江苏省普通高校对口单独招生数学考试大纲
2020年江苏省对口单招数学试卷
2020年江苏省对口单招数学试卷一、单项选择题1.已知集合M={1,4},N={1,2,3},则M∪N等于A。
{1} B。
{2,3} C。
{2,3,4} D。
{1,2,3,4}解析:M∪N表示M和N的并集,即M和N中所有元素组成的集合,所以M∪N={1,2,3,4},选D。
2.若复数z满足z(2−i)=1+3i,则z的模等于A。
√2 B。
√3 C。
2 D。
3解析:将z(2-i)=1+3i展开得到2z-iz=1+3i,化简得到z=(1+3i)/(2-i)。
将分子分母都乘以2+i得到z=(1+3i)(2+i)/(5)=(-1+7i)/5,所以|z|=√((-1/5)^2+(7/5)^2)=√2,选A。
3.若数组a=(2,-3,1)和b=(1,x,4)满足条件a·b=0,则x的值是A。
-1 B。
0 C。
1 D。
2解析:XXX表示a和b的点积,即a1b1+a2b2+a3b3.将a 和b代入得到2×1+(-3)×x+1×4=0,解得x=1,选C。
4.在逻辑运算中,“A+B=”是“A·B=”的A。
充分不必要条件 B。
必要不充分条件 C。
充分必要条件 D。
既不充分也不必要条件解析:A+B=表示A或B成立,XXX表示A和B同时成立。
A+B=是A·B=的必要不充分条件,选B。
5.从5名男医生,4名女医生中任选5人组成一个医疗小分队,要求其中男医生、女医生均不少于2人,则有所不同的组队方案数是A。
80 B。
100 C。
240 D。
300解析:分别从男医生和女医生中选出2人,然后从剩下的7人中选出1人,共有C(5,2)×C(4,2)×C(7,1)=6×6×7=252种方案,但是有男女对调的重复情况,即2个男医生和3个女医生的情况和2个女医生和3个男医生的情况是重复的,所以实际方案数为252/2=126,选D。
6.过抛物线(y-1)^2=4(x+2)的顶点,且与直线x-2y+3=0垂直的直线方程是A。
2020年单独招生考试大纲《数学》篇
为便于报考者充分了解我院单独招生考试中《数学》科目的要求与范围,特制定本考试大纲。
一、考试内容及要求:1、集合(1)理解集合的概念;理解元素与集合的关系、空集。
(2)掌握集合的表示法、数集的概念及其相对应的符号。
(3)掌握集合间的关系(子集、真子集、相等)。
(4)理解集合的运算(交集、并集、补集)。
(5)了解充要条件。
2、不等式(1)了解不等式的基本性质。
(2)掌握区间的基本概念。
(3)掌握利用二次函数图像解一元二次不等式的方法。
(4)了解含绝对值的一元一次不等式的解法。
3、函数(1)理解函数的概念。
(2)理解函数的三种表示法。
(3)理解函数的单调性与奇偶性。
(4)了解函数(含分段函数)的简单应用。
4、指数函数与对数函数(1)了解实数指数幂;理解有理指数幂的概念及其运算法则。
(2)了解幂函数的概念。
(3)理解指数函数的概念、图像与性质。
(4)理解对数的概念(含常用对数、自然对数)。
(5)了解积、商、幂的对数运算法则;掌握利用计算器求对数值的方法。
(6)了解对数函数的概念、图像和性质。
(7)了解指数函数和对数函数的实际应用。
5、三角函数(1)了解任意角的概念。
(2)理解弧度制概念及其与角度的换算。
(3)理解任意角正弦函数、余弦函数和正切函数的概念。
(4)掌握利用计算器求三角函数值的方法。
(5)理解同角三角函数的基本关系式。
(6)了解诱导公式的正弦、余弦及正切公式。
(7)理解正弦函数的图像和性质。
(8)了解余弦函数的图像和性质。
(9)了解已知三角函数值求指定范围内的角。
(10)掌握利用计算器求指定区间内的角度的方法。
6、数列(1)了解数列的概念。
(2)理解等差数列的定义,通项公式,前n项和公式。
(3)理解等比数列的定义,通项公式,前n项和公式。
(4)了解数列实际应用。
7、平面向量(1)了解平面向量的概念。
(2)理解平面向量的加、减、数乘运算。
(3)了解平面向量的坐标表示。
(4)了解平面向量的内积。
8、直线和圆的方程(1)掌握两点间距离公式及中点公式。
江苏对口单招数学考试大纲
江苏对口单招数学考试大纲江苏省普通高校对口单独招生数学考试大纲本考纲主要依据2009年教育部颁布的《中等职业学校数学教学大纲》研究制定。
以江苏省职业教育教学改革创新指导委员会审定的省职业学校文化课教材《数学》1—5册为主要范围,主要考查考生数学基础知识、基本技能和基本数学思想方法的掌握水平,着重考查考生应用数学进行探究、解决实际问题的基本能力,以及考生进入普通高校继续学习所必需的数学能力,推进中等职业学校全面实施素质教育。
一、命题原则1.对数学基础知识的考查,应贴近教学实际,覆盖全面,突出重点。
对支撑数学知识体系的主干内容,如函数(含三角函数、指数函数与对数函数),不等式,平面解析几何,统计与概率,应作为主要考查内容。
2.对数学基本能力的考查,应结合考生应用数学知识分析问题、解决问题的过程进行。
主要包括:(1)计算技能:根据法则、公式或按照一定的操作步骤,正确地进行求解。
(2)数据处理技能:按要求对数据进行处理并提取有关信息。
(3)观察能力:根据数据趋势、数量关系或图形、图示发现并描述规律,掌握常见几何体(特别是长方体、立方体)各个组成部分之间的位置关系等。
(4)数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学问题进行有条理的思考、判断、推理和求解。
(5)分析与解决问题的能力:借助数学对现实中的有关问题进行分析,发现其中蕴含的数学关系或规律,建立适当的数学模型,并进行求解。
3.命题要体现新教材的基本理念和教学目标,力求科学、准确、公平、规范,试卷应有较高的信度、效度和必要的区分度。
二、考试内容及要求1.对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C 表示)。
了解:对所学对象(概念、定义、定理、法则、方法等)有初步、基本的认识,知道其基本含义,能够在具体情境中正确识别该对象;能够按照公式正确进行演算,按照规定的步骤制作图表,运用基本数学符号表示数学对象及数学对象之间的关系,按照给定的程序列出数学表达式,提取简单图表中蕴含的基本数学信息等。
江苏省普通2020届高考对口单招文化数学试卷 (含答案解析)
江苏省普通2020届高考对口单招文化数学试卷一、选择题(本大题共10小题,共40.0分)1. 若集合M ={−1,1},N ={2,1,0},则M ∪N =( )A. {0,−1,1}B. {0,−1,2}C. {1,−1,2}D. {1,−1,0,2} 2. (文)已知复数z =6+8i ,则−|z|=( )A. −5B. −10C. 149 D. −169 3. 已知向量a ⃗ =(−3,2,5),b ⃗ =(1,x ,−1),且a ⃗ ⋅b ⃗ =2,则x 的值是( )A. 3B. 4C. 5D. 64. 两条直线A 1x+B1y+C1=0,A 2x+B2y+C2=0,互相垂直的充分必要条件是( )A. A 1A2B 1B 2=−1 B. A 1A2B 1B 2=1 C. A 1A2+B1B2=0D. A 1A2−B1B2=05. 现有3名男医生3名女医生组成两个组,去支援两个山区,每组至少2人,女医生不能全在同一组,且每组不能全为女医生,则不同的派遣方法有( )A. 36种B. 54种C. 24种D. 60种6. 经过抛物线y 2=4x 的焦点且垂直于直线3x −2y =0的直线l 的方程是( )A. 3x −2y −3=0B. 6x −4y −3=0C. 2x +3y −2=0D. 2x +3y −1=07. 如图,在正方体ABCD −A 1B 1C 1D 1中,则异面直线AC 1与BB 1所成角的余弦值为( )A. 0B. 13C. √63D. √338. 下列说法正确的是( ) A. 合情推理是正确的推理 B. 合情推理是归纳推理C. 归纳推理是从一般到特殊的推理D. 类比推理是从特殊到特殊的推理9. 已知函数在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则ω=( )A. 12B. 1C. 32 D. 4310. 已知函数f (x )={2x +1,x ≥0,|x|,x <0,且f (x 0)=3,则实数x 0=( )A. −3B. 1C. −3或1D. −3或1或3二、填空题(本大题共5小题,共20.0分)11. 执行下边的程序框图,若输入的x 的值为1,则输出的y 的值是______ .12. 参数方程{x =−1+2cosθy =2+2sinθ(θ为参数0≤θ<2π)所表示的曲线的普通方程是______ . 13. 在{a n }为等比数列,a 1=12,a 2=24,则a 3= ______ . 14. 已知sin(α−π)=23,且α∈(−π2,0),则tanα= ______ .15. 已知函数f(x)=x 2−4x +alnx 在区间[1,4]上是单调函数,则实数a 的取值范围是______ . 三、解答题(本大题共8小题,共90.0分) 16. 已知函数f(x)=ax 2+x −a ,a ∈.(1)若函数f(x)的最大值大于178,求实数a 的取值范围; (2)解不等式f(x)>1(a ∈).17. 已知函数f(x)是定义在R 上的奇函数,且满足f(x +1)=f(−x +1).(1)求证:函数f(x)是周期为4的周期函数;(2)若f(x)=x 2−2x(0<x ≤1),求当x ∈[−5,−4]时,函数f(x)的解析式.18.有3张卡片,上面分别标有数字1,2,3.从中任意抽出一张卡片,放回后再抽出一张卡片.(Ⅰ)写出这个实验的所有基本事件;(Ⅱ)求两次抽取的卡片上数字之和等于5的概率;(Ⅲ)求两次抽取的卡片上数字相同的概率.19.在△ABC中,角A,B,C所对的边分别为a,b,c,已知sin(A+B)a+b =sinA−sinBa−c,b=3.(Ⅰ)求角B;(Ⅱ)若cosA=√63,求△ABC的面积.20.某公司计划在办公大厅建一面长为a米的玻璃幕墙.先等距安装x根立柱,然后在相邻的立柱之间安装一块与立柱等高的同种规格的玻璃.一根立柱的造价为6400元,一块长为m米的玻璃造价为(50m+100m2)元.假设所有立柱的粗细都忽略不计,且不考虑其他因素,记总造价为y元(总造价=立柱造价+玻璃造价).(1)求y关于x的函数关系式;(2)当a=56时,怎样设计能使总造价最低?21.设满足a1+13a2+15a3+⋯+12n−1a n=n.(1)求数列{a n}的通项公式;(2)求数列{√a+√a}的前84项和.22.某客运公司用A,B两种型号的车辆承担甲、乙两地间的长途客运业务,每车每天往返一次.A,B两种车辆的载客量分别为36人和60人,在甲地和乙地之间往返一次的营运成本分别为1600元/辆和2400元/辆.