高考数学压轴卷 文1
压轴题01 函数性质的综合运用(原卷版)-2023年高考数学压轴题专项训练(江苏专用)
压轴题01函数性质的综合运用函数是高中数学的主干,也是高考考查的重点,而函数的性质是函数的灵魂,它对函数概念的理解以及利用函数性质来解决相关函数问题起到十分重要的作用.此外在高考试题的考查中函数的性质也是常见题型.考向一:利用奇偶性、单调性解函数不等式考向二:奇函数+M 模型与奇函数+函数模型考向三:周期运用的综合运用1.单调性技巧(1)证明函数单调性的步骤①取值:设1x ,2x 是()f x 定义域内一个区间上的任意两个量,且12x x ;②变形:作差变形(变形方法:因式分解、配方、有理化等)或作商变形;③定号:判断差的正负或商与1的大小关系;④得出结论.(2)函数单调性的判断方法①定义法:根据增函数、减函数的定义,按照“取值—变形—判断符号—下结论”进行判断.②图象法:就是画出函数的图象,根据图象的上升或下降趋势,判断函数的单调性.③直接法:就是对我们所熟悉的函数,如一次函数、二次函数、反比例函数等,直接写出它们的单调区间.(3)记住几条常用的结论:①若()f x是增函数,则()f x-为减函数;若()f x是减函数,则()f x-为增函数;②若()f x和()g x均为增(或减)函数,则在()f x和()g x的公共定义域上()()f xg x+为增(或减)函数;③若()0f x>且()f x为增函数,1()f x为减函数;④若()0f x>且()f x为减函数,1()f x为增函数.2.奇偶性技巧(1)函数具有奇偶性的必要条件是其定义域关于原点对称.(2)奇偶函数的图象特征.函数()f x是偶函数⇔函数()f x的图象关于y轴对称;函数()f x是奇函数⇔函数()f x的图象关于原点中心对称.(3)若奇函数()y f x=在0x=处有意义,则有(0)0f=;偶函数()y f x=必满足()(||)f x f x=.(4)偶函数在其定义域内关于原点对称的两个区间上单调性相反;奇函数在其定义域内关于原点对称的两个区间上单调性相同.(5)若函数()f x的定义域关于原点对称,则函数()f x能表示成一个偶函数与一个奇函数的和的形式.记1()[()()]2g x f x f x=+-,1()()()]2h x f x f x=--,则()()()f xg xh x=+.(6)运算函数的奇偶性规律:运算函数是指两个(或多个)函数式通过加、减、乘、除四则运算所得的函数,如()(),()(),()(),()()f xg x f x g x f x g x f x g x+-⨯÷.对于运算函数有如下结论:奇±奇=奇;偶±偶=偶;奇±偶=非奇非偶;奇()⨯÷奇=偶;奇()⨯÷偶=奇;偶()⨯÷偶=偶.(7)复合函数[()]y f g x=的奇偶性原来:内偶则偶,两奇为奇.(8)常见奇偶性函数模型奇函数:①函数1()()01x x a f x m x a +=≠-()或函数1()()1x x a f x m a -=+.②函数()()x x f x a a -=±-.③函数2()log log (1)aa x m m f x x m x m +==+--或函数2()log log (1)a a x m m f x x m x m-==-++④函数()log )a f x x =或函数()log )a f x x =.注意:关于①式,可以写成函数2()(0)1xm f x m x a =+≠-或函数2()()1x mf x m m R a =-∈+.偶函数:①函数()()x x f x a a -=±+.②函数()log (1)2mx a mxf x a =+-.③函数(||)f x 类型的一切函数.④常数函数3.周期性技巧()()()()211();()2()()()()2()()4()()2()()()()()2()()()2()()()(x R f x T f x T f x T f x T f x T f x T T f x f x f x T f x T T f x T f x T T f a x f a x b a f b x f b x f a x f a x a f x f a x f a x b a f b x f b x f a ∈+=+=-+=+=-+=-+=--+=-⎧-⎨+=-⎩+=-⎧⎨⎩+=--⎧-⎨+=--⎩函数式满足关系()周期为偶函数)()2()()()4()()()()()4()()()4()x f a x a f x f a x f a x b a f b x f b x f a x f a x a f x f a x f a x af x +=--⎧⎨⎩+=-⎧-⎨+=--⎩+=-⎧⎨⎩+=--⎧⎨⎩为奇函数为奇函数为偶函数4.