汽车空气动力学复习笔记教学资料

合集下载

汽车空气动力学资料精

汽车空气动力学资料精
工程流体力学
第八章 汽车空气动力学
" 试用版本创建
主要内容
HBQY
一、绪论 二、汽车空气动力学概述 三、汽车气动力对汽车性能的影响 四、汽车空气动力学设计 五、汽车空气动力学试验
PDF 文件使用 "pdfFactory Pro" 试用版本创建
通过研究发动机和制动器的冷却气流来提高发动机和制动器的性能和冷却 效率。 (4)通风、采暖和制冷
为了改善乘坐舒适性,通常要进行通风、采暖和制冷的研究。通过对空气 进出口位置、风量、风速、风路以及空调选型与布置来优化车身内部气流环 境。 (5)汽车空气动力学专题研究
除上述四种研究内容以外,还有改善雨水流径、减少表面尘土污染、降低 气动噪声、侧向风稳定性以及刮水器上浮等专题研究。湖北汽车工业学院汽车工程系
Ø 在汽车发明后的最初十几年,车速很低,空气动力学没有真正 提到议事日程。
Ø 空气动力学起源于研究道路车辆的气动阻力问题,但在航空航 天领域发展迅速。
Ø 最早按照空气动力学观点设计的汽车是1899年比利时人卡米勒. 詹那兹设计的炮弹型汽车。
PDF 文件使用 "pdfFactory Pro" 试用版本创建
HBQY
a)基本形造型阶段
Ø 汽车空气动力学发展的第一阶段是从20世纪初期开始的,人们 从外形上注意了空气动力特性,把它总结为基本形状化造型阶 段。
Ø 基本型是人们直接将水流和气流中的合理外形应用到汽车上, 采用了鱼雷形、船尾形、汽艇形等水滴形汽车外形。
☞ 1899年由卡米勒·詹那兹(Camille Jenatzy)按空气动力学观 点设计的最早的汽车,车身形状为鱼雷形,长宽之比为4:1。
湖北汽车工业学院汽车工程系

汽车动力学之空气动力学-文档资料

汽车动力学之空气动力学-文档资料

• 将空气动力平移至汽车质心Cg,就有一附加力矩,其三个分力矩分别为: 侧倾力矩(Rolling Moment) MX、俯仰力矩(Pitching Moment) MY、横
摆力矩(Yow Moment) MZ。
空气动力的表达式
空气阻力D与气流速度的平方V2成正比,与汽车迎风面积A成正比。常 表示为与动压力、迎风面积成正比的形式:
P 在物面法向速度梯度为零( Y Y=0=0 )时,气流开始分离。靠近物面 的气流先停止流动,进而反向流动,形成涡流区,将继续流动的气流与 物面隔开。
e e
1.空气动力学基础知识节
• 尾流区 在分离点后,是一不规则流动的
涡流区,总体上是静止不动的“死水 区”。物体向前运动时,它随之运动, 故称“尾流”。
流体经过狭窄通道时压力减小的现象。
发动机化油器喉管
同向行舟:
热水淋浴器:
吹纸条:
球浮气流:
第一章 空气动力学基础知识
1.2 空气的粘滞性和气流分离现象
达朗贝尔悖论(d’Alembert‘s Paradox)
对于上下对称,左右对称的物体,在气流中所受流体作用的合力 应为零。这显然不符合客观现实情况。(Irrotational flow of a nonviscous fluid about an object produces no drag on the object. This peculiar result is known as d'Alembert's paradox. )
在无粘性气流中, 所受合力为零。
在粘性气流中, 所受合力不为零。
1.空气动力学基础知识节
附面层(boundary layer)
由于流体的粘性,靠近物面处的流体有粘附在物面的趋势,于是有一 流速较低的区域,即为附面层。

经典汽车空气动力学

经典汽车空气动力学

《工程流体力学-汽车空气动力学》复习大纲(答案仅供参考)1、 汽车空气动力学的发展有哪几个时期?基本型时期、流线型时期、最优化时期2、 汽车空气动力学的研究方法有哪些?实验理论数值模拟(CFD )3、 汽车空气阻力与哪些因素有关? 式中,CD 称为空气阻力系数;A 称为迎风面积;ρ是空气密度;ur 是相对速度,无风时即为汽车的行驶速度ua (m/s )。