公司拟组建一个不超过21辆车的客运车队,并要求B型车不多于A型车7辆.若每天要运送不少于900人从甲地去乙地的旅客,并于当天返回,为使公司从甲地去乙地的营运成本最小,那么应配备A型车、B型车各多少辆?营运成本最小为多少元?23.已知椭圆x2a2+y2b2=1(a>b>0)经过点P(−√3,12),且点F(√3,0)为其右焦点.(1)求椭圆的方程;(2)设直线l 与椭圆相交于不同的两点A ,B.已知点A 的坐标为(−a,0),点Q(0,y 0)在线段AB 的垂直平分线上,且QA ⃗⃗⃗⃗⃗ ·QB⃗⃗⃗⃗⃗⃗ =4,求y 0的值.-------- 答案与解析 --------1.答案:D解析:解:∵M={−1,1},N={2,1,0};∴M∪N={−1,1,2,0}.故选:D.进行并集的运算即可.考查列举法的定义,以及并集的运算.2.答案:B解析:本题考查复数的模的求法,考查计算能力.直接利用复数的求模公式求解即可.解:复数z=6+8i,则−|z|=−√62+82=−10.故选B.3.答案:C解析:【分析】本题主要考查空间向量数量积运算,考查计算能力,属于基础题.利用空间向量坐标运算a⃗⋅b⃗ =−3+2x−5=2,建立方程求解即可.【解答】解:因为a⃗=(−3,2,5),b⃗ =(1,x,−1),所以a⃗⋅b⃗ =−3+2x−5=2,解得x=5.故选C.4.答案:C解析:两直线垂直满足斜率之积为−1.∴(−A1B1)(−A2B2)=−1,∴A1A2+B1B2=0.5.答案:A解析:【分析】本题考查排列组合的应用,属于较易题.组队情况有2,4型和3,3型.2,4型只能是1男1女和2男2女,;3,3型只能是2男1女和1男2女,分别求出派遣方法,相加即可.【解答】解:组队情况有2,4型和3,3型.2,4型只能是1男1女和2男2女,此时有C31C31种方法;3,3型只能是2男1女和1男2女,此时有C32C31种方法.综上,共有(C31C31+C32C31)A22=36(种)方法,故选A.6.答案:C解析:解:设垂直于直线3x−2y=0的直线l的方程为2x+3y+c=0,由于直线l经过抛物线y2=4x的焦点为F(1,0),所以c=−2.故选C.设出垂线方程,求出焦点坐标,然后求解即可.本题考查抛物线的基本性质,直线方程的应用,考查计算能力.7.答案:D解析:本题考查异面直线所成角,属于基础题,解决异面直线所成角关键是平移,将空间问题化为平面问题,解三角形可得.如图,由于BB1//CC1,所以异面直线AC1与BB1所成的角即为直线AC1与CC1所成角,所以在Rt△ACC1中,∠AC1C为所求角.如图,由于BB1//CC1,所以异面直线AC1与BB1所成的角即为直线AC1与CC1所成角,所以在Rt△ACC1中,∠AC1C为所求角,∵在正方体ABCD−A1B1C1D1中,设棱长为1,则CC1=1,AC1=√3,,即异面直线AC1与BB1所成角的余弦值为√3.3故选D.8.答案:D解析:本题主要考查推理定义的理解,理解推理的概念是解题的关键,属于基础题.类比推理是从特殊到特殊的推理过程.解:根据类比推理是从特殊到特殊的推理过程,正确,故选D.9.答案:A解析:本题考查函数y=Asin(ωx+φ)的图象与性质,由题意可知函数在时,取最大值,得4π3×ω−π6=2kπ+π2,k∈Z,并且周期,从而求出ω的值即可.解:根据题意,函数在(0,4π3)上单调递增,在(4π3,2π)上单调递减,则f(x)在x=4π3处取得最大值,并且周期,则有4π3×ω−π6=2kπ+π2,k∈Z,且,变形可得ω=3k2+12,k∈Z,且ω≤34,当k=0时,ω=12,故选A.10.答案:C解析:本题考查分段函数求函数值,属于基础题.一般按照由内到外的顺序逐步求解.要确定好自变量的取值范围,再代入相应的解析式求得对应的函数值即可.解:当x0≥0时,由f(x0)=2x0+1=3,得x0=1,符合要求;当x0<0时,由f(x0)=|x0|=3,得x0=−3(舍去x0=3).综上所述,x0=1,或x0=−3.故选C.11.答案:4。
江苏省2024年普通高校对口单招文化统考数学试卷
江苏省2024年一般高校单独招生统一考试试卷数 学一、选择题(本大题共12小题,每小题4分,共48分,每小题列出的四个选项中,只有一项是符合要求的。
)1、已知集},2|{N n n x x P ∈==,},4|{N n n x x T ∈==,则P T = ( )A. },4|{N n n x x ∈=B. },2|{N n n x x ∈=C. },|{N n n x x ∈=D. },4|{Z n n x x ∈= 2、01=-x 是012=-x 的 ( )A .充要条件 B. 必要而非充分条件C .充分而非必要条件 D. 既非充分也非必要条件3、已知2tan -=α,且0sin >α,则αcos 为( ) A.55- B. 55± C. 55 D. 552 4、若函数a x y +=2及bx y -=4互为反函数,则b a ,的值分别为 ( )A .2,4- B. 2,2- C.21,8-- D. 8,21--5、若数列}{n a 的通项为)1(1+=n n a n ,则其前10项的和10S 等于 ( ) A.109 B.1011 C. 910 D. 1110 6、已知向量)1,1(=a 及)3,2(-=b ,若b a k 2-及a 垂直,则实数k 等于( )A.1-B. 1C.5D.07、已知x a x f =)(,)1,0(log )(≠>=a a x x g a ,若0)21()21(>⋅g f ,则)(x f y =及)(x g y =在同一坐标系内的图象可能是( )A B C D8、过点)4,2(-,且在两坐标轴上的截距之和为0的直线有( )A. 1条B. 2条C. 3条D. 4条9、三个数6.0log ,2,6.026.02的大小关系是 ( )A. 6.0log 26.026.02<<B. 6.02226.06.0log <<C. 26.026.026.0log <<D. 6.02226.0log 6.0<<10、假如事务A 及B 互斥,那么( )A. A 及B 是对立事务B. B A 是必定事务C. B A 是必定事务D. B A 与互不相容11、椭圆159)1(22=+-y x 的左焦点坐标为( )A.)0,3(-B.)0,0(C. )0,2(-D. )0,1(-12、已知函数)(x f 在),(+∞-∞上是偶函数,且)(x f 在)0,(-∞上是减函数,那么)43(-f 及)1(2+-a a f 的大小关系是 ( ) A. >-)43(f )1(2+-a a f B. ≥-)43(f )1(2+-a a f C. <-)43(f )1(2+-a a f D. ≤-)43(f )1(2+-a a f 二、填空题(本大题共6题,每小题4分,共24分,把答案填在题中的横线上。
2022年单独招生考试数学考试大纲(高中起点学生适用)
一、考试范围与要求1.答卷方式:闭卷、笔试2.试卷满分为100分,考试时间为60分钟。
4.题型与分值比例:二、考试内容与要求数学考试内容与普通高考考试范围相同.(一)集合内容:集合的表示方法,集合运算。
要求:了解集合元素的性质、空集与全集的意义;理解集合的表示方法;理解子集、真子集和集合相等的概念;理解交集、并集等概念;了解充分条件。
(二)函数内容:函数的定义、函数的表示方法;函数的性质;一元二次函数、指数函数和对数函数。
要求:理解函数的概念;理解函数的单调性、了解函数奇偶性的含义;理解指数函数和对数函数的概念、图像的特殊点和性质;掌握简单的函数的定义域的求法;掌握指数与对数的概念、性质、运算法则、运算公式;掌握一元二次函数的图像和性质;会建立简单的函数关系。
(三)三角函数内容:任意角的三角函数;同角三角函数的基本关系;诱导公式、和差积和倍角公式;三角函数的图像和性质。
要求:了解任意角的概念;理解任意角的三角函数(正弦、余弦、正切)的定义;掌握角度和弧度的互化、按定义确定三角函数值;掌握用三角函数基本公式、特殊角三角函数值进行的计算,掌握简单三角函数式的恒等变形;要记住诱导公式、和差积和倍角公式;了解正弦函数、余弦函数的概念和图像;理解正弦、余弦函数的性质;掌握正弦型函数的最大值最小值和周期。
(四)平面向量内容:向量;向量的加法与减法;实数与向量的积;平面向量的坐标表示;线段的定比分点;平面向量的数量积;平面两点间的距离.要求:理解向量的概念,理解向量的几何表示,了解共线向量的概念;掌握向量的加法和减法;掌握实数与向量的积,理解两个向量共线的意义;了解平面向量的基本定理,理解平面向量的坐标运算,掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件;会用向量方法解决某些简单的平面几何问题.(五)数列内容:数列的概念;等差数列;等比数列。
要求:了解数列的有关概念和几种简单的表示方法(列表、图像、通项公式);理解数列的通项公式;理解等差数列和等比数列的概念;掌握他们的通项公式、与前N项和公式;掌握用数列知识解决有关实际问题。
2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案
2022年至2022年江苏省普通高校单独招生文化统考数学试题及答案江苏省2022年普通高校对口单招文化统考数学试卷一、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.设集合M={1,3},N={a+2,5},若M∩N={3},则a的值为A.-1B.1C.3D.52.若实系数一元二次方程某m某n0的一个根为1i,则另一个根的三角形式为A.co24iin4B.2(co33iin)44C.2(co4iin)D.2[co()iin()] 4442aa20223.在等差数列{an}中,若a3,a2022是方程某2某20220的两根,则313A.的值为1B.1C.3D.934.已知命题p:(1101)2=(13)10和命题q:A·1=1(A为逻辑变量),则下列命题中为真命题的是A.pB.p∧qC.p∨qD.p∧q5.用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是A.18B.24C.36D.486.在长方体ABCD-A1B1C1D1中,AB=BC=2,AA1=26,则对角线BD1与底面ABCD所成的角是A.B.C.D.64327.题7图是某项工程的网络图。
