人教版九年级数学上《第21章一元二次方程》单元测试题含答案解析
人教新版 九年级(上)数学 第21章 一元二次方程 单元测试卷 (解析版)
第21章一元二次方程单元测试一、选择题(共10小题).1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=02.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1 3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0 4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.25.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥16.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为.13.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为.三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①,②,③,④.(2)猜想:第n个方程为,其解为.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?参考答案一.选择题(共10小题,满分30分,每小题3分)1.(3分)下列方程是关于x的一元二次方程的是()A.x+2y=0B.x2﹣4y=0C.x2+3x=0D.x+1=0解:A.x+2y=0含有两个未知数,不合题意;B.x2﹣4y=0含有两个未知数,不合题意;C.x2+3x=0是一元二次方程,符合题意;D.x+1=0中未知数的最高次数不是2次,不合题意;故选:C.2.(3分)一元二次方程(x﹣1)2=0的解是()A.x1=0,x2=1B.x1=1,x2=﹣1C.x1=x2=1D.x1=x2=﹣1解:∵(x﹣1)2=0,∴x﹣1=0,x=1,即x1=x2=1,故选:C.3.(3分)下列方程中,两根分别为2和3的方程是()A.x2﹣x﹣6=0B.x2﹣6x+5=0C.x2+x﹣6=0D.x2﹣5x+6=0解:∵方程的两根分别为2和3,∴2+3=5,2×3=6,∴方程为x2﹣5x+6=0.故选:D.4.(3分)某公司年前缴税20万元,今年缴税24.2万元.若该公司这两年的年均增长率相同,设这个增长率为x,则列方程()A.20(1+x)3=24.2B.20(1﹣x)2=24.2C.20+20(1+x)2=24.2D.20(1+x)2=24.2解:设这个增长率为x,由题意得,20(1+x)2=24.2.故选:D.5.(3分)关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,则k的范围是()A.k<1B.k>1C.k≤1D.k≥1解:∵关于x的一元二次方程9x2﹣6x+k=0有两个不相等的实根,∴△=(﹣6)2﹣4×9k>0,解得k<1.故选:A.6.(3分)已知方程x2+bx+a=0有一个根是1,则代数式a+b的值是()A.1B.﹣1C.0D.以上答案都不是解:∵方程x2+bx+a=0有一个根是1,∴1+b+a=0,∴a+b=﹣1.故选:B.7.(3分)对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若a+c=0,方程ax2+bx+c=0有两个不等的实数根;②若方程ax2+bx+c=0有两个不等的实数根,则方程cx2+bx+a=0也一定有两个不等的实数根;③若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立;④若m是方程ax2+bx+c=0的一个根,则一定有b2﹣4ac=(2am+b)2成立.其中正确的只有()A.①②B.②③C.③④D.①④解:①因为a+c=0,a≠0,所以①a、c异号,所以△=b2﹣4ac>0,所以方程有两个实数根;②若方程ax2+bx+c=0有两个不等的实数根,则△=b2﹣4ac>0,所以方程cx2+bx+a=0也一定有两个不等的实数根;若c=0,则方程cx2+bx+a=0为一次,没有两个不等实数根;③若c是方程ax2+bx+c=0的一个根,当c=0时,ac+b+1=0不一定成立;④若m是方程ax2+bx+c=0的一个根,所以有am2+bm+c=0,即am2=﹣(bm+c),而(2am+b)2=4a2m2+4abm+b2=4a[﹣(bm+c)]+4abm+b2=﹣4abm﹣4ac+4abm+b2=b2﹣4ac.所以①④成立.故选:D.8.(3分)解方程(5x﹣1)2=(2x+3)2的最适当方法应是()A.直接开平方法B.配方法C.公式法D.因式分解法解:方程(5x﹣1)2=(2x+3)2的最适当方法应是直接开平方法.故选:A.9.(3分)以4、9为两边长的三角形的第三边长是方程x2﹣14x+40=0的根,则这个三角形的周长为()A.17或23B.17C.23D.以上都不对解:x2﹣14x+40=0,(x﹣4)(x﹣10)=0,x﹣4=0或x﹣10=0,所以x1=4,x2=10,因为4+4<9,不符合三角形三边的关系,所以三角形的第三边长是10,所以三角形的周长=4+9+10=23.故选:C.10.(3分)已知(x+y)(x+y+2)﹣8=0,则x+y的值是()A.﹣4或2B.﹣2或4C.2或﹣3D.3或﹣2解:设x+y=a,原方程可化为a(a+2)﹣8=0即:a2+2a﹣8=0解得a1=2,a2=﹣4∴x+y=2或﹣4故选:A.二.填空题(共6小题,满分18分,每小题3分)11.(3分)已知(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,则m=﹣1.解:∵方程(m﹣1)x|m|+1﹣3x+1=0是关于x的一元二次方程,∴|m|=1,m﹣1≠0,解得:m=﹣1.故答案为:﹣1.12.(3分)将方程x2﹣2x+1=4﹣3x化为一般形式为x2+x﹣3=0.解:方程整理得:x2+x﹣3=0,故答案为:x2+x﹣3=013.(3分)已知一元二次方程2x2﹣3x=1,则b2﹣4ac=17.解:由原方程,得2x2﹣3x﹣1=0,∴二次项系数a=2,一次项系数b=﹣3,常数项c=﹣1,∴b2﹣4ac=(﹣3)2﹣4×2×(﹣1)=9+8=17;故答案是:17.14.(3分)一元二次方程x2+px﹣2=0的一个根为2,则p的值﹣1.解:把x=2代入方程x2+px﹣2=0得4+2p﹣2=0,解得p=﹣1.故答案为:﹣1.15.(3分)若x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,且x1+x2=1﹣x1x2,则m 的值为1.解:∵x1,x2是方程x2﹣2mx+m2﹣m﹣1=0的两个根,∴x1+x2=2m,x1x2=m2﹣m﹣1.∵x1+x2=1﹣x1x2,即2m=1﹣(m2﹣m﹣1),∴m1=﹣2,m2=1.∵方程x2﹣2mx+m2﹣m﹣1=0有两个实数根,∴△=(﹣2m)2﹣4(m2﹣m﹣1)=4m+4≥0,解得:m≥﹣1,∴m=1.故答案为:1.16.(3分)在实数范围内定义一种运算“*”,其规则为a*b=a2﹣b2,根据这个规则,方程(x+2)*5=0的解为x=3或x=﹣7.解:据题意得,∵(x+2)*5=(x+2)2﹣52∴x2+4x﹣21=0,∴(x﹣3)(x+7)=0,∴x=3或x=﹣7.故答案为:x=3或x=﹣7三.解答题(共9小题,满分72分)17.(16分)用指定方法解下列一元二次方程(1)3(2x﹣1)2﹣12=0(直接开平方法)(2)2x2﹣4x﹣7=0(配方法)(3)x2+x﹣1=0(公式法)(4)(2x﹣1)2﹣x2=0(因式分解法)解:(1)3(2x﹣1)2﹣12=0,移项,得3(2x﹣1)2=12,两边都除以3,得(2x﹣1)2=4,两边开平方,得2x﹣1=±2,移项,得2x=1±2,解得:x1=,x2=﹣;(2)2x2﹣4x﹣7=0,两边都除以2,得x2﹣2x﹣=0,移项,得x2﹣2x=,配方,得x2﹣2x+1=,即(x﹣1)2=,解得:x﹣1=±,即x1=1+,x2=1﹣;(3)x2+x﹣1=0,这里a=1,b=1,c=﹣1,∵b2﹣4ac=12﹣4×1×(﹣1)=5,∴x=,解得:x1=,x2=;(4)(2x﹣1)2﹣x2=0,方程左边因式分解,得(2x﹣1+x)(2x﹣1﹣x)=0,即(3x﹣1)(x﹣1)=0,解得:x1=,x2=1.18.(6分)已知关于x的方程x2+ax+a﹣2=0(1)求证:不论a取何实数,该方程都有两个不相等的实数根;(2)若该方程的一个根为1,求a的值及该方程的另一个根.解:(1)∵△=a2﹣4×1×(a﹣2)=a2﹣4a+8=(a﹣2)2+4>0,∴不论a取何实数,该方程都有两个不相等的实数根;(2)将x=1代入方程,得:1+a+a﹣2=0,解得a=,将a=代入方程,整理可得:2x2+x﹣3=0,即(x﹣1)(2x+3)=0,解得x=1或x=﹣,∴该方程的另一个根﹣.19.(6分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.(1)求实数m的取值范围;(2)当x12﹣x22=0时,求m的值.解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,解得,∴实数m的取值范围是;(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,若x1+x2=0,即﹣(2m﹣1)=0,解得,∵>,∴不合题意,舍去,若x1﹣x2=0,即x1=x2∴△=0,由(1)知,故当x12﹣x22=0时,.20.(6分)某商店购进600个旅游纪念品,进价为每个6元,第一周以每个10元的价格售出200个,第二周若按每个10元的价格销售仍可售出200个,但商店为了适当增加销量,决定降价销售(根据市场调查,单价每降低1元,可多售出50个,但售价不得低于进价),单价降低x元销售,销售一周后,商店对剩余旅游纪念品清仓处理,以每个4元的价格全部售出,如果这批旅游纪念品共获利1250元,问第二周每个旅游纪念品的销售价格为多少元?解:由题意得出:200(10﹣6)+(10﹣x﹣6)(200+50x)+(4﹣6)[(600﹣200)﹣(200+50x)]=1250,即800+(4﹣x)(200+50x)﹣2(200﹣50x)=1250,整理得:x2﹣2x+1=0,解得:x1=x2=1,∴10﹣1=9.答:第二周的销售价格为9元.21.(7分)某学校机房有100台学生电脑和1台教师用电脑,现在教师用电脑被某种电脑病毒感染,且该电脑病毒传播非常快,如果一台电脑被感染,经过两轮感染后就会有16台电脑被感染.(1)每轮感染中平均一台电脑会感染几台电脑?(2)若病毒得不到有效控制,多少轮感染后机房内所有电脑都被感染?解:(1)设每轮感染中平均每一台电脑会感染x台电脑,依题意得:1+x+(1+x)x=16,整理得(1+x)2=16,则x+1=4或x+1=﹣4,解得x1=3,x2=﹣5(舍去).答:每轮感染中平均一台电脑会感染3台电脑;(2)∵n轮后,有(1+x)n台电脑被感染,故(1+3)n=4n,∵n=3时,43=64,n=4时,44=256.答:4轮感染后机房内所有电脑都被感染.22.(7分)一个批发兼零售的文具店规定:凡一次购买铅笔301支以上(包括301支)可以按批发价付款;购买300支以下(包括300支)只能按零售价付款,现有小王购买铅笔,如果给初三年级学生每人买1支,只能按零售价付款,需用(m2﹣1)元,(m为正整数,且m2﹣1>100)如果多买60支,则可按批发价付款,同样需用(m2﹣1)元.(1)设初三年级共有x名学生,则x的取值范围是多少?铅笔的零售价每支多少元?批发价每支应为多少元?(用含x、m的代数式表示)(2)若按批发价每购15支比按零售价每购15支少一元,试求初三年级共有多少学生?并确定m的值.解:(1)由题意可得,,解得,241≤x≤300,即x的取值范围是:241≤x≤300(x为正整数);铅笔的零售价每支应为:元;铅笔的批发价每支应为:元;(2)由题意可得,15×﹣15×=1,化简,得x2+60x﹣900(m2﹣1)=0,解得,x1=30(m﹣1),x2=﹣30(m+1)(舍去),∴241≤30(m﹣1)≤300,解得,≤m≤11,∴m=10或m=11,当m=10时,m2﹣1=99<100,故m=10不合题意,舍去,当m=11时,m2﹣1=120>100,符合题意,∴m=11,∴x=30(m﹣1)=300,经检验x=300是原分式方程的解,答:初三年级共有300名学生,m的值是11.23.(7分)如图所示,△ABC中,∠B=90°,AB=6cm,BC=8cm.(1)点P从点A开始沿AB边向B以1cm/s的速度移动,点Q从B点开始沿BC边向点C以2cm/s的速度移动.如果P、Q分别从A,B同时出发,线段PQ能否将△ABC 分成面积相等的两部分?若能,求出运动时间;若不能说明理由.(2)若P点沿射线AB方向从A点出发以1cm/s的速度移动,点Q沿射线CB方向从C 点出发以2cm/s的速度移动,P、Q同时出发,问几秒后,△PBQ的面积为1cm2?解:(1)设经过x秒,线段PQ能将△ABC分成面积相等的两部分由题意知:AP=x,BQ=2x,则BP=6﹣x,∴(6﹣x)•2x=××6×8,∴x2﹣6x+12=0,∵b2﹣4ac<0,此方程无解,∴线段PQ不能将△ABC分成面积相等的两部分;(2)设t秒后,△PBQ的面积为1①当点P在线段AB上,点Q在线段CB上时此时0<t≤4由题意知:(6﹣t)(8﹣2t)=1,整理得:t2﹣10t+23=0,解得:t1=5+(不合题意,应舍去),t2=5﹣,②当点P在线段AB上,点Q在线段CB的延长线上时此时4<t≤6,由题意知:(6﹣t)(2t﹣8)=1,整理得:t2﹣10t+25=0,解得:t1=t2=5,③当点P在线段AB的延长线上,点Q在线段CB的延长线上时此时t>6,由题意知:(t﹣6)(2t﹣8)=1,整理得:t2﹣10t+23=0,解得:t1=5+,t2=5﹣,(不合题意,应舍去),综上所述,经过5﹣秒、5秒或5+秒后,△PBQ的面积为1.24.(8分)已知,下列n(n为正整数)个关于x的一元二次方程:①x2﹣1=0,②x2+x﹣2=0,③x2+2x﹣3=0,④x2+3x﹣4=0,…,⑪,…(1)上述一元二次方程的解为①x1=1,x2=﹣1,②x1=1,x2=﹣2,③x1=1,x2=﹣3,④x1=1,x2=﹣4.(2)猜想:第n个方程为x2+(n﹣1)x﹣n=0,其解为x1=1,x2=﹣n.(3)请你指出这n个方程的根有什么共同的特点(写出一条即可).解:(1)①(x+1)(x﹣1)=0,∴x1=1,x2=﹣1.②(x+2)(x﹣1)=0,∴x1=1,x2=﹣2.③(x+3)(x﹣1)=0,∴x1=1,x2=﹣3.④(x+4)(x﹣1)=0,∴x1=1,x2=﹣4.(2)由(1)找出规律,可写出第n个方程为:x2+(n﹣1)x﹣n=0,(x﹣1)(x+n)=0,解得x1=1,x n=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.故答案是:(1)①x1=1,x2=﹣1.②x1=1,x2=﹣2.③x1=1,x2=﹣3.④x1=1,x2=﹣4.(2)x2+(n﹣1)x﹣n=0;x1=1,x2=﹣n.(3)这n个方程都有一个根是1;另一个根是n的相反数;a+b+c=0;b2﹣4ac=(n+1)2;都有两个不相等的实数根;两个根异号.25.(9分)先阅读理解下面的例题,再按要求解答下列问题:例题:求代数式y2+4y+8的最小值.解:y2+4y+8=y2+4y+4+4=(y+2)2+4∵(y+2)2≥0∴(y+2)2+4≥4∴y2+4y+8的最小值是4.(1)求代数式m2+m+4的最小值;(2)求代数式4﹣x2+2x的最大值;(3)某居民小区要在一块一边靠墙(墙长15m)的空地上建一个长方形花园ABCD,花园一边靠墙,另三边用总长为20m的栅栏围成.如图,设AB=x(m),请问:当x取何值时,花园的面积最大?最大面积是多少?解:(1)m2+m+4=(m+)2+,∵(m+)2≥0,∴(m+)2+≥,则m2+m+4的最小值是;(2)4﹣x2+2x=﹣(x﹣1)2+5,∵﹣(x﹣1)2≤0,∴﹣(x﹣1)2+5≤5,则4﹣x2+2x的最大值为5;(3)由题意,得花园的面积是x(20﹣2x)=﹣2x2+20x,∵﹣2x2+20x=﹣2(x﹣5)2+50∵﹣2(x﹣5)2≤0,∴﹣2(x﹣5)2+50≤50,∴﹣2x2+20x的最大值是50,此时x=5,则当x=5m时,花园的面积最大,最大面积是50m2.。
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)
