操纵稳定性

合集下载

汽车的操纵稳定性详解

汽车的操纵稳定性详解
轮胎滑移率:指汽车在制动时,车轮抱死程度。 轮胎滑转率:指汽车驱动时,车轮滑转程度。 轮胎滑动率:轮胎滑移率和轮胎滑转率。
转向盘中心区操纵稳定性:指转向盘小转角、低频正弦输入下汽车高 速行驶时的操纵稳定性,它代表了汽车经常行驶工况下的操纵稳定性。
机动性:代表汽车机动灵活性的性能,最小转弯半径是评价汽车机动 性的重要指标。
直线行驶性:侧风稳定性与路面不平度稳定性是汽车直线行驶时在外 界干扰输入下的时域响应。
极限行驶性能:指汽车在处于正常行驶与异常危险运动之间的运动状 态下的特性,它表明了汽车安全行驶的极限性能。
汽车在附着系数较大的路面上作小转向运动,认为是线性区评价; 汽车在附着系数较小的路面作大转向运动,认为是非线性区评价。
5.稳态评价和动态评价
稳态:指没有外界扰动、车速恒定、转向盘上的指令固定不变,汽 车的输出运动达到稳定平衡的状态。
稳态评价:汽车达到稳态状态的评价。 动态评价:汽车从接收转向指令或扰动指令开始到达到稳态状态之 前的运动评价。 稳态不存在操纵稳定性问题,所有的操纵稳定性问题都是动态反应 问题。
第2页
汽车操纵稳定性
定义:指在驾驶人不感觉过分紧张、疲劳的条件下,汽车能按照驾 驶人通过转向系及转向车轮给定的方向(直线或转弯)行驶;且当受 到外界干扰(路不平、侧风、货物或乘客偏载)时,汽车能抵抗干扰 而保持稳定行驶的性能。
操纵性:即汽车能够确切地响应驾驶人通过转向盘给定的转向指令 行驶的能力,反映了汽车与驾驶人配合的程度。
2021/1/30
5.1.2 汽车操纵稳定性的基本内容和评价指标
➢ 汽车操纵稳定性需要采用较多的物理量从多个方面进行 评价,见表书本中的5-1。
转向盘角阶跃输入下的稳态响应和瞬态响应:是表征汽车操纵稳定性 的转向盘角位移输入下的时域响应,是汽车操纵稳定性的基础特性。

操纵稳定性

操纵稳定性

增大不平路面对转向盘的冲击。为了减小反冲,有时故意追求较低的转向器的逆效率,这种做法要以减小路感为代价。 (2) 稳态回转 影响稳态回转的因素:质量、轴距、重心、侧偏刚度、悬架等 D 转向总回正力矩主要由以下两部分组成: 一、来自轮胎的转弯侧向力 Y1 绕主销轴的回正力矩 M1 为: M1= Y1×(轮胎拖距 e+主销后倾拖距 l) Y1—— 车辆转弯时,轮胎与路面的摩擦力 e—— 车辆转弯时,接地部轮胎踏面中心线如图 1 变形,使变形硬要恢复到原来状态的橡胶的反作用力就是转弯侧向力 Y1。根据 接地面形状可推定转弯侧向力的着力点,处于从轮胎中心稍偏后的位置。此位置到轮胎中心的距离就是轮胎拖距。 l—— 当主销具有后倾角γ 时,主销轴线与路面交点 a 将位于车轮与路面接触点 b 的前面,如图 2 所示。当汽车直线行驶,若转向 轮偶然受到外力作用而稍有偏转,将使汽车的行驶方向偏离。这时由于汽车本身的离心力作用,在车轮与路面接触点 b 处, 路面对车轮作用着一个转弯侧向力 Y1。Y1 对车轮形成绕主销轴线作用的力矩 Y1l,其方向与车轮偏转方向相反,在此力矩 作用下,将使车轮恢复到原来中间位置,从而保证汽车能稳定的直线行驶。l 为该力矩的力臂。
正力矩。对这种回正力矩可分析如下:设车轮转过转角δ ,轮胎印迹中心由 A 点移至 B 点,横向水平移动量为: △y=ρ (1-cosδ ) 设胎面的各向曲率相同,近似看成是以 A 点为圆心的球面,则车轮的升高量为: △h=△y sinβ '=ρ (1-cosδ )sinβ ' 顾及ρ =Dy cosβ ',位能的增量为 △u=Q △h= Q D(1-cosδ ) sinβ 'cosβ ' 其中 Q 为轮荷。回正力矩是位能对δ 的导数,故得: TA= d(△u) QD = 2 sin2β 'sinδ dδ