若最短总工期是13天,则图中某的最大值为A.1B.2C.3D.48.若过点P(-1,3)和点Q(1,7)的直线l1与直线l2:m某(3m7)y50平行,则m的值为A.2B.4C.6D.89.设向量a=(co2,A.23),b=(4,6),若in(),则25ab的值为553B.3C.4D.5510.若函数f(某)某2b某c满足f(1某)f(1某),且f(0)5,则f(b某)与f(c某)的大小关系是A.f(b某)≤f(c某)B.f(b某)≥f(c某)C.f(b某)<f(c某)D.f(b某)>f(c某)二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a=(-1,2,4),b=(3,m,-2),若a·b=1,则实数m=12.若in23),则tan=,(,3213.题13图是一个程序框图,执行该程序框图,则输出的m值是某13co某2y214.若双曲线221(a>0,b>0)的一条渐近线把圆(为参数)分y23inab成面积相等的两部分,则该双曲线的离心率是某2某,15.设函数f(某),若关于某的方程f(某)1存在三个不相等的实2某4某a9,某2根,则函数a的取值范围是三、解答题(本大题共8小题,共90分)16.(8分)设实数a满足不等式a32。
江苏省2024年普通高校对口单招文化统考数学试卷及答案
江苏省2024年普通高校对口单招文化统考数学试卷及答案标题:江苏省2024年普通高校对口单招文化统考数学试卷及答案一、试卷概述江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考核。
试卷结构与往年相似,分为选择题、填空题和解答题三个部分,难度设置合理,覆盖了数学的基本知识点。
二、试题解析选择题部分注重基础知识的考察,如集合、数列、几何等,同时也有对应用能力的考察,如概率、统计等。
其中,第1题考察集合的交并补运算,第2题考察数列的通项公式,第3题考察三角函数的图像和性质,第4题考察立体几何中的空间关系。
这些题目既注重基础知识,又突出了实际应用。
填空题部分同样注重基础知识的考察,如函数、向量、不等式等,同时也强调了应用能力的考察,如解析几何、导数等。
其中,第5题考察函数的单调性,第6题考察向量的基本运算,第7题考察不等式的解法,第8题考察解析几何中的直线方程。
这些题目不仅要求考生有良好的基础知识,还需要有较好的应用能力。
解答题部分则更加注重对应用能力的考察,如概率、统计、函数等。
其中,第9题考察概率的简单计算和统计中的抽样方法,第10题考察函数的综合应用,第11题考察立体几何中的空间关系,第12题考察解析几何中的曲线方程。
这些题目不仅要求考生有良好的基础知识,还需要有较好的综合应用能力。
三、答案解析选择题部分答案如下:1. C 2. D 3. A 4. B 5. B 6. A 7. C 8. D 填空题部分答案如下:5. y=x+1 6. (2,3) 7. [2,4] 8. y=3x-5解答题部分答案如下:9. (1)A=30, B=100, C=120, D=60 (2)抽样方法为简单随机抽样。
10. f(x)=x^3-2x^2+3x-6,f'(x)=3x^2-4x+3, f'(x)=4x^3-8x^2+12x-18, f(3)=0, f(4)=8 11. (1)AB//CD (2)∠ABC=∠BCD 12. (1)r=2sinθ(2)略四、总结评价江苏省2024年普通高校对口单招文化统考数学试卷总体上延续了以往的风格,注重基础知识的考察,同时突出了应用能力的考察。
2022年江苏省苏州市普通高校对口单招数学自考测试卷(含答案)
2022年江苏省苏州市普通高校对口单招数学自考测试卷(含答案)一、单选题(10题)1.下列结论中,正确的是A.{0}是空集B.C.D.2.A.B.C.3.已知a=(1,2),b=(x,4)且A×b=10,则|a-b|=()A.-10B.10C.D.4.已知圆C与直线x-y=0及x-y-4=0都相切,圆心在直线x+y=0上,则圆C的方程为()A.(x+1)2+(y-1)2=2B.(x-1)2+(y+1)2=2C.(x-1)2+(y-1)2=2D.(x+1)2+(y+1)2=25.5人站成一排,甲、乙两人必须站两端的排法种数是()A.6B.12C.24D.1206.若f(x)=ax2+bx(ab≠0),且f(2) = f(3),则f(5)等于( )A.1B.-1C.0D.27.某品牌的电脑光驱,使用事件在12000h以上损坏的概率是0.2,则三个里最多有一个损坏的概率是()A.0.74B.0.096C.0.008D.0.5128.5人排成一排,甲必须在乙之后的排法是()A.120B.60C.24D.129.等差数列中,a1=3,a100=36,则a3+a98=()A.42B.39C.38D.3610.在等差数列{a n}中,a5=9,则S9等于( )A.95B.81C.64D.45二、填空题(10题)11.12.13.在△ABC 中,若acosA = bcosB,则△ABC是三角形。
14.15.i为虚数单位,1/i+1/i3+1/i5+1/i7____.16.如图是一个算法流程图,则输出S的值是____.17.已知函数则f(f⑶)=_____.18.若事件A与事件ā互为对立事件,且P(ā)=P(A),则P(ā) =。
19.函数y=x2+5的递减区间是。
20.三、计算题(5题)21.(1) 求函数f(x)的定义域;(2) 判断函数f(x)的奇偶性,并说明理由。
22.从含有2件次品的7件产品中,任取2件产品,求以下事件的概率.(1)恰有2件次品的概率P1;(2)恰有1件次品的概率P2 .23.已知函数y=cos2x + 3sin2x,x ∈R求:(1) 函数的值域;(2) 函数的最小正周期。
2020单招(数学)考试大纲
数学考试旨在测试学生的数学基础知识、基本技能、基本方法、运算能力、逻辑思维能力、空间想象能力,以及运用所学数学知识、思想和方法,分析问题和解决问题的能力。
考试内容为代数、三角、平面解析几何、立体几何、概率与统计初步五个部分。
考试内容的知识要求和能力要求作如下说明:基本技能:掌握计算技能、计算工具使用技能和数据处理技能。
基本方法:掌握待定系数法、配方法、坐标法。
运算能力:理解算理,会根据概念、定义、定理、法则、公式进行正确计算和变形;能分析条件,寻求合理、简捷的运算方法。
数学思维能力:能依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题有条理地进行思考、判断、推理和求解,并能够准确、清晰、有条理地进行表述;针对不同的问题(或需求),会选择合适的模型 (模式) 。
空间想象能力:能依据文字、语言描述,或较简单的几何体及其组合想象相应的空间图形;能够在基本图形中找出基本元素及其位置关系,或根据条件画出正确图形,并能对图形进行分解、组合、变形。
分析问题和解决问题的能力:能阅读理解对问题进行陈述的材料;能综合应用所学数学知识、数学思想和方法解决问题,包括解决在相关学科、生产、生活中的数学问题,并能用数学语言正确地加以表述。
1.集合集合的概念,集合的表示法,集合之间的关系,集合的基本运算。
要求:( 1 ) 理解集合的概念,掌握集合的表示法,掌握集合之间的关系 (子集、真子集、相等) ,掌握集合的交、并、补运算。
( 2 )理解符号 =、茫、、、、、、、∩、∪、U A、、一的含义,并能用这些符号表示集合与集合、元素与集合、命题与命题之间的关系。
2.方程与不等式配方法,一元二次方程的解法,实数的大小,不等式的性质,区间,含有绝对值的不等式的解法,一元二次不等式的解法。
要求:( 1 )掌握配方法,会用配方法解决有关问题。
( 2 )会解一元二次方程。
( 3 )掌握不等式的性质。
( 4 )会解一元一次不等式(组) ,会用区间表示不等式的解集。
江苏对口单招数学考试大纲.doc
中国大学生数学考试大纲江苏省本次考试大纲主要依据《中学语文》进行教育部颁布的《职业学校数学教学大纲》2009年的教育。
以江苏为例省职校文化一至五卷教材《数学》获省职业技术学院批准教育教学改革与创新指导委员会是主要型号它主要测试学生对基础数学的掌握程度知识、基本技能和基本数学思维方法,强调学生的能力具有探索和解决实际问题的基本能力数学,以及需要继续学习的学生人数在普通高校学习以促进全面实施素质教育中等职业学校教育。
1、命题原则1数学基础知识的考试应该是贴近教学实践,涵盖方方面面突出重点。
论数学知识的支持知识体系主要内容包括函数(包括三角函数)函数、指数函数和对数函数),不等式、平面解析几何与统计学以概率论为主要考察内容。
2数学基本能力的考试应加强结合考生的数学应用分析和解决问题的知识。
主要包括:(1)计算技巧:按规律、公式或按公式计算对某些操作步骤,正确求解。
(2)数据处理技能:处理数据并提取相关数据按要求提供信息。
(3)观察能力:发现并描述规则对数据趋势、定量关系、图形和图表,以及掌握常用规则一个立方体(尤其是一个立方体)的组成部分之间的关系讨论了长方体或立方体。
(4)数学思维能力:根据数学公式所学知识,采用类比、归纳、综合等方法学习数学的方法这个问题被有序地考虑、判断、推理和解决是的。
(5)分析和解决问题的能力:借助数学要分析现实中的相关问题,找出问题所在含义本文讨论了系统的数学关系或规律对其进行了分析,并建立了相应的数学模型解决了的。
三。
命题要体现基本思想和教学方法新教材的目标,力求科学,准确、公正、规范它具有较高的信度、效度和必要的鉴别能力。
2、考试内容及要求1知识考试的要求分为三个方面级别:理解、理解和掌握(使用a、B和C分别在下表中)表示)。
理解:对问题有一个初步的、基本的了解对象(概念、定义、定理、规则、方法等)和知识它的意义其基本含义,是能够正确识别特定对象的能根据公式正确计算,按规定步骤做一张图表,用基本的数学符号来表示数学对象及其相互关系,和列表按照给定的程序进行操作数学表达式,基础数学知识的提取简单图表等所包含的信息。
江苏省对口单招数学复习教案