人教版九年级数学上册第21章一元二次方程单元测试题(含答案)一、选择题(每小题4分,共32分)1.下列方程中,是一元二次方程的有( )①x 2=0; ②ax 2+bx +c =0; ③3x 2=x ; ④2x (x +4)-2x 2=0;⑤(x 2-1)2=9; ⑥1x 2+1x-1=0.A .2个B .3个C .4个D .5个 2.将一元二次方程x 2-4x +3=0配方可得( ) A .(x -2)2=7 B .(x -2)2=1 C .(x +2)2=1 D .(x +2)2=23.若关于x 的一元二次方程x 2-2x +m =0有一个解为x =-1,则另一个解为( ) A .1 B .-3 C .3 D .4 4.已知方程kx 2+4x +4=0有实数根,则k 的取值范围是( ) A .k ≤1 B .k ≥-1 C .k ≤1且k ≠0 D .k <-15.若一个三角形的两边长分别为3和6,第三边长是方程x 2-13x +36=0的根,则这个三角形的周长为( )A .13B .15C .18D .13或186.小红按某种规律写出4个方程:①x 2+x +2=0;②x 2+2x +3=0;③x 2+3x +4=0;④x 2+4x +5=0.按此规律,第五个方程的两个根为( )A .-2,3B .2,-3C .-2,-3D .2,37.若关于x 的一元二次方程x 2-3x +p =0(p ≠0)的两个不相等的实数根分别为a 和b ,且a 2-ab +b 2=18,则a b +ba的值是( )A .3B .-3C .5D .-58.某企业2018年初获利润300万元,到2020年初计划利润达到507万元.设这两年利润的年平均增长率为x ,则可列方程为( )A .300(1+x )=507B .300(1+x )2=507C .300(1+x )+300(1+x )2=507D .300+300(1+x )+300(1+x )2=507 二、填空题(每小题4分,共24分)9.把方程(2x +1)(x -2)=5-3x 整理成一般形式得____________,其中一次项系数为______.10.若(m +1)x |m -1|+5x -3=0是关于x 的一元二次方程,则m 的值为________. 11.关于x 的方程kx 2-4x -4=0有两个不相等的实数根,则k 的最小整数值为________. 12.关于x 的一元二次方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数,则a 的值为________.13.为创建“国家生态园林城市”,某小区在规划设计时,在小区中央设置一块面积为1200平方米的矩形绿地,并且长比宽多40米.设绿地宽为x 米,根据题意,可列方程为________________.14.小明发明了一个魔术盒,当任意实数对(a ,b )进入其中时,会得到一个新的实数:a 2+b -1,例如把(3,-2)放入其中,就会得到32+(-2)-1=6.现将实数对(m ,-2m )放入其中,得到实数2,则m =________.三、解答题(共44分)15.(9分)用适当的方法解下列方程: (1)12(x +1)2-6=0;(2)x 2+25x +2=0;(3)2x (2-x )=3(x -2).16.(8分)已知关于x 的一元二次方程(x -3)(x -2)=p (p +1). (1)求证:无论p 取何值,此方程总有两个实数根;(2)若原方程的两个根分别为x 1,x 2,且满足x 12+x 22-x 1x 2=3p 2+1,求p 的值.17.(8分)如图21,在直角墙角AOB (OA ⊥OB ,且OA ,OB 长度不限)中,要砌20 m 长的墙(即AC +BC =20 m),与直角墙角AOB 围成地面为矩形的储仓,且地面矩形AOBC 的面积为96 m2.(1)求该地面矩形的长;(2)有规格为0.80×0.80和1.00×1.00(单位:m)的地板砖,单价分别为50元/块和80元/块,若只选其中一种地板砖都恰好能铺满储仓的矩形地面(不计缝隙),则用哪一种规格的地板砖费用较少?图2118.(8分)某批发商以每件50元的价格购进800件T恤,第一个月以单价80元/件的价格销售,售出了200件;第二个月如果单价不变,预计仍可售出200件,批发商为增加销量,决定降价销售,根据市场调查发现,该T恤的单价每降低1元/件,可多售出10件,但最低单价应高于购进的价格;第二个月结束后,批发商将对剩余的T恤一次性清仓销售,清仓时单价为40元/件,设第二个月单价降低x元/件.(1)填表(不需要化简):(2)19.(11分)如图22所示,已知在△ABC中,∠B=90°,AB=5 cm,BC=7 cm,点Q 从点A开始沿AB边以1 cm/s的速度向点B移动,点P从点B开始沿BC边以2 cm/s的速度向点C移动,如果点Q,P分别从点A,B同时出发,当一动点运动到终点时,另一动点也随之停止运动.(1)几秒后,△PBQ的面积等于4 cm2?(2)几秒后,PQ的长度等于210 cm?(3)在(1)中,△PBQ的面积能否等于7 cm2?试说明理由.图22答案1.A 2.B3.C [解析] 设方程的另一个解为x 1.根据题意,得-1+x 1=2,解得x 1=3.4.A [解析] 当k =0时,方程为一元一次方程4x +4=0,有唯一实数根;当k ≠0时,方程是一元二次方程.∵方程有实数根,∴根的判别式b 2-4ac =16-16k ≥0,即k ≤1且k ≠0.综上所述k 的取值范围是k ≤1.5.A6.C [解析] 根据小红写出的4个方程,发现其规律是第n 个方程是x 2+nx +(n +1)=0,所以第五个方程是x 2+5x +6=0,即(x +2)(x +3)=0,则x +2=0或x +3=0,∴x 1=-2,x 2=-3.7.D [解析] ∵a ,b 为方程x 2-3x +p =0(p ≠0)的两个不相等的实数根, ∴a +b =3,ab =p .∵a 2-ab +b 2=(a +b )2-3ab =32-3p =18,∴p =-3.当p =-3时,b 2-4ac =(-3)2-4p =9+12=21>0,∴p =-3符合题意.∴a b +b a =(a +b )2-2ab ab =(a +b )2ab -2=32-3-2=-5. 故选D.8.B 9.2x 2-7=0 0 10.311.1 [解析] ∵关于x 的方程kx 2-4x -4=0有两个不相等的实数根,∴k ≠0且b 2-4ac >0,即k ≠0且16+16k >0,解得k >-1且k ≠0,∴k 的最小整数值为1.12.0 [解析] ∵方程x 2+(a 2-2a )x +a -1=0的两个实数根互为相反数, ∴a 2-2a =0,解得a =0或a =2.当a =2时,方程为x 2+1=0,该方程无实数根,舍去,∴a =0. 13.x (x +40)=120014.3或-1 [解析] 把实数对(m ,-2m )代入a 2+b -1=2中,得m 2-2m -1=2. 移项,得m 2-2m -3=0.因式分解,得(m -3)(m +1)=0. 解得m 1=3,m 2=-1.15.解:(1)整理,得(x +1)2=12,开平方,得x +1=±2 3,所以x 1=-1+2 3,x 2=-1-2 3. (2)因为a =1,b =2 5,c =2, 所以b 2-4ac =12>0,代入公式,得x =-b ±b 2-4ac 2a =-2 5±2 32=-5±3,所以原方程的解为x 1=-5+ 3,x 2=-5- 3.(3)移项,得3(x -2)+2x (x -2)=0, 即(3+2x )(x -2)=0,所以x -2=0或2x +3=0,所以x 1=2,x 2=-32.16.解:(1)证明:原方程可变形为x 2-5x +6-p 2-p =0.∵b 2-4ac =(-5)2-4(6-p 2-p )=25-24+4p 2+4p =4p 2+4p +1=(2p +1)2≥0, ∴无论p 取何值,此方程总有两个实数根. (2)∵原方程的两个根分别为x 1,x 2, ∴x 1+x 2=5,x 1x 2=6-p 2-p . 又∵x 12+x 22-x 1x 2=3p 2+1, ∴(x 1+x 2)2-3x 1x 2=3p 2+1, ∴52-3(6-p 2-p )=3p 2+1, ∴25-18+3p 2+3p =3p 2+1, ∴3p =-6,∴p =-2.17.解:(1)设AC =x m ,则BC =(20-x )m. 由题意,得x (20-x )=96, 即x 2-20x +96=0, ∴(x -12)(x -8)=0,解得x =12或x =8.当AC =12 m 时,BC =8 m ,AC 为矩形的长,此时矩形的长为12 m. 当AC =8 m 时,BC =12 m ,BC 为矩形的长,此时矩形的长为12 m. 答:该地面矩形的长为12 m.(2)①若选用规格为0.80×0.80(单位:m)的地板砖,则 120.8×80.8=15×10=150(块), 150×50=7500(元);②若选用规格为1.00×1.00(单位:m)的地板砖,则 121×81=96(块), 96×80=7680(元). ∵7500<7680,∴选用规格为0.80×0.80(单位:m)的地板砖费用较少.18.[解析] (1)第二个月的单价=第一个月的单价-降低的价格,销售量=200+10×降低的单价;清仓时的销售量=800-第一个月的销售量-第二个月的销售量.(2)等量关系为总售价-总进价=9000元.把相关数值代入计算即可. 解:(1)填表如下.即x 2-20x +100=0,解得x 1=x 2=10. 当x =10时,80-x =80-10=70.答:第二个月的单价应为70元/件.[点评] 本题考查一元二次方程的应用.用列表格的方法得到第二个月的单价和销售量以及清仓时的销售量是解决本题的突破点,得到总利润的等量关系是解决本题的关键.19.[解析] (1)设点Q ,P 分别从点A ,B 同时出发,x s 后,AQ =x cm ,QB =(5-x )cm ,BP =2x cm ,则△PBQ 的面积等于12×2x (5-x ),令该式等于4,列出方程求出符合题意的解;(2)根据勾股定理可求;(3)△PBQ 的面积能否等于7 cm 2,只需令12×2x (5-x )=7,化简该方程后,判断该方程的判别式与0的关系,若判别式大于或等于0,则能等于7 cm 2,否则不能等于7 cm 2.解:(1)设x s 后,△PBQ 的面积等于4 cm 2, 此时,AQ =x cm ,QB =(5-x )cm ,BP =2x cm.由12BP ·QB =4,得12×2x (5-x )=4, 即x 2-5x +4=0,解得x 1=1,x 2=4(不合题意,舍去). 所以1 s 后,△PBQ 的面积等于4 cm 2. (2)设y s 后,PQ 的长度等于210 cm. 此时QB =(5-y )cm ,BP =2y cm.在Rt △PBQ 中,因为PQ =210 cm ,根据勾股定理,得(5-y )2+(2y )2=(210)2, 解得y 1=3,y 2=-1(舍去).所以3 s 后,PQ 的长度等于210 cm. (3)由(1),得12×2x (5-x )=7.整理,得x 2-5x +7=0. 因为b 2-4ac =25-28<0, 所以此方程无实数解.所以△PBQ 的面积不可能等于7 cm 2.人教版九年级数学上册第21章一元二次方程单元检测题(有答案)(4)一、精心选一选1.已知x=1是一元二次方程x 2-2mx+1=0的一个解,则m 的值是( ) A .1 B .0 C .0或1 D .0或-12.已知a 、b 为一元二次方程0922=-+x x 的两个根,那么b a a -+2的值为( )(A )-7 (B )0 (C )7 (D )113.若关于x 的一元二次方程(k ﹣2)x 2﹣2kx +k =6有实数根,则k 的取值范围为( ) A .k ≥0B .k ≥0且k ≠2C .k ≥23 D .k ≥23且k ≠2 4.等腰三角形的底和腰是方程x 2-6x+8=0的两根,则这个三角形的周长为( ) A.8 B.10 C.8或10 D.不能确定5.现定义某种运算()a b a a b ⊗=>,若2(2)2x x x +⊗=+,那么x 的取值范围是( )(A )12x -<<(B )2x >或1x <-(C )2x >(D )1x <-6.已知a b ,是关于x 的一元二次方程210x nx +-=的两实数根,则式子b aa b+的值是( ) A .22n +B .22n -+C .22n -D .22n --7.关于x 的一元二次方程222310x x a --+=的一个根为2,则a 的值是( )A .1B C .D .8. 国家实施”精准扶贫“政策以来,很多贫困人口走向了致富的道路.某地区2016年底有贫困人口9万人,通过社会各界的努力,2018年底贫困人口减少至1万人.设2016年底至2018年底该地区贫困人口的年平均下降率为x ,根据题意列方程得( )A .9(1﹣2x )=1B .9(1﹣x )2=1C .9(1+2x )=1D .9(1+x )2=1 二、耐心填一填9.已知一元二次方程有一个根是2,那么这个方程可以是 (填上你认为正确的一个方程即可).10.如果αβ、是一元二次方程23 1 0x x +-=的两个根,那么2+2ααβ-的值是___________11.已知2是一元二次方程240x x c -+=的一个根,则方程的另一个根是 .12.已知01a a b x ≠≠=,,是方程2100ax bx +-=的一个解,则2222a b a b--的值是 .13.在实数范围内定义一种运算“*”,其规则为22b a b a -=*,根据这个规则,方程05)2(=+*x 的解为14、已知三个连续奇数,其中较大的两个数的平方和比最小数的平方的3倍还小25,则这三个数分别为_________15、甲、乙两同学解方程x 2+px+q=0,甲看错了一次项系数,得根为2和7;乙看错了常数项,得根为1和-10,则原方程为16、如图,张大叔从市场上买回一块矩形铁皮,他将此矩形铁皮的四个角各剪去一个边长为1米的正方形后,剩下的部分刚好能围成一个容积为15米3的无盖长方体箱子,且此长方体箱子的底面长比宽多2米,现已知购买这种铁皮每平方米需20元钱,问张大叔购回这张矩形铁皮共花了 元钱?三、专心解一解 17、我们已经学习了一元二次方程的四种解法:因式分解法,开平方法,配方法和公式法.请从以下一元二次方程中任选一个..,并选择你认为适当的方法解这个方程. ①2310x x -+=;②2(1)3x -=;③230x x -=;④224x x -=.18、关x 的一元二次方程(x-2)(x-3)=m 有两个不相等的实数根x 1、x 2,则m 的取值范围是 ;若x 1、x 2满足等式x 1x 2-x 1-x 2+1=0,求m 的值.19、数学课上,李老师布置的作业是图2中小黑板所示的内容,楚楚同学看错了第(2)题※中的数,求得(1)的一个解x=2;翔翔同学由于看错了第(1)题※中的数,求得(2)的一个解是x=3;你知道今天李老师布置作业的正确答案吗?请你解出来20.已知下列n (n 为正整数)个关于x 的一元二次方程:()x x x x x x n x n n 2222101202230310-=<>+-=<>+-=<>+--=<>……(1)请解上述一元二次方程<1>、<2>、<3>、<n>;(2)请你指出这n 个方程的根具有什么共同特点,写出一条即可 21.广东将一条长为20cm 的铁丝剪成两段,并以每一段铁丝的长度为周长做成一个正方形.(1)要使这两个正方形的面积之和等于17cm 2,那么这段铁丝剪成两段后的长度分别是多少?(2)两个正方形的面积之和可能等于12cm 2吗? 若能,求出两段铁丝的长度;若不能,请说明理由.22.某商场在“五一节”的假日里实行让利销售,全部商品一律按九销售,这样每天所获得的利润恰是销售收入的20%,如果第一天的销售收入4万元,且每天的销售收入都有增长,第三天的利润是1.25万元,(1)求第三天的销售收入是多少万元?(2)第二天和第三天销售收入平均每天的增长率是多少?23.学校为了美化校园环境,在一块长40米,宽20米的长方形空地上计划新建一块长9米,宽7米的长方形花圃.(1)若请你在这块空地上设计一个长方形花圃,使它的面积比学校计划新建的长方形花圃的面积多1平方米,请你给出你认为合适的三种不同的方案;(2)在学校计划新建的长方形花圃周长不变的情况下,长方形花圃的面积能否增加2平方米?如果能,请求出长方形花圃的长和宽;如果不能,请说明理由.24、已知:△ABC 的两边AB 、AC 的长是关于x 的一元二次方程023)32(22=++++-k k x k x 的两个实数根,第三边BC 的长为5.(1)k 为何值时,△ABC 是以BC 为斜边的直角三角形?(2)k 为何值时,△ABC 是等腰三角形?并求△ABC 的周长. 25、阅读材料:各类方程的解法 求解一元一次方程,根据等式的基本性质,把方程转化为x=a 的形式.求解二元一次方程组,把它转化为一元一次方程来解;类似的,求解三元一次方程组,把它转化为解二元一次方程组.求解一元二次方程,把它转化为两个一元一次方程来解.求解分式方程,把它转化为整式方程来解,由于“去分母”可能产生增根,所以解分式方程必须检验.各类方程的解法不尽相同,但是它们有一个共同的基本数学思想转化,把未知转化为已知.用“转化”的数学思想,我们还可以解一些新的方程.例如,一元三次方程x 3+x 2﹣2x=0,可以通过因式分解把它转化为x (x 2+x ﹣2)=0,解方程x=0和x 2+x ﹣2=0,可得方程x 3+x 2﹣2x=0的解.(1)问题:方程x 3+x 2﹣2x=0的解是x 1=0,x 2= ,x 3= ; (2)拓展:用“转化”思想求方程x x =+32的解;(3)应用:如图,已知矩形草坪ABCD 的长AD=8m ,宽AB=3m ,小华把一根长为10m 的绳子的一端固定在点B ,沿草坪边沿BA ,AD 走到点P 处,把长绳PB 段拉直并固定在点P ,然后沿草坪边沿PD 、DC 走到点C 处,把长绳剩下的一段拉直,长绳的另一端恰好落在点C .求AP 的长.参考答案:一、1~5.ADDBB ;6~8.DDB ;二、9、x 2-2x=0; 10、4;11、2+;12、5;13、3,-7; 14、-3,-1,1或15,17,19;15、x 2+9x+14=0;16、700;三、17、①1232x ±=,;②121x =,10x =,23x =;④121x =,18、m >-1/4 ,m=2;19、方程(1)的解是x 1=2,x 2=0;方程(2)的解是x 1=3,x 2=4 20、解:(1)<1>()()x x +-=110,所以x x 1211=-=, <2>()()x x +-=210,所以x x 1221=-=, <3>()()x x +-=310,所以x x 1231=-=,……<n>()()x n x +-=10,所以x n x 121=-=,(2)比如:共同特点是:都有一个根为1;都有一个根为负整数;两个根都是整数根等 21、(1)解:设剪成两段后其中一段为xcm ,则另一段为(20-x )cm 由题意得:2220()()1744xx -+=,解得:116x =,24x = 当116x =时,20-x=4,当24x =时,20-x=16(2)不能。
人教版九年级上册第21章一元二次方程单元测试题含答案