4、 什么是流体的粘性?流体的粘性与什么有关,怎样变化?粘性是指在运动状态下,流体具有抵抗剪切变形的能力。

温度是影响流体粘性的主要因素,液体的粘性随温度的升高而减小,气体的粘性随温度的升高而增大。

5、 什么是音速?什么是马赫数?它们是衡量气体的什么性质的指标?音速(a ):微小扰动在某种介质中的传播速率。

用来衡量气体的压缩性。

音速越大,越不易压缩。

马赫数:用来衡量运动气体的压缩性。

v----气体的运动速度;a---气体的当地音速。

6、 在什么情况下气体可看作不可压缩流体?Ma 小于0.3时,气体可看作不可压缩流体。

7、 什么是流线?流线有什么性质?流线(Streamline )是某一时刻在流场中画出的一条空间曲线,在该时刻,曲线上的所有质点的速度矢量均与这条曲线相切。

流线的几点性质• 1. 流线簇的疏密程度反映了该时刻流场中各点速度的变化。

• 2. 对于恒定流,流线的形状和位置不随时间而变化。

• 3. 恒定流时,流线和迹线重合。

• 4. 一般情况下,流线不能相交,不能折转,只能是一条光滑曲线。

8、 什么是层流?什么是紊流?层流(Laminar Flow ):各流层质点互不掺混,分层有规则的流动状态。

紊流(Turbulent Flow ):质点运动轨迹极不规则,各流层质点剧烈掺混。

9、 什么是不可压缩一元流连续方程?有什么物理意义?221r D w u A C F ρ⋅=a v Ma =各过流断面上体积流量为常数,面积大则流速小,面积小则流速大。

汽车空气动力学

汽车空气动力学

梯度较小,在那里我们可以不考虑空气的粘性作用而把它看成为理想流体。
诱导阻力是由于气流经车身上下部时,由于空气质点流经上下表面的路程不同,流速不同从而产生压差,即升力,
升力在水平方向上的分力称为诱导阻力。诱导阻力系数 CXi 升力系数 CZ 间有如下近似关系:
式中,b 为汽车宽度, A 为汽车正投影面积。
只有滚动阻力和气动阻力两项:Σ F 7、发动机功率与车速关系
=
Байду номын сангаас(G
− FZ ) f
+
1 2
C
X
ρ
V
2 a
A
汽车行使阻力所消耗的功率(kw)为:
ΣP
=
1 (G− 3600
FZ
)
f
⋅Va
+ 72100ρCX
AVa3
而发动机功率 Pe 与阻力功率∑P 的关系为:Pe·η=∑P η为汽车传动效率。通常作用在汽车上的升力 FZ 不大,如忽略
这是目前跑车和赛车流行的布置形式。
⑶ 在车顶后端或车尾做成翘起来的形状,可以很好地起到降低升力的作用。
14、克服侧向力和横摆力矩的措施 横摆力矩关系到行驶时的直线性和侧风稳定性,它具体表现在侧向力对重心的关系上。
⑴ 侧向力作用于重心之前,这时汽车头部将随侧向风向外侧转动,它趋向于使侧向力增大,导致稳定性恶化。
用加速度公式来研究这一问题。对速度公式两边求时间 t 的导数并加以整理,即可得汽车加速度:
dV a = dP e
3600 η T
dt
dt
Gf
+
3 2
ρC X
AV
2 a
上式中,dPe/dt 是表示汽车发动机功率随时间的增长率,它取决于发动机功率曲线。其值可由发动机试验确定。由

空气动力学复习资料

空气动力学复习资料

空气动力学复习一、基本概念1 粘性施加于流体的应力和由此产生的变形速率以一定的关系联系起来的流体的一种宏观属性,表现为流体的内摩擦。

以气体为例,气体分子的速度是由平均速度和热运动速度两部分叠加而成,前者是气体团的宏观速度,后者决定气体的温度。

若相邻两部分气体团以不同的宏观速度运动,由于它们之间有许多分子相互交换,从而带来动量的交换,使气体团的速度有平均化的趋势,这便是气体粘性的由来。

2 压缩性流体的压缩性是流体质点在一定压力差或温度差的条件下,其体积或密度可以改变的性质。

其物理意义是:单位体积流体的体积对压强的变化率。

气体流速变化时,会引起气体的压强和密度发生变化。

在低速气流中,由于气流速度变化而引起的气体密度的相对变化量很小,可以把气体看作不可压缩流体来处理;高速气流压缩性的影响不能忽略,必须按可压流体来处理。

一般0.3Ma作为气体是否可压的分界点。

3 理想气体忽略气体分子的自身体积,将分子看成是有质量的几何点;假设分子间没有相互吸引和排斥,即不计分子势能,分子之间及分子与器壁之间发生的碰撞是完全弹性的,不造成动能损失。