汽车操纵稳定性概述

汽车操纵稳定性概述

汽车操纵稳定性概述汽车的操纵稳定性是指车辆在加速、刹车、转弯等操作时,保持良好的稳定性和可控性的能力。

这一特性对驾驶员来说非常重要,因为它直接关系到行车的安全和舒适性。

汽车的操纵稳定性受到多个因素的影响,包括悬挂系统、制动系统、转向系统等。

本文将从这些方面对汽车操纵稳定性进行概述。

首先,悬挂系统对汽车的操纵稳定性起到了关键作用。

悬挂系统主要由弹簧、减振器和稳定杆等组成。

弹簧和减振器能够减缓车辆在通过不平路面时产生的颠簸感,提高悬挂系统的工作效率。

稳定杆可以减少车辆转向时的侧倾,提高车辆的稳定性。

因此,一个良好的悬挂系统对车辆的操纵稳定性起到了至关重要的作用。

其次,制动系统对操纵稳定性也有很大的影响。

制动系统主要由刹车盘、刹车片和刹车油等构成。

当驾驶员需要紧急刹车时,一个良好的制动系统可以迅速减速并能够保持车辆的稳定性。

如果制动系统工作不正常,可能会导致车辆在刹车时出现抱死现象,从而失去了对车辆的控制。

在操纵稳定性方面,转向系统也起到了重要的作用。

转向系统主要由转向机构、转向齿轮和转向轴等构成。

一个良好的转向系统可以提供准确而稳定的转向操作,驾驶员可以更容易地控制车辆的前进方向。

在紧急转弯时,一个稳定的转向系统可以避免车辆失控或侧翻的风险。

此外,轮胎也对汽车的操纵稳定性起到了至关重要的作用。

好的轮胎可以提供良好的抓地力和操控性能,这对车辆的操纵稳定性起到了重要作用。

如果轮胎的磨损过度或者胎压不正确,都可能导致车辆在行驶过程中失去稳定性。

除了这些因素之外,车辆的重心位置也会对操纵稳定性产生影响。

低重心的车辆相对于高重心的车辆在行驶中更加稳定。

因此,现代的汽车设计会尽量将重心降低,以提高车辆的操纵稳定性。

总结起来,汽车的操纵稳定性是一个复杂的系统工程,受到多个因素的影响。

悬挂系统、制动系统、转向系统以及轮胎等都对汽车的操纵稳定性起到了至关重要的作用。

为了提高操纵稳定性,驾驶员应该保持良好的驾驶技巧,同时定期检查和维护车辆的关键部件,以确保其正常工作。

汽车操纵稳定性

汽车操纵稳定性

§5-1 概述
操纵稳定性不好的具体表现
“飘”—汽车自己改变方向。升力或转向系、轮胎、 悬 架 等问题。 “反应迟钝”—转向反映慢。传动比太大。 “晃”—左右摇摆,行驶方向难于稳定。
“丧失路感”—操纵稳定性不好的汽车在高速或急剧转
向 时会丧失路感,导致驾驶员判断的困难。 “失控”—某些工况下汽车不能控制方向。制动时无法
第五章 汽车的操纵稳定性
概述 汽车行驶稳定性 轮胎侧偏特性 汽车操纵特性 汽车转向轮振动与稳定
§5-1 概述
一、汽车操纵稳定性定义 汽车操纵稳定性是指汽车在行驶过程中,能遵循驾驶员给定的行驶方向 行驶,且受各种外部干扰尚能保持稳定行驶的能力。 汽车的操纵稳定性包括操纵性和稳定性。汽车操纵性是指汽车能够确切 地响应驾驶者转向指令的能力;而稳定性是指汽车抵抗外界干扰而保持稳定
四、汽车操纵稳定性评价方法 汽车试验的两种评价方法 客观评价法
客观评价法是通过仪器测出表征性能的物理量来评价操纵稳定性的
方法,它能通过分析求出其与汽车结构参数间的关系。
主观评价法
主观评价法就是感觉评价。考虑到了人的感觉,能发现仪器不能测 试出的现象,是操纵稳定性的最终评价方法,但很难给出定量评价 数据。
行驶的能力,或汽车受到外界扰动后恢复原来运动状态的能力。通常,汽车
操纵性和稳定性两者关系密切,若汽车操纵性变坏,则汽车容易产生侧滑、 翻车而失去稳定性;而汽车稳定性变坏,则汽车又难以操纵直接影响操纵 性。实际上两者难以截然分开,因此,常统称为汽车的操纵稳定性。 汽车的操纵稳定性不仅影响汽车驾驶的操纵方便程度,而且还决定着高 速汽车的行车安全,所以人们称汽车操纵稳定性是高速车辆的生命线。随着 汽车保有量的增加和汽车车速的提高,汽车的操纵稳定性越来越重要,已成 为现代汽车的主要使用性能之一。

汽车操纵稳定性标准

汽车操纵稳定性标准

汽车操纵稳定性标准汽车操纵稳定性是指汽车在行驶过程中对驾驶员操纵指令的响应和车辆稳定性的表现。

操纵稳定性标准是衡量汽车安全性能的重要指标之一,对于保障驾驶员和乘客的安全具有重要意义。

首先,汽车操纵稳定性标准受到多种因素的影响。

其中,车辆的悬挂系统、转向系统、制动系统、轮胎和车辆质量等都会对操纵稳定性产生影响。

悬挂系统的设计和调校直接影响了车辆在转弯时的稳定性和平顺性,转向系统的精准度和灵敏度会影响驾驶员对车辆方向的控制,而制动系统的灵敏度和制动距离则直接关系到车辆的操纵安全性。

此外,轮胎的抓地力和车辆质量的分布也会对操纵稳定性产生重要影响。

其次,为了保障汽车操纵稳定性的标准,制定相应的技术规范和测试标准是非常必要的。

在技术规范方面,需要对汽车的悬挂系统、转向系统、制动系统等进行详细的设计要求和性能指标,确保其能够满足操纵稳定性的要求。

在测试标准方面,需要建立相应的测试方法和测试流程,对车辆在不同路况和操纵条件下的操纵稳定性进行全面的测试评估。

只有通过严格的技术规范和测试标准,才能够确保汽车的操纵稳定性达到标准要求。

此外,对于汽车操纵稳定性标准的监督和管理也是非常重要的。

相关部门需要建立健全的监督体系,对汽车制造企业进行定期的检查和评估,确保其生产的汽车能够符合操纵稳定性标准。

同时,还需要建立消费者投诉和举报机制,让消费者能够及时反映汽车操纵稳定性方面的问题,从而促使企业改进产品质量,保障消费者的安全。

总之,汽车操纵稳定性标准是保障汽车安全性能的重要指标,需要综合考虑车辆的悬挂系统、转向系统、制动系统、轮胎和车辆质量等多个因素,制定相应的技术规范和测试标准,并建立健全的监督和管理体系。

