高二数学期中考试模拟试题1

合集下载

高二年级第一学期期中考试数学试题(1)

高二年级第一学期期中考试数学试题(1)

高二年级第一学期期中考试数学试题一.选择题(每题3分,共45分.请把答案填在本题后的相应的表格内)1.若a>b 且c<0则有( )A.ac>bcB. ac<bcC. ac =bcD. ac 与bc 的大小不能确定2.若a>b 那么( )A.2c-a>2c-bB.2a-c<2b-cC. 2a+c>2b+cD.2c+a<2c+b3.圆C :22y x +y x 32+-=0的圆心和半径分别为( )A.(1-, 23), 1B.(2, )3-,23C.(1, 23-),413D.(1, 23-),213 4.斜率为3,在x 轴上的截距为4的直线方程是( )A. y=3x+4B. x=3y+12C. 3x=y 4-D. 3x=y+125.满足不等式组⎪⎪⎩⎪⎪⎨⎧≥-≤+≤≥2100y x y x y x 的可行域内使目标函数z=y x 2+取得最大值的点的坐标是( )A . (0, 0) B. (21,23-) C. (0,2-) D. (1,0)6.已知a<0, 1-<b<0那么( )A. a>ab>ab 2B. ab 2>ab>aC. ab>a>ab 2D. ab>ab 2>a7.直线的斜率为3-,则其倾斜角为( )A.π+arctan3B. arctan(3-)C. –arctan(3-)D.π+arctan(3-)8.直线l 1:132=+y x和 l 2: y=x 32+1关系为( ) A.平行 B. 垂直 C. 相交但不垂直 D. 重合9.不等式:xx x x +>+22的解集是( ) A. ()+∞∞-, B.(,2- 0) C. (]0,2- D. ()()+∞⋃-∞-,02,10.直线有斜率是直线有倾斜角的( )A. 充分不必要条件B. 必要不充分条件C. 充要条件D.即不充分又不必要条件11.直线l 1: x+3y=1直线l 2的斜率为21, 则l 2到l 1的角为( )A. 450B. 1200 C . 1350 D. 150012.直线2x-3y+2=0和曲线y=x 61-的交点到直线y=1-x 34的距离是( ) A. 54 B. 511 C. 5513 D.5511 13.已知: x<0, 则 x x 1- 有( )A. 最大值-2B. 最小值2C. 最小值-2D. 最大值214.a,b 是不等的实数,则下列不等式总成立的是( )A.ab ba +>2 B.ab ba >+2 C.ab b a >+222 D.222>+abb a 15.两直线a, b 互不垂直,a 到b 的角为α, a, b 的夹角为β, 则下列不等式中不一定成立的是( )A.sin α=βsinB.αcos =cos βC. tan α=βtanD. αcot =cot β 请把选择题的答案填在此表格内第Ⅱ卷(非选择题共55分)二.填空(每小题3分,共15分)16.由两点A(1, 2), B(3-, 4) 所确定的直线的斜率为 .17.已知5<x<7, 4-<y<3, 则x y -的取值范围是 .18.不论m 为何实数,方程 (3m+4)x+(5-2m)y+7m 6-=0 所表示的直线总过一定点,则该点的坐标为 .19.不等式 5532<--x x 的解集为 .20. 已知点 A (3,2-),B (5-, 4), 则以线段AB 为直径的圆的标准方程 为 .三.解答题(共40分)21.已知 m b a ,, 都是正数,且b a < , 求证:ba mb m a >++ (7分)22.设0<x<2, 求函数y=)38(3x x -的最大值,并写出此时x 的值.(7分)23.动点P 到直线l: y=2-的距离等于它到点A (0,4) 的距离,求动点P的轨迹方程. (只求方程不用证明) (8分)24.求直线a: 2x-y+3=0 关于直线l: x+y+1=0 的对称直线b 的方程,并化为截距式. (8分)25.解不等式01)1)((<---ax x x a ,其中0<a<2. (10分)。

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二上学期期中模拟考试数学试题含解析

2024-2025学年高二数学上学期期中模拟卷(考试时间:120分钟试卷满分:150分)注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其他答案标号。

回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

4.测试范围:沪教版2020必修第三册第十~十一章。

5.难度系数:0.72。

一、填空题(本大题共有12题,满分54分,第1-6题每题4分,第7-12题每题5分)1.不重合的两个平面最多有条公共直线【答案】1【解析】根据平面的位置关系可知,不重合两平面平行或相交,当相交时,有且只有一条公共直线.故答案为:12.已知球的表面积是16π,则该球的体积为.3.空间中一个角∠A的两边和另一个角∠B的两边分别平行,若∠A=,则∠B=;【答案】【解析】如图,若角∠A 的两边和角∠B 的两边分别平行,且方向相同,则∠A 与∠B 相等此时70B A ∠=∠=︒;②当角∠A 的两边和角∠B 的两边分别平行,且一边方向相同另一边方向相反,则∠A 与∠B 互补,此时180110B A ∠=︒-∠=︒.故答案为70︒或110︒.4.如图,正三棱柱的底面边长为2,高为1,则直线1B C 与底面ABC 所成的角的大小为(结果用反三角函数值表示).5.在空间中,给出下面四个命题,其中真命题为.(填序号)①过平面α外的两点,有且只有一个平面与平面α垂直;②若平面β内有不共线三点到平面α的距离都相等,则αβ∥;③若直线l 与平面α内的任意一条直线垂直,则l α⊥;④两条异面直线在同一平面内的射影一定是两条相交直线.【答案】③【解析】①过平面α外两点可确定一条直线,当这条直线垂直于平面α时,有无数个平面垂直于平面α,故①错误;②若三点在平面α同侧,则αβ∥;若三点在平面α两侧,则α与β相交,故②错误;③直线l 与平面α内的任意一条直线垂直,则l 垂直于平面α内两条相交直线,由线面垂直的判定定理可得l α⊥,故③正确;④两条异面直线在同一个平面内的射影有可能是两条相交直线,也可能是两条平行直线,还可能是一个点和一条直线,故④错误;故答案为:③6.正四棱锥P -ABCD 的所有棱长均相等,E 是PC 的中点,那么异面直线BE 与P A 所成角的余弦值为.连接AC 交BD 于O 点,连接OE ,则OE 因为⊥PO 面ABCD ,所以PO DB ⊥,又因为所以直在角三角形EOB 中,设PA a =,则故答案为:33.7.如图,有一圆锥形粮堆,其轴截面是边长为6m 的正ABC V ,粮堆母线AC 的中点P 处有一老鼠正在偷吃粮食,此时小猫正在B 处,它要沿圆锥侧面到达P 处捕捉老鼠,则小猫所经过的最短路程是m .【答案】35【解析】解:由题意得:圆锥的底面周长是6π,则66180n ππ=,解得:180n ︒=可知圆锥侧面展开图的圆心角是180︒,如图所示:则圆锥的侧面展开图中:()3m AP =,6(m)AB =,90BAP ︒∠=所以在圆锥侧面展开图中:()223635m BP =+=故答案为:358.已知一球体刚好和圆台的上、下底面及侧面都相切,且圆台上底面的半径为2,下底面的半径为1,则该圆台的侧面积为.【答案】9π【解析】圆台的轴截面如下图示:截面中圆为内切球的最大圆,且2AF DF AG DH ====,1BE CE BG CH ====,所以3AB CD ==,而上下底面周长分别为4π、2π,故该圆台的侧面积为13(2π4π)9π2⨯⨯+=.故答案为:9π9.如图,已知三棱柱111ABC A B C -的体积为3,P ,Q ,R 分别为侧棱1AA ,1BB ,1CC 上的点,且1AP CR AA +=,则Q ACRP V -=.则111332Q ACRP V d S d -=⋅⋅=⋅⋅⋅设三棱柱111ABC A B C -的体积故答案为:1.10.已知大小为π6的二面角的一个面内有一点,它到二面角的棱的距离为6,则这个点到另一个面的距离为.11.正方形ABCD 中,E ,F 分别为线段AB ,BC 的中点,连接DE ,DF ,EF ,将ADE V ,CDF V ,BEF △分别沿DE ,DF ,EF 折起,使A ,B ,C 三点重合,得到三棱锥O DEF -,则该三棱锥外接球半径R 与内切球半径r 的比值为.【答案】26【解析】在正方形ABCD 中,,AD AE CD ⊥12.空间给定不共面的A,B,C,D四个点,其中任意两点间的距离都不相同,考虑具有如下性质的平面α:A,B,C,D中有三个点到的距离相同,另一个点到α的距离是前三个点到α的距离的2倍,这样的平面α的个数是___________个【答案】32【解析】首先取3个点相等,不相等的那个点由4种取法;然后分3分个点到平面α的距离相等,有以下两种可能性:(1)全同侧,这样的平面有2个;(2)不同侧,必然2个点在一侧,另一个点在一侧,1个点的取法有3种,并且平面过三角形两个点边上的中位线,考虑不相等的点与单侧点是否同侧有两种可能,每种情况下都唯一确定一个平面,故共有6个,⨯=个,所有这两种情况共有8个,综上满足条件的这样的平面共有4832故答案为:32二、选择题(本题共有4题,满分18分,第13-14题每题4分,第15-16题每题5分;每题有且只有一个正确选项)13.下列几何体中,多面体是()A.B.C.D.【答案】B【解析】A选项中的几何体是球,是旋转体;B选项中的几何体是三棱柱,是多面体;C 选项中的几何体是圆柱,旋转体;D 选项中的几何体是圆锥,是旋转体.故选B.14.已知两个平面α、β,在下列条件下,可以判定平面α与平面β平行的是().A .α、β都垂直于一个平面γB .平面α内有无数条直线与平面β平行C .l 、m 是α内两条直线,且l ∥β,m ∥βD .l 、m 是两条异面直线,且l ∥α,m ∥α,l ∥β,m ∥β【答案】D【解析】对于A ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B 都与平面ABCD 垂直,但这两个平面不平行,所以A 错误,对于B ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,平面11AAC C 中所有平行于交线1AA 的直线都与平面11AA B B 平行,但这两个平面不平行,所以B 错误,对于C ,如在正方体1111ABCD A B C D -中,平面11AAC C 和平面11AA B B ,,M N 分别为11,A B AB 的中点,则1,MN BB 在平面11AA B B 内,且都与平面11AAC C 平行,但这两个平面不平行,所以C 错误.对于D ,因为l 、m 是两条异面直线,所以将这两条直线平移到共面α时,一定在α内形成两条相交直线,由面面平行的判定定理可知,该结论正确.故选:D15.将3个1212⨯的正方形沿邻边的中点剪开分成两部分(如图1);将这6部分接于一个边长为六边形边上(如图2),若拼接后的图形是一个多面体的表面展开图,则该多面体的体积是()A .17282B .864C .576D .2【答案】B【解析】折成的多面体如图①所示,将其补形为正方体,如图②,所求多面体体积为正方体的一半,又依题易求得正方体的边长为12,故3112864,2V =⨯=故选:B.16.如图,在正方体1111ABCD A B C D -中,E 是棱BC 的中点,F 是侧面11BCC B 上的动点,且1A F ∥平面1AD E .设1A F 与平面11BCC B 所成的角为1,A F α与1AD 所成的角为β,那么下列结论正确的是()A .α的最小值为arctan2,β的最小值为arctan3B .α的最小值为arctan3,β的最大值为2πC .α的最小值大于arctan2,β的最小值大于arctan3D .α的最大值小于arctan3,β的最大值小于2π设正方体的棱长为2,因为MN GE ∥,且MN ⊄MN ∴∥平面1AEGD ;同理1A N ∥平面1AEGD ,且∴平面1A MN ∥平面AEGD ∵11A B ⊥面11BB C C ,所以又1AD MN ,所以1A F 与1AD 所成的角为111tan A B B Fα∴=;当F 为MN 中点时,此时当F 与M 或N 重合时,此时2tan 22α∴≤≤,arctan2对于β,当F 为MN 中点时,当F 与M 或N 重合时,β()221252A F ⎛⎫∴=-= ⎪ ⎪⎝⎭tan 3β∴=,tan 3β∴≥,arctan 3β≤≤又arctan3 1.4≈,arctan2故选:A.三、解答题(本大题共有5题,满分78分,第17-19题每题14分,第20、21题每题18分.)17.如图,长方体1111ABCD A B C D -中,1AB AD ==,12AA =,点P 为1DD 的中点.(1)求证:直线1BD //平面PAC ;(2)求异面直线1BD 与AP 所成角的大小.【解析】(1)设AC 和BD 交于点O ,则O 为BD 的中点,连接PO ,(1分)∵P 是1DD 的中点,∴1//PO BD ,(3分)又∵PO ⊂平面PAC ,1⊄BD 平面PAC ,∴直线1BD //平面PAC ;(6分)(2)由(1)知,1//PO BD ,∴APO ∠即为异面直线1BD 与AP 所成的角,(8分)∵PA PC =12AO AC ==且PO AO ⊥,∴1sin2AO APO AP ∠==.又(0,90]APO ∠∈︒︒,∴30APO ∠=︒故异面直线1BD 与AP 所成角的大小为30︒.(14分)18.如图,在圆柱中,底面直径AB 等于母线AD ,点E 在底面的圆周上,且AF D E ⊥,F 是垂足.(1)求证:AF DB ⊥;(2)若圆柱与三棱锥D ABE -的体积的比等于3π,求直线DE 与平面ABD 所成角的大小.【解析】(1)证明:根据圆柱性质,DA ⊥平面ABE ,因为EB ⊂平面ABE ,所以DA EB ⊥,又因为AB 是圆柱底面的直径,点E 在圆周上,所以AE EB ⊥,因为AE DA A ⋂=且,AE DA ⊂平面DAE ,所以EB ⊥平面DAE ,(2分)又因为AF ⊂平面DAE ,所以EB AF ⊥,因为AF D E ⊥,且EB DE E =I ,且,EB DE ⊂平面DEB ,所以AF ⊥平面DEB ,又因为DB ⊂平面DEB ,所以AF DB ⊥.(6分)(2)解:过点E 作EH AB ⊥,H 是垂足,连接DH ,根据圆柱性质,平面ABD ⊥平面ABE ,且平面ABD ⋂平面ABE AB =,且EH ⊂平面ABE ,所以EH ⊥平面ABD ,因为DH ⊂平面ABD ,所以DH 是ED 在平面ABD 上的射影,从而EDH ∠是DE 与平面ABD 所成的角,(8分)设圆柱的底面半径为R ,则2DA AB R ==,所以圆柱的体积为32πV R =,且21233D ABEABE R V AD S EH -=⋅=⋅ ,由:3πD ABE V V -=,可得EH R =,可知H 是圆柱底面的圆心,且AH R =,且DH =,在直角EDH 中,可得tan EH EDH DH ∠==EDH ∠=(14分)19.如图,将边长为2的正方形ABCD 沿对角线BD 折叠,使得平面ABD ⊥平面CBD ,AE ⊥平面ABD ,且2AE(1)求证:直线EC 与平面ABD 没有公共点;(2)求点C 到平面BED 的距离.【解析】(1)取BD 的中点F ,连接CF 、AF ,如图,依题意,在BCD △中,,BC CD BC CD =⊥,则CF BD ⊥,而平面ABD ⊥平面CBD ,平面ABD ⋂平面CBD BD =,CF ⊂平面CBD ,于是得CF ⊥平面ABD ,且2CF =因为AE ⊥平面ABD ,且2AE =//AE CF ,且AE CF =,从而得四边形AFCE 为平行四边形,//EC AF ,(4分)又AF ⊂平面ABD ,EC ⊂/平面ABD ,则//EC 平面ABD ,所以直线EC 与平面ABD 没有公共点;(6分)(2)因为CF ⊥平面ABD ,AF ⊂平面ABD ,所以CF AF ⊥,因为BD AF ⊥,BD CF F = ,,BD CF ⊂平面,CBD 所以AF ⊥平面,CBD 因为//,EC AF ,于是得EC ⊥平面CBD ,因为AE ⊥平面ABD ,,AB AD ⊂平面ABD ,所以,AE AB AE AD ⊥⊥,(8分)因为EC AF ==EB ED =,则等腰BED 底边BD 上的高2h ==,12BED S BD h =⋅= ,而2BCD S =,设点C 到平面BED 的距离为d ,由C BED E BCD V V --=得1133BED BCD S d S EC ⋅=⋅ ,即2=,解得1d =,所以点C 到平面BED 的距离为1(14分)20.如图所示,在四棱锥P ABCD -中,底面四边形ABCD 是菱形,底面,AC BD O PAC = △是边长为2的等边三角形,PB =PD ,AP =4AF(1)求证:PO ⊥底面ABCD (2)求直线CP 与OF 所成角的大小.(3)在线段PB 上是否存在点M ,使得//CM 平面BDF ?如果存在,求BMBP的值;如果不存在,请说明理由.【解析】(1)因为底面ABCD 是菱形,且AC BD O = ,所以O 为AC ,BD 中点,在PBD △中,PB =PD ,可得PO ⊥BD ,因为在PAC 中,PA =PC ,O 为AC ,BD 中点,所以PO ⊥AC ,(3分)又因为AC ⋂BD =O ,所以PO ⊥底面ABCD .(4分)(2)连接OF ,取AP 中点为E ,连接OE ,因为底面ABCD 是菱形,AC ⋂BD =O ,由O 为AC 中点,且E 为AP 中点,AP =4AF ,所以F 为AE 中点,所以CP //OE .,故∠EOF 为直线CP 与OF 所成的角,(8分)又由PAC 为等边三角形,且E 为中点,所以∠EOF =30o .(10分)(3)存在,13BM BP =,连接CE ,ME ,因为AP =4AF ,E 为AP 中点,所以13EF FP =,又因为13BM BP =,所以在PFB △中,EF BMFP BP =,即EM //BF ,(12分)因为EM ⊄平面BDF ,BF ⊂平面BDF ,所以EM //平面BDF ,由(2)知EC //OF ,因为EC ⊄平面BDF ,OF ⊂平面BDF ,所以EC //平面BDF ,因为EC ⋂EM =E ,所以平面EMC //平面BDF ,因为CM ⊂平面EMC ,所以CM //平面BDF .(18分)21.在棱长均为2的正三棱柱111ABC A B C -中,E 为11B C 的中点.过AE 的截面与棱111,BB AC 分别交于点F ,G.(1)若F 为1BB 的中点,试确定点G 的位置,并说明理由;(2)在(1)的条件下,求截面AGEF 与底面ABC 所成锐二面角的正切值;(3)设截面AFEG 的面积为0S ,AEG △面积为1S ,AEF △面积为2S ,当点F 在棱1BB 上变动时,求2012S S S 的取值范围.【解析】(1)在平面11BCC B 内延长1CC ,FE 相交于点P ,则P ∈平面AGEF ,又1P CC ∈⊂平面11ACC A ,则有平面AGEF 平面11ACC A AG =,P AG ∈,即A ,G ,P 三点共线.(2分)因为E 为11B C 的中点,F 为1BB 的中点,所以11112PC B F CC ==,所以113PC PC =,又因为1//GC AC ,所以1113GC PC AC PC ==,所以111112333GC AC A C ===,即点G 为棱11AC 上靠近点1C 的三等分点.(4分)(2)在平面11BCC B 内延长CB ,EF 相交于点Q ,连接AQ ,则平面AGEF 平面ABC AQ =,在平面11ACC A 内作GM AC ⊥于点M ,则GM ⊥平面ABC ,又AQ ⊂平面ABC ,所以G M AQ ⊥,在平面ABC 内作MN AQ ⊥于点N ,连接GN ,又,GM MN ⊂平面GMN ,GM MN M ⋂=,所以AQ ⊥平面GMN ,GN ⊂平面GMN ,所以AQ GN ⊥,所以GNM ∠为截面AGEF 与底面ABC 所成锐二面角的平面角.(6分)在AQC 中,作CH AQ ⊥于点H ,11BQ C E ==,2AC =,3CQ =,60AC B ∠= ,12222ABC S =⨯⨯⨯=△AQC S =由余弦定理2222cos 4967AQ AC CQ AC CQ ACQ =+-⋅⋅∠=+-=,则AQ122AQC S AQ CH ==⋅ ,可得3217CH =,所以237MN CH ==,又22G M AA ==,所以21tan 3GM GNM MN ∠==,故截面AGEF 与底面ABC (10分)(3)设1GC m =,则[]0,1m ∈,2PG mGA m=-.设PGE 的面积为S ,所以12S m S m=-,又因为21S S S =+,所以1222S m S -=,且1221,122S m S -⎡⎤=∈⎢⎥⎣⎦,故()22120121212212S S S S SS S S S S S +==++,令12S t S =,则1,12t ⎡⎤∈⎢⎥⎣⎦,(11分)设()112,12g t t t t ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎣⎦⎝⎭,当12112t t ≤<≤时,()()()()121212121212111t t g t g t t t t t t t t t --=+--=-,120t t -<,120t t >,1210t t -<,则()()120g t g t ->,即()()12g t g t >,所以()12g t t t =++在1,12t ⎡⎤∈⎢⎥⎣⎦上单调递减,所以()()min 14g t g ==,()max 1922g t g ⎛⎫== ⎪,所以()94,2g t ⎡⎤∈⎢⎥,。

2023-2024学年山东省济南市高二上学期期中数学质量检测模拟试题(含解析)

2023-2024学年山东省济南市高二上学期期中数学质量检测模拟试题(含解析)

2023-2024学年山东省济南市高二上册期中考试数学模拟试题一、单选题1.下列关于空间向量的说法中正确的是()A .方向相反的两个向量是相反向量B .空间中任意两个单位向量必相等C .若向量,AB CD 满足AB CD > ,则AB CD>D .相等向量其方向必相同【正确答案】D【分析】根据向量的相关概念逐一判断即可.【详解】相反向量指的是长度相等,方向相反的向量,故A 错误;单位向量指的是模为1的向量,方向未定,故B 错误;向量不能比较大小,故C 错误;相等向量其方向必相同,故D 正确;故选:D.2.两条直线1l :210x y --=与2l :3110x y +-=的交点坐标为().A .(32)--,B .(23)--,C .(2)3,D .(32),【正确答案】C【分析】联立两直线的方程,解方程组即可求解.【详解】因为直线1l :210x y --=,直线2l :3110x y +-=,由2103110x y x y --=⎧⎨+-=⎩,解得:23x y =⎧⎨=⎩,所以1l 与2l 两条直线的交点坐标为(2)3,,故选:C.3.已知(2,1)M 、(1,5)N -,则MN =().AB .4C .5D【正确答案】C【分析】利用两点间距离公式即可求解.【详解】因为(2,1)M 、(1,5)N -,所以5MN ==,故选:C.4.原点到直线250x y +-=的距离为()A .1BC .2D【正确答案】D【分析】利用点到直线的距离公式,求得所求的距离.【详解】由点到直线距离可知所求距离d ==故选:D本小题主要考查点到直线的距离公式,属于基础题.5.已知直线51230x y +-=与直线512100x y ++=平行,则它们之间的距离是()A .1B .2C .12D .4【正确答案】A【分析】直接利用两平行直线之间的距离公式计算即可.1=.故选:A.6.圆224240x y x y +-++=的半径和圆心坐标分别为A .1;(2,1)r =-B .2;(2,1)r =-C .2;(2,1)r =-D .1;(2,1)r =-【正确答案】D【详解】22(2)(1)1x y -++=∴ 半径和圆心坐标分别为()1;2,1r =-,选D7.椭圆22125169x y +=的焦点坐标为()A .(5,0),(5,0)-B .(05),(05)-,,C .(0,12),(0,12)-D .(12,0),(12,0)-【正确答案】C【分析】由方程可得22,a b ,结合椭圆中,,a b c 的关系及焦点位置可得焦点坐标.【详解】因为椭圆的方程为22125169x y +=,所以焦点在y 上,且22169,25a b ==,由22216925144c a b =-=-=可得12c =,所以焦点为(0,12),(0,12)-.故选:C.本题主要考查椭圆的焦点坐标,利用方程求解焦点时,一看焦点位置,二算焦距大小,侧重考查数学运算的核心素养.8.已知两个异面直线的方向向量分别为a ,b ,且|a |=|b |=1,a •12b=-,则两直线的夹角为()A .30︒B .60︒C .120︒D .150︒【正确答案】B【分析】先求出向量,a b的夹角,再利用异面直线角的定义直接求解即可【详解】设两直线的夹角为θ,则由题意可得1×1×cos a <,12b =- >,∴cos a <,12b =->,∴a <,23b π=>,∴θ3π=,故选:B .本题主要考查两个向量的数量积的定义,注意两直线的夹角与a <,b>的关系,属于基础题.9.椭圆22125x y +=上一点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为()A .5B .6C .7D .8【正确答案】D【分析】由椭圆的定义可得点P 到两个焦点的距离之和为2a =10,再由点P 到一个焦点的距离为2,可得点P 到另一个焦点的距离.【详解】由椭圆22125x y +=,可得a =5、b =1,设它的两个焦点分别为F 、F ′,再由椭圆的定义可得|PF |+|PF '|=2a =10,由于点P 到一个焦点的距离为2,则点P 到另一个焦点的距离为8,故选:D .本题主要考查椭圆的定义和标准方程的应用,属于中档题.10.若双曲线22:1916x y E -=的左、右焦点分别为12,F F ,点P 在双曲线E 上,且13PF =,则2PF 等于()A .11B .9C .5D .3【正确答案】B【分析】由双曲线的定义运算即可得解.【详解】由双曲线的定义得12||||26PF PF a -==,即23||6PF -=,因为2||0PF >,所以2||9PF =.故选:B.11.已知过点(2,)A m -和(,4)B m 的直线的斜率为2-,则m 的值为()A .8-B .0C .2D .10【正确答案】A【分析】利用直线的斜率公式求解即可.【详解】解: 过点(2,)A m -和(,4)B m 的直线的斜率为2-,422m m-∴=---,解得8m =-,故选:A.12.已知向量,m n 分别是直线l 与平面α的方向向量、法向量,若cos ,m n 〈〉=l 与α所成的角为()A .30︒B .60︒C .150︒D .120︒【正确答案】B【分析】根据直线l 的方向向量与平面α的法向量的夹角与线面角之间的关系,可得线面角的正弦值,即可求得答案.【详解】设直线l 与α所成的角为,090θθ≤≤ ,因为向量,m n 分别是直线l 与平面α的方向向量、法向量,且cos ,m n 〈〉=,故cos sin ,|2|m n θ〈〉==,即得60θ= ,故选:B13.如果直线1l 的斜率为2,12l l ⊥,则直线2l 的斜率为()A .12-B .2C .12D .-2【正确答案】A【分析】直接由两直线垂直则斜率乘积等于1-,计算可得2l 的斜率.【详解】由于直线1l 的斜率为2且12l l ⊥,所以直线2l 的斜率为12-.故选:A14.圆O 1:2220x y x +-=和圆O 2:2240x y y +-=的位置关系是A .相离B .相交C .外切D .内切【正确答案】B【详解】试题分析:由题意可知圆1O 的圆心()11,0O ,半径11r =,圆2O 的圆心()20,2O ,半径12r =,又211212r r O O r r -<=<+,所以圆1O 和圆2O 的位置关系是相交,故选B .圆与圆的位置关系.15.已知双曲线22x a -25y =1的右焦点为(3,0),则该双曲线的离心率等于A .14B .4C .32D .43【正确答案】C【详解】由题意知c =3,故a 2+5=9,解得a =2,故该双曲线的离心率e =ca =32.16.直线y=x+1与圆x 2+y 2=1的位置关系为A .相切B .相交但直线不过圆心C .直线过圆心D .相离【正确答案】B【详解】试题分析:求出圆心到直线的距离d ,与圆的半径r 比较大小即可判断出直线与圆的位置关系,同时判断圆心是否在直线上,即可得到正确答案.解:由圆的方程得到圆心坐标(0,0),半径r=1则圆心(0,0)到直线y=x+1的距离d==<r=1,把(0,0)代入直线方程左右两边不相等,得到直线不过圆心.所以直线与圆的位置关系是相交但直线不过圆心.故选B直线与圆的位置关系.二、多选题17.设抛物线的顶点在原点,焦点到准线的距离为4,则抛物线的方程是()A .28y x =-B .28y x=C .24y x=-D .24y x=【正确答案】AB【分析】根据焦点到准线的距离为p 求解.【详解】解:因为焦点到准线的距离为4,所以4p =,根据四个选项可得28y x =-,28y x =满足4p =,故选:AB 三、单选题18.已知双曲线2222:1x y C a b-=(0,0)a b >>,则C 的渐近线方程为A .14y x =±B .13y x =±C .12y x =±D .y x=±【正确答案】C【详解】2c e a ==,故2214b a =,即12b a =,故渐近线方程为12b y x x a =±=±.本题考查双曲线的基本性质,考查学生的化归与转化能力.19.已知抛物线C :2y x =的焦点为F ,00(,)A x y 是C 上一点,05||4AF x =,则0x =()A .1B .2C .4D .8【正确答案】A 【分析】解方程001544x x +=即得解.【详解】解:由题得抛物线的准线方程为14x =-,则有014AF x =+,即有001544x x +=,解得01x =.故选:A20.若抛物线()20y ax a =>的焦点与椭圆2212x y +=的上顶点重合,则=a ()A .12B .14C .2D .4【正确答案】B分别求得椭圆的上顶点和抛物线的焦点坐标,再利用重合求解.【详解】椭圆2212x y +=的上顶点是()0,1抛物线()20y ax a =>的焦点10,4a ⎛⎫ ⎪⎝⎭因为两点重合所以114a=所以14a =故选:B本题主要考查了椭圆和抛物线的几何性质,还考查了运算求解的能力,属于基础题.四、多选题21.若1l 与2l 为两条不重合的直线,它们的倾斜角分别是12,αα,斜率分别为12,k k ,则下列命题正确的是()A .若斜率12k k =,则12l l ∥B .若121k k =-,则12l l ⊥C .若倾斜角12αα=,则12l l ∥D .若12παα+=,则12l l ⊥【正确答案】ABC【分析】根据两直线倾斜角和斜率与直线平行和垂直的关系分别判断选项ABC ,举反例可判断D.【详解】对于A,若两直线斜率12k k =,则它们的倾斜角12αα=,则12l l ∥,正确;对于B ,由两直线垂直的条件可知,若121k k =-,则12l l ⊥,正确;对于C,由两直线平行的条件可知,若倾斜角12αα=,则12l l ∥,正确;对于D,若12παα+=,不妨取12π2π33,αα==,则1122tan tan k k αα====121k k =-,12,l l 不垂直,D 错误,故选:ABC22.下列命题中,正确的命题为()A .若1n ,2n分别是平面α,β的法向量,则12////n n αβ⇔B .若1n ,2n分别是平面α,β的法向量,则120n n αβ⊥⇔⋅= C .若n 是平面α的法向量,a 是直线l 的方向向量,若l 与平面α平行,则//n aD .0PM PN MN -+= 【正确答案】BD【分析】由面面位置关系以及法向量的概念判断A 、B ;由法向量的概念和直线方向向量的定义判断C ,根据空间向量线性运算法则判断D.【详解】解:对于A ,若1n ,2n分别是两个不重合平面α,β的法向量,则12////n n αβ⇔ ,故A中平面α,β可能平行或重合,故A 错误;对于B ,若1n ,2n分别是平面α,β的法向量,则120n n αβ⊥⇔⋅= ,故B 正确;对于C ,若n是平面α的法向量,a 是直线l 的方向向量,l 与平面α平行,则n a ⊥ ,所以0n a ⋅= ,故C 错误;对于D ,0PM PN MN NM MN -+=+=,故D 正确.故选:BD .23.已知双曲线方程为22832x y -=,则()A .焦距为6B .虚轴长为4C .实轴长为D .离心率为4【正确答案】BCD【分析】求出双曲线的标准方程,得到a =2b =,6c =,对照选项即可求解.【详解】双曲线方程22832x y -=化为标准方程为:221324x y -=,可得:a =2b =,6c =,所以双曲线的焦距为212c =,虚轴长为24b =,实轴长为2a =,离心率4c e a ==,故选.BCD24.(多选)经过点P (4,-2)的抛物线的标准方程为()A .y 2=xB .y 2=8xC .y 2=-8xD .x 2=-8y【正确答案】AD【详解】当开口向右时,设抛物线方程为y 2=2p 1x (p 1>0),则(-2)2=8p 1,所以p 1=12,所以抛物线方程为y 2=x .当开口向下时,设抛物线方程为x 2=-2p 2y (p 2>0),则42=4p 2,p 2=4,所以抛物线方程为x 2=-8y .故选:AD25.已知(2,4)A --,(1,5)B 两点到直线:10l ax y ++=的距离相等,则实数a 的值可能为()A .3-B .3C .2-D .1【正确答案】AB【分析】由点到直线的距离公式可得关于a 的方程,解方程即可.【详解】解:因为(2,4)A --,(1,5)B 两点到直线:10l ax y ++=的距离相等,=即236a a +=+,化简得29a =,解得3a =±,所以实数a 的值可能为3±.故选:AB .五、填空题26.若直线的倾斜角为135︒,则直线的斜率为________.【正确答案】1-【分析】根据斜率和倾斜角的关系求得直线的斜率.【详解】依题意,直线的斜率为135tan 1k =︒=-.故1-27.已知平面α的法向量u =(1,0,-1),平面β的法向量v =(0,-1,1),则平面α与β的夹角为________.【正确答案】【详解】∵cos 〈u ,v 〉==-,∴〈u ,v 〉=π,∴平面α与β的夹角是.28.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为10,焦距为6,则此椭圆的标准方程为____________.【正确答案】2212516y x +=【分析】依题意可得22221026a c c a b =⎧⎪=⎨⎪=-⎩,解得a 、b ,即可得解.【详解】依题意,设椭圆方程为()222210,0y x a b a b +=>>,则22221026a c c a b =⎧⎪=⎨⎪=-⎩,解得534a c b =⎧⎪=⎨⎪=⎩,所以椭圆方程为2212516y x +=.故答案为.2212516y x +=29.以两点()2,0A -和()0,2B 为直径端点的圆的标准方程是___________.【正确答案】()()22112x y ++-=【分析】通过圆过定点A 和B ,以及线段AB 是直径,求出圆心和半径,即可求出圆的标准方程.【详解】解:由题意,在圆中,圆过()2,0A -和()0,2B ,且以AB 为直径,设圆心为C ,半径为r ,∴2012-+=-,0212+=,AB ==∴()1,1C -,12r AB =,∴以两点()2,0A -和()0,2B 为直径端点的圆的标准方程是:()()22112x y ++-=,故答案为.()()22112x y ++-=30.若经过点(),4m 和()22,m 的直线l 与斜率为1-的直线互相垂直,则m 的值是_______.【正确答案】3-【分析】分析可知,直线l 的斜率为1,利用斜率公式可得出关于实数m 的等式,解之即可.【详解】由题意可知,直线l 的斜率为2412m k m -==-且2m ≠,所以,21m --=,解得3m =-.故答案为.3-六、解答题31.如图所示,在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,12AA =,点D 是BC 的中点.(1)求直线AC 与平面1C AD 所成角的正弦值;(2)求平面1C AD 与平面ABC 的夹角的余弦值.【正确答案】33(2)33【分析】(1)(2)建立空间直角坐标系,利用空间向量法计算可得.【详解】(1)解:在直三棱柱111ABC A B C -中,AB AC ⊥,2AB AC ==,12AA =,点D 是BC 的中点.∴以A 为原点,AB 为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则()0,0,0A ,()0,2,0C ,()2,0,0B ,()10,2,2C ,()1,1,0D ,所以()0,2,0AC = ,()10,2,2AC = ,()1,1,0AD = ,设平面1C AD 的法向量(,,)n x y z = ,则10220n AD x y n AC y z ⎧⋅=+=⎪⎨⋅=+=⎪⎩ ,取1x =,则1y =-,1z =,得()1,1,1n =- ,设直线AC 与平面1C AD 所成角为θ,则3sin 323n AC n AC θ⋅===⨯⋅ 所以直线AC 与平面1C AD 33.(2)解:显然平面ABC 的一个法向量可以为()0,0,1m = ,设平面1C AD 与平面ABC 的夹角为α,则cos 3n m n mα⋅===⋅ ,所以平面1C AD 与平面ABC的夹角的余弦值为3.32.已知圆经过点()2,0P 和坐标原点,且圆心C 在直线0x y -=上(1)求圆的标准方程;(2)直线y x b =+与圆C 相交,求b 的范围.【正确答案】(1)()()22112x y -+-=(2)()2,2b ∈-【分析】(1)设圆的标准方程为()()()2220x a y b r r -+-=>,根据题意列出方程组,求出,,a b r ,即可得解;(2)根据直线与圆相交可得圆心到直线的距离d r <,结合点到直线的距离公式即可得解.【详解】(1)设圆的标准方程为()()()2220x a y b r r -+-=>,由题意得()22222220a b r a b r a b ⎧-+=⎪+=⎨⎪-=⎩,解得2112a b r =⎧⎪=⎨⎪=⎩,所以圆的标准方程为()()22112x y -+-=;(2)圆C 的圆心为()1,1,半径r =圆心()1,1到直线y x b =+的距离d ==因为直线y x b =+与圆C 相交,所以d r <,<,解得22b -<<,所以()2,2b ∈-.33.已知双曲线标准方程.2213y x -=(1)求此双曲线的渐近线方程;(2)求以原点为顶点,以此双曲线的右顶点为焦点的抛物线的标准方程,过抛物线的焦点且倾斜角为4π的直线与此抛物线交于两点,A B ,求弦AB 的长度.【正确答案】(1)y =(2)8【分析】(1)根据双曲线的标准方程,结合双曲线渐近线方程公式,可得答案;(2)根据双曲线的标准方程,求得其右顶点的坐标,利用抛物线的标准方程,由焦点可得方程,写出直线方程,联立写出韦达定理,结合弦长公式,可得答案.【详解】(1)由双曲线标准方程:2213y x -=,则1,a b =y =.(2)由双曲线标准方程:2213y x -=,则其右顶点坐标为()1,0,由题意可得抛物线的标准方程为24y x =,其该抛物线焦点且倾斜角为4π的直线方程为1y x =-,联立可得241y x y x ⎧=⎨=-⎩,整理可得2610x x -+=,设()()1122,,,A x y B x y ,则126x x +=,121=x x ,则128AB x =-===.34.已知F 1,F 2分别为椭圆2221100x y b +=(0<b <10)的左、右焦点,P 是椭圆上一点.(1)若∠F 1PF 2=60°,且 F 1PF 2,求b 的值;(2)求|PF 1|⋅|PF 2|的最大值.【正确答案】(1)8;(2)100.【分析】(1)利用 F 1PF 2的面积得到122563PF PF ⋅=,再利用余弦定理求解;(2)结合椭圆的定义,利用基本不等式求解.【详解】(1)解:由椭圆方程知2221100x y b+=,a =10,2210036c b =-=则1220PF PF +=,由 F 1PF 2的面积为121sin 602S PF PF =⋅⋅ 解得122563PF PF ⋅=,由余弦定理得2221212122cos 60F F PF PF PF PF =+-⋅⋅ ,()212123400256144PF PF PF PF =+-⋅=-=,即210036b -=,所以264b =,即8b =;(2)由基本不等式得()212121004PF PF PF PF +⋅≤=,当且仅当1210PF PF ==时,等号成立,所以12PF PF ⋅的最大值为100.。