这种气体称为理想气体。

严格遵从气体状态方程的气体,叫做理想气体(Ideal gas.有些书上,指严格符合气体三大定律的气体。

)从微观角度来看是指:气体分子本身的体积和气体分子间的作用力都可以忽略不计,不计分子势能的气体称为是理想气体。

4 焓热力学中表征物质系统能量的一个重要状态参量,焓的物理意义是体系中热学能(内能)再附加上PV(压能)这部分能量的一种能量。

5理想流体不可压缩、不计粘性(粘度为零)的流体。

欧拉在忽略粘性的假定下,建立了描述理想流体运动的基本方程。

理想流体和理想气体是两个不同的概念,前者指流体没有粘性,后者指气体状态参量满足气体状态方程的气体。

6 音速音速是介质中弱扰动的传播速度,其大小因媒质的性质和状态而异。

在流动的气体中,相对于气流而言,微弱扰动的传播速度也是声速。

空气动力学知识点

空气动力学知识点

空气动力学知识点空气动力学是研究空气在机体表面运动时产生的力学效应的学科。

空气动力学知识点涵盖了各种与空气流动有关的原理和现象,对于飞机、汽车、火箭等交通工具的设计和性能优化发挥着至关重要的作用。

下面将介绍一些关键的空气动力学知识点。

1. 升力和阻力在空气动力学中,升力和阻力是两个最基本的概念。

升力是指机翼等物体在飞行或运动时受到的垂直向上的力,使得物体能够获得提升力以保持飞行。

阻力则是运动物体在空气中受到的阻碍力,是飞机、汽车等移动物体必须克服的力量。

升力和阻力的大小和方向取决于空气流动的速度、密度、物体的形状等因素。

2. 卡门涡街卡门涡街是指当流体经过物体时,流体两侧产生的交错的涡流。

这些涡流会在物体后部形成一串被称为卡门涡街的旋涡,对物体的性能和稳定性产生重要影响。

减小或控制卡门涡街可以提高交通工具的效率和性能。

3. 翼型翼型是用于生产升力的构件,通常指飞机机翼的截面。

不同的翼型设计会影响飞机的飞行稳定性、速度、升力和阻力等性能。

常见的翼型包括对称翼型、半对称翼型和非对称翼型,每种翼型都有其独特的特点和应用场景。

4. 涡流涡流是液体或气体在流动中形成的旋涡状结构。

在空气动力学中,涡流是产生升力和阻力的重要因素,也是风洞模拟实验和流场仿真计算的关键对象。

通过研究和控制涡流的生成和演变,可以改善飞机、汽车等交通工具的性能。

5. 马赫数马赫数是描述物体相对于音速运动速度的无量纲指标。

当飞机等物体的速度达到音速时,其马赫数为1,称为音速。

超音速则指马赫数大于1的速度范围,而亚音速则指马赫数小于1的速度范围。

马赫数的变化会对空气动力学效应和物体性能产生显著影响。

以上是关于空气动力学的一些基本知识点,这些知识点涵盖了空气流动、升力产生、阻力控制等领域的重要内容。

深入理解和掌握空气动力学知识,对于设计和优化交通工具的性能至关重要。

希望以上内容能为您对空气动力学有更深入的了解提供帮助。

汽车空气动力学复习笔记

汽车空气动力学复习笔记

1、汽车空气动力学经历了哪四个阶段?它们的特点分别就是什么?答:(1)基本形状化造型阶段:直接将水流与气流中的合理外形应用到汽车上,采用了鱼雷形、船尾形、汽艇形等水滴形汽车外形。

已经开始从完整的车身来考虑空气动力学问题,但限于条件不可能更深入地考虑汽车空气动力学问题。

(2)流线形化造型阶段:提出“最小阻力的外形就是以流线形的一半构成的车身”,考虑到了地面效应,尾部气流的分离也就是气动阻力系数增加的原因。

减少气动阻力不再就是唯一目标,而就是同时综合考虑气动升力与侧风稳定性,追求更全面的气动性能。

(3)车身细部优化阶段:着重从已有汽车产品上来改进车身细部气动造型,通过各个细部造型的优化与相互动协调来优化汽车整车的气动性能。

(4)汽车造型的整体优化阶段:从一开始就十分重视汽车外形的整体气动性能,因而开发的实用车型具有优秀的空气动力学特性,整体造型更为流畅,形体更为生动,美学造型与气动造型相得益彰。

2、按基本型设计为什么得不到良好的性能呢?答:早期的汽车外形在考虑了流线形化后,气动阻力系数明显地改善了。

但当时没有认识到气流流经这种旋转体时已不再就是轴对称,因为把旋转体靠近地面,又加上了车轮及行驶系统,与单纯水滴形的流场已不再相同,造型实用性不强;没有实现“一体化”,气动阻力很大;气流在前端与翼子板处分离后,不能再附着;所以得不到良好的性能。

3、汽车行驶时,除了受到来自地面的力外,还受到其周围气流的气动力与力矩的作用。

来自地面的力取决于汽车的总重、滚动阻力与重心位置。

气动力与力矩则由行驶速度、车身外形与横摆角决定。

4、什么就是气动六分力?如何产生?对汽车动力特性有何影响?答:气动六分力分别为:气动阻力、气动升力、纵倾力矩、侧向力、横摆力矩及侧倾力矩。

(1)气动阻力:就是与汽车运动方向相反的空气力。

减小气动阻力就就是减小气动阻力系数,气动阻力系数越小,汽车动力特性越好;(2)气动升力及纵倾力矩:由于汽车车身上部与下部气流的流速不同,使车身上部与下部形成压力差,从而产生升力。