只有这样,才能够确保汽车在行驶过程中具有良好的操纵稳定性,保障驾驶员和乘客的安全。

汽车操纵稳定性

汽车操纵稳定性

减震器的影响:减震器的作用是当钢板弹簧变形
时,能迅速消减其震动,使汽车平稳行驶。重影响操纵稳定性。 前轴和车架变形:由于车架是汽车的基础,他的 变形会直接影响各部件的连接及配合,从而直接 影响操纵稳定性。
转向系的影响
行驶系
轮胎
悬架和减震器
前轴和车架变形
轮胎的影响:轮胎是影响汽车操纵稳定性的一个
重要因素,增大轮胎的能力,特别是后胎的载荷 能力,例如加大轮胎的尺寸,合适的胎压,会改 善汽车的操纵操纵稳定性。 悬架的影响:悬架的作用是把车架与汽车前后桥 连接在一起,并使车轮在行驶中所承受的冲击力 不直接到车架,以免引起车身的剧烈震动而加速 零件的损坏。
制动系的影响
制动系
制动间隙
前后轮抱死次序
制动间隙:制动间隙不合适,会使汽车制动是发
生跑偏,汽车向制动间隙小的一侧跑偏,从而影 响汽车操纵稳定性。 前后轮抱死次序对操稳性的影响:紧急制动时, 如果汽车后轮制动抱死,汽车后轴将产生严重侧 滑,失去操纵稳定性,而前轮抱死,汽车又失去 转向能力。因此,汽车应安装防抱死系统。
汽车操纵稳定性
汽车操纵稳定性
概念:汽车操纵稳定性,是指在驾驶员不
感觉过分紧张、疲劳的条件下,汽车能按 照驾驶员通过转向系及转向车轮给定的方 向(直线或转弯)行驶;且当受到外界干 扰(路不平、侧风、货物或乘客偏载)时, 汽车能抵抗干扰而保持稳定行驶的性能。
影响汽车操纵稳定性的因素
行驶系的影响
转向系
转向器
转向传动机构
转向器的影响:汽车行驶时,驾驶员对汽车行驶
方向的改变是通过操纵方向盘来实现的,转向盘 的性能直接影响汽车的操纵稳定性。转向器出现 的问题:转向器缺油﹑转向器游隙过大

汽车操纵稳定性 标准

汽车操纵稳定性 标准

汽车操纵稳定性标准汽车操纵稳定性是指汽车在行驶过程中保持稳定的能力,包括直线行驶稳定性、转向稳定性和制动稳定性。

操纵稳定性是汽车安全性的重要指标,直接关系到驾驶员和乘客的行车安全。

因此,制定汽车操纵稳定性标准对于保障交通安全具有重要意义。

首先,汽车操纵稳定性标准应当包括对车辆结构设计的要求。

车辆的结构设计直接影响到操纵稳定性,包括车辆的悬挂系统、转向系统、制动系统等。

悬挂系统应当具有良好的支撑性和减震性能,以保证车辆在行驶过程中不会出现晃动和颠簸。

转向系统应当灵活可靠,能够满足驾驶员的操控需求。

制动系统应当具有良好的制动效果,能够在紧急情况下迅速制动车辆,保证行车安全。

其次,汽车操纵稳定性标准还应当包括对车辆动力系统的要求。

动力系统的稳定性直接关系到车辆的加速和行驶稳定性。

发动机应当具有充足的动力输出,以保证车辆在各种路况下都能够稳定行驶。

传动系统应当平顺可靠,能够有效传递动力,保证车辆的行驶稳定性。

此外,车辆的驱动方式也会对操纵稳定性产生影响,前驱、后驱和四驱车辆在操纵稳定性上会有所不同。

最后,汽车操纵稳定性标准还应当包括对车辆轮胎和制动系统的要求。

轮胎是车辆与地面接触的唯一部件,其性能直接关系到车辆的操纵稳定性。

轮胎的胎面设计应当具有良好的抓地力和排水性能,以保证车辆在各种路况下都能够稳定行驶。

制动系统是车辆行车安全的最后一道防线,其性能直接关系到车辆的制动稳定性。

制动系统应当具有良好的制动效果和抗热性能,以保证车辆在紧急制动时不会出现失控现象。

综上所述,汽车操纵稳定性标准应当全面考量车辆的结构设计、动力系统、轮胎和制动系统等方面的要求,以确保车辆在行驶过程中具有良好的操纵稳定性,保障行车安全。

制定严格的操纵稳定性标准,对于提高汽车行车安全性具有重要意义,也是汽车行业持续发展的重要保障。

《汽车理论》汽车操纵稳定性

《汽车理论》汽车操纵稳定性

(a 2 k1

b 2 k 2 )wr
ak1
0
消除v,便可求出稳态横摆角度增益:
wr

s
1
m L2
u/L

a k2

b k1
u 2

1
u
/L Ku
2
式中:
K

m L2

a k2

b k1

K为稳定性因数,它是表征稳态响应的一个重要参数。
齐✓齐次次方方程 程的通通解解为:


1,wr Cewot sin wo 1,wr C1 C2 ewot
1 2 t


1,w C e C e wo wo 2 1 t
反应时间τ、衰减振动圆频率ω。
横摆角速度频率响应特性评价
共振峰频率f、1Hz时的相位滞后角。
6.2 轮胎的侧偏特性
轮胎的侧偏特性主要是指侧偏力、回正力矩与侧偏角间的 关系。是研究操纵稳定性的基础。
1)轮胎的坐标系
2)轮胎的侧偏现象和侧偏 力—侧偏角曲线
3)轮胎的结构、工作条件 对侧偏特性的影响
b0 Lk1 k2 b1 muak1
上式为单自由度强迫振动微分方程,通常写作:
••


wr 2w0 wr w02 wr B0 B 1
式中:
w02
h
c / m' /(2w0 m' )
B0 b0 / m'
o称为固有频率 称为阻尼比
B1 b1 / m'
侧偏现象:当车轮有侧向 力作用时,FY 没有达到附着 极限,车轮行驶方向亦将偏 离车轮平面的方向。这就是 轮胎的侧偏现象。