函数的的对称性与周期性的关系(1)若函数()y f x =有两条对称轴x a =,()x b a b =<,则函数()f x 是周期函数,且2()T b a =-;(2)若函数()y f x =的图象有两个对称中心(,),(,)()a c b c a b <,则函数()y f x =是周期函数,且2()T b a =-;(3)若函数()y f x =有一条对称轴x a =和一个对称中心(,0)()b a b <,则函数()y f x =是周期函数,且4()T b a =-.5.对称性技巧(1)若函数()y f x =关于直线x a =对称,则()()f a x f a x +=-.(2)若函数()y f x =关于点()a b ,对称,则()()2f a x f a x b ++-=.(3)函数()y f a x =+与()y f a x =-关于y 轴对称,函数()y f a x =+与()y f a x =--关于原点对称.1.(2023·河北唐山·开滦第二中学校考一模)已知函数()222e e 287x x f x x x --=++-+则不等式()()232f x f x +>+的解集为()A.1(1)3--,B.1(,1)(,)3-∞--+∞ C.1(1)3-,D.1(,(1,)3-∞-⋃+∞2.(2023·安徽宣城·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=.若()3f x +为奇函数,322g x ⎛⎫+ ⎪⎝⎭为偶函数,且()03g =-,()12g =,则()20231i g i ==∑()A.670B.672C.674D.6763.(2023·甘肃定西·统考一模)定义在R 上的函数()f x 满足()()()f x y f x f y +=+,当0x >时,()0f x <,则不等式()()22530f x f x x -+-<的解集为()A.5,3⎛⎫-∞ ⎪⎝⎭B.51,2⎛⎫- ⎪⎝⎭C.()5,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭D.5,3⎛⎫+∞ ⎪⎝⎭4.(2023·吉林通化·梅河口市第五中学校考一模)已知函数()()lg 122x xf x x -=-++,则不等式()()12f x f x +<的解集为()A.()(),11,-∞-⋃+∞B.()2,1--C.()(),21,-∞-+∞ D.()()1,1,3-∞-⋃+∞5.(2023·内蒙古·模拟预测)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为()A.(),1-∞B.()1,+∞C.(]1,7D.(]1,26.(2023·广西梧州·统考一模)已知定义在R 上的函数()f x 在(,1]-∞上单调递增,若函数(1)f x +为偶函数,且(3)0f =,则不等式()0xf x >的解集为()A.(1,3)-B.(,1)(3,)-∞-⋃+∞C.(,1)(0,3)-∞-⋃D.(1,0)(3,)-+∞ 7.(2023·河南·开封高中校考模拟预测)已知()f x 是定义域为R 的奇函数,当0x >时,()()2ln 1f x x x =++,则不等式()211ln2f x +>+的解集为()A.{1}∣<x x B.{0}x x <∣C.{1}xx >∣D.{0}xx >∣8.(2023·福建泉州·校考模拟预测)已知函数()f x 是定义在R 上的偶函数,且函数()f x 在[0,)+∞上是减函数,如果()31f =-,则不等式()110f x -+≥的解集为()A.](2-∞,B.[)2,+∞C.[]24-,D.[]14,9.(2023·陕西西安·高三西北工业大学附属中学校考阶段练习)已知函数()(32e log e 1xx f x x =++在[],(0)k k k ->上的最大值与最小值分别为M 和m ,则M m +=()A.2-B.0C.2D.410.(2023·江西南昌·统考一模)已知函数()()35112=-+f x x ,若对于任意的[]2,3x ∈,不等式()()21+-≤f x f a x 恒成立,则实数a 的取值范围是()A.(),2-∞B.(],2-∞C.(),4-∞D.(],4∞-11.(2023·全国·高三专题练习)已知函数()e e 2x xf x x x -=-++在区间[]22-,上的最大值与最小值分别为,M N ,则M N +的值为()A.2-B.0C.2D.412.(2023·全国·高三专题练习)若对x ∀,R y ∈.有()()()4f x y f x f y +=+-,则函数22()()1xg x f x x =++在[2018-,2018]上的最大值和最小值的和为()A.4B.8C.6D.1213.