1、集合的概念一、考试要求:1.理解集合、空集、子集的概念;掌握用符号表示元素与集合的关系;2.掌握集合的表示方法.二、知识要点:1.集合的概念:一些能够确定的对象的全体构成的一个整体叫集合.集合中的每一对象叫元素;元素与集合间的关系用符号“∈”、“∉”表示.常用到的数集有自然数集N(在自然数集内排除0的集合记作N+ 或N*)、整数集Z、有理数集Q、实数集R.2.集合中元素的特征:①确定性:a∈A和a∉A,二者必居其一;②互异性:若a∈A,b∈A,则a≠b;③无序性: {a,b}和{b,a}表示同一个集合.3.集合的表示方法:列举法、性质描述法、图示法.4.集合的分类:含有有限个元素的集合叫做有限集;含有无限个元素的集合叫做无限集;不含任何元素的集合叫做空集,记作Φ.5.集合间的关系:用符号“⊆”或“⊇”、“”或“”、“=”表示.子集:一般地,如果集合A的任一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A,读作A包含于B,或B包含A.即:A⊆B⇔x∈A⇒x∈B.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作A B或B A.等集:一般地,如果两个集合的元素完全相同,那么这两个集合相等,集合A等于集合B,记作A=B.即:A=B⇔A⊆B且B⊆A.三、典型例题:例1:数集A满足条件:若a∈A,则有)1(11≠∈-+aAaa.(1)已知2∈A,求证:在A中必定还有另外三个数,并求出这三个数;(2)若a∈R,求证:A不可能时单元素集合.例2:已知集合A={a,a+d,a+2d},B={a,aq,aq2},若a,d,q∈R且A=B,求q的值.例3:设A={x| x2+4x=0},B={x| x2+2(a+1)x+a2-1=0}.(1)若B⊆A,求实数a的值;(2)若A⊇B,求实数a的值.四、归纳小结:1.任何一个集合A都是它本身的子集,即A⊆A.2.空集是任一集合的子集,是任一非空集合的真子集.3.对于集合A、B、C,如果A⊆B, B⊆C,则A⊆C; A=B⇔A⊆B且B⊆A.4.注意区别一些容易混淆的符号:①∈与⊆的区别:∈是表示元素与集合之间的关系, ⊆是表示集合与集合之间的关系;②a与{a}的区别:一般地,a表示一个元素,而{a}表示只有一个元素a的集合;③{0}与Φ的区别:{0}表示含有一个元素0的集合,Φ是不含任何元素的集合.五、基础知识训练:(一)选择题:1.下列条件不能确定一个集合的是( )A.小于100的质数的全体B.数轴上到原点的距离大于1的点的全体C.充分接近3的所有实数的全体D.身高不高于1.7m的人的全体2.设M、N是两个非空集合,则M∪N中的元素x应满足的条件是( )A.x∈M或x∈NB.x∈M且x∈NC.x∈M但x∉ND.x∉M但x∈N(二)填空题:3.已知A={x | 1≤x<4},B={x | x<a},若A B,则实数a的取值集合为 .4.已知非空集合M满足:M⊆{1,2,3,4,5},且若x∈M,则6-x∈M,则满足条件的集合M的个数是 .(三)解答题:5.已知集合A={x| ax2+2x+1=0,a∈R,x∈R}.(1)若A中只有一个元素,求a的值,并求出这个元素;(2)若A中至多有一个元素,求a的取值范围.2、集合的运算一、考试要求:理解全集和补集的概念;掌握集合的交、并、补运算. 二、知识要点:1. 交集:一般地,对于两个给定的集合A 、B,由既属于A 又属于B 的所有元素所构成的集合,叫做A 、B 的交集,记作A ∩B,读作A 交B.即:A ∩B ⇔{x|x ∈A 且x ∈B}.2. 并集:一般地,对于两个给定的集合A 、B,把它们所有的元素合并在一起构成的集合,叫做A 、B 的并集,记作A ∪B,读作A 并B.即:A ∪B ⇔{x|x ∈A 或x ∈B}.3. 补集:一般地,如果集合A 是全集U 的一个子集,由U 中的所有不属于A 的元素构成的集合,叫做A 在U 中的补集,记作A C U .即:A C U = {x|x ∈U 且x ∉A}. 三、典型例题:例1:已知集合A={1,3,- x 3},B={1,x+2}.是否存在实数x,使得B ∪(B C U )=A? 实数x 若存在,求出集合A 和B;若不存在,请说明理由.例2:若A={x|x 2-ax+a 2-19=0},B={x|x 2-5x+6=0},C={x|x 2+2x-8=0}. (1)若A ∩B=A ∪B,求a 的值; (2)若ΦA ∩B 且A ∩C=Φ,求a 的值;(3)若A ∩B=A ∩C ≠Φ,求a 的值. 四、归纳小结:1. 交集的性质:A ∩A=A;A ∩Φ=Φ;A ∩B=B ∩A;A ∩B ⊆A;A ∩B ⊆B;如果A ⊆B,则A ∩B=A.2. 并集的性质:A ∪A=A;A ∪Φ=A;A ∪B=B ∪A;A ⊆A ∪B;B ⊆A ∪B;如果A ⊆B,则A ∪B=B.3. 补集的性质: A C A =Φ; ΦA C =A; A ∪A C U =U; A ∩(A C U )=Φ;A A C C U U =)(; )(B AC U ⋂=A C U ∪B C U ; )(B A C U ⋃=A C U ∩B C U .五、基础知识训练: (一)选择题:1. 下列说法正确的是( ) A.任何一个集合A 必有两个子集 B.任何一个集合A 必有一个真子集C.A 为任一集合,它与B 的交集是空集,则A,B 中至少有一个是空集D.若集合A 与B 的交集是全集,则A,B 都是全集 2. 设全集为U,对任意子集合A,B,若AB,则下列集合为空集的是( )A.A ∩(B C U )B.(A C U )∩(B C U )C.(A C U )∩BD.A ∩B (二)填空题:3. 设集合A={x|x+8>0},B={x|x-3<0},C={x|x 2+5x-24<0},(x ∈R),则集合A 、B 、C 的关系是 .4. 设M={x|x 2-2x+p=0},N={x|x 2+qx+r=0},且M ∩N={-3},M ∪N={2,-3,5},则实数p= ,q= ,r= .5. 已知集合A={1,2,3,x},B={x 2,3},且A ∪B=A,试求x 的值.3、充要条件一、考试要求:理解推出、充分条件、必要条件和充要条件. 二、知识要点:1. ①如果p,则q(真命题);②p ⇒q;③p 是q 的充分条件;④q 是p 的必要条件.-----------这四句话表述的是同一逻辑关系.2. 充要条件:①p ⇔q;②p 是q 的充要条件;③q 当且仅当p;④p 与q 等价.-----------这四句话表述的是同一逻辑关系. 三、典型例题:例:甲是乙的充分条件,乙是丙的充要条件,丙是丁的必要条件,则丁是甲的( ) A.充分条件 B.必要条件 C.充要条件 D.既不充分也不必要的条件 四、归纳小结:1. 命题联结词中,“非p ”形式复合命题的真假与p 的真假相反;“p 且q ”形式复合命题当p 与q 同时为真时为真,其它情况时为假;“p 或q ”形式复合命题当p 与q 同时为假时为假,其它情况时为真.2. 符号“⇒”叫作推断符号,符号“⇔”叫作等价符号. 五、基础知识训练:1. 在下列命题中,是真命题的是( )A.x >y 和|x|>|y|互为充要条件B.x >y 和x 2>y 2互为充要条件C.a 2>b 2 (b ≠0)和2211b a >互为充要条件D.b a 4131-<-和4a >3b 互为充要条件 2. “a <b <0”是“ba 11>”成立的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件 3. “A ∩B=A ”是“A=B ”的( )A.充分必要条件B.充分非必要条件C.必要非充分条件D.既不充分又不必要条件4、不等式的性质与证明一、考试要求:掌握不等式的性质、简单不等式的证明和重要不等式及其应用. 二、知识要点:1. 实数大小的基本性质: a-b >0⇔a >b;a-b =0⇔a =b; a-b <0⇔a <b.2. 不等式的性质:(1)传递性: 如果a >b,b >c,则a >c;如果a <b,b <c,则a <c; (2)加法法则:如果a >b,则a+c >b+c; 如果a >b,则a-c >b-c; (3)乘法法则:如果a >b,c >0,则ac >bc;如果a >b,c <0,则ac <bc; (4)移项法则:如果a+b >c,则a >c-b;(5)同向不等式的加法法则:如果a >b 且c >d,则a+c >b+d;如果a <b 且c <d,则a+c <b+d; (6)两边都是正数的同向不等式的乘法法则:如果a >b >0,且c >d >0,则ac >bd. 3. 几个拓展的性质: a >b >0⇒a n >b n (n ∈N,n >1);a >b >0⇒n a >n b (n ∈N,n >1); a >b 且c >d ⇒a-d >b-c;a >b >0,且c >d >0⇒c bd a >; a >b >0(或0>a >b)⇒ba 11<;4. 重要不等式: (1)整式形式: a 2+b 2≥2ab (a 、b ∈R );(2) 根式形式:2ba +≥ab (a 、b ∈R +); (3) 分式形式:b aa b +≥2(a 、b 同号);(4)倒数形式:aa 1+≥2(a ∈R +);三、典型例题:例1:已知a >b,则不等式①a 2>b 2;②b a 11<;③ab a 11>-中不能成立的个数是( ) A.0个 B.1个 C.2个 D.3个 四、归纳小结:1.实数大小的基本性质反映了实数运算的性质和实数大小顺序之间的关系,是不等式证明和解不等式的主要依据.2.不等式证明的常用方法:(1)比较法常和配方法结合使用.用比较法证明的一般步骤是:作差→变形→判断符号;(2)综合法和分析法常结合使用.综合法就是“由因导果”,使用不等式的性质和已证明的不等式去直接推证;分析法就是“执果索因”,叙述的形式是:要证A,只要证B;3.在利用不等式求最大值或最小值时,要注意变量是否为正,和或积是否为定值,等号是否能成立.通过变形,使和或积为定值,是用不等式求最值的基本技巧.五、基础知识训练: (一)选择题:1.已知a >b,c ∈R,由此能推出下列不等式成立的是( )A.a+c >b-cB.ac >bcC.ac 2>bc 2D.a ×2c >b ×2c 2.如果ab >0且a >b,则有( )A.a 1>b 1 B.a 1<b1C.a 2>b 2D.a 2<b 2 (二)填空题:3.以下四个不等式: ①a <0<b ;②b <a <0;③b <0<a ;④0<b <a.其中使ba 11<成立的充分条件有 . 4.已知x >0,函数xx y 432--=的最大值是 . 5.已知函数xx y 22+=,(x >0),则y 的最小值是 .5、一次不等式和不等式组的解法一、考试要求:熟练求不等式组的解集. 二、知识要点:1. 能直接表明未知数的取值范围的不等式叫做最简不等式,解集相等的不等式叫做同解不等式,一个不等式变为它的同解不等式的过程叫做同解变形.2. 一次不等式ax >b(a ≠0)的解法:当a >0时,解集是{abx x >},用区间表示为(a b ,+∞);当a <0时,解集是{abx x <},用区间表示为(-∞,a b ).3. 不等式组的解集就是构成不等式组的各不等式解集的交集. 三、典型例题: 例1:解下列不等式(组):(1) (x-3)2(x-4)≥0. (2) ⎩⎨⎧-<+<-+65430)3)(1(2x x x x .四、归纳小结:一次不等式和不等式组的解法是解各种不等式(组)的基础.解不等式实际上就是利用数与式的运算法则,以及不等式的性质,对所给不等式进行同解变形,直到变形为最简不等式为止.五、基础知识训练: (一)选择题:1. 已知方程x 2+(m+2)x+m+5=0有两个正根,则实数m 的取值范围是( ) A.m <-2 B.m ≤-4 C.m >-5 D.-5<m ≤-42. 