
通过分析患者的生存时间和疾病特征,可以帮助医生评估肿瘤的危险程度,制定更合理的治疗方案。
3.3 经济学研究生存分析技术在经济学研究中也有广泛的应用。
例如,研究失业人群的存活时间可以帮助政府了解劳动力市场的状况,并采取相应的政策措施。
4. 总结生存分析技术是统计学中的一个重要工具,可以帮助我们分析个体或群体在不同条件下的生存时间。
卡普兰-迈尔曲线和考克斯比例风险模型是常用的分析方法,它们在医学研究、流行病学研究和经济学研究等领域有广泛的应用。
生存时间统计学方法
生存时间统计学方法
生存时间统计学方法主要包括以下几种:
1. 描述性分析:根据样本生存资料估计总体生存率及其他有关指标(如中位生存时间等)。
常采用Kaplan-Meier法(乘积极限法)进行分析。
对于频数表资料则采用寿命表法进行分析。
计算生存率需要考虑时间顺序。
2. 非参数检验:检验分组变量各水平所对应的生存曲线是否一致,对生存时间的分布没有要求,并且检验危险因素对生存时间的影响。
3. 半参数横型回归分析:在特定的假设之下,建立生存时间随多个危险因素变化的回归方程,这种方法的代表是Cox比例风险回归分析法。
4. 参数模型回归分析:已知生存时间服从特定的参数横型时,拟合相应的参数模型,更准确地分析确定变量之间的变化规律。
5. 典型相关分析:相关分析一般分析两个变量之间的关系,而典型相关分析是分析两组变量(如3个学术能力指标与5个在校成绩表现指标)之间相关性的一种统计分析方法。
以上信息仅供参考,具体使用哪种方法需要根据研究目的和数据类型来决定。
生存分析在统计学中的重要性与应用
生存分析在统计学中的重要性与应用生存分析是统计学中的一项重要分析方法,它被广泛应用于医学研究、生物学、经济学等领域。
生存分析旨在研究个体或群体的生存时间,并对其生存几率和生存函数进行估计与预测。
本文将介绍生存分析的基本概念与方法,并探讨其在统计学中的重要性与应用。
一、生存分析的基本概念生存分析的核心目标是对个体或群体的生存时间进行研究和分析。
其基本概念包括以下几个方面:1. 生存时间(Survival Time):指个体或群体从某一起始时间到达终止事件(如死亡、失效等)所经历的时间。
2. 生存状态(Survival Status):用来描述个体在某一时刻之前是否发生了终止事件,通常用1表示发生,用0表示未发生。
3. 生存函数(Survival Function):记为S(t),可用来描述个体在某一时刻之前生存下来的概率。
生存函数一般是一个递减函数,在开始时为1,随着时间的推移逐渐减小。
4. 风险函数(Hazard Function):记为h(t),用来描述在给定时刻t 生存下来的个体在下一时刻会发生终止事件的概率。
风险函数的大小与时间t有关,通常会随着时间的推移逐渐增大。
二、生存分析的方法与技巧生存分析采用的方法包括Kaplan-Meier法、Cox回归模型等。
下面将介绍这些方法的基本原理与应用技巧:1. Kaplan-Meier法(K-M法):该方法用于估计生存函数,相比其他方法更适合用于分析数据中存在截断或缺失的情况。
K-M法将生存时间按照不同的时间点进行分组,并计算每个时间点的生存几率。
2. Cox回归模型:该模型用于研究生存时间与多个危险因素之间的关系。
通过对危险因素的调整,可以得到更准确的生存预测。
Cox回归模型广泛应用于生物医学研究中,如癌症预后、药物疗效评价等领域。
三、生存分析在统计学中的重要性生存分析在统计学中具有重要的意义,主要体现在以下几个方面:1. 生存率研究:生存分析可以用来研究各种事件的生存率,如疾病的治疗效果、产品的使用寿命、经济市场的生存周期等。
生存分析在统计学中的应用
生存分析在统计学中的应用生存分析是统计学中的一个重要分析方法,用于研究个体在特定时间段内存活或发生某一事件的概率。
它被广泛应用于医学、生物学、经济学等领域,帮助研究人员了解个体的生存情况和预测事件发生的可能性。
本文将介绍生存分析的基本概念、常用的统计模型以及其在实际应用中的案例。
一、生存分析的基本概念生存分析关注的是时间发生的概率,即个体从某一起始时间点到达终止时间点之间是否发生了感兴趣的事件,比如生存、死亡、失业等。