汽车空气动力学知识点

汽车空气动力学知识点

第一章绪论引言:利用视频、图片介绍什么是空气动力学?空气动力学的在航空、航天、火车、汽车、建筑、体育运动方面的应用1.1 汽车空气动力学的重要性1.1.1 汽车空气动力学的作用及重要性汽车空气动力学是研究空气与汽车相对运动时的现象和作用规律的一门科学。

汽车空气动力学特性对汽车的动力性、经济性、操纵稳定性、安全性和舒适性都有重要的影响。

1.1.2汽车空气动力学的研究方法实验研究:理论分析和数值计算的基础,并用来检验理论结果的正确性和可靠性;理论分析:能指导实验和数值计算,它在大量实验基础上,归纳和总结出相应的规律,同时通过理论自身的发展反过来指导实验,并为数值计算提供理论模型;数值计算:可以弥补实验研究和理论分析的不足。

1.1.3 汽车空气动力学的研究内容1.气动力及其对汽车性能的影响2.流场与表面压强3.发动机和制动器的冷却特性4.通风、采暖和制冷5.汽车空气动力学专题研究(例如改善雨水流径、减少表面尘土污染、降低气动噪声、侧向风稳定性以及刮水器上浮等专题研究)1.2 汽车空气动力学的发展人们在对汽车陆地速度的追求中,无论汽车外形怎么变化,它的发展始终贯穿着汽车空气动力学这根脉络。

1.2.1汽车空气动力学的四个发展阶段(1)基本形造型阶段基本形是人们直接将水流和气流中的合理外形应用到汽车上。

这个阶段的主要特点是已经开始从完整的车身来考虑空气动力学问题,并且较明确的将航空空气动力学的研究成果运用于汽车车身。

相对于马车来说,这个阶段汽车的气动阻力系数明显改善。

但是仍然没有认识到地面效应的影响,而且造型实用型不强,没有获得广泛应用。

(2)流线形造型阶段特点:地面效应已被人们所认识。

人们用空气动力学观点指导汽车造型,试图降低气动阻力,并获得了可观的进展。

同时,开始对内流阻力及操纵稳定性有了认识。

(3)细部最优化阶段汽车设计应首先服从汽车工程的需要,即首先要充分保证总布置、安全、舒适性和制造工艺的要求,并在保证造型风格的前提下,进行外形设计,然后对形体细部(如圆角半径、曲面弧度、斜度及扰流器等)逐步或同时进行修改,控制以及防止气流分离现象的发生,以降低阻力,称为“细部优化法”(4)整体最优化阶段首先确定一个符合总布置要求的理想的低阻形体,在其发展成实用化汽车的每一设计步骤中,都应严格保证形体的光顺性,使气流不从汽车表面分离,这种设计方法称为形体最佳化法。

汽车空气动力学重点

汽车空气动力学重点

汽车空气动力学重点第一章绪论1. 空气动力学的研究方法1实验研究2理论分析3数值计算2. 汽车流场包括和内部流场车身外部流场3. 气动阻力增加,加速能力下降。

当汽车达到最大车速时,加速度的值就瞬低为零4. 消耗于气动阻力的功率TD A C P ηρ23a u =,功率与速度3次方、阻力与速度2次方成正比5. 汽车空气动力特性对操纵稳定性的影响:1.升力和纵倾力矩都将减小汽车的附着力,从而使转向轮失去转向力,使驱动轮失去牵引力,影响汽车的操纵稳定性,质量轻的汽车,特别是重心靠后的汽车,对前轮胜利越敏感。

2.为提高汽车的方向稳定性,要减小侧向力,使侧向力的作用点移向车身后方6. 汽车空气动力学发展的历史阶段答:(1)基本形状化造型阶段(2)流线形化造型阶段:①杰瑞提出“最小阻力的外形是以流线形的一半构成的车身”‘只有消除尾部的分离,才能降低阻力’;②雷提出:短粗的尾部与长尾相比,仅使气动阻力系数有较小的升高,1934年起,雷提出的粗大后尾端的形状逐渐发展为快背式。

③康姆提出,对大阻力的带棱角的车型,气动阻力系数随横摆角的增加变化很小,而对于流线型汽车,随着横摆角变化,阻力系数有很大变化,即地租汽车侧风稳定性差、。

(3)车身细部优化阶段:汽车空气动力学设计的原则是首先进行外形设计,然后对形体细部逐步或同时进行修改,控制以及防止气流的分离现象发生以降低附着力,成为细部优化法(4)汽车造型的整体优化阶段:整体优化法设计的原则是首先确定一个符合总部制要求的理想的低阻形体,在其发展成实用化汽车的每一设计步骤中,都应严格的保证形体的光顺性,使气流不从汽车表面分离,称之为形体最佳化第二章汽车空气动力学概述7. 气动升力及纵倾力矩:1.由于汽车车身上部和下部气流的流速不同,使车身上部和下部形成压力差,从而产生升力。