第21章一元二次方程单元测试一、选择题(每小题3分,共18分)1.下列方程中,你最喜欢的一个二元二次方程是( )A.9412=-x x B. 04023=+-x x C. 314=-x D. 02323=+-y xy x2.用配方法解方程0142=++x x ,配方后的方程是( ) A. ()322=+x B. ()322=-xC. ()522=-x D. ()522=+x*3.下列一元二次方程两实数根和为-4的是( ) A. 0422=-+x x B. 0442=+-x x C. 01042=+-x x D. 0542=-+x x 4.方程()022=-+-x x x 的解是( ) A.2 B .-2,1 C .-1 D.2,-15.已知一元二次方程01582=+-x x 的两个解恰好分别是等腰三角形ABC 的底边长和腰长,则三角形ABC 的周长为( )A.13B.11或13C.11D.126.长春市企业退休人员王大爷的工资是每月2100元,连续两年增长后,大王大爷的工资是每月2541元,若设这两年平均每年的增长率为x ,根据题意可列方程( ) A. ()254112100=+x B. ()2100125412=-xC. ()2541121002=+x D. ()2100125412=-x二、填空题(每小题3分,共18分)7.一元二次方程05232=-+x x 的一次项系数是 .8.方程()0932=--x 的解是 .9.若方程02=-x x 的两根为1x ,2x (1x <2x ),则2x -1x = .10.关于x 的一元二次方程012=+-x kx 有两个不相等的实数根,则k 的取值范围是.11.若关于x 的方程()0222=+++a x a ax 有实数解,那么实数a 的取值范围是 .12.某种传染性牛疾在牛群中传播迅猛,平均一头牛每隔6小时能传染m 头牛,现知一养牛场有a 头牛染有此病,那么12小时后共有 头牛染上此病(用含a 、m 的代数式表示).三、解答题(每小题8分,共64分) 13.用适当方法解方程.(1)1222+=-x x x (2)()()()83211=++-+x x x (3)522=-x x (4)()()3332-=-x x x14.若方程()035112=-+-+x x m m 是关于x 的一元二次方程,求m 的值.15.已知a 是方程0120132=+-x x 的一个根,求代数式12013201222++-a a a 的值.16.已知关于x 的方程()()01222=-++-m x m x .求证:(1)方程恒有两个不相等的实数根;(2)若此方程的一个根是1,请求出方程的另一个根,并求出以此两根为边长的直角三角形的周长.17.教材或资料中会出现这样的题目:把方程2212=-x x 化为一元二次方程的一般形式,并写出它的二次项系数、一次项系数和常数项,现把上面的题目改编为下面的两个小题,请解答:(1)下列式子中,有哪几个是方程2212=-x x 所化的一元二次方程的一般形式(答案只写序号) . ①02212=--x x ;②02212=++-x x ;③422=-x x ;④0422=++-x x ;⑤ 0343232=--x x .(2)方程2212=-x x 化为一元二次方程的一般形式后,它的二次项系数、一次项系数、常数项之间具有什么关系?18. 如图①:要设计一幅宽20cm ,长30cm 的矩形图案,其中有两横两竖的彩条,横竖彩条的宽度比为2:3,如果要使所有彩条所占面积为原矩形图案面积的三分之一,应如何设计每个彩条的宽度?如图②:用含x 的代数式表示:AB=______cm ;AD=______cm ;矩形ABCD 的面积为______cm 2;列出方程并完成本题解答.19.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元,为了扩大销售,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫降价1元,商场平均每天可多售出2件。
人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案
人教版九年级数学上册《第二十一章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________一、选择题1.下列方程中是一元二次方程的是()A.x+y2=2B.x+4=2C.x2+4x=2D.x2+1x=22.如果x=2是一元二次方程x2+bx+2=0的一个根,则b的值是()A.2 B.-2 C.3 D.−33.一元二次方程x2−6x+1=0配方后可变形为()A.(x−3)2=8B.(x−3)2=10C.(x+3)2=8D.(x+3)2=104.一元二次方程x2+2x−1=0的实数根有()A.1个B.2个C.0个D.无数个5.方程x2−49=0的解为()A.x1=7,x2=−7B.x1=1,x2=7C.x1=x2=7D.x1=x2=−76.已知关于x的一元二次方程ax2+2x−1=0有两个实数根,则a的取值范围是()A.a>−1且a≠0B.a≥−1且a≠0C.a≥−1D.a≤−17.2024年元旦开始,梧州市体育训练基地吹响冬季足球训练“集结号”,该基地组织了一次单循环的足球比赛(每两支队伍之间比赛一场),共进行了36场比赛,设有x支队伍参加了比赛,依题意可列方程为()A.x(x+1)=36B.x(x−1)=36C.x(x+1)2=36D.x(x−1)2=368.设x1,x2是一元二次方程x2−2x−1=0的两根,则1x1+1x2=()A.12B.−12C.2 D.−2二、填空题9.若方程(m−1)x m2+1−x−2=0是一元二次方程,则m的值是.10.将一元二次方程x2−8x−5=0化成(x+a)2=b(a,b 为常数)的形式,则ab=.11.关于x的一元二次方程ax2−2(a−1)x+a=0有实数根.则a的取值范围.12.已知三角形的两边长为1和2,第三边的长是方程x2−5x+6=0的一个根,则这个三角形的周长是.13.若 m,n 是一元二次方程x2−2x−5=0的两个根,则m2n+mn2=.三、计算题14.解方程:(1)x2+1=7x;(2)x2+4x−5=0.四、解答题15.关于x的一元二次方程−x2+2x−k=0.(1)若方程有两个实根,求k的取值范围.(2)若方程的一根为−1,求k的值及另一根.16.已知关于x的方程x2﹣3ax﹣3a﹣6=0(1)求证:方程恒有两不等实根;(2)若x1,x2是该方程的两个实数根,且(x1﹣1)(x2﹣1)=1,求a的值.17.如图,某小区矩形绿地的长宽分别为35m,15m.现计划对其进行扩充,将绿地的长、宽增加相同的长度后,得到一个新的矩形绿地.(1)若扩充后的矩形绿地面积为800m2,求新的矩形绿地的长与宽;(2)扩充后,实地测量发现新的矩形绿地的长宽之比为5:3.求新的矩形绿地面积.18.第31届世界大学生夏季运动会在成都举办,吉祥物“蓉宝”深受大家的喜爱.某商场从厂家购进了成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品,每个毛绒公仔的进价比每个3D钥匙扣的进价多30元.若购进毛绒公仔4个,3D钥匙扣5个,共需要570元.(1)求毛绒公仔、3D钥匙扣两种商品的每个进价分别是多少元?(2)该商场从厂家购进成都大运会吉祥物蓉宝毛绒公仔和3D钥匙扣两种商品共60个,所用资金恰好为4200元.在销售时,每个毛绒公仔的售价为100元,要使得这60个商品卖出后获利25%,则每个3D钥匙扣的售价应定为多少元?参考答案1.【答案】C2.【答案】D3.【答案】A4.【答案】B5.【答案】A6.【答案】B7.【答案】D8.【答案】D9.【答案】-110.【答案】-111.【答案】a≤12且a≠012.【答案】513.【答案】514.【答案】(1)解:原方程可化为x2−7x+1=0b2−4ac=(−7)2−4×1×1=45>0x=7±√452=7±3√52x1=7+3√52(2)解:∵x2+4x−5=0∴(x+5)(x−1)=0∴x+5=0或x−1=0∴x1=−515.【答案】(1)解:∵方程有两个实根∴Δ=22−4×(−1)×(−k)≥0解得k≤1∴k的取值范围为k≤1.(2)解:设方程的另一根为x 2,依题意得{−1+x 2=2−x 2=k解得{x 2=3k =−3∴k 的值为−3,另一根为316.【答案】(1)证明:∵Δ=b 2−4ac =(−3a)2−4×1×(−3a −6)=9a 2+12a +24=(3a +2)2+20>0∴该方程恒有两个不等实根;(2)解:由根与系数的关系x 1+x 2=3a,x 1x 2=−3a −6∵(x 1−1)(x 2−1)=1∴x 1x 2−(x 1+x 2)+1=1∴−3a −6−3a +1=1解得a =−117.【答案】(1)解:(1)设将绿地的长、宽增加xm ,则新的矩形绿地的长为(35+x)m ,宽为(15+x)m 根据题意得:(35+x)(15+x)=800整理得:x 2+50x −275=0解得:x 1=5,x 2=−55(不符合题意,舍去)∴35+x =35+5=40,15+x =15+5=20答:新的矩形绿地的长为40m ,宽为20m(2)设将绿地的长、宽增加ym ,则新的矩形绿地的长为(35+y)m ,宽为(15+y)m 根据题意得:(35+y):(15+y)=5:3即3(35+y)=5(15+y)解得:y =15∴(35+y)(15+y)=(35+15)×(15+15)=1500答:新的矩形绿地面积为1500m 218.【答案】(1)解:设毛绒公仔、3D 钥匙扣两种商品的每个进价分别是(30+x)和x 元,由题意得: 4(30+x)+5x =570,解得x =50答:毛绒公仔、3D 钥匙扣两种商品的每个进价分别是80和50元;(2)解:设毛绒公仔买了x 个,由题意可得:80x +50(60−x)=4200解得x=40设3D钥匙扣的每个售价为y元,由题意得:20x40+20(y−50)=4200×25%解得y=62.5答:每个3D钥匙扣的售价为62.5元。
九年级数学上册《第二十一章 一元二次方程》单元测试卷-附答案(人教版)
九年级数学上册《第二十一章 一元二次方程》单元测试卷-附答案(人教版)一、选择题1.一元二次方程2210x x -+=的二次项系数是( )A .2B .1C .0D .1-2.用配方法解方程2640x x ++=,配方正确的是( )A .()235x +=B .()2313x +=C .()265x +=D .()2613x +=3.下列方程中,没有实数根的是( )A .210x -=B .2240x x --=C .220x x -+=D .()()210x x -+=4.如果270a a +=,那么a 的值是( )A .0B .7C .0或7D .0或-75.若1x 、2x 是一元二次方程2350x x +-=的两根,则12x x ⋅的值是( )A .3B .-3C .5D .-56.已知关于x 的方程220x bx ++=的一个根为1x =,则实数b 的值为( )A .2B .2-C .3D .3-7.若一元二次方程220ax x -+=有两个不相等的实数根,则实数a 的取值范围为( )A .18a <B .18a <且0a ≠ C .18a ≤且0a ≠ D .18a >8.关于x 的方程225x mx m +-=-的一个根是4,那么m 的值是( )A .-3或4B .3-或7C .3或4D .3或79.已知方程2201930x x +-=的两根分别是α和β,则代数式2ααβ2019α++的值为( )A .1B .0C .2019D .-201910.我国古代著作《四元玉鉴》记载“买椽多少”问题:“六贯二百一十钱,遣人去买几株椽.每株脚钱三文足,无钱准与一株椽.”其大意为:现请人代买一批椽,这批椽的价钱为6210文.如果每株椽的运费是3文,那么少拿一株椽后,剩下的椽的运费恰好等于一株椽的价钱,试问6210文能买多少株椽?设这批椽的数量为x 株,则符合题意的方程是( ) A .()316210x x -=B .()316210x -=C .()316210x x -=D .36210x =二、填空题11.已知:()11610m m xx +-+-=是关于x 的一元二次方程,则m= .12.将方程280x mx -+=用配方法化为23)x n -=(,则m n +的值是 . 13.关于x 的一元二次方程240x x k -+=有实数根,则k 的取值范围为 .14.一个两位数,个位数字比十位数字少1,且个位数字与十位数字的乘积等于72,则这个两位数是 .三、计算题15.解方程:22530x x ++=.四、解答题16.已知x =1是一元二次方程(a ﹣2)x 2+(a 2﹣3)x ﹣a+1=0的一个根,求a 的值. 17.已知关于x 的方程2220x x m -+-=有两个实数根1x 和2x ,求m 的取值范围. 18.已知关于x 的一元二次方程2320x x k ++-=的两个实数根分别为1x 和2x ,若()()12111x x ++=-,求k 的值.19.印度古算书中有这样一首诗:“一群猴子分两队,高高兴兴在游戏.八分之一再平方,蹦蹦跳跳树林里;其余十二叽喳喳,伶俐活泼又调皮.告我总数共多少,两队猴子在一起.”你能解决这个问题吗?五、综合题20.规定:如果关于x 的一元二次方程ax 2+ bx+c=0(a≠0)有两个实数根,且其中一个根是另一个根的2倍,则称这样的方程为“倍根方程” (1)解方程x 2+2x-8=0(2)方程x 2+2×-8=0 (填“是”或“不是”)“倍根方程”,请你写出一个“倍根方程”21.已知关于x 的一元二次方程:x 2﹣(m ﹣3)x ﹣m =0.(1)证明:无论m 为何值,原方程有两个不相等的实数根; (2)当方程有一根为1时,求m 的值及方程的另一根.22.已知关于x 的一元二次方程()222110x m x m ++++=.(1)若方程有实数根,求实数m 的取值范围; (2)若方程一实数根为-3,求实数m 的值.23.某市为鼓励居民节约用水,对居民用水实行阶梯收费,每户居民用水量每月不超过a 吨时,每吨按0.3a元缴纳水费;每月超过a吨时,超过部分每吨按0.4a元缴纳水费.(1)若a=12,某户居民3月份用水量为22吨,则该用户应缴纳水费多少元?(2)若如表是某户居民4月份和5月份的用水量和缴费情况:月份用水量(吨)交水费总金额(元)4186252486根据上表数据,求规定用水量a的值参考答案1.【答案】A【解析】【解答】解:∵一元二次方程2210x x -+=中的二次项为:22x∴一元二次方程2210x x -+=的二次项系数是2. 故答案为:A.【分析】一元二次方程一般形式20ax bx c ++=(a≠0),其中a 为二次项系数,据此解答即可.2.【答案】A【解析】【解答】解:∵x 2+6x+4=0∴x 2+6x+32=-4+32 ∴(x+3)2=5. 故答案为:A.【分析】将常数项移到方程的右边,然后配方(方程的两边同时加上一次项系数一半的平方“32”,左边利用完全平方公式分解因式,右边合并同类项即可.3.【答案】C【解析】【解答】解:A .1a =和0b = 1c =-()22Δ4041140b ac ∴=-=-⨯⨯-=>∴方程210x -=有两个不相等的实数根,选项A 不符合题意;B .1a = 2b =-和4c =-()()22Δ42414200b ac ∴=-=--⨯⨯-=>∴方程2240x x --=有两个不相等的实数根,选项B 不符合题意;C .1a = 1b =-和2c =()22Δ4141270b ac ∴=-=--⨯⨯=-<∴方程220x x -+=没有实数根,选项C 符合题意;D .把原方程转化为一般形式为220x x --=1a ∴=,1b =-和2c =-()()22Δ4141290b ac ∴=-=--⨯⨯-=>∴方程()()210x x -+=有两个不相等的实数根,选项D 不符合题意.故答案为:C .【分析】先计算出各项中△的值,取△<0的选项即可.4.【答案】D【解析】【解答】解:270a a +=()70a a +=解得0a =或7a =- 故答案为:D.【分析】此方程缺常数项,方程的左边易于利用提取公因式法分解因式,故可利用因式分解法求解.5.【答案】D【解析】【解答】解:∵1x 、2x 是一元二次方程2350x x +-=的两根∴12551x x -==-故答案为:D .【分析】利用一元二次方程根与系数的关系可得12551x x -==-。
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)
九年级数学上册《第二十一章一元二次方程》单元测试卷-带答案(人教版)一、选择题1.方程x 2=4的解是( ) A .x=2 B .x=-2 C .x 1=1,x 2=4 D .x 1=2,x 2=-22.用配方法解方程2250x x +-=时,原方程应变形为( )A .()216x +=B .()216x -=C .()229x +=D .()229x -= 3.关于x 的方程3x 2﹣2x+1=0的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .没有实数根D .不能确定4.方程x 2=x 的根是( ) A .x=1B .x=0C .x 1=1,x 2=0D .x 1=1,x 2=-15.若1x =是方程230x mx ++=的一个根,则方程的另一个根是( )A .3B .4C .﹣3D .-4 6.若关于x 的方程()22310m x x +-+=是一元二次方程,则m 的取值范围是( )A .0m ≠B .2m >-C .2m ≠-D .0m > 7.若关于x 的一元二次方程()22210k x x -+-=有实数根,则k 的取值范围是( )A .1k ≤B .1k ≤且2k ≠C .1k ≥且2k ≠D .2k ≥8.菱形的一条对角线长为8,其边长是方程29200x x -+=的一个根,则该菱形的周长为( )A .40B .16C .16或20D .209.设 a b ,是方程220200x x +-=的两个实数根,则(1)(1)a b --的值为( )A .2022-B .2018C .2018-D .202210.要组织一次排球邀请赛,参赛的每两个各队之间都要比赛一场,根据场地和时间等条件,赛程计划安排共计28场比赛,比赛组织者应邀请多少个队参赛?若设应邀请x 个队参赛,可列出的方程为( )A .(1)28x x +=B .(1)28x x -=C .1(1)282x x += D .1(1)282x x -=11.若()22250a a x ---=是一元二次方程,则a = .12.小华在解方程28x x =时,只得出一个根是8x =,则被他漏掉的一个根是x = .13.若1x ,2x 是关于x 的方程2250x x --=的两个实数根,则代数式211234x x x --+的值是 .14.某航空公司有若干个飞机场,每两个飞机场之间都开辟一条航线,一共开辟了10条航线,则这个航空公司共有 个飞机场三、解答题15.若关于x 的一元二次方程(m-1) 2x +2x+2m -1=0的常数项为0,求m 的值是多少?16.用配方法解一元二次方程: 210x x +-= .17.解方程:()222y y y +-=.18.已知关于x 的一元二次方程210x mx m -+-=.求证:方程总有两个实数根.19.已知关于x 的一元二次方程2210x kx --=有一个根是-3,求另一个根及k 值.四、综合题20.已知关于x 的一元二次方程x 2−(m+1)x+m+6=0的其中一个根为3.(1)求m 的值及方程的另一个根;(2)若该方程的两根的值为一直角三角形的两边长,求此直角三角形的第三边长.21.已知关于x 的方程23360x ax a ---=(1)求证:方程恒有两不等实根;(2)若x 1,x 2是该方程的两个实数根,且12(1)(1)1x x --=,求a 的值.22.如图,Rt ABC 中是方程()()2140x m x m --++=的两根.(2)P ,Q 两点分别从A ,C 出发,分别以每秒2个单位,1个单位的速度沿边AC ,BC 向终点C ,B 运动,(有一个点达到终点则停止运动),求经过多长时间后2PQ =?参考答案与解析1.【答案】D【解析】【解答】x 2=4x 1=2,x 2=-2故答案为:D【分析】正数的平方根有两个2.【答案】A【解析】【解答】解:移项,得225x x +=配方,得22151x x ++=+即()216x +=故答案为:A【分析】根据配方法的步骤“把常数项移到等号的右边,在方程两边同时加上一次项系数一半的平方,左边配成完全平方式,再两边开平方”即可求解.3.【答案】C【解析】【解答】解:∵a=3,b=﹣2,c=1 ∴△=b 2﹣4ac=4﹣12=﹣8<0∴关于x 的方程3x 2﹣2x+1=0没有实数根.故答案为:C.【分析】先计算根的判别式△=b 2-4ac 的值,当△>0时,方程由有个不相等的实数根,当△=0时,方程有两个相等的实数根,当△<0时,方程无实数根,据此判断即可.4.【答案】C【解析】【解答】∵x 2=x ∴x 2﹣x =0则x (x ﹣1)=0解得x 1=0,x 2=1故答案为:C.【分析】先移项,把原方程化为一元二次方程的一般式,再利用因式分解法解一元二次方程即可.5.【答案】A【解析】【解答】解: 1x =是方程230x mx ++=的一个根,设另一根为1x ,113x ∴⨯=,13x ∴=,即方程的另一个根是 3.x =故答案为:A【分析】根据根与系数的关系进行解答即可.6.【答案】C【解析】【解答】解:∵方程()22310m x x +-+=是关于x 的一元二次方程 ∴20m +≠.∴2m ≠-.故答案为:C .【分析】利用一元二次方程的定义可得20m +≠,再求出m 的取值范围即可。