(多选题)(2023·浙江杭州·统考二模)已知函数()f x (x ∈R )是奇函数,()()2f x f x +=-且()12f =,()f x '是()f x 的导函数,则()A.()20232f =B.()f x '的一个周期是4C.()f x '是偶函数D.()11f '=14.(多选题)(2023·安徽滁州·统考二模)已知函数()f x 及其导函数()f x '的定义域均为R ,记()()g x f x '=,若12f x ⎛⎫- ⎪⎝⎭,()1g x +均为奇函数,则()A.()00f =B.()00g =C.()()14f f -=D.()()14g g -=15.(多选题)(2023·吉林·统考三模)设定义在R 上的可导函数()f x 与()g x 导函数分别为()f x '和()g x ',若()()212f x g x x =-+,()1f x +与()g x 均为偶函数,则()A.()11g '=B.()20220323g =-'C.()24f '=-D.991198100i f i =⎛⎫= ⎪⎝'⎭∑16.(多选题)(2023·海南海口·校考模拟预测)已知定义在R 上的函数()f x 在(],2-∞上单调递增,且()2f x +为偶函数,则()A.()f x 的对称中心为()2,0B.()f x 的对称轴为直线2x =C.()()14f f -<D.不等式()()34f x f x +>的解集为()1,1,5⎛⎫-∞+∞ ⎪⎝⎭ 17.(多选题)(2023·广东佛山·佛山一中校考一模)设函数()y f x =的定义域为R ,且满足(1)(1)f x f x +=-,(2)()0f x f x -+-=,当[]1,1x ∈-时,()1f x x =-+,则下列说法正确的是()A.()1y f x =+是偶函数B.()3y f x =+为奇函数C.函数()lg =-y f x x 有8个不同的零点D.()202311k f k ==∑18.(2023·江西吉安·统考一模)已知函数()f x 的定义域为R ,其导函数为()g x ,若函数(22)f x +为偶函数,函数(1)g x -为偶函数,则下列说法正确的序号有___________.①函数()f x 关于2x =轴对称;②函数()f x 关于(1,0)-中心对称;③若(2)1,(5)1f f -==-,则(26)(16)=3g f +-;④若当12x -≤≤时,1()e 1x f x +=-,则当1417x ≤≤时,17()e 1x f x -=-.19.(2023·陕西榆林·统考一模)已知函数()f x 是定义在()2,2-上的增函数,且()f x 的图象关于点()0,2-对称,则关于x 的不等式()()240f x f x +++>的解集为__________.20.(2023·全国·校联考模拟预测)已知定义在R 上的函数()f x 满足:对任意实数a ,b 都有()()()1a a b b f f f +=+-,且当0x >时,()1f x >.若()23f =,则不等式()212f x x --<的解集为______.21.(2023·江西赣州·高三统考阶段练习)已知()f x 是定义在[]4,4-上的增函数,且()f x 的图象关于点()0,1对称,则关于x 的不等式()()23350f x f x x +-+->的解集为______.22.(2023·湖南湘潭·高三湘钢一中校考开学考试)已知()f x 是定义在()5,5-上的增函数,且()f x 的图象关于点()0,1-对称,则关于x 的不等式()()211320f x f x x ++-++>的解集为_________.23.(2023·江苏常州·高三校联考开学考试)已知函数()2e e e ex xx x f x x ---=++,则不等式()()21122f x f x x ++-<+的解集为__________.24.(2023·辽宁·鞍山一中校联考模拟预测)已知函数()f x ,()g x 的定义域均为R ,()1f x +是奇函数,且()()12f x g x -+=,()()32f x g x +-=,则下列结论正确的是______.(只填序号)①()f x 为偶函数;②()g x 为奇函数;③()20140k f k ==∑;④()20140k g k ==∑.25.(2023·陕西西安·西北工业大学附属中学校考模拟预测)已知函数()(32e log e 1xxf x x =++在[](),0k k k ->上的最大值与最小值分别为M 和m ,则函数()()()31g x M m x M m x -=+++-⎡⎤⎣⎦的图象的对称中心是___________.26.(2023·全国·高三专题练习)设函数()())221ln1x xf x x ++=+