作用于汽车上的升力将减小轮胎对地面的压力,使轮胎附着力和侧偏刚度降低,影响汽车的操纵稳定性。

2.车身底部外形对升力系数影响很大,故不能仅根据侧面形状来分析汽车空气动力特性8. 侧向力及横摆力矩:1.侧向力和横摆力矩都影响汽车的行驶稳定性,在非对称气流中,横摆力矩有使汽车绕垂直轴转动的趋势。

汽车动力学之空气动力学资料共72页文档

汽车动力学之空气动力学资料共72页文档

谢谢
11、越是没有本领的就越加自命不凡。——邓拓 12、越是无能的人,越喜欢挑剔别人的错儿。——爱尔兰 13、知人者智,自知者明。胜人者有力,自胜者强。——老子 14、意志坚强的人能把世界放在手中像泥块一样任意揉捏。——歌德 15、最具挑战性的挑战莫过于提升自我。——迈克尔·F·斯特利Biblioteka 汽车动力学之空气动力学资料
1、合法而稳定的权力在使用得当时很 少遇到 抵抗。 ——塞 ·约翰 逊 2、权力会使人渐渐失去温厚善良的美 德。— —伯克
3、最大限度地行使权力总是令人反感 ;权力 不易确 定之处 始终存 在着危 险。— —塞·约翰逊 4、权力会奴化一切。——塔西佗
5、虽然权力是一头固执的熊,可是金 子可以 拉着它 的鼻子 走。— —莎士 比

【空气动力学】总复习精讲

【空气动力学】总复习精讲

第 一
§1-5

• 研究流体运动的两种方法
➢ 拉格朗日法
➢ 欧拉法

分析被流体所充满的空间中各固定位置上

分析流体各个质点的速度、密度、
流体的速度、密度、压强等参数随时间的

压强 不需要追踪每个流体质点的运动,而是要研
究描述流体运动的各个物理参数在空间中的
追踪每个流体质点的运动。

一元定常绝能等熵流动基本方程

连续方程

AVconst 或者 ddAdV0

AV

动量方程
流 基
A d m d p V 0或者 dpVdV 0

本 方
能量方程(理想气体)

Vdd V h0 或者
VdV k RdT0 k1
第 二
§2-1 ,§2-9

一元定常绝能等熵流动基本方程
拉格朗日法
欧拉法
欧拉法
定常,形状与流线重合; 定常,流线形状不变; 非定常,形状随时间变化。 非定常,形状随时间改变。
定常,流管形状不变; 非定常,流管形状随时间改变。
一般情况下,流线不相交 特殊情况下,流线相交
在定常条件下,流管形状不变,由 于流体质点不能穿越管壁,可用流 管代替带有固定壁面的管道

p
2
等熵流动
方 程
滞止密度
* (1k1Ma2)k11

2
绝能流动 理想气体
等熵流动
第 二
§2-11 §2-12

速度系数

V

c cr

① 绝能流动中,临界声速是一个常数,速度系数可以直接反应 气流速度的大小

汽车动力学之空气动力学资料共72页文档

汽车动力学之空气动力学资料共72页文档

பைடு நூலகம்
66、节制使快乐增加并使享受加强。 ——德 谟克利 特 67、今天应做的事没有做,明天再早也 是耽误 了。——裴斯 泰洛齐 68、决定一个人的一生,以及整个命运 的,只 是一瞬 之间。 ——歌 德 69、懒人无法享受休息之乐。——拉布 克 70、浪费时间是一桩大罪过。——卢梭
汽车动力学之空气动力学资 料
26、机遇对于有准备的头脑有特别的 亲和力 。 27、自信是人格的核心。
28、目标的坚定是性格中最必要的力 量泉源 之一, 也是成 功的利 器之一 。没有 它,天 才也会 在矛盾 无定的 迷径中 ,徒劳 无功。- -查士 德斐尔 爵士。 29、困难就是机遇。--温斯顿.丘吉 尔。 30、我奋斗,所以我快乐。--格林斯 潘。

空气动力学复习课(2011全)

空气动力学复习课(2011全)