高二数学答案 第一学期期中考试模拟卷

高二数学答案 第一学期期中考试模拟卷

高二数学第一学期期中模拟卷参考答案一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.【答案】B【解析】()()()()1111122222CG CA AG CA AD BA BC BD BA a b c a a b c =+=+=-+-=-+-=-+.故选:B 2.【答案】C【解析】如图所示:∵过点C 的直线l 与线段AB 有公共点,∴直线l 的斜率k ≥kBC 或AC k k ≤,∴直线l 的斜率3k ≥或2k ≤-,∴直线l 斜率k 的取值范围:(,2][3,)-∞-⋃+∞,故选:C.3.【答案】D【解析】设平面ABO 的法向量为(,,)m x y z =,设(,0,0)(0),(0,,0)(0)A a a B b b >>,则(,0,0),(0,,0)OA a OB b == ,于是有:00(0,0,1)00ax OA m m by OB m ⎧=⎧⋅=⇒⇒=⎨⎨=⋅=⎩⎩,因此2cos 3m n m n θ⋅===⋅ ,故选:D 4.【答案】C【解析】在①中,若空间向量a b,满足a b = ,向量a 与b 方向不一定相同,故①是假命题;在②中,空间任意两个单位向量的模必相等,但方向不一定相同,故②是假命题;在③中,若空间向量a b c,,满足a c b c ⋅=⋅ ,,则向量a 与b 不一定相等,故③是假命题;在④中,在正方体ABCD ﹣A 1B 1C 1D 1中,由向量相等的定义得必有11BD B D =,故④是真命题;在⑤中,由模的定义得向量a =(1,1,0,故⑤是真命题.故选:C .5.【答案】D【解析】以点D 为坐标原点,向量1,,DA DC DD分别为x ,y ,z轴建立空间直角坐标系,则1(1,0,1)A ,(1,1,0)B ,1(0,1,1)C ,11,,02E ⎛⎫⎪⎝⎭,可得11(1,1,0)AC =- ,1(1,0,1)BC =- ,110,,12A E ⎛⎫=- ⎪⎝⎭ ,设面11A BC 的法向量为(,,)n x y z = ,有1110A C n x y BC n x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取1x =,则(1,1,1)n = ,所以111122⋅=-=- A E n,1= A E||n ,则直线1A E 与平面11A BC15=.故选:D.6.【答案】C【解析】由题设,易知:121||||||2PF PQ PF ==,由1212∠=∠F PF F PA 知:1122||||1||||2PF AF PF AF ==,即1222ac a c -=+,整理得:32c e a ==.故选:C 7.【答案】A【解析】圆221:(2)(1)5C x y -++=的圆心1(2,1)C -,半径1r =圆222:(1)5C x y +-=的圆心2(0,1)C ,半径2r =,12||2C C =121212||||||r r C C r r -<<+,即圆1C 与2C 相交,直线AB 方程为:10x y --=,圆()()22:331C x y ++-=的圆心(3,3)C -,半径1r =,点C 到直线AB距离的距离2d ==,所以圆C上的动点P到直线AB距离的最大值为12+.故选:A8.【答案】D【解析】:直线:10l mx y+-=过定点)P,AB最小时,OP AB⊥,∴圆心到直线l的距离2d OP==,∴AB=因为OPk==ABk=AB的倾斜角为120 ,过点D作DE CA⊥交AC于点E,则DE AB==在Rt CDE△中30DCE∠=︒,所以2sin30DECD AB===︒故选:D二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.【答案】ACD【解析】:因为()12:2320,:60l a x y a l x ay-++=++=,对于A:当12a=时,1231:310,:6022l x y l x y-++=++=,则112lk=、22lk=-,所以121212l lk k⋅=-⨯=-,所以12l l⊥,故A正确;对于B:若12l l//,则()213a a-⨯=⨯,解得1a=-或3a=,当1a=-时,12:3320,:60l x y l x y-+-=-+=满足题意,当3a=时12:360,:360l x y l x y++=++=,1l与2l重合,故3a=舍去,所以1a=-,故B错误;对于C:当2a=时,12:340,:260l y l x y+=++=,则340260yx y+=⎧⎨++=⎩,解得43103yx⎧=-⎪⎪⎨⎪=-⎪⎩,即两直线的交点为104,33⎛⎫--⎝⎭,故C正确;对于D :()1:2320l a x y a -++=,即()2320x a y x ++-=,令20320x y x +=⎧⎨-=⎩,即243x y =-⎧⎪⎨=-⎪⎩,即直线1l 过定点42,3⎛⎫-- ⎪⎝⎭,故D 正确;故选:ACD 10.【答案】BC【解析】A 选项,过点M 作MA 垂直抛物线准线1x =-于点B ,根据抛物线定义可知:5MF MB ==,即015x +=,解得:04x =,代入抛物线中得:04y =±,故A错误;B 选项,过点A 平行于x 轴的直线2y =与抛物线有一个公共点,过点A 的y 轴,与抛物线相切,有一个公共点,当直线斜率存在时,设过点A 的直线方程为2y kx -=,与抛物线联立得:()224440k x k x +-+=,由0∆=得:12k =,即122y x =+与抛物线相切,只有一个交点,综上:共有3条,B 正确;C 选项,由抛物线方程可知:()1,0F ,连接AF ,与抛物线交于一点,由两点之间,线段最短,可知,此点即为符合要求的M 点,此时MF MA +=C正确;D 选项,设与30x y -+=平行且与抛物线相切的直线为:0l x y c -+=,此时直线:0l x y c -+=与抛物线的切点即为M ,则:0l x y c -+=与30x y -+=的距离即为点M 到直线30x y -+=的最短距离d ,联立:0l x y c -+=与抛物线方程得:()22240x c x c +-+=,由()222440c c ∆=--=解得:1c =,故d ==D 选项错误.故选:BC 11.【答案】BCD【解析】根据题意可知:点A 的轨迹为以B 为圆心,半径为m 的圆B ,点D 为线段AB 的中点,点G 为线段AC 的中垂线与直线AB 的交点,则GA GC=当4m =时,线段AC 为圆B 的弦,则AC 的中垂线过圆心B ,点G 即点B ,A 错误;当68m ≤≤时,如图1,点G 在线段AB 上,连接GC 则GC GB GA GB AB m+=+==∴点G 的轨迹为以B ,C 为焦点,长轴长为m 的椭圆,即,22ma c ==则椭圆的离心率,B 正确;当G 为椭圆短轴顶点时,BCG 面积的最大若5m =时,则2253,2,22a cb ac ==-=,最大面积为3bc =,D 正确;当2m =时,过点C 作圆B 的切线,切点为,M N若点A 在劣弧 MN(不包括端点,M N )上,如图2,点G 在BA 的延长线上,连接GC 则2GB GC GB GA AB -=-==∴点G 的轨迹为以B ,C 为焦点,长轴长为m 的双曲线的左半支若点A 在优弧 MN(不包括端点,M N )上,如图3,点G 在AB 的延长线上,连接GC 则2GC GB GA GB AB -=-==∴点G 的轨迹为以B ,C 为焦点,长轴长为m 的双曲线的右半支则点G 的轨迹为双曲线∴221,2,3a c b c a ===-=,渐近线方程为3by x x a=±=,C 正确;故选:BCD .12.【答案】BCD【解析】选项A 中,圆22:(3)9C x y -+=的圆心坐标为(3,0),半径3r =,当3m =时,直线:3470l x y +-=,圆心C 到直线l 的距离25d =,2133255r d -=-=>,∴圆C 上有4个点到直线l 的距离等于2,故A 错误;选项B 中,化直线l 为(1)440m x y -+-=,联立10440x y -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩,∴直线l 过定点(1,1),故B 正确;选项C 中, 定点(1,1)N 与圆心(3,0)C 的距离||5NC =22min ||||4AB r NC =-,故C 正确;选项D 中,设(,)M x y ,(,)D a b ,由2DM DE =可得:4282x a a y b b -=-⎧⎨-=-⎩,所以48a x b y =-⎧⎨=-⎩,又因为点D 在圆22:(3)9C x y -+=上,所以可得:22(43)(8)9x y --+-=,所以22(1)(8)9x y -+-=,故D 正确.故选:BCD .三填空题:本题共4小题,每小题5分,共20分.13.【答案】3【解析】不妨设点P 在x 轴的上方,因为PF x ⊥轴,将P x c =代入22221x y a b-=,得2P b y PF a ==,因为60APB ∠=︒,PA PB PF ==,则有AB PF =,且ABP △为等边三角形,所以232b c a=⋅,即()2223ac c a =-,所以223103c ca a ⎛⎫-⋅-= ⎪⎝⎭,又()1,c e a =∈+∞,所以3==ce a.故答案为:3.14.【答案】323+##233+【解析】如图,过B 点作倾斜角为6π的一条直线3:(3)3BM y x =+,过点P 作PE BM ⊥于E ,则||1||2PE PB =,即1||||2PE PB =,所以1||||||||||2AP BP AP PE AE +=+≥,A 到直线BM 的距离3232d +=,因此2||||AP BP +的最小值为323+.故答案为:323+15.【答案】1-或4##4或1-【解析】αβ⊥Q ,a b ∴⊥,2311350a b x x x x x ∴⋅=-+-+-+=()()()(),解得1x =-或4x =.故答案为:1x =-或4x =.16.【答案】24-y x=±【解析】如图所示,不妨设直线l 与圆C 相切于点A ,1CA F M∴⊥2112F M CA AF F F ∴=,由于22111233,,()()2,22222c c c c CA CF AF c F F c ===-==222(,)22c cF M M c ∴=∴-122tan 42l ck CF A c∴=-∠=-=-代入2(,)2cM c -进入22221x y a b -=,可得22222222221122c c a a a b b a b b +-=∴-=+a b ∴=,渐近线方程为by x xa=±=±故答案为:24-,y x =±四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)证明见解析(2)证明见解析(3)3620【解析】(1)如图,取MN 中点Q ,连CQ ,DQ ,∵DQ 为中位线,∴DQ MP ∥,又DQ ⊄平面BMP ,MP ⊂平面BMP ,∴DQ ∥平面BMP ,同理,在梯形ABMN 中,CQ MB ∥,又CQ ⊄平面BMP ,MB ⊂平面BMP ,∴CQ ∥平面BMP ,且DQ ⊂平面CDQ ,CQ ⊂平面CDQ ,DQ CQ Q ⋂=,∴平面CDQ ∥平面BMP ,又CD ⊂平面CDQ ,所以CD ∥平面BMP .(2)如上图,在四边形ABMN 中,过B 作BE MN ∥交AN 于E ,在AEB △中,得2AE =,2BE =,22AB =222AB AE BE =+,得AE BE ⊥,∵BE MN ∥,∴AN NM ⊥,又由已知条件AN NP ⊥,NM NP N ⋂=,,⊂NM NP 平面NMP ,故AN ⊥平面NMP ,又AN ⊂平面ANMB ,∴平面ANMB ⊥平面NMP .(3)∵PMN 为等腰三角形,∴DM NP ⊥,又因为AN ⊥平面MNP ,以D 为原点建立空间直角坐标系,如图:可得()0,0,0D ,()1,0,0P ,()1,0,0N -,()3,0M ,()1,0,3A -,()3,1B ,13222C ⎛⎫- ⎪ ⎪⎝⎭,设平面ABP的法向量为(),,n x y z = ,()3,2AB =- ,()2,0,3AP =- ,根据00⎧⋅=⎪⎨⋅=⎪⎩n AB n AP ,得320230⎧-=⎪⎨-=⎪⎩x y z x z ,解得33,23n ⎛⎫= ⎪ ⎪⎝⎭ ,13,,222DC ⎛⎫=- ⎪ ⎪⎝⎭,设直线CD 与平面ABP 所成角为θ,则sin cos ,31436222023053CD n CD n CD n θ⋅==⋅-++==⋅ ,故直线CD 与平面ABP 所成角的正弦值36sin 20θ=18.【答案】(1)()1,1F -(2)24,33G ⎛⎫- ⎪⎝⎭(3)()0,2H 【解析】(1)AB Q 中点为()1,2M 且40202AB k -==--,AB ∴垂直平分线方程为:()1212y x -=-,即230x y -+=,由23020x y x y -+=⎧⎨-+=⎩得:11x y =-⎧⎨=⎩,即外心()1,1F -.(2)设(),C m n ,则重心24,33m n G ++⎛⎫⎝⎭,将24,33m n G ++⎛⎫⎪⎝⎭代入欧拉线得:242033m n ++-+=,即40m n -+=…①;由FA FC =得:()()()()2222111210m n ++-=--+-…②;由①②得:40m n =-⎧⎨=⎩或04m n =⎧⎨=⎩(与B 重合,不合题意),()4,0C ∴-,∴重心24,33G ⎛⎫- ⎪⎝⎭.(3)由(2)知:()4,0C -;由(1)知:2AB k =-,AB ∴边的高CH 所在直线方程为:()142y x =+,即240x y -+=;由24020x y x y -+=⎧⎨-+=⎩得:02x y =⎧⎨=⎩,∴垂心()0,2H .19.【答案】(1)2;(2)存在,2λ=.【解析】(1)不妨设点P 在双曲线的右支上,设12,PF m PF n ==,则2m n a -=,在12F PF △中,由余弦定理,得22242cos4c m n mn π=+-,即()2242c m n mn =-+-,所以(242b mn =,因为12F PF △的面积为(231a ,所以1sin 24mn π=(231a .所以223b a =,所以2c e a ==.(2)由(1)知222213x y a a -=,,2b c a ==.当22QF A π∠=时,()2,3Q a a ,23AF a =,所以24QAF π∠=,此时222QF A QAF ∠=∠,即2λ=;下面求满足条件222QF A QAF ∠=∠的轨迹,设(),M x y 为轨迹上任意一点,则222MF A MAF ∠=∠,因为22tan ,tan 2y y yMF A MAF x c a x x a∠=-=∠=--+,因为222222tan tan tan 21tan MAF MF A MAF MAF ∠∠=∠=-∠,所以()22221y y x a y a x x a +=--+,化简,得22233x y a -=,即222213x y a a -=,与双曲线完全一致,所以存在2λ=,使222QF A QAF ∠=∠成立.20.【答案】(1)36(2)66【解析】(1):依题意可得PA AB ⊥、PA AD ⊥,AB AD ⊥,如图建立空间直角坐标系,则()0,0,0A 、()4,0,0B 、()4,4,0C 、()0,4,0D 、()0,0,4P 、()4,0,2E ,所以()0,4,2CE =- ,()4,4,4CP =-- ,()0,4,4DP =- ,设平面PCE 的法向量为(),,n x y z = ,所以4204440n CE y z n CP x y z ⎧⋅=-+=⎨⋅=--+=⎩ ,令1y =,则2z =,1x =,所以()1,1,2n = ,设直线PD 与平面PCE 所成角为θ,则43sin 6426n DP n DP θ⋅===⨯⋅ (2):依题意可得()2,0,0F ,则()2,4,0CF =-- ,设平面CEF 的法向量为(),,m a b c = ,所以240420m CF a b m CE b c ⎧⋅=--=⎨⋅=-+=⎩,令1b =,则()2,1,2m =- ,则6cos ,636n m n m n m ⋅==⋅ ,显然二面角P CE F --的锐二面角,所以二面角P CE F --6621.【答案】(1)22193x y -=,3x ≥;(2)过,()12,6-.【解析】(1)设圆E 的圆心为(),E x y ,半径为r ,则173EM r =+,13EN r =-,所以6EM EN MN -=<.由双曲线定义可知,E 的轨迹是以M ,N 为焦点、实轴长为6的双曲线的右支,所以动圆的圆心E 的轨迹方程为22193x y -=,3x ≥;(2)设()11,A x y ,()22,B x y ,直线l 的方程为x my t =+.由221,3,93,x y x x my t ⎧-=≥⎪⎨⎪=+⎩得()2223290m y mty t -++-=,且230m -≠,故12221222,39.3mt y y m t y y m -⎧+=⎪⎪-⎨-⎪=⎪-⎩又0PA PB ⋅= ,所以()()()()121266330x x y y --+--=.又11x my t =+,22x my t =+,所以()()()()12126633PA PB my t my t y y ⋅=+-+-+-- ()()()()22121216369m y y mt m y y t =++--++-+()()()()()22222192631245303m t mt mt m t t m m +----+-+-==-,即2218318720m mt t t +-+-=.又()()()()2221831872183612366120,m mt t t m mt t t m t m t +-+-=+---=+--+=故612t m =+或36t m =-+.若36t m =-+,则直线l 的方程为()36x m y =-+,过点()6,3P ,与题意矛盾,所以36t m ≠-+,故612t m =+,所以直线l 的方程为()612x m y =++,过点()12,6-.22.【答案】(1)24y x =;(2)1202k k k +=;(3)43.【解析】(1)根据题意,设抛物线方程为22(0)y px p =>,又其过点()4,4-,故可得168p =,解得2p =,故抛物线2Γ的方程为:24y x =.(2)根据(1)中所求可得,F 点的坐标为()1,0,2Γ的准线方程为1x =-,故可设M 的坐标为()1,n -,又直线AB 的斜率不为零,故设其方程为1x my =+,联立抛物线方程24y x =可得:2440y my --=,设,A B 坐标为()()1122,,,x y x y ,故可得12124,4y y m y y +==-;因为12k k +()()()()()()1221121212221122y n my y n my y n y n x x my my -++-+--=+=++++()()()12122121222424my y mn y y nm y y m y y +-+-=+++()()224141n m n m -+==-+;又00112n n k -==---,则1202k k k +=.(3)由(2)中所求可得:()212122444AB x x m y y m =++=++=+;联立AB 直线方程1x my =+与椭圆方程22143x y +=可得:()2234690m y my ++-=,设,C D 的坐标为()()3344,,,x y x y ,故可得34342269,3434m y y y y m m -+=-=++,则()()2221213434m CD m m +=⨯=++;又因为,,,A B C D 四点共线,故00F AB F CD S S △△234433AB m CD +==≥,当且仅当0m =时取得等号.即00F AB F CD S S △△的最小值为43.。

2023-2024学年山西省高二年级第二学期期中考试数学质量检测模拟试题 (含解析)

2023-2024学年山西省高二年级第二学期期中考试数学质量检测模拟试题 (含解析)

2023-2024学年山西省高二年级第二学期期中考试数学模拟试题一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.某大学食堂备有4种荤菜、8种素菜、2种汤,现要配成一荤一素一汤的套餐,则可以配成不同套餐的种数为()A.14B.64C.72D.802.已知随机变量X 服从两点分布,()0.6E X =,则其成功概率为()A.0.3B.0.4C.0.5D.0.63.64()(21)x a x -++的展开式中,3x 的系数为12,则实数a 的值为()A.-1B.0C.1D.24.一个盒子里装有相同大小的白球、黑球共20个,其中黑球6个,现从盒中随机的抽取5个球,则概率为324150146146146520C C C C C C C ++的事件是()A.没有白球B.至多有2个黑球C.至少有2个白球D.至少有2个黑球5.对任意实数x ,有()4234012342(2)(2)(2)x a a x a x a x a x =++++++++,则01a a +的值为()A.20- B.16- C.22D.306.小王、小李等9名同学相约去游玩,在某景点排成一排拍照留念,则小王不在两端,且小李不在正中间位置的概率是()A.2536 B.914 C.58D.17287.已知随机变量()21,,6,,,3X Y X B Y N μσ⎛⎫~~ ⎪⎝⎭,且()()E X E Y =,又()()23P Y m P Y m ≤-=≥,则实数m 的值为()A.1-或4B.1- C.4或1D.58.已知数列{}n a 满足121232n n n n n a a a a a ++++⋅=-,且1211,3a a ==,数列()(){}121nn n a λ+-的前n 项和为n S ,若n S 的最大值仅为8S ,则实数λ的取值范围是()A 11,1011⎡⎤--⎢⎥⎣⎦B.11,89⎛⎫-- ⎪⎝⎭C.11,1011⎛⎤--⎥⎝⎦ D.11,89⎡⎤--⎢⎥⎣⎦二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.已知随机变量X 满足()()5,2E X D X ==,则下列选项正确的是()A.()2111E X +=B.()2110E X +=C ()219D X += D.()218D X +=10.高二年级安排甲、乙、丙三位同学到,,,,,A B C DEF 六个社区进行暑期社会实践活动,每位同学只能选择一个社区进行活动,且多个同学可以选择同一个社区进行活动,下列说法正确的有()A.如果社区B 必须有同学选择,则不同的安排方法有88种B.如果同学乙必须选择社区C ,则不同的安排方法有36种C.如果三名同学选择的社区各不相同,则不同的安排方法共有150种D.如果甲、丙两名同学必须在同一个社区,则不同的安排方法共有36种11.已知233331124561011A C C C C C A n n n n --=+++++⋅ ,则n 的值可能为()A.2B.4C.7D.912.某商场举办一项抽奖活动,规则如下:每人将一枚质地均匀的骰子连续投掷3次,记第i 次正面朝上的点数为()1,2,3i a i =,若“123a a a <<”,则算作中奖,现甲、乙、丙、丁四人参加抽奖活动,记中奖人数为X ,下列说法正确的是()A.若甲第1次投掷正面朝上的点数为3,则甲中奖的可能情况有4种B.若甲第3次投掷正面朝上的点数为5,则甲中奖的可能情况有6种C.甲中奖的概率为554P =D.()1027E X =三、填空题:本题共4小题,每小题5分,共20分.13.8312x x ⎛⎫+ ⎪⎝⎭展开式中的常数项为__________.14设随机变量13,3X B ⎛⎫⎪⎝⎭,则()1P X ≥=__________.15.由0,1,2,3,4,5,6这七个数字组成没有重复数字的七位数,且偶数数字从小到大排列(由高数位到低数位),这样的七位数有__________个.16.已知,A B 两个不透明的盒中各有形状、大小都相同的红球、白球若干个,A 盒中有(08)m m <<个红球与8m -个白球,B 盒中有8m -个红球与m 个白球,若从,A B 两盒中各取1个球,ξ表示所取的2个球中红球的个数,则()D ξ的最大值为__________.四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.17.已知有9本不同的书.(1)分成三堆,每堆3本,有多少种不同的分堆方法?(2)分成三堆,一堆2本,一堆3本,一堆4本,有多少种不同的分堆方法?(用数字作答)18.已知二项式nx⎛ ⎝的展开式中,所有项的二项式系数之和为a ,各项的系数之和为b ,32a b +=(1)求n 的值;(2)求其展开式中所有的有理项.19.为迎接2023年美国数学竞赛()AMC ,选手们正在刻苦磨练,积极备战,假设模拟考试成绩从低到高分为1、2、3三个等级,某选手一次模拟考试所得成绩等级X 的分布列如下:X123P0.30.50.2现进行两次模拟考试,且两次互不影响,该选手两次模拟考试中成绩的最高等级记为ξ.(1)求此选手两次成绩的等级不相同的概率;(2)求ξ的分布列和数学期望.20.设甲袋中有4个白球和4个红球,乙袋中有1个白球和2个红球(每个球除颜色以外均相同).(1)从甲袋中取4个球,求这4个球中恰好有3个红球的概率;(2)先从乙袋中取2个球放人甲袋,再从甲袋中取2个球,求从甲袋中取出的是2个红球的概率.21.已知椭圆2222:1(0)x y E a b a b+=>>的右顶点为A ,右焦点为F ,上顶点为B ,过,A B 两点的直线平分圆222)(4(x y ++-=的面积,且3BF BO ⋅=(O 为坐标原点).(1)求椭圆E 的标准方程;(2)若直线():20l y x m m =-≠与椭圆E 相交于,H M 两点,且点()0,N m ,当HMN △的面积最大时,求直线l 的方程.22.已知函数()ln 1af x x x=+-.(1)讨论函数()f x 的单调性;(2)若函数()f x 有两个零点12,x x ,且12x x >.证明:12121x x a+>.答案解析一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.【1题答案】【正确答案】B【2题答案】【正确答案】D【3题答案】【正确答案】C【4题答案】【正确答案】B【5题答案】【正确答案】B【6题答案】【正确答案】A【7题答案】【正确答案】A【8题答案】【正确答案】B二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.【9题答案】【正确答案】AD【10题答案】【正确答案】BD【11题答案】【正确答案】BC【12题答案】【正确答案】BCD三、填空题:本题共4小题,每小题5分,共20分.【13题答案】【正确答案】7【14题答案】【正确答案】1927【15题答案】【正确答案】90【16题答案】【正确答案】12##0.5四、解答题:本题共6小题,共70分.解答应写出必要的文字说明、证明过程及演算步骤.【17题答案】【正确答案】(1)280(2)1260【18题答案】【正确答案】(1)4(2)42135,54,81T x T x T x-===【19题答案】【正确答案】(1)0.62(2)分布列见解析,() 2.27E ξ=【20题答案】【正确答案】(1)835(2)727【21题答案】【正确答案】(1)22143x y +=;(2)142y x =+或142y x =-.【22题答案】【正确答案】(1)分类讨论,答案见解析;(2)证明见解析.。