在生存分析中,有几个重要的概念需要了解:1. 生存时间(Survival time):个体从起始时间至终止时间的时间间隔。
2. 生存函数(Survival function):描述了个体在某一时刻仍然存活下来的概率。
3. 风险函数(Hazard function):描述了在给定时间下,个体在下一时间点发生事件的概率。
4. 生存率(Survival rate):个体在某一时刻存活下来的概率。
这些概念为后续的统计模型提供了基础。
二、常用的统计模型生存分析中常用的统计模型有Kaplan-Meier方法、Cox回归模型和Weibull分布等。
1. Kaplan-Meier方法:适用于研究单一因素对个体生存时间的影响。
通过计算生存函数来估计群体的生存概率。
2. Cox回归模型:可以考虑多个因素对生存时间的影响,并估计各个因素的风险比。
它是一种半参数模型,常用于生存分析中的预测与推断。
3. Weibull分布:常用于描述时间的分布情况,包括生存时间和失效时间。
它的概率密度函数可以适应不同的生存曲线形状,是生存分析中常用的分布模型之一。
三、生存分析的实际应用案例1. 医学领域:生存分析在医学研究中的应用非常广泛,比如针对某种疾病的治疗效果进行评估。
研究人员可以通过生存曲线比较不同治疗方案的优劣,并利用Cox回归模型考虑其他因素的影响。
2. 经济学领域:生存分析被用于评估企业的生命周期、预测市场存货销量等。
统计师如何进行生存分析
统计师如何进行生存分析生存分析是统计学中一种重要的分析方法,用于研究个体或团体在一定时间内的生存情况及相关因素的影响。
对于统计师而言,学习和掌握生存分析方法是非常重要的,因为它能够帮助他们解决许多实际问题和提供有益的统计结论。
本文将介绍统计师如何进行生存分析的步骤和方法,并探讨其在实践中的应用。
一、数据准备要进行生存分析,首先需要准备相关的数据。
数据通常包括个体的生存时间(或称事件时间)和该事件是否发生(或称事件发生状态)。
生存时间可以是任何类型的时间变量,如生存时间、失业时间、生病时间等。
事件发生状态表示事件是否发生,通常用0或1表示,其中0表示事件未发生,1表示事件发生。
二、绘制生存曲线生存曲线是生存分析的核心工具,用于描述个体或团体在不同时间点的生存概率。
绘制生存曲线可以通过Kaplan-Meier方法实现。
该方法根据观察到的生存时间和事件发生状态,计算每个时间点的生存概率,并绘制曲线。
生存曲线可以直观地显示个体或团体的生存状态,揭示其生存变化趋势。
三、计算生存时间指标生存分析不仅要绘制生存曲线,还需要计算一些生存时间指标来衡量个体或团体的生存情况。
其中常用的生存时间指标包括中位生存时间、平均生存时间和生存率。
中位生存时间表示一半个体或团体的生存时间,平均生存时间表示所有个体或团体的平均生存时间,而生存率表示个体或团体在指定时间点存活的概率。
四、进行生存回归分析生存回归分析是生存分析的扩展方法,用于研究生存时间受到哪些因素的影响。
常见的生存回归模型有Cox比例风险模型等。
生存回归分析可以通过估计回归系数来判断不同因素对生存时间的影响程度,并计算风险比值(Hazard Ratio)来比较不同因素之间的差异。
五、生存分析的应用生存分析在医学研究、生物学、经济学等领域都有广泛的应用。
在医学研究中,生存分析可以用于评估药物的疗效、预测疾病进展等;在经济学中,生存分析可以用于分析产品寿命周期、顾客生命周期价值等。
统计学中的生存分析
统计学中的生存分析统计学是一门研究数据收集、分析和解释的学科,它在许多领域都有着广泛的应用。
其中,生存分析是统计学中的一项重要内容,专注于研究和预测个体在特定时间内生存或发生某个事件的概率。
本文将介绍生存分析的基本概念、应用领域以及常用的生存分析方法。
一、生存分析的基本概念生存分析,又称事件分析、时间数据分析或生命表分析,是一种用于研究个体在某个时间段内生存或发生特定事件的概率的统计方法。
在生存分析中,个体可以是人、动物、物体或其他单位,而事件可以是死亡、失业、疾病复发等。
生存分析通过观察一组个体在不同时间点上的生存状态,从而推断他们发生特定事件的可能性。