汽车理论第六章

汽车理论第六章

u v
因此有 同理有
ax

u v
t

du dt
v d
dt
u vr
ay

v u
t

dv dt
u d
dt
v ur
对二自由度汽车模型进行受力分析,外力沿y轴 方向的合力以及绕质心的力矩分别为
FY FY1 cos FY 2
M Z aFY1 cos bFY 2
b r
u
整理得
FY
k1(
ar
u
) k2(
br )
u
MZ
ak1 (

a r
u
) bk2 (
br )
u
由牛顿定理
FY
k1(

a r
u
) k2(
br
u
) m(v ur )
MZ

ak1 (
且忽略左、右侧车轮由于载荷的变化引起的轮胎特性的改变以及轮胎回正力 矩的作用; • 6)汽车运动时的驱动力不大,因此不考虑地面切向力对轮胎特性的影响; • 7)不考虑空气动力的作用。
2、线性二 y u u


x
y r

2
V
u2
u
b
第六章 汽车的操纵稳定性
第一节 概述
• 汽车的操纵稳定性是指在驾驶者不感
到过分紧张、疲劳的条件下,汽车能遵循 驾驶者通过转向系及转向车轮给定的方向 行驶,且当遭遇外界干扰时,汽车能抵抗 干扰而保持稳定行驶的能力。
• 稳定性是指汽车抵抗改变其行驶方向
的各种外界干扰(路面扰动或风扰 动),并保持稳定行驶而不失去控制, 甚至翻车或侧滑的能力。

第5章 汽车的操纵稳定性

第5章  汽车的操纵稳定性

汽车的等速圆周行驶 等速圆周行驶,即汽车方向盘角阶跃输入下进 等速圆周行驶 入的稳态响应。一般也称它为汽车的稳态转向特性 稳态转向特性,汽车 稳态转向特性 的稳态转向特性分为三种类型:不足转向 中性转向 不足转向、中性转向 不足转向 中性转向和过 多转向。操纵稳定性良好的汽车应具有适度的不足转向特 性。一般汽车不应具有过多转向特性,也不应具有中性转 向特性,因为中性转向汽车在使用条件变动时,有可能转 变为过多转向特性。 常用方向盘角阶跃输入下的瞬态响应来表征汽车的操 纵稳定性。
五、有外倾角时轮胎的滚动
γ
汽车两前轮有外倾角,滚动时前轴以Fy的力将两前轮拉住沿 同一方向滚动,与此同时轮胎接地面中产生一与Fy方向相反的 侧向反作用力,这就是外倾侧向力 Yγ 。 外倾侧向力F 外倾侧向力 根据轮胎坐标系的规定,kr为负值称作外倾刚度,单位为 N/rad或N/(°) (1)A、B、C为三条相互平行的直线,故可认为在各种外 倾角下,轮胎侧偏刚度均为k。 (2)侧偏角为零时的地面侧向力便是外倾侧向力FYγ,图519a是试验得到的外倾侧向力与外倾角的关系曲线,二者成线 性关系,即 FYγ=kγγ 。当外倾角为正值时(见A线),FYγ 为负 值。有外倾角时实验所得轮胎侧向力与侧偏角的关系如下图519。
§5-1 概 述
一、汽车操纵稳定性包含的内容 1、在汽车操纵稳定性的研究中,常把汽车作为一 控制系统,求出汽车曲线行驶的时域响应 频率响应 时域响应与频率响应 时域响应 特性,并以它们来表征汽车的操纵稳定性能。 特性 2、方向盘输入有两种形式:给方向盘作用一个角 位移,称为角位移输入 角位移输入,简称为角输入 角输入;给方向盘作 角位移输入 角输入 用一个力矩,称为力矩输入 力矩输入,简称为力输入 力输入。 力矩输入 力输入 3、方向盘角阶跃输入下进入的稳态响应 方向盘 方向盘角阶跃输入下进入的稳态响应及方向盘 方向盘角阶跃输入下进入的稳态响应 角阶跃输入下的瞬态响应,就是表征汽车操纵稳定性 角阶跃输入下的瞬态响应 的方向盘角位移输入下的时域响应。回正性 回正性是一种方 回正性 向盘力输入下的时域响应。

操纵稳定性试验方法_稳态回转试验

操纵稳定性试验方法_稳态回转试验

操纵稳定性试验方法_稳态回转试验操纵稳定性试验是航空器进行试验和验证的重要环节之一,稳态回转试验是其中一种常用的方法。

稳态回转试验通过在不同载荷和飞行状态下对航空器进行特定的操纵动作,评估其在各种条件下的稳定性。

本文将介绍稳态回转试验的方法和步骤,并探讨一些相关的技术和注意事项。

稳态回转试验一般包括下面几个步骤:1.设计试验方案:首先,需要制定一个详细的试验方案,在试验方案中明确试验的目标、试验的载荷和飞行状态范围,以及试验的时间和空间约束等。

2.指定操纵动作:根据试验方案,需要指定试验中的操纵动作,包括方向舵、升降舵、副翼等控制面的操纵角度和操纵方式。

这些操纵动作应该可以覆盖试验中的各种载荷和飞行状态。

3.进行试飞:在试验前,需要进行试飞来验证航空器的飞行性能和操纵能力。

试飞应该覆盖试验中的各种载荷和飞行状态,以确保航空器具备进行稳态回转试验的基本条件。

4.进行试验:在试验中,根据试验方案和指定的操纵动作,对航空器进行特定的操纵动作,观察和记录其响应和稳定性特性。

试验中应该保持试验方案中规定的载荷和飞行状态范围,并注意记录试验过程中的各项参数和数据。

5.数据分析和评估:在试验结束后,需要对试验数据进行分析和评估,以获得航空器在不同载荷和飞行状态下的稳定性性能。

数据分析可以采用数学模型、图表和计算机模拟等方法,以获得试验结果的定量和定性分析。

在进行稳态回转试验时1.试验设备和环境:要确保试验设备和环境的稳定性和准确性,包括操纵系统的可靠性和精度、试验平台(如试飞机或试验架)的性能和稳定性、试验场地和大气条件的适宜性等。