江西省南昌市江西师范大学附属中学2024-2025学年高二上学期期中考试数学试题

江西省南昌市江西师范大学附属中学2024-2025学年高二上学期期中考试数学试题

江西省南昌市江西师范大学附属中学2024-2025学年高二上学期期中考试数学试题一、单选题1.已知直线3(2)20x a y ---=与直线80x ay ++=互相垂直,则a =()A .1B .3-C .1-或3D .3-或12.已知椭圆22:1x C y m+=,则“2m =”是“椭圆C ”的()A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件3.如图,空间四边形OABC 中,,,OA a OB b OC c === ,点M 在OA 上,且满足2OM MA =,点N 为BC 的中点,则MN =()A .121232a b c-+ B .211322a b c -++C .111222a b c+- D .221332a b c+- 4.点1F ,2F 为椭圆C 的两个焦点,若椭圆C 上存在点P ,使得1290F PF ∠=,则椭圆C 方程可以是()A .221259x y +=B .2212516x y +=C .22169x y +=D .221169x y +=5.若21x -=22x y +的最小值为()A .1B .2C .4D .146.若实数,x y 满足22(2)1x y -+=,则下列结论错误的是()A .24x y +≤B .()122x y -≤C .y x ≤D .25x y -≤7.已知12,F F 分别是双曲线22:1412x yE -=的左、右焦点,M 是E 的左支上一点,过2F 作12F MF ∠角平分线的垂线,垂足为,N O 为坐标原点,则||ON =()A .4B .2C .3D .18.从椭圆2222:1(0)x y C a b a b+=>>外一点0,0向椭圆引两条切线,切点分别为,A B ,则直线AB 称作点P 关于椭圆C 的极线,其方程为00221x x y ya b +=.现有如图所示的两个椭圆12,C C ,离心率分别为12,e e ,2C 内含于1C ,椭圆1C 上的任意一点M 关于2C 的极线为l ,若原点O 到直线l 的距离为1,则2212e e -的最大值为()A .12B .13C .15D .14二、多选题9.关于曲线22:1E mx ny +=,下列说法正确的是()A .若曲线E 表示两条直线,则0,0m n =>或0,0n m =>B .若曲线E 表示圆,则0m n =>C .若曲线E 表示焦点在x 轴上的椭圆,则0m n >>D .若曲线E 表示双曲线,则0mn <10.已知圆22:4O x y +=,则()A .圆O 与直线10mx y m +--=必有两个交点B .圆O 上存在4个点到直线:0l x y -+=的距离都等于1C .若圆O 与圆22680x y x y m +--+=恰有三条公切线,则16m =D .已知动点P 在直线40x y +-=上,过点P 向圆O 引两条切线,A ,B 为切点,则||||OP AB 的最小值为811.如图,曲线C 是一条“双纽线”,其C 上的点满足:到点()12,0F -与到点()22,0F 的距离之积为4,则下列结论正确的是()A .点()D 在曲线C 上B .点(),1(0)M x x >在C 上,则1MF =C .点Q 在椭圆22162x y+=上,若12FQ F Q ⊥,则Q C ∈D .过2F 作x 轴的垂线交C 于,A B 两点,则2AB <三、填空题12.设12,F F 是双曲线C :2213y x -=的两个焦点,O 为坐标原点,点P 在C 上且120PF PF ⋅= ,则12PF F 面积为.13.已知,A B 为椭圆()222210x y a b a b+=>>上的左右顶点,设点P 为椭圆上异于,A B 的任意一点,直线,PA PB 的斜率分别为12,k k ,若椭圆离心率为2,则12k k ⋅为.14.如图,在棱长为3的正方体1111ABCD A B C D -中,P 在正方形11CC D D 及其内部上运动,若tan 2tan PAD PBC ∠∠=,则点P 的轨迹的长度为.四、解答题15.已知圆22:4O x y +=.(1)若线段AB 端点B 的坐标是(4,2),端点A 在圆O 上运动,求线段AB 的中点D 的轨迹方程;(2)若,EF GH 为圆22:4O x y +=的两条相互垂直的弦,垂足为M ,求四边形EGFH 的面积S 的最大值.16.在四棱锥P ABCD -中,底面ABCD 是边长为2的正方形,PC PD ⊥,二面角A CD P --为直二面角.(1)求证:PB PD ⊥;(2)当PC PD =时,求直线PC 与平面PAB 所成角的正弦值.17.给定椭圆C :()222210+=>>x y a b a b,称圆心在原点O C 的“准圆”.已知椭圆C 的一个焦点为)F ,其短轴的一个端点到点F(1)求椭圆C 和其“准圆”的方程;(2)若点A ,B 是椭圆C 的“准圆”与x 轴的两交点,P 是椭圆C 上的一个动点,求AP BP ⋅的取值范围.18.已知O 为坐标原点,圆O :221x y +=,直线l :y x m =+(01m ≤<),如图,直线l 与圆O 相交于A (A 在x 轴的上方),B 两点,圆O 与x 轴交于,M N 两点(M 在N 的左侧),将平面xOy 沿x 轴折叠,使y 轴正半轴和x 轴所确定的半平面(平面AMN )与y 轴负半轴和x 轴所确定的半平面(平面BMN )互相垂直,再以O 为坐标原点,折叠后原y 轴负半轴,原x 轴正半轴,原y 轴正半轴所在直线分别为x ,y ,z 轴建立如图所示的空间直角坐标系.(1)若0m =.(ⅰ)求三棱锥A BMN -的体积;(ⅱ)求二面角A BN M --的余弦值.(2)是否存在m ,使得AB 折叠后的长度与折叠前的长度之比为6?若存在,求m 的值;若不存在,请说明理由.19.“工艺折纸”是一种把纸张折成各种不同形状物品的艺术活动,在我国源远流长,某些折纸活动蕴含丰富的数学知识,例如:用一张圆形纸片,按如下步骤折纸(如图):步骤1:设圆心是E ,在圆内异于圆心处取一定点,记为F ;步骤2:把纸片折叠,使圆周正好通过点F (即折叠后图中的点A 与点F 重合);步骤3:把纸片展开,并留下一道折痕,记折痕与AE 的交点为P ;步骤4:不停重复步骤2和3,就能得到越来越多的折痕.现取半径为4的圆形纸片,设点F 到圆心E 的距离为按上述方法折纸.以线段EF 的中点为原点,线段EF 所在直线为x 轴建立平面直角坐标系xOy ,记动点P 的轨迹为曲线C .(1)求C 的方程;(2)设轨迹C 与x 轴从左到右的交点为点A ,B ,点P 为轨迹C 上异于A ,B ,的动点,设PB 交直线4x =于点T ,连结AT 交轨迹C 于点Q .直线AP 、AQ 的斜率分别为AP k 、AQ k .(i )求证:AP AQ k k ⋅为定值;(ii)证明直线PQ经过x轴上的定点,并求出该定点的坐标.。

2023-2024学年河北省唐山市十县高二上学期期中考试数学质量检测模拟试题(含解析)

2023-2024学年河北省唐山市十县高二上学期期中考试数学质量检测模拟试题(含解析)

2023-2024学年河北省唐山市十县高二上册期中考试数学模拟试题一、单选题1.直线l :230x y -+=的斜率和在x 轴上的截距分别为()A .12,3B .12,3-C .12-,3D .12-,3-【正确答案】B【分析】由230x y -+=可得322x y =+,据此可得答案.【详解】323022x x y y -+=⇔=+,则直线斜率为12,又令0y =,则30322x x +=⇒=-,故直线在x 轴上的截距分别为3-.故选:B2.已知点B 、C 分别为点()3,4,5A 在坐标平面Oxy 和Oyz 内的射影,则BC =()A B .5CD .【正确答案】A【分析】求出点B 、C 的坐标,利用空间中两点间的距离公式可求得BC 的值.【详解】因为点B 、C 分别为点()3,4,5A 在坐标平面Oxy 和Oyz 内的射影,则()3,4,0B 、()0,4,5C ,因此,BC =.故选:A.3.直线1l :16x y -+=,直线2l :30x y --=,则1l 与2l 之间的距离为()A B .2C .D .4【正确答案】C【分析】根据平行线的距离公式d .【详解】d =故选:C.4.已知空间三点O (0,0,0),A (12),B -1,2),则以OA ,OB 为邻边的平行四边形的面积为()A .8B .4C .D .【正确答案】D【分析】先求出OA ,OB 的长度和夹角,再用面积公式求出OAB 的面积进而求得四边形的面积.【详解】因为O (0,0,0),A (12),B -1,2),所以OA ==,2OB =,1,2),OA OB ==-11221cos ,2OA OB -+⨯== ,所以sin ,2OA OB = ,以OA ,OB 为邻边的平行四边形的面积为1222ABC S =⨯⨯= 故选:D.5.已知圆M 的半径为r 且圆心在x 轴上,圆M 与圆22:220N x y x y +--=相交于AB 两点,若直线AB 的方程为y x =,则()A .AB =r B .AB 4=,rC .AB =2r =D .AB 4=,2r =【正确答案】C【分析】分析可知圆心N 在直线AB 上,可求得AB ,求出圆心M 的坐标,可求得圆心M 到直线AB 的距离,利用勾股定理可求得r 的值.【详解】圆N 的标准方程为()()22112x y -+-=,圆心为()1,1N易知点N 在直线AB 上,所以,AB =因为圆心N 在直线AB 上,则圆心N 为线段AB 的中点,易知过圆心N 且与直线AB 垂直的直线的方程为20x y +-=,该直线交x 轴于点()2,0M ,点M 到直线AB 的距离为d ==2r ∴==.故选:C.6.已知直线1l 与直线2:20l x y a -+=关于x 轴对称,且直线1l 过点()2,1,则=a ()A .5-B .5C .4-D .4【正确答案】A【分析】分析可知,直线2l 经过点()2,1关于x 轴的对称点,由此可求得实数a 的值.【详解】点()2,1关于x 轴的对称点的坐标为()2,1-,由题意可知,直线2l 过点()2,1-,则2210a ⨯++=,解得5a =-.故选:A.7.在棱长为3的正四面体ABCD 中,2AM MB = ,2CN ND =,则MN = ()A .2B CD .【正确答案】B【分析】将MN 用AB、AC 、AD 表示,利用空间向量数量积的运算性质可求得MN .【详解】因为2AM MB =,所以,23AM AB = ,又因为2CN ND =,则()2AN AC AD AN -=- ,所以,1233AN AC AD =+ ,所以,122333MN AN AM AC AD AB =-=+- ,由空间向量的数量积可得293cos602AB AC AB AD AC AD ⋅=⋅=⋅==,因此,1223MN AC AD AB =+-==故选:B.8.已知P 是圆()22:54C x y -+=上一动点,()1,0A -,M 为线段AP 的中点,O 为坐标原点,则()A .22MA MO +为定值B .22MA MC +为定值C .22MO MC +为定值D .222MA MO MC ++为定值【正确答案】B【分析】设点()00,P x y ,可得220001021x y x +=-,求出点M 的坐标,利用平面两点间的距离公式化简可得出合适的选项.【详解】设点()00,P x y ,则()220054x y -+=,可得220001021x y x +=-,则点001,22x y M -⎛⎫ ⎪⎝⎭.圆C 的圆心为()5,0C ,半径为2.对于A 选项,()22222200000022022********M x y x x y y A M x O +++-⎛⎫=+++=⎝+ ⎪⎭()0002102121224144x x x -++-==不是定值,A 错;对于B 选项,222222000002021110611524242M x y x y x y x A MC --+-+⎛⎫⎛⎫=++-+=⎪ ⎪⎝⎝+⎭⎭0010211061202x x --+==,B 对;对于C 选项,()()2222220000020020022212121021221214441524x y x x x x y MO M x y C +-+--+++=+==-⎛⎫-+ ⎪⎝⎭7924x -=不是定值,C 错;对于D 选项,()222222222220000000003201221115244244x y x x y x y x y MA MO MC +-+-+-⎛⎫⎛⎫++=++++-+=⎪ ⎪⎝⎭⎝⎭()0003102120122105944x x x --++==不是定值,D 错.故选:B.二、多选题9.已知平行六面体111ABCD A B C D -,则下列各式运算结果是1AC uuu r的为()A .1AB AD AA ++B .11111AA A B A D ++C .1AB BC CC ++ D .1AB AC CC ++ 【正确答案】ABC【分析】利用空间向量的加法化简可得出合适的选项.【详解】如下图所示:对于A 选项,111AB AD AA AB BC CC AC ++=++=,A 对;对于B 选项,1111111A C A B B A B C C A A D =+++=+,B 对;对于C 选项,11AB BC CC AC =++,C 对;对于D 选项,111AB AC CC AB BC C AC C +=+++≠,D 错.故选:ABC.10.直线:310l x ++=,则()A .点(3-在l 上B .l 的倾斜角为5π6C .l 的图象不过第一象限D .l 的方向向量为)3,1【正确答案】BC【分析】利用点与直线的位置关系可判断A 选项;求出直线l 的斜率,可得出直线l 的倾斜角,可判断B 选项;作出直线l 的图象可判断C 选项;求出直线l 的方向向量,可判断D 选项.【详解】对于A 选项,22310-++≠ ,所以,点(3-不在l 上,A 错;对于B 选项,直线l 的斜率为33k =-,故l 的倾斜角为5π6,B 对;对于C 选项,直线l 交x 轴于点()1,0-,交y 轴于点30,3⎛⎫- ⎪ ⎪⎝⎭,如下图所示:由图可知,直线l 不过第一象限,C 对;对于D 选项,直线l 的一个方向向量为)1-,而向量)1-与这里(不共线,D 错.故选:BC.11.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点M ,N ,P ,Q 分别为棱A 1D 1,B 1B ,AB ,D 1D 的中点,则()A .MN PQ=B .直线MN 与直线BQ 相交C .点Q 到直线MND .点D 到平面MNP 的距离为11【正确答案】AC【分析】A 选项:用勾股定理可求出长度;B 选项:作BQ 的平行线与MN 相交,则可判断是否为异面直线;C 选项:求出三边长度,即可求出结果;D 选项:过点M 做//MH DP ,利用线面平行将点M 到平面DPN 的距离转化为点H 到平面DPN 的距离,等体积转化得到D MPN V -=D HPN V -,求体积和面积计算距离.【详解】A 选项:MN PQ =,故A 正确;B 选项:连接1D N ,则1D N 与MN 相交,1//BQ D N ,则MN 与BQ 为异面直线,故B 错误;C 选项:连接,MQ QN,则MQ =,QN =MN =MQ MN ⊥,所以Q 到直线MN 的距离即为MQ ,故C 正确;D 选项:过点M 做//MH DP ,DP ⊂平面DPN ,MH ⊄平面DPN ,则//MH 平面DPN ,所以点M到平面DPN 的距离等于点H 到平面DPN 的距离,点H 到直线PN 3424+=,1524HPN S == ,又点D 到平面HPN 的距离为2,所以1552346M DPN H DPN D HPN V V V ---===⨯⨯=,又D MPN V -=M DPN V -,MP =PN =MN =1222PMN S ==,设点M 到平面DPN 的距离为h ,则有15326h ⨯⨯=,所以11h =,故D 错误.故选:AC12.已知()1,0A 、()4,0B ,P 为圆22:4C x y +=上一动点,则()A .PAB S 的最大值为3B .PA PB +的最大值为9C .A 到直线PB 距离的最大值为43D .2PB PA=【正确答案】ABD【分析】求出点P 到直线AB 的最大距离,结合三角形的面积公式可判断A 选项;求出PBA ∠的最大值,可得出A 到直线PB 距离的最大值,可判断C 选项;利用平面两点间的距离公式结合圆的方程可判断D 选项;利用圆的几何性质可判断B 选项.【详解】对于A 选项,圆C 上的一点P 到直线AB 的最大距离为圆C 的半径2,故PAB S 的最大值为1232AB ⨯⨯=,A 对;对于C 选项,如下图所示:点A 到直线PB 的距离为sin AB PBA ∠,圆C 的圆心为原点O ,当直线PB 与圆C 相切时,此时PBA ∠最大,则点A 到直线PB 的距离取最大值,连接OP ,则OP PB ⊥,则122OP OB ==,故30PBA ∠=o ,因此,点A 到直线PB 的距离为33sin 302=,C 错;对于D 选项,设点()00,P x y ,则22004x y +=,所以,2PB =2PA ===,D 对;对于B 选项,()33369222PA PB PB PO OB +=≤+=⨯=,当且仅当点P 为直线BO 与圆C 的交点,且点O 在线段BP 上时,等号成立,所以,PA PB +的最大值为9,B 对.故选:ABD.三、填空题13.已知向量()1,2,1a =- ,()2,,1b k =,()()a b a b +⊥- ,则k =__________.【正确答案】1±【分析】分析可得()()220a b a b a b +⋅-=-= ,利用空间向量数量积的坐标运算可求得实数k 的值.【详解】因为()()a b a b +⊥- ,则()()()222650a b a b a b k +⋅-=-=-+= ,解得1k =±.故答案为.1±14.设直线1l :210ax y -+=,直线2l :()30x a y a +-+=,若1l ∥2l ,则实数a =____________.【正确答案】2【分析】由两直线1110A x B y C ++=与2220A x B y C ++=平行,可得12210A B A B -=,由此列式求出a 的值,然后再检验即可.【详解】若1l ∥2l ,则(3)(2)10a a ---⨯=,解得2a =或1a =,当2a =时,直线1l :2210x y -+=,直线2l :20x y -+=,符合题意;当1a =时,直线1l :210x y -+=,直线2l :210x y -+=,两直线重合,不符合题意.故2.15.已知圆锥PO (P 为圆锥顶点,O 为底面圆心)的轴截面是边长为2的等边三角形,A ,B ,C 为底面圆周上三点,空间一动点Q ,满足()1PQ xPA yPB x y PC =++--,则PQ 的最小值为____________.【分析】化简向量关系式证明,,,Q A B C 四点共面,结合轴截面特征可求PQ的最小值.【详解】因为()1PQ xPA yPB x y PC =++--,所以x PQ PC xPA y P PB P C C y --+-= ,CQ xCA yCB =+ ,所以,,CQ CA CB共面,又A ,B ,C 为底面圆周上三点,所以点Q 为平面ABC 上一点,由已知PO ⊥平面ABC ,所以PQ PO ≥ ,又圆锥PO 的轴截面是边长为2的等边三角形,所以PO =,所以PQ16.设直线l :()()110R a x ay a +--=∈与圆C :224x y +=交于,A B 两点,则AB 的取值范围是___________.【正确答案】4]【分析】由直线系方程求得直线所过定点,求出圆心到定点的距离,再确定弦长最短和最长时的位置,求得弦长,即可得到AB 的取值范围.【详解】直线l :()()110R a x ay a +--=∈即为()10a x y x -+-=,由010x y x -=⎧⎨-=⎩,解得11x y =⎧⎨=⎩,可得直线l 过定点(1,1)P ,圆C :224x y +=的圆心坐标为(0,0)C ,半径2r =,由于22114+<,故(1,1)P 在圆C :224x y +=内,||CP ==,则当直线l CP ⊥时,AB 最小,min ||AB =AB 的最大值即为圆的直径,∴AB 的取值范围是⎡⎤⎣⎦故⎡⎤⎣⎦.四、解答题17.已知ABC 三个顶点的坐标分别为()2,4A 、()1,1B -、()9,3C -,求:(1)BC 边上的中线所在直线的方程;(2)BC 边上的高所在直线的方程;(3)BAC ∠的平分线所在直线的方程.【正确答案】(1)52180x y +-=(2)5220x y --=(3)2x =【分析】(1)求出线段BC 的中点坐标,利用两点式可得出BC 边上的中线所在直线的方程;(2)求出直线BC 的斜率,可得出BC 边上的高所在直线的斜率,利用点斜式可得出所求直线的方程;(3)分析可得0AB AC k k +=,数形结合可得出BAC ∠的平分线所在直线的方程.【详解】(1)解:BC 的中点为()41-,,所以BC 边上的中线所在直线的方程为421442y x --=---,整理可得52180x y +-=.(2)解:132195BC k +==--- ,则BC 边上的高所在直线的斜率为52,所以BC 边上的高所在直线的方程为()5422y x -=-,整理可得5220x y --=.(3)解:41121AB k -==+ ,43129AC k +==--,所以0AB AC k k +=,所以,BAC ∠的平分线所在直线的方程为2x =.18.已知长方体111ABCD A B C D -中,2AB =,4BC =,13AA =,点M ,N 分别在棱CD ,11A D 上,且11A N =,DM a =.(1)若1MN B N ⊥,求a ;(2)若MN 平面1A BD ,求a .【正确答案】(1)32a =(2)12a =【分析】以A 为原点,以AB ,AD ,1AA 为x ,y ,z 轴的正方向建立空间直角坐标系,(1)得出MN 与1B N 的坐标,由已知得出10MN B N ⋅= ,即可列式解出答案;(2)得出MN 与1A B uuu r 的坐标,求出平面1A BD 的法向量,即可根据已知MN 平面1A BD ,列式求解得出答案.【详解】(1)以A 为原点,以AB ,AD ,1AA 为x ,y ,z 轴的正方向建立如图所示的空间直角坐标系,则()0,4,0D ,()12,0,3B ,(),4,0M a ,()0,1,3N ,所以(),3,3MN a =-- ,()12,1,0B N =- ,1MN B N ⊥ ,10MN B N ∴⋅= ,即230a -=,解得32a =;(2)由(1)得(),3,3MN a =-- ,()10,0,3A ,()2,0,0B ,()12,0,3A B =- ,设平面1A BD 的法向量为n,则100BD n A B n ⎧⋅=⎪⎨⋅=⎪⎩ ,取()6,3,4n = 由MN 平面1A BD ,得0n MN ⋅= ,解得12a =.19.在正三棱柱111ABC A B C -中,AB =2,AA 1=M 为BB 1的中点.(1)求AB 与平面MAC 所成角的正弦值;(2)证明:平面MA 1C 1⊥平面MAC .【正确答案】4(2)证明见解析【分析】建立空间直角坐标系,利用线面角公式即可算出答案;利用两个平面的法向量的数量积为零,即可证明.【详解】(1)解:取AC 的中点O ,则OB AC ⊥,以O 为原点.以OA ,OB 为x ,y 轴的正方向建立如图所示的空间直角坐标系.即O (0,0,0),A (1,0,0),C (-1,0,0),B (030),M (033所以()1,3,0AB =- ,()2,0,0AC =- ,(1,3,3AM =- 设平面MAC 的法向量为n,则00AC n AM n ⎧⋅=⎪⎨⋅=⎪⎩ 取()0,1,1n =- 所以()36cos 4,22AB n ==⨯ 故AB 与平面MAC 64(2)解:由(1)得A 1(1,0,23,C 1(-1,0,23,则()(1112,0,01,3,3A C A M =-=-- 设平面11MA C 的法向量为m ,则11100A C m A M m ⎧⋅=⎪⎨⋅=⎪⎩ 取()0,1,1m = 所以0m n ⋅= ,即m n ⊥ ,故平面MA 1C 1⊥平面MAC .20.已知圆O :221x y +=与圆C :22680x y x y m +--+=相外切.(1)求m 的值;(2)若直线l 与圆O 和圆C 都相切,求满足条件的所有l 的方程.【正确答案】(1)9m =(2)10x +=或724250x y --=或3450x y +-=【分析】(1)把两圆相外切转化为圆心间距离等于半径和,计算求解即可.(2)先设直线再满足直线和圆相切即圆心到直线距离等于半径,计算得解.【详解】(1)圆O 的圆心为O (0,0),半径1r =由圆C :22680x y x y m +--+=得()()223425x y m -+-=-,25m <.所以圆C 的圆心C (3,4),半径R 因为两圆相外切,所以1OC R =+,5OC ==,4=,解得9m =(2)由(1)得圆C :()()223416x y -+-=①当直线l 的斜率不存在时,设l 的方程为x t=依题意134t t ⎧=⎪⎨-=⎪⎩,解得1t =-,即l 的方程为=1x -②当直线l 的斜率存在时,设l 的方程为y kx b =+,依题意14⎧=⎪⎪=,所以344k b b +-=当344k b b +-=时,334b k =-,代入上式可得()223491)(k k -=+,解得724k =,即2524b =-所以此时l 的方程为7252424y x =-当344k b b +-=-时543b k =-,代入上式可得()()2243251k k -=+,解得34k =-即54b =所以此时l 的方程为3544y x =-+故满足题设的l 的方程为10x +=或724250x y --=或3450x y +-=.21.如图,四边形ABCD 为正方形,以BD 为折痕把BCD △折起,使点C 到达点P 的位置,且二面角A BD P --为直二面角,E 为棱BP 上一点.(1)求直线AD 与BP 所成角;(2)当PE EB 为何值时,平面ADE 与平面PAB 23【正确答案】(1)60 (2)12PE EB =【分析】(1)连接AC 、BD ,设AC BD O = ,推导出PO ⊥底面ABD ,然后以O 为原点,以OA 、OB 、OP 为x 、y 、z 轴的正方向建立如图空间直角坐标系,设1OA =,利用空间向量法可求得直线AD 与BP 所成角;(2)设PE PB λ= ,其中01λ≤≤,利用空间向量法可得出关于λ的等式,解之即可得出结论.【详解】(1)解:连接AC 、BD ,设AC BD O = ,则O 为BD 的中点,由已知AB AD =,PB PD =,则OP BD ⊥,AO BD ⊥,所以AOP ∠为二面角A BD P --的平面角,所以90AOP ∠= ,因此AO OP ⊥,因为AO BD O = ,AO 、BD ⊂平面ABD ,故PO ⊥底面ABD .以O 为原点,以OA 、OB 、OP 为x 、y 、z 轴的正方向建立如图所示的空间直角坐标系.不妨设1OA =.则()1,0,0A 、()0,1,0B 、()0,1,0D -、()0,0,1P ,()1,1,0AD =-- ,()0,1,1BP =- ,所以1cos ,222AD BP AD BP AD BP ⋅<>===⨯⋅ ,故直线AD 与BP 所成角为60 .(2)解:设平面PAB 的法向量为()111,,m x y z = ,()1,1,0AB =-uu u r ,()1,0,1AP =- ,则111100m AB x y m AP x z ⎧⋅=-+=⎪⎨⋅=-+=⎪⎩ ,取11x =,可得()1,1,1m = ,设()()0,1,10,,PE PB λλλλ==-=- ,其中01λ≤≤,()()()1,0,10,,1,,1AE AP PE λλλλ=+=-+-=-- ,()1,1,0AD =-- ,设平面ADE 的法向量为()222,,x n y z = ,则()22222010n AD x y n AE x y z λλ⎧⋅=--=⎪⎨⋅=-++-=⎪⎩,取1x λ=-,可得()1,1,1n λλλ=--+ ,由题意可得cos ,3m n m n m n ⋅<>==⋅ ,因为01λ≤≤,解得13λ=,则13PE PB = ,故12PE EB =,因此,当12PE EB =时,平面ADE 与平面PAB 夹角的余弦值为23.22.已知圆C :()222(0)x a y r r -+=>,四点P 1(1,1),P 2(0,2),P 3(1,P 4(1,中恰有三点在圆C 上.(1)求圆C 的方程;(2)设以k 为斜率的直线l 经过点Q (4,-2),但不经过点P 2,若l 与圆C 相交于不同两点A ,B .①求k 的取值范围;②证明:直线P 2A 与直线P 2B 的斜率之和为定值.【正确答案】(1)224x y +=(2)①413k -<<-或10k -≤<;②证明见解析【分析】(1)先判断出2P ,3P ,4P 在圆C 上,然后通过列方程组的方法求得,a r ,从而求得圆C 的方程.(2)①将直线l 的方程代入圆C 的方程,化简后利用0∆>求得k 的取值范围.②利用根与系数关系证得22P A P B k k +为定值.【详解】(1)显然圆C 关于x 轴对称,3P (1,4P (1,关于x 轴对称,所以3P 、4P 在圆C 上,因此1P 不在圆C 上,即2P ,3P ,4P 在圆C 上,代入圆的方程可得:()2222413a r a r ⎧+=⎪⎨-+=⎪⎩,解得02a r =⎧⎨=⎩.所以圆C 的方程为224x y +=.(2)直线l :2(4)y k x +=-,1k ≠-.①将直线l :2(4)y k x +=-代入圆C 的方程得()()222218416160k x k k x k k +-+++=.()()()2222844116160k k k k k ∆=+-++>,解得403k -<<,又1k ≠-,所以413k -<<-或10k -≤<,②设A (x 1,y 1),B (x 2,y 2),则2122841k k x x k ++=+,212216161k k x x k +⋅=+,2112P A y k x -=,2222P B y k x -=,112(4)y k x +=-,222(4)y k x +=-,所以()()22121221244244144P A P B x x k k k k k k k x x k +++=-+⋅=-+⋅=-+,圆直线P 2A 与直线P 2B 的斜率之和为定值.。