生存时间(Survival time)是生存分析中的重要概念,它指的是个体从某一特定起始时间到达结束时间(观测终点)的时间间隔。
有时,个体在观测终点前可能已经发生了感兴趣的事件,这种情况下,我们称之为“截尾”(Censored)观测,即观测的结束并非由于事件发生,而是由于某种原因无法继续观测。
二、生存分析的应用领域生存分析在医学、生物学、经济学、工程学等许多领域都有着广泛的应用。
在医学领域,生存分析可以用于疾病治疗的疗效评估,例如研究一种新药物对患者的生存时间是否有显著延长作用。
通过生存分析,我们可以比较治疗组和对照组的生存曲线,评估治疗效果。
在生物学研究中,生存分析可以用于评估不同基因型对个体寿命的影响,以及环境因素对生物生存的影响。
生存分析方法可以帮助研究人员了解遗传和环境因素对个体生存能力的作用机制。
在经济学领域,生存分析可以用于客户流失分析、产品寿命分析、市场竞争分析等。
通过生存分析,我们可以估计产品的寿命分布,预测客户的生命周期价值,从而制定合理的经营策略。
在工程学中,生存分析可以用于评估设备的可靠性和寿命,以及故障检测和预测。
通过生存分析,工程师可以确定设备的有效寿命,并及时采取维修或更换措施,以确保设备的正常运行。
三、常用的生存分析方法生存分析涉及到许多复杂的统计方法,下面介绍其中两种常用的生存分析方法:卡普兰-迈尔估计和考克斯模型。
卫生统计学第十四章生存分析
做对人数:0
所占比例: 0%
题号: 9 本题分数: 4.2
以死亡为终止事件的随访资料分析中,应选用的指标是
A. 发病率
B. 患病率
C. 出生率
D. 生存率
E. 死亡率
正确答案: D
答案解析:以死亡为终止事件的随访资料分析中,应选用的指标是生存率。
一、题型:A1
题号: 1 本题分数: 4.2
无截尾数据时,直接法计算5年生存率公式中的分母是
A. 所有观察对象数
B. 所有活满5年的对象数
C. 所有5年内死亡的对象数
D. 5年内死于本病的对象数
E. 5年内死于本病及活满5年的对象数
正确答案: A
A B C D E
正确答案: B
答案解析:生存时间按在研究期内是否观察到终点事件将资料分为完全数据和截尾数据。完全数据是观察到终点事件出现,而截尾数据则没有观察到终点事件。研究开始时间是1995年1月,终点事件是观察对象发现胃癌,时间单位是月,研究终止时间是2000年1月。1题设观察对象在研究时间内观察到终点事件,它是完全数据。2题设观察对象在研究时间内并未观察到终点事件,它是截尾数据。3题设观察对象对象终止观察时并未观察到终点事件,它是截尾数据。4题设观察对象在研究时间内观察到终点事件,它是完全数据。
答案:
答案解析:直接法计算6年生存率公式的分母是观察满6年的人数,包括6年内死于本病及活满6年的观察对象数。
做答人数:2
做对人数:0
所占比例: 0%
题号: 6 本题分数: 4.2
生存率的标准误
A. 是反映平均水平的指标
B. 可用生存率曲线来比较
经济统计学中的生存分析技术
经济统计学中的生存分析技术随着经济的发展和社会的进步,经济统计学在解析经济现象和预测经济走势方面发挥了重要作用。
而在经济统计学中,生存分析技术是一种重要的分析工具,用于研究个体或群体的生存时间和生存概率。
本文将介绍生存分析技术的基本概念、应用领域以及其在经济统计学中的重要性。
生存分析技术是一种统计方法,用于分析个体或群体在某一特定时间段内生存的概率。
它的基本概念是“生存函数”和“风险函数”。
生存函数是指个体或群体在经过一定时间后仍然存活的概率,而风险函数则是指个体或群体在某一时间点出现失败(死亡、失业等)的概率。
通过分析生存函数和风险函数,我们可以了解个体或群体的生存状况,预测未来的生存概率,并制定相应的政策和措施。
生存分析技术在很多领域都有广泛的应用,例如医学、金融、社会科学等。
在医学领域,生存分析技术被用于研究疾病的发展和治疗效果。
通过分析患者的生存函数和风险函数,医生可以评估治疗的效果,并制定个性化的治疗方案。
在金融领域,生存分析技术被用于评估贷款的违约风险和保险的理赔概率。
通过分析客户的生存函数和风险函数,金融机构可以更准确地评估风险,制定相应的风险管理策略。