九年级数学上册《第二十一章 一元二次方程》单元测试卷附答案(人教版)
九年级数学上册《第二十一章一元二次方程》单元测试卷附答案(人教版)一、单选题1.下列关于x的方程中,一定是一元二次方程的为()A.x2−2=(x+3)2B.ax2+bx+c=0−5=0D.x2−1 =0C.x2+3x2.用配方法解方程x2+4x-1=0,下列配方结果正确的是()A.(x+2)2=5B.(x+2)2=1C.(x−2)2=1D.(x−2)2=5 3.一元二次方程x2﹣x﹣1=0的根的情况为()A.有两个不相等的实数根B.有两个相等的实数根C.只有一个实数根D.没有实数根4.关于x的一元二次方程(a-1)x2+x+a2-1=0的一个根0,则a值为()A.1 B.-1 C.±1 D.05.方程x2=3x的解为()A.x=3B.x=0C.x1=0,x2=−3D.x1=0,x2=36.已知一元二次方程x2−4x−3=0的两根分别为m,n,则3m+3n−mn的值是()A.15 B.13 C.−9D.97.关于x的方程x2−2√k−1x−1=0有两不相等实数根,则k的取值范围是()A.k>0B.k≥0 C.k>1D.k≥18.九年级(1)班的全体同学,在新年来临之际,在贺卡上写上自己的心愿和祝福赠送给其他同学各一张,全班共互赠了5112张,设全班有x名同学,那么根据题意列出的方程是()A.x(x+1)=5112 B.x(x﹣1)=5112C.x(x+1)=5112×2 D.x(x﹣1)=5112×2二、填空题9.把关于y的方程(2y-3)2=y(y-2)化成一般形式为。
10.一元二次方程x2−5x+6=0的两根是直角三角形的两直角边长,则这个直角三角形的斜边长为.11.已知关于x的一元二次方程(m−1)x2−(2m−2)x−1=0有两个相等实数根,则m的值为.12.将方程x2−2x=2配成(x+a)2=k的形式.13.庆“元旦”,市工会组织篮球比赛,赛制为单循环形式(每两队之间都赛一场),共进行了45场比赛,这次有队参加比赛三、解答题14.求下列各式中x的值:(1)(x-2)2+1=17;(2)(x+2)3+27=0.15.已知y=ax2+bx+1,当x=1时,y=0;当x=2时,y=3.(1)求a、b的值(2)当x=-2时,求y的值16.已知关于x的一元二次方程x2+4x+2k=0有两个不相等的实数根.(1)求k的取值范围.(2)当k取最大整数值时,求该方程的解.17.已知抛物线y=x2+mx+m﹣2.(1)求证:无论m取何值,抛物线总与x轴有两个交点;(2)当m=2时,求方程x2+mx+m﹣2=0的根.18.如图,老李想用长为70m的栅栏,再借助房屋的外墙(外墙足够长)围成一个矩形羊圈ABCD,并在边BC上留一个2m宽的门(建在EF处,另用其他材料).(1)当羊圈的长和宽分别为多少米时,能围成一个面积为640m2的羊圈?(2)羊圈的面积能达到650m2吗?如果能,请你给出设计方案;如果不能,请说明理由.19.科学研究表明接种疫苗是战胜新冠病毒的最有效途径.当前居民接种疫苗迎来高峰期,导致相应医疗物资匮乏,某工厂及时补进了一条一次性注射器生产线生产一次性注射器.开工第一天生产200万个,第三天生产288万个.试回答下列问题:(1)求前三天生产量的日平均增长率;(2)经调查发现,1条生产线最大产能是600万个/天,若每增加1条生产线,每条生产线的最大产能将减少20万个/天.①现该厂要保证每天生产一次性注射2600万个,在增加产能同时又要节省投入的条件下(生产线越多,投入越大),应该增加几条生产线?②是否能增加生产线,使得每天生产一次性注射器5000万个,若能,应该增加几条生产线?若不能,请说明理由.参考答案1.D2.A3.A4.B5.D6.A7.D8.B9.3y 2-10y+9=010.√1311.012.(x −1)2=313.1014.(1)解:(x -2)2=16x -2=±4x =6或-2(2)解:(x +2)3=-27x +2=-3x =-5.15.(1)解:由题意,得 {a +b +1=0,4a +2b +1=3.(过程略)解得 {a =2,b =−3.(2)解:由(1)得y =2x 2-3x +1当x =-2时,y =2×(-2)2-3×(-2)+1=1516.(1)解:一元二次方程x 2+4x +2k =0有两个不相等的实数根∴Δ=42−4×1×2k >0∴k <2∴k 的取值范围是k <2(2)解:由(1)可知k <2当k取最大整数值时k=1∴x2+4x+2=0∴(x+2)2=2∴x+2=±√2解得:x1=√2−217.(1)解:证明:由题意可得△=b2﹣4ac=m2﹣4(m﹣2)=(m﹣2)2+4∵(m﹣2)2≥0,∴(m﹣2)2+4>0∴无论m取何值,抛物线总与x轴有两个交点.(2)解:当m=2时,方程可化为x2+2x=0∴x(x+2)=0∴x=0或x=﹣2∴当m=2时,方程x2+mx+m﹣2=0的根为0或﹣2.18.(1)解:设矩形ABCD的边AB=x m,则边BC=70−2x+2=(72−2x)m.根据题意,得x(72−2x)=640.化简,得x2−36x+320=0.解得x1=16x2=20.当x=16时72−2x=72−32=40;当x=20时72−2x=72−40=32.答:当羊圈的长为40m,宽为16m或长为32m,宽为20m时,能围成一个面积为640m2的羊圈.(2)解:不能,理由如下:由题意,得x(72−2x)=650.化简,得x2−36x+325=0.∵Δ=(−36)2−4×325=−4<0∴一元二次方程没有实数根.∴羊圈的面积不能达到650m2.19.(1)解:设前三天日平均增长率为x依题意,得:200(1+x)2=288解得:x1=0.2x2=−2.2(不合题意,舍去).答:前三天日平均增长率为20%.(2)解:①设应该增加m条生产线,则每条生产线的最大产能为(600−20m)万个/天依题意,得:(1+m)(600−20m)=2600解得:m1=4又∵在增加产能同时又要节省投入∴m=4 .答:应该增加4条生产线.②设增加a条生产线,则每条生产线的最大产能为(600−20a)万个/天;依题意,得:(1+a)(600−20a)=5000化简得:a2−29a+220=0∵b2−4ac=(−29)2−4×1×220=−39<0,方程无解.∴不能增加生产线,使得每天生一次性注射器5000万个.。
人教版九年级上册数学第21章《一元二次方程》 单元测试(含答案)
试卷第1页,总3页 第二十一章《一元二次方程》 测试题一、单选题(共12小题,每小题3分,共36分)1.下列方程为一元二次方程的是 ( )A .ax 2+bx+c=0B .x 2-2x -3C .2x 2=0D .xy +1=02.把方程x (3-2x )+5=1化成一般式后二次项系数与常数项的积是( )A .3B .-8C .-10D .153.若关于x 的一元二次方程(a +1)x 2+x +a 2-1=0的一个解是x =0,则a 的值为( )A .1B .-1C .±1D .04.若a-b+c=0,则方程ax 2+bx+c=0(a 0≠)必有一个根是( )A .0 B .1C .-1 D .b a -5.用配方法解一元二次方程2x 2﹣4x+1=0,变形正确的是( )A .(x ﹣12)2=0 B .(x ﹣12)2=12 C .(x ﹣1)2=12 D .(x ﹣1)2=06.已知直角三角形的两边长是方程x 2﹣7x+12=0的两根,则第三边长为( ) A .7 B .5C 7D .577.若关于 x 的一元二次方程x 2﹣x ﹣3m =0有两个不相等的实数根,则 m 的取值范围是()A .m 12>B .m 112<C .m >﹣112D .m 112< 8.若方程x 2-3x -1=0的两根为x 1、x 2,则11x +21x 的值为( ) A .3 B .-3 C .13 D .-139.已知关于x 的一元二次方程(2a -1)x 2+(a +1)x +1=0的两个根相等,则a 的值等于( )A .-1或-5B .-1或5C .1或-5D .1或510.如图,在长为33米宽为20米的矩形空地上修建同样宽的道路(阴影部分),余下的部分为草坪,要使草坪的面积为510平方米,则道路的宽为( )A .1米B .2米C .3米D .4米11.是下列哪个一元二次方程的根( ) A .3x 2+5x+1=0、 B .3x 2﹣5x+1=0、 C .3x 2﹣5x ﹣1=0、 D .3x 2+5x ﹣1=012.已知m ,n 是方程x 2﹣2018x +2019=0的两个根,则(m 2﹣2019m +2018)(n 2﹣2019n +2018)的值是( )A .1B .2C .4037D .4038二、填空题(共4小题,每小题5分,共20分)13.一元二次方程4x 2= 3x 的解是_____________.14.圣诞节时,某班一个小组有x 人,他们每两人之间互送贺卡一张,已知全组共送贺卡110张,则可列方程为_____.15.关于a 的方程2420a a ++=的两个解为1a 、2a ,则2212a a +=_____. 16.已知两数的积是12,这两数的平方和是25, 以这两数为根的一元二次方程是___________.三、解答题(共6小题,第17题8分,第18题12分,第19题6分,第20题6分,第21题8分,第22题12分,共52分)17、解下列方程 (1) x 2-2x-5=0 (用配方法) (2)2x 2+3x=4(公式法)18、已知关于x 的方程||(2)210m m x x ++-=.(1)当m 为何值时是一元一次方程?(2)当m 为何值时是一元二次方程?19、 已知两个方程20x px q ++=和20x qx p ++=仅有一个相同的根,求p q +的值.20、小刚在做作业时,不小心将方程2350x bx --=的一次项系数用墨水覆盖住了,但从题目的答案中,他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数试卷第3页,总3页 21、已知关于x 的一元二次方程22(51)40x m x m m -+++=. 求证:无论m 取任何实数时,原方程总有两个实数根;22、现代互联网技术的广泛应用,催生了快递行业的高度发展,据调查,长沙市某家小型“大学生自主创业”的快递公司,今年三月份与五月份完成投递的快递总件数分别为10万件和12.1万件,现假定该公司每月投递的快递总件数的增长率相同.(1)求该快递公司投递总件数的月平均增长率;(2)如果平均每人每月最多可投递0.6万件,那么该公司现有的21名快递投递业务员能否完成今年6月份的快递投递任务?如果不能,请问至少需要增加几名业务员?参考答案1.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C2..考点:一元二次方程的一般形式试题解析:解析:x (3-2x )+5=1 -2x 2+3x+4=0 -2×4=-8 故选B .答案:B3.考点:一元二次方程的解试题解析:解析:将x =0代入原方程得a 2-1=0且a +1≠0所以a=1故选A .答案:A4.考点:一元二次方程试题解析:解析:A 选二次项系数为字母,要强调不为0;B 选项不是等式;D 选项有两个未知数,故选C .答案:C5.考点:配方法答案第4页,总3页试题解析:解析x 2﹣2x+12=0 x 2﹣2x+1=12(x ﹣1)2=12故选C .答案:C6.考点:解一元二次方程和勾股定理试题解析:解析:解方程得x 1 =3, x 2=4.当3和4为直角边时,第三边为5,当4为斜边故选D .答案:D7.考点:一元二次方程根的判别式和一元一次不等式的解法试题解析:解析:∆= b ²-4ac >0即1+12m >0 m >﹣112故选C . 答案:C8.考点:一元二次方程根与系数的关系 试题解析:解析:11x +21x =(x ₁+x ₂)/(x ₁x ₂)=﹣3 故选B . 答案:B9.考点:一元二次方程根的判别式和解一元二次方程试题解析:解析:(a +1)²- 4(2a -1)=0解得a ₁=1a ₂=5故选D .答案:D10.考点:一元二次方程的应用试题解析:解析:设路宽为x,依题可得:(20-x )(33-x)=510解得x 1 =3, x 2=50(舍去)故选C .答案:C11.考点:一元二次方程求根公式试题解析:解析:由一元二次方程求根公式与方程给出的根可找出a=3 b=5 c = - 1 故选D .答案:D12.考点:一元二次方程的解和根与系数的关系试题解析:解析:将m 和n 分别代入方程变形得m 2﹣2018m =-2019n 2﹣2018n =-2019将原式变形后整体代入(-2019-m+2018(-2019-n+2018)=(-1-m)(-1-n)=1+m+n+mn∵m+n=2018 mn=2019∴原式=1+2018+2019=4038故选D .答案:D13.考点:解一元二次方程(因式分解法)试题解析:解析:4x 2 -3x= 0 x(4x-3)=0 x 1 =0, x 2=34答案:x 1 =0, x 2=3414.考点:一元二次方程的应用试题解析:答案:x (x ﹣1)=11015.考点:一元二次方程根与系数的关系和完全平方公式试题解析:解析:2212a a +=(a ₁+a ₂)²-2a ₁a ₂答案:1216.考点:一元二次方程解法和根与系数的关系试题解析:解析:∵ x₁x₂=12 x₁²+x₂²=25∴x ₁+x ₂=7或-7答案:x 2-7x+12=0或x 2+7x+12=017.考点:一元二次方程解法答案:(1)11x =21x =;(2)134x -=,234x -= 18.考点:一元一次方程和一元二次方程的概念试题解析:解析:(1)注意分三种情况讨论(2)注意指数和系数答案:(1)-2或±1或0 (2)2 19.考点:一元二次方程根和方程组试题解析:解析:x ²+px+q= x ²+qx+p (p-q)x=p-q x=1代入原方程1+p+q=0 ∴p+q=-1答案:-1;.20.考点:一元二次方程解试题解析:解析:答案:1421.考点:一元二次方程根的判别式和完全平方公式试题解析:解析:答案:∵∆= b ²-4ac =(5m+1)²-4(4m ²+m )=9m ²+6m+1=(3m+1)²≥0∴不论m 取任何实数,原方程总有两个实数根22.考点:一元二次方程的应用和一元一次不等式试题解析:解析:(1)设增长率为x ,依题可得10(1+x )²=12.1解得x 1 =0.1, x 2=-2.1(舍去)故增长率为10%;(2)6月总数12.1×(1+10%)=13.31>21×0.6所以不能完成任务。
2019秋季人教版九年级数学上册 第21章《一元二次方程》单元测试题 (含答案解析)
B.(10﹣2x)(6﹣2x)=32 D.10×6﹣4x2=32
10.(4 分)某市从 2017 年开始大力发展“竹文化”旅游产业.据统计,该市 2017 年“竹文化”旅
游收入约为 2 亿元.预计 2019“竹文化”旅游收入达到 2.88 亿元,据此估计该市 2018 年、2019 年
“竹文化”旅游收入的年平均增长率约为( )
【解答】解:y2﹣y﹣ 3 =0 4
y2﹣y= 3 4
y2﹣y+ 1 =1 4
(y﹣ 1 )2=1 2
故选:B. 【点评】本题考查一元二次方程的配方法,解题的关键是熟练运用配方法,本题属于基础题型.
6. 【分析】求出方程的解,求出方程的最小值,即可求出答案.
【解答】解:2x2﹣4x= 5 , 4
8x2﹣16x﹣5=0,
2. 【分析】一元二次方程 ax2+bx+c=0(a,b,c 是常数且 a≠0)中 a、b、c 分别是二次项系数、一次 项系数、常数项. 【解答】解:化为一般式,得 x2﹣5x﹣9=0, 一次项系数为﹣5, 故选:A. 【点评】本题考查了一元二次方程的一般形式:ax2+bx+c=0(a,b,c 是常数且 a≠0)特别要注意 a ≠0 的条件.这是在做题过程中容易忽视的知识点.在一般形式中 ax2 叫二次项,bx 叫一次项,c 是 常数项.其中 a,b,c 分别叫二次项系数,一次项系数,常数项.
,
∵x1 为一元二次方程 2x2﹣4x= 5 较小的根, 4
,
∵5< 26 <6,
∴﹣1<x1<0. 故选:B. 【点评】本题考查了求一元二次方程的解和估算无理数的大小的应用,关键是求出方程的解和能估 算无理数的大小.
7. 【分析】先移项,再将方程左边进行因式分解,转化成一次方程,求解即可. 【解答】解:移项得:x2+2x﹣3=0, 方程左边因式分解得:(x+3)(x﹣1)=0, x+3=0 或 x﹣1=0, 解得:x1=﹣3,x2=1, 较适宜的方法是因式分解法, 故选:C. 【点评】本题考查解一元二次方程,掌握多种方法解一元二次方程,并针对不同的题目找到最适宜 的方法是解决本题的关键.
人教版初三数学上册第21章《一元二次方程》单元测试题含答案解析
7.输入一组数据,按下列程序进行计算,输出结果如表:
6
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
x 输出
20.5 -13.75
20.6 -8.04
20.7 -2.31
20.8 3.44
20.9 9.21
分析表格中的数据,估计方程(x+8)2-826=0 的一个正数解 x 的大致范围为(C) A.20.5<x<20.6 B.20.6<x<20.7 C.20.7<x<20.8 D.20.8<x<20.9
17.(本题 8 分)小明用下面的方法求出方程 2 x-3=0 的解,请你仿照他的方法求出下面另 外两个方程的解,并把你的解答过程写在下面的表格中. 方程 换元法得新方程 令 x=t 则 2t-3=0 解新方程 3 2 检验 3 t= >0 2 求原方程的解 3 x= , 2 9 所以 x= . 4
(2)如果该养殖户第 3 年的养殖成本为 7.146 万元,求可变成本平均每年增长的百分率 x.
21.(本题 8 分)一张长为 30 cm,宽 20 cm 的矩形纸片,如图 1 所示,将这张纸片的四个角 各剪去一个边长相同的正方形后,把剩余部分折成一个无盖的长方体纸盒,如图 2 所示,如 果折成的长方体纸盒的底面积为 264 cm2,求剪掉的正方形纸片的边长.