高二数学期中模拟试卷1 含答案

高二数学期中模拟试卷1 含答案

( )高二数学上学期期中模拟卷1一、选择题(共12小题;共60分)1. 若k可以取任意实数,则方程x2+ky2=1所表示的曲线不可能是( )A. 直线B. 圆C. 椭圆或双曲线D. 抛物线2. 已知双曲线C1:x2a2−y2b2=1(a>0,b>0)的离心率为2,若抛物线C2:x2=2py(p>0)的焦点到双曲线C1的渐近线的距离为2,则抛物线C2的方程为( )A. x2=8√33y B. x2=16√33y C. x2=8y D. x2=16y3. 抛物线x=1m y2的准线与双曲线x212−y24=1的右准线重合,则m的值是( )A. −8B. −12C. 4D. 164. 若圆(x−3)2+(y+5)2=r2上有且仅有两个点到直线4x−3y−2=0的距离为1,则半径r的取值范围是( )A. (4,6)B. [4,6)C. (4,6]D. [4,6]5. 设sin(π4+θ)=13,则sin2θ=( )A. −79B. −19C. 19D. 796. 某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的健康情况,用分层抽样的方法从中抽取样本.若样本中的青年职工为7人,则样本容量为( )A. 7B. 15C. 25D. 357. 直线x+y−1=0被圆x2+y2−2x−2y−6=0所截得的线段的中点坐标是( )A. (12,12) B. (0,0) C. (14,34) D. (34,14)8. 在△ABC中,∠A=30∘,AB=√3,BC=1,则△ABC的面积等于( )A. √32B. √34C. √32或√3 D. √32或√349. 设m、n是两条不同的直线,α、β是两个不同的平面,下列命题正确的是( )A. 若m⊥n,m⊥α,n∥β,则α∥βB. 若m∥α,n∥β,α∥β,则m∥nC. 若m⊥α,n∥β,α∥β,则m⊥nD. 若m∥n,m∥α,n∥β,则α∥β10. 一个正方体的棱长为2,其顶点在同一个球面上,则此球的表面积为( )A. 12πB. 8πC. 4πD. 3√3π11. 抛物线y2=−12x的准线与双曲线x29−y23=1的两条渐近线所围成的三角形面积等于( )A. 3√3B. 2√3C. 2D. √312. 已知 a >b >0,椭圆 C 1 的方程为x 2a2+y 2b 2=1,双曲线 C 2 的方程为x 2a2−y 2b 2=1,C 1 与 C 2 的离心率之积为 √32,则 C 2 的渐近线方程为 ( ) A. x ±√2y =0 B. √2x ±y =0 C. x ±2y =0 D. 2x ±y =0二、填空题(共4小题;共20分)13. 若 A (0,2,198),B (1,−1,58),C (−2,1,58) 是平面 α 内的三点,设平面 α 的法向量 a ⃗=(x,y,z ),则x:y:z = .14. 已知点 A ,B ,C 的坐标分别为 (0,1,0),(−1,0,−1),(2,1,1),点 P 的坐标是 (x,0,y ),若 PA ⊥平面 ABC ,则点 P 的坐标是 .15. 设 O 为坐标原点,向量 OA⃗⃗⃗⃗⃗⃗=(1,2,3),OB ⃗⃗⃗⃗⃗⃗=(2,1,2),OP ⃗⃗⃗⃗⃗⃗=(1,1,2),点 Q 在直线 OP 上运动,则当 QA⃗⃗⃗⃗⃗⃗⋅QB ⃗⃗⃗⃗⃗⃗ 取得最小值时,点 Q 的坐标为 .16. 已知有公共焦点的椭圆与双曲线中心为原点,焦点在 x 轴上,左右焦点分别为 F 1、F 2,且它们在第一象限的交点为 P ,△PF 1F 2 是以 PF 1 为底边的等腰三角形.若 ∣PF 1∣=10,双曲线的离心率的取值范围为 (1,2).则该椭圆的离心率的取值范围是 .三、解答题(共6小题;共70分)17. 如表是某位文科生连续 5 次月考的历史、政治的成绩,结果如下:月份91011121历史(x 分)7981838587政治(y 分)7779798283参考公式:b ^=i −x )(i −y )ni=1∑(x −x )2n =i i −nx⋅yni=1∑x 2−nx2n ,a ^=y −b ^x ,x ,y 表示样本均值. (1)求该生 5 次月考历史成绩的平均分和政治成绩的方差;(2)一般来说,学生的历史成绩与政治成绩有较强的线性相关关系,根据上表提供的数据,求两个变量 x ,y 的线性回归方程.。

2021年高二数学第一学期期中考试模拟试卷附答案(一)

2021年高二数学第一学期期中考试模拟试卷附答案(一)

2020 年高二数学第一学期期中考试模拟试卷(一)(文科)(考试时间120 分钟满分150 分)一.单项选择题(本大题共12 小题,每小题 5 分,满分60 分)1.若直线的倾斜角为120°,则直线的斜率为()A.B.C.D.2.设m,n 是自然数,条件甲:m3+n3 是偶数;条件乙:m﹣n 是偶数,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件3.点P(a,3)到直线4x﹣3y+1=0 的距离等于4,则P 点的坐标是()A.(7,3)B.(3,3)C.(7,3)或(﹣3,3) D .(﹣7,3)或(3,3)4.如图,正方体ABCD ﹣A 1B1C1D 1 中,E,F 分别为棱 A 1B1,BB 1 的中点,则D1E 与CF 的延长线交于一点,此点在直线()A.AD 上B.B1C1 上C.A1D 1 上D.BC 上5.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图()A.B.C.D.6.已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A.6:5 B.5:4 C.4:3 D.3:27.设l、m、n 表示不同的直线,α、β、γ表示不同的平面,给出下列 4 个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩=βl ,β∩=γm,γ∩=αn ,则l ∥m∥n;④若α∩=βm,β∩=γl ,α∩=γn,且n∥β,则m∥l.其中正确命题的个数是()A.1 B.2 C.3 D.48.在圆x2+y 2﹣2x﹣6y=0 内,过点E(0,1)的最长弦和最短弦分别为AC 和BD,则四边形ABCD 的面积为()A.B.C.D.9.直线x﹣y+m=0 与圆x 2+y2+2y﹣1=0 有两个不同交点的一个必要而不充分条件是()A.﹣3<m<1 B.﹣2<m<0 C.﹣4<m<2 D.﹣2<m<110.如图,下列四个正方体图形中, A 、B 为正方体的两个顶点,M、N、P 分别为其所在棱的中点,能得出AB ∥平面MNP 的图形序号是()A.①②B.③④C.②③D.①④1.已知正方体ABCD ﹣A1B1C1D1,过A1 点可作条直线与直线AC 和BC1 都成60°角()A.1 B.2 C.3 D.412.在矩形ABCD 中,AB=4 ,BC=3 ,沿AC 将矩形ABCD 折成一个直二面角B﹣AC ﹣D,则四面体ABCD 的外接球的体积为()A.πB.πC.πD.π二.填空题(每小题 5 分,共20 分)13.命题“若实数 a 满足a≤2,则a2<4”的否命题是命题(填“真”、“假”之一).14.对于一个底边在x 轴上的正三角形ABC ,边长AB=2 ,采用斜二测画法做出其直观图,则其直观图的面积是.15.一条直线经过P(1,2),且与A(2,3)、B(4,﹣5)距离相等,则直线l 为.16.一个等腰直角三角形的顶点分别在底边长为 4 的正三棱柱的三条侧棱上,则此直角三角形的斜边长是.三.解答题(本大题共 6 小题,满分70 分,第17 题10 分,其余各题每题12 分.解答应写出文字说明,证明过程或演算步骤)17.已知两直线l 1:ax﹣by+4=0 ,l 2:(a﹣1)x+y+b=0 ,分别求满足下列条件的a,b 值(1)l 1⊥l 2,且直线l 1 过点(﹣3,﹣1);(2)l 1∥l 2,且直线l 1 在两坐标轴上的截距相等.18.如图,在四棱锥P﹣ABCD 中,底面ABCD 是边长为 2 的正方形,侧面PAD ⊥底面ABCD ,且PA=PD= AD ,E、F 分别为PC、BD 的中点.(1)求证:EF∥平面PAD ;(2)求证:面PAB ⊥平面PDC.19.已知圆M :x2+y 2﹣4y+3=0 ,Q 是x 轴上动点,QA 、QB 分别切圆M 于A 、B 两点,(1)若|AB|= ,求直线MQ 的方程;(2)求四边形QAMB 面积的最小值.20.已知△ABC 三边所在直线方程为AB :3x+4y+12=0 ,BC :4x﹣3y+16=0 ,CA:2x+y ﹣2=0,求:(1)∠ABC 的平分线所在的直线方程;(2)AB 与AC 边上的中位线所在直线方程.21.已知三棱柱ABC ﹣A′B′C′中,面BCC′B′⊥底面ABC ,BB ′⊥AC ,底面ABC 是边长为2 的等边三角形,AA ′=3,E,F 分别在棱AA ′,CC′上,且AE=C ′F=2.(Ⅰ)求证:BB ′⊥底面ABC ;(Ⅱ)在棱A′B′上找一点M,使得C′M ∥面BEF,并给出证明.2.已知圆C:x2+(y﹣3)2=4,一动直线l 过A(﹣1,0)与圆 C 相交于P、Q 两点,M 是PQ 中点,l 与直线m:x+3y+6=0 相交于N.(Ⅰ)求证:当l 与m 垂直时,l 必过圆心C;(Ⅱ)当时,求直线l 的方程;(Ⅲ)探索是否与直线l 的倾斜角有关,若无关,请求出其值;若有关,请说明理由.参考答案一.单项选择题1. B 2. C 3.C.4.B.5.D.6.D.7.B.8.B.9.C 10.D.11.C.12.C.二.填空题13.解:命题的否命题为:“若实数 a 满足a>2,则a2≥4”∵a>2∴a2>4∴a2≥4∴否命题为真命题故答案为:真14.解:如图所示,A′B′=AB=2 ,O′C′= = ,作C′D ′⊥x′,则C′D ′= = .∴其直观图的面积= = =.故答案为:.15.解:①当所求直线与AB 平行时,k AB = =﹣4,可得y﹣2= ﹣4(x﹣1),化为4x+y ﹣6=0;②当所求直线经过线段AB 的中点M(3,﹣1)时,k= =﹣,可得y﹣2=﹣(x ﹣1),化为3x+2y ﹣7=0.综上可得所求直线方程为:4x+y ﹣6=0;或3x+2y ﹣7=0.故答案为:4x+y ﹣6=0;或3x+2y ﹣7=0.16.解:如图,正三棱柱ABC ﹣A1B1C1 中,△ABC 为正三角形,边长为4,△DEF 为等腰直角三角形,DF 为斜边,设DF 长为x,则DE=EF= ,作DG ⊥BB 1,HG ⊥CC1,EI ⊥CC1,则EG= = ,FI= = ,FH=FI+HI=FI+EG=2 ,在Rt△DHF 中,DF 2=DH 2+FH 2,即x2=16+(2 )2,解得x=4.即该三角形的斜边长为 4 .故答案为: 4 .三.解答题17.解:(1)∵两直线l 1:ax﹣by+4=0 ,l 2:(a﹣1)x+y+b=0 且l1⊥l2,∴a(a﹣1)+(﹣b)×1=0,即a2﹣a﹣b=0,又∵直线l 1 过点(﹣3,﹣1),∴﹣3a+b+4=0,联立解得a=2,b=2;(2)由l 1∥l 2 可得a×1﹣(﹣b)(a﹣1)=0 ,即a+ab﹣b=0,在方程ax﹣by+4=0 中令x=0 可得y= ,令y=0 可得x=﹣,∴=﹣,即b=﹣a,联立解得a=2,b=﹣2.18.证明:(1)连接AC,由正方形性质可知,AC 与BD 相交于BD 的中点F,F 也为AC 中点,E 为PC 中点.所以在△ CPA 中,EF∥PA,又PA? 平面PAD ,EF?平面PAD ,所以EF∥平面PAD ;(2)平面PAD ⊥平面ABCD平面PAD ∩面ABCD=AD ? CD⊥平面PAD ? CD⊥PA正方形ABCD 中CD ⊥ADPA ? 平面PADCD ? 平面ABCD又,所以PA2+PD2=AD 2所以△PAD 是等腰直角三角形,且,即PA⊥PD.因为CD ∩PD=D ,且CD 、PD? 面PDC所以PA⊥面PDC又PA? 面PAB,所以面PAB ⊥面PDC.19.解:(1)圆M :x2+y 2﹣4y+3=0 ,即x2+(y﹣2)2=1,圆心M(0,2),半径r=1 .由+MN 2=r2=1 ,求得:MN=.由BM 2=MNMQ ,求得MQ=3 .设Q(x0,0),则=3,即x0=±.所以直线MQ 的方程为2x+ y﹣2 =0 或2x﹣y+2 =0.(2)易知,当MQ 取得最短时,四边形QAMB 面积的最小值,即Q 与O 重合,此时,QA= ,即四边形QAMB 面积的最小值为1×= .20.解:(1)由求得,可得点 B 的坐标为(﹣4,0).设∠ABC 的内角平分线所在直线的斜率为k,则= ,即= .求得k= ,或k=﹣7.由题意可得,∠ABC 的内角平分线所在直线的斜率k 应在BA 、BC 的斜率之间,故取k= ,故∠ABC 的平分线所在的直线方程为y﹣0= (x+4 ),即x﹣7y+4=0 .(2)由,求得,可得点 A 的坐标为(4,﹣6),故线段AB 的中点 D 的坐标为(0,﹣3),再根据AB 与AC 边上的中位线所在直线的斜率等于BC 的斜率,故AB 与AC 边上的中位线所在直线方程为y+3= (x﹣0),即4x﹣3y﹣9=0.21.(Ⅰ)证明:取BC 中点O,因为三角形ABC 是等边三角形,所以AO ⊥BC,又因为面BCC'B' ⊥底面ABC ,AO? 面ABC ,面BCC'B' ∩面ABC=BC ,所以AO ⊥面BCC'B' ,又BB'? 面BCC'B' ,所以AO ⊥BB' .又BB' ⊥AC,AO ∩AC=A ,AO ? 面ABC ,AC ? 面ABC ,所以BB' ⊥底面ABC .(Ⅱ)显然M 不是A',B',当M 为A'B' 的中点,使得C'M ∥面BEF.证明:过M 作MN ∥AA' 交BE 于N,则N 为中点,则MN= (A'E+B'B )=2,则MN=C'F ,MN ∥C'F,所以四边形C'MNF 为平行四边形,所以C'M ∥ FN,C'M ?平面BEF,NF ? 平面BEF,所以C'M ∥面BEF.22.解:(Ⅰ)∵直线l 与直线m 垂直,且,∴k l=3 ,又k AC =3,所以当直线l 与m 垂直时,直线l 必过圆心C;(Ⅱ)①当直线l 与x 轴垂直时,易知x=﹣1 符合题意,②当直线l 与x 轴不垂直时,设直线l 的方程为y=k (x+1 ),即kx﹣y+k=0 ,因为,所以,则由CM= =1 ,得,∴直线l :4x﹣3y+4=0 .从而所求的直线l 的方程为x=﹣1 或4x﹣3y+4=0 ;(Ⅲ)因为CM ⊥MN ,∴当直线l 与x 轴垂直时,易得,,则,又,∴当直线l,的斜率存在时,设直线l 的方程为y=k (x+1 ),则由,得N(,),则,∴= ,综上,与直线l 的斜率无关,且.。