1)
p1 +
* * * *
ρ
2
V12 = p2 +
ρ
2
V22 = p0
位置 1,2 的(静)压力 局部流速 密度 总压
2)
* 沿着流线适用,理想流体 * 分离后的尾流区不再适用
3)
pdyn = p0 − ps =
ρ
2
V2
V = 110km/h = 110/3.6 m/s = 30.6m/s Pdyn = P0 – Ps = 1/2*rho*V^2 = 560.2 Pa Pdyn = rho_H2O * 9.8 * H(mm)/1000 H(mmH2O) = 1000*560.2 / 1000 / 9.8 = 57.2 mmH2O 例2 通风机功率的计算:某通风口的内外侧均为大气,假设进风管道的直径 450mm,进风量 5400m3/h。为了克服进风口 的局部阻力,在靠近出风口安装小风扇,忽略小风扇之前的管道长度,风扇的出风风速忽略不计,根据表中的局部 压差损失系数,分别计算三种边缘需要的抽风压力(即小风扇前的真空度),以及小风扇的功率。
2011 秋季学期•空气动力学:课程要点汇编
汽车学院 2008 级
庞加斌Leabharlann 第一部分:空气动力学基础1. 空气动力学的定义 空气动力学是研究空气的运动和力之间的关系的学科,尤其是空气与运动物体之间的相互作用的力学分支。 2. 相对湿度和绝对湿度的概念:真实空气,1 个大气压(101325Pa),温度 43 摄氏度,相对湿度 40%,饱和蒸汽压力 86.65Pa。标准状态(1atm, 15deg-C)干空气的密度 = 1.225kg/m3;干空气的气体常数等于 287.05, 水蒸汽的气体 常数等于 461.5 1) 水蒸气压力, Pv 2) 真实空气的密度 答:1) Pv = RH * Psat = 0.4*86.65Pa = 34.66Pa 2) Pdry_air = Patm – Pv = 101290.34Pa Rho = 101290.34/(287.05*316.15) + 34.66 / (461.5*316.5) = 1.116136 + 0.00024 = 1.116 3. 粘性系数和边界层: 经常遇到空气的粘性系数两个数值,哪一个是动力粘性系数,哪一个是运动粘性系数。 1) 定义:流体的粘性是度量因剪切或拉伸变形而形成的阻力大小的物理参数 2) 基本物理模型:剪切应力,粘性摩擦力,速度梯度,粘性系数
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

汽车空气动力学复习笔记1、汽车空气动力学经历了哪四个阶段?它们的特点分别是什么?答:(1)基本形状化造型阶段:直接将水流和气流中的合理外形应用到汽车上,采用了鱼雷形、船尾形、汽艇形等水滴形汽车外形。

已经开始从完整的车身来考虑空气动力学问题,但限于条件不可能更深入地考虑汽车空气动力学问题。

(2)流线形化造型阶段:提出“最小阻力的外形是以流线形的一半构成的车身”,考虑到了地面效应,尾部气流的分离也是气动阻力系数增加的原因。

减少气动阻力不再是唯一目标,而是同时综合考虑气动升力和侧风稳定性,追求更全面的气动性能。

(3)车身细部优化阶段:着重从已有汽车产品上来改进车身细部气动造型,通过各个细部造型的优化和相互动协调来优化汽车整车的气动性能。

(4)汽车造型的整体优化阶段:从一开始就十分重视汽车外形的整体气动性能,因而开发的实用车型具有优秀的空气动力学特性,整体造型更为流畅,形体更为生动,美学造型和气动造型相得益彰。

2、按基本型设计为什么得不到良好的性能呢?答:早期的汽车外形在考虑了流线形化后,气动阻力系数明显地改善了。

但当时没有认识到气流流经这种旋转体时已不再是轴对称,因为把旋转体靠近地面,又加上了车轮及行驶系统,与单纯水滴形的流场已不再相同,造型实用性不强;没有实现“一体化”,气动阻力很大;气流在前端和翼子板处分离后,不能再附着;所以得不到良好的性能。

3、汽车行驶时,除了受到来自地面的力外,还受到其周围气流的气动力和力矩的作用。

来自地面的力取决于汽车的总重、滚动阻力和重心位置。

气动力和力矩则由行驶速度、车身外形和横摆角决定。

4、什么是气动六分力?如何产生?对汽车动力特性有何影响?答:气动六分力分别为:气动阻力、气动升力、纵倾力矩、侧向力、横摆力矩及侧倾力矩。

(1)气动阻力:是与汽车运动方向相反的空气力。

减小气动阻力就是减小气动阻力系数,气动阻力系数越小,汽车动力特性越好;(2)气动升力及纵倾力矩:由于汽车车身上部和下部气流的流速不同,使车身上部和下部形成压力差,从而产生升力。