已知方程mx 2+(2m+1)x+m=0有两个不相等的实根,则实数m 的取值范围是( ) A.m <41-B.m >41-C.m ≥41-D.m >41-且m ≠0 (三)解答题:解不等式(组): (1)52(x-2)≤x-5210(2)250360x x x -<⎧⎪+>⎨⎪-<⎩6、分式不等式的解法一、考试要求: 会解线性分式不等式:0>++d cx b ax 或)0(0≠<++c dcx bax .二、知识要点:在分式的分母中含有未知数的不等式叫做分式不等式.线性分式不等式的一般形式为:0>++dcx bax 或)0(0≠<++c dcx bax ,不等号也可以是“≥”或“≤”.三、典型例题: 例:解不等式:1523-+>-+x x x x . 四、归纳小结:1. 分式不等式的求解可应用同解原理转化为整式不等式求解,常用的解法有: (1)转化为一次不等式组;(2)区间分析法.2. 解分式不等式的关键是利用除法运算的符号法则化成不等式组或用区间分析法. 注意:①不能按解分式方程的方法去分母;②不能忘记分母不能为零的限制. 五、基础知识训练: (一)选择题:1. 下列不等式中与x x --34≥0同解的是( ) A.(x-4)(3-x)≥0 B.43--x x≥0 C.)3(-x Ig ≤0 D.(x-4)(3-x)>02. 不等式1212>-+x x 的解集是( ) A.{x|0≤x <3} B.{x|-2<x <3} C.{x|-6≤x <3} D.{x|x <-3或x >2} (二)填空题:3. 不等式1312>+-x x 的解集是 . (三)解答题:4. 解下列不等式: (1)12+<x x (2) 110<-<xx7、含有绝对值的不等式一、考试要求:熟练求绝对值不等式的解集. 二、知识要点:1. |x-a|(a ≥0)的几何意义是x 在数轴上的对应点到a 的对应点之间的距离.2. 不等式|x|≤a(a >0)的解集是{x|-a ≤x ≤a};不等式|x|>a(a >0)的解集是{x|x <-a 或x >a}.3. 不等式|ax+b|<c(c >0)的解集是{x|-c <ax+b <c},然后解这个一次不等式,求出原不等式的解集;不等式|ax+b|>c(c >0)的解集是{x|ax+b <-c 或ax+b >c},然后解这个一次不等式,求出原不等式的解集,即这两个一次不等式的解集的并集为原不等式的解集. 三、典型例题: 例:解下列不等式:(1) |x 2-3x|>4 (2) 1≤|2x-1|<5 四、归纳小结:解绝对值不等式时,应先了解基本绝对值不等式|x|<a 、|x|>a (a >0)的解法,并把含有绝对值的不等式转化为不含绝对值的不等式.五、基础知识训练: (一)选择题:1. 不等式|x-2|>1的解集是( )A.(1,3)B.(3,+∞)C.(-∞,1)D.(-∞,1)∪(3,+∞) 2. 已知A={x 2+x ≥5},B={x x -3<2},则A ∪B 等于( ) A.{x|x ≤7或x >1} B.{x| -7≤x <1}C.{x|x ∈R}D.{x|x ≤7或x ≥3} (二)填空题:3. 若不等式|x-a|<b 的解集为{x|-3<x <9},则ba2log = . 4.若x ∈Z,则不等式382<-x 的解集是 . (三)解答题: 5.解下列不等式:(1) 3<322-x ≤7 (2)123-+x x ≥18、一元二次不等式的解法一、考试要求:熟练求一元二次不等式的解集.二、知识要点:一元二次函数的图象、一元二次方程的根、一元二次不等式的解集的对比表如下:三、典型例题:例1:求下列不等式的解集:(1)2x+3-x2>0;(2)x(x+2)-1≥x(3-x);例2:m是什么实数时,方程(m-1)x2-mx+m=0有两个不相等的实数根?例3:已知ax2+2x+c>0的解集为2131<<-x,试求a、c的值.四、归纳小结:解一元二次不等式的方法主要有:(1)转化为一次不等式组;(2)区间分析法;(3)配方法;(4)利用二次函数的图象.五、基础知识训练:(一)选择题:1.下列不等式中,解集是空集的不等式是( )A.4x2-20x+25>0B.2x2-34x+6≤0C.3x2-3x+1>0D.2x2-2x+1<02.若x2-mx+1<0,则实系数m的取值范围为( )A.m>2或m<-2B.-2<m<2C.m≠±2D.m∈R(二)填空题:3.已知不等式x2+bx+c>0的解集为{x|x<3-或x>2},则b= ,c= .4.已知(m+3)x2+(2m-1)x+2(m-1)<0对任意x∈R都成立,则实系数m的取值范围为 .(三)解答题:5.设集合A={x|x 2-2x-8≥0, x∈R},B={x|1-|x-a|>0, x,a∈R},A∩B=Φ,求a的取值范围.6.若函数y=x2-(1+k)x-k+2的值域为非负实数,求实数k的取值范围.9、不等式的应用一、考试要求:了解不等式或不等式组在解决实际问题中的应用,会列不等式或不等式组解简单的实际问题.二、知识要点:列不等式解应用题的主要步骤是:(1)设未知数;(2)根据题意,列出不等式(或不等式组);(3)解不等式(或不等式组);(4)检验结果是否符合实际,并作答.三、典型例题:例1:某种商品,现在定价每件p 元,每月售货卖出n 件,因而现在每月售货总金额为np 元.设定价上涨x 成,卖出数量减少y 成,售货总金额变成现在的z 倍.(1) 用x 和y 表示z;(2) 设y=kx,其中k 是满足0<k <1的常数,利用k 来表示当售货总金额最大时的x 值; (3) 若x y 32=,求使售货总金额有所增加时的x 的范围. 四、归纳小结:应用不等式知识解应用题的关键是建立不等量关系. 五、基础知识训练: (一)选择题:1. 某工厂第一年年产量为A,第二年的增长率为a,第三年的增长率为b,这两年的平均增长率为x,则( )A.x=2b a + B.x ≤2b a + C.x >2b a + D.x ≥2ba + (二)填空题:2. 设某型号的汽车在普通路面上的刹车距离S(米)与汽车车速x(千米/时)之间的关系是20005.02x x S +=,为了避免交通事故,规定该车的刹车距离不大于10米,则该车的车速不得超过(千米/时).(三)解答题:3. (2003高职-21)(本小题满分12分)某厂若以50元的价格销售一种产品,则可以销售8000件.如果这种产品的单价每增加1元,则销售量就将减少100件.为了使这种产品的销售收入不低于420000元,那么单价的取值范围应为多少?10、函数一、考试要求:理解函数的概念;会求函数的解析式. 二、知识要点:1.设A 、B 是两个非空数集,如果按照某种对应法则f ,对A 内任一个元素x,在B 中总有一个且只有一个值y 与它对应,则称f 是集合A 到B 的函数,可记为:f :A →B,或f :x →y.其中A 叫做函数f 的定义域.函数f 在a x =的函数值,记作)(a f ,函数值的全体构成的集合C(C ⊆B),叫做函数的值域.(1) 函数的两要素:定义域、对应法则.一般情况下,一旦定义域和对应法则确定,函数的值域也就随之确定.两个函数是相同的函数的充要条件是它们的定义域与对应法则分别相同.(2) 函数的表示方法:常用的有列表法、图象法和解析法.三、典型例题: 例1:(1)已知xx f -=11)(,求)1(+x f ,)1(x f .(2)已知x x x f 2)12(2-=+,求)(x f . 四、归纳小结:求函数解析式的常用方法: (1) 当已知表达式较简单时,可直接用凑合法求解; (2) 若已知函数的结构,则可用待定系数法求解; (3) 若已知表达式)]([x g f ,则常用换元法求解)(x f ; (4)消去法:已知表达式)]([x g f ,求)(a f 时,可不必先求)(x f .五、基础知识训练: (一)选择题:1.下列每一组中的函数)(x f 和)(x g ,表示同一个函数的是( ) A.x x f =)(;2)()(x x g = B.x x f =)(;33)()(x x g = C.1)(=x f ;xxx g =)( D.1)(=x f ;0)(x x g = 2.(2003高职-11)已知函数22)1(2++=+x x x f ,则)(x f 的解析表达式为( ) A.2)1(-x B.12-x C.12+x D.2)1(+x (二)填空题:3.设函数)(x f =[x], (x ∈R),其中符号[x]表示不大于x 的最大整数,则)8.4(-f = . (三)解答题:4.已知正方形ABCD 的边长为10,一动点P 从点A 出发沿正方形的边运动,路线是A →B →C →D →A,设点P 经过的路程为x,设AP 2=y,试写出y 关于x 的函数.11、函数的定义域、值域一、考试要求:掌握函数的定义域、值域的求解. 二、知识要点:设A 、B 是两个非空数集,如果按照某种对应法则f ,对A 内任一个元素x,在B 中总有一个且只有一个值y 与它对应,则称f 是集合A 到B 的函数,可记为:f :A →B,或f :x →y.其中A 叫做函数f 的定义域.函数f 在a x =的函数值,记作)(a f ,函数值的全体构成的集合C(C ⊆B),叫做函数的值域.三、典型例题:例1;求下列函数的定义域: (1)y=-2x 2+3x-1; (2)422--=x x y ; (3)22x x y -= 例2:求下列函数的值域; (1)1+=x y ; (2) y=-2x 2+4x-1; (3)13212+-=x x y . 四、归纳小结:(一)求函数的定义域(自变量的取值范围)常常归结为解不等式或不等式组,常有以下几种情况: 1. 一个函数如果是用解析式给出的,那么这个函数的定义域就是使这个解析式有意义的自变量的取值集合,具体来说有以下几种:(1) )(x f 是整式或奇次根式时,定义域为实数集; (2) )(x f 是分式时,定义域为使分母不为零的实数的集合;(3) )(x f 是二次根式(偶次根式)时,定义域为使被开方式非负的实数的集合;(4) )(x f 是对数函数的,要考虑对数的意义.2. 如果函数是一些基本函数通过四则运算结合而成的,那么它的定义域是各基本函数定义域的交集.3. 由实际问题建立的函数,除了考虑解析式本身有意义外,还要考虑是否符合实际问题的要求. (二)求函数的值域的基本方法是分析法,为分析问题方便起见,常常对函数解析式作些恒等变形.求函数值域的常用方法有:(1) 配方法:利用二次函数的配方法求函数的值域要注意自变量的取值范围; (2) 判别式法:利用二次函数的判别式法求函数的值域要避免“误判”和“漏判”; (3) 图象法:根据函数的图象,利用数形结合的方法来求函数的值域.(4) 反函数法:如果函数有反函数,那么求函数的值域可以转化为求其反函数的定义域. 五、基础知识训练: (一)选择题:1. 函数)12lg(22--=x x x y 的定义域是( )A.]2,1()1,21(⋃B.]2,21( C.()(]2,11,0⋃ D.(]2,02. 函数322+--=x x y (-5≤x ≤0)的值域是( )A.