高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版

高二数学上学期期中模拟卷(空间向量与立体几何+直线与圆的方程+椭圆)(解析版

2023-2024学年高二数学上学期期中考试一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1.“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的()A .充要条件B .必要不充分条件C .充分不必要条件D .既不充分也不必要条件【答案】B【分析】根据充分条件和必要条件的定义判断即可.【详解】lg 0m >等价于1m >.若2m =,则方程()2211m x y m -+=-表示单位圆.若方程()2211m x y m -+=-表示椭圆,则椭圆方程可化为2211y x m +=-,则1m >且2m ≠.故“lg 0m >”是“方程()2211m x y m -+=-表示椭圆”的必要不充分条件.故选:B.2.直线()()()2212:110,:120l a x ay l a x a a y -+-=-+++=,若12//l l ,则实数a 的值不可能是()A .1-B .0C .1D .2-【答案】A【分析】根据平行列式,求得a 的值,进而确定正确答案.【详解】由于12//l l ,所以()()()2211a a a a a -⨯+=⨯-,()()()21110a a a a a +---=,()()()()()()22211112120a a a a a a a a a a ⎡⎤-+-=-+=-+=⎣⎦,解得0a =或1a =或2a =-.当0a =时,12:10,:20l x l x --=-+=,即12:1,:2l x l x =-=,两直线平行,符合题意.当1a =时,12:10,:220l y l y -=+=,即12:1,:1l y l y ==-,两直线平行,符合题意.当2a =-时,12:3210,:3220l x y l x y --=-++=,即12:3210,:3220l x y l x y --=--=,两直线平行,符合题意.所以a 的值不可能是1-.故选:A3.如图,在四面体OABC 中,,,OA a OB b OC c ===.点M 在OA 上,且2,OM MA N =为BC 中点,则MN等于()A .121232a b c-+ B .211322a b c-++C .111222a b c+- D .221332a b c+-【答案】B【分析】连接ON ,利用空间向量基本定理可得答案.【详解】连接()12211,23322ON MN ON OM OB OC OA a b c =-=+-=-++.故选:B.4.如图,已知正方体1111ABCD A B C D -的棱长为4,P 是1AA 的中点,若1AM AB AA λμ=+,[]0,1λ∈,[]0,1μ∈,若1D M CP ⊥,则BCM 面积的最小值为()A .4B .8C .855D .82【答案】C【分析】由题意知点M 在平面11ABB A 内,建立如图空间直角坐标系A xyz -,设(,0,)M a b ,根据空间向量的数量积的坐标表示可得24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,结合线面垂直的性质即可求解.【详解】由1,[0,1]AM AB AA λμλμ=+∈、,知点M 在平面11ABB A 内,以1,,AB AD AA 所在直线为坐标轴建立如图空间直角坐标系A xyz -,则1(0,0,2),(4,4,0),(0,4,4)P C D ,设(,0,)M a b ,则1(,4,4),(4,4,2)D M a b CP =--=-- ,由1D M CP ⊥,得1416280D M CP a b ⋅=-++-=,即24b a =-,取AB 的中点N ,连接1B N ,则点M 的轨迹为线段1B N ,过点B 作1BQ B N ⊥,则4245525BQ ⨯==,又BC ⊥平面11ABB A ,故BC BQ ⊥,所以BCM S △的最小值为145854255QBC S =⨯⨯= .故选:C.5.在平面直角坐标系中,设军营所在区域为221x y +≤,将军从点()2,0A 出发,河岸线所在直线方程为4x y +=,假定将军只要到达军营所在区域即回到军营,则“将军饮马”的最短总路程()A .101-B .251-C .25D .10【答案】B【分析】根据题意作出图形,然后求出()2,0A 关于直线4x y +=的对称点A ',进而根据圆的性质求出A '到圆上的点的最短距离即可.【详解】若军营所在区域为22:1x y Ω+≤,圆:221x y +=的圆心为原点,半径为1,作图如下:设将军饮马点为P ,到达营区点为B ,设(),A x y '为A 关于直线4x y +=的对称点,因为()2,0A ,所以线段AA '的中点为2,22x y +⎛⎫⎪⎝⎭,则2422x y ++=即60x y +-=,又12AA yk x '==-,联立解得:42x y =⎧⎨=⎩,即()4,2A ',所以总路程||||||||PB PA PB PA '+=+,要使得总路程最短,只需要||||PB PA '+最短,即点A '到圆22=1x y +上的点的最短距离,即为11OA OB OA ''-=-=.故选:B.6.在等腰直角三角形ABC 中,4AB AC ==,点P 是边AB 上异于,A B 的一点,光线从点P 出发,经,BC CA 发射后又回到原点P (如图).若光线QR 经过ABC 的重心,则QR 的长度等于()AB.9C.9D.9【答案】B【分析】建立平面直角坐标系,得出ABC 各顶点以及重心的坐标,设(),0P a ,04a <<.求出直线BC 的方程,根据光的反射原理得出点P 关于BC 以及y 轴的对称点的坐标,表示出RQ 的方程,代入重心坐标,求出a 的值,得出RQ 的方程.进而求出,R Q 的坐标,即可根据两点间的距离公式得出答案.【详解】如图,建立平面直角坐标系,则()0,0A ,()4,0B ,()0,4C ,ABC 的重心坐标为44,33⎛⎫⎪⎝⎭,BC 方程为40x y +-=,设(),0P a ,04a <<.根据光的反射原理以及已知可知,点P 关于BC 的对称点1P 在QR 的反向延长线上,点P 关于y 轴的对称点2P 在QR 的延长线上,即12,,,P P Q R 四点共线.由已知可得点()111,P x y 满足()11110422011a x y y x a++⎧+=⎪⎪⎨-⎪⨯-=--⎪⎩,解得1144x y a =⎧⎨=-⎩,所以()14,4P a -.易知()2,0P a -.因为12,,,P P Q R 四点共线,所以有直线QR 的斜率为()40444a ak a a ---==--+,所以,直线QR 的方程为()44ay x a a-=++.由于直线QR 过重心44,33⎛⎫⎪⎝⎭,所以有444343a a a -⎛⎫=+ ⎪+⎝⎭,整理可得2340a a -=,解得43a =或0a =(舍去),所以直线QR 的方程为44434343y x -⎛⎫=+⎪⎝⎭+,整理可得3640x y -+=.所以,R 点坐标为20,3⎛⎫⎪⎝⎭.联立QR 与BC 的方程364040x y x y -+=⎧⎨+-=⎩,解得209169x y ⎧=⎪⎪⎨⎪=⎪⎩,即2016,99Q ⎛⎫ ⎪⎝⎭,所以,QR ==.故选:B.7.正四面体的棱长为3,点M ,N 是它内切球球面上的两点,P 为正四面体表面上的动点,当线段MN 最长时,PM PN ⋅的最大值为()A .2B .94C .3D .52【答案】C【分析】设四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,根据题意求出内切球的半径,当MN 为内切球的直径时,MN 最长,再化简()()PM PN PO OM PO ON ⋅=+⋅+可求得其最大值.【详解】设正四面体ABCD 的内切球球心为O ,G 为BCD △的中心,E 为CD 的中点,连接,AG BE ,则O 在AG 上,连接BO ,则AO BO =.因为正四面体的棱长为3,所以22333BG BE ==所以AG ===r ,则()222AG r r BG -=+,)22rr =+,解得4r =,当MN 为内切球的直径时MN 最长,此时0+= OM ON,238OM ON ⋅=-=-⎝⎭ ,()()PM PN PO OM PO ON⋅=+⋅+()2238PO PO OM ON OM ON PO =+⋅++⋅=- ,因为P 为正四面体表面上的动点,所以当P 为正四体的顶点时,PO 最长,POPM PN ⋅的最大值为23348⎛⎫-= ⎪ ⎪⎝⎭.故选:C8.已知M 为椭圆:()222210x y a b a b+=>>上一点,1F ,2F 为左右焦点,设12MF F α∠=,21MF F β∠=,若sin sin cos 1sin cos sin 3ααββαβ-=+,则离心率e =()A .12B .13C .12D .23【答案】C【分析】设12||,||MF m MF n ==,12||2F F c =,结合三角恒等变换以及正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+化为22243224c n m n m m c cm+--⋅=+,继而推出,,a b c 的关系,求得答案.【详解】设12||,||MF m MF n ==,12||2F F c =,则2m n a +=,由sin sin cos 1sin cos sin 3ααββαβ-=+得3sin 3sin cos sin cos sin ααββαβ-=+,即3sin 2sin cos sin sin cos cos sin sin sin()ααββαβαββαβ-=++=++,在12MF F △中,由正弦定理得1222sin sin sin sin()n m c cF MF αβαβ===∠+,故32cos 2n m m c β-=+,又2224cos 4c n mcmβ+-=,故22243224c n m n m m c cm+--⋅=+,即282(3)()()0c c m n m n n m +-++-=,即[4()][2()]0c m n c n m -+--=,即4c m n =+或2c n m =-,结合椭圆定义可知2m n c +>且||2m c -<,故4c m n =+,即142,2c c a e a =∴==,故选:C【点睛】关键点睛:本题是椭圆的离心率的求解问题,即求,,a b c 之间的关系,解答的关键是对于已知等式的化简,即利用三角恒等变换结合正余弦定理将sin sin cos 1sin cos sin 3ααββαβ-=+转化为三角形边之间的关系式,进而化简可得,,a b c 的关系,即可求解答案.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,部分选对的得2分,有选错的得0分.9.直线20x y ++=分别与x 轴,y 轴交于,A B 两点,点P 在圆()2222x y -+=上,则ABP 面积可能是()A .1B .3C .4D .7【答案】BC【分析】根据给定条件,求出线段AB 长,点P 到直线AB 的距离范围,再利用三角形面积公式求解即得.【详解】依题意,点(2,0),(0,2)A B --,则||AB =圆()2222x y -+=的圆心(2,0)C ,半径2r =,则点C 到直线AB 的距离4222r =>,因此点P 到直线AB 的距离[2,32]d ∈,ABP 的面积1||2[2,6]2S AB d d =⋅=∈,显然BC 满足,AD 不满足.故选:BC10.已知圆2221:2100C x y mx y m ++-+=,圆222:450C x y y ++-=,则下列说法正确的是()A .若点()1,1在圆1C 的内部,则24m -<<B .若2m =,则圆12,C C 的公共弦所在的直线方程是41490x y -+=C .若圆12,C C 外切,则15m =±D .过点()3,2作圆2C 的切线l ,则l 的方程是3x =或724270x y -+=【答案】BCD【分析】根据点在圆的内部解不等式2112100m m ++-<+即可判断A 错误;将两圆方程相减可得公共弦所在的直线方程可知B 正确;利用圆与圆外切,由圆心距和两半径之和相等即可知C 正确;对直线l 的斜率是否存在进行分类讨论,由点到直线距离公式即可得D 正确.【详解】对于A ,由点(1,1)在圆1C 的内部,得2112100m m ++-<+,解得42m -<<,故A 错误;对于B ,若2m =,则圆221:41040C x y x y ++-+=,将两圆方程相减可得公共弦所在的直线方程是41490x y -+=,故B 正确;对于C ,圆1C 的标准方程为22()(5)25x m y ++-=,圆心为()1,5C m -,半径15r =,圆2C 的标准方程为22(2)9x y ++=,圆心为()20,2C -,半径23r =,若圆12,C C 外切,则1212C C r r =+,即24953m +=+,解得15m =±,故C 正确;对于D ,当l 的斜率不存在时,l 的方程是3x =,圆心2C 到l 的距离23d r ==,满足要求,当l 的斜率存在时,设l 的方程为()32y k x =-+,圆心2C 到l 的距离224331k d r k -===+,解得724k =,所以l 的方程是724270x y -+=,故D 正确.故选:BCD.11.如图,正方体1111ABCD A B C D -的棱长为2,E 为11A B 的中点,P 为棱BC 上的动点(包含端点),则下列结论正确的是()A .存在点P ,使11D P AC ⊥B .存在点P ,使1PE D E =C .四面体11EPCD 的体积为定值83D .二面角11P DE C --的余弦值的取值范围是23⎡⎢⎣⎦【答案】AB【分析】利用向量法,根据线面垂直,两点间的距离,几何体的体积,二面角等知识对选项进行分析,从而确定正确答案.【详解】建立如图所示空间直角坐标系,设()02CP a a =≤≤,则(),2,0P a ,()2,1,2E ,()()12,0,0,0,2,2A C ,()10,0,2D ,则()12,2,2AC =- ,()1,2,2D P a =-,112442D AC a a P ⋅=-+-=-,当0a =时,即P 点与C 点重合时,11D P AC ⊥,故A 正确.由1PE D E =2a =,此时P 点与B 点重合,故B 正确.111111111422223323E PC D P C D E C D E V V S --==⨯⋅=⨯⨯⨯⨯= 为定值,故C 错误.又()12,1,0D E = ,()1,2,2D P a =-,设平面1D EP 的法向量()1,,n x y z = ,由11112002200D E n x y D P n ax y z ⎧⋅=+==⎪⎨⋅=+-==⎪⎩,令1x =则=2y -,22a z =-,11,2,22a n ⎛⎫∴=-- ⎪⎝⎭ ,又平面11D EC 的法向量()20,0,2n =,12cos ,22n an ∴=-又02a ≤≤,122cos ,3n n ⎤∴∈⎣⎦,故D 错误.故选:AB12.已知椭圆222:12x y C m+=的焦点分别为()10,2F ,()20,2F -,设直线l 与椭圆C 交于M ,N 两点,且点11,22P ⎛⎫ ⎪⎝⎭为线段MN 的中点,则下列说法正确的是()A .26m =B.椭圆C C .直线l 的方程为320x y +-=D .2F MN的周长为【答案】AC【分析】先由题意求出2m 即可判断A ;再根据离心率公式即可判断B ;由点差法可以求出直线l 的斜率,由直线的点斜式化简即可判断C ;由焦点三角形的周长公式即可判断D.【详解】如图所示:根据题意,因为焦点在y 轴上,所以224m -=,则26m =,故选项A 正确;椭圆C的离心率为2636c e a ===,故选项B 不正确;不妨设()()1122,,,M x y N x y ,则2211126x y +=,2222126x y +=,两式相减得()()()()1212121226x x x x y y y y +-+-=-,变形得121212123y y x x x x y y -+=-⨯-+,又注意到点11,22P ⎛⎫⎪⎝⎭为线段MN 的中点,所以121212121221122P P x x x x x y y y y y ++====++,所以直线l 的斜率为121212123313l y y x k xx x y y ⨯=-+⨯--=-+=-=,所以直线l 的方程为11322y x ⎛⎫-=-- ⎪⎝⎭,即320x y +-=,故选项C 正确;因为直线l 过1F ,所以2F MN 的周长为()()22212122446F M F N MN F M F M F N F N a a a ++=+++=+==,故选项D 不正确.故选:AC .三、填空题:本题共4小题,每小题5分,共20分.13.在三棱锥-P ABC 中,PC ⊥底面,90,4,45ABC BAC AB AC PBC ∠∠==== ,则点C 到平面PAB 的距离是.【答案】463/463【分析】建立空间直角坐标系,设平面PAB 的一个法向量为(),,m x y z =,由点C 到平面PAB 的距离为PC m d m⋅=求解.【详解】解:建立如图所示的空间直角坐标系,则()()()()0,0,0,4,0,0,0,4,0,0,4,42A B C P ,所以()()()0,4,42,4,0,0,0,0,42AP AB PC ===-.设平面PAB 的一个法向量为(),,m x y z =,则0,0,m AP m AB ⎧⋅=⎪⎨⋅=⎪⎩ 即4420,40,y z x ⎧+=⎪⎨=⎪⎩令y 1z =-,所以()1m =-,所以点C 到平面PAB的距离为PC m d m⋅==14.若非零实数对(),a b满足关系式1771a b a b ++=-+=,则a b=.【答案】34-或43【分析】化简转化为点到直线的距离,利用直线的位置关系即可求解.【详解】由1771a b a b ++=-+=5==,()1,1A 到直线10ax by ++=的距离1d,()7,7B -到直线10ax by ++=的距离2d ,5==,所以125d d ==.因为10AB =,1210d d +=,所以当点A ,B 在直线10ax by ++=同侧时,直线AB 与直线10ax by ++=平行,当点A ,B 在直线10ax by ++=异侧时,A ,B 关于直线10ax by ++=对称,因为直线AB 的斜率174173k +==--,直线10ax by ++=的斜率为ab-,所以43a b -=-或413a b ⎛⎫⎛⎫-⨯-=- ⎪ ⎪⎝⎭⎝⎭,所以43a b =或34ab=-.故答案为:34-或43.15.过椭圆2222:1(0)x y C a b a b+=>>的右焦点F且与长轴垂直的弦的长为(2,1)P 且斜率为1-的直线与C 相交于,A B 两点,若P 恰好是AB 的中点,则椭圆C 上一点M 到F 的距离的最大值为.【答案】3/3+【分析】利用点差法可求基本量的关系,再结合通径的长可求基本量,故可求焦半径的最大值.我们也可以联立直线方程和椭圆方程,从而可用基本量表示中点,从而得到基本量的一个关系式,同样结合通径长可取基本量,故可求焦半径的最大值.【详解】法一:将x c =代入椭圆C 的方程得2b y a =±,所以22ba=,设()11,A x y ,()22,B x y ,则2222112222221,1x y x y a b a b+=+=,两式相减得()()()()12121212220x x x x y y y y a b -+-++=,又124x x +=,1212122,1y y y y x x -+==--,所以22210a b-=②,解①②得3a b ==,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.法二:将x c =代入椭圆C 的方程得2by a=±,所以22b a =,直线AB 的方程是1(2)y x -=--,即3y x =-,代入椭圆的方程并消去y 整理得()2222222690a b x a x a a b +-+-=,则()()()()22222222222490694a a b a a b a b a b ∆=--++-->=,设()11,A x y ,()22,B x y ,则2122264a x x a b+==+,即222a b =②,解①②得3a b ==,满足0∆>,所以3c =,所以C 上的点M 到焦点F的距离的最大值为3a c +=.故答案为:3.16.在平面直角坐标系xOy 中,已知()1,1A --,圆22:1O x y +=,在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),则Q 的坐标为.【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设00(,)Q x y ,(,)P x yλ=对圆O 上任意点(,)P x y 恒成立,从而得到202202(22)()320x x y x λλλ+++--=对任意[x y +∈恒成立,从而得到202220220320x x λλλ⎧+=⎨--=⎩,即可求出λ与0x ,从而得解.【详解】设00(,)Q x y ,(,)P x y ,则PA =PQ =若在直线AO 上存在异于A 的定点Q ,使得对圆O 上任意一点P ,都有(PA PQλλ=为常数),λ=对圆O 上任意点(,)P x y 恒成立,即22222200(1)(1)()()x y x x y y λλ+++=-+-,整理得222222022000(1)()(22)(22)2()0x y x x y y x y λλλλ-++++++-+=,因为点Q 在直线AO 上,所以00x y =,由于P 在圆O 上,所以221x y +=,故202202(22)()320x x y x λλλ+++--=恒成立,其中点(),P x y 在圆22:1O x y +=上,令x y m +=,则0x y m +-=,所以直线0x y m +-=与圆有交点,所以圆心到直线的距离小于等于半径,即1d ≤,解得m ≤≤[x y +∈,所以202220220320x x λλλ⎧+=⎨--=⎩,显然0λ≠,所以021x λ=-,故22230λλ--=,因为0λ>,解得λ=1λ=.当1λ=时,(1,1)Q --,此时,Q A 重合,舍去.当λ=11,22Q ⎛⎫-- ⎪⎝⎭,综上,存在满足条件的定点11,22Q ⎛⎫-- ⎪⎝⎭,此时λ=故答案为:11,22⎛⎫-- ⎪⎝⎭【点睛】关键点睛:本题解决的关键是利用题设条件,结合221x y +=与00x y =化简得202202(22)()320x x y x λλλ+++--=恒成立,从而得到关于0,x λ的方程组,由此得解.四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(10分)如图,在四棱锥P ABCD -中,PD ⊥底面ABCD ,底面ABCD 为正方形,PD DC =,E ,F 分别是AB ,PB 的中点.(1)求证:EF CD ⊥.(2)已知点G 在平面PAD 内,且GF ⊥平面PCB ,试确定点G 的位置.【答案】(1)证明见解析(2)点G 为AD 的中点【分析】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系,设AD a =,再根据0EF DC ⋅= 即可证明.(2)设(,0,)G x z ,根据GF ⊥平面PCB 得到0FG CB ⋅= ,0FG CP ⋅= ,即可得到答案.【详解】(1)以D 为坐标原点,DA ,DC ,DP 的方向分别为x 轴、y 轴、z 轴的正方向,建立空间直角坐标系(如图),设AD a =,则(0,0,0)D ,(,,0)B a a ,(0,,0)C a ,,,02a E a ⎛⎫ ⎪⎝⎭,(0,0,)P a ,,,222a a a F ⎛⎫ ⎪⎝⎭,所以,0,22a a EF ⎛⎫=- ⎪⎝⎭ ,(0),,0DC a = ,所以,0,(0,,0)022a a EF DC a ⎛⎫⋅=-⋅= ⎪⎝⎭ ,所以EF CD ⊥.(2)因为∈G 平面PAD ,设(,0,)G x z ,所以,,222a a a FG x z ⎛⎫=--- ⎪⎝⎭ .由(1),知(,0,0)CB a = ,(0,),CP a a =- .因为GF ⊥平面PCB ,所以,,(,0,0)()02222a a a a FG CB x z a a x ⎛⎫⋅=---⋅=-= ⎪⎝⎭ ,2,,(0,,)022222a a a a a FG CP x z a a a z ⎛⎫⎛⎫⋅=---⋅-=+-= ⎪ ⎪⎝⎭⎝⎭ ,所以2a x =,0z =,所以点G 的坐标为,0,02a ⎛⎫ ⎪⎝⎭,即点G 为AD 的中点.18.(12分)已知直线:1l y kx k =+-.(1)求证:直线l 过定点;(2)若当44x -<<时,直线l 上的点都在x 轴下方,求k 的取值范围;(3)若直线l 与x 轴、y 轴形成的三角形面积为1,求直线l 的方程.【答案】(1)证明见解析(2)11[,]35-(3)(21y x =+++(21y x =+【分析】(1)由直线方程观察得定点坐标即证;(2)由4x =±时对应点的纵坐标不小于0可得;(3)求出直线与坐标轴的交点坐标,再计算三角形面积从而得直线的斜率,即得直线方程.【详解】(1)由1y kx k =+-,得1(1)y k x +=+.由直线方程的点斜式可知,直线l 过定点(1,1)--;(2)若当44x -<<时,直线l 上的点都在x 轴下方,则410,410,k k k k -+-≤⎧⎨+-≤⎩解得1135k -≤≤,所以k 的取值范围是11[,35-;(3)设直线l 与x 轴的交点为A ,与y 轴的交点为B ,坐标原点为O .当0x =时,得||||1|OB k =-,当0y =时,得|1|||||k OA k -=,所以11|1||||||1|22||AOB k S OA OB k k -==-⨯△,即211|1|12||k k -⨯=,解得2k =2,所以直线l 的方程为(21y x =+(21y x =+19.(12分)如图所示,第九届亚洲机器人锦标赛VEX 中国选拔赛永州赛区中,主办方设计了一个矩形坐标场地ABCD (包含边界和内部,A 为坐标原点),AD 10米,在AB 边上距离A 点4米的F 处放置一只电子狗,在距离A 点2米的E v ,电子狗行走速度为2v ,若电子狗和机器人在场地内沿直线方向同时到达场地内某点M ,那么电子狗将被机器人捕获,点M 叫成功点.(1)求在这个矩形场地内成功点M 的轨迹方程;(2)若P 为矩形场地AD 边上的一点,若电子狗在线段FP 上都能逃脱,问:P 点应在何处?【答案】(1)2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭(2)P 的横坐标范围为⎤⎥⎝⎦即可逃脱.【分析】(1)分别以,AD AB 为,x y 轴,建立平面直角坐标系,由题意2MF ME v v =,利用两点间的距离公式可得答案.(2)利用三角函数得到极端情况时P 点的横坐标即可得到答案.【详解】(1)分别以AD ,AB 为x ,y 轴,建立平面直角坐标系,则()0,2E ,()0,4F ,设成功点(),M x y ,可得2MF ME v v ==化简得2241639x y ⎛⎫+-= ⎪⎝⎭,因为点M 需在矩形场地内,所以403x ≤≤,故所求轨迹方程为2241640393x y x ⎛⎫⎛⎫+-=≤≤ ⎪ ⎪⎝⎭⎝⎭.(2)当线段FP 与(1)中圆相切时,则413sin 4243AFP ∠==-,所以30AFP ∠=︒,所以4tan 30AP =︒=,若电子狗在线段FP 上都能逃脱,P点的横坐标取值范围是⎤⎥⎝⎦.20.(12分).如图,//AD BC 且2,,//AD BC AD CD EG AD =⊥且,//EG AD CD FG =且2,CD FG DG =⊥平面,2ABCD DA DC DG ===.(1)若M 为CF 的中点,N 为EG 的中点,求证://MN 平面CDE ;(2)求平面BCE 和平面BCF 夹角的正弦值;(3)若点P 在线段DG 上,且直线与平面ADGE 所成的角为45︒,求点P 到平面CDE 的距离.【答案】(1)证明见解析;(2)10;(3)2.【分析】(1)取GD 中点为Q ,连接NQ ,MQ ,通过证明平面//MQN 平面CDE ,可得//MN 平面CDE ;(2)如图,建立以D 为原点的空间直角坐标系,分别求出平面BCE 和平面BCF 夹角的法向量,即可得答案;(3)由(2),设()0,0,P t ,直线BP 与平面ADGE 所成的角为45︒可得点P 坐标,可得点P 到平面CDE 的距离.【详解】(1)取GD 中点为Q ,连接NQ ,MQ .因M 为CF 的中点,N 为EG 的中点,Q 为GD 中点,由三角形及梯形中位线定理,可得,NQ ED MQ DC .又注意到,,ED DC ⊂平面EDC ,,NQ MQ ⊄平面EDC ,,NQ MQ ⊂平面MNQ ,∩NQ MQ Q =,则平面//MQN 平面CDE .又MN ⊂平面MQN ,则//MN 平面CDE .(2)因DG ⊥平面ABCD ,,⊂DA DC 平面ABCD ,则,DG DC DG DA ⊥⊥,又AD DC ⊥,则如图建立以D 为原点的空间坐标系.则()()()()()()()000200020002120202012,,,,,,,,,,,,,,,,,,,,D A C G B E F .()()()100122112,,,,,,,,BC BE BF =-=-=--.设平面BCE 和平面BCF 的法向量分别为()()11112222,,,,,n x y z n x y z == .则1111110220BC n x BE n x y z ⎧⋅=-=⎪⎨⋅=-+=⎪⎩ ,取()10,1,1n = ;222222020BC n x BF n x y z ⎧⋅=-=⎪⎨⋅=--+=⎪⎩ ,取()20,2,1n = .设平面BCE 和平面BCF 夹角为θ,则1210cos cos ,θn n === .则平面BCE 和平面BCF夹角的正弦值为sin θ=(3)由(2),设()0,0,P t ,其中[]0,2t ∈,则()12,,BP t =-- 又由题可得,平面ADGE 的一个法向量可取()30,1,0n = .结合直线BP 与平面ADGE 所成的角为45︒,则32cos ,n BP t ==⇒=则(DP = ,()()020202,,,,,DC DE == .设平面CDE 法向量为()4444,,n x y z = ,则4444420220DC n y DE n x z ⎧⋅==⎪⎨⋅=+=⎪⎩ .取()4101,,n =- ,则点P 到平面CDE的距离442n DP d n ⋅=== .21.(12分)已知在平面直角坐标系xOy 中,已知A 、B 是圆O :228x y +=上的两个动点,P 是弦AB 的中点,且90AOB ∠=︒;(1)求点P 的轨迹方程;(2)点P 轨迹记为曲线τ,若C ,D 是曲线τ与x 轴的交点,E 为直线l :4x =上的动点,直线CE ,DE 与曲线τ的另一个交点分别为M ,N ,判断直线MN 是否过定点,若是,求出定点的坐标,若不是,请说明理由.【答案】(1)224x y +=(2)过定点()1,0Q .【分析】(1)设点(),P x y 为曲线上任意一点,根据几何关系得到2OP =,得到轨迹方程.(2)设()4,E t ()0t ≠,分别计算CE ,DE 的直线方程,联立圆方程得到交点坐标,考虑直线MN 斜率存在和不存在两种情况,计算直线方程得到答案.【详解】(1)设点(),P x y 为曲线上任意一点,P 是弦AB 的中点,且90AOB ∠=︒,圆O :228x y +=的半径r =122OP AB ===,故点P 的轨迹方程为:224x y +=.(2)不妨取()2,0C -,()2,0D ,设()4,E t ()0t ≠,则直线CE 的方程为()26t y x =+,直线DE 的方程为()22t y x =-,联立()22264t y x x y ⎧=+⎪⎨⎪+=⎩,得2222364440363636t t t x x +++-=,则224236M t x t -=-+,即2272236M t x t -=+,()2242636M M t t y x t =+=+,所以22272224,3636t t M t t ⎛⎫- ⎪++⎝⎭.联立()22224t y x x y ⎧=-⎪⎨⎪+=⎩,得22224404t x t x t +-+-=,则22424N t x t +=+,即22284N t x t -=+,()28224N N t t y x t -=-=+,所以222288,44t t N t t ⎛⎫-- ⎪++⎝⎭.①当t ≠±MN 的斜率222222224883647222812364MNt t t t t k t t t t t --++==----++,则直线MN 的方程为222288284124t t t y x t t t ⎛⎫---=- ⎪+-+⎝⎭,即()28112t y x t =--,直线过定点()1,0,所以()1,0Q ;②当t =±MN 垂直于x 轴,方程为1x =,也过定点()1,0Q .综上所述:直线MN 恒过定点()1,0Q .【点睛】关键点睛:本题考查了圆的轨迹方程,定点问题,意在考查学生的计算能力,转化能力和综合应用能力,其中设出E 的坐标,分别计算,M N 坐标再计算直线方程是解题的关键.22.(12分)如图所示,已知椭圆2219x y +=中()3,0A ,()0,1B ;P 在椭圆上且为第一象限内的点,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N(1)求证:①||||AN BM ⋅为定值;②PMN 与PAB 面积之差为定值;(2)求MON △面积的最小值.【答案】(1)①证明见解析;②证明见解析(2)92+【分析】(1)①设00(,)P x y ,利用直线方程求出点,M N 坐标,从而可得||||AN BM ⋅的表达式,结合点在椭圆上化简,即可证明结论;②利用PMN 与PAB 面积之差为MAN BAN S S - ,利用三角形面积公式,结合①的定值即可证明结论;(2)利用三角形面积公式表示出MON △面积的表达式,利用(1)的定值结合基本不等式,即可求得答案.【详解】(1)证明:①设00(,)P x y ,()001,030x y <<<<,则220019x y +=,即220099x y +=,直线()0033:y PA y x x =--,令0x =,则0033M y y x =--,故003|||1|3y BM x =+-;直线0011:y PB y x x =+-,令0y =,则001N x x y -=-,故00|||3|1x AN y =+-;所以00000000003|||||3||1||33|||133331x y x y x y AN BM y x y x ⋅=+⋅+⋅-+----+()()()2220000000000000033996618||||3133x y x y x y x y x y x y x y +-+++--==----+000000001666183|38x y x y x y x y --++-==-,即||||AN BM ⋅为定值6;②PMN 与PAB 面积之差为11||||||||22MAN BAN S S AN OM AN OB -=⋅-⨯⋅ 1||||32AN BM =⨯⋅=,即PMN 与PAB 面积之差为定值3;(2)MON △面积()()11||||3||1||22OMN S ON OM AN BM =⋅=++ ()1||||||3||32AN BM AN BM =⋅+++()1966322+≥+=,当且仅当||3||AN BM =,结合||||6AN BM ⋅=,即|||AN BM ==时取等号,即MON △面积的最小值为92+.【点睛】关键点睛:解答本题的关键在于证明||||AN BM ⋅为定值,解答时要利用直线方程表示出||,||AN BM ,从而求得||||AN BM ⋅表达式,结合点在椭圆上化简即可证明结论.。

高二数学上学期期中模拟试卷(空间向量与立体几何、直线与圆、椭圆)(解析版)

高二数学上学期期中模拟试卷(空间向量与立体几何、直线与圆、椭圆)(解析版)

高二数学上学期期中模拟试卷(试卷满分150分,考试用时120分钟)注意事项:1.答卷前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上.2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.3.考试结束后,将本试卷和答题卡一并交回.一、单项选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的选项中,只有一项是符合题目要求的.1.(2022·福建福州·高二期中)直线20x y --=的倾斜角是()A.30°B.45°C.60°D.75°【答案】B【解析】直线20x y --=的斜率为1,倾斜角为45°,故选:B.2.(2022·江苏·南京市大厂高级中学高二期中)已知圆22:68100C x y x y +---=,则()A.圆C 的圆心坐标为()3,4--B.圆C 的圆心坐标为()4,3C.圆C D.圆C 的半径为35【答案】C【解析】圆C 的方程可化为()()223435x y -+-=,则圆心坐标为()3,4C.3.(2022·安徽滁州·高二期中)已知椭圆221259x y +=的焦点为1F 、2F ,P 为椭圆上的一点,若1260F PF ∠=︒,则12F PF △的面积为()A.3B.9C.D.【答案】C【解析】根据椭圆的定义有1210,4PF PF c +==,①根据余弦定理得221212642cos 60PF PF PF PF =+-︒,②结合①②解得1212PF PF =,所以12F PF △的面积12113sin 6012222S PF PF =︒=⨯⨯=4.(2022·福建·柘荣县第一中学高二期中)如图,在平行六面体1111ABCD A B C D -中,M为11AC 与11B D 的交点,若AB a =,AD b =,1AA c =,则下列向量中与BM 相等的向量是()A.1122a b c-++B.1122++a b cC.1122--+a b c D.1122-+a b c【答案】A【解析】11BM BB B M =+,()1111112=+-AA A D A B ()112=+-AA AD AB ,1122a b c =-++,故选;A5.10y +-=与直线30my ++=平行,则它们之间的距离是()A.1B.54C.3D.4【答案】B10y +-=与直线30my ++=平行,可得0=,解之得2m =10y +-=与直线230y ++=54=,故选:B 6.(2022·江苏常州·高二期中)直三棱柱111ABC A B C -中,11111π,,,2BCA AC BC CC A M MB A N NC ∠=====,则BM 与AN 所成的角的余弦值为()A.10B.22C.110D.25【答案】A【解析】如图所示,以C 为原点,以1,,CA CB CC 分别为,,x y z 轴,建立空间直角坐标系,设12AC BC CC ===,可得()2,0,0A ,()0,2,0B ,()1,1,2M ,()1,0,2N .()1,0,2AN ∴=-,()1,1,2BM =-cos ,10AN BM AN BM AN BM⋅∴==故BM 与AN7.(2022·河南·洛宁县第一高级中学高二阶段练习)若直线y x b =+与曲线x =有一个公共点,则b 的取值范围是()A.⎡⎣B.⎡-⎣C.(-D.(]{1,1-⋃【答案】D【解析】由曲线x =2210x y x +=≥(),表示以原点为圆心,半径为1的右半圆,y x b =+是倾斜角为4π的直线与曲线x =一个公共点有两种情况:①直线与半圆相切,根据d r =,所以1d ==,结合图象可得b =②直线与半圆的上半部分相交于一个交点,由图可知11b -<≤.综上可知:11b -<≤或b =.故选:D.8.(2022·福建泉州·高二期中)已知椭圆22122:1(0)x y C a b a b +=>>与圆22224:5b C x y +=,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直,则椭圆1C 的离心率的取值范围是()A.⎛ ⎝⎭B.⎛ ⎝⎭C.⎫⎪⎪⎣⎭D.⎫⎪⎪⎣⎭【答案】D【解析】由题意,如图,若在椭圆1C 上存在点P ,使得由点P 所作的圆2C 的两条切线互相垂直则只需90APB ∠≤︒,即45APO α=∠≤︒,sin sin 45α=≤︒,即2285b a ≤,因为222a b c =+,解得:2238a c ≤.238e ∴≥,即e ≥,而01e <<,1e <,即e ⎫∈⎪⎪⎣⎭.故选:D.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.(2022·江苏·连云港高中高二期中)给出下列命题,其中是真命题的是()A.若直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,则l 与m 垂直B.若直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,则l α⊥C.若平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,则αβ⊥D.若存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面【答案】AD【解析】对于A:因为直线l 的方向向量()1,1,2a =-,直线m 的方向向量12,1,2⎛⎫=- ⎪⎝⎭r b ,且()12,1,21101,1,22a b ⎛⎫-=--= ⎪⎝⎭⋅=-⋅,所以a b ⊥,所以l 与m 垂直.故A 正确;对于B:因为直线l 的方向向量()0,1,1a =-,平面α的法向量()1,1,1n =--r,且a n λ≠,所以l α⊥不成立.故B 不正确;对于C:因为平面α,β的法向量分别为()10,1,3=u r n ,()21,0,2=u u rn ,且2100660n n =++≠⋅=,所以12,n n 不垂直,所以αβ⊥不成立.故C 不正确;对于D:若,MA MB 不共线,则可以取,MA MB 为一组基底,由平面向量基本定理可得存在实数,,x y 使,=+MP xMA yMB 则点,,,P M A B 共面;若,MA MB 共线,则存在实数,,x y 使,=+MP xMA yMB 所以,,,P M A B 共线,则点,,,P M A B 共面也成立.综上所述:点,,,P M A B 共面.故D 正确.故选:AD10.(2022·广东·汕头市潮南区陈店实验学校高二期中)已知直线:0l x y +=与圆22:(1)(1)4C x y -++=,则()A.直线l 与圆C 相离B.直线l 与圆C 相交C.圆C 上到直线l 的距离为1的点共有2个D.圆C 上到直线l 的距离为1的点共有3个【答案】BD【解析】由圆22:(1)(1)4C x y -++=,可知其圆心坐标为(1,1)-,半径为2,圆心(1,1)-到直线:0l x y +=的距离1d =,所以可知选项B,D 正确,选项A,C 错误.故选:BD11.(2022·湖北恩施·高二期中)如图,在棱长为1的正方体ABCD A B C D ''''-中,M 为BC 的中点,则下列结论正确的有()A.AM 与D B ''所成角的余弦值为10B.C 到平面DA C ''C.过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得截面的面积为92D.四面体A C BD ''内切球的表面积为π3【答案】ABD【解析】对于A,构建如图①所示的空间直角坐标系,则(0,0,1)A ,1(,1,1)2M ,(0,1,0)B ',(1,0,0)D ',1(,1,0)2AM ∴=,(1,1,0)D B ''=-,112cos ,10AM D B AM D B AM D B -+''⋅''∴=='',故A 正确;对于B,方法1:如图②,连接AC ,由正方体几何特征得://AC A C '',又AC ⊄面A C D '',A C ''⊂面A C D '',//AC ∴面A C D '',设C 到平面DA C ''的距离为d ,即点A 到平面A DC ''的距离,C A DC A DA C V V ''''--=,即11131113234⨯⨯⨯⨯=,求得33d =.方法2:根据图①,()1,0,1D ,()1,1,0C ',()1,0,1A D '∴=,()1,1,0A C ''=,设平面DA C ''的法向量(,,)m x y z =,则00A D m A C m '''⎧⋅=⎨⋅=⎩,即00x z x y +=⎧⎨+=⎩,令1z =-得:11x y =⎧⎨=-⎩,∴平面DA C ''的一个法向量为(1,1,1)m =--,(1,0,0)AD =,设C 到平面''DA C 的距离为d,则||AD m d m ⋅=B 正确;对于C,取CC '的中点N ,连接MN ,D N ',AD ',则MN //AD ',如图②所示,则梯形AMND '为过点A ,M ,D ¢的平面截正方体ABCD A B C D ''''-所得的截面,易知2MN =,AD '=2AM D N '==,可得梯形AMND '则梯形AMND '的面积1928S ==,故C 错误;对于D,易知四面体A C BD ''的体积111141323V =-⨯⨯⨯=,因为四面体A C BD ''1π4sin 23S =⨯=设四面体A C BD ''内切球的半径为r,则1133⨯=,解得r =所以四面体AMND '内切球的表面积为2π4π3r =,故D 正确.故选:ABD.12.(2022·江苏·淮阴中学高二期中)已知椭圆22:14x M y +=,若P 在椭圆M 上,1F 、2F 是椭圆M 的左、右焦点,则下列说法正确的有()A.若12PF PF =,则1230PF F ∠=B.12F PF △C.12PF PF -的最大值为D.满足12F PF △是直角三角形的点P 有4个【答案】ABC【解析】在椭圆M 中,2a =,1b =,c =12F F =对于A 选项,当12PF PF =时,则122PF PF a ===,由余弦定理可得222112212112cos 2PF F F PF PF F PF F F +-∠==⋅因为120180PF F <∠<,所以,1230PF F ∠=,A 对;对于B 选项,当点P 为椭圆M 的短轴顶点时,点P 到x 轴的距离最大,所以,12F PF △面积的最大值为122c b bc ⨯⨯==对;对于C 选项,因为2a c PF a c -≤≤+,即222PF ≤+所以,()12222222PF PF a PF a a c c -=-≤--==,C 对;对于D 选项,当112PF F F ⊥或212PF F F ⊥时,12PF F 为直角三角形,此时满足条件的点P 有4个,当P 为直角顶点时,设点()00,P x y ,则220044x y =-,()100F P x y =+,()200F P x y =-,222120003130F P F P x y y ⋅=-+=-=,所以,0y =,03x =±,此时,满足条件的点P 有4个,综上所述,满足12F PF △是直角三角形的点P 有8个,D 错.故选:ABC.三、填空题:本题共4小题,每小题5分,共20分13.(2022·全国·高二期中)已知直线1:20l ax y +=,直线()2:10l a x y --=,若12l l ⊥,则实数a 的值为______.【答案】2a =或1a =-【解析】因为12l l ⊥,所以(1)2(1)0a a -+⨯-=,解得2a =或1a =-,故答案为:2a =或1a =-14.(2022·江苏常州·高二期中)已知P 是ABC 所在平面外一点,2=PM MC ,且BM x AB y AC z AP =++,则实数x y z ++的值为____________.【答案】0【解析】因为2=PM MC ,则()2BM BP BC BM -=-,所以,()()121221333333BM BP BC AP AB AC AB AB AC AP =+=-+-=-++,所以,1x =-,23y =,13z =,因此,0x y z ++=.故答案为:0.15.(2022·上海金山·高二期中)求过点()13M -,的圆224x y +=的切线方程__________.【答案】y =+y =+【解析】过点()13M -,的斜率不存在的直线为:1x =-,圆心到直线的距离为1,与圆相交,不是切线;当斜率存在,设其为k ,则切线可设为()31y k x -=+.2=,解得:33k +=或33k -=.所以切线方程为:y =+y =+故答案为:y =+y =+.16.(2022·湖北恩施·高二期中)已知1F ,2F 分别是椭圆2222:1(0,0)x y C a b a b+=>>的左、右焦点,点P 在椭圆上,且在第一象限,过2F 作12F PF ∠的外角平分线的垂线,垂足为A ,O为坐标原点,若||OA =,则该椭圆的离心率为______.【答案】63【解析】如图所示:延长2F A ,交1PF 于点Q ,∵PA 是12F PF ∠的外角平分线,2||AQ AF ∴=,2||PQ PF =,又O 是12F F 的中点,1QF AO ∴∥,且12||QF OA ==.又1112||2QF PF PQ PF PF a =+=+=,2a ∴=,222233()a b a c ∴==-,∴离心率为c a四、解答题:本小题共6小题,共70分。

福建省厦门2024-2025学年高二上学期期中考试数学试题(含答案)

福建省厦门2024-2025学年高二上学期期中考试数学试题(含答案)

福建省厦门2024-2025学年高二上学期期中考试数学试题本试卷共4页。

全卷满分150分。

考试用时120分钟。

注意事项:1.答题前,考生务必将自己的姓名、考生号等填写在答题卡和试卷指定位置上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮擦干净后,再选涂其它答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效。

