阻力实验数据处理

合集下载

流体阻力的测定实验

流体阻力的测定实验

2.双对数坐标就是x 和y 轴都是对数式,即logRE 和logf,主要是使图更加紧凑(RE 范围比较大),也使得曲线近似线性四、实验流程层流管:d 2.9mm l 1.00m ==,;突然扩大管:,0.161mm d =mm l 1401=;粗糙管:21.5, 1.50d mm l m ==;光滑管:m l mm d 50.1,5.21==。

六、实验数据处理原始数据如下表:数据计算示例:1、 光滑管:近似取T=20.0℃时水的密度3998.2/Kg m ρ=,粘度 1.005mPa s μ=∙以光滑管第一组数据为例:3322322998.2/, 4.1/,7314.5,21.5,, 1.5044 4.10/36003.138591/3.140.02150.0215 3.1385911000Re 67023.141.00510220.02157314.50.0213241.501000 3.138591B v v Kg m q m h p Pa d mm l mq u m s d du d p l u ρπρμλρ-==∆===⨯∴===⨯⨯⨯===⨯∆⨯⨯===⨯⨯0.250.25lasius 0.3163/Re 0.3163/67023.140.019658λ===关系式求得2、 粗糙管:以粗糙管第一组数据为例:34.12/v q m h =, 10468p Pa ∆=, 21.5d mm =, m l 50.1=∴2244 4.12/3600 3.153902/3.140.0215v q u m s dπ⨯===⨯ , 30.0215 3.153902998.2Re 67350.081.00510du ρμ-⨯⨯===⨯ 22220.0215104680.0302221.50998.2 3.153902d p l u λρ∆⨯⨯===⨯⨯ 3、 突然扩大管:以第一组数据为例:33.5/v q m h =, 5256.5p Pa ∆=, ,0.161mm d =,0.422mm d =∴122144 3.5/3600 5.089167/3.140.016v q u m s d π⨯===⨯222244 3.5/36000.702097/3.140.042v q u m s d π⨯===⨯ 22222125256.50.702097+2998.21=1-=0.5702074.18823pu uρζ∆+⨯=-同理求出三组数据所对应的ε值,再求其平均值0.5702070.6321670.7422520.6482093ζ++==4、 层流管:以第一组数据为例:m l mm d 00.1,9.2==,5155.6,p Pa ∆=111V ml =,20t s =∴63111100.00000555/20v V q m s t -⨯=== , 22440.000005550.840673/3.140.0029v q u m s d π⨯===⨯ 30.00290.840673998.2Re 2421.4571.00510du ρμ-⨯⨯===⨯ ,22220.00295155.60.0423872251.00998.20.840673d p l u λρ∆⨯⨯===⨯⨯按照以上方法将实验数据处理如下表所示:⑴光滑管:l=1.50 m ,d=21.5mm ,压降零点修正ΔP0=0kPa,水温度= 20.6℃粗糙管:l=1.50 m ,d= 21.5mm,压降零点修正ΔP0= 0 kPa,水温度=21.6℃表2.粗糙管的原始数据记录及处理结果一览表根据以上数据做出散点图如下:图3.光滑管和粗糙管的λ与Re的关系散点图将上图修正处理,得到曲线图如下图4.光滑管和粗糙管的λ与Re 的关系以及Blasius 公式比较(3)突扩管:d1=16.0mm ,d2=42.0mm ,压降零点修正ΔP 0= 0 kPa ,水温度= 22.5℃0.5702070.6321670.7422520.6482093ζ++==(4)层流管:l= 2.9mm ,d= 1.00 m ,压降零点修正ΔP 0= 0 kPa ,水温度= 23.1℃表3.层流管的原始数据记录及处理结果一览表图6.层流管的λ与Re 的关系七、实验结果分析:由上面图表中的数据信息可以得出以下结论:1、 流动进入湍流区时,摩擦阻力系数λ随雷诺数Re 的增大而减小。

实验三 流体流动阻力测定实验指导书

实验三  流体流动阻力测定实验指导书

流体流动阻力的测定一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。

2.测定直管摩擦系数λ与雷诺准数Re 的关系,验证在一般湍流区内λ与Re 的关系曲线,测定流体流经阀门时的局部阻力系数ξ。

4.学会倒U 形压差计的使用方法,识辨组成管路的各种管件、阀门,并了解其作用。

二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:2221u d l p p p h ff λρρ=-=∆=(1)即,22lu p d fρλ∆=(2)式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m ;f p ∆—流体流经l 米直管的压力降,Pa; f h —单位质量流体流经l 米直管的机械能损失,J/kg ; ρ—流体密度,kg/m 3;l —直管长度,m ;u —流体在管内流动的平均流速,m/s 。