人教版初三数学上册第 21 章《一元二次方程》单元测试题含答案解析
初三数学上册第 21 章《一元二次方程》单元测试题
(满分:120 分 考试时间:120 分钟)
一、选择题(本大题共 10 个小题,每小题 3 分,共 30 分.) 1.下列方程是关于 x 的一元二次方程的是( A.ax2+bx+c=0 1 1 B. 2+ =2 x x ) C.x2+2x=y2-1 ) D.3(x+1)2=2(x+1)
人教版九年级数学上册第二十一章一元二次方程单元测试卷-(含答案及解析)
保密★启用前人教版九年级数学上册单元测试卷第二十一章 一元二次方程考试范围:一元二次方程;考试时间:120分钟;试卷总分:120分一、单选题(共30分,每小题3分) 1.下列是一元二次方程的是( )A .2230x x --=B .25x y +=C .112xx += D .10x +=2.方程4x 2=81化成一元二次方程的一般形式后,其中的二次项系数、一次项系数和常数项分别是( )A .4,0,81B .﹣4,0,81C .4,0,﹣81D .﹣4,0,﹣81 3.方程2690x x +-=的根的情况是( )A .有两个相等的实数根B .有两个不相等的实数根C .有一个根为1-D .没有实数根4.已知关于x 的一元二次方程22(1)210a x x a --+-=有一个根为0x =,则a 的值为( )A .0B .±1C .1D .1-5.若一次函数y kx b =+的图象不经过第二象限,则关于x 的方程20x kx b ++=的根的情况是( )A .有两个不相等的实数根B .有两个相等的实数根C .无实数根D .无法确定6.已知23-=x x ,则代数式()()()323210x x x x +-+-的值为( ).A .34B .14C .26D .77.等腰三角形一边长为2,它的另外两条边的长度是关于x 的一元二次方程x 2﹣6x+k =0的两个实数根,则k 的值是( )A .8B .9C .8或9D .128.用“配方法”解一元二次方程x 2﹣16x +24=0,下列变形结果,正确的是( ) A .(x ﹣4)2=8B .(x ﹣4)2=40C .(x ﹣8)2=8D .(x ﹣8)2=409.设m 、n 是一元二次方程x 2+3x ﹣7=0的两个根,则m 2+4m +n =( ) A .﹣3 B .4 C .﹣4 D .5 10.某农机厂一月份生产零件50万个,第一季度共生产零件182万个.设该厂二、三月份平均每月的增长率为x ,那么x 满足的方程是( )A .50(1+x )²=182B .50+50(1+x )+50(1+x )²=182C .50(1+2x )=182D .50+50(1+x )+50(1+2x )²=182二、填空题(共24分,每小题3分) 11.一元二次方程230x -=的解为_______.12.方程220x x -+=与方程2610x x --=的所有实数根的和是______.13.已知m ,n 是方程2310x x +-=的两个根,则22m n +=_________.14.若关于x 的一元二次方程2840ax x -+=有两个不相等的实数根,则a 的取值范围是_____.15.若关于x 的一元二次方程2(1)210a x x --+=有两个不相等的实数根,则a 的最大整数值是__________.16.如果关于x 的一元二次方程20ax bx c ++=有两个实数根,且其中一个根为另外一个根的2倍,则称这样的方程为“倍根方程”,以下关于“倍根方程”的说法,正确的有_____(填序号).①方程220x x --=是“倍根方程”;①若(2)()0x mx n -+=是“倍根方程”,则22450m mn n ++=;①若,p q 满足2pq =,则关于x 的方程230px x q ++=是“倍根方程”;①若方程20ax bx c ++=是“倍根方程”,则必有229b ac =.17.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握手78次,则这次会议参加的人数是__.18.我国南宋数学家杨辉在1275年提出的一个问题:“直田积(矩形面积)八百六十四步(平方步),只云阔(宽)不及长一十二步(宽比长少一十二步),问阔及长各几步?若设阔(宽)为x 步,则可列方程 .三、解答题(共66分) 19.解方程:(共8分)(1)()2140x --= (2)()2236x x -=-20.阅读下列材料,解答问题.(共6分)222(25)(37)(52)x x x -++=+.解:设25,37m x n x =-=+,则52m n x +=+,原方程可化为222()m n m n +=+, 0mn ,即(25)(37)0x x -+=.250x ∴-=或370x +=,解得1257,23x x ==-. 请利用上述方法解方程:222(45)(32)(3)x x x -+-=-.21.方程2ax 10x ++=与方程2x a 0x --=有且只有一个公共根,求a 的值(共6分)22.已知:关于x的方程x2﹣(k+2)x+2k=0(共8分)(1)求证:无论k取任何实数值,方程总有实数根;(2)若等腰三角形ABC的一边长a=1,另两边长b,c恰好是这个方程的两个根,求①ABC的周长.23.一个两位数,个位上的数字比十位上的数字小4,且个位上数字与十位上数字的平方和比这个两位数小4,求这个两位数.(共6分)24.如图,利用一面墙(墙的长度不限),用20m长的篱笆,怎样围成一个面积为250m的矩形场地?(共6分)25.某单位通过旅行社组织职工去上海世博会.下面是领队与旅行社导游收费标准的一段话:领队:每人的收费标准是多少?导游:如果人数不超过30人,人均旅游费用为120元.领队:超过30人怎样优惠呢?导游:如果超过30人,每增加1人,人均旅游费用就降低2元,但人均旅游费用不得低于90元.该单位按旅行社的收费标准组团参观世博会后,共支付给旅行社4000元.请你根据上述信息,求该单位这次参观世博会的共有几人?(共8分)26.安顺市某商贸公司以每千克40元的价格购进一种干果,计划以每千克60元的价格销售,为了让顾客得到更大的实惠,现决定降价销售,已知这种干果销售量y (千克)与每千克降价x (元)(020)x <<之间满足一次函数关系,其图象如图所示:(共8分)(1)求y 与x 之间的函数关系式;(2)商贸公司要想获利2090元,则这种干果每千克应降价多少元?27.如图,长方形ABCD 中(长方形的对边平行且相等,每个角都是90°),AB =6cm ,AD =2cm ,动点P ,Q 分别从点A ,C 同时出发,点P 以2cm/s 的速度向终点B 移动,点Q 以1cm/s 的速度向点D 移动,当有一点到达终点时,另一点也停止运动,设运动的时间为t (s ),问:(共10分)(1)当t =1s 时,四边形BCQP 面积是多少?(2)当t 为何值时,点P 和点Q 距离是3cm ?(3)当t = s 时,以点P ,Q ,D 为顶点的三角形是等腰三角形.(直接写出答案)参考答案:1.A2.C3.B4.D5.A6.C7.B8.D9.B10.B11.1x 2x = 12.6 13.11 14.4a <且0a ≠15.0 16.①①① 17.13 18.x (x +12)=86419.(1)13x =,21x =-;(2)12x =,25x =(1)()2140x --= ()214x -=12x -=或12x -=-13x =,21x =-(2)()2236x x -=- ()()22320x x ---=()()250x x --=20=或50x -=12x =,25x =20.x 1=54,x 2=23 解:(4x -5)2+(3x -2)2=(x -3)2,设m =4x -5,n =3x -2,则m -n =(4x -5)-(3x -2)=x -3,原方程化为:m 2+n 2=(m -n )2,整理得:mn =0,即(4x -5)(3x -2)=0,①4x -5=0,3x -2=0,①x 1=54,x 2=23. 21.-2解:∵有且只有一个公共根∴22ax 1x a x x ++=--∴ax 10x a +++=①当a=-1时两个方程完全相同,故a≠-1,①()11a x a -+=+∴1x =-当1x =-时,代入第一个方程可得1-a+1=0解得:2a =22.(1)见解析;(2)5(1)证明:由题意知:Δ=(k +2)2﹣4•2k =(k ﹣2)2,①(k ﹣2)2≥0,即①≥0,①无论取任何实数值,方程总有实数根;(2)解:当b =c 时,Δ=(k ﹣2)2=0,则k =2,方程化为x 2﹣4x +4=0,解得x 1=x 2=2,①①ABC 的周长=2+2+1=5;当b =a =1或c =a =1时,把x =1代入方程得1﹣(k +2)+2k =0,解得k =1,方程化为x 2﹣3x +2=0,解得x 1=1,x 2=2,不符合三角形三边的关系,此情况舍去,①①ABC 的周长为5.23.这个两位数为84.设十位上的数字为x ,则个位上的数字为(x ﹣4).可列方程为:x 2+(x ﹣4)2=10x +(x ﹣4)﹣4解得:x 1=8,x 2=1.5(舍),①x ﹣4=4,①10x +(x ﹣4)=84.答:这个两位数为84.24.用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m )解:设与墙垂直的篱笆长为x m ,则与墙平行的篱笆长为()202x -m ,根据题意,得(202)50x x -=,整理得,210250x x -+=,解得125x x ==,()202202510x m ∴-=-⨯=.答:用20m 长的篱笆围成一个长为10 m ,宽为5 m 的矩形(其中一边长10m ,另两边长5 m ).25.30X120="3600" ①3600小于4000,①参观的人数大于30人设共有x 人,则人均旅游费为【120-2(x-30)】元由题意得:x 【120-2(x-30)】=4000整理得:x 1=40,x 2=50当x=40时,120—2(40-30)=100大于90当x=50时,120—2(50.30)=80.小于90(不合,舍去)答:该单位这次参观世博会共又40人30×120=3600.①3600<4000,∴参观的人数大于30人,设共有x 人,则人均旅游费为[120﹣2(x ﹣30)]元,由题意得:x [120﹣2(x ﹣30)]=4000解得:x 1=40,x 2=50.当x =40时,120﹣2(40﹣30)=100>90;当x =50时,120﹣2(50﹣30)=80<90(不合,舍去).答:该单位这次参观世博会共有40人.26.(1)10100y x =+;(2)商贸公司要想获利2090元,则这种干果每千克应降价9元.解:(1)设一次函数解析式为:y kx b =+,根据图象可知:当2x =,120y =;当4x =,140y =;①21204140k b k b +=⎧⎨+=⎩,解得:10100k b =⎧⎨=⎩, ①y 与x 之间的函数关系式为10100y x =+;(2)由题意得:(6040)(10100)2090x x --+=,整理得:21090x x -+=,解得:11x =.29x =,①让顾客得到更大的实惠,①9x =.答:商贸公司要想获利2090元,这种干果每千克应降价9元.27.(1)5cm 2;(2;(365 解:(1)如图,①四边形ABCD 是矩形,①AB =CD =6,AD =BC =2,①A =①B =①C =①D =90°. ①CQ =1cm ,AP =2cm ,①AB =6﹣2=4(cm ).①S =()14252+⨯=(cm 2). 答:四边形BCQP 面积是5cm 2;(2)如图1,作QE ①AB 于E ,①①PEQ =90°,①①B =①C =90°,①四边形BCQE 是矩形,①QE =BC =2cm ,BE =CQ =t (cm ).①AP =2t (cm ),①PE =6﹣2t ﹣t =(6﹣3t )cm .在Rt △PQE 中,由勾股定理,得(6﹣3t )2+4=9,解得:t 如图2,作PE ①CD 于E ,①①PEQ=90°.①①B=①C=90°,①四边形BCQE是矩形,①PE=BC=2cm,BP=CE=6﹣2t.①CQ=t,①QE=t﹣(6﹣2t)=3t﹣6在Rt△PEQ中,由勾股定理,得(3t﹣6)2+4=9,解得:t综上所述:t(3)如图3,当PQ=DQ时,作QE①AB于E,①①PEQ=90°,①①B=①C=90°,①四边形BCQE是矩形,①QE=BC=2cm,BE=CQ=t(cm).①AP=2t,①PE=6﹣2t﹣t=6﹣3t.DQ=6﹣t.①PQ=DQ,①PQ=6﹣t.在Rt△PQE中,由勾股定理,得(6﹣3t)2+4=(6﹣t)2,解得:t如图4,当PD=PQ时,作PE①DQ于E,①DE=QE=12DQ,①PED=90°.①①A=①D=90°,①四边形APED是矩形,①PE=AD=2cm.DE=AP=2t,①DQ=6﹣t,①DE=62t-.①2t=62t-,解得:t=65;如图5,当PD=QD时,①AP=2t,CQ=t,①DQ=6﹣t,①PD=6﹣t.在Rt△APD中,由勾股定理,得4+4t2=(6﹣t)2,解得t1t2.综上所述:t 6565。
人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案
人教版九年级数学上册《第21章一元二次方程》单元测试卷-附答案学校:___________班级:___________姓名:___________考号:___________1.把一元二次方程(x+2)(x−3)=2x−6)化为一般形式,并写出它的二次项系数为,一次项系数为,常数项为.2.已知(a2−3a+2)x a2−5a+6+3x+5=0是关于x的一元二次方程,则a=.3.将一元二次方程x2−6x=2化成(x+ℎ)2=k的形式,则ℎ=.4.已知方程x2+bx+4=0的一个根是1,则它的另一根是.5.若关于x的一元二次方程(a−2)x2+4x−a2+2a=0有一个根为0,则a=.6.若关于x的一元二次方程(k−3)x2−4kx+4k=3有实数根,则k的取值范围为.7.已知(x2+y2+1)(x2+y2−3)=5,则x2+y2的值等于.8.若关于x的方程(x+ℎ)2+k=0(h,k均为常数)的解是x1=−3,x2=2则关于y的方程(x+ℎ−3)2+k= 0的解是.9.已知x1,x2是方程x2−x−2024=0的两个实数根,则代数式x13−2024x1+x22的值为.10.若实数m,n分别满足m2+2023m+2024=0,n2+2023n+2024=0且m≠n,则1m +1n的值为.11.已知实数a是关于x的一元二次方程x2−2024x+1=0的一个解,则a3−2024a2−2024a2+1的值是.12.等腰三角形的底边长为6,腰长是方程x2−8x+15=0的一个根,则该等腰三角形的周长为.13.若方程x2−17x+60=0的两个不相等的实数根,恰好是一个直角三角形的两条边长,则此直角三角形的第三条边长是.14.对于一元二次方程ax2+bx+c=0(a≠0),下列说法:①若方程有一根x=−1,则b−a−c=0;②若a+b+c=0,则b2−4ac≥0;③若方程a(x−1)2+b(x−1)+c=0的两个根是x1=2,x2=5那么方程ax2+bx+c=0的两个根为x1=1x2=4;④若c是方程ax2+bx+c=0的一个根,则一定有ac+b+1=0成立.其中正确的有个.(填个数)15.某种植物的主干长出若干数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是91,若设主干长出x个支干,则可列方程为.16.某型号的手机原来每台售价800元,经过两次降价,且每次降价的百分率相同,现在每台售价为512元,则每次降价的百分率是.17.现有一张矩形纸片,其周长为36cm,将纸片的四个角各剪下一个边长为2cm的正方形,然后沿虚线(如图所示)将纸片折成一个无盖的长方体.如果所得的长方体的底面积是24cm2,设原矩形纸片的长是xcm,那么可列出方程为.18.《九章算术》中有一题:“今有二人同立,甲行率六,乙行率四,乙东行,甲南行十步而斜东北与乙会,问甲乙各行几何?”大意是说:“甲、乙二人同时从同一地点出发,甲的速度为6,乙的速度为4,乙一直向东走,甲先向南走10步,后又斜向北偏东方向走了一段后与乙相遇,甲、乙各走了多少步?”请问甲走的步数是.19.如图,在矩形ABCD中AB=10cm,AD=8cm点P从点A出发沿AB以2cm/s的速度向点B运动,同时点Q从点B出发沿BC以1cm/s的速度向点C运动,点P到达终点后,P、Q两点同时停止运动,则秒时,△BPQ的面积是6cm2.20.某工厂生产的某种产品按质量分为10个档次,第一档次(最低档次)的产品一天能生产95件,每件利润6元,每提高一个档次,每件利润增加2元,但一天产量减少5件.(1)若生产的是第三档的产品时,每件利润为元;(2)若生产第x档的产品一天的总利润为1120元,则该产品的质量档次为第档.参考答案1.解:(x+2)(x−3)=2x−6x2−3x+2x−6=2x−6x2−x−2x−6+6=0x2−3x=0∴一般形式为:x2−3x=0,二次项系数为1,一次项系数为−3,常数项为0.2.解:∴方程(a2−3a+2)x a2−5a+6+3x+5=0是关于x的一元二次方程∴a2−3a+2≠0,a2−5a+6=2解得a≠1且a≠2,a=1或a=4故a=4故答案为:4.3.解:∴ x2−6x=2∴x2−6x+9=11∴(x−3)2=11∴ℎ=−3.故答案为:−3.4.解:设另一根为m,根据根与系数的关系可得:m×1=4∴m=4∴方程x2+bx+4=0的另一个根是4.故答案为:4.5.解:把x=0代入方程(a−2)x2+4x−a2+2a=0得:−a2+2a=0解得a=0或a=2∴方程(a−2)x2+4x−a2+2a=0是关于x的一元二次方程∴a−2≠0∴a≠2.∴a的值为0.故答案为:0.6.解:∵关于x的一元二次方程(k−3)x2−4kx+4k=3有实数根即方程(k−3)x2−4kx+4k−3=0,且k−3≠0∴Δ=(−4k)2−4(k−3)(4k−3)≥0k≠3解得:k≥35∴k的取值范围为k≥3且k≠35且k≠3.故答案为:k≥357.解:设x2+y2=k∴(k+1)(k−3)=5∴k2−2k−3=5,即k2−2k−8=0∴k=4或k=−2∴x2+y2的值一定是非负数∴x2+y2=4.故答案为:48.解:∵关于x的方程(x+ℎ)2+k=0(ℎ,k均为常数)的解是x1=−3x2=2∴(x+ℎ−3)2+k=0的解是x−3=−3或x−3=2,即x1=0x2=5.故答案为:x1=0x2=5.9.解:把x1代入原方程得:x12−x1−2024=0∴x12−2024=x1∴x1,x2是方程x2−x−2024=0的两个实数根∴x1+x2=−ba =1x1⋅x2=ca=−2024∴x13−2024x1+x22=x1(x12−2024)+x22=x12+x22=(x1+x2)2−2x1⋅x2=12−2×(−2024)=4049;故答案为:4049.10.解:∴实数m,n分别满足m2+2023m+2024=0,n2+2023n+2024=0∴m和n是x2+2023x+2024=0的两个根∴m+n=−2023mn=2024∴1 m +1n=m+nmn=−20232024.故答案为:−2023202411.解:∵实数a是关于x的一元二次方程x2−2024x+1=0的一个解∴a2−2024a+1=0∴a2+1=2024aa2−2024a=−1a3−2024a2−2024 a2+1=a(a2−2024a)−2024 2024a=a×(−1)−1 a=−a−1 a=−a2+1 a=−2024a a=−2024故答案为:−202412.解:∴x2−8x+15=0∴(x−3)(x−5)=0则x−3=0或x−5=0解得x1=3 x2=5①若腰长为3,此时三角形三边长度为3、3、6,显然不能构成三角形,舍去;②若腰长为5,此时三角形三边长度为5、5、6,可以构成三角形所以该等腰三角形的周长为5+5+6=16故答案为:16.13.解:解方程x2−17x+60=0得:x=12或5即直角三角形的两边为12或5当12为直角边时,第三边为:√122+52=13;当12为斜边时,第三边为:√122−52=√119;故答案为:13或√119.14.解:①若方程有一根x=−1,则a−b+c=0,即b−a−c=0,故①正确;②若a+b+c=0,则可知方程有一个根为x=1则b2−4ac≥0,故②正确;③若方程a(x−1)2+b(x−1)+c=0的两个根是x1=2 x2=5所以方程ax2+bx+c=0的两个根为x1=2−1=1,x2=5−1=4故③正确;④若c是方程ax2+bx+c=0的一个根则ac2+bc+c=0当c≠0时,则一定有ac+b+1=0成立,故④错误.综上分析可知:其中正确的是①②③,共3个.故答案为:3.15.解:设主干长出x个支干,小分支的数量为x⋅x=x2(个)根据题意可列出方程:1+x+x2=91故答案为:1+x+x2=91.16.解:设每次降价的百分率是x∴原来每台售价800元,经过两次降价,且每次降价的百分率相同,现在每台售价为512元∴800×(1−x)2=512∴x1=20%,x2=180%>100%(舍去)∴每次降价的百分率是20%.故答案为:20%17.解:设原矩形纸片的长是x cm,则宽为(18−x)cm长方体纸盒的长为(x−4)cm,宽为(18−x−4)cm,高为2cm,由长方体的底面积是24cm2得:(x−4)(18−x−4)=24.故答案为:(x−4)(18−x−4)=24.18.解:设甲、乙两人相遇的时间为t,则乙走了4t步,甲斜向北偏东方向走了(6t−10)步,则依题意得:102+(4t)2=(6t−10)2整理得:20t2−120t=0解得:t1=6,t2=0(不合题意,舍去)∴4t=4×6=24.故甲走的步数是36.故答案为:36.19.解:设运动时间为t秒,则PB=(10−2t)cm,BQ=tcmBP⋅BQ=6cm2∴S△BPQ=12t(10−2t)=6∴12整理得:t2−5t+6=0解得:t1=2t2=3∴2或3秒时,△BPQ的面积是6cm2.故答案为:2或3.20.解:(1)根据题意得:6+2×2=6+4=10(元)∴若生产的是第三档的产品时,每件利润为10元故答案为:10;(2)根据题意得:生产第x档的产品的产量为:[95−5(x−1)]件生产第x档的产品的每件利润为:[6+2×(x−1)]元则[6+2×(x−1)]×[95−5(x−1)]=1120整理得:x2−18x+72=0解得:x1=6,x2=12(不符合题意,舍去)∴若生产第x档的产品一天的总利润为1120元,则该产品的质量档次为第6档故答案为:6.。