3.考试结束后,将答题卡交回。

一、单选题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若经过两点的直线的倾斜角为,则等于()A.-3B.-1C.0D.22.已知双曲线的离心率为,则该双曲线的渐近线方程为()A. B. C. D.3.已知圆与圆关于直线对称,则的方程为()A. B. C. D.4.已知抛物线的焦点为,过点且斜率大于0的直线交于A,B两点,若,则的斜率为()5.如图,椭圆的两个焦点分别为,以线段为边作等边三角形若该椭圆恰好平分的另两边,则椭圆的离心率为()(3,1)(2,1)A y B+-、3π4y22221(0,0)x ya ba b-=>>542y x=±12y x=±43y x=±34y x=±22:(1)(2)1M x y+++=22(3)(4)1N x y-++=:l l 250x y++=250x y--=250x y++=250x y--=2:4C y x=F F l C16||3AB=l22221(0)x ya ba b+=>>12,F F12F F12AF F 12AF FV12,AF AF6.已知为双曲线的右焦点,过点作的一条渐近线的垂线,垂足为E ,O 为坐标原点,若的面积为1,则的焦距的最小值为( )A.1B.2C.4D.7.如图,已知直线与抛物线交于A ,B 两点,且交AB 于点,点的坐标为,则方程为( )A. B. C. D.8.已知是椭圆与双曲线的公共焦点,是它们的一个公共点,且,线段的中垂线经过.记椭圆的离心率为,双曲线的离心率为,则的取值范围是( )A. B. C. D.二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多个选项符合题目要求,全部选对的得6分,部分选对得部分分,有选错的得0分.9.已知为双曲线的一个焦点,则下列说法中,正确的是( )A.的虚轴长为6B.的离心率为C.的渐近线方程为D.点到的一条渐近线的距离为410.已知动点在直线上,动点在圆上,过点作圆的两条切线,切点分别为A 、B ,则下列描述正确的有( )1-F 2222:1(0,0)x y C a b a b-=>>F C OEF V C l 22y x =,OA OB OD AB ⊥⊥D D (1,1)l 20x y +-=20x y ++=20x y -+=20x y --=12,F F P 12PF PF >1PF 2F 1e 2e 2114e e +(5,)+∞(6,)+∞(7,)+∞(6,7)F 22:1169x y Γ-=ΓΓ54Γ430x y ±=F ΓP :60l x y +-=Q 22:(1)(1)4C x y -+-=P CA.直线与圆相交B.|PQ |的最小值为C.四边形PACB 面积的最小值为4D.存在点,使得11.如图,曲线可以看作“蝴蝶结”的一部分,已知曲线上除原点外的所有点均满足其到原点的距离的立方与该点横纵坐标之积的绝对值的商恒为定值,则( )A.曲线关于直线对称B.曲线经过点,其方程为C.曲线围成的图形面积小于D.存在,使得曲线上有5个整点(即横、纵坐标均为整数的点)三、填空题:本题共3小题,每小题5分,共15分.12.已知椭圆的焦距是2,则的值是_____________.13.已知抛物线,从抛物线内一点发出平行于轴的光线经过抛物线上点反射后交抛物线于点,则的面积为____________.14.双曲线的离心率可以与其渐近线有关,比如函数的图象是双曲线,它的实轴在直线上,虚轴在直线上,实轴顶点是,焦点坐标是,已知函数.则其在一象限内的焦点横坐标是__________.四、解答题:共77分.解答应写出文字说明、证明过程或演算步骤.15.(本小题13分)已知圆与轴交于A ,B 两点,动点与点A 的距离是它与点距离倍.(1)求点的轨迹方程;l C 2-P 120APB ︒∠=C C (0)a a >C y x =C (1,1)--()322||x yxy +=C 2π8a (2,6)a ∈C 221(4)4x y m m +=>m 24y x =A x B C ABC V 1y x=y x =y x =-(1,1),(1,1)--(y x =+e 22O :4x y +=x P B P(2)过点作倾斜角为直线交点的轨迹于M ,N 两点,求弦长|MN |.16.(本小题15分)已知双曲线的一条渐近线方程为,且经过点.(1)求双曲线的方程;(2)直线与双曲线相交于两点,若线段AB 的中点坐标为,求直线的方程.17.(本小题15分)已知椭圆分别为椭圆的左、右顶点.(1)求椭圆的方程;(2)过点作斜率不为0的直线,直线与椭圆交于P ,Q 两点,直线AP 与直线BQ 交于点,记AP 的斜率为的斜率为.求证:为定值.18.(本小题17分)已知抛物线的焦点为,点是上的一点,且.(1)求抛物线的方程;(2)设点(其中)是上异于的两点,的角平分线与轴垂直,为线段AB 的中点.(i )求证:点N 在定直线上;(ii )若的面积为6,求点A 的坐标.19.(本小题17分)通过研究,已知对任意平面向量,把绕其起点沿逆时针方向旋转角得到向量,叫做把点绕点逆时针方向旋转角得到点,(1)已知平面内点,点,把点绕点逆时针旋转得到点,求点的坐标;(2)已知二次方程的图像是由平面直角坐标系下某标准椭圆绕原点逆时针旋转所得的斜椭圆,B 45︒l P 2222:100x y C a b a b-=>>(,)0x -=P C l C ,A B (3,2)l 2222:1(0)x y C a b a b+=>>,F A B C C (1,0)D l l C M 1,k BQ 2k 12k k 2:2(0)C y px p =>F (,2)M t C ||2MF =C ()()1122,,,A x y B x y 12x x <C M AMB ∠x N MAB ∆(,)AB x y =AB A θ(cos sin ,sin cos )AP x y x y θθθθ=-+B A θP (A B -B A π3P P 221x y xy +-=22221(0)x y a b a b+=>>O π4C(i )求斜椭圆的离心率;(ii )过点作与两坐标轴都不平行的直线交斜椭圆于点M 、N ,过原点作直线与直线垂直,直线交斜椭圆于点G 、H是否为定值,若是,请求出定值,若不是,请说明理由.C Q 1l C O 2l 1l 2l C 21||OH +福建省厦门2026届高二上期中考试数学试题参考答案及评分标准一、选择题:本题共8小题,每小题5分,共40分。

陕西省商洛市洛南中学2024-2025学年高二上学期期中考试数学试题

陕西省商洛市洛南中学2024-2025学年高二上学期期中考试数学试题

陕西省商洛市洛南中学2024-2025学年高二上学期期中考试数学试题一、单选题1.直线:20l x +=的倾斜角为A .30°B .60°C .120°D .150°2.抛物线214y x =的焦点坐标为()A .1,016⎛⎫ ⎪⎝⎭B .1,016⎛-⎫ ⎪⎝⎭C .(0,1)D .(0,1)-3.圆221:2O x y +=和圆222:430O x y y +++=的位置关系是()A .相离B .外切C .内切D .相交4.在空间四边形ABCD 中,F ,E 分别为AB ,CD 的中点,2EM MF = ,BC a =,BD b = ,BA c = ,则AM =()A .111663a b c ---B .112663a b c --+C .112663a b c ++D .112663a b c+- 5.已知点P 是双曲线E :2213y x -=的渐近线上在第一象限内的一点,F 为E 的左焦点,则直线PF 斜率的取值范围为()A .(B .(3),-∞C .)+∞D .⎡⎣6.在直三棱柱111ABC A B C -中,AC BC ⊥,14AC AA ==,2BC =,则异面直线1AC 与1B C 所成角的余弦值为()A B C D 7.已知点(,)P x y 在直线250x y ++=上,那么22x y +的最小值为()AB .C .5D .8.已知1F ,2F 为椭圆22:1164x y C +=的两个焦点,P 、Q 为C 上关于坐标原点对称的两点,且12PQ F F =,则四边形12PFQF 的面积为()A .10B .8C .24D .二、多选题9.如图,已知正方体1111ABCD A B C D -的棱长为1,则()A .1ACB D ⊥B .11//AC 平面1B CDC .平面11A B CD 与平面ABCD 的夹角为45D .点1C 到平面1B CD 10.已知方程22196x y t t +=--表示的曲线为C ,则()A .当69t <<时,曲线C 表示椭圆B .存在R t ∈,使得C 表示圆C .当9t >或6t <时,曲线C 表示双曲线D .若曲线C 表示焦点在x轴上的椭圆,则焦距为11.已知圆22:4O x y +=,点()00,P x y 是圆O 上的点,直线:0l x y -+,则()A .直线l 与圆OB .004y x -C .圆O 上恰有3个点到直线l 的距离等于1D .过点P 向圆()()22:341M x y -+-=引切线,A 为切点,则PA 最小值为三、填空题12.平行线250x y +-=与2450x y +-=间的距离为.13.设x 、y 、z ∈R ,()1,1,1a = ,()1,,b y z = ,(),4,2c x =- ,且a c ⊥ ,//b c,则a b += .14.如图,双曲线C :()222210,0x y a b a b-=>>的左、右焦点()1,0F c -,()2,0F c ,A 为双曲线C 右支上一点,且OA c =,1AF 与y 轴交于点B ,若2F B 是21AF F ∠的角平分线,则双曲线C 的离心率是.四、解答题15.(1)求过点()10y ++=平行的直线的一般式方程;(2)求点()2,0A 关于直线:220l x y ++=的对称点B 的坐标.16.在①过点()20C ,,②圆E 恒被直线()0R mx y m m --=∈平分,③与y 轴相切这三个条件中任选一个,补充在下面问题中,并解答.已知圆E 经过点()()0011A B ,,,,且______.(1)求圆E 的一般方程;(2)设P 是圆E 上的动点,求线段AP 的中点M 的轨迹方程.17.在四棱锥P ABCD -中,PD ⊥底面,,1,2,ABCD CD AB AD DC CB AB DP =====∥.(1)证明:BD PA ⊥;(2)求PD 与平面PAB 所成的角的正弦值.18.已知中心在原点,焦点在x 轴上的椭圆1C 与双曲线2C 有共同的焦点1F 、2F ,12F F =,1C 的长半轴与2C 的实半轴之差为4,离心率之比为3:7.(1)求这两条曲线的方程;(2)求曲线2C 以点()4,2M 为中点的弦所在直线的方程;(3)若P 为两条曲线的交点,求12F PF ∠的余弦值.19.已知椭圆()2222:10x y C a b a b+=>>的离心率为12,焦距为2.(1)求椭圆的标准方程;(2)若直线():,l y kx m k m =+∈R 与椭圆C 相交于A 、B 两点,且34OA OB k k ⋅=-.(i )试求k 、m 的关系式;(ii )证明:AOB V 的面积为定值.。

2020—2021学年高二数学第一学期期中考试模拟试卷(共10套)

2020—2021学年高二数学第一学期期中考试模拟试卷(共10套)