滞流(层流)时,Re 64=λ(3) μρdu =Re (4) 式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。

湍流时λ是雷诺准数Re 和相对粗糙度(ε/d )的函数,须由实验确定。

由式(2)可知,欲测定λ,需确定l 、d ,测定f p ∆、u 、ρ、μ等参数。

l 、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得,u 通过测定流体流量,再由管径计算得到。

例如本装置采用转子流量计测流量V (m 3/h ),且已经校核,则2900d Vu π=(5)f p ∆可用U 型管、倒置U 型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

(1)当采用倒置U 型管液柱压差计时gR p f ρ∆=(6)式中:R -水柱高度,m 。

船模阻力实验实验报告

船模阻力实验实验报告

船模阻力实验
一、实验准备及安装要点
船模在拖曳水池中进行阻力实验,必须进行一系列实验准备工作.
1.制作船模:船模与实船要求几何相似,并表面光洁,加工误差在一定得范围内。

2.激流:一般应用得激流方法就是在船模首垂线后L/20处,装置直径为1毫米得金属激
流丝。

3.称重:按縮尺比得要求计算喜欢摸得排水量并进行称重,加压载,以满足实验所要求得
型排水量与吃水.
4.安装:船模安装在拖车上,应使其中纵剖面与前进方向一致,拖力作用线位于中纵剖面
内,其作用点在水线面附近得位置上并保持水平。

试验中得进退、纵摇、升沉运动应不受限制。

二、模型参数与实验数据
1,阻力实验相关参数
满载池水状态水线长度:L=3、803m
满载池水状态浸湿面积: S=2、737㎡
模型縮尺比:=40
实验水温: t=淡水20°C
2,满载池水状态船模拖曳阻力实验数据
三、阻力换算二因次法:
淡水20°C,,,,,
数据处理如下表:
四、船模阻力实验曲线(曲线)
1、曲线
2、V S—R S曲线。

流体流动阻力的测定实验报告

流体流动阻力的测定实验报告

4.00 3.71 3.45 3.13 2.90 2.57 2.33 2.09 1.84 1.62 1.30 0.98
Re
83472 77283 71930 65239 60555 53696 48678 43660 38474 33790 27099 20408
0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.025 0.026 0.026 0.027
因此 式中:—局部阻力系数,无因次; -局部阻力压强降,;(本装置中,所测得的压降应扣除两测压口间直管 段的压降,直管段的压降由直管阻力实验结果求取。) —流体密度,; —流体在管内流动的平均流速,。 根据连接阀门两端管径,流体密度,流体温度 (查流体物性、),及实 验时测定的流量、压差计读数,求取阀门的局部阻力系数。 三、实验内容 1. 根据粗糙管实验结果,在双对数坐标纸上标绘出曲线,对照化工原 理教材上有关曲线图,即可估算出该管的相对粗糙度和绝对粗糙度。 2. 根据光滑管实验结果,对照柏拉修斯方程,计算其误差。
2. 实验流程 实验对象部分是由贮水箱,离心泵,不同管径、材质的水管,各种阀
门、管件,涡轮流量计和倒 U 型压差计等所组成的。管路部分有三段并联 的长直管,分别为用于测定局部阻力系数,光滑管直管阻力系数和粗糙管 直管阻力系数。测定局部阻力部分使用不锈钢管,其上装有待测管件(闸阀);
-3-
化工原理实验
-9-
化工原理实验
对数据进行与粗糙管相同方法的计算,并根据 Blasius 方程计算在 Re 条件下的理论值,计算实验值与理论值的相对误差(相对误差公式为 )。计算结果如下表所示:
序号
1
2
3
4
5

化工原理-流体阻力实验报告(北京化工大学)

化工原理-流体阻力实验报告(北京化工大学)

北京化工大学化工原理实验报告实验名称:流体阻力实验班级:化工1305班*名:***学号:********** 序号:11同组人:宋雅楠、陈一帆、陈骏设备型号:流体阻力-泵联合实验装置UPRSⅢ型-第4套实验日期:2015-11-27一、实验摘要首先,本实验使用UPRS Ⅲ型第4套实验设备,通过测量不同流速下水流经不锈钢管、镀锌管、层流管、突扩管、阀门的压头损失来测定不同管路、局部件的雷诺数与摩擦系数曲线。

确定了摩擦系数和局部阻力系数的变化规律和影响因素,验证在湍流区内λ与雷诺数Re 和相对粗糙度的函数。

该实验结果可为管路实际应用和工艺设计提供重要的参考。

结果,从实验数据分析可知,光滑管、粗糙管的摩擦阻力系数随Re 增大而减小,并且光滑管的摩擦阻力系数较好地满足Blasuis 关系式:0.250.3163Re λ= 。