试验设备和环境的不稳定性和误差会影响试验结果的准确性和可靠性。

2.试验安全和风险控制:在进行试验时,要注意试验的安全性和风险控制。

试验人员应该严格遵守相关的安全规定和操作规程,并保证试验过程中的安全和风险控制措施的有效性。

3.数据处理和结果解释:试验数据的处理和结果的解释应该依据科学的方法和原则。

新能源汽车试验学 第七章 操纵稳定性试验

新能源汽车试验学 第七章 操纵稳定性试验
卫星定位数据采集系统
LOGO 转向盘测力仪
一 试验设备
LOGO
惯性传感器
驾驶机器人
二 测量设备
LOGO
四轮定位仪
轴荷仪
静侧翻试验台
三 数据采集软件
LOGO
•设置数据采集系统的参数,对各个通道进行配置 •控制数据采集开始和结束 •实时显示各通道物理量的值 •将各个通道的物理量以数据文件的形式保存在存储 设备(硬盘或存储卡)中
五 试验场地
LOGO
•操稳道路试验一般车速较高,转弯半径较大,因此需要比较大的场 地
•通常在汽车试验场的直线性能跑道和操稳广场上进行,也可以在铺 装条件较好的飞机跑道上进行
•操稳场地条件比较好的几个试验场,例如: •通用广德试验场 •正新轮胎试验场 •重庆长安汽车试验场 •中汽中心盐城汽车试验场
15
±50 N·m ±100 N·m
±50 /s 0~50 m/s ±10 m/s
±15
±15
±15 m/s2
测量仪器的最大误差 ±2(转角≤180) ±4(转角>180) ±1 N·m ±3 N·m ±0.5 /s ±0.3 m/s ±0.4 m/s
±0.15
±0.5
±0.15 m/s2
一 试验设备
LOGO
第一节 概述
LOGO
•人-车开环系统 •人-车闭环系统
常用仪器 设备
第二节 常用仪器设备
图 整车操纵要求
测量变量
转向盘转角
转向盘力矩
汽车横摆角速度 汽车纵向速度 汽车横向速度 车身侧倾/俯仰
角 汽车质心侧偏角
汽车纵向/侧 向加速度
测量范围
±360
•有些软件可以对数据进行一些简单的预处理和计算 •例如:Dewesoft(左图)、VBOXTools(右图)

汽车操纵稳定性测试实验

汽车操纵稳定性测试实验

操稳性测试
一、理论基础
3. 稳态响应与瞬态响应
1) 系统输入
给转向盘一个角位移输入,称为角位移输入;给 转向盘一个力矩输入,称为力矩输入。
2) 输入种类
有阶跃输入、正弦输入、脉冲输入3种。
阶跃
正弦
脉冲
xua
t

t
t
操稳性测试
一、理论基础
3. 稳态响应与瞬态响应
3) 时域响应
(1) 稳态响应:系统输入为周期性或恒定性的, 输出也是周期性或恒定性的,输入和输出之 间相对稳定。
不足转向 过多转向
δ 不变
汽车的三种 稳态转向特性
操稳性测试
一、理论基础
4.操纵稳定性的评价与试验方法
主观评价方法:让试验评价人员根据试验时自己 的感觉来进行评价,即感觉评价。
客观评价方法:通过仪器测出表征性能的物理量 如横摆角速度、侧向加速度、侧倾角及转向力来 评价汽车操纵稳定性,可用室内台架试验,测定 并评价有关操纵稳定的性质,也可通过道路试验, 计测汽车转弯和越线行驶的运动状态。
(2) 瞬态响应:从转向至稳态响应的中间过程, 即系统输入为周期性或恒定性而输出不是周 期性或恒定性,两者不保持相对稳定。
操稳性测试
一、理论基础
3. 稳态响应与瞬态响 应
4) 稳态转向特性
中性转向
不足转向、中性转向、过 多转向。
操纵稳定性良好的汽车应
具有适度的不足转向特性, 一般的汽车不应该具有过 多转向的特性。
本节主要内容:
简介汽车操纵稳定性能方面理论知识,操纵稳定 性能试验目的和要求,主要仪器设备及其工作原 理,实验步骤。
重点:基础理论、试验数据处理
操稳性测试
一、理论基础

第二章 操纵稳定性分析

第二章 操纵稳定性分析

第二章操纵稳定性分析1.汽车操纵稳定性是指在驾驶着不感到过分紧张、疲劳的条件下,汽车能遵循驾驶者通过汽车转向系及转向车轮给定的方向驾驶,且当遭遇外界干扰时,汽车能抵抗干扰而保持稳定行驶的能力,是汽车动力学的一个重要分支。