在社会科学领域,生存分析技术被用于研究人口的生命周期和职业生涯。
通过分析个体的生存函数和风险函数,研究者可以了解人口的生育率、死亡率以及就业率等重要指标。
在经济统计学中,生存分析技术的重要性不言而喻。
经济统计学是研究经济现象和经济规律的学科,而生存分析技术可以帮助我们更好地理解经济现象和预测经济走势。
例如,在分析企业的生存状况时,我们可以通过分析企业的生存函数和风险函数,评估企业的生存概率和破产风险,为政府和企业制定相应的政策和策略。
在预测经济周期时,我们可以通过分析经济的生存函数和风险函数,预测经济的增长率和衰退的可能性,为投资者和政策制定者提供参考。
此外,生存分析技术还可以帮助我们研究经济的不确定性和风险。
经济发展过程中存在着各种不确定性和风险,例如经济政策的变化、市场价格的波动等。
医学统计学题库第十六章 生存分析(答案)
第十六章 生存分析(答案)一、选择题1、D2、E3、C4、B5、D6、E 二、问答题1、 (1)在生存资料中,截尾值指尚未观察到研究对象出现反应时,即由于某种原因停止了随访,这时记录到的时间信息是不完整的,这种生存资料称为截尾值。
(2)出现截尾值的原因主要有以下3种情况:①失访;②退出;③终止。
2、Cox 回归模型中,偏回归系数i β的意义是,当其它协变量不变时,i X 每变化一个单位,相对危险度的自然对数变化i β个单位。
3、Cox 回归模型与logistic 回归模型具有相似之处,即在估计出回归系数后可以得到协变量对应的相对危险度。
但Cox 回归模型不仅考虑了事件发生的结果,同时也利用了生存时间提供的信息,而logistic 回归模型是一种概率模型,只考虑了事件是否发生,而不考虑事件发生所需要的时间长短。
三、计算题:1、(1)Cox 回归模型参数估计和假设检验结果见下表表 cox 回归模型计算及检验结果 (621.332=χ, 000.0=P )变量 偏回归系数 偏回归系数标准误 Wald P 值 OR 值 OR 值95%可信区间 下限 上限 x1 0.001 0.002 0.360 0.548 1.001 0.997 1.005 x2 0.454 0.206 4.846 0.028 1.574 1.051 2.358 x3 -1.8860.37725.0500.0000.1520.072 0.317由上表可见,在05.0=α检验水准上,所建立的Cox 回归模型成立(621.332=χ,000.0=P );入院时白细胞数(1x )的偏回归系数无统计学意义,淋巴结浸润度(2x )和缓解出院后的巩固治疗(3x )的偏回归系数均有统计学意义。
Cox 回归模型为:[])886.1454.0001.0ex p()(),(3210x x x t h X t h i -+=。
以上结果可解释为:淋巴结浸润度(2x )和缓解出院后的巩固治疗(3x )均对急性淋巴细胞性白血病病人的生存时间产生影响。
统计学中的生存分析方法
统计学中的生存分析方法统计学是一门研究数据收集、分析和解释的学科,而生存分析是统计学中的一种重要方法。
生存分析是研究个体从某一特定事件(如诊断、治疗、手术等)发生到另一特定事件(如死亡、复发、康复等)的时间间隔的方法。
它可以帮助我们了解和预测事件发生的概率和时间。
一、生存分析的基本概念生存分析的基本概念包括生存时间、生存函数和生存率。
生存时间是指从特定事件发生到另一特定事件发生的时间间隔,可以是天、月、年等。
生存函数是描述个体在给定时间点存活下来的概率,通常用Kaplan-Meier曲线表示。
生存率是指在给定时间点存活下来的比例,可以通过生存函数计算得出。
二、生存分析的方法1. Kaplan-Meier方法Kaplan-Meier方法是最常用的生存分析方法之一。
它基于观测数据估计生存函数,考虑到了个体在不同时间点的观测情况。
Kaplan-Meier曲线可以用来比较不同组别之间的生存情况,例如治疗组和对照组之间的生存率差异。
2. Cox比例风险模型Cox比例风险模型是一种常用的多变量生存分析方法。
它可以同时考虑多个危险因素对生存时间的影响,并估计各个因素的风险比。