突然扩大管的局部阻力系数随Re 的变化而变化。

关键词:摩擦系数,局部阻力系数,雷诺数,相对粗糙度二、实验目的1、掌握测定流体流动阻力实验的一般实验方法:①测量湍流直管的阻力,确定摩擦阻力系数。

②测量湍流局部管道的阻力,确定摩擦阻力系数。

③测量层流直管的阻力,确定摩擦阻力系数。

2、验证在湍流区内摩擦阻力系数λ与雷诺数Re 以及相对粗糙度的关系。

3、将实验所得光滑管的λ-Re 曲线关系与Blasius 方程相比较。

三、实验原理1、 直管阻力不可压缩流体在圆形直管中做稳定流动时,由于黏性和涡流的作用会产生摩擦阻力(即直管阻力);流体在流过突然扩大、弯头等管件时,由于流体运动的速度和方向突然变化,会产生局部阻力。

由于分子的流动过程的运动机理十分复杂,目前不能用理论方法来解决流体阻力的运算问题,必须通过实验研究来掌握其规律。

为了减少实验的工作量、化简工作难度、同时使实验的结果具有普遍的应用意义,应采用基于实验基础的量纲分析法来对直管阻力进行测量。

利用量纲分析的方法,结合实际工作经验,流体流动阻力与流体的性质、流体流经处的几何尺寸、流体的运动状态有关。

化工原理实验—流体流动阻力测定实验

化工原理实验—流体流动阻力测定实验

化工原理实验报告—流体流动阻力测定实验班级: 031112班小组:第六组指导老师:刘慧仙组长:陈名组员:魏建武曹然实验时间: 2013年10月18日目录一、实验内容 (1)二、实验目的 (1)三、实验基本原理 (1)1.直管阻力 (1)2.局部阻力 (3)四、实验设计 (3)1.实验方案 (3)2.测试点及测试方法 (3)原始数据 (3)测试点 (4)测试方法 (4)3.控制点及调节方法 (4)4.实验装置和流程设计 (4)主要设备和部件 (4)实验装置流程图 (4)五、实验操作要点 (5)六、实验数据处理和结果讨论分析 (6)实验数据处理 (6)1.实验数据记录表 (6)2.流体直管阻力测定实验数据整理表 (7)3.流体局部阻力测定实验数据整理表 (8)4.计算示例。

(9)结果讨论分析 (10)七、思考题 (11)实验一流体流动阻力的测定实验一、实验内容1.测定流体在特定材质和的直管中流动时的阻力摩擦系数,并确定和之间的关系。

2.测定流体通过阀门时的局部阻力系数。

二、实验目的1.了解测定流体流动阻力摩擦系数的工程定义,掌握测定流体阻力的实验方法。

2.测定流体流径直管的摩擦阻力和流经管件或局部阻力,确定直管阻力摩擦系数与雷诺数之间的关系。

3.熟悉压差计和流量计的使用方法。

4.认识组成管路系统的各部件、阀门并了解其作用。

三、实验基本原理流体管路是由直管、管件(如三通、肘管、弯头)、阀门等部件组成。

流体在管路中流动时,由于黏性剪应力和涡流的作用,不可避免地要消耗一定的机械能,流体在直管中流动的机械能损失为直管阻力;而流体通过阀门、管件等部件时,因流动方向或流动截面的突然改变导致的机械能损失称为局部阻力。

在化工过程设计中,流体流动阻力的测定或计算,对于确定流体输送所需推动力的大小,例如泵的功率、液位或压差,选择适当的输送条件都有不可或缺的作用。

1.直管阻力流体在水平的均匀管道中稳定流动时,由截面1流动至截面2的阻力损失表现为压力的降低,即①由于流体分子在流动过程中的运动机理十分复杂,影响阻力损失的因素众多,目前尚不能完全用理论方法来解决流体阻力的计算问题,必须通过实验研究掌握其规律。

流体流动阻力的测定数据处理

流体流动阻力的测定数据处理

五.实验数据记录与处理光滑管径1.5m 粗糙管径1.5m 层流管1m 温度25℃1.实验数据记录表表1 截止阀的相关原始数据表7 层流的相关原始数据表8 相关的处理数据表直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时, 阻力损失为:2***d *2u l p fρλ∆=湍流时的雷诺数为:μρdu R =e根据以上数据这里只作出光滑管和粗糙管的 ~Re 的的关系图由图可知: 光滑管在湍流区雷诺数与阻力系数呈反比的关系, 这与柏拉修斯式, 顾毓珍等公式基本相符由图可知: 粗糙管的阻力系数随着雷诺数的增大先增大后基本稳定的过程, 由于本实验处在完全湍流区, 区域内 , 对 均有影响, 且随着 的增大, 对 的影响越来越重要;相反, 对 的影响越来越弱。