操纵性:稳定性反映的是汽车能够遵循驾驶者通过转向系及转向车轮给定的方向行驶的能力。

稳定性:稳定性反映的是汽车在遭遇到外界干扰情况下产生抵抗外界干扰而保持稳定行驶的能力。

2.操纵稳定性的评价指标:稳态转向特性、瞬态响应特性、回正性、转向轻便性、典型行驶工况性能和极限行驶能力等。

仿真时测量变量包括汽车横摆角速度、车身侧倾角、汽车侧向加速度等。

3.汽车操纵稳定性的实验方法(1)Open-Loop Steering Events---开环转向事件1)Ddift---漂移实验2)Fish-Hook---鱼钩转向3)Impulse Steer---转向脉冲输入4)Ramp-Steer---转向斜坡输入5)Single Lane Change---单移线试验6)Step Steer---转向阶跃输入7) Swept-Sine Steer---转向正弦扫频输入(2)Cornering Events---转弯事件1)Braking-In=Turn---转弯制动2)Constant-Radius Cornering---定半径转弯(稳态回转试验)3)Cornering w/Steer Reiease---方向盘撒手转弯(转向回正试验)4)Lift-Turn-In---松油门转弯5)Power-Off Cornering---发动机熄火转弯(3)Straight-Line Events---直线行驶事件1)Acceleration---加速试验2)Braking---制动试验3)Braking on split μ---左右车轮不同路面制动试验4)Maintain---直线稳定试验5)Power-Off Straight Line---发动机熄火直线行驶(4)Course Events---ISO路线行驶1)ISO Lane Change---ISO路线行驶2)3D Road---三维路面行驶(5)Static Quasi-Static Maneuvers---准静态操纵仿真1)Quasi-Static Constant Radius Cornering---准静态定半径转弯2)Quasi-Static Constant Velocity Cornering---准静态恒速转弯3)Quasi-Static Force-Moment Method---准静态力-力矩方法4)Quasi-Static Straight-Line Acceleration---准静态直线加速第三章客车侧倾稳定性试验仿真建模及设计3.1 ADAMS的建模思路3.1.1 ADAMS的软件介绍及理论基础;3.1.2 ADAMS/Car的建模思路;3.2 前悬架动力学模型的建立(双横臂悬架);3.2.1 双横臂悬架的结构和工作原理;3.2.2 双横臂悬架子系统与转向系统的建立;3.3 后悬架动力学模型的建立(空气悬架)3.3.1 空气悬架的结构和工作原理;3.3.2 不同空气弹簧型式的特点分析;3.3.3 空气弹簧的建立;3.3.4 减震器模型和各轴套的建立;3.3.5 横向稳定杆的建立;3.4 轮胎特性参数的确定;3.5 其他子系统动力学模型的建立3.5.1 制动系统的建立;3.5.2 动力总成及车身的建立;3.6 客车质心位置及个总成部件质量的确定;第四章客车动态侧倾稳定性试验仿真实例及分析4.1 客车动态侧倾稳定性试验方法1)固定转弯半径变车速试验 2)固定车速变转向角试验3)稳态回转试验4)蛇行试验5)转向瞬态响应6)单移线实验4.2 客车动态侧倾稳定性的仿真分析1)客车定半径变车速试验仿真2)客车定车速变转向角试验仿真。

汽车操纵稳定性检测

汽车操纵稳定性检测

路况条件
道路类型
不同类型的道路如柏油路、水泥路、土路等对车 辆操纵稳定性有不同的影响。
道路坡度
道路坡度会使车辆产生额外的分力,影响操纵稳 定性。
道路曲线
道路曲线会使车辆产生离心力,影响操纵稳定性 。
05
汽车操纵稳定性提升措施
车辆性能改进
优化悬挂系统
悬挂系统对车辆的操纵稳定性有着重要影响。通过改进悬挂系统 的设计和参数,可以提高车辆的操纵稳定性和乘坐舒适性。
汽车操纵稳定性检测
汇报人: 日期:
目录
• 汽车操纵稳定性检测概述 • 汽车操纵稳定性检测系统 • 汽车操纵稳定性检测实验 • 汽车操纵稳定性影响因素 • 汽车操纵稳定性提升措施 • 汽车操纵稳定性检测案例分析
01
汽车操纵稳定性检测概述
定义与重要性
定义
汽车操纵稳定性检测是指对汽车在行驶过程中,驾驶员按照预定目标和路线进行 操纵的能力进行评估和测试。
03
汽车操纵稳定性ቤተ መጻሕፍቲ ባይዱ测实验
实验准备与步骤
实验目的
检测汽车的操纵稳定性,确保车辆在行驶过程中具有良好的操控性能和安全性。
实验设备
测试仪器、测试软件、车辆等。
实验准备与步骤
实验步骤 1. 准备实验场地,确保路面平坦、无障碍物,并按照要求设置测试区域。
2. 对测试仪器进行校准,确保测试数据的准确性。
重要性
汽车操纵稳定性是影响行车安全的重要因素,不良的操纵稳定性可能导致交通事 故的发生。通过对汽车操纵稳定性的检测,可以评估车辆的安全性能,为驾驶员 提供可靠的驾驶依据,同时为车辆的维修和改进提供数据支持。
检测目的和意义
目的
汽车操纵稳定性检测的目的是评估车辆在行驶过程中的操控性能,判断车辆在 高速行驶、紧急变道、转向等情况下是否稳定可靠,以保障行车安全。

5 汽车的操纵稳定性

5 汽车的操纵稳定性
19
第二节 轮胎的侧偏特性
二、轮胎的侧偏现象和侧偏力——侧偏角曲线 1.侧偏力FY
地面作用于车轮的侧向反作用力。
20
第二节 轮胎的侧偏特性
1)在刚性轮上作用侧向力 Fy
c
c
u
u u'
Fy ≤FZ l
Fy>FZl
u
FY
FY
c
c
➢只有当侧向力 Fy 达到车轮与路面间的侧向附
着极限时,车轮的运动方向才会改变。
21
第二节 轮胎的侧偏特性
2)在ቤተ መጻሕፍቲ ባይዱ性轮上作用侧向力Fy
Fy
俯视图
FY
车轮静止
22
第二节 轮胎的侧偏特性
2)在弹性轮上作用侧向力 Fy
Fy
FY 车轮滚动
23
第二节 轮胎的侧偏特性
侧偏角α
轮胎接地印 迹中心的位移 方向与X轴的 夹角。
α
u
+
FY
0
Y
u α-
X
侧偏力为正时, 产生负侧偏角。
2.侧偏现象
大尺寸轮胎
大尺寸轮胎
子午线轮胎
侧偏刚度大
钢丝子午线轮胎
斜交轮胎 侧偏刚度小
纤维子午线轮胎
小尺寸轮胎
26
第二节 轮胎的侧偏特性
(1)扁平率小,|k|大
B H
扁平率=(H/B)×100%
27
第二节 轮胎的侧偏特性
一些车型轮胎的型号及扁平率
车型 新雅阁
奔驰 S320
奔驰 LORINSER
轮胎型号 普利斯通 205/65R15
❖ 汽车上坡时,坡度阻力随坡度的增大而增加,在 坡度大到一定程度时,为克服坡度阻力所需的驱 动力超过附着力时,驱动轮将滑转。这两种情况 均使汽车的行驶稳定性遭到破坏。