2020—2021学年高二数学第一学期期中考试模拟试卷(一)(文科)(考试时间120分钟满分150分)一.单项选择题(本大题共12小题,每小题5分,满分60分)1.若直线的倾斜角为120°,则直线的斜率为()A.B.C.D.2.设m,n是自然数,条件甲:m3+n3是偶数;条件乙:m﹣n是偶数,则甲是乙的()A.充分不必要条件B.必要不充分条件C.充分且必要条件D.既不充分也不必要条件3.点P(a,3)到直线4x﹣3y+1=0的距离等于4,则P点的坐标是()A.(7,3)B.(3,3)C.(7,3)或(﹣3,3)D.(﹣7,3)或(3,3)4.如图,正方体ABCD﹣A1B1C1D1中,E,F分别为棱A1B1,BB1的中点,则D1E与CF的延长线交于一点,此点在直线()A.AD上B.B1C1上C.A1D1上D.BC上5.将长方体截去一个四棱锥,得到的几何体如图所示,则该几何体的左视图()A.B.C.D.6.已知轴截面是正方形的圆柱的高与球的直径相等,则圆柱的全面积与球的表面积的比是()A.6:5 B.5:4 C.4:3 D.3:27.设l、m、n表示不同的直线,α、β、γ表示不同的平面,给出下列4个命题:①若m∥l,且m⊥α,则l⊥α;②若m∥l,且m∥α,则l∥α;③若α∩β=l,β∩γ=m,γ∩α=n,则l∥m∥n;④若α∩β=m,β∩γ=l,α∩γ=n,且n∥β,则m∥l.其中正确命题的个数是()A.1 B.2 C.3 D.48.在圆x2+y2﹣2x﹣6y=0内,过点E(0,1)的最长弦和最短弦分别为AC和BD,则四边形ABCD的面积为()A.B.C.D.9.直线x﹣y+m=0与圆x2+y2+2y﹣1=0有两个不同交点的一个必要而不充分条件是()A.﹣3<m<1 B.﹣2<m<0 C.﹣4<m<2 D.﹣2<m<110.如图,下列四个正方体图形中,A、B为正方体的两个顶点,M、N、P分别为其所在棱的中点,能得出AB∥平面MNP的图形序号是()A.①②B.③④C.②③D.①④11.已知正方体ABCD﹣A1B1C1D1,过A1点可作条直线与直线AC和BC1都成60°角()A.1 B.2 C.3 D.412.在矩形ABCD中,AB=4,BC=3,沿AC将矩形ABCD折成一个直二面角B﹣AC ﹣D,则四面体ABCD的外接球的体积为()A.πB.πC.πD.π二.填空题(每小题5分,共20分)13.命题“若实数a满足a≤2,则a2<4”的否命题是命题(填“真”、“假”之一).14.对于一个底边在x轴上的正三角形ABC,边长AB=2,采用斜二测画法做出其直观图,则其直观图的面积是.15.一条直线经过P(1,2),且与A(2,3)、B(4,﹣5)距离相等,则直线l为.16.一个等腰直角三角形的顶点分别在底边长为4的正三棱柱的三条侧棱上,则此直角三角形的斜边长是.三.解答题(本大题共6小题,满分70分,第17题10分,其余各题每题12分.解答应写出文字说明,证明过程或演算步骤)17.已知两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0,分别求满足下列条件的a,b 值(1)l1⊥l2,且直线l1过点(﹣3,﹣1);(2)l1∥l2,且直线l1在两坐标轴上的截距相等.18.如图,在四棱锥P﹣ABCD中,底面ABCD是边长为2的正方形,侧面PAD⊥底面ABCD,且PA=PD=AD,E、F分别为PC、BD的中点.(1)求证:EF∥平面PAD;(2)求证:面PAB⊥平面PDC.19.已知圆M:x2+y2﹣4y+3=0,Q是x轴上动点,QA、QB分别切圆M于A、B两点,(1)若|AB|=,求直线MQ的方程;(2)求四边形QAMB面积的最小值.20.已知△ABC三边所在直线方程为AB:3x+4y+12=0,BC:4x﹣3y+16=0,CA:2x+y ﹣2=0,求:(1)∠ABC的平分线所在的直线方程;(2)AB与AC边上的中位线所在直线方程.21.已知三棱柱ABC﹣A′B′C′中,面BCC′B′⊥底面ABC,BB′⊥AC,底面ABC是边长为2的等边三角形,AA′=3,E,F分别在棱AA′,CC′上,且AE=C′F=2.(Ⅰ)求证:BB′⊥底面ABC;(Ⅱ)在棱A′B′上找一点M,使得C′M∥面BEF,并给出证明.22.已知圆C:x2+(y﹣3)2=4,一动直线l过A(﹣1,0)与圆C相交于P、Q两点,M是PQ中点,l与直线m:x+3y+6=0相交于N.(Ⅰ)求证:当l与m垂直时,l必过圆心C;(Ⅱ)当时,求直线l的方程;(Ⅲ)探索是否与直线l的倾斜角有关,若无关,请求出其值;若有关,请说明理由.参考答案一.单项选择题1.B 2.C 3.C.4.B.5.D.6.D.7.B.8.B.9.C 10.D.11.C.12.C.二.填空题13.解:命题的否命题为:“若实数a满足a>2,则a2≥4”∵a>2∴a2>4∴a2≥4∴否命题为真命题故答案为:真14.解:如图所示,A′B′=AB=2,O′C′==,作C′D′⊥x′,则C′D′==.∴其直观图的面积===.故答案为:.15.解:①当所求直线与AB平行时,k AB==﹣4,可得y﹣2=﹣4(x﹣1),化为4x+y﹣6=0;②当所求直线经过线段AB的中点M(3,﹣1)时,k==﹣,可得y﹣2=﹣(x ﹣1),化为3x+2y﹣7=0.综上可得所求直线方程为:4x+y﹣6=0;或3x+2y﹣7=0.故答案为:4x+y﹣6=0;或3x+2y﹣7=0.16.解:如图,正三棱柱ABC﹣A1B1C1中,△ABC为正三角形,边长为4,△DEF为等腰直角三角形,DF为斜边,设DF长为x,则DE=EF=,作DG⊥BB1,HG⊥CC1,EI⊥CC1,则EG==,FI==,FH=FI+HI=FI+EG=2,在Rt△DHF中,DF2=DH2+FH2,即x2=16+(2)2,解得x=4.即该三角形的斜边长为4.故答案为:4.三.解答题17.解:(1)∵两直线l1:ax﹣by+4=0,l2:(a﹣1)x+y+b=0且l1⊥l2,∴a(a﹣1)+(﹣b)×1=0,即a2﹣a﹣b=0,又∵直线l1过点(﹣3,﹣1),∴﹣3a+b+4=0,联立解得a=2,b=2;(2)由l1∥l2可得a×1﹣(﹣b)(a﹣1)=0,即a+ab﹣b=0,在方程ax﹣by+4=0中令x=0可得y=,令y=0可得x=﹣,∴=﹣,即b=﹣a,联立解得a=2,b=﹣2.18.证明:(1)连接AC,由正方形性质可知,AC与BD相交于BD的中点F,F也为AC中点,E为PC中点.所以在△CPA中,EF∥PA,又PA⊂平面PAD,EF⊄平面PAD,所以EF∥平面PAD;(2)平面PAD⊥平面ABCD平面PAD∩面ABCD=AD⇒CD⊥平面PAD⇒CD⊥PA正方形ABCD中CD⊥ADPA⊂平面PADCD⊂平面ABCD又,所以PA2+PD2=AD2所以△PAD是等腰直角三角形,且,即PA⊥PD.因为CD∩PD=D,且CD、PD⊂面PDC所以PA⊥面PDC又PA⊂面PAB,所以面PAB⊥面PDC.19.解:(1)圆M:x2+y2﹣4y+3=0,即x2+(y﹣2)2=1,圆心M(0,2),半径r=1.由+MN2=r2=1,求得:MN=.由BM2=MNMQ,求得MQ=3.设Q(x0,0),则=3,即x0=±.所以直线MQ的方程为2x+y﹣2=0 或2x﹣y+2=0.(2)易知,当MQ取得最短时,四边形QAMB面积的最小值,即Q与O重合,此时,QA=,即四边形QAMB面积的最小值为1×=.20.解:(1)由求得,可得点B的坐标为(﹣4,0).设∠ABC的内角平分线所在直线的斜率为k,则=,即=.求得k=,或k=﹣7.由题意可得,∠ABC的内角平分线所在直线的斜率k应在BA、BC的斜率之间,故取k=,故∠ABC的平分线所在的直线方程为y﹣0=(x+4),即x﹣7y+4=0.(2)由,求得,可得点A的坐标为(4,﹣6),故线段AB的中点D的坐标为(0,﹣3),再根据AB与AC边上的中位线所在直线的斜率等于BC的斜率,故AB与AC边上的中位线所在直线方程为y+3=(x﹣0),即4x﹣3y﹣9=0.21.(Ⅰ)证明:取BC中点O,因为三角形ABC是等边三角形,所以AO⊥BC,又因为面BCC'B'⊥底面ABC,AO⊂面ABC,面BCC'B'∩面ABC=BC,所以AO⊥面BCC'B',又BB'⊂面BCC'B',所以AO⊥BB'.又BB'⊥AC,AO∩AC=A,AO⊂面ABC,AC⊂面ABC,所以BB'⊥底面ABC.(Ⅱ)显然M不是A',B',当M为A'B'的中点,使得C'M∥面BEF.证明:过M作MN∥AA'交BE于N,则N为中点,则MN=(A'E+B'B)=2,则MN=C'F,MN∥C'F,所以四边形C'MNF为平行四边形,所以C'M∥FN,C'M⊄平面BEF,NF⊂平面BEF,所以C'M∥面BEF.22.解:(Ⅰ)∵直线l与直线m垂直,且,∴k l=3,又k AC=3,所以当直线l与m垂直时,直线l必过圆心C;(Ⅱ)①当直线l与x轴垂直时,易知x=﹣1符合题意,②当直线l与x轴不垂直时,设直线l的方程为y=k(x+1),即kx﹣y+k=0,因为,所以,则由CM==1,得,∴直线l:4x﹣3y+4=0.从而所求的直线l的方程为x=﹣1或4x﹣3y+4=0;(Ⅲ)因为CM⊥MN,∴,当直线l与x轴垂直时,易得,则,又,∴,当直线l的斜率存在时,设直线l的方程为y=k(x+1),则由,得N(,),则,∴=,综上,与直线l的斜率无关,且.2020—2021学年高二数学第一学期期中考试模拟试卷(二)(理科)(考试时间120分钟满分150分)一、单项选择题:本大题共12小题,每小题5分,共60分.1.已知直线l1:x+my+6=0,l2:(m﹣2)x+3y+2m=0,若l1∥l2,则实数m的值是()A.3 B.﹣1,3 C.﹣1 D.﹣32.已知双曲线(a>0,b>0)的离心率为2,一个焦点与抛物线y2=16x的焦点相同,则双曲线的渐近线方程为()A.y=±B.y=±C.y=±D.y=±3.过点P(a,5)作圆(x+2)2+(y﹣1)2=4的切线,切线长为2,则a等于()A.﹣1 B.﹣2 C.﹣3 D.04.椭圆的离心率为e,点(1,e)是圆x2+y2﹣4x﹣4y+4=0的一条弦的中点,则此弦所在直线的方程是()A.3x+2y﹣4=0 B.4x+6y﹣7=0 C.3x﹣2y﹣2=0 D.4x﹣6y﹣1=05.方程mx+ny2=0与mx2+ny2=1(|m|>|n|>0)的曲线在同一坐标系中的示意图应是()A.B.C. D.6.点P是抛物线y2=4x上一动点,则点P到点A(0,﹣1)的距离与到直线x=﹣1的距离和的最小值是()A.B.C.2 D.7.已知抛物线y2=2px(p>0)与椭圆(a>b>0)有相同的焦点F,点A是两曲线的一个公共点,且AF⊥x轴,则椭圆的离心率为()A.﹣1 B.﹣1 C.D.8.设抛物线y2=6x的焦点为F,准线为l,P为抛物线上一点,PA丄l,垂足为A,如果△APF为正三角形,那么|PF|等于()A.4 B.6 C.6 D.129.P是长轴在x轴上的椭圆=1上的点F1,F2分别为椭圆的两个焦点,椭圆的半焦距为c,则|PF1|•|PF2|的最大值与最小值之差一定是()A.1 B.a2C.b2D.c210.已知点P是椭圆+y2=1上的任意一点,A(4,0),若M为线段PA中点,则点M的轨迹方程是()A.(x﹣2)2+4y2=1 B.(x﹣4)2+4y2=1 C.(x+2)2+4y2=1 D.(x+4)2+4y2=111.已知双曲线的右焦点为F,若过点F且倾斜角为60°的直线与双曲线的右支有且只有一个交点,则此双曲线离心率的取值范围是()A.(1,2]B.(1,2)C.[2,+∞)D.(2,+∞)12.已知椭圆C1:=1(a>b>0)与圆C2:x2+y2=b2,若在椭圆C1上存在点P,过P作圆的切线PA,PB,切点为A,B使得∠BPA=,则椭圆C1的离心率的取值范围是()A.B.C.D.二、填空题:本大题共4小题,每小题5分,共20分.13.在平面直角坐标系xOy中,若双曲线的离心率为,则m的值为.14.点P(x,y)在不等式组表示的平面区域内,P到原点的距离的最大值为5,则a的值为.15.点P(8,1)平分双曲线x2﹣4y2=4的一条弦,则这条弦所在的直线方程是.16.已知F1、F2分别是双曲线﹣=1的左右焦点,P是双曲线上任意一点,的最小值为8a,则此双曲线的离心率e的取值范围是.三、解答题:本大题共6小题、共70分.解答应写出文字说明,证明过程或演算步骤. 17.已知平面区域D由以P(1,2)、R(3,5)、Q(﹣3,4)为顶点的三角形内部和边界组成.(1)设点(x,y)在区域D内变动,求目标函数z=2x+y的最小值;(2)若在区域D内有无穷多个点(x,y)可使目标函数z=mx+y(m<0)取得最小值,求m的值.18.已知,圆C:x2+y2﹣8y+12=0,直线l:ax+y+2a=0.(1)当a为何值时,直线l与圆C相切;(2)当直线l与圆C相交于A、B两点,且AB=2时,求直线l的方程.19.已知抛物线E:x2=4y,过M(1,4)作抛物线E的弦AB,使弦AB以M为中点,(1)求弦AB所在直线的方程.(2)若直线l:y=x+b与抛物线E相切于点P,求以点P为圆心,且与抛物线E的准线相切的圆的方程.20.已知圆,Q是圆上一动点,AQ的垂直平分线交OQ于点M,设点M的轨迹为E.(I)求轨迹E的方程;(Ⅱ)过点P(1,0)的直线l交轨迹E于两个不同的点A、B,△AOB(O是坐标原点)的面积S=,求直线AB的方程.21.已知椭圆+=1(a>b>0)的离心率为,且过点(,).(1)求椭圆方程;(2)设不过原点O的直线l:y=kx+m(k≠0),与该椭圆交于P、Q两点,直线OP、OQ的斜率依次为k1、k2,满足4k=k1+k2,试问:当k变化时,m2是否为定值?若是,求出此定值,并证明你的结论;若不是,请说明理由.22.如图,曲线Γ由曲线C1:和曲线C2:组成,其中点F1,F2为曲线C1所在圆锥曲线的焦点,点F3,F4为曲线C2所在圆锥曲线的焦点,(1)若F2(2,0),F3(﹣6,0),求曲线Γ的方程;(2)如图,作直线l平行于曲线C2的渐近线,交曲线C1于点A、B,求证:弦AB的中点M必在曲线C2的另一条渐近线上;(3)对于(1)中的曲线Γ,若直线l1过点F4交曲线C1于点C、D,求△CDF1面积的最大值.参考答案一、单项选择题1.C.2.D 3.B.4.B.5.A.6.D.7.B.8.C.9.D.10.A.11.C 12.A.二、填空题13.解:∵m2+4>0∴双曲线的焦点必在x轴上因此a2=m>0,b2=m2+4∴c2=m+m2+4=m2+m+4∵双曲线的离心率为,∴,可得c2=5a2,所以m2+m+4=5m,解之得m=2故答案为:214.解:作出不等式组对应的平面区域如图:由图象可知当P位于A时,P到原点的距离的最大值为5,此时,解得,即A(a,1+a),此时|OP|=,解得a=3.故答案为:3.15.解:设弦的两端点分别为A(x1,y1),B(x2,y2),∵AB的中点是P(8,1),∴x1+x2=16,y1+y2=2,把A(x1,y1),B(x2,y2)代入双曲线x2﹣4y2=4,得,∴(x1+x2)(x1﹣x2)﹣4(y1﹣y2)(y1+y2)=0,∴16(x1﹣x2)﹣8(y1﹣y2)=0,∴k==2,∴这条弦所在的直线方程是2x﹣y﹣15=0.故答案为:2x﹣y﹣15=0.16.解:由定义知:|PF1|﹣|PF2|=2a,|PF1|=2a+|PF2|,∴=+4a+|PF2|≥8a,当且仅当=|PF2|,即|PF2|=2a时取得等号设P(x0,y0)(x0≤﹣a)由焦半径公式得:|PF2|=﹣ex0﹣a=2a,∴ex0=﹣3ae=﹣≤3又双曲线的离心率e>1∴e∈(1,3]故答案为:(1,3].三、解答题17.解:(1)如图示:,由z=2x+y得:y=﹣2x+z,显然直线y=﹣2x+z过Q(﹣3,4)时z最小,z的最小值是:﹣2;(2)依题意,令z=0,可得直线mx+y=0的斜率为:﹣m,结合可行域可知当直线mx+y=0与直线PR平行时,线段PR上的任意一点都可使目标函数z=mx+y取得最小值,而直线PR的斜率为,所以m=﹣.18.解:将圆C的方程x2+y2﹣8y+12=0配方得标准方程为x2+(y﹣4)2=4,则此圆的圆心为(0,4),半径为2.(1)若直线l与圆C相切,则有.解得.(2)联立方程并消去y,得(a2+1)x2+4(a2+2a)x+4(a2+4a+3)=0.设此方程的两根分别为x1、x2,所以x1+x2=﹣,x1x2=则AB===2两边平方并代入解得:a=﹣7或a=﹣1,∴直线l的方程是7x﹣y+14=0和x﹣y+2=0.19.解:(1)设A(x1,y1),B(x2,y2),抛物线E:x2=4y,过M(1,4)作抛物线E的弦AB,使弦AB以M为中点由,两式相减化简得K AB==,所以直线AB的方程为y﹣4=(x﹣0),即x﹣2y+7=0.(2)设切点P(x0,y0),由x2=4y,得y′=,所以=1,可得x0=2,即点P(2,1),圆P的半径为2,所以圆P的方程为:(x﹣2)2+(y﹣1)2=4.20.(1)解:(1)由题意,所以轨迹E是以A,C为焦点,长轴长为4的椭圆,…即轨迹E的方程为.…(2)解:记A(x1,y1),B(x2,y2),由题意,直线AB的斜率不可能为0,故可设AB:x=my+1,由,消x得:(4+m2)y2+2my﹣3=0,所以….…由,解得m2=1,即m=±1.…故直线AB的方程为x=±y+1,即x+y﹣1=0或x﹣y﹣1=0为所求.…21.解:(1)依题意可得,解得a=2,b=1所以椭圆C的方程是…(2)当k变化时,m2为定值,证明如下:由得,(1+4k2)x2+8kmx+4(m2﹣1)=0.…设P(x1,y1),Q(x2,y2).则x1+x2=,x1x2=…(•)…∵直线OP、OQ的斜率依次为k1,k2,且4k=k1+k2,∴4k==,得2kx1x2=m(x1+x2),…将(•)代入得:m2=,…经检验满足△>0.…22.(1)解:∵F2(2,0),F3(﹣6,0),∴,解得,则曲线Γ的方程为和.(2)证明:曲线C2的渐近线为,如图,设直线l:y=,则,化为2x2﹣2mx+(m2﹣a2)=0,△=4m2﹣8(m2﹣a2)>0,解得.又由数形结合知.设点A(x1,y1),B(x2,y2),M(x0,y0),则x1+x2=m,x1x2=,∴=,.∴,即点M在直线y=﹣上.(3)由(1)知,曲线C1:,点F4(6,0).设直线l1的方程为x=ny+6(n>0).,化为(5+4n2)y2+48ny+64=0,△=(48n)2﹣4×64×(5+4n2)>0,化为n2>1.设C(x3,y3),D(x4,y4),∴,.∴|y3﹣y4|==,===,令t=>0,∴n2=t2+1,∴===,当且仅当t=,即n=时等号成立.∴n=时,=.2020—2021学年高二数学第一学期期中考试模拟试卷(三)(文科)(考试时间120分钟满分150分)一、单项选择题:(共12小题,每小题5分,共60分)1.下列抽样实验中,适合用抽签法的是()A.从某工厂生产的3000件产品中抽取600件进行质量检验B.从某工厂生产的两箱(每箱15件)产品中抽取6件进行质量检验C.从甲、乙两厂生产的两箱(每箱15件)产品中抽取6件进行质量检验D.从某厂生产的3000件产品中抽取10件进行质量检验2.从装有2个红球和2个黑球的口袋内任取两个球,那么互斥而不对立的事件是()A.至少有一个黑球与都是黑球B.至少有一个黑球与至少有一个红球C.恰好有一个黑球与恰好有两个红球D.至少有一个黑球与都是红球3.命题“若一个数是负数,则它的平方是正数”的逆命题是()A.“若一个数是负数,则它的平方不是正数”B.“若一个数的平方是正数,则它是负数”C.“若一个数不是负数,则它的平方不是正数”D.“若一个数的平方不是正数,则它不是负数”4.从2004名学生中选取50名组成参观团,若采用下面的方法选取:先用简单随机抽样从2004人中剔除4人,剩下的2000人再按系统抽样的方法进行,则每人入选的概率为()A.不全相等B.均不相等C.都相等,且为D.都相等,且为5.在空间直角坐标系中,一定点到三个坐标平面的距离都是2,那么该定点到原点的距离是()A.B.C.D.6.某人5次上班途中所花的时间(单位:分钟)分别为x,y,10,11,9.已知这组数据的平均数为10,方差为2,则|x﹣y|的值为()A.1 B.2 C.3 D.47.某班共有52人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本,已知3号、29号、42号同学在样本中,那么样本中还有一个同学的学号是()A.10 B.11 C.12 D.168.圆(x﹣1)2+y2=1被直线分成两段圆弧,则较短弧长与较长弧长之比为()A.1:2 B.1:3 C.1:4 D.1:59.执行如图所示的程序框图,如果输入的t∈[﹣2,2],则输出的S 属于()A.[﹣6,﹣2]B.[﹣5,﹣1]C.[﹣4,5]D.[﹣3,6] 10.已知过定点P(2,0)的直线l与曲线y=相交于A,B两点,O为坐标原点,当S△AOB=1时,直线l的倾斜角为()A.150°B.135°C.120°D.不存在11.在平面直角坐标系中,过动点P分别作圆C1:x2+y2﹣4x﹣6y+9=0与圆C2:x2+y2+2x+2y+1=0的切线PA与PB(A,B为切点),若|PA|=|PB|若O为原点,则|OP|的最小值为()A.2 B.C.D.12.若实数x,y满足的约束条件,将一颗骰子投掷两次得到的点数分别为a,b,则函数z=2ax+by在点(2,﹣1)处取得最大值的概率为()A.B.C.D.二、填空题:(共4小题,每小题5分,共20分)13.若PQ是圆x2+y2=9的弦,PQ的中点是(1,2),则直线PQ的方程是.14.命题“若a,b都是奇数,则a+b是偶数”的否命题是.15.有一个底面圆的半径为1,高为3的圆柱,点O1,O2分别为这个圆柱上底面和下底面的圆心,在这个圆柱内随机取一点P,则点P到点O1,O2的距离都大于1的概率为.16.若AB是圆x2+(y﹣3)2=1的任意一条直径,O为坐标原点,则=.三、解答题:(共6小题,共70分)17.求证:“若m>0,则方程x2+x﹣m=0有实根”为真命题.18.从某企业生产的某种产品中随机抽取100件,测量这些产品的某项质量指标,由测量结果得到如下频数分布表:质量指标值分组[75,85)[85,95)[95,105)[105,115)[115,125)频数62638228(1)在图中作出这些数据的频率分布直方图;(2)估计这种产品质量指标值的平均数、中位数(保留2位小数);(3)根据以上抽样调査数据,能否认为该企业生产的这种产品符合“质量指标值不低于95的产品至少要占全部产品的80%”的规定?19.下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x3456y 2.534 4.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y关于x的线性回归方程=x+;(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据第2题求出的回归方程,预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤?(参考数值:3×2.5+4×3+5×4+6×4.5=66.5)20.在甲、乙等5位学生参加的一次社区专场演唱会中,每位学生的节目集中安排在一起演出,若采用抽签的方法随机确定各位学生的演出顺序(序号为1,2,3,4,5).(1)甲、乙两人的演出序号至少有一个为偶数的概率;(2)甲、乙两人的演出序号不相邻的概率.21.已知关于x的一元二次方程x2﹣2(a﹣2)x﹣b2+16=0(1)若a,b是一枚骰子掷两次所得到的点数,求方程有两正根的概率.(2)若a∈[2,6],b∈[0,4],求方程没有实根的概率.22.已知过原点的动直线与圆相交于不同的两点A,B.(1)求线段AB的中点M的轨迹C的方程;(2)是否存在实数,使得直线L:y=k(x﹣4)与曲线C只有一个交点:若存在,求出的取值范围;若不存在,说明理由.参考答案一、单项选择题1.B.2.C3.B.4.C.5.B.6.D.7.D.8.A.9.D10.A.11.B.12.D.二、填空题13.解:设圆的圆心为O,PQ的中点是E(1,2),则OE⊥PQ,则k oE==2∴k PQ=﹣∴直线PQ的方程为y﹣2=﹣(x﹣1),整理得x+2y﹣5=0故答案为:x+2y﹣5=014.解:条件和结论同时进行否定,则否命题为:若a,b不都是奇数,则a+b不是偶数.故答案为:若a,b不都是奇数,则a+b不是偶数15.解:∵到点O1的距离等于1的点构成一个半个球面,到点O2的距离等于1的点构成一个半个球面,两个半球构成一个整球,如图,点P到点O1,O2的距离都大于1的概率为:P====,故答案为:.16.解:如图,设圆心为C(0,3),则;由圆的标准方程知,圆的半径为1,∴;∴===9﹣1=8.故答案为:8.三、解答题17.证明:若m>0,则△=4+4m>0,方程有实根,故“m>0,则方程x2+x﹣m=0有实根”为真命题.18.解:(1)由已知作出频率分布表为:质量指[75,85)[85,95)[95,105)[105,[115,标值分组115)125)频数62638228频率0.060.260.380.220.08由频率分布表作出这些数据的频率分布直方图为:(2)质量指标值的样本平均数为:=80×0.06+90×0.26+100×0.38+110×0.22+120×0.08=100,∵[75,95)内频率为:0.06+0.26=0.32,∴中位数位于[95,105)内,设中位数为x,则x=95+×10≈99.74,∴中位数为99.74.(3)质量指标值不低于95 的产品所占比例的估计值为0.38+0.22+0.08=0.68.由于该估计值小于0.8,故不能认为该企业生产的这种产品“质量指标值不低于95 的产品至少要占全部产品80%的规定.19.解:(1)把所给的四对数据写成对应的点的坐标,在坐标系中描出来,得到散点图如下;(2)由对照数据,计算得=×(3+4+5+6)=4.5,=×(2.5+3+4+4.5)=3.5,=32+42+52+62=86,x i y i=3×2.5+4×3+5×4+6×4.5=66.5,∴回归方程的系数为==0.7,=3.5﹣0.7×4.5=0.35,∴所求线性回归方程为=0.7x+0.35;(3)由(2)的线性回归方程,估计生产100吨甲产品的生产能耗为0.7×100+0.35=70.35(吨),∴90﹣70.35=19.65吨,预测比技改前降低了19.65吨标准煤.20.解:(1)在甲、乙等5位学生参加的一次社区专场演唱会中,每位学生的节目集中安排在一起演出,采用抽签的方法随机确定各位学生的演出顺序(序号为1,2,3,4,5).基本事件总数n==120,甲、乙两人的演出序号至少有一个为偶数的对立事件为甲、乙两人的演出序号都是奇数,∴甲、乙两人的演出序号至少有一个为偶数的概率p1=1﹣=.(2)甲、乙两人的演出序号不相邻的对立事件是甲、乙两人的演出序号相邻,∴甲、乙两人的演出序号不相邻的概率:p2=1﹣=.21.解:(1)由题意知本题是一个古典概型用(a,b)表示一枚骰子投掷两次所得到的点数的事件依题意知,基本事件(a,b)的总数有36个二次方程x2﹣2(a﹣2)x﹣b2+16=0有两正根,等价于即“方程有两个正根”的事件为A,则事件A包含的基本事件为(6,1)、(6,2)、(6,3)、(5,3)共4个∴所求的概率为(2)由题意知本题是一个几何概型,试验的全部结果构成区域Ω={(a,b)|2≤a≤6,0≤b≤4},其面积为S(Ω)=16满足条件的事件为:B={(a,b)|2≤a≤6,0≤b≤4,(a﹣2)2+b2<16}其面积为∴所求的概率P(B)=22.解:(1)设M(x,y),∵点M为弦AB中点即C1M⊥AB,∴即,∴线段AB的中点M的轨迹的方程为;(2)由(1)知点M的轨迹是以为圆心为半径的部分圆弧EF(如图所示,不包括两端点),且,,又直线L:y=k(x﹣4)过定点D(4,0),当直线L与圆C相切时,由得,又,结合上图可知当时,直线L:y=k(x﹣4)与曲线C只有一个交点.2020—2021学年高二数学第一学期期中考试模拟试卷(四)(理科)(考试时间120分钟满分150分)一、单项选择题(每小题5分,满分60分)1.直线x+y+1=0的倾斜角和斜率分别是()A.45°,1 B.135°,﹣1 C.45°,﹣1 D.90°,不存在2.垂直于同一条直线的两条直线一定()A.平行B.相交 C.异面 D.以上都有可能3.设m,n是两条不同的直线,α,β,γ是三个不同的平面,给出下列四个命题:①若m⊥α,n∥α,则m⊥n②若α∥β,β∥γ,m⊥α,则m⊥γ③若m∥α,n∥α,则m∥n④若α⊥γ,β⊥γ,则α∥β其中正确命题的序号是()A.①和②B.②和③C.③和④D.①和④4.过点(﹣1,3)且垂直于直线x﹣2y+3=0的直线方程为()A.2x+y﹣1=0 B.2x+y﹣5=0 C.x+2y﹣5=0 D.x﹣2y+7=05.原点到直线l:x﹣2y+3=0的距离是()A.B.C.D.6.如图,三菱锥P﹣ABC中,PA⊥平面ABC,∠BAC=90°,则二面角B﹣PA﹣C的大小等于()A.30°B.45°C.60°D.90°7.过两直线x﹣2y+2=0和2x+y﹣1=0的交点且斜率为1的直线方程为()A.x﹣y﹣1=0 B.x+y﹣1=0 C.x﹣y+1=0 D.x+y+1=08.两直线3x﹣2y﹣1=0与3x﹣2y+1=0平行,则它们之间的距离为()A.4 B.C.D.9.若直线(1+a)x+y+1=0与圆x2+y2﹣2x=0相切,则a的值为()A.﹣1,1 B.﹣2,2 C.1 D.﹣110.圆O1:x2+y2﹣2x=0和圆O2:x2+y2﹣4y=0的位置关系是()A.相离B.相交 C.外切 D.内切11.过原点且倾斜角为60°的直线被圆x2+(y﹣2)2=4所截得的弦长为()A.B.C.D.212.如果直线l沿x轴负方向平移3个单位再沿y轴正方向平移1个单位后,又回到原来的位置,那么直线l的斜率是()A.B.﹣3 C.D.3二、填空题.(每小题5分,满分20分)13.直径为4的球的表面积等于______.14.正方体ABCD﹣A1B1C1D1中,BD1与平面AA1D1D所成的角的正切值是______15.圆x2+y2=1上的点到直线3x+4y﹣25=0距离的最小值为______.16.一直线过点M(﹣3,4),并且在两坐标轴上截距相等,求这条直线方程是______.三、解答题(共70分)17.已知四边形MNPQ的顶点M(1,1),N(3,﹣1),P(4,0),Q(2,2),(1)求斜率k MN与斜率k PQ;(2)求证:四边形MNPQ为矩形.18.已知圆O的圆心为(2,﹣1),且圆与直线3x+4y﹣7=0相切.求:(1)求圆O的标准方程;(2)圆心O关于直线2x﹣y+1=0的对称点O′为圆心,半径不变的圆的方程.19.已知△ABC的三顶点是A(﹣1,﹣1),B(3,1),C(1,6).直线l平行于AB,交AC,BC分别于E,F,△CEF的面积是△CAB面积的.求:(1)直线AB边上的高所在直线的方程.(2)直线l所在直线的方程.20.如图,在四棱锥P﹣ABCD中,底面为直角梯形,AD∥BC,∠BAD=90°,PA⊥底面ABCD,M、N分别为PC、PB的中点.PA=AB.(1)求证:MN∥平面PAD;(2)求证:PB⊥DM.21.圆(x+1)2+y2=8内有一点P(﹣1,2),AB过点P,①若弦长,求直线AB的倾斜角;②若圆上恰有三点到直线AB的距离等于,求直线AB的方程.22.(1)无论K为何值时,直线(k+2)x+(1﹣k)y﹣4k﹣5=0都恒过定点P.求P点的坐标.(2)证明:直线(k+2)x+(1﹣k)y﹣4k﹣5=0恒过第四象限.参考答案一、单项选择题1.B.2.D 3.A 4.A.5.D.6.D.7.C.8.B.9.D.10.B11.B12.A.二、填空题13.解:球的半径为:2,球的表面积为:4π×22=16π.故答案为:16π.14.解:∵AB⊥平面AA1D1D,∴∠AD1B为BD1与平面AA1D1D所成的角,设正方体棱长为1,则AD1=,∴tan∠AD1B===.故答案为.15.解:∵圆心(0,0)到直线3x+4y﹣25=0的距离d=∴圆x2+y2=1上的点到直线3x+4y﹣25=0距离的最小值是AC=5﹣r=5﹣1=4故答案为:416.解:截距为0时,直线经过原点,可得直线方程为:y=x,即4x+3y=0.截距不为0时,设直线方程为:x+y=a,把点M(﹣3,4)代入可得a=﹣3=4=1,可得直线方程为:x+y=1.综上可得:直线的方程为:4x+3y=0,或x+y=1.故答案为:4x+3y=0,或x+y=1.三、解答题.17.解:(1)四边形MNPQ的顶点M(1,1),N(3,﹣1),P(4,0),Q(2,2),斜率k MN==﹣1斜率k PQ==﹣1.(2)证明:由(1)可知:k MN=k PQ;即有MN∥PQ,斜率k MQ==1斜率k PN==1.可知PN∥MQ,并且PQ⊥PN,所以,四边形MNPQ为矩形.18.解:(1)由点(2,﹣1)到直线3x+4y﹣7=0的距离d=,得圆的半径r=d=1,则所求的圆的方程为(x﹣2)2+(y+1)2=1;(2)设(2,﹣1)关于直线2x﹣y+1=0的对称点O′为:(a,b),则,解得a=﹣,b=,即O′(﹣,),r=1,则所求的圆的方程为(x+)2+(y﹣)2=1.19.解:(1)∵A(﹣1,﹣1),B(3,1),C(1,6),∴k AB=.∴AB边上的高所在的直线的斜率k==﹣2.∴AB边上的高所在的直线方程为:y﹣6=﹣2(x﹣1),即2x+y﹣8=0;(2)由(1)知直线AB的斜率k AB=,∵EF∥AB,∴直线EF的斜率为.∵△CEF的面积是△CAB面积的,∴E是CA的中点,∴点E的坐标是(0,).∴直线EF的方程是y﹣=x,即x﹣2y+5=0.∴直线l所在直线的方程为:x﹣2y+5=0.20.证明:(1)因为M、N分别为PC、PB的中点,所以MN∥BC,且MN=BC.又因为AD∥BC,所以MN∥AD.又AD⊥平面PAD,MNË平面PAD,所以MN∥平面PAD.(2)因为AN为等腰DABP底边PB上的中线,所以AN⊥PB.因为PA⊥平面ABCD,ADÌ平面ABCD,所以AD⊥PA.又因为AD⊥AB,且AB∩AP=A,所以AD⊥平面PAB.又PB⊂平面PAB,所以AD⊥PB.因为AN⊥PB,AD⊥PB,且AN∩AD=A,所以PB⊥平面ADMN.又DM⊂平面ADMN,所以PB⊥DM.21.解:①设圆心(﹣1,0)到直线AB的距离为d,则d==1,设直线AB的倾斜角α,斜率为k,则直线AB的方程y﹣2=k(x+1),即kx﹣y+k+2=0,d=1=,∴k=或﹣,∴直线AB的倾斜角α=60°或120°.②∵圆上恰有三点到直线AB的距离等于,∴圆心(﹣1,0)到直线AB的距离d==,直线AB的方程y﹣2=k(x+1),即kx﹣y+k+2=0,由d==,解可得k=1或﹣1,直线AB的方程x﹣y+3=0 或﹣x﹣y+1=0.22.(1)解:直线(k+2)x+(1﹣k)y﹣4k﹣5=0,即k(x﹣y﹣4)+(2x+y﹣5)=0,它一定经过直线x﹣y﹣4=0和直线2x+y﹣5=0的交点P.由,求得,故点P为(3,﹣1);证明:(2)由(1)得:直线恒过(3,﹣1),而(3,﹣1)在第四象限,故直线(k+2)x+(1﹣k)y﹣4k﹣5=0恒过第四象限.2020—2021学年高二数学第一学期期中考试模拟试卷(五)(理科)(考试时间120分钟满分150分)一、单项选择题(本大题共12小题,每小题5分,共60分)1.数列2,5,11,20,x,47,…中的x值为()A.28 B.32 C.33 D.272.不等式x2+2x﹣3≥0的解集为()A.{x|x≥3或x≤﹣1} B.{x|﹣1≤x≤3} C.{x|x≥1或x≤﹣3} D.{x|﹣3≤x≤1}3.设等差数列a n的前n项之和为S n,已知S10=100,则a4+a7=()A.12 B.20 C.40 D.1004.如果a、b、c∈R,则下列命题中正确的是()A.若a>b,c>b,则a>c B.若a>﹣b,则c﹣a<c+bC.若a>b,则ac2>bc2D.若a>b,c>d,则ac>bd5.已知命题:p:∃x∈R,x2+1<2x;命题q:若mx2﹣mx﹣1<0恒成立,则﹣4<m <0,那么()A.¬p是假命题 B.q是真命题C.“p或q”为假命题D.“p且q”为真命题6.在△ABC中,角A、B、C所对的边分别是a、b、c,并且a=1,b=,A=30°,则c的值为()A.2 B.1 C.1或2 D.或27.在△ABC中,若lgsinA﹣lgcosB﹣lgsinC=lg2,则△ABC的形状是()A.直角三角形B.等边三角形C.不能确定D.等腰三角形8.若数列{a n}满足a n+1=,若,则a20的值为()A.B.C.D.9.关于x的不等式ax2﹣ax+1>0恒成立的一个必要不充分条件是()A.0≤a<4 B.0<a<4 C.0≤a≤4 D.a>4或a<010.如图,甲、乙两楼相距20米,从乙楼底望甲楼顶的仰角为60°,从甲楼顶望乙楼顶的俯角为30°,则乙楼的高是()A.B.20C.40 D.1011.设x,y满足约束条件,若目标函数z=ax+by(a>0,b>0)的值是最大值为12,则的最小值为()A.B.C.D.412.定义域为R的函数f(x)满足f(x+2)=2f(x),当x∈[0,2)时,f(x)=若x∈[﹣4,﹣2)时,f(x)≤﹣有解,则实数t的取值范围是()A.[﹣2,0)∪(0,1)B.[﹣2,0)∪[1,+∞) C.[﹣2,1]D.(﹣∞,﹣2]∪(0,1]二、填空题:(本大题共4小题,每小题5分,共20分)13.等比数列{a n}中,公比q=2,则=.14.已知正数m,n满足mn=m+n+3,则mn的取值范围为.15.在△ABC中,若sinA:sinB:sinC=7:8:13,则C=度.16.设△ABC的内角A,B,C所对边的长分别为a,b,c,则下列命题正确的个数是(写出所有正确命题的编号).①若sinA>sinB>sinC则a>b>c;②若ab>c2,则C<③若a+b>2c,则C<;④若(a2+b2)c2≤2a2b2,则C>.三、解答题:(本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤)17.设等差数列{a n}的前n项和为S n,已知公差d<0,S3=12,且2a1,a2,a3+1成等比数列;(1)当n取何值时,S n有最大值,最大值是多少?(2)设T n=|a1|+|a2|+…+|a n|,求T10的值.18.设命题p:<1,命题q:x2﹣(2a+1)x+a(a+1)<0,若¬p是¬q的充分不必要条件,求实数a的取值范围.19.某家公司每月生产两种布料A和B,所有原料是两种不同颜色的羊毛,如表给出了生产每匹每种布料所需的羊毛量,以及可供使用的每种颜色的羊毛的总量.羊毛颜色每匹需要(kg)供应量(kg)布料A 布料B红 4 4 1400绿 6 3 1800已知生产每匹布料A、B的利润分别为120元、80元.那么如何安排生产才能够产生最大的利润?最大的利润是多少?20.在锐角△ABC中,A、B、C的对边分别是a,b,c,(a2+c2﹣b2)tanB=ac.(1)求sinB的值;=,求a的值.(2)若b=2,S△ABC21.已知函数f(x)=﹣+.(1)解关于x的不等式f(x)≥0.(2)若f(x)+2x≥0在(0,+∞)上恒成立,求a的取值范围.。

高二数学期中模拟试题

高二数学期中模拟试题

期中模拟试题【模拟试题】一. 基础知识:1 下列加线字的注音完全正确的一项是()A. 笨拙zhuō狩猎shǒu 屏弃bǐng 忍俊不禁jìnB. 溯流而上sù璞玉浑金pú狂放不羁jì强词夺理qiǎngC. 响遏行云è处之泰然chǔ繁冗拖沓rǒng 大雨滂沱pāngD. 劲旅jìng 框架kuàng 呼吁yù庇护pì2. 下列各组词语中,没有错别字的一组是()A. 岌岌可危峥嵘岁月万事石差跎夙兴夜寐B. 喷薄欲出摧眉折腰星斗阑干仗义执言C. 意气奔放斑驳陆离断壁颓桓演绎归纳D. 苍茫嫡亲后裔当人不让3. 填入下面这段文字中横线处的词,正确的一组是()读者在阅读文章时,他们最为______的,往往是作者对生活的理解和感受。

当他们的亲身_________与作者的思想感情发生________时,就可能_______对生活的思考和分析。

A. 关注体验撞击诱发B. 关心经历撞击导致C. 关注体验冲突导致D. 关心经历冲突诱发4. 下列句子中,加线的成语使用恰当的一项是()A. 最新研究表明,海平面上升加快,上海应未雨绸缪,加强防范。

B. 新产品的试验已到了关键时刻,大家做好增压准备,功败垂成就在此一举了。

C. 写诗时敝帚自珍,把好也不过是古诗词的翻版,毫无创新,因而也就不会有多大意义。

D. 政治思想工作不能空穴来风,而应该落到实处。

5. 下列各句中没有语病的一句是()A. 谁又能否认英雄的品质正是在这一天天的努力学习中渐渐培养起来的呢?B. 海湾战争初期,伊拉克通过设置大量假目标,迷惑了多国部队的飞机和侦察卫星的侦察效果,最终使部分飞机保留了下来。

C. 他用铁一般的事实和确凿的证据,剥下了这个“正人君子”的真面目。

D. 市委采取有力措施,制止了群众的揭发少数单位的违反财务制度,请客送礼的不良现象。

6. 填入下面横线处的文字最恰当的一项是()菲尔丁说:“不好的书也像不好的朋友一样,可能会把你戕害。

高二数学期中考试试卷

高二数学期中考试试卷

高二数学期中考试试卷一、选择题(每题3分,共30分)1. 若函数f(x)=x^2-4x+3,则f(1)的值为:A. 0B. 1C. 2D. 32. 已知向量a=(3,-1),向量b=(2,1),则向量a与向量b的点积为:A. 4B. 3C. 2D. 13. 若方程x^2-6x+8=0的两个根为x1和x2,则x1+x2的值为:A. 4B. 6C. 8D. 104. 函数y=2^x的反函数为:A. y=log2xB. y=2^(1/x)C. y=1/(2^x)D. y=2^(-x)5. 已知三角形ABC的三边长分别为a、b、c,且a^2+b^2=c^2,该三角形为:A. 锐角三角形B. 直角三角形C. 钝角三角形D. 等腰三角形6. 若函数f(x)=x^3-3x+1,则f'(x)的值为:A. 3x^2-3B. x^2-3xC. 3x^2-3x+1D. x^3-3x^2+17. 已知集合A={1,2,3},B={2,3,4},则A∩B的元素个数为:A. 1B. 2C. 3D. 48. 若直线l的方程为y=2x+1,则该直线的斜率为:A. 1B. 2C. 3D. 49. 函数y=sin(x)的周期为:A. πB. 2πC. 3πD. 4π10. 已知等比数列{an}的首项a1=2,公比q=3,则a3的值为:A. 6B. 18C. 54D. 162二、填空题(每题4分,共20分)11. 已知数列{an}的通项公式为an=2n-1,则a5的值为______。

12. 若函数f(x)=x^2-6x+8,则f(x)的最小值为______。

13. 已知向量a=(1,2),向量b=(3,-1),则向量a与向量b的叉积为______。

14. 函数y=x^2+2x+1的顶点坐标为______。

15. 已知双曲线x^2/a^2-y^2/b^2=1的焦点在x轴上,则a和b的关系为______。

三、解答题(每题10分,共50分)16. 已知函数f(x)=x^3-3x^2+2,求f(x)的导数f'(x),并求出f'(x)=0的解。

高二数学下学期期中考试

高二数学下学期期中考试

高二数学期中模拟一一、选择题(本大题共10小题,50分)1.若复数z 满足(3-4i )z =|4+3i |,则z 的虚部为( )A .-4B .-45C .4 D.452.用反证法证明命题:“若a ,b ∈N ,ab 能被3整除,那么a ,b 中至少有一个能被3整除”时,假设应为( )A .a ,b 都能被3整除B .a ,b 都不能被3整除C .a ,b 不都能被3整除D .a 不能被3整除3.用数学归纳法证明12+22+…+(n -1)2+n 2+(n -1)2+…+22+12=n (2n 2+1)3时,从n =k 到n =k +1时,等式左边应添加的式子是( )A .(k -1)2+2k 2B .(k +1)2+k 2C .(k +1)2 D.13(k +1)[2(k +1)2+1] 4.已知函数f (x )=1ln (x +1)-x,则y =f (x )的图象大致为( )5.设x i ,a i (i =1,2,3)均为正实数,甲、乙两位同学由命题:“若x 1+x 2=1,则a 1x 1+a 2x 2≤(a 1+a 2)2”分别推理得出了新命题:甲:“若x 1+x 2=1,则a 21x 1+a 22x 2≤(a 1+a 2)2”;乙:“若x 1+x 2+x 3=1,则a 1x 1+a 2x 2+a 3x 3≤(a 1+a 2+a 3)2”.他们所用的推理方法是( ) A .甲、乙都用演绎推理 B .甲、乙都用类比推理C .甲用演绎推理,乙用类比推理D .甲用归纳推理,乙用类比推理6. 曲线3πcos 02y x x ⎛⎫= ⎪⎝⎭≤≤与x 轴以及直线3π2x =所围图形的面积为( ) A.4B.2C.52D.37. 函数y =12x 2-ln x 的单调递减区间为( )A .(-1,1]B .(0,1]C .[1,+∞)D .(0,+∞)8.正方体ABCD -A 1B 1C 1D 1中,二面角A -BD 1-B 1的大小为( )A .90°B .60°C .120°D .45°9.函数f(x)=log a (x 3-ax) (a>0且a ≠1)在区间)0,21(-内单调递增,则a 的取值范围是( ) A. ⎪⎭⎫⎢⎣⎡1,41 B.⎪⎭⎫⎢⎣⎡1,43 C. ⎪⎭⎫ ⎝⎛+∞,49 D.⎪⎭⎫⎝⎛49,110.把正整数按下图所示的规律排序,则从2 011到2 013的箭头方向依次为( )二、填空题(本大题共5小题,25分,把答案填在题中横线上)11. 若数列{a n }是等比数列,且a n >0,则有数列|21n n n a a a b ⋅⋅⋅=(n ∈N *)也为等比数列,类比上述性质,相应的:若数列{c n }是等差数列,则有d n =______也是等差数列. 12.若a =(2,3,-1),b =(-2,1,3),则以a ,b 为邻边的平行四边形的面积为________ 13.由曲线2y x =与2x y =所围成的曲边形的面积为______________.14.已知P ,Q 为抛物线x 2=2y 上两点,点P ,Q 的横坐标分别为4,-2,过P ,Q 分别作抛物线的切线,两切线交于点A ,则点A 的纵坐标为________. 15.观察下列等式:12=1,12-22=-3, 12-22+32=6,12-22+32-42=-10,…, 照此规律,第n 个等式可为________.三.解答题(六个大题,共75分)16.(本题满分12分)已知复数z =c os θ+i sin θ(0≤θ≤2π),求θ为何值时,|1-i +z |取得最值.并求出它的最值.17. (本题满分12分)如图,四棱锥P -ABCD 中,底面ABCD 为平行四边形,∠DAB =60°,AB =2AD ,PD ⊥底面ABCD .(1)证明:P A ⊥BD ;(2)若PD =AD ,求二面角A -PB -C 的余弦值.18. (本题满分12分)已知a ,b 是正实数,求证:b a ab ba +≥+19.(本题满分12分)已知a ∈R ,函数f (x )=x 2|x -a |.(1)当a =2时,求使f (x )=x 成立的x 的集合; (2)求f (x )在区间[1,2]上的最小值.20. (本题满分13分)如图所示,已知曲线C 1:y =x 2与曲线C 2:y =-x 2+2ax (a >1)交于点O 、A ,直线x =t (0<t ≤1)与曲线C 1、C 2分别相交于点D 、B ,连接OD 、DA 、AB .(1)写出曲边四边形ABOD (阴影部分)的面积S 与t 的函数关系式S =f (t ); (2)求函数S =f (t )在区间(0,1]上的最大值.21. (本题满分14分)等比数列{n a }的前n 项和为n S , 已知对任意的n N +∈ ,点(,)n n S ,均在函数(0x y b r b =+>且1,,b b r ≠均为常数)的图像上. (1)求r 的值;(11)当b=2时,记 22(l o g 1)()n n b a n N +=+∈证明:对任意的n N +∈ ,不等式1212111·······1n nb b b n b b b +++>+。