可解释为, 一定时, 越大, 则层流底层相对越薄;当 增大到一定值后, 几乎所有的粗糙峰均暴露在湍流主体区内, 在大, 不变。

图1.流体阻力-离心泵联合实验流程1.水箱2、离心泵3、涡轮流量计4、层流水槽5、层流管6、截止阀7、球阀8、光滑管9、粗糙管10、突扩管11.孔板流量计12、流量调节阀排空排水入地沟图1 氧气吸收与解吸实验流程图1.氧气钢瓶9、吸收塔17、空气转子流量计2.氧减压阀10、水流量调节阀18、解吸塔3.氧压力表11.水转子流量计19、液位平衡罐4.氧缓冲罐12.富氧水取样阀20、贫氧水取样阀5.氧压力表13.风机21.温度计6.安全阀14.空气缓冲罐22.压差计7、氧气流量调节阀15.温度计23.流量计前表压计8、氧转子流量计16、空气流量调节阀24.防水倒灌阀。

流动阻力测试实验报告

流动阻力测试实验报告

一、实验目的1. 了解流动阻力的概念及其影响因素;2. 掌握流动阻力测试方法;3. 测定不同条件下流动阻力的大小;4. 分析实验数据,得出实验结论。

二、实验原理流动阻力是指流体在管道中流动时,由于流体与管道壁面之间的摩擦作用而造成的能量损失。

流动阻力的大小与流体的流速、管道直径、管道粗糙度等因素有关。

本实验采用层流和湍流两种流动状态,通过改变流速、管道直径等条件,测定流动阻力的大小。

三、实验仪器与设备1. 流体实验装置:包括水箱、管道、阀门、流量计、压力计等;2. 计时器;3. 数据采集器;4. 计算机及实验软件。

四、实验步骤1. 准备实验装置,确保各部件连接牢固;2. 调整管道直径,使其符合实验要求;3. 在水箱中注入一定量的水,确保水位稳定;4. 开启阀门,调节流速,使流体处于层流或湍流状态;5. 使用计时器记录流体通过管道的时间;6. 利用流量计和压力计测量流体流速和压力;7. 重复以上步骤,改变实验条件,进行多组实验;8. 将实验数据记录在实验表格中。

五、实验数据与处理1. 根据实验数据,计算流体流速和压力;2. 根据流体流速和压力,计算流动阻力;3. 对实验数据进行统计分析,得出实验结论。

六、实验结果与分析1. 在层流状态下,流动阻力与流速的平方成正比,与管道直径的平方成反比;2. 在湍流状态下,流动阻力与流速的平方成正比,与管道直径的平方成反比;3. 实验结果表明,流动阻力与流体粘度、管道粗糙度等因素有关。

七、讨论与心得1. 本实验验证了流动阻力与流速、管道直径等因素的关系;2. 实验过程中,要注意实验装置的稳定性,确保实验数据的准确性;3. 实验结果表明,流动阻力在工程实际中具有重要意义,如管道设计、泵选型等。

八、结论通过本实验,我们掌握了流动阻力的概念、测试方法以及影响因素。

实验结果表明,流动阻力与流速、管道直径等因素密切相关。

在工程实际中,应充分考虑流动阻力对系统性能的影响,以提高系统运行效率。

流体流动阻力的测定 实验报告

流体流动阻力的测定 实验报告

实验一 流体流动阻力的测定摘要: 通过实验测定流体在光滑管、粗糙管、层流管中流动时, 借助于伯努利方程计算摩擦阻力系数和雷诺数之间的关系, 并与理论值相比较。

同时以实验手段计算突然扩大处的局部阻力, 并对以上数据加以分析, 得出结论。

一、目的及任务1.掌握测定流体流动阻力的实验的一般实验方法。

2.测定直管的摩擦阻力系数λ及突然扩大管和阀门的局部阻力系数ξ。

3.测定层流管的摩擦阻力。

4.验证湍流区内摩擦阻力系数λ与雷诺数Re 和相对粗糙度的函数。

5.将所得的光滑管的λ-Re 方程与Blasius 方程相比较。

二、基本原理1.直管摩擦阻力 不可压缩流体(如水), 在圆形直管中做稳定流动时, 由于黏性和涡流的作用产生摩擦阻力;流体在突然扩大、弯头等管件时, 由于流体运动速度和方向的突然变化, 产生局部阻力。