人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷(带答案)
人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷(带答案)一、单选题1.关于x 的方程2(1)320a x x -+-=是一元二次方程的条件是( )A .0a ≠B .1a =C .1a ≠D .a 为任意实数2.在下列各选项中,哪个选项是一元二次方程( )A .212x x =+B .25630x y -=-C .2345x x --D .233x x +=3.若关于x 的一元二次方程()22410k x x -++=有两个实数根则k 的取值范围是( )A .k 6<B .k 6<且2k ≠C .6k ≤且2k ≠D .6k >4.关于x 的方程2(1)320a x x --+=是一元二次方程,则( )A .a>0B .a≠0C .a≠1D .1a <5.目前电影《红船》票房已突破60亿元.第一天票房约3亿元,三天后票房累计总收入达9.5亿元,如果第二天,第三天票房收入按相同的增长率增长,增长率设为x .则可列方程为( )A .()319.5x +=B .()2319.5x += C .()23319.5x ++= D .()()2331319.5x x ++++= 6.国家决定对某药品价格分两次降价,若设平均每次降价的百分率为x ,该药品原价为18元,降价后的价格为y 元,则y 与x 的函数关系式为( )A .()361y x =-B .()361y x =+C .()2181y x =-D .()2181y x =-7.一次会议上,每两个参加会议的人都相互握一次手,有人统计一共握了 36 次手.设到会的人数为 x 人,则根据题意列方程为( )A .x (x+1)=36B .x (x ﹣1)=36C .2x (x+1)=36D .x (x ﹣1)=36×28.用配方法解方程24220x x --=时,配方结果正确的是( )A .()2224x -=B .()2225x +=C .()2226x -=D .()2227x -= 9.如果关于x 的一元二次方程k 2x 2﹣(2k +1)x +1=0有两个实数根,那么k 的取值范围是( )A .k ≥﹣14B .k ≥﹣14且k ≠0C .k <﹣14D .k >-14且k ≠0 10.有一人感染上感冒病毒,经过两轮传染后有100人感染这种病毒.则每一轮传染中平均一个人传染了( )A .8人B .9人C .10人D .11人11.某树主干长出若干数目的支干,每个支干又长出同样数目小分支,主干、支干、和小分支总数共57.若设主干长出x 个支干,则可列方程是( )A .(1+x )2=57B .1+x+x 2=57C .(1+x )x=57D .1+x+2x=5712.某单位在两个月内将开支从24000元降到18000元.如果设每月降低开支的百分率均为x (x >0),则由题意列出的方程应是( )A .B .C .D .二、填空题13.一元二次方程24510x x -+=的一次项系数为 .14.某校九年级举行篮球比赛,第一轮每个班级都要和其他班级进行一场比赛,结果共进行了28场比赛,问这个年级共有几个班级?设这个年级共有x 个班级,列方程得 ;某市篮球联赛每个队都要和同组的其他队进行两场比赛,然后决定小组出线的队伍.如果设小组中有x 支球队,共比赛了90场,可列方程 .15.已知一元二次方程()21210m x x --+=无实数根,则m 的取值范围是 . 16.设x 1,x 2是一元二次方程x 2﹣5x ﹣1=0的两实数根,则x 1+x 2的值为 .17.已知关于x 的一元二次方程()21410m x x --+=有两个不相等的实数根,则m 的取值范围是 .18.已知 a 、b 是方程 x 2﹣2x ﹣1=0 的两个根,则 a 2﹣a +b 的值是 .19.已知实数a 、b 满足a -b 2=4,则代数式a 2-3b 2+a -14的最小值是 .20.已知代数式()51x x -+与代数式96x -的值互为相反数,则x =三、解答题(本大题共5小题,共60分。
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)
初中数学 人教版 九年级上册 第21章 一元二次方程 单元考试测试卷(含解析答案)1 / 6第21章 一元二次方程 单元测试卷一、单选题(共10题;共30分)1.下列方程是关于 的一元二次方程的是 A.B.C.D.2.将一元二次方程x 2-6x+5=0配方后,原方程变形为( )A. (x-3)2=5 B. (x-6)2=5 C. (x-6)2=4 D. (x-3)2=4 3.已知点A (m 2-2,5m+4)在第一象限角平分线上,则m 的值是( )A. 6B. -1C. 2或3D. -1或64.若关于x 的一元二次方程x 2﹣2x ﹣k+1=0有两个不相等的实数根,则一次函数y=kx ﹣k 的大致图象是( )A.B.C.D.5.如果关于 的方程 有两个实数根,则 满足的条件是( )A.B.C.且D.且6.在一次酒会上,每两人都只碰一次杯,如果一共碰杯55次,则参加酒会的人数为( ) A. 9人 B. 10人 C. 11人 D. 12人7.已知一个直角三角形的两条直角边的长恰好是方程x 2﹣3x =4(x ﹣3)的两个实数根,则该直角三角形斜边上的中线长是( )A. 3B. 4C. 6D. 2.58.若一元二次方程x 2﹣x ﹣2=0的两根为x 1 , x 2 , 则(1+x 1)+x 2(1﹣x 1)的值是( ) A. 4 B. 2 C. 1 D. ﹣29.王叔叔从市场上买了一块长80cm ,宽70cm 的矩形铁皮,准备制作一个工具箱.如图,他将矩形铁皮的四个角各剪掉一个边长xcm 的正方形后,剩余的部分刚好能围成一个底面积为3000cm 2的无盖长方形工具箱,根据题意列方程为( )A. (80﹣x )(70﹣x )=3000B. 80×70﹣4x 2=3000C. (80﹣2x )(70﹣2x )=3000D. 80×70﹣4x 2﹣(70+80)x=300010.如图的六边形是由甲、乙两个长方形和丙、丁两个等腰直角三角形所组成,其中甲、乙的面积和等于丙、丁的面积和.若丙的一股长为2,且丁的面积比丙的面积小,则丁的一股长为何?( )A. B. C. 2﹣ D. 4﹣2二、填空题(共6题;共18分)11.方程 转化为一元二次方程的一般形式是________.12.一元二次方程的根是________.13.关于x 的一元二次方程(m ﹣3)x 2+x+(m 2﹣9)=0的一个根是0,则m 的值是________. 14.若一元二次方程x 2+2kx+k 2-2k+1=0的两个根分别为x 1 , x 2 , 满足x 12+x 22=4,则k 的值=________。
新人教版第21章一元二次方程单元试卷含答案解析
2020年人教版九年级数学上册单元测试:第21章一元二次方程一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数2.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.03.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或34.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2020﹣a﹣b的值是()A.2020 B.2020 C.2020 D.20205.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1 B.2 C.3 D.46.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=97.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=109.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375 D.2x(2x+10)=37510.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20201,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144二、填空题11.一元二次方程x2﹣3=0的根为.12.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是.13.已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则的值为.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于.15.若x1,x2是方程3x2﹣|x|﹣4=0的两根,则=.16.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为%.三、解答题(共52分)17.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.18.试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.19.已知实数,满足a2+a﹣2=0,求的值.2020实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.21.已知关于x的方程2x2﹣mx﹣2m+1=0的两根x1,x2,且x12+x22=,试求m的值.22.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.23.某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少2020.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?2020年人教版九年级数学上册单元测试:第21章一元二次方程参考答案与试题解析一、选择题1.关于x的一元二次方程(a2﹣1)x2+x﹣2=0是一元二次方程,则a满足()A.a≠1 B.a≠﹣1 C.a≠±1 D.为任意实数【考点】一元二次方程的定义.【分析】本题根据一元二次方程的定义求解.一元二次方程必须满足两个条件:(1)未知数的最高次数是2;(2)二次项系数不为0.由这两个条件得到相应的关系式,再求解即可.【解答】解:由题意得:a2﹣1≠0,解得a≠±1.故选C.【点评】本题利用了一元二次方程的概念.只有一个未知数且未知数最高次数为2的整式方程叫做一元二次方程,一般形式是ax2+bx+c=0(且a≠0).特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.2.若关于x的一元二次方程x2+5x+m2﹣1=0的常数项为0,则m等于()A.1 B.2 C.1或﹣1 D.0【考点】一元二次方程的一般形式.【专题】计算题.【分析】根据常数项为0列出关于m的方程,求出方程的解即可得到m的值.【解答】解:∵x2+5x+m2﹣1=0的常数项为0,∴m2﹣1=0,解得:m=1或﹣1.故选C【点评】此题考查了一元二次方程的一般形式,一元二次方程的一般形式是:ax2+bx+c=0(a,b,c是常数且a≠0)特别要注意a≠0的条件.这是在做题过程中容易忽视的知识点.在一般形式中ax2叫二次项,bx叫一次项,c是常数项.其中a,b,c分别叫二次项系数,一次项系数,常数项.3.已知x=1是一元二次方程x2+mx+2=0的一个解,则m的值是()A.﹣3 B.3 C.0 D.0或3【考点】一元二次方程的解.【分析】直接把x=1代入已知方程就得到关于m的方程,再解此方程即可.【解答】解:∵x=1是一元二次方程x2+mx+2=0的一个解,∴1+m+2=0,∴m=﹣3.故选A.【点评】此题比较简单,利用方程的解的定义即可确定待定系数.4.若关于x的一元二次方程为ax2+bx+5=0(a≠0)的解是x=1,则2020﹣a﹣b的值是()A.2020 B.2020 C.2020 D.2020【考点】一元二次方程的解.【分析】将x=1代入到ax2+bx+5=0中求得a+b的值,然后求代数式的值即可.【解答】解:∵x=1是一元二次方程ax2+bx+5=0的一个根,∴a•12+b•1+5=0,∴a+b=﹣5,∴2020﹣a﹣b=2020﹣(a+b)=2020﹣(﹣5)=2020.故选:A.【点评】此题主要考查了一元二次方程的解,解题的关键是把已知方程的根直接代入方程得到待定系数的方程即可求得代数式a+b的值.5.关于x的方程(2﹣a)x2+5x﹣3=0有实数根,则整数a的最大值是()A.1 B.2 C.3 D.4【考点】根的判别式;一元一次不等式组的整数解.【分析】由于关于x的方程(2﹣a)x2+5x﹣3=0有实数根,分情况讨论:①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,由此可以确定整数a的最大值.【解答】解:∵关于x的方程(2﹣a)x2+5x﹣3=0有实数根,∴①当2﹣a=0即a=2时,此时方程为一元一次方程,方程一定有实数根;②当2﹣a≠0即a≠2时,此时方程为一元二次方程,如果方程有实数根,那么其判别式是一个非负数,∴△=25+12(2﹣a)≥0,解之得a≤,∴整数a的最大值是4.故选D.【点评】本题考查了一元二次方程根的判别式的应用.一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.注意次方程应分是一元二次方程与不是一元二次方程两种情况进行讨论.6.用配方法解一元二次方程x2﹣4x=5时,此方程可变形为()A.(x+2)2=1 B.(x﹣2)2=1 C.(x+2)2=9 D.(x﹣2)2=9【考点】解一元二次方程-配方法.【专题】配方法.【分析】配方法的一般步骤:(1)把常数项移到等号的右边;(2)把二次项的系数化为1;(3)等式两边同时加上一次项系数一半的平方.选择用配方法解一元二次方程时,最好使方程的二次项的系数为1,一次项的系数是2的倍数.【解答】解:∵x2﹣4x=5,∴x2﹣4x+4=5+4,∴(x﹣2)2=9.故选D.【点评】此题考查了配方法解一元二次方程,解题时要注意解题步骤的准确应用.7.已知函数y=kx+b的图象如图所示,则一元二次方程x2+x+k﹣1=0根的存在情况是()A.没有实数根B.有两个相等的实数根C.有两个不相等的实数根 D.无法确定【考点】根的判别式;一次函数图象与系数的关系.【分析】先根据函数y=kx+b的图象可得;k<0,再根据一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k ﹣1)=5﹣4k>0,即可得出答案.【解答】解:根据函数y=kx+b的图象可得;k<0,b<0,则一元二次方程x2+x+k﹣1=0中,△=12﹣4×1×(k﹣1)=5﹣4k>0,则一元二次方程x2+x+k﹣1=0根的存在情况是有两个不相等的实数根,故选:C.【点评】此题考查了一元二次方程根的判别式,用到的知识点是一次函数图象的性质,关键是根据函数图象判断出△的符号.8.在某次聚会上,每两人都握了一次手,所有人共握手10次,设有x人参加这次聚会,则列出方程正确的是()A.x(x﹣1)=10 B.=10 C.x(x+1)=10 D.=10【考点】由实际问题抽象出一元二次方程.【专题】其他问题;压轴题.【分析】如果有x人参加了聚会,则每个人需要握手(x﹣1)次,x人共需握手x(x﹣1)次;而每两个人都握了一次手,因此要将重复计算的部分除去,即一共握手:次;已知“所有人共握手10次”,据此可列出关于x的方程.【解答】解:设x人参加这次聚会,则每个人需握手:x﹣1(次);依题意,可列方程为:=10;故选B.【点评】理清题意,找对等量关系是解答此类题目的关键;需注意的是本题中“每两人都握了一次手”的条件,类似于球类比赛的单循环赛制.9.某中学准备建一个面积为375m2的矩形游泳池,且游泳池的宽比长短10m.设游泳池的长为xm,则可列方程()A.x(x﹣10)=375 B.x(x+10)=375 C.2x(2x﹣10)=375 D.2x(2x+10)=375【考点】由实际问题抽象出一元二次方程.【专题】几何图形问题.【分析】如果设游泳池的长为xm,那么宽可表示为(x﹣10)m,根据面积为375,即可列出方程.【解答】解:设游泳池的长为xm,那么宽可表示为(x﹣10)m;则根据矩形的面积公式:x(x﹣10)=375;故选A.【点评】本题可根据矩形面积=长×宽,找出关键语来列出方程.10.如图是某月的日历表,在此日历表上可以用一个矩形圈出3×3个位置相邻的9个数(如6,7,8,13,14,15,20201,22).若圈出的9个数中,最大数与最小数的积为192,则这9个数的和为()A.32 B.126 C.135 D.144【考点】一元二次方程的应用.【专题】压轴题.【分析】根据日历上数字规律得出,圈出的9个数,最大数与最小数的差为16,以及利用最大数与最小数的积为192,求出两数,再利用上下对应数字关系得出其他数即可.【解答】解:根据图象可以得出,圈出的9个数,最大数与最小数的差为16,设最小数为:x,则最大数为x+16,根据题意得出:x(x+16)=192,解得:x1=8,x2=﹣24,(不合题意舍去),故最小的三个数为:8,9,10,下面一行的数字分别比上面三个数大7,即为:15,16,17,第3行三个数,比上一行三个数分别大7,即为:22,23,24,故这9个数的和为:8+9+10+15+16+17+22+23+24=144.故选:D.【点评】此题主要考查了数字变化规律以及一元二次方程的解法,根据已知得出最大数与最小数的差为16是解题关键.二、填空题11.一元二次方程x2﹣3=0的根为x1=,x2=﹣.【考点】解一元二次方程-直接开平方法.【分析】直接解方程得出答案,注意用直接开平方法.【解答】解:x2﹣3=0,x2=3,x=,x1=,x2=﹣.故答案为:x1=,x2=﹣.【点评】此题主要考查了直接开平方法解方程,题目比较典型,是中考中的热点问题.12.如果(x2+y2)(x2+y2﹣2)=3,则x2+y2的值是3.【考点】换元法解一元二次方程.【专题】换元法.【分析】先设x2+y2=t,则方程即可变形为t(t﹣2)=3,解方程即可求得t即x2+y2的值.【解答】解:设x2+y2=t(t≥0).则原方程可化为:t(t﹣2)=3,即(t﹣3)(t+1)=0,∴t﹣3=0或t+1=0,解得t=3,或t=﹣1(不合题意,舍去);故答案是:3.【点评】本题考查了换元法﹣﹣解一元二次方程.解答该题时需注意条件:x2+y2=t且t≥0.13.已知x1,x2是一元二次方程x2+6x+3=0两个实数根,则的值为10.【考点】根与系数的关系.【分析】根据===,根据一元二次方程根与系数的关系可得:两根之积与两根之和的值,代入上式计算即可.【解答】解:∵x1、x2是方程x2+6x+3=0的两个实数根,∴x1+x2=﹣6,x1•x2=3.又∵===,将x1+x2=﹣6,x1•x2=3代入上式得原式==10.