Cox模型的优势在于可以控制其他危险因素的影响,从而更准确地评估某个因素对生存时间的影响。
3. Log-rank检验Log-rank检验是用来比较两个或多个组别之间生存曲线差异的统计方法。
它基于Kaplan-Meier曲线,通过计算观测到的死亡事件数与期望死亡事件数的比值来判断组别之间的差异是否显著。
Log-rank检验广泛应用于生物医学研究中,帮助研究人员评估不同治疗方法或风险因素对生存时间的影响。
三、生存分析的应用领域生存分析方法在多个领域有广泛的应用,例如医学、流行病学、经济学等。
在医学领域,生存分析可以用来评估不同治疗方法对患者存活时间的影响,帮助医生制定更合理的治疗方案。
在流行病学研究中,生存分析可以用来评估某种疾病的发病率和死亡率,从而帮助制定预防和控制策略。
统计学中的生存分析和可靠性理论
统计学中的生存分析和可靠性理论生存分析和可靠性理论是统计学中的两个重要概念,它们在研究事件发生的概率和持续时间上起着关键作用。
本文将介绍生存分析和可靠性理论的基本概念、应用领域以及相关统计方法,以及它们在实际问题中的应用。
一、生存分析生存分析是一种用来研究事件发生概率和持续时间的统计方法。
该方法主要用于分析个体在给定时间内发生某一事件的概率,例如疾病的发病率、产品的失效率等。
生存分析通常涉及到“生存函数”(Survival Function)和“风险函数”(Hazard Function)的计算和分析。
生存函数描述了个体在给定时间范围内存活下来的概率。
它通常用累积分布函数(Cumulative Distribution Function)来表示,记作S(t),其中t表示给定的时间点。
生存函数的数值范围为0到1,一般来说,随着时间的推移,生存函数的数值会逐渐减小。
风险函数描述了在给定时间点发生事件的概率。
它表示在给定时间点t发生事件的概率密度函数,记作h(t)。
如果事件的发生概率随着时间的推移而递增,那么风险函数的数值也会逐渐增加。
生存分析常用的统计方法包括“Kapla n-Meier生存估计法”(Kaplan-Meier Estimator)和“Cox比例风险模型”(Cox Proportional Hazards Model)。
Kaplan-Meier生存估计法用于估计给定时间范围内生存函数的数值,可以考虑到“截尾数据”(Censored Data)的影响。
Cox比例风险模型则用于研究因素对生存时间的影响,可以考虑到多个协变量的影响。
二、可靠性理论可靠性理论是一种用来研究产品、系统或者设备失效概率和寿命分布的统计方法。
该方法主要关注于评估和优化系统的可靠性,以提供合理的决策依据。
在可靠性理论中,通常使用“可靠度函数”(Reliability Function)和“失效率函数”(Failure Rate Function)来描述产品或系统的性能。
医学统计学-生存分析
A meta-analysis is a two-stage process. 提取单个研究的数据,并估计其进行点估计和可信区间; 决定是否合适将结果汇总,若是,计算其汇总值。
Meta分析不仅是简单将单个研究的数据累加
Meta分析
系统综述的特征:最佳证据
*
规范的临床问题
1
全面、完整的资料
2
对原始研究的质量评价,纳入合格的研究
结果解读(2)
结果解读:生存函数
Gehan比分检验:其基本思想是,在假定无效假设(两总体生存曲线相同)成立的前提下,则两样本来自分布相同的总体,两样本的Gehan比分合计V值应为0,若V值偏离0太远,则无效假设成立的可能性就很小。
对数秩检验:其基本思想是,在假定无效假设(两总体生存曲线相同)成立的前提下,可根据不同日期两种处理的期初人数和死亡人数,计算各种处理在各个时期的理论死亡数。若无效假设成立,则实际死亡数与理论死亡数不会相差太大。
检索方法:常未说明 有明确检索策略
文献选择:有潜在偏倚 有明确入选/排除标准
文献评价:方法不统一 有严格评价方法
结果合成:定性 定量/定性
结论推断:有时遵循研究依据 大多遵循研究依据
生存分析的主要内容:
1
描述生存过程(估计生存函数)
2
比较生存过程(比较生存函数)
3