影响流体阻力的因素较多, 在工程上采用量纲分析方法简化实验, 得到在一定条件下具有普遍意义的结果, 其方法如下。

流体流动阻力与流体的性质, 流体流经处几何尺寸以及流动状态有光, 可表示为 p=f (d, l, u, , , ) 引入下列无量纲数群雷诺数Re=μρdu相对粗糙度d ε 管子的长径比dl从而得到),,du (p 2d ld u εμρρψ=∆令 = (Re, )2)(Re,2u d d l pερΦ=∆ 可得摩擦阻力系数与压头损失之间的关系, 这种关系可用实验方法直接测定。

22u d l ph f ⨯=∆=λρ式中 ——直管阻力, J/Kg ; l ——被测管长, m ; d ——被测管内径, m ; u ——平均流速, m/s ; λ——摩擦阻力系数。

当流体在一管径为d 的圆形管中流动时, 选取两个截面, 用U 形压差计测出这两个截面间的静压强差, 即为流体流过两截面间的流动阻力。

根据伯努利方程找出静压强差和摩擦阻力系数的关系式, 即可求出摩擦阻力系数。

改变流速可测出不同Re 下的摩擦阻力系数, 这样就可得出某一相对粗糙度下管子的 -Re 关系。

阻力实验实验报告

阻力实验实验报告

阻力实验实验报告阻力实验实验报告一、实验目的研究作用在物体运动上的阻力,并实验验证Stokes定律。

二、实验原理物体在流体中受到阻力的大小与物体运动速度方向有关。

当物体静止时,受到的阻力为静摩擦力。

当物体运动时,流体在物体表面产生的速度差引起摩擦力,这一部分阻力称为粘滞阻力。

物体也要排开流体来移动,这一部分阻力称为形状阻力。

作用在物体上的阻力可以表示为:F = Fv + FdFv表示粘滞阻力,Fd表示形状阻力。

当物体在粘性流体中匀速运动时,受到的阻力与物体运动速度成正比,且方向与物体运动速度方向相反。

这一定律称为Stokes定律。

Stokes定律公式表示为:Fv = 6πμavμ为粘度,a为物体半径,v为物体速度,π为圆周率。

三、实验步骤1、将比重为1.2的长方体浸入液体中,并记录长方体的尺寸和质量。

2、上下轻摆直至长方体匀速运动,测速器记录匀速运动的速度。

3、用已知密度的石英砂填充密度桶,并记录石英砂的质量。

4、将长方体浸入密度桶中,并记录密度桶初始质量。

5、将密度桶加入一定体积的液体中,使长方体完全浸没,将密度桶和长方体放置在天平上,并记录实验数据,包括密度桶和长方体的总质量、密度桶的质量以及长方体的质量。

6、将液体更换一次,重复步骤2-5。

四、实验数据记录及处理实验数据如下表所示:通过实验数据可计算出液体在物体表面产生的粘滞阻力,如下计算:Fd = ρlv^2Cd/2ρ为液体密度,l为物体长度,v为物体匀速运动的速度,Cd为长方体阻力系数。

将实验数据代入可得:C1 = 0.7C2 = 0.8对于第二次实验,密度桶和长方体的总质量和密度桶质量之差为石英砂的质量。

将实验数据代入Stokes定律公式可得粘度μ的值,如下计算:μ1 = 3.13 × 10^-3 Pa·sμ2 = 3.53 × 10^-3 Pa·s五、实验结论1、通过阻力实验可验证Stokes定律。

管流沿程阻力实验报告

管流沿程阻力实验报告

管流沿程阻力实验报告管路沿程阻力测定(实验报告)实验一管路沿程阻力测定一实验目的1. 掌握流体流经管道时沿程阻力损失的测定方法。

2.测定流体流过直管时的摩擦阻力,确定摩擦系数?与Re的关系。

3.测定流体流过管件时的局部阻力,并求出阻力系数? 。

4.学会压差计和流量计的使用。

二实验原理流体在管内流动时,机械能的消耗包括流体流经直管的沿程阻力和因流体运动方向改变所引起的局部阻力。

1.沿程阻力lu2hfd2?p称为直管摩擦系数,滞留时,??Re;湍流时,?与Re的关系受管壁粗糙度的影响,需由实验测得。

根据伯努利方程可知,流体流过的沿程阻力损失,可直接得出所测得的液柱压差计度数R(m)算出:?p?R??指-?水?g2.局部阻力lle1)当量长度法?hfd??u2?? ?2?u22)阻力系数法hp 2ξ-局部阻力系数,无因次;u-在小截面管中流体的平均流速(m/s)三实验装置与流程1.本实验装置及设备主要参数:被测元件:镀锌水管,管长2.0m,管径(公称直径)0.021m;闸阀D=3/4.1)测量仪表:U型压差计(水银指示液);LW—15型涡轮流量计(精度0.5级,量程0.4~4.0m /h, 仪器编号Ⅰ的仪表常数为599.41(次/升),仪器编号II的仪表常数为605.30(次/升),MMD 智能流量仪)。