《汽车理论》第五章 汽车的操纵稳定性

《汽车理论》第五章 汽车的操纵稳定性

路面条件 交通状况
气候
驾驶员
驾驶员 的手脚
驾驶员-汽车闭环系统
侧风 路面不平
汽车
五、汽车试验的两种评价方法
➢ 客观评价法
客观评价通过仪器测试能定量评价汽车 性能,且能通过分析求出其与汽车结构参 数间的关系。
➢ 主观评价法
主观评价考虑到了人的感觉,能发现仪 器不能测试出的现象,是操纵稳定性的最 终评价方法,但很难给出定量评价数据。
handling performance manuevereability
5.1 概 述 5.2 轮胎侧偏特性 5.3 线性二自由度汽车模型对前轮角输入响应 5.4 汽车操纵稳定性与悬架、转向系的关系
汽车操纵稳定性
汽车的主要性能之一
定义:在驾驶员不感觉过分紧张、疲
劳的条件下,汽车能按照驾驶员通过 转向系及转向车轮给定的方向行驶, 且当受到外界干扰时,汽车能抵抗干 扰而保持稳定行驶的能力。
意义
行驶方向 干扰
操纵方便性 直线 路不平 侧风
高速安全性
转弯 货物或乘客偏载
操纵稳定性不好的具体表现
1、 “飘”—汽车自己改变方向。升力或转向系、轮胎、 悬架等问题。 2、“反应迟钝”—转向反应慢。传动比太大。 3、“晃”—左右摇摆,行驶方向难于稳定。 4、“丧失路感”—操纵稳定性不好的汽车在高速或急剧 转向时会丧失路感,导致驾驶员判断的困难。 5、“失控”—某些工况下汽车不能控制方向。制动时无 法转向,甩尾,侧滑,侧翻。
*车桥因载荷变形 *汽车转向时的离心力 *路面倾斜 *前轮定位参数的需要
外倾侧向力与外倾角的关系
外倾侧向力
式中:
FY k
FY 为外倾侧向力,它是侧偏角为零、
外倾角为 时的地面侧向反力。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

三、测量仪器: 测力转向仪;X-Y函数记录仪,柱桩等
花键套
测力转向仪基本原理
• 基本原理: 扭矩传感器是以弹性元件和电阻 应变片作为敏感元件并用集流环将旋转信号引 出,由电阻应变片组成全桥电路如下:
当弹性元件受转矩作 用时,贴在弹性元件 上的应变片变形。其 阻值发生变化,引起 电桥不平衡,则在电 桥输出端有一直流电 压输出。
汽车的操纵稳定性是指汽车能够遵循驾驶 员通过转向轮给定的方向行驶,当遇到外界干 扰时,汽车能抵抗干扰而保持稳定行驶的能力。
一、转向轻便性试验 二、转向回正性试验 三、蛇形行驶性能试验 四、稳态回转试验
一、目的:测定汽车在低速大转角时的转 向轻便性。 二、试验条件: 1、车辆条件: 2、场地条件:干燥、平整、清洁的水泥 或沥青路面。坡度小于2%。画双纽线路 径
t
1 3
(t1 t 2 t 3 )
r
1 3
( r1 r 2 r3 )
1)稳定时间(回正时间)及残留横摆角速度
稳定时间用下式计算:
t
1 3
(t1 t 2 t 3 )
残留横摆角速度由下式计算:
r
1 3
( r1 r 2 r3 )
②汽车前后轴侧偏角差值(
1 2
360 2
0
1
2
a )与侧向加速度 ,关系曲线
y
L (
1 R0

1 Ri
)
1 2
a
y
关系曲线
3.定转弯半径法
试验过程
• 试验过程 : • 1、汽车以最低稳定车速行驶,如撞倒标桩 则试验无效。 • 2、增加车速,但侧向加速度增量每次不大 于 0.5m/s2,重复上述试验,直至做到侧 向加速度达到6.5m/s2或受发动机功率限制, 或汽车出现不稳定状态时的最大侧向加速度 为止。 • 3、试验按向左及向右转两个方向进行
L d
co s 2
轨迹上任意点的曲率半径为:
R d 3 cos 2
R min
d 3
双纽线的最小曲率半径应按试验汽车的最 小转弯半径乘以1.05倍,并圆整到比此 乘积大的一个整数来确定,并据此画出双 纽线。
L d
co s 2
标桩与试验路径中心线的距离,按汽车的轴距确定。 当试验汽车轴距大于2.5m时为车宽一半加50cm, 试验汽车轴距小于或等于2.5m时为车宽一半加30cm。
W1
W2



max
1
M 1 ( ) d
M 2 ( ) d
max 1

ma
21
ma 21
W3


max
3
M 3 ( ) d
max 3
②转向盘平均作用功,由下式计算:
W
W1 W 2 W 3 3
4)、转向盘平均作用力矩 ①绕双纽线路径每一周的转向盘平均作用力矩,由下式计算: ②转向盘平均作用力矩,由下式计算:
M
sw 1