(]4,∞-B.[3,12]C.[-12,4]D.[4,12] (二)填空题:3. 函数34)63lg(-+-=x x y 的定义域为 . 4. 已知函数32)(+=x x f ,x ∈{0,1,2,3,4,5},则函数)(x f 的值域是 .12、函数的图象一、考试要求:会用描点法作函数的图象. 二、知识要点:函数图象是函数的一种表示形式,它反映了从“图形”方面刻画函数的变化规律.它可以帮助我们研究函数的有关性质,也可以帮助我们掌握各类函数的基本性质.函数的图象可能是一条光滑的直线,也可能是曲线或折线或其中的一部分,还可能是一些间断点.描点法是作函数图象的基本方法.三、典型例题:例1:画出下列各函数的图象:(1)y=1-x(x ∈Z); (2)y=|x-1|; (3)y=2x 2-4x-3(0≤x <3); (4)y=x 3.例2:ABCD 是一个等腰梯形,下底AB=10,上底CD=4,两腰AD=BC=5,设动点P 由B 点沿梯形各边经C 、D 运动到A 点,试写出△PAB 的面积S 与P 点所行路程x 之间的函数关系式,并画出其图象.四、归纳小结:1. 画函数的图象(草图)的一般步骤是: (1) 确定函数的定义域;(2) 化简函数的解析式(如含有绝对值的函数化为分段函数); (3) 利用基本函数画出所需的图象.2. 利用描点法画函数的图象时要注意根据具体函数进行分析:如何取点,取多少点.五、基础知识训练: (一)选择题:1. 函数)(x f y =的图象与直线a x =的交点个数是( )A.有一个B.至少有一个C.至多有一个D.有一个或两个2. 已知函数d cx bx ax x f +++=23)(的图象如右图,则( )A.b ∈(-∞,0)B.b ∈(0,1)C.b ∈(1,2)D.b ∈(2,+∞) (二)填空题:3. 函数125+-=x x y 的图象关于点 对称. 4. 方程lgx=sinx 的实数解的个数是 . (三)解答题:5. 已知等边三角形OAB 的边长为2,直线 ⊥OA, 截这个三角形所得的图形位于 的左方(图中阴影部分)的面积为y,O 到 的距离为x(0≤x ≤2).(1) 求出函数)(x f y =的解析式(8分); (2) 画出)(x f y =的图象(4分).13、函数的单调性与奇偶性一、考试要求:理解函数的单调性与奇偶性. 二、知识要点:1.已知函数)(x f ,在给定的区间上,任取x 1<x 2,当)()(21x f x f <时,函数)(x f y =在这个区间上是增函数;当f(x 1)>f(x 2)时,函数)(x f y =在这个区间上是减函数.如果一个函数在某个区间上是增函数或是减函数,就说这个函数在这个区间上具有单调性. 2. 如果对于函数)(x f y =的定义域A 内的任一个x,都有)()(x f x f -=-,则这个函数叫做奇函数;如果对于函数)(x f y =的定义域A 内的任一个x,都有)()(x f x f =-,则这个函数叫做偶函数.一个函数是奇函数的充要条件是,它的图象是以坐标原点为对称中心的中心对称图形;一个函数是偶函数的充要条件是,它的图象是以y 轴为对称轴的轴对称图形. 三、典型例题:例1:已知函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上是减函数,求实数a 的取值范围. 例2:判断下列函数的奇偶性:(1)2211)(x x x f -⋅-=; (2)xxx x f -+-=11)1()(;例3:已知奇函数)(x f 在[-b,-a](a >0)上是增函数,那么它在[a,b]上是增函数还是减函数?为什么?四、归纳小结:1. 根据定义讨论(或证明)函数增减性的一般步骤是:(1) 设21x x 、是给定区间内的任意两个值,且21x x <, (2) 作差)()(21x f x f -,并将此差化简、变形; (3) 判断)()(21x f x f -的符号,从而证得函数得增减性. 2.判断函数奇偶性的步骤:(1) 考查函数的定义域是否关于原点对称; (2) 判断)()(x f x f ±=-之一是否成立.五、基础知识训练: (一)选择题:1.奇函数)(x f y =(x ∈R)的图象必过点( )A.(a,)(a f -)B.(-a,)(a f )C.(-a,)(a f -)D.(a,)(1af ) 2.下列函数中,在(-∞,0)内是减函数的是( )A.y=1-x 2B.y=x 2+2C.2-=x yD.1-=x xy 3.下列函数在定义域内既是奇函数,又是单调增函数的是( )A.x y tan =B.x y 3=C.x y 3log =D.31x y = (二)填空题:4.已知)(x f 是奇函数,)(x g 是偶函数,且32)()(2++=-x x x g x f ,则=+)()(x g x f .5.已知偶函数)(x f 在[-b,-a](a >0)上是增函数,那么它在[a,b]上是 .(三)解答题:6.设函数cbx ax x f ++=1)(2是奇函数(a 、b 、c ∈Z),且)1(f =2,)2(f <3.(1) 求a 、b 、c 的值;(2) 判断并证明)(x f 在),1[+∞上的单调性.14、一元一次函数和一元二次函数的性质一、考试要求:掌握一元一次函数和一元二次函数的图象和性质. 二、知识要点: 1.正比例函数:函数y=kx(k ≠0,x ∈R)叫做正比例函数.其图象是通过原点(0,0)和点(1,k)的一条直线. k 叫做y 与x 的比例系数,也称做直线y=kx 的斜率.2.一次函数:函数y=kx+b(k ≠0,x ∈R)叫做一次函数(又叫做线性函数).其图象是通过原点(0,b)且平行于直线y=kx 的一条直线.k 叫做直线y=kx+b 的斜率,b 叫做直线y=kx+b 在y 轴上的截距.正比例函数是一次函数的特殊情况.3.二次函数:函数y=ax 2+bx+c(a ≠0,x ∈R)叫做二次函数.二次函数有如下性质:(1) 函数的图象是一条抛物线,抛物线的顶点的坐标是(ab 2-,a b ac 442-),抛物线的对称轴是abx 2-=; (2) 当a >0时,抛物线的开口方向向上,函数abx 2-=在处取最小值a b ac y 442min -=;在区间(-∞, a b 2-)上是减函数,在区间(ab2-,+∞)上是增函数; (3) 当a <0时,抛物线的开口方向向下,函数abx 2-=在处取最大值a b ac y 442max -=;在区间(-∞, a b 2-)上是增函数,在区间(ab2-,+∞)上是减函数. 三、典型例题:例1:已知y+b 与x+a 成正比例,a,b 为常数,如果x=3时y=5;x=2时y=2,求出表示y 是x 的函数的解析式.解:∵y+b 与x+a 成正比例, 设比例系数为k ,则y+b=k (x+a ) 整理得:y=kx+kn-b , ∴y 是x 的一次函数;将x=3,y=5;x=2,y=2;代入函数关系式得:3k+ka-b=5 2k+kn-b=2 解得k=3 ka-b=-4 函数关系式为:y=3x-4.例2:设二次函数)(x f 满足)2()2(x f x f -=+,且)(x f =0的两个根的平方和为10,)(x f 的图象过点(0,3),求)(x f 的解析式.四、归纳小结:1. 二次函数的解析式有三种形式: ①y=ax 2+bx+c; ②y=a(x+h)2+k; ③y=a(x-x 1)(x-x 2).2. 当△=b 2-4ac >0时,二次函数的图象与x 轴有两个交点M 1(x 1,0),M 2(x 2,0),则|M 1M 2|=|x 1-x 2|=212214)(x x x x -+=a∆ 五、基础知识训练: (一)选择题:1. 已知二次函数c bx ax y ++=2的图象关于y 轴对称,则下列等式成立的是( ) A.42=-ac b B.0=ab C.0=acD.0=++c b a2. 二次函数)(x f y =的图象如图所示,那么此函数为( ) A.y=x 2-4 B. y=4-x 2C.y=43(4-x 2)D. y=43(2-x) 2(二)填空题:3.已知函数f (x )=(m 2-m-1)例函数;(2(3是二次函数;(4.4.已知二次函数4)2(2++-=x m x y 的图象与x 轴有交点,则实数m 的取值范围是 . (三)解答题:5. 已知二次函数的图象过点(1,-3),(0,-8),且与x 轴的两交点间的距离为2,求这个二次函数.15、函数的应用一、考试要求:会利用函数的观点或性质去分析和解决简单的实际应用问题.二、知识要点:三、典型例题:例1:将进货单价为40元的商品按50元售出时,就能卖出500个,已知这个商品每个涨价1元,其销售量就减少10个.(1)问:为了赚得8000元的利润,售价应定为多少?这时进货多少个?(2)当定价为多少元时,可获得最大利润?考点:二次函数的应用.分析:总利润=销售量×每个利润.设售价为x元,总利润为W元,则销售量为500-10(x-50),每个利润为(x-40),据此表示总利润.(1)当W=8000时解方程求解;(2)根据函数性质求最大值.例2:某产品生产厂家根据以往的生产销售经验得到下面有关生产销售的统计规律:每生产产品x(百台),其总成本为G(x)(万元),其中固定成本为2.8万元,并且每生产1百台的生产成本为1万元(总成本=固定成本+生产成本).销售收入R(x)(万元)满足R(x)=假定该产品产销平衡(即生产的产品都能卖掉),根据上述统计规律,请完成下列问题:(1)写出利润函数y=f(x)的解析式(利润=销售收入-总成本);(2)工厂生产多少台产品时,可使盈利最多?考点:根据实际问题选择函数类型;分段函数的应用.四、归纳小结:利用函数知识解应用题一般是先设变量写出函数表达式,然后用常用数学方法(二次函数的配方法和均值不等式法求最值)去解模.五、基础知识训练:(一)选择题:1.某企业各年总产值预计以10%的速度增长,若2002年该企业总产值为1000万元,则2005年该企业总产值为( )A.1331万元B.1320万元C.1310万元D.1300万元2.某种商品2002年提价25%,2005年要恢复成原价,则应降价( )A.30%B.25%C.20%D.15%(二)填空题:3.某不法商人将彩电先按原价提高40%,然后在广告中写上“大酬宾,八折优惠”,结果是每台彩电比原价多赚了270元,那么每台彩电原价是元.4.某商品投放市场以来,曾三次降价,其价格由a元降至b元,那么该商品每次平均降价的百分率是 .(三)解答题:5.某化工厂生产的某种化工产品,当年产量在150吨至250吨之内时,其年生产的总成本y(万元)与年产量x(吨)之间的关系可近似地表示为400030102+-=xxy.(1)求年产量为多少吨时,每吨的平均成本最低,并求每吨最低平均成本;(2)若每吨平均出厂价为16万元,求年生产多少吨时,可获得最大的年利润,并求出最大年利润.16、指数式与对数式一、考试要求: 1. 