2)循环水泵。

3)循环水箱。

4)DZ15-40型自动开关。

5)数显温度表2.流程:流体流动阻力损失实验流程图1)水箱6)放空阀11)取压孔2)控制阀7)排液阀12)U形压差计3)放空阀8)数显温度表13)闸阀4)U形压差计9)泵14)取压孔5)平衡阀10)涡轮流量计四实验操作步骤及注意事项1.水箱充水至80%2.仪表调整(涡轮流量计﹑MMD智能流量计仪按说明书调节)3.打开压差计上平衡阀,关闭各放气阀。

4.启动循环水泵(首先检查泵轴是否转动,开全阀13,全关阀2,后启动)。

5.排气:(1)管路排气;(2)测压管排气;(3)关闭平衡阀,缓慢旋动压差计上放气阀排除压差计中的气泡(注意:先排进压管后排出压管,以防压差计中水银冲走),排气完毕。

学生实验 流体流动阻力测定实验

学生实验 流体流动阻力测定实验

单相流动阻力测定实验一、实验目的1. 了解流体流动阻力的测定原理及方法;2. 测定流体流过直管时的摩擦阻力,并确定摩擦系数与雷诺数的关系;3. 测定流体流过管件时的局部阻力,并求出阻力系数;4. 了解与本实验有关的各种流量测量仪表、压差测量仪表的结构特点和安装方式,掌握其测量原理、学会正确使用。

二、实验原理流体在管路中流动时,由于粘性剪应力和涡流的存在,不可避免地会引起压强损耗。

这种损耗包括流体经过直管的沿程阻力以及因流体运动方向改变或因管子大小形状改变所引起的局部阻力。

1.沿程阻力流体在水平均匀管道中稳定流动时,由截面1到截面2,阻力损失表现在压强的降低。

影响阻力损失的因素十分复杂,目前尚不能用理论方法求解,必须通过实验研究其规律。

为了减少实验工作量,扩大实验结果的应用范围,可采用因次分析法将各变量综合成准数关系式。

影响阻力损失的诸因素由:(1)流体性质:密度,粘度;(2)管路的几何尺寸:管径,管长,管壁粗糙度;(3)流动条件:流速。

2.局部阻力局部阻力通常有两种表示方法,即当量长度法和阻力系数法。

(1)当量长度法流体流过某管件或阀门时,因局部阻力造成的损失,相当于流体通过与其具有相同管径的若干米长度的直管阻力损失,这个直管长度称为当量长度。

(2)阻力系数法流体通过某一管件或阀门的阻力损失用流体在管路中的动能系数来表示。

由于管件两侧距测压孔间的直管长度很短,引起的摩擦阻力与局部阻力相比,可以忽略不计,因此动能系数之值可应用伯努利方程由压差计读数求出。

三、实验设备的功能与特点本实验装置可用于实验教学和科研。

利用该实验装置,可学习和掌握光滑直管、粗糙直管的阻力系数与雷诺准数的测量方法;也可学习局部阻力的测量方法;学习几种压差测量方法;加深对流体流动阻力概念的理解。

本实验装置的特点:⑴本实验装置数据稳定,重现性好,能给实验者明确的流体流动阻力概念。

⑵雷诺准数的数据范围宽,可作出102~104三个数量级。

局部阻力系数测定实验

局部阻力系数测定实验

东北林业大学局部阻力系数的测定一、实验目的1、用实验方法测定两种局部管件(实扩、突缩)在流体流经管路时的局部阻力系数。

2、学会局部水头损失的测定方法。

1、实验原理及实验装置局部阻力系数测定的主要部件为局部阻力实验管路,它由细管和粗管组成一个突扩和一个突缩组件,并在等直细管的中间段接入一个阀门组件。

每个阻力组件的两侧一定间距的断面上都设有测压孔,并用测压管与测压板上相应的测压管相联接。

当流体流经实验管路时,可以测出各测压孔截面上测压管的水柱高度及前后截面的水柱高度差 h。

实验时还需要测定实验管路中的流体流量。

由此可以测算出水流流经各局部阻力组件的水头损失hζ,从而最后得出各局部组件的局部阻力系数ζ。

①突然扩大:21-A 21( )=ζ2g 1V 2( )12A A -1=j h 理论上:在实验时,由于管径中即存在局部阻力,又含有沿程阻力,当对突扩前后两断面列能量方程式时,可得hw=hj+hf ,其中hw 可由(h 1-h 3)测读,hf 可由(h 2-h 3)测读,按流长比例换算后,hj=hw-h f 。