影响生存时间的因素分析
4
SPSS中的菜单位置
第一章
生存率的估计方法有参数法和非参数法。常用非参数法,非参数法主要有二个,即乘积极限法与寿命表法。
01
寿命表法适用于观察例数较多而分组的资料,不同的分组寿命表法的计算结果亦会不同,当分组资料中每一个分组区间中最多只有 1个观察值时,寿命表法的计算结果与乘积极限法完全相同。
生存分析入门及其应用领域
生存分析入门及其应用领域生存分析,是一种用于研究事件发生与时间关系的统计分析方法。
生存分析不仅仅被应用在医学领域,也被广泛应用于其他领域,如生态学、经济学、社会学等。
本文将介绍生存分析的基本概念,常用方法以及在不同领域的应用。
什么是生存分析生存分析是一种用来评估个体从某一事件发生到达另一事件(如死亡、疾病复发等)之间的时间长度的统计方法。
生存分析的主要目的是根据时间数据,估计个体发生某一事件的概率或到达某一事件的时间。
生存分析常用于研究人群中疾病发生的风险因素,评估医疗干预措施的效果,预测患者的生存时间等。
常用的生存分析方法生存分析的常用方法包括Kaplan-Meier曲线、Cox比例风险模型等。
Kaplan-Meier曲线是生存分析中最常用的方法之一,用于估计在不同时间点上生存率的方法。
通过Kaplan-Meier曲线,可以直观地展示在不同时间点上患者的存活率。
Cox比例风险模型是一种用来评估不同变量对生存时间影响的方法。
通过该模型,可以计算出不同因素对生存时间的风险比,从而评估各种危险因素的影响程度。
生存分析在不同领域的应用医学领域在医学领域,生存分析被广泛应用于评估疾病的生存率、比较不同治疗方法的效果、预测患者的生存时间等。
例如,在肿瘤研究中,生存分析可以帮助医生评估不同治疗方案对患者生存时间的影响,以制定更有效的治疗方案。
生态学领域生存分析在生态学领域也有着重要的应用,用于研究动植物的寿命、种群的生存率以及环境因素对生物存活的影响。
通过生存分析,可以更好地理解生态系统中各种生物的生存策略和适应能力。
社会学领域在社会学领域,生存分析可以帮助研究人员分析人群中特定事件的发生率及其影响因素。
例如,在犯罪学领域,生存分析可以用来评估犯罪行为的发生率,以及不同因素对犯罪行为的影响程度。
生存分析作为一种重要的统计分析方法,不仅在医学领域有着广泛的应用,也在生态学、经济学、社会学等领域发挥着重要作用。
医学统计学生存分析
pi
(8) 0.7594 0.7324 0.7548 0.8344 0.8298 0.9227 0.9463 0.9845 0.9496 0.9612
生存率
Sˆ(ti )
(9) 0.7594 0.7594×0.7324=0.5562 0.5562×0.7548=0.4198 0.4198×0.8344=0.3503 0.3503×0.8298=0.2907 0.2907×0.9227=0.2682 0.2682×0.9463=0.2538 0.2538×0.9845=0.2499 0.2499×0.9496=0.2373 0.2373×0.9612=0.2281
0.4286×0.8333=0.3571 0.1281
0.3571×1.0000=0.3571 0.1281
0.3571×0.7500=0.2678 0.1233
0.2678×1.0000=0.2678 0.1233
0.2678×0.5000=0.1339 0.1130
0.1339×1.0000=0.1339 0.1130
25
12
157 151.0
5 4~
20
5
120 117.5
6 5~
7
9
95
90.5
7 6~
4
9
79
74.5
8 7~
1
3
66
64.5
9 8~
3
5
62
59.5
10 9~10
2
5
54 51.5
注:生存时间长于 10 年者 47 例。
qi
(7) 90/374.0=0.2406 76/284.0=0.2676 51/208.0=0.2452 25/151.0=0.1656 20/117.5=0.1702 7/90.5=0.0773 4/74.5=0.0537 1/64.5=0.0155 3/59.5=0.0504 2/51.5=0.0388