故填空答案为10.【点评】将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.14.已知x1,x2是方程x2﹣2x﹣1=0的两个根,则+等于﹣2.【考点】根与系数的关系.【专题】计算题.【分析】根据一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系得到x1+x2=2,x1•x2=1,然后变形+得,再把x1+x2=2,x1•x2=﹣1整体代入计算即可.【解答】解:∵x1,x2是方程x2﹣2x﹣1=0的两个根,∴x1+x2=2,x1•x2=﹣1,∴+==﹣2.故答案为﹣2.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根与系数的关系:若方程的两根为x1,x2,则x1+x2=﹣,x1•x2=.也考查了一元二次方程的根的判别式.15.若x1,x2是方程3x2﹣|x|﹣4=0的两根,则=.【考点】根与系数的关系.【分析】首先假设x>0或x<0分别讨论,再利用所求根代入得出即可.【解答】解:当x>0,则3x2﹣|x|﹣4=0,可变形为:3x2﹣x﹣4=0,解得:x1=,x2=﹣1(不合题意舍去),当x<0,则3x2﹣|x|﹣4=0,可变形为:3x2+x﹣4=0,解得:x1=﹣,x2=1(不合题意舍去),则=,故答案为:.【点评】此题主要考查了绝对值的性质以及一元二次方程的解法,根据已知利用分类讨论得出是解题关键.16.为解决群众看病难的问题,一种药品连续两次降价,每盒的价格由原来的60元降至48.6元,则平均每次降价的百分率为10%.【考点】一元二次方程的应用.【专题】增长率问题.【分析】降低后的价格=降低前的价格×(1﹣降低率),如果设平均每次降价的百分率是x,则第一次降低后的价格是60(1﹣x),那么第二次后的价格是60(1﹣x)2,即可列出方程求解.【解答】解:设平均每次降价的百分率为x,依题意列方程:60(1﹣x)2=48.6,解方程得x1=0.1=10%,x2=1.9(舍去).故平均每次降价的百分率为10%.【点评】本题比较简单,考查的是一元二次方程在实际生活中的运用,属较简单题目.三、解答题(共52分)17.解下列方程:(1)2x2﹣4x﹣5=0.(2)x2﹣4x+1=0.(3)(y﹣1)2+2y(1﹣y)=0.【考点】解一元二次方程-因式分解法;解一元二次方程-配方法;解一元二次方程-公式法.【专题】计算题.【分析】(1)先计算判别式的值,然后利用求根公式法解方程;(2)先利用配方法得到(x﹣2)2=3,然后利用直接开平方法解方程;(3)先变形得到(y﹣1)2﹣2y(y﹣1)=0,然后利用因式分解法解方程.【解答】解:(1)△=(﹣4)2﹣4×2×(﹣5)=56,x==,所以x1=,x2=;(2)x2﹣4x+4=3,(x﹣2)2=3,x﹣2=±,所以x1=2+,x2=2﹣;(3)(y﹣1)2﹣2y(y﹣1)=0,(y﹣1)(y﹣1﹣2y)=0,y﹣1=0或y﹣1﹣2y=0,所以y1=1,y2=﹣1.【点评】本题考查了解一元二次方程﹣因式分解法:先把方程的右边化为0,再把左边通过因式分解化为两个一次因式的积的形式,那么这两个因式的值就都有可能为0,这就能得到两个一元一次方程的解,这样也就把原方程进行了降次,把解一元二次方程转化为解一元一次方程的问题了(数学转化思想).也考查了配方法和公式法解一元二次方程.18.试说明不论x,y取何值,代数式x2+y2+6x﹣4y+15的值总是正数.【考点】配方法的应用;非负数的性质:偶次方.【分析】此题考查了配方法求最值,此题可化为2个完全平方式与一个常数的和的形式.【解答】解:将原式配方得,(x﹣2)2+(y+3)2+2,∵它的值总不小于2;∴代数式x2+y2+6x﹣4y+15的值总是正数.【点评】此题考查了配方法的应用,解题的关键是认真审题,准确配方.19.已知实数,满足a2+a﹣2=0,求的值.【考点】分式的化简求值;解一元二次方程-因式分解法.【专题】计算题.【分析】先解关于a的一元二次方程,求出a的值,并把所给的分式化简,然后把a的值代入化简后的式子计算就可以了.【解答】解:原式===,∵a2+a﹣2=0,∴a1=1,a2=﹣2,∵a1=1时,分母=0,∴a1=1(舍去),当a2=﹣2,原式==2.【点评】这是关于分式化简求值的问题,注意解出a的值必须保证分式有意义,才能代入计算.2020实数范围内定义一种新运算“△”,其规则为:a△b=a2﹣b2,根据这个规则:(1)求4△3的值;(2)求(x+2)△5=0中x的值.【考点】解一元二次方程-直接开平方法.【专题】新定义.【分析】(1)根据规则为:a△b=a2﹣b2,代入相应数据可得答案;(2)根据公式可得(x+2)△5=(x+2)2﹣52=0,再利用直接开平方法解一元二次方程即可.【解答】解:(1)4△3=42﹣32=16﹣9=7;(2)由题意得(x+2)△5=(x+2)2﹣52=0,(x+2)2=25,两边直接开平方得:x+2=±5,x+2=5,x+2=﹣5,解得:x1=3,x2=﹣7.【点评】此题主要考查了直接开平方法解一元二次方程,解这类问题要移项,把所含未知数的项移到等号的左边,把常数项移项等号的右边,化成x2=a(a≥0)的形式,利用数的开方直接求解.21.已知关于x的方程2x2﹣mx﹣2m+1=0的两根x1,x2,且x12+x22=,试求m的值.【考点】根与系数的关系.【分析】首先根据一元二次方程根与系数得到两根之和和两根之积,然后把x12+x22转换为(x1+x2)2﹣2x1x2,然后利用前面的等式即可得到关于m的方程,解方程即可求出结果.【解答】解:∵x1、x2是一元二次方程2x2﹣mx﹣2m+1=0的两个实数根,∴x1+x2=m,x1x2=(﹣2m+1),∵x12+x22=(x1+x2)2﹣2x1x2=,∴m2﹣2×(﹣2m+1)=,解得:m1=3,m2=﹣11,又∵方程x2﹣mx+2m﹣1=0有两个实数根,∴△=m2﹣4×2×(﹣2m+1)≥0,∴当m=﹣11时,△=﹣73<0,舍去;故符合条件的m的值为m=3.【点评】此题主要考查了根与系数的关系,将根与系数的关系与代数式变形相结合解题是一种经常使用的解题方法.通过变形可以得到关于待定系数的方程解决问题.22.如图所示,在长和宽分别是a、b的矩形纸片的四个角都剪去一个边长为x的正方形.(1)用a,b,x表示纸片剩余部分的面积;(2)当a=6,b=4,且剪去部分的面积等于剩余部分的面积时,求正方形的边长.【考点】一元二次方程的应用.【专题】几何图形问题.【分析】(1)边长为x的正方形面积为x2,矩形面积减去4个小正方形的面积即可.(2)依据剪去部分的面积等于剩余部分的面积,列方程求出x的值即可.【解答】解:(1)ab﹣4x2;(2)依题意有:ab﹣4x2=4x2,将a=6,b=4,代入上式,得x2=3,解得x1=,x2=﹣(舍去).即正方形的边长为【点评】本题是利用方程解答几何问题,充分体现了方程的应用性.依据等量关系“剪去部分的面积等于剩余部分的面积”,建立方程求解.23.某水果批发商场销售一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下.若每千克涨价1元,日销售量将减少2020.(1)现该商场要保证每天盈利6000元,同时又要使顾客得到实惠,那么每千克应涨价多少元?(2)每千克水果涨价多少元时,商场每天获得的利润最大?获得的最大利润是多少元?【考点】二次函数的应用;一元二次方程的应用.【分析】(1)关键是根据题意列出一元二次方程,然后求出其解,最后根据题意确定其值.(2)根据题意列出二次函数解析式,然后转化为顶点式,最后求其最值.【解答】解:(1)设每千克应涨价x元,由题意,得(10+x)(500﹣2020=6000,整理,得x2﹣15x+50=0,解得:x=5或x=10,∴为了使顾客得到实惠,所以x=5.(2)设涨价x元时总利润为y,由题意,得y=10+x)(500﹣2020y=﹣2020+300x+5 000y=﹣2020﹣7.5)2+6125∴当x=7.5时,y取得最大值,最大值为6125元.答:(1)要保证每天盈利6000元,同时又使顾客得到实惠,那么每千克应涨价5元;(2)若该商场单纯从经济角度看,每千克这种水果涨价7.5元,能使商场获利最多为6125元.【点评】考查了二次函数的应用,求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法,常用的是后两种方法,当二次系数a的绝对值是较小的整数时,用配方法较好,如y=﹣x2﹣2x+5,y=3x2﹣6x+1等用配方法求解比较简单.。
人教版九年级上第21章《一元二次方程》单元测试题(含答案解析)
【解析】
【分析】
首先在-1<x<1的范围内选取x的一个值,作为方程的另一根,再根据因式分解法确定一元二次方程.本题答案不唯一.
【详解】
由题意知,另一根为0时,满足-1<x<1,
∴方程可以为:x(x-1)=0,
故答案为:x(x-1)=0(本题答案不唯一).
【点睛】
C.没有实数根D.无法判断
4.已知一元二次方程 ,若 ,则该方程一定有一个根为()
A.0B.1C.2D.-1
5.用配方法解一元二次方程x2﹣6x﹣1=0时,下列变形正确的是( )
A.(x﹣3)2=1B.(x﹣3)2=10C.(x+3)2=1D.(x+3)2=10
6.关于x的一元二次方程(k-1)x2+2x-2=0有两个不相等的实数根,则整数k的最小值是( )
(1)△>0⇔方程有两个不相等的实数根;
(2)△=0⇔方程有两个相等的实数根;
(3)△<0⇔方程没有实数根.
9.B
【解析】
分析:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,根据长方形的面积公式结合纸盒的底面(图中阴影部分)面积是32cm2,即可得出关于x的一元二次方程,此题得解.
D、是一元二次方程,故此选项正确;
故选D.
【点睛】
此题主要考查了一元二次方程,关键是掌握判断一个方程是否是一元二次方程应注意抓住5个方面:“化简后”;“一个未知数”;“未知数的最高次数是2”;“二次项的系数不等于0”;“整式方程”.
2.D
【解析】
【分析】
把x=1代入x2+px+1=0,即可求得p的值.
详解:设剪去的小正方形边长是xcm,则纸盒底面的长为(10−2x)cm,宽为(6−2x)cm,
2023-2024学年人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷含答案
2023-2024学年人教版九年级数学上册《第二十一章 一元二次方程》单元测试卷含答案学校:___________班级:___________姓名:___________考号:___________一、单选题1.下列一元二次方程没有实数根的是( )A .x 2﹣2x ﹣1=0B .x 2+x+3=0C .x 2﹣1=0D .x 2+2x+1=0 2.用公式法解方程x 2﹣x=2时,求根公式中的a ,b ,c 的值分别是( )A .a=1,b=1,c=2B .a=1,b=﹣1,c=﹣2C .a=1,b=1,c=﹣2D .a=1,b=﹣1,c=23.解一元二次方程x 2-2x-5=0,结果正确的是( )A .x 1=-1+,x 2=-1-B .x 1=1+ ,x 2=1-C .x 1=7,x 2= 5D .x 1= 1+ ,x 2=1-4.若关于x 的方程x 2+4x+m=0有实数根,则m 的取值范围是( )A .m ≥4B .m ≤4C .m<-4D .m<45.关于x 的一元二次方程x 2-6x +k =0的一个根是1,则另一个根是( )A .5B .-5C .-6D .-76.有x 支球队进行足球单循环比赛(既每两个队之间都要进行一场比赛),共比赛了10场,列出方程是( )A .12x (x-1)=10B .12x (x+1)=10C .x (x-1)=10D .x (x+1)=10 7.方程x 2-9x+18=0的两个根是一个等腰三角形的底和腰,则这个等腰三角形的周长为( )A .12B .12或15C .15D .不能确定8.为了改善居民住房条件,某市计划用未来两年的时间,将城镇居民的住房面积由现在的人均约为10m 2提高到12.1m 2.若每年的年增长率相同,则年增长率为( )A .9%B .10%C .11%D .12%二、填空题9.设m 、n 是一元二次方程x 2+2x ﹣7=0的两个根,则m+n = .10.若方程2x2−k=0有整数根,则k的值可以是.(只填一个)11.关于x的一元二次方程m x2 -(2m -l) x +1=0的根的判別式是1,那么m= .12.已知方程ax2+bx+c=0的一个根是﹣1,则a﹣b+c=.13.用配方法解一元二次方程x2﹣mx=1时,可将原方程配方成(x﹣3)2=n,则m+n的值是.三、解答题14.解方程:(1)x2-4x+2=0;(2)x2+3x+2=0;(3)3x2-7x+4=0.15.苏宁电器销售某种冰箱,每台的进货价为2600元,调查发现,当销售价为3000元时,平均每天能售出8台;而当销售价每降低100元时,平均每天就能多售出8台. 商场要使这种冰箱的销售利润平均每天达到5000元,每台冰箱的定价应为多少元?16.20世纪20年代起,苏州河沿岸集中了大量工厂和棚户简屋,工业污水和生活污水未经处理直接排入河中,使苏州河的水质不断恶化,最终变成一条臭河.90年代起,上海市政府加大监管力度,投放大量财力用于苏州河的治理,并对沿岸工厂的污水排放量实行监控.通过实践表明,若每天有1000吨污水排入苏州河,则每吨需要500元来进行污水处理,并且每减少10吨污水排放,每吨的污水处理费可以减少4元,为了使每天的污水处理费用为30万元,则沿岸的工厂每天的污水排放量是多少吨?17.已知:关于x的一元二次方程x2−(m+3)x+m=0(1)求证:无论m取什么实数值,方程总有两个不相等的实数根;=1,求m的值(2)若x1,x2是原方程的两个实数根,且满足x1+x2−2x1x218.利用完全平方公式(a+b)2=a2+2ab+b2和(a﹣b)2=a2﹣2ab+b2的特点可以解决很多数学问题.下面给出两个例子:例1.分解因式:x2+2x﹣3=x2+2x+1﹣4=(x+1)2﹣4=(x+1+2)(x+1﹣2)=(x+3)(x﹣1)例2.求代数式2x2﹣4x﹣6的最小值:2x2﹣4x﹣6=2(x2﹣2x)﹣6=2(x2﹣2x+1﹣1)﹣6=2[(x﹣1)2﹣1]﹣6=2(x﹣1)2﹣8又∵2(x﹣1)2≥0∴当x=1时,代数式2x2﹣4x﹣6有最小值,最小值是﹣8.仔细阅读上面例题,模仿解决下列问题:(1)分解因式:m2﹣6m﹣7;(2)当x、y为何值时,多项式2x2+y2﹣8x+6y+20有最小值?并求出这个最小值;(3)已知△ABC的三边长a、b、c都是正整数,且满足a2+b2=8a+6b﹣25,求△ABC周长的最大值.参考答案1.B2.B3.B4.B5.A6.A7.C8.B9.﹣2为完全平方数即可)10.18(k211.212.013.1614.(1)解:x2-4x+2=0x2-4x=-2x2-4x+4=-2+4(x-2)2=2,x-2=±√2∴x1=2+ √2,x2=2- √2;(2)解:x2+3x+2=0(x+1)(x+2)=0x+1=0或x+2=0∴x1=-1,x2=-2;(3)解:3x2-7x+4=0(3x-4)(x-1)=03x-4=0或x-1=0,x2=-1.∴x1= 4315.解:设每台冰箱的定价应为x元×8)=5000 根据题意得:(x-2600)(8+3000−x100解得:x1=x2=2850.答:每台冰箱的定价应为2850元.16.解:设每天的污水排放量减少10x吨,其中x<100,则每吨处理费用减少4x元由题意,得(1000−10x)(500−4x)=300000整理得(x−200)(x−25)=0解得x=200(舍去)或x=25当x=25,10x=250,每天的污水排放量为1000−250=750(吨)答:沿岸的工厂每天的污水排放量是 750吨.17.(1)解:证明:△=[-(m+3)]2-4×m=m2+2m+9=(m+1)2+8因为不论m为何值,(m+1)2≥0所以△>0所以无论m取什么实数值,该方程总有两个不相等的实数根(2)解:根据根与系数的关系得:x1+x2=m+3,x1•x2=m.∵x1+x2−2x1x2=1,∴m+3- 2m=1,化简,得m2+2m-2=0.解得m=-1+ √3或-1- √3.18.(1)解:m2﹣6m﹣7=m2﹣6m+9﹣9﹣7=(m﹣3)2﹣16=(m﹣3+4)(m﹣3﹣4)=(m+1)(m﹣7)(2)解:2x2+y2﹣8x+6y+20=(2x2﹣8x)+y2+6y+9+11=2(x2﹣4x+4﹣4)+y2+6y+9+11=2(x﹣2)2﹣8+(y+3)2+11=2(x﹣2)2+(y+3)2+3.∵2(x﹣2)2≥0,(y+3)2≥0∴当x=2,y=﹣3时,2x2+y2﹣8x+6y+20有最小值,最小值是3.(3)解:∵a2+b2=8a+6b﹣25∴a2﹣8a+16+b2﹣6b+9=0∴(a﹣4)2+(b﹣3)2=0∴a﹣4=0,b﹣3=0∴a=4,b=3∵4﹣3<c<4+3∴1<c<7∵c为正整数∴c最大取6.∴△ABC周长的最大值=3+4+6=13 ∴△ABC周长的最大值为13。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年秋人教版九年级上册数学 第21章 一元二次方程 单元测试题一.选择题(共10小题)1.方程2(1)230m x mx -+-=是关于x 的一元二次方程, 则( ) A .1m ≠±B .1m =C .1m ≠-D .1m ≠2.一元二次方程23610x x -+=的二次项系数、一次项系数分别是( ) A .3,6-B .3,1C .6-,1D .3,63.下列方程中有一个根为1-的方程是( ) A .220x x +=B .23250x x +-=C .2540x x -+=D .22350x x --=4.关于x 的方程2(2)1x m -=-无实数根, 那么m 满足的条件是( ) A .2m >B .2m <C .1m >D .1m <5.一元二次方程2430y y --=配方后可化为( ) A .2(2)7y -= B .2(2)7y +=C .2(2)3y -=D .2(2)3y +=6.一元二次方程210x x +-=的根是( )A .1x =B .x =C .1x =-D .x =7.一元二次方程(1)(2)2x x ++=的解是( ) A .10x =,23x =-B .11x =-,22x =-C .11x =,22x =D .10x =,23x =8.一元二次方程25204x x +-=的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根C . 没有实数根D . 无法判断9.方程2240x x --=和方程2420x x -+=中所有的实数根之和是( ) A . 2B . 4C . 6D . 810.某超市一月份的营业额为 40 万元, 一月、 二月、 三月的营业额共 200 万元, 如果平均每月增长率为x ,则由题意列方程为( ) A .240(1)200x += B .40402200x +⨯⨯= C .40403200x +⨯⨯= D .240[1(1)(1)]200x x ++++=二.填空题(共8小题)11.若31210m x x ---=是关于x 的一元二次方程, 则m 的值为 . 12.已知m 是关于x 的方程2450x x +-=的一个根, 则228m m +=13.一元二次方程20x mx n --=的两实根是12x =,23x =,则m = ,n = .14.一个三角形的两边长分别为 3 和 5 ,第三边长是方程2680x x -+=的根, 则三角形的周长为 .15.已知关于x 的一元二次方程210mx x ++=有实数根, 则m 的取值范围是 .16.若关于x 的一元二次方程22(2)340m x x m -++-=有一个根为 0 ,则另一个根为 . 17.如图所示, 点阵M 的层数用n 表示, 点数总和用S 表示, 当66S =时, 则n = .18.如图, 在长为10m ,宽为8m 的矩形场地上修建两条宽度相等且互相垂直的道路, 剩余部分进行绿化, 要使绿化面积为248m ,则道路的宽应为 m .三.解答题(共8小题) 19.解下列方程 (1)2640x x ++= (2)2230x x --= (3)3(2)105x x x -=-20.已知关于x 的一元二次方程22(21)0x k x k --+=有两个不相等的实数根, 求k 的取值范围 . 21.小强看见九年级的哥哥在做这样一道题“解方程:2(3)(2)(2)5x x x +=+--”,他看了看后,发现可以用《整式的乘法》知识来去括号,然后转化为一元一次方程来解答.试按照小强的思路完成此题的解答. 22.已知方程2(2)(3)10m m xm x -+-+=.