由此得出:2h jζ=② 突然收缩:理论上,ζ缩=0.5(1-A 2/A 1),实验时,同样,在读得突缩管段的水头损失后,按流长比例换算,分别将两端沿程损失除去,由此得:缩缩2h jζ=二、实验操作1、实验前的准备①熟悉实验装置的结构及其流程。

②进行排气处理。

③启动水泵,然后慢慢打开出水阀门时水流经过实验管路。

在此过程中(并关闭其他实验管的进水阀和出水阀),观察和检查管路系统和测压管及其导管中有无气泡存在,应尽可能利用试验管路上的放气阀门或用其它有效措施将系统中存在的气体排尽。

2、进行实验,测录数据①调节进水阀门和出水阀门,使各组压差达到测压管可测量的最大高度。

②在水流稳定时,测读测压管的液柱高和前后的压差值。

③在此工况下测定流量。

④调节出水阀门,适当减小流量,测读在新的工况下的实验结果。

如此,可做3~5个实验点。

流体力学综合实验装置——流体流动阻力测定实验---实验报告

流体力学综合实验装置——流体流动阻力测定实验---实验报告

流体流动阻力测定实验一、实验目的1.掌握测定流体流经直管、管件和阀门时阻力损失的一般实验方法。

2.测定直管摩擦系数λ与雷诺准数Re的关系,验证在一般湍流区内λ与Re 的关系曲线。

3.测定流体流经管件、阀门时的局部阻力系数ξ。

4.学会倒U形压差计和涡轮流量计的使用方法。

5.识辨组成管路的各种管件、阀门,并了解其作用。

二、基本原理流体通过由直管、管件(如三通和弯头等)和阀门等组成的管路系统时,由于粘性剪应力和涡流应力的存在,要损失一定的机械能。

流体流经直管时所造成机械能损失称为直管阻力损失。

流体通过管件、阀门时因流体运动方向和速度大小改变所引起的机械能损失称为局部阻力损失。

1.直管阻力摩擦系数λ的测定流体在水平等径直管中稳定流动时,阻力损失为:即,式中:λ—直管阻力摩擦系数,无因次;d —直管内径,m;—流体流经l米直管的压力降,Pa;hf—单位质量流体流经l米直管的机械能损失,J/kg;ρ—流体密度,kg/m3;l —直管长度,m;u —流体在管内流动的平均流速,m/s。

滞流(层流)时,式中:Re —雷诺准数,无因次;μ—流体粘度,kg/(m·s)。

湍流时λ是雷诺准数Re和相对粗糙度(ε/d)的函数,须由实验确定。

由式(2)可知,欲测定λ,需确定l、d,测定、u、ρ、μ等参数。

l、d 为装置参数(装置参数表格中给出),ρ、μ通过测定流体温度,再查有关手册而得, u通过测定流体流量,再由管径计算得到。

例如本装置采用涡轮流量计测流量V(m3/h)。

可用U型管、倒置U型管、测压直管等液柱压差计测定,或采用差压变送器和二次仪表显示。

根据实验装置结构参数l、d,指示液密度,流体温度 (查流体物性ρ、μ),及实验时测定的流量V、压差,通过式(5)、(6)或(7)、(4) 和式(2)求取Re和λ,再将Re和λ标绘在双对数坐标图上。

2.局部阻力系数ξ的测定局部阻力损失通常有两种表示方法,即当量长度法和阻力系数法。

流体流动阻力测定实验报告

流体流动阻力测定实验报告

流体流动阻⼒测定实验报告实验名称:液体流动阻⼒的测定实验⼀、实验⽬的①掌握测定流体流动阻⼒实验的⼀般实验⽅法。

②测定直管摩擦阻⼒系数λ及突然扩⼤管和阀门的局部阻⼒系数ξ③验证湍流区摩擦阻⼒系数λ为雷诺数Re 和相对粗糙度的函数。

④将所得光滑管的Re -λ⽅程和Blasius ⽅程相⽐较。

⼆、实验器材流体流动阻⼒实验装置三、实验原理1、直管摩擦阻⼒不可压缩流体(如⽔),在圆形直管中做稳定流动时,由于粘性和涡流的作⽤产⽣摩擦阻⼒;流体在流过突然扩⼤、弯头等官件时,由于流体运动的速度和⽅向突然变化,产⽣局部阻⼒。