新高二数学上期中第一次模拟试卷(附答案)

新高二数学上期中第一次模拟试卷(附答案)

新高二数学上期中第一次模拟试卷(附答案)一、选择题1.在本次数学考试中,第二大题为多项选择题.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分,小明因某原因网课没有学习,导致题目均不会做,那么小明做一道多选题得5分的概率为( ) A .115B .112C .111D .142.一组数据的平均数为m ,方差为n ,将这组数据的每个数都乘以()0a a >得到一组新数据,则下列说法正确的是( ) A .这组新数据的平均数为m B .这组新数据的平均数为a m + C .这组新数据的方差为an D .这组新数据的标准差为a n3.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<4.在去年的足球甲A 联赛上,一队每场比赛平均失球数是1.5,全年比赛失球个数的标准差为1.1;二队每场比赛平均失球数是2.1,全年失球个数的标准差是0.4,你认为下列说法中正确的个数有( )①平均来说一队比二队防守技术好;②二队比一队防守技术水平更稳定;③一队防守有时表现很差,有时表现又非常好;④二队很少不失球. A .1个B .2个C .3个D .4个5.甲、乙两名射击运动员分别进行了5次射击训练,成绩(单位:环)如下: 甲:7,8,8,8,9 乙:6,6,7,7,10;若甲、乙两名运动员的平均成绩分别用12,x x 表示,方差分别为2212,S S 表示,则( )A .221212,x x s s >> B .221212,x x s s >< C .221212,x x s s << D .221212,x x s s <> 6.我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为 ( ) A .45,75,15B .45,45,45C .45,60,30D .30,90,157.从一批产品中取出三件产品,设事件A 为“三件产品全不是次品”,事件B 为“三件产品全是次品”,事件C 为“三件产品不全是次品”,则下列结论正确的是( ) A .事件A 与C 互斥 B .事件B 与C 互斥 C .任何两个事件均互斥D .任何两个事件均不互斥8.下面的算法语句运行后,输出的值是( )A .42B .43C .44D .459.运行该程序框图,若输出的x 的值为16,则判断框中不可能填( )A .5k ≥B .4k >C .9k ≥D .7k >10.为了解某社区居民的家庭年收入所年支出的关系,随机调查了该社区5户家庭,得到如下统计数据表: 收入x (万元)8.28.6 10.0 11.3 11.9支出y (万元)6.27.58.0 8.59.8根据上表可得回归直线方程ˆˆˆybx a =+,其中ˆˆˆ0.76,b a y bx ==-,据此估计,该社区一户收入为15万元家庭年支出为( ) A .11.4万元B .11.8万元C .12.0万元D .12.2万元11.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为312.某程序框图如图所示,该程序运行后输出的k 的值是( )A .4B .5C .6D .7二、填空题13.为了防止职业病,某企业采用系统抽样方法,从该企业全体1200名员工中抽80名员工做体检,现从1200名员工从1到1200进行编号,在115~中随机抽取一个数,如果抽到的是7,则从4660~这15个数中应抽取的数是__________.14.一盒中有6个乒乓球,其中4个新的,2个旧的,从盒子中任取3个球来用,用完后装回盒子中,此时盒中旧球个数X 是一个随机变量,则(4)P X =的值为___________.15.集合{|64,1,2,3,4,5,6}A y y n n ==-=,集合1{|2,1,2,3,4,5,6}n B y y n -===,若任意A∪B 中的元素a ,则a ∈A∩B 的概率是________。

【易错题】高二数学上期中第一次模拟试题及答案

【易错题】高二数学上期中第一次模拟试题及答案

【易错题】高二数学上期中第一次模拟试题及答案一、选择题1.如图,正方形ABCD 内的图形来自中国古代的太极图,正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称,在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .8πC .12D .4π2.设,m n 分别是先后抛掷一枚骰子得到的点数,则方程20x mx n ++=有实根的概率为( ) A .1936B .1136C .712D .123.在区间上随机取两个数,x y ,记1p 为事件“12x y +≥”的概率,2p 为事件“12x y -≤”的概率,3p 为事件“12xy ≤”的概率,则 ( ) A .123p p p << B .231p p p << C .312p p p <<D .321p p p <<4.从区间[]0,2随机抽取4n 个数1232,,,...,n x x x x ,1232,,,...,n y y y y 构成2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,其中两数的平方和小于4的数对有m 个,则用随机模拟的方法得到的圆周率疋的近似值为( ) A .2m nB .2mnC .4m nD .16m n5.如图1为某省2019年1~4月快递义务量统计图,图2是该省2019年1~4月快递业务收入统计图,下列对统计图理解错误的是( )A .2019年1~4月的业务量,3月最高,2月最低,差值接近2000万件B .2019年1~4月的业务量同比增长率超过50%,在3月最高C .从两图来看2019年1~4月中的同一个月快递业务量与收入的同比增长率并不完全一致D .从1~4月来看,该省在2019年快递业务收入同比增长率逐月增长6.用秦九韶算法求多项式()54227532f x x x x x x =+++++在2x =的值时,令05v a =,105v v x =+,…,542v v x =+,则3v 的值为( )A .83B .82C .166D .1677.我国明朝数学家程大位著的《算法统宗》里有一道闻名世界的题目:“一百馒头一百僧,大僧三个更无争.小僧三人分一个,大小和尚各几丁?”.如右图所示的程序框图反映了对此问题的一个求解算法,则输出n 的值为 ( )A .20B .25C .30D .358.为计算11111123499100S =-+-++-…,设计了下面的程序框图,则在空白框中应填入A .1i i =+B .2i i =+C .3i i =+D .4i i =+9.如图所示是为了求出满足122222018n +++>L 的最小整数n ,和两个空白框中,可以分别填入( )A .2018S >?,输出1n -B .2018S >?,输出nC .2018S ≤?,输出1n -D .2018S ≤?,输出n10.某厂家为了解销售轿车台数与广告宣传费之间的关系,得到如表统计数据表:根据数据表可得回归直线方程y bx a =+$$$,其中ˆ 2.4b=,$a y bx =-$,据此模型预测广告费用为9万元时,销售轿车台数为( ) 广告费用x (万元)23456销售轿车y (台数)3 4 6 10 12A .17B .18C .19D .2011.在发生某公共卫生事件期间,有专业机构认为该事件在一段时间没有发生在规模群体感染的标志为“连续10天,每天新增疑似病例不超过7人”.根据过去10天甲、乙、丙、丁四地新增疑似病例数据,一定符合该标志的是 A .甲地:总体均值为3,中位数为4 B .乙地:总体均值为1,总体方差大于0 C .丙地:中位数为2,众数为3D .丁地:总体均值为2,总体方差为312.某产品的广告费用x 与销售额y 的统计数据如下表: 广告费用(万元)4235销售额(万元)49263954根据上表可得回归方程ˆˆˆybx a =+中的ˆb 为9.4,据此模型预报广告费用为6万元时销售额为 A .63.6万元B .65.5万元C .67.7万元D .72.0万元二、填空题13.如图所示,在边长为1的正方形OABC 中任取一点M .则点M 恰好取自阴影部分的概率是 .14.一盒中有6个乒乓球,其中4个新的,2个旧的,从盒子中任取3个球来用,用完后装回盒子中,此时盒中旧球个数X 是一个随机变量,则(4)P X =的值为___________.15.已知多项式32256f x x x x =--+(),用秦九韶算法,当10x =时多项式的值为__________.16.某班全体学生参加英语成绩的频率分布直方图如图,若低于60分的人数是15,则该班的学生人数是__________.s ,则正整数M为__________.17.执行如图所示的程序框图,如果输出318.甲、乙、丙三人进行传球练习,共传球三次,球首先从甲手中传出,则第3次球恰好传回给甲的概率是________.19.某公共汽车站,每隔15分钟有一辆车出发,并且发出前在车站停靠3分钟,则乘客到站候车时间大于10分钟的概率为________.(结果用分数表示)20.从某校高三年级随机抽取一个班,对该班50名学生的高校招生体检表中的视力情况进行统计,其频率分布直方图如图所示:若某高校A专业对视力的要求在0.9以上,则该班学生中能报A专业的人数为________三、解答题21.现从某医院中随机抽取了7位医护人员的关爱患者考核分数(患者考核:10分制),用相关的特征量y表示;医护专业知识考核分数(试卷考试:100分制),用相关的特征量x表示,数据如下表:x98889691909296y9.98.69.59.09.19.29.8(1)求y 关于x 的线性回归方程(计算结果精确到0.01);(2)利用(1)中的线性回归方程,分析医护专业考核分数的变化对关爱患者考核分数的影响,并估计当某医护人员的医护专业知识考核分数为95分时,他的关爱患者考核分数(精确到0.1).参考公式及数据:回归直线方程ˆˆˆybx a =+中斜率和截距的最小二乘法估计公式分别为 121(x x)(y y)ˆˆˆ,(x x)niii nii ba y bx ==--==--∑∑,其中72193,9.3,()()9.9i ii x y x x y y ===--=∑. 22.艾滋病是一种危害性极大的传染病,由感染艾滋病病毒(HIV 病毒)引起,它把人体免疫系统中最重要的CD 4T 淋巴细胞作为主要攻击目标,使人体丧失免疫功能.下表是近八年来我国艾滋病病毒感染人数统计表: 年份 2011 2012 2013 2014 2015 2016 2017 2018 年份代码x12345678感染者人数(y 单位:万人)34.3 38.3 43.3 53.8 57.7 65.4 71.8 85()1请根据该统计表,画出这八年我国艾滋病病毒感染人数的折线图;()2请用相关系数说明:能用线性回归模型拟合y 与x 的关系;()3建立y 关于x 的回归方程(系数精确到0.01),预测2019年我国艾滋病病毒感染人数.42 6.48≈;81449.6ii y==∑,812319.5i i i x y ==∑821()46.2i i y y =-=∑,参考公式:相关系数()12211()()()ni nniii i x x y y r x x y y ===--=--∑∑∑,回归方程y bx a =+$$$中,b $()121()()ni i i n i i x x y y x x ==--=-∑∑,a y bx =-$$. 23.某小卖部为了研究气温对热饮销售的影响,经过统计,得到一个卖出的热饮杯数y 与当天气温(平均温度)/℃x 的对比表:x0 1 3 4 y 140136129125(1)请在图中画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程ˆˆˆybx a =+; (3)如果某天的气温是5℃,试根据(2)求出的线性回归方程预测这天大约可以卖出的热饮杯数.参考公式:最小二乘法求线性回归方程系数公式:1221ˆ==-=-∑∑ni ii nii x ynxybxnx ,ˆˆ=-ay bx . 参考数据:01401136312941251023,(140136129125)4132.5⨯+⨯+⨯+⨯=+++÷=.24.端午节吃粽子是我国的传统习俗,设一盘中装有10个粽子,其中豆沙粽2个,肉粽3个,白粽5个,这三种粽子的外观完全相同,从中任意选取3个. (1)求三种粽子各取到1个的概率.(2)设X 表示取到的豆沙粽个数,求X 的分布列与数学期望.25.某“双一流A 类”大学就业部从该校2018年已就业的大学本科毕业生中随机抽取了100人进行问卷调查,其中一项是他们的月薪收入情况,调查发现,他们的月薪收入在人民币1.65万元到2.35万元之间,根据统计数据分组,得到如下的频率分布直方图:(1)将同一组数据用该区间的中点值作代表,求这100人月薪收入的样本平均数x ; (2)该校在某地区就业的2018届本科毕业生共50人,决定于2019国庆长假期间举办一次同学联谊会,并收取一定的活动费用,有两种收费方案:方案一:设区间[)1.85,2.15Ω=,月薪落在区间Ω左侧的每人收取400元,月薪落在区间Ω内的每人收取600元,月薪落在区间Ω右侧的每人收取800元; 方案二:每人按月薪收入的样本平均数的3%收取;用该校就业部统计的这100人月薪收入的样本频率进行估算,哪一种收费方案能收到更多的费用?26.在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,袋中有3只黄色、3只白色的乒乓球(其体积、质地完成相同),旁边立着一块小黑板写道:摸球方法:从袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱. (1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球1个白球的概率是多少?(3)假定一天中有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【解析】设正方形边长为a ,则圆的半径为2a ,正方形的面积为2a ,圆的面积为2π4a .由图形的对称性可知,太极图中黑白部分面积相等,即各占圆面积的一半.由几何概型概率的计算公式得,此点取自黑色部分的概率是221ππ248a a ⋅=,选B. 点睛:对于几何概型的计算,首先确定事件类型为几何概型并确定其几何区域(长度、面积、体积或时间),其次计算基本事件区域的几何度量和事件A 区域的几何度量,最后计算()P A .2.A解析:A 【解析】由题意知本题是一个等可能事件的概率, 试验发生包含的事件数是6×6=36种结果, 方程x 2+mx +n =0有实根要满足m 2−4n ⩾0, 当m =2,n =1 m =3,n =1,2 m =4,n =1,2,3,4 m =5,n =1,2,3,4,5,6, m =6,n =1,2,3,4,5,6 综上可知共有1+2+4+6+6=19种结果 ∴方程x 2+mx +n =0有实根的概率是1936; 本题选择A 选项.3.B解析:B 【解析】 【分析】 【详解】因为,[0,1]x y ∈,对事件“12x y +≥”,如图(1)阴影部分,对事件“12x y -≤”,如图(2)阴影部分, 对为事件“12xy ≤”,如图(3)阴影部分,由图知,阴影部分的面积从下到大依次是,正方形的面积为,根据几何概型公式可得231p p p <<.(1) (2) (3) 考点:几何概型.4.B解析:B 【解析】 【分析】根据随机模拟试验的的性质以及几何概型概率公式列方程求解即可. 【详解】 如下图:由题意,从区间[]0,2随机抽取的2n 个数对()11,x y ,()22,x y ,…,()22,n n x y ,落在面积为4的正方形内,两数的平方和小于4对应的区域为半径为2的圆内,满足条件的区域面积为2124ππ⋅=,所以由几何概型可知42π=m n ,所以2π=m n. 故选:B【点睛】本题主要考查几何概型,属于中档题.5.D解析:D 【解析】 【分析】由题意结合所给的统计图确定选项中的说法是否正确即可. 【详解】对于选项A : 2018年1~4月的业务量,3月最高,2月最低, 差值为439724111986-=,接近2000万件,所以A 是正确的;对于选项B : 2018年1~4月的业务量同比增长率分别为55%,53%,62%,58%,均超过50%,在3月最高,所以B 是正确的;对于选项C :2月份业务量同比增长率为53%,而收入的同比增长率为30%,所以C 是正对于选项D ,1,2,3,4月收入的同比增长率分别为55%,30%,60%,42%,并不是逐月增长,D 错误.本题选择D 选项.【点睛】本题主要考查统计图及其应用,新知识的应用等知识,意在考查学生的转化能力和计算求解能力.6.A解析:A【解析】【分析】利用秦九韶算法,求解即可.【详解】利用秦九韶算法,把多项式改写为如下形式:()((((75)3)1)1)2f x x x x x =+++++按照从里到外的顺序,依次计算一次多项式当2x =时的值:07v =172519v =⨯+=2192341v =⨯+=3412183v =⨯+=故选:A【点睛】本题主要考查了秦九韶算法的应用,属于中档题.7.B解析:B【解析】【分析】模拟执行程序框图,只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可得到输出的n 的值.【详解】输出20,80,100n m s ==≠;21,79,100n m s ==≠;22,78,100n m s ==≠;23,77,100n m s ==≠;24,76,100n m s ==≠;25,75,100n m s ===,退出循环,输出25n =,故选B.本题主要考查程序框图的循环结构流程图,属于中档题. 解决程序框图问题时一定注意以下几点:(1) 不要混淆处理框和输入框;(2) 注意区分程序框图是条件分支结构还是循环结构;(3) 注意区分当型循环结构和直到型循环结构;(4) 处理循环结构的问题时一定要正确控制循环次数;(5) 要注意各个框的顺序,(6)在给出程序框图求解输出结果的试题中只要按照程序框图规定的运算方法逐次计算,直到达到输出条件即可.8.B解析:B【解析】分析:根据程序框图可知先对奇数项累加,偶数项累加,最后再相减.因此累加量为隔项. 详解:由11111123499100S =-+-+⋯+-得程序框图先对奇数项累加,偶数项累加,最后再相减.因此在空白框中应填入2i i =+,选B.点睛:算法与流程图的考查,侧重于对流程图循环结构的考查.先明晰算法及流程图的相关概念,包括选择结构、循环结构、伪代码,其次要重视循环起点条件、循环次数、循环终止条件,更要通过循环规律,明确流程图研究的数学问题,是求和还是求项.9.A解析:A【解析】【分析】通过要求122222018n +++>L 时输出且框图中在“是”时输出确定“”内应填内容;再通过循环体确定输出框的内容.【详解】因为要求122222018n +++>L 时输出,且框图中在“是”时输出,所以“”内输入“2018S >?”, 又要求n 为最小整数,所以“”中可以填入输出1n -,故选:A .【点睛】本题考查了程序框图的应用问题,是基础题. 10.C解析:C【解析】由题意4,7, 2.4,7 2.44 2.6,9,ˆˆˆˆˆˆ 2.49 2.619x y ba y bx x y bx a ===∴=-=-⨯=-∴==+=⨯-=,故选C.11.D【解析】 试题分析:由于甲地总体均值为,中位数为,即中间两个数(第天)人数的平均数为,因此后面的人数可以大于,故甲地不符合.乙地中总体均值为,因此这天的感染人数总数为,又由于方差大于,故这天中不可能每天都是,可以有一天大于,故乙地不符合,丙地中中位数为,众数为,出现的最多,并且可以出现,故丙地不符合,故丁地符合.考点:众数、中位数、平均数、方差12.B解析:B【解析】【分析】【详解】 试题分析:4235492639543.5,4244x y ++++++====Q , ∵数据的样本中心点在线性回归直线上,回归方程ˆˆˆy bx a =+中的ˆb 为9.4, ∴42=9.4×3.5+a , ∴ˆa=9.1, ∴线性回归方程是y=9.4x+9.1,∴广告费用为6万元时销售额为9.4×6+9.1=65.5 考点:线性回归方程二、填空题13.【解析】试题分析:根据题意正方形的面积为而阴影部分由函数与围成其面积为则正方形中任取一点点取自阴影部分的概率为则正方形中任取一点点取自阴影部分的概率为考点:定积分在求面积中的应用几何概型点评:本题考 解析:【解析】试题分析:根据题意,正方形的面积为而阴影部分由函数与围成,其面积为, 则正方形中任取一点,点取自阴影部分的概率为.则正方形中任取一点,点取自阴影部分的概率为考点:定积分在求面积中的应用 几何概型点评:本题考查几何概型的计算,涉及定积分在求面积中的应用,关键是正确计算出阴影部分的面积.14.【解析】【分析】要使盒子中恰好有4个是用过的球要求开始取的3个球1个是用过的2个没有用过的结合组合知识根据古典概型公式可得到结果【详解】从盒子中任取的3个球使用用完全后装回盒子中要使盒子中恰好有4个 解析:35【解析】【分析】要使盒子中恰好有4个是用过的球,要求开始取的3个球1个是用过的,2个没有用过的,结合组合知识根据古典概型公式可得到结果.【详解】从盒子中任取的3个球使用,用完全后装回盒子中,要使盒子中恰好有4个是用过的球,则要求开始取的3个球1个是用过的,2个没有用过的,共有214212C C =种方法,从装有6个乒乓球的盒子任取3个球使用有3620C =种方法,∴盒子中恰好有4个是用过的球的概率为123205P ==,故答案为35. 【点睛】 本题主要考查古典概型概率公式的应用,所以中档题.要应用古典概型概率公式,分清在一个概型中某随机事件包含的基本事件个数和试验中基本事件的总数是解题的关键. 15.【解析】分析:由题意首先整理所给的多项式然后利用秦九韶算法求解多项式的值即可详解:由题意可得:当时故答案为点睛:本题主要考查秦九韶算法及其应用意在考查学生的转化能力和计算求解能力解析:756【解析】分析:由题意首先整理所给的多项式,然后利用秦九韶算法求解多项式的值即可. 详解:由题意可得:()()322256256f x x x x x x x =--+=--+()256x x x ⎡⎤=--+⎣⎦,当10x =时,()()10102105106756f =-⨯-⨯+=⎡⎤⎣⎦.故答案为 756.点睛:本题主要考查秦九韶算法及其应用,意在考查学生的转化能力和计算求解能力. 16.【解析】由图可知低于分的频率为故该班人数为故答案为解析:50【解析】由图可知,低于60分的频率为(0.0050.01)200.3+⨯=,故该班人数为15500.3=,故答案为50. 17.27【解析】依次运行框图所示的程序可得第一次:不满足条件;第二次:不满足条件;第三次:不满足条件;……第二十四次:不满足条件;故判断框内的条件是答案:27点睛:程序框图的补全及逆向求解问题的解题策略 解析:27【解析】依次运行框图所示的程序,可得第一次:1331log 4log 4,4S k =⨯==,不满足条件;第二次:2343log 4log 5log 5,5S k =⨯==,不满足条件;第三次:3353log 5log 6log 6,6S k =⨯==,不满足条件;……第二十四次:243263log 26log 27log 273,27S k =⨯===,不满足条件;故判断框内的条件是27?k ≥。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学期中考试模拟试卷(2)一、选择题:(每题5分,共10题)1.有一个几何体的三视图如下图所示,这个几何体应是一个( )A .棱台B .棱锥C .棱柱D .都不对2.半径为R 的半圆卷成一个圆锥,则它的体积为( )A.324R B.38R C.324R D.38R3.下列四个结论:⑴两条直线都和同一个平面平行,则这两条直线平行。

⑵两条直线没有公共点,则这两条直线平行。

⑶两条直线都和第三条直线垂直,则这两条直线平行。

⑷一条直线和一个平面内无数条直线没有公共点,则这条直线和这个平面平行。

其中正确的个数为( )A .0B .1C .2D .3 4.已知点(1,2),(3,1)A B ,则线段A B 的垂直平分线的方程是( ) A .524=+y x B .524=-y x C .52=+y x D .52=-y x5.直线cos sin 0x y a θθ++=与sin cos 0x y b θθ-+=的位置关系是( ) A .平行 B .垂直 C .斜交 D .与,,a b θ的值有关6.如果直线l 沿x 轴负方向平移3个单位再沿y 轴正方向平移1个单位后,又回到原来的位置,那么直线l 的斜率是( )A .-13B .3-C .13D .37.若命题P :x ∈A ∪B ,则⌝P 是( )A .x ∉A 且x ∉B B .x ∉A 或x ∉BC .x ∉A ∩BD .x ∈A ∩B主视图 左视图 俯视图8.已知(121)A -,,关于面xOy 的对称点为B ,而B 关于x 轴的对称点为C ,则BC =()A.(042),, B.(042)--,, C.(040),, D.(202)-,,9.已知向量111222()()x y z x y z ==,,,,,a b ,若≠a b ,设a b -=R ,则a b -与x 轴夹角的余弦值为( )A.12x x R- B.21x x R- C.12x x R- D.12()x x R-±10.一条长为a 的线段,夹在互相垂直的两个平面之间,它和这两个平面所成的角分别是45°和30°,由这条线段两端向两平面的交线引垂线,垂足的距离是( )A.2a B.3a 23二.填空题(每题5分,共5题)11.已知(11)(2)t t t t t =--=,,,,,a b ,则-b a 的最小值是 . 12.已知m l ,是异面直线,那么:①必存在平面α过m 且与l 平行; ②必存在平面β过m 且与l 垂直; ③必存在平面γ与m l ,都垂直; ④必存在平面δ与m l ,距离都相等. 其中正确命题的序号是 .13.设集合A ={x ||x |<4},B ={x |x <1或x >3},则集合{x |x ∈A 且x ∉A ∩B}=_______________。

14.已知直线06=+-y kx 被圆2522=+y x 截得的弦长为8,则k 的值为:_____ 15.已知实数y x ,满足3)2(22=+-y x ,则xy 的取值范围是:_______________.三:解答题(16,17,18每题12分;19,20,21每题13分)。

16.求与x 轴切于点)0,5(,并且在y 轴上截得弦长为10的圆的方程.17.如图2,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上移动,问AE 等于何值时,二面角1D EC D --的大小为π4.18.如图5所示的多面体是由底面为ABC D 的长方体被截面1AEC F 所截而得到的,其中14231AB BC CC BE ====,,,. (1)求BF;(2)求点C 到平面1AEC F 的距离.19.已知圆0622=+-++m y x y x 和直线032=-+y x 相交于Q P ,两点,O 为原点,且OQ OP ⊥,求实数m 的取值.20.(本小题满分12分)已知)0(012:2|311:|22>≤-+-≤--m mx xq x p ,;¬p 是¬q 的必要不充分条件,求实数m 的取值范围.21.如图6,在三棱锥P ABC -中,AB BC ⊥,AB BC kPA ==,点O D ,分别是A C P C ,的中点,O P ⊥底面ABC . (1)求证:O D ∥平面PAB ; (2)当12k =时,求直线PA 与平面PBC 所成角的正弦值。

(3)当k 为何值时,O 在平面PBC 内的射影恰好为P B C △的重心?高二数学期中模拟试卷(2)答案一,选择题:AAABB,AABCA二,填空题: 11.553 12.①④, 13.][3,1, 14.3±, 15.[-3,3]三,解答题:16.答案:50)25()5(22=±+-y x .17.解:设A E x =,以D 为原点,直线1DA DC DD ,,所在直线分别为x y z ,,轴建立空间直角坐标系, 则11(101)(001)(10)(100)(020)A D E x A C ,,,,,,,,,,,,,,.11(120)(021)(001)CE x D C DD =-=-= ,,,,,,,,∴.设平面1D EC 的法向量为()a b c =,,n ,由1020(2)00n n⎧=-=⎧⎪⇒⎨⎨+-==⎩⎪⎩,,,··D C b c a b x C E 令1b =,22c a x ==-,∴.(212)x =-,,∴n .依题意11πcos 422D D D D ===n n ·.2x =-∴2x =+.2AE =-∴.18.解:(1)以D 为原点,D A F D C D F ,,所在直线为x 轴, y 轴,z 轴建立空间直角坐标系D xyz -, 1(000)(240)(200)(040)(241)(043)D B A C E C ,,,,,,,,,,,,,,,,,, 设(00)F z ,,.由1AF EC = ,得(20)(202)z -=-,,,,,2z =∴.(002)(242)F BF =--,,,,,∴.BF =∴(2)设1n 为平面1AEC F 的法向量,1(1)x y =,,n ,由1100AE AF ⎧=⎪⎨=⎪⎩,,··n n得410220y x +=⎧⎨-+=⎩,.114x y =⎧⎪⎨=-⎪⎩,.∴又1(003)C C =,,,设1CC 与1n 的夹角为α,则111cos 33C C C C α==·n n. C∴到平面1AEC F的距离1cos 11d C C α==.19. 解: 设点Q P ,的坐标分别为),(),,(2211y x y x . 一方面,由OQ OP ⊥,得1-=⋅OQ OP k k ,即,12211-=⋅x y x y从而,①y y x x 02121=+另一方面, ),(),,(2211y x y x 是方程组⎩⎨⎧=+-++=-+0603222m y x y x y x ,的实数解, 即21,x x 是方程02741052=-++m x x …… ②的两个实数根,∴221-=+x x , 527421-=⋅m x x ………… ③又Q P ,在直线032=-+y x , ∴])(39[41)3(21)3(2121212121x x x x x x y y ++-=-⋅-=⋅将③式代入,得 51221+=⋅m y y ………… ④又将③,④式代入①,解得3=m ,代入方程②,检验0>∆成立。

∴3=m20.由)0(01222>≤-+-m m x x ,得)0(11>+≤≤-m m x m , ∴¬q 即A=)}0(11|{>+>-<m m x m x x ,或; 由,2|311|≤--x 得102≤≤-x ,∴¬p 即B=}102|{>-<x x x ,或,∵¬p 是¬q 的必要不充分条件,且m>0。

∴A ⊂≠B ,故121100m m m -≤-⎧⎪+≥⎨⎪>⎩,,,且不等式组中的第一、二个不等式不能同时取等号,解得m ≥9为所求。

21.解:(1)证明:O P ⊥∵平面A B C O A O C A B B C ==,,, O A O B O A O P O B O P ⊥⊥⊥,,∴.以O 为原点,建立如图所示空间直角坐标系O xyz -. 设A B a =,则000000222A B C⎫⎛⎫⎛⎫-⎪ ⎪ ⎪⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,,,,,,,. 设O P h =,则(00)P h ,,.D∵为PC的中点,1042O D h ⎛⎫=-⎪⎪⎝⎭,,∴.02PA h ⎛⎫=- ⎪ ⎪⎝⎭ ,,,12OD PA =-∴. OD PA∴∥,O D ∴∥平面PAB . (2)12k =,即2P A a =,h =∴02PA ⎛⎫=-⎪ ⎪⎝⎭,,∴ 可求得平面PBC的法向量11⎛=--⎝,,n .cos 30PA PA PA ==,·∴nn n.设PA 与平面PBC 所成的角为θ,则sin cos 30PA θ==,n.PA ∴与平面PBC 所成的角正弦值为30210.(3)P B C △的重心1663G a h ⎛⎫- ⎪⎪⎝⎭,,,1663O G h ⎛⎫=- ⎪ ⎪⎝⎭ ,,∴, O G ⊥∵平面PBC ,OG PB⊥∴.又02PB h ⎛⎫=- ⎪ ⎪⎝⎭ ,,,2211063OG PB a h =-= ∴·.2h =∴.∴,即1==PA ak=.反之,当1k=时,三棱锥O PBC-为正三棱锥.△的重心O∴在平面PBC内的射影为P B C。

相关文档
最新文档