由于升力而产生绕Y轴的纵倾力矩。

侧风作用下的轻型高速汽车,车身前部可能有较大的局部升力,作用于汽车上的升力将减小轮胎对地面的压力,使轮胎附着力和侧偏刚度降低,影响汽车的操纵稳定性。

(3)侧向力及横摆力矩:侧向力和横摆力矩都影响汽车的行驶稳定性,为了保证汽车的行驶稳定性,在减小侧向力的同时,还应使侧向力的作用点即风压中心移向汽车重心之后。

(4)侧倾力矩:对汽车左右车轮的重量分配有较大的影响,并且直接影响到汽车的侧倾角。

侧倾力矩主要是由车身侧面形状决定的,一般侧面流线形好的汽车,侧倾力矩相对较小。

汽车的高度和宽度对侧倾力矩影响很大,一般低而宽的汽车侧倾力矩系数比高而狭长的汽车的侧倾力矩系数小。

汽车设计时,应尽量使风压中心接近侧倾轴线。

5、风压中心即侧向力的作用点6、汽车空气动力学的基本研究方法:实验研究、理论研究、数值计算7、汽车的最高车速、加速时间和最大爬坡度是评价汽车动力性的主要指标8、减小气动阻力系数,可提高最高车速9、汽车依据其外形和用途可分为三类:乘用车(轿车)、商用车(货车及客车)和赛车(高性能汽车)10、从车身表面的压力分布的角度分析如何防止泥土上卷?答:车身上下部分的压力差会使泥土上卷,这可通过提高车身上部的压力来防止。

11、阻力分类:气动阻力:外部阻力(形状阻力、诱导阻力)和内部阻力(发动机冷却系阻力、驾驶室内空调阻力、汽车部件冷却阻力)12、与汽车相关的流场的分为哪三类?其作用分别是什么?答:与汽车相关的流场分为汽车周围的外部流场、穿过汽车车身内部的流场,以及发动机室及变速器等机体内的流场三类。

汽车外部流场:使汽车受到力和力矩的作用,对汽车的动力性、经济性和操纵稳定性产生极大的影响。

汽车内部流场:主要是通过散热器和发动机室的气流以及穿过驾驶室的暖气和通风的空调系统的气流,散掉与发动机有用功大致相当的热量;保证足够的通风,使驾驶室内所有污染的空气和尘土排出,同时更新呼吸消耗的氧气;在车外气候极大的变化范围内,保证驾驶室内气候舒适;内部气流必须穿过车窗,以除霜。

13、与航空飞行器相比,汽车空气动力学有什么特点,展开分析。

答:飞机空气动力学在相当大的范围内采用理论分析。

当今飞机的空气动力学设计从理论分析亦即从数值计算开始,然后进行小模型的风洞试验,最后才进行样机的飞行试验。

汽车空气动力学研究主要是通过试验,包括各种模拟试验、验证和改进各种改型措施,同时模拟试验又不断揭示各种气动现象。

汽车空气动力学设计与飞机设计步骤不同。

汽车不仅要考虑空气动力学,同时还要考虑造型风格、操纵稳定性、安全性、舒适性以及生产工艺的合理性。

14、前端形状、风窗玻璃与发动机罩形状、顶盖外形、车身侧面外形、后窗周围形状、车身底部外形都会对空气动力特性产生影响。

前端形状对空气动力特性的影响:从理论上讲,车的前端完全流线形化为最好,但在实际设计中却并不能采用;在设计中,如能尽量倒圆棱角,使外形接近流线形,并减小车头部的正面投影面积,就可得到较好的空气动力学效果。

风窗玻璃与发动机罩形状对空气动力特性的影响:当夹角为60度时,得到R点的最大偏离值,其误差为风窗玻璃全长的2%。

发动机罩在水平方向的曲率越大,分离点就越往下移动;同样,风窗玻璃曲率增加也会使再附着点R向下移动。

当发动机罩与风窗玻璃的夹角为30度左右时,气动阻力系数值最小,而机罩与风窗玻璃的夹角在30度以下时,分离线与再附着线移动很小,亦即对降低气动阻力效果不大。

顶盖外形对空气动力特性的影响:在满足驾驶室居住性要求的同时,选择最佳气动外形。

应避免由前端经顶盖流向尾部的气流与由地板下部上卷的气流在车身尾部混合而形成尾涡。

顶盖的末端采用上挠的鸭尾式外形。

车身侧面外形对空气动力特性的影响:在保证总布置设计要求即在居住空间控制范围内,应使侧面外形曲率达到最佳化,消除侧面部件的外凸和棱角,使其平滑以消除和控制气流分离,减小涡流区,降低气动阻力系数值。

15、气流分离是怎样产生的?为什么气流分离会增加阻力?为此在车型设计时我们都采取哪些措施?答:物体的外形有一个边界,气流沿物体表面流动时,由于气流的惯性和粘性,当超过这个边界时,气流不是沿表面流动,而产生分离、涡流等状态,并伴随产生气动噪声,同时气动阻力增加。