影响流体阻⼒的因素较多,在⼯程上通过采⽤量纲分析⽅法简化实验,得到在⼀定条件下具有普遍意义的结果,其⽅法如下。

流体流动阻⼒与流体的性质,流体流经处的⼏何尺⼨以及流动状态有关,可表⽰为),,,,,(εµρu l d f p =?引⼊下列⽆量纲数群。

雷诺数 µρdu =Re相对粗糙度d ε管⼦长径⽐ dl从⽽得到)l,,(2d d du up εµρρψ=? 令)(Re,dεΦ=λ 2)(Re,l 2u d d pεΦ=?ρ可得摩擦阻⼒系数与压头损失之间的关系,这种关系可⽤实验⽅法直接测定。

2l 2u d ph f ?=?=λρ式中 f h ——直管阻⼒,J/kg ;l ——被测管长,m ;d ——被测管内径,m ; u ——平均流速,m / s ;λ——摩擦阻⼒系数。

当流体在⼀管径外d 的圆形管中流动时,选取两个截⾯,⽤U 形压差计测出这两个截⾯的静压强差,即为流体流过两截⾯的流动阻⼒。

根据伯努利⽅程找出静压强差和摩擦阻⼒系数的关系式,即可求出摩擦阻⼒系数。

改变流速可测不同Re 下的摩擦阻⼒系数,这样就可得出某⼀相对粗糙度下管⼦的Re -λ关系。

(1)湍流区的摩擦阻⼒系数在湍流区内)(Re,µεf =λ。

对于光滑管,⼤量实验证明,当Re 在5310~103?范围内,λ与Re 的关系Blasius 关系,即25.0Re /3163.0=λ对于粗糙管,λ与Re 的关系均以图来表⽰。

沿程阻力的实验报告

沿程阻力的实验报告

中国石油大学(华东)工程流体力学实验报告实验日期:成绩:班级:学号:姓名:教师:同组者:实验七、沿程阻力实验一、实验目的1.掌握测定镀锌铁管管道沿程阻力系数的方法。

2.在双对数坐标纸上绘制λ-Re关系曲线。

3.进一步理解沿程阻力系数随雷诺数的变化规律。

二、实验装置本实验采用管流实验装置中的第1根管路,即实验装置中最细的管路。

在测量较大压差时,采用两用式压差计中的汞-水压差计;压差较小时换用水-气压差计。

另外,还需要的测量工具有量水箱、量筒、秒表、温度计、水的粘温表。

F1——文丘利流量计;F2——孔板流量计;F3——电磁流量计;C——量水箱;V——阀门;K——局部阻力试验管路图7-1 管流综合实验装置流程图三、实验原理本实验所用的管路水平放置且等直径,因此利用能量方程可以推导出管路两点间的沿程水力损失计算公式为:gv D L H f22•=λ (1-7-1) 式中 λ——沿程阻力系数;L ——实验管段两端面之间的距离,m ; D ——实验管内径,m ;g ——重力加速度(g=9.8 m/s 2); v ——管内平均流速,m/s ;h f ——沿程水头损失(由压差计测定),m 。

由式(1-7-1)可以得到沿程阻力系数λ的表达式:22vh L D gf⋅=λ (1-7-2) 沿程阻力系数λ在层流时只与雷诺数有关,在紊流时与雷诺数、管壁粗糙度都有关。

当实验管路粗糙度保持不变时,可以得到该管的λ-Re 关系曲线。

四、实验要求1.有关常数 实验装置编号:No. 4 管路直径:D =21058.1-⨯m ;水的温度:T = 20.0 ℃;水的密度:ρ= 998.23 kg/m 3;动力粘度系数:μ= 101.055-3⨯ Pa ⋅s ; 运动粘度系数:ν=610007.1-⨯ m 2/s ; 两测点之间的距离:L = 5 m2.实验数据记录及处理见表7-1和表7-2以其中一组数据写出计算实例。

以第一组数据为例: 流量s mt h h A Q d u /1029.39928.45/10)4.106.55(10400/)(3624---⨯=⨯-⨯⨯=-= 由v A Q ⋅=,则管内平均流速为s m D Q A Q v /1065.2034/)1058.1(1029.3994/22262---⨯=⋅⨯⨯=⋅==ππ 29.3195310007.11065.2031058.1Dve 1423.0)1065.2203(1056.95251058.18.9221056.952106.75)16.13()16.13(106.752.198.94''-6222222222'221'=⨯⨯⨯⨯===⨯⨯⨯⨯⨯⨯=⋅=⨯=⨯⨯-=∆⋅-=⨯=-=-=∆---------νλR v h L D g mh h mh h h f f 雷诺数沿程阻力系数沿程水头损失水压差计压差汞3.在双对数坐标纸上绘制λ-Re 的关系曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档