(1)当m 为何值时,它是一元二次方程? (2)当m 为何值时,它是一元一次方程?23.小刚在做作业时, 不小心将方程2350x bx --=的一次项系数用墨水覆盖住了, 但从题目的答案中, 他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数 . 24.已知关于x 的一元二次方程2(2)10x k x k -++-=. (1) 若方程的一个根为1-,求k 的值和方程的另一个根; (2) 求证: 不论k 取何值, 该方程都有两个不相等的实数根 .25.某天猫店销售某种规格学生软式排球, 成本为每个 30 元 . 以往销售大数据分析表明: 当每只售价为 40 元时, 平均每月售出 600 个;若售价每上涨 1 元, 其月销售量就减少 20 个, 若售价每下降 1 元, 其月销售量就增加 200 个 .(1) 若售价上涨m 元, 每月能售出 个排球 (用m 的代数式表示) .(2) 为迎接“双十一”, 该天猫店在 10 月底备货 1300 个该规格的排球, 并决定整个 11 月份进行降价促销, 问售价定为多少元时, 能使 11 月份这种规格排球获利恰好为 8400 元 . 26.列一元二次方程解应用题某公司今年 1 月份的纯利润是 20 万元, 由于改进技术, 生产成本逐月下降, 3 月份的纯利润是 22.05 万元 . 假设该公司 2 、 3 、 4 月每个月增长的利润率相同 . (1) 求每个月增长的利润率;(2) 请你预测 4 月份该公司的纯利润是多少?2018年秋人教版九年级上册数学 第21章 一元二次方程 单元测试题参考答案与试题解析一.选择题(共10小题)1.方程2(1)230m x mx -+-=是关于x 的一元二次方程, 则( ) A .1m ≠±B .1m =C .1m ≠-D .1m ≠【分析】根据一元二次方程的定义, 得到关于m 的不等式, 解之即可 . 【解答】解: 根据题意得:10m -≠, 解得:1m ≠, 故选:D .【点评】本题考查了一元二次方程的定义, 正确掌握一元二次方程的定义是解题的关键 . 2.一元二次方程23610x x -+=的二次项系数、一次项系数分别是( ) A .3,6-B .3,1C .6-,1D .3,6【分析】找出所求的二次项系数、一次项系数即可.【解答】解:一元二次方程23610x x -+=的二次项系数,一次项系数分别是3,6-. 故选:A .【点评】考查了一元二次方程的一般形式:20(ax bx c a ++=,b ,c 是常数且0)a ≠特别要注意0a ≠的条件.这是在做题过程中容易忽视的知识点.在一般形式中2ax 叫二次项,bx 叫一次项,c 是常数项.其中a ,b ,c 分别叫二次项系数,一次项系数,常数项. 3.下列方程中有一个根为1-的方程是( ) A .220x x +=B .23250x x +-=C .2540x x -+=D .22350x x --=【分析】利用一元二次方程解的定义对各选项分别进行判断 .【解答】解: 当1x =-时,22212x x +=-=,所以1x =-不是方程220x x +=的解; 当1x =-时,23253256x x +-=--=-,所以1x =-不是方程23250x x +-=的解; 当1x =-时,25415410x x -+=++=,所以1x =-不是方程2540x x -+=的解; 当1x =-时,22352350x x --=+-=,所以1x =-是方程22350x x --=的解 .【点评】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .4.关于x 的方程2(2)1x m -=-无实数根, 那么m 满足的条件是( ) A .2m >B .2m <C .1m >D .1m <【分析】方程左边是一个式的平方, 根据平方的非负性, 得关于m 的不等式, 求解不等式即可 . 【解答】解: 当10m -<时, 方程无解 . 即1m >. 故选:C .【点评】本题考查了一元二次方程的直接开平方法, 运用直接开平方法, 等号的另一边必须是非负数 .5.一元二次方程2430y y --=配方后可化为( ) A .2(2)7y -= B .2(2)7y +=C .2(2)3y -=D .2(2)3y +=【分析】先表示得到243y y -=,再把方程两边加上 4 ,然后把方程左边配成完全平方形式即可 . 【解答】解:243y y -=,2447y y -+=, 2(2)7y -=.故选:A .【点评】本题考查了解一元二次方程-配方法: 将一元二次方程配成2()x m n +=的形式, 再利用直接开平方法求解, 这种解一元二次方程的方法叫配方法 . 6.一元二次方程210x x +-=的根是( )A .1x =B .x =C .1x =-D .x =【分析】先计算判别式的值,然后根据判别式的意义可判断方程根的情况. 【解答】解:△214(1)50=-⨯-=>,∴方程有两个不相等的两个实数根,即12x -±=.【点评】本题考查了公式法解一元二次方程,用公式法解一元二次方程的前提条件有两个:①0a ≠;②240b ac -…. 7.一元二次方程(1)(2)2x x ++=的解是( ) A .10x =,23x =-B .11x =-,22x =-C .11x =,22x =D .10x =,23x =【分析】先把方程化为一般式, 然后利用因式分解法解方程 . 【解答】解:230x x +=,(3)0x x +=,0x =或30x +=, 所以10x =,23x =-. 故选:A .【点评】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了 (数 学转化思想) . 8.一元二次方程25204x x +-=的根的情况是( ) A . 有两个不相等的实数根 B . 有两个相等的实数根C . 没有实数根D . 无法判断【分析】根据方程的系数结合根的判别式, 可得出△90=>,进而可得出方程25204x x +-=有两个不相等的实数根, 此题得解 .【解答】解:△25241()904=-⨯⨯-=>,∴方程25204x x +-=有两个不相等的实数根 .故选:A .【点评】本题考查了根的判别式, 牢记“当△0>时, 方程有两个不相等的实数根”是解题的关键 . 9.方程2240x x --=和方程2420x x -+=中所有的实数根之和是( ) A . 2B . 4C . 6D . 8【分析】根据方程的系数结合根的判别式, 可得出两方程均有两个不相等的实数根, 再利用根与系数的关系可求出每个方程的两根之和, 将其相加后即可得出结论 . 【解答】解:方程2240x x --=的根的判别式△2(2)41(4)200=--⨯⨯-=>,∴方程2240x x --=有两个不相等的实数根, 两根之和为 2 ;方程2420x x -+=的根的判别式△2(4)41280=--⨯⨯=>,∴方程2420x x -+=有两个不相等的实数根, 两根之和为 4 .246+=,∴两方程所有的实数根之和是 6 .故选:C .【点评】本题考查了根的判别式以及根与系数的关系, 牢记两根之和等于ba-是解题的关键 .10.某超市一月份的营业额为 40 万元, 一月、 二月、 三月的营业额共 200 万元, 如果平均每月增长率为x ,则由题意列方程为( ) A .240(1)200x += B .40402200x +⨯⨯= C .40403200x +⨯⨯=D .240[1(1)(1)]200x x ++++=【分析】设平均每月增长率为x ,由一月、 二月、 三月的营业额共 200 万元, 即可得出关于x 的一元二次方程, 此题得解 . 【解答】解: 设平均每月增长率为x , 根据题意得:240[1(1)(1)]200x x ++++=. 故选:D .【点评】本题考查了由实际问题抽象出一元二次方程, 找准等量关系, 正确列出一元二次方程是解题的关键 .二.填空题(共8小题)11.若31210m x x ---=是关于x 的一元二次方程, 则m 的值为 1 .【分析】本题根据一元二次方程的一般形式, 即可得到312m -=,即可求得m 的值 . 【解答】解: 依题意得:312m -=, 解得1m =. 故答案是: 1 .【点评】本题利用了一元二次方程的概念 . 只有一个未知数且未知数最高次数为 2 的整式方程叫做一元二次方程, 一般形式是20ax bx c ++=(且0)a ≠.12.已知m 是关于x 的方程2450x x +-=的一个根, 则228m m += 10【分析】利用一元二次方程的解的定义得到245m m +=,再把228m m +变形为22(4)m m +,然后利用整体代入的方法计算 .【解答】解:m 是关于x 的方程2450x x +-=的一个根,2450m m ∴+-=, 245m m ∴+=,22282(4)2510m m m m ∴+=+=⨯=.故答案为 10 .【点评】本题考查了一元二次方程的解: 能使一元二次方程左右两边相等的未知数的值是一元二次方程的解 .13.一元二次方程20x mx n --=的两实根是12x =,23x =,则m = 5 ,n = .【分析】根据根与系数的关系结合方程的两实根是12x =,23x =,可求出m ,n 的值, 此题得解 . 【解答】解:一元二次方程20x mx n --=的两实根是12x =,23x =,125m x x ∴=+=,126n x x =-=-.故答案为: 5 ;6-.【点评】本题考查了根与系数的关系, 牢记“两根之和等于b a -,两根之和等于ca”是解题的关键 .14.一个三角形的两边长分别为 3 和 5 ,第三边长是方程2680x x -+=的根, 则三角形的周长为 12 .【分析】先利用因式分解法解方程得到12x =,24x =,然后利用三角形三边的关系得到三角形第三边的长为 4 ,从而得到计算三角形的周长 . 【解答】解:2680x x -+=,(2)(4)0x x --=,20x -=或40x -=,所以12x =,24x =, 而235+=,所以三角形第三边的长为 4 , 所以三角形的周长为34512++=. 故答案为 12 .【点评】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了 (数 学转化思想) . 也考查了配方法解一元二次方程 . 也考查了三角形三边的关系 .15.已知关于x 的一元二次方程210mx x ++=有实数根, 则m 的取值范围是 14m …且0m ≠ . 【分析】由于关于x 的一元二次方程有实数根, 计算根的判别式, 得关于m 的不等式, 求解即可 . 【解答】解:关于x 的一元二次方程210mx x ++=有实数根,则△140m =-…,且0m ≠. 解得14m …且0m ≠. 故答案为:14m …且0m ≠.【点评】本题考查了根的判别式、 一次不等式的解法及一元二次方程的定义 . 题目难度不大, 解题过程中容易忽略0m ≠条件而出错 .16.若关于x 的一元二次方程22(2)340m x x m -++-=有一个根为 0 ,则另一个根为34. 【分析】先把2x =代入方程22(2)340m x x m -++-=得到满足条件的m 的值为2-,此时方程化为2430x x -=,设方程的另一个根为t ,利用根与系数的关系得到304t +=,然后求出t 即可 . 【解答】解: 把2x =代入方程22(2)340m x x m -++-=得方程240m -=,解得12m =,22m =-, 而20m -≠, 所以2m =-,此时方程化为2430x x -=, 设方程的另一个根为t ,则304t +=,解得34t =,所以方程的另一个根为34. 故答案为34. 【点评】本题考查了根与系数的关系: 若1x ,2x 是一元二次方程20(0)ax bx c a ++=≠的两根时,12b x x a +=-,12c x x a=. 17.如图所示, 点阵M 的层数用n 表示, 点数总和用S 表示, 当66S =时, 则n = 11 .【分析】由等差数列的求和公式结合66S =,即可得出关于n 的一元二次方程, 解之取其正值即可得出结论 .【解答】解: 根据题意得:(1)662n n +=, 化简得:21320n n +-=,解得:111n =,212n =-(舍 去) . 故答案为: 11 .【点评】本题考查了一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题的关键 . 18.如图, 在长为10m ,宽为8m 的矩形场地上修建两条宽度相等且互相垂直的道路, 剩余部分进行绿化, 要使绿化面积为248m ,则道路的宽应为 2 m .【分析】设道路的宽为xm ,则剩余部分可合成长为(10)x m -,宽为(8)x -米的长方形, 根据矩形的面积公式结合绿化面积为248m ,即可得出关于x 的一元二次方程, 解之取其较小值即可得出结论 .【解答】解: 设道路的宽为xm ,则剩余部分可合成长为(10)x m -,宽为(8)x -米的长方形, 根据题意得:(10)(8)48x x --=, 整理得:12x =,216x =.80x ->,8x ∴<,2x ∴=.故答案为: 2 .【点评】本题考查了一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题的关键 .三.解答题(共8小题)19.解下列方程(1)2640x x ++=(2)2230x x --=(3)3(2)105x x x -=-【分析】(1) 利用配方法得到2(3)5x +=,然后利用直接开平方法解方程;(2) 利用因式分解法解方程;(3) 先变形为3(2)5(2)0x x x -+-=,然后利用因式分解法解方程 .【解答】解: (1)264x x +=-,2695x x ++=,2(3)5x +=,3x +=所以13x =-23x =-;(2)(23)(1)0x x -+=,230x -=或10x +=, 所以132x =,21x =-; (3)3(2)5(2)0x x x -+-=,(2)(35)0x x -+=,20x -=或350x +=,所以12x =,253x =-. 【点评】本题考查了解一元二次方程-因式分解法: 就是先把方程的右边化为 0 ,再把左边通过因式分解化为两个一次因式的积的形式, 那么这两个因式的值就都有可能为 0 ,这就能得到两个一元一次方程的解, 这样也就把原方程进行了降次, 把解一元二次方程转化为解一元一次方程的问题了 (数 学转化思想) . 也考查了配方法解一元二次方程 .20.已知关于x 的一元二次方程22(21)0x k x k --+=有两个不相等的实数根, 求k 的取值范围 .【分析】计算根的判别式△, 由题意得到关于k 的不等式, 求解即可 .【解答】解:关于x 的一元二次方程22(21)0x k x k --+=有两个不相等的实数根,∴△22[(21)]410k k =---⨯⨯>即410k -+>,14k ∴<. 【点评】本题考查了根的判别式, 题目比较简单 . 根的判别式△24b ac =-.21.小强看见九年级的哥哥在做这样一道题“解方程:2(3)(2)(2)5x x x +=+--”,他看了看后,发现可以用《整式的乘法》知识来去括号,然后转化为一元一次方程来解答.试按照小强的思路完成此题的解答.【分析】将原方程去括号化成方程的一般形式后求解即可.【解答】解:去括号得:226945x x x ++=--,移项、合并同类项得:618x =-,解得:3x =-.【点评】本题考查了方程的解法,解题的关键是能够利用完全平方公式和平方差公式化简,难度不大.22.已知方程2(2)(3)10m m x m x -+-+=.(1)当m 为何值时,它是一元二次方程?(2)当m 为何值时,它是一元一次方程?【分析】(1)根据一元二次方程的定义解答本题;(2)根据一次方程的定义可解答本题.【解答】解:(1)方程2(2)(3)10m m x m x -+-+=为一元二次方程, ∴2220m m ⎧=⎨-≠⎩,解得:m =所以当m 或时,方程方程2(2)(3)10m m x m x -+-+=为一元二次方程;(2)方程2(2)(3)10m m x m x -+-+=为一元一次方程,∴2030m m -=⎧⎨-≠⎩或21m = 解得,2m =或1m =±,故当m 为2或1±时,方程方程2(2)(3)10m m x m x -+-+=为一元一次方程.【点评】本题考查了一元一次方程的定义、一元二次方程的定义,能理解一元一次方程的定义和一元二次方程的定义是解此题的关键,尤其是要注意一元一次方程的各种情况要考虑全面.23.小刚在做作业时, 不小心将方程2350x bx --=的一次项系数用墨水覆盖住了, 但从题目的答案中, 他知道方程的一个解为5x =,请你帮助小刚求出被覆盖住的数 .【分析】把5x =代入方程2350x bx --=,得到关于b 的一元一次方程, 解之即可 .【解答】解: 把5x =代入方程2350x bx --=得:235550b ⨯--=, 解得:14b =,答: 被覆盖住的数是 14 .【点评】本题考查一元二次方程的解, 正确找出等量关系, 列出一元一次方程是解题的关键 .24.已知关于x 的一元二次方程2(2)10x k x k -++-=.(1) 若方程的一个根为1-,求k 的值和方程的另一个根;(2) 求证: 不论k 取何值, 该方程都有两个不相等的实数根 .【分析】(1) 把1x =-代入方程可求得k 的值, 再解方程可求得另一根;(2) 根据方程的系数结合根的判别式, 即可得出△280k =+>,由此可证出不论k 取何值, 方程必有两个不相等的实数根 .【解答】(1) 解: 把1x =-代入方程可得1(2)10k k +++-=,解得1k =-,当1k =-时, 原方程为220x x --=,解得11x =-,22x =,即方程的另一根为 2 ;(2) 证明:1a =,(2)b k =-+,1c k =-,∴△2224[(2)]41(1)80b ac k k k =-=-+-⨯⨯-=+>,∴不论k 取何值, 该方程都有两个不相等的实数根 .【点评】本题考查了根与系数的关系 . 一元二次方程20(0)ax bx c a ++=≠的根与系数的关系为:12b x x a +=-,12c x x a=. 也考查了根的判别式 . 25.某天猫店销售某种规格学生软式排球, 成本为每个 30 元 . 以往销售大数据分析表明: 当每只售价为 40 元时, 平均每月售出 600 个;若售价每上涨 1 元, 其月销售量就减少 20 个, 若售价每下降 1 元, 其月销售量就增加 200 个 .(1) 若售价上涨m 元, 每月能售出 60020m - 个排球 (用m 的代数式表示) .(2) 为迎接“双十一”, 该天猫店在 10 月底备货 1300 个该规格的排球, 并决定整个 11 月份进行降价促销, 问售价定为多少元时, 能使 11 月份这种规格排球获利恰好为 8400 元 .【分析】(1) 由销售数量60020=-⨯上涨价格, 即可得出结论;(2) 设每个排球降价x 元, 则 11 月份可售出该种排球(200600)x +个, 根据月利润=单件利润⨯月销售数量, 即可得出关于x 的一元二次方程, 解之取其较小值即可得出结论 .【解答】解: (1) 根据题意得:60020m -.故答案为:60020m -.(2) 设每个排球降价x 元, 则 11 月份可售出该种排球(200600)x +个,根据题意得:(4030)(200600)8400x x --+=,解得:13x =,24x =.当3x =时, 销量为12001300<,适合题意;当4x =时, 销量为14001300>,舍去 .4037x ∴-=.答: 每个排球的售价为 37 元 .【点评】本题考查了一元二次方程的应用, 找准等量关系, 正确列出一元二次方程是解题的关键 .26.列一元二次方程解应用题某公司今年 1 月份的纯利润是 20 万元, 由于改进技术, 生产成本逐月下降, 3 月份的纯利润是22.05 万元 . 假设该公司 2 、 3 、 4 月每个月增长的利润率相同 .(1) 求每个月增长的利润率;(2) 请你预测 4 月份该公司的纯利润是多少?【分析】(1) 设每个月增长的利润率为x ,根据 1 月份及 3 月份该公司的纯利润, 即可得出关于x 的一元二次方程, 解之取其正值即可得出结论;(2) 根据 4 月份该公司的纯利润3=月份该公司的纯利润(1⨯+增长率) ,即可求出 4 月份该公司的纯利润 .【解答】解: (1) 设每个月增长的利润率为x ,根据题意得:220(1)22.05x ⨯+=,解得:10.055%x ==,2 2.05x =-(不 合题意, 舍去) .答: 每个月增长的利润率为5%.(2)22.05(15%)23.1525⨯+=(万 元) .答: 4 月份该公司的纯利润为 23.1525 万元 .【点评】本题考查了一元二次方程的应用, 找准等量关系,正确列出一元二次方程是解题的关键 .。