掌握指数的概念、指数幂的运算法则.2. 掌握对数的概念、性质和对数的运算法则,掌握换底公式,了解常用对数和自然对数. 二、知识要点:1. 指数的定义及性质: (1)有理数指数幂的定义: ①a 0=1 (a ≠0); ②),0(1+-∈≠=N n a aa n n ; ③),,0(为既约分数且、nmN n m a m annm +∈>=;④),,0(1为既约分数且、nmN n m a mannm +-∈>=. (2)实数指数幂的运算法则: ①nm nmaa a +=⋅; ②mnnm a a =)(; ③nnnb a ab ⋅=)(.2. 对数的定义及性质: (1)对数的定义:令N=b a (a >0且a ≠1)中,b 叫做以a 为底N 的对数,N 叫做真数,记作:b N a =log .(2)对数的性质:①真数必须是正数,即零和负数没有对数; ②01log =a (a >0且a ≠1); ③1log =a a (a >0且a ≠1); ④对数恒等式:N a N a =log (a >0且a ≠1).(3) 对数的运算法则:当a >0且a ≠1,M >0,N >0时,有①N M MN a a a log log )(log += ②N M NMa a a log log log -= ③M n M a na log log = ④M nM a na log 1log =(4) 换底公式:aNN b b a log log log =. (5) 常用对数:底是10的对数叫做常用对数,即N N lg log 10=.(6)自然对数:底是e 的对数叫做自然对数,即N N e ln log = (其中无理数e ≈2.71828) .自然对数和常用对数的关系是:eNN lg lg ln =. 三、典型例题:例1:计算:(1);(2)3log 333558log 932log 2log 2-+-. 例2:化简: (1)43)1(1)1(--a a ; (2)50lg 2lg )5(lg 2⋅+ 例3: (1)已知a =2log 14,求7log2的值; (2)设,518,9log18==b a 求45log 36的值.例4:解下列方程:1111010.25334273(0.0081)[3()][81(3)]100.02788------⨯⋅+-⨯。
江苏省对口单招职教高考数学考试含答案
江苏省中等职业学校学业水平考试《数学》试卷(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.每个小题列出的四个选项中,只有一项符合要求.)1. 方程182x⎛⎫= ⎪⎝⎭的解是( )A .31B .31- C .3 D .3-2.设全集R U =,集合{}2>=x x P ,则=P C U ( )A .{}2≤x xB .{}2<x xC .{}2≠x x D .{}2,1 3.下列关于奇函数图象的对称性,正确的叙述是( ) A .关于x 轴对称 B .关于y 轴对称C .关于原点中心对称D .关于直线x y =对称 4.下列关于零向量的说法中,错误..的是( ) A .零向量的长度为0 B .零向量没有方向C .零向量的方向是任意的D .零向量与任一向量都平行 5.样本数据-1,2,0,-2, 1的方差为( ) A .1 B .2 C .3 D .5 6.在长方体ABCD-A 1B 1C 1D 1中,下列表述正确的是( ) A .A 1A ⊥平面BB 1C 1C B .A 1A ⊥平面DC C 1D 1 C .A 1A //平面ABCD D .A 1A //平面BB 1C 1C7.直线220x y -+=和310x y ++=的交点坐标为( ) A .(0,2) B .(1,4) C .(-2,-2) D .(-1,0)8.某公司在甲、乙、丙、丁四个地区的销售点分别有150个、120个、180个、250个.公司为了调查产品销售情况,需从这700个销售点中抽取一个容量为100的样本,比较适宜的抽样方法是( )A .简单随机抽样法B .分层抽样法C .系统抽样法D .抽签法9.设p :2a =,q :1a >-;则( )A .p 是q 的充分而不必要条件B .p 是q 的必要而不充分条件C .p 是q 的充要条件D .p 是q 的既不充分也不必要条件 10.过点(-1,3)且与直线210x y -+=垂直的直线方程是( ) A .270x y -+= B .210x y --=A B C DB 1C 1D 1 A 1 第6题图C .210x y +-=D .210x y ++= 11.已知(3,4),(2,3)a b =-=,则2||3a a b -⋅等于( )A .28B .8-C .8D .28- 12.302302302.log ,,..===c b a 则c b a ,,的大小关系是( )A .a b c <<B .c b a <<C .c a b <<D .a c b << 二、填空题(本大题共2小题,每小题4分,共8分) 13.函数()2f x x =的单调增区间是 .14.如图,在正方体1111ABCD A B C D -中,对角线1BD 与底面ABCD 所成角的正切值为 .三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(满分8分)解不等式215x +<.16.(满分10分)已知 4cos 5α=-,α是第三象限的角,试求sin α和tan α的值. 17.(满分10分)某林场计划第一年植树造林200公顷,以后每年比前一年多造林3%.问: (1)该林场第五年计划造林多少公顷?(只需列式) (2)该林场五年内计划造林多少公顷?(精确到0.01)第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.)1.[选做题]在1-1和1-2两题中选答一题.第14题图1—1.与A B ⋅相等的是 ( )A .AB B .ABC .A B +D .A B +1—2.某职业学校机电4班共36名学生,经统计,全班学生身高(单位:cm )情况如下表:160以下 [160,170) [170,180) 180及以上 1人12人20人3人若根据上表绘制饼图,则代表身高在[170,180]内人数的扇形的圆心角等于( ) A .20︒B .100︒C .200︒D .270︒2.[选做题]在2-1和2-2两题中选答一题.2—1.下列关于算法的说法,正确的有( )①求解某一类问题的算法是唯一的;②算法必须在有限步操作之后停止;③算法的每一步操作必须是明确的,不能有歧义或模糊;④算法执行后一定产生确定的结果. A .1个 B .2个 C .3个 D .4个 2—2.某项工程的网络图如图所示(单位:天),则完成该工程的最短总工期为( )A .10.5B .12C .13D .16.5 3.[选做题]在3-1和3-2两题中选答一题.3—1.函数3sin(2)6y x π=-的最小正周期为( )A .2πB .πC .2πD .3π 3—2.复数2(34i -)的实部和虚部分别是( )A .3,4-B .6,8-C .3,4i -D .6,8i - 二、填空题(本大题共1小题,共4分.)4—1.将参数方程是参数)(t 42⎩⎨⎧==ty tx 化为普通方程是 .4—2.表示图中阴影部分平面区域的不等式是 .第4—2题江苏省中等职业学校学业水平考试《数学》试卷 参考答案及评分标准(第3套)本试卷分第Ⅰ卷(必考题)和第Ⅱ卷(选考题)两部分.两卷满分100分,考试时间75分钟.第Ⅰ卷(必考题,共84分)一、选择题(本大题共12小题,每小题4分,共48分.)1 2 3 4 5 6 7 8 9 10 11 12 DACBBDDBACAC二、填空题(本大题共2小题,每小题4分,共8分)13.[)∞+,0或(0)+∞,;14.22. 三、解答题(本大题共3小题,共计28分.解答时应写出必要的文字说明、证明过程或演算步骤)15.解:原不等式等价于5215x -<+< ………………3分 624x ∴-<< ………………5分 32x ∴-<< ………………7分 ∴原不等式的解集为{}32x x -<<. ………………8分 16.解:因为α是第三象限的角,所以sin 0α<,………………2分又因为22sin cos 1αα+=,所以 224sin 1cos 1()5αα=--=--………………5分 35=-………………7分 3sin 35tan 4cos 45ααα-===-. ………………10分17.解:(1)该林场第五年计划造林 4200(13%)+ 公顷. ……4分 (2)该林场五年内计划造林200+200(13%)++2200(13%)++3200(13%)++4200(13%)+ ……2分5200[1(13%)]1(13%)-+=-+ ……5分1061.83≈(公顷) ……6分第Ⅱ卷(选考题,共16分)说明:在每组题中选一题解答;若都解答,只按其中的一题给分.一、选择题(本大题共3小题,每小题4分,共12分.每题所给的四个选项中,只有一个选项符合要求.二、填空题(本大题共1小题,共4分.)4—1.24x y =; 4—2.632≥+y x .。
江苏对口单招数学考试知识点分布汇总word版本
Байду номын сангаас 分布
备注
高考常规考点,难度 相对比较简单
区别于正常高考,为 新增加内容,每年必 考,总分12分 简单计算,拿满分 简单计算,拿满分 简单计算,拿满分 简单计算,拿满分 考虑周全,注意细节 考虑周全,注意细节 综合性强,有难度 综合性强,有难度
江苏对口单招数学考试知识点分布题型内容01集合化简与运算简易逻辑02平面向量数量积与坐标运算03复数化简运算04三角函数图像以及化简运算求值求角05排列组合应用06分段函数指对函数为载体结合奇偶函数性质进行运算07基本不等式求最值08奇函数偶函数图像性质结合周期性进行化简09函数与方程图像的交点零点个数等问题10直线与圆圆锥曲线的交点11空间结构体识别与计算12异面直线所成角计算13统计应用几何概型14程序框图计算15进制转换二进制十进制转换16逻辑化简17网络工程图计算18指数对数不等式与方程复合函数求定义域19以抽象函数为载体奇偶函数性质应用20三角函数求最值解三角形21排列组合求概率频率直方图计算概率22应用二次函数求解最值指数对数函数求解方程23应用线性规划求解实际应用问题最优解24数列求通项求前n项和25圆锥曲线的综合性问题选择填空60分解答题90分备注简单计算拿满分简单计算拿满分简单计算拿满分简单计算拿满分考虑周全注意细节考虑周全注意细节综合性强有难度综合性强有难度区别于正常高考为新增加内容每年必考总分12分高考常规考点难度相对比较简单
江苏对口单招数学考试知识点分布
题型
选择填空 (60分)
解答题 (90分)