因此,成功的设计应维持气流沿汽车光滑的表面流动。

最佳气动外形设计的原则是,为使沿车身表面的气流不分离,车身表面外形不急骤变化,表面外形变化处应平滑过渡,从车身前端至后端的外形曲线连续。

16、真实流体和理想流体的主要差别:答:1)在速度分布不均匀的流场中,真实流体的质点与质点之间有切应力作用,而理想流体没有;2)在温度分布不均匀的流场中,真实流体的质点与质点之间有热量的传递,而理想流体没有;3)真实流体附着于固体表面,即在固体表面上的流体流速与固体的速度相同,而理想流体在固体表面上发生相对滑移;4)真实流体在固体表面上具有与固体相同的温度,而理想流体在固体表面上与固体之间发生温度突跃。

17、压缩性:如果温度不变,流体的体积随压力增加而缩小,这种特性称为流体的压缩性;18、膨胀性:如果压力不变,流体的体积随温度升高而增大,这种特性称为流体的膨胀性;19、粘性:流体具有阻抗各层之间的相对滑动的性质,叫做粘性;20、四个假设:连续性、无粘、不可压缩、定常。

21、边界层:在静止空气中,假设没有气流分离现象,粘性只是在汽车表面几毫米厚的薄层中起作用,这个薄层就称为边界层。

22、常数=+=202v p p ρ,伯努利方程。

方程表明,在同一条流线上,气流的速度增大,压力下降;反之,则相反。

当气流静止时,速度降为零,压力达到最大值,该点称为滞点。

该点的压力用p0表示,这个值称为总压或滞点压力,其中p 为静压,22v ρ为动压。

23、(最佳气动外形是什么)汽车设计趋势?答:(1)车身侧面:尽量降低车身总高、离地间隙尽量小、前脸扁平,后端处理应尽量使阻力降低(采用切尾、加尾翼或采用鸭尾形)、发动机罩和顶盖尽量扁平、为确保方向稳定性而加上尾翼。

(2)车身正面:宽而低的扁平形、采用无棱角的扁平和圆形过渡、当驾驶室要求有必要的棱角时,在腰线部位可装置倾斜的侧翼,使其圆滑过渡。

24、汽车空气动力学对发动机冷却的影响?答:冷却风迂回撞击发动机,使发动机室收到斜上方和斜下方的力,这个力与路面平行的成分为内部阻力的一部分,与路面垂直的成分为升力的一部分,而冷却风排除后与车身周围气流发生干涉时,也产生阻力。

即在任何情况下,冷却风都将引起内部阻力增加。

而升力则不同,当冷却气流从下方排出时,升力增加;从上方排出时,升力减小。

25、汽车空气动力学对驾驶室通风的影响?答:(1)为防止发动机室的热辐射及热传递,驾驶室内应有较好的隔热层;大部分汽车的车顶与车壁都应该有装饰层和隔热层,舒适性要求高一些的汽车会装有空调系统;(2)要设计良好的自然通风系统来保证车室环境舒适性。

26、流程中声源的分类为:单极子声源、双极子声源、四极子声源。

27、什么是气动噪声?其分类?答:行驶中的汽车由于其周围的风而产生的噪声成为气动噪声。

分为风噪声、吸出声(风漏声)、其他噪声。

28、汽车空气动力学试验的基本方法分类:模型风洞试验法、实车风洞试验法、实车道路试验法。

模型风洞试验法:该试验法用汽车比例模型在风洞中进行空气动力学试验。

试验时模型一般不动,使空气流经模型,只要满足必要的相似条件,这就与实车在静止空气中运行具有相同的物理规律。

实车风洞试验法:该试验法用实车在风洞中进行试验。

在实车风洞中,用转动的传动带模拟地面效应,或设置转鼓模拟地面效应,汽车处于行驶状态,同时模拟汽车的内、外流场。

实车道路试验法:该试验法用实车在试车场进行试验,包括实车气动阻力测定、实车流态显示、实车气动噪声、实车发动机冷却以及实车驾驶室内空调等的试验,还有用侧风发生器进行侧风稳定性试验等等。

29、汽车风洞:是进行汽车空气动力学试验的主要设备,是一个按一定要求建造的管道,并利用动力装置等设备在管道中产生可以调节的气流,使风洞试验段能够模拟或基本模拟大气流场的状态,以供汽车进行空气动力学试验。

30、按通过试验段气流循环形式来分,可分为回流型风洞和直流型风洞。

31、汽车风洞试验准则:足够的均匀流场、几何形状相似、雷诺数模拟、尽量排除风洞试验中的支架及洞壁的干扰、风洞流场的动态校准32、汽车风洞与航空风洞的差别?答:汽车风洞与航空风洞在气动布局上,特别是试验段设计上存在差别。

这种差别主要体现在截面气动外形、试验段参数选择及地面效应模拟技术等方面。

33、汽车车身表面流态显示试验方法:丝带法、油膜法、烟流法、直接注入法、激光流态显示法。

相关文档
最新文档