W1 ma
sw 2

max
2
max
M
2
s

M
s 1
M
s 2
M
s 3
3
M
sw 3

W3 max
3
max
3
5)、转向盘平均作用力,由下式计算:
Fs
2M D
s
一、试验目的-------测定汽车从曲线行驶自动回复到直线行驶 的过渡的过渡过程和能力
2)横摆角速度超调量

r1 r0 100 %

r1 r0
100 %
第三节 汽车蛇形行驶性能检测 蛇形试验是一项包括车辆——驾驶员—— 环境在内的闭环试验。这种试验往往使汽 车处于某种转弯能力的极限状态,这一方 面与汽车转向运动特性的线性区有关,另 一方面又与接近滑移极限的非线性区特性、 轮胎和地面的附着能力有关。
过多转向
2 3 1
三、试验仪器设备: 操纵稳定测试仪;第五轮仪 四、试验方法: 1.定转向盘转角逐级加速法 2.定转向盘转角连续加速法 3.定转弯半径法
1、试验前的准备工作 2、试验过程 3、试验结果分析
15m
a 3m / s
y
2
试验车速
侧向加速度
Ri R0
a
y
u0 u1 u2
……
R0 u0
P P1 P2
2)按下式计算粉尘浓度
W
P V
10
3
3)按下式计算防尘密封度
Wn Wb M 1 WW 100 %
一、目的:是用人工淋雨设备来测试汽车的防 雨密封能力。
二、试验条件:淋雨试验时,气温应在5~35℃, 气压应在99—102kPa范围内,在室外淋雨试验 台下进行试验应选择晴天或阴天,并且风速不 超过1.5m/s。 三、测试设备 汽车防雨密封性试验设备为人工淋雨试验台。
淋雨系统设备示意图
轻型1000m 大型 1200m
车长小于或等于10m的客车的采样头布置
车长大于10m的客车的采样头布置
2.测量车身内部本底粉尘浓度 3.测量粉尘浓度 4.滤纸的干燥与称量 取样后的滤纸置于干燥缸中至少6h后称重, 称重结果填人试验记录表。
三、试验数据处理及质量评定
1.试验数据处理 1)按下式计算粉尘质量
4或3m/s2
15m
低速回正实验
80、100、 120km/h
2m/s2
高速回正实验
3)高速回正试验 对于最高车速超过100km/h的汽车,要 进行高速回正性试验。高速回正试验车速 按试验车的最高车速的70%确定,并网整 到80、100或120km/h的车速进行试验。 试验时,汽车以上述规定的试验车速在试 验路段直线行驶,稳定车速,驾驶员转动 转向盘使侧向加速度达到2±0.2m/s2,待 稳定3s并开始记录后,驾驶员突然松开转 向盘,至少记录松手后4s内汽车的运动过 程。
V基准=65/60/50km/h;
不超过80km/h
L
5 L
v i 3 . 6 L ( N 1) / t i
L
车型 轿车、小型客车及最大总质量小于或等于2.5吨 的载货汽车 最大总质量大于2.5吨而小于或等于6吨的载货汽 车及中型客车 最大总质量大于6吨而小于或等于15吨的货车及 大型客车 最大总质量大于15吨载货车及客车
标桩间距 (m)
基准车速 (km/h)
65
30
50 60 50 50
ri
1
4
1
4
4
rn
n 1
i
4
1
n
n 1
i
4
4
n
n 1
预备知识:
不足转向 中性转向
1、稳态和瞬态
2、稳 态回转的三个特征:
一、测试目的: 测定汽车在转向盘有转向输入时,在 汽车达到稳 态时的响应 二、试验条件: 同转向回正试验
试验结果的处理
侧向加速度的确定
a y rv
因此我们可以确定下列几条曲线 :


M
a
a
y
曲线 曲线
y
a
y
曲线
曲线

a
y
第六章 汽车密封性能试验
• 试验目的:主要是测定汽车的防尘密封度,以检查 车身的防尘密封性能。 • 试验条件: • 1、被试车辆全部试验在空载状态进行。 • 2、扬尘车应选用与被试车辆同型号或车长接近的 • 车辆。 • 3、 试验道路应为干燥的多尘土路或砂石路,道路 • 长度不小于10km。 • 4、气候应无雨,风速小于1.5m/s。当风速大于 • 1.5rn/s,但小于3m/s时,风向与行驶方向夹 • 角不得大于 300。
• 四、测量方法及试验数据处理 • 1、方法:调试仪器及车辆;再以10± 1km/h运行三 周,以车速稳、不撞桩为准 • 2、数据处理:
1)、转向盘最大力矩
M
max

M
max 1
M
max 2
M
max 3
3
2)、转向盘最大作用力
F max
2M
max
D
3)、转向盘作用功 ①绕双纽线路径每周的作用功,由下式计算
1
R0 R1 R2
2
3
0
Ri R0
a
变化曲线图
y
a
y
u r
1、试验前的准备工作
2、试验过程
a
y
m ax
6 .5 m / s
2
初始 半径 15m
3、试验结果分析
①转弯半径比
Ri R0
与侧向加速度 a 关系曲线
y
Ri
vi ri
Ri R0
a
关系曲线
y
a y i v i ri
• 一、测试仪器及设备 • 测试仪器有:粉尘取样仪,风向风速仪,温度 计,天平,秒表,干燥缸,滤纸等。
a)原理图 l一微电机;2一薄膜泵;3一三通;4一调节阀;5一流量计;6一采样头 b)电器原刊图1一微电机;2一拨动开关;3一保险;4-一镉镍电池;5一电插座
二、检测方法
1.采样头安装
微型800m
二、试验条件:
三、试验仪器:测试仪器为汽车操纵稳定性测试仪或其它同种 功能的仪器。Qcw—l型
可以测量:转弯角速度、加速度、侧倾角。 四,试验方法及试验数据处理, 1、低速回正试验:沿半径15 ±1m的圆周,调整侧向加速到 4m/s2记录。 2、高速回正试验:以最高车速的70%,使侧向加速度达到 2m/s2
相关文档
最新文档