内容 01,集合化简与运算,简易逻辑 02,平面向量数量积与坐标运算 03,复数化简运算 04,三角函数图像以及化简运算求值求角 05,排列组合应用 06,分段函数、指对函数为载体,结合奇偶函数性质进行运算 07,基本不等式求最值 08,奇函数偶函数图像性质结合周期性进行化简 09,函数与方程图像的交点,零点个数等问题 10,直线与圆、圆锥曲线的交点 11,空间结构体识别与计算 12,异面直线所成角计算 13,统计应用,几何概型 14,程序框图计算 15,进制转换(二进制十进制转换) 16,逻辑化简 17,网络工程图计算 18,指数对数不等式与方程,复合函数求定义域 19,以抽象函数为载体,奇偶函数性质应用 20,三角函数求最值,解三角形 21,排列组合求概率,频率直方图计算概率 22,应用二次函数求解最值,指数对数函数求解方程 23,应用线性规划求解实际应用问题最优解 24,数列求通项,求前n项和 25,圆锥曲线的综合性问题
江苏省对口单招高中数学复习知识点
高三数学总复习知识点主编:杨林森目录一、高一上1、数与式计算 (3)2、集合 (6)3、函数及其性质 (8)4、几个基本初等函数 (10)5、三角函数 (13)二、高一下1、解析几何(Ⅰ) (14)2、三角函数(Ⅱ) (18)3、圆 (21)4、平面向量 (23)5、数列 (26)6、不等式 (29)三、高二上1、命题与逻辑推理 (31)2、解析几何(Ⅱ) (33)3、立体几何 (41)4、复数 (46)四、高二下1、计数法 (49)2、概率(Ⅱ) (54)3、统计(Ⅱ) (56)五、附录附录(Ⅰ) (59)附录(Ⅱ) (61)附录(Ⅲ) (62)六、附录答案(另附)高三数学总复习知识点..........高一数学(一)高一上学期:1.数与式计算(实数概念)(1)常用数集符号:自然数集:N整数:Z 有理数集:Q 实数集:R (2)绝对值:①⎪⎩⎪⎨⎧<-=>=时;当时;当时;当0,0,00,a a a a a a②b a b a b a +≤±≤-.③数轴上两点A,B 坐标分别为B A x x ,,则A,B 之间距离A B x x AB -= 例:化简23---x x ()31<<x(实数运算)(1)实数运算顺序:先乘方、开方,然后乘除,再加减,有括号先进行括号内运算.(2)指数幂推广:①正整数指数幂:nna a a a =⋅⋅⋅⋅⋅⋅••(a 为正整数) ②分数指数幂: n n a a 1=- (0≠a ,n 为正整数)10=a (0≠a ) ③负整数指数幂、零指数幂:n m nm a a =,n manm 1=-(0≠a ) (3)实数指数幂运算法则:①βαβα+=•a a a ②)0(≠=÷-a a a a βαβα ③()αααb a b a •=• ④)0(≠=⎪⎭⎫⎝⎛b b a b a ααα例:1.()0110)12()21()1()2(5--+-⨯-+---2.03260cos 121)14.3(1+⎪⎭⎫⎝⎛⨯----π(式计算) 乘法公式:平方差公式:22))((b a b a b a -=-+ 完全平方公式:2222)(b ab a b a +±=± 立方和、差公式:))((2233b ab a b a b a +±=± 例:计算222)3(a a ÷-.(分式运算与根式化简) 一、分式.1.定义:式子BA叫做分式,其中B A ,表示两个整式,且B 中含有字母,0≠B .2.分式基本性质:(1))0(,≠÷÷=⨯⨯=m mB m A B A m B m A B A 其中. (2)分式符号法则:分式分子、分母与分式本身符号,改变其中任何两个,分式值不变.3.分式运算:(1)加减:①;c b a c b c a ±=± ②bd bcad d c b a ±=±.(2)乘除:①bd acd c b a =•; ②bcad d c b a =÷.(3)乘方:n n nb a b a =⎪⎭⎫⎝⎛.二、二次根式. 1.二次根式性质:(1)()a a =2)0(≥a ;(2)b a ab •= )0,0(≥≥b a (3)ba b a = )0,0(>≥b a(4)⎩⎨⎧<-≥==)0()0(2a a a a a a2.二次根式运算. (1)加减运算实质是合并同类二次根式,其步骤是先化简,后找“同类”合并.(2)做乘法时,要灵活运用乘法公式;做除法时,有时要写为分数形式,然后进行分母有理化.(3)化简2a 时要注意a 正负性,尤其是隐含正负性. 例:(1)当式子5452---x x x 值为零时,x 值是_________(2)化简:231421222+++•--÷⎪⎭⎫ ⎝⎛+-a a a a a a a a a ;2.集合(集合及其表示)(1)集合中元素三个特性: ①元素确定性 ②元素互异性 ③元素无序性(2)集合表示法:列举法;描述法;维恩图法. (3)集合分类:有限集 含有有限个元素集合 无限集 含有无限个元素集合 空集 不含任何元素集合例:1.下列四组对象,能构成集合是 ( ) A.某班所有高个子学生 B.著名艺术家 C.一切很大书 D.倒数等于它自身实数(数集)(1)基本数集:非负整数集(即自然数集) 记作:N 正整数集 N*或 N+ 整数集Z 有理数集Q 实数集R (2)一般数集:除了基本数集以外其他数集. 例:用填空或∉∈71_____N -9______Z 5______Q2+π________R(集合之间关系) (1)“包含”关系—子集注意:B A ⊆有两种可能(1)A 是B 一部分,;(2)A与B 是同一集合。
单招数学考试大纲
单招数学考试大纲一、考试目的与要求单招数学考试旨在考查学生对数学基础知识的掌握程度以及运用数学知识解决实际问题的能力。
考试要求学生能够熟练掌握数学基础概念、公式、定理,并能够灵活运用这些知识进行计算、推理和证明。
二、考试内容1. 基础数学知识- 数与式:包括实数、有理数、无理数、复数的概念及其运算。
- 函数:包括函数的概念、性质、图像,以及基本初等函数的应用。
- 几何:包括平面几何和立体几何的基本概念、性质和计算方法。
2. 代数- 代数方程:包括一元一次方程、一元二次方程、高次方程的解法。
- 不等式:包括不等式的性质、解法和应用。
- 序列:包括等差数列、等比数列的概念、性质和求和公式。
3. 解析几何- 直线与圆:包括直线的方程、圆的方程及其位置关系。
- 圆锥曲线:包括椭圆、双曲线、抛物线的性质和方程。
4. 概率与统计- 概率:包括事件的概率、条件概率、独立事件的概率。
- 统计:包括数据的收集、整理、描述和分析方法。
5. 微积分初步- 极限:包括极限的概念、性质和运算。
- 导数:包括导数的概念、性质、几何意义和基本求导公式。
- 积分:包括定积分的概念、性质和基本积分公式。
三、考试形式与题型1. 选择题:考查学生对数学概念、公式、定理的理解和应用能力。
2. 填空题:考查学生对数学运算和推理的熟练程度。
3. 解答题:考查学生综合运用数学知识解决问题的能力。
4. 证明题:考查学生的逻辑推理能力和数学证明技巧。
四、考试范围与难度考试内容覆盖高中数学的基础知识和部分拓展知识。
难度设置在中等水平,既考查学生的基础能力,也考查学生的综合应用能力。
五、考试准备建议1. 系统复习:按照大纲要求,系统复习高中数学的基础知识和公式。
2. 强化训练:通过大量的练习题,提高解题速度和准确率。
3. 理解概念:深入理解数学概念和定理,掌握其内在联系和应用场景。
4. 掌握方法:熟悉各种数学问题的解题方法和技巧,提高解题效率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
江苏省普通高校对口单独招生数学考试大纲本考纲主要依据2009年教育部颁布的《中等职业学校数学教学大纲》,并结合我省中等职业学校教学实际研究制定。
以省编中等职业学校《数学》教材1—4册内容为考试复习范围。
本考纲既注重考查考生的数学基础知识、基本技能、基本思想和方法,又注重考查考生进入高等学校继续学习所必需的基本能力。
一、命题原则
1、对数学基础知识的考查,贴近教学实际,既注意全面,又突出重点。
总体涵盖面不应少于教材所含知识点的70%,对于支撑数学知识体系的主干内容,如函数、数列、三角函数、不等式、立体几何、解析几何、概率,应作为主要考查内容。
2、对数学基本思想和方法的考查,结合数学知识与能力一并进行考查。
考查中强调通性通法,淡化特殊技巧,有效检测考生对中等职业教育数学知识所蕴涵的数学思想与方法的掌握程度。
3、对考生能力的考查,以数学知识为载体,通过解决贴近生活的实际问题,考查考生数学基本技能和能力。
(1)计算技能:根据法则、公式或按照一定的操作步骤,正确地进行求解。
(2)数据处理技能:按要求对数据(数据表格)进行处理并提取有关信息。
(3)观察能力:根据数据趋势、数量关系或图形、图示描述规律等。
(4)空间想象能力:依据文字、语言描述,或较简单的几何体及其组合,想象相应的空间图形,能够在基本图形中找出基本元素及其位置关系,或根据条件画出图形。
(5)分析与解决问题的能力:能对生活中的简单数学问题作出分析并运用适当的数学方法予以解决。
(6)数学思维能力:依据所学的数学知识,运用类比、归纳、综合等方法,对数学及其应用问题能进行有条理的思考、判断、推理和求解,针对不同的问题(或需求),会选择合适的模型(或模式)。
4、命题要保持相对稳定,体现新大纲的精神。
力求科学、准确、公平、规范,试卷应有较高的信度、效度、必要的区分度。
既要使一般考生能得到基本分,又要使优秀考生的水平得到显现。
二、考试形式
考试采用闭卷、笔答的形式,试卷将提供考试中可能会用到的比较复杂或不容易记忆的数学公式。
考试时间120分钟,全卷满分150分,考试不使用计算器。
三、试卷结构
全卷包括Ⅰ卷、Ⅱ卷,Ⅰ卷为选择题,Ⅱ卷为非选择题。
试题分为选择题、填空题、解答题三种题型。
选择题是四选一型的单项选择题;填空题只要求直接填写结果,不必写出计算过程或推理过程;解答题包括计算题、证明题和简单应用题等,解答题应写出文字说明、演算步骤或推理过程。
上述三种题型分值分别为48分、24分、78分。
试卷由基本题、一般题和较难题组成,所占比例约为40%、50%、10%。
试卷所涉及的知识由代数、三角、平面解析几何、立体几何和概率统计(含数据处理)五个模块构成,这几部分所占分值依次约为40%、15%、20%、10%、15%。
四、考试内容及要求
对知识的考查要求依次分为了解、理解、掌握三个层次(在下表中分别用A、B、C表示)。
了解:要求对所列知识的含义有初步的、最基本的认识,知道这一知识内容是什么,按照一定程序和步骤照样模仿,并能(或会)在有关问题中识别和认识。
理解:要求对所列知识有较深刻的认识,知道知识间的逻辑关系,能对所列知识作正确的描述说明并用数学语言表达,能利用所学知识内容对有关问题进行比较、判断、讨论,具备利用所学知识解决简单问题的能力。
掌握:要求能够应用所学知识的概念、定义、定理、法则去解决一些问题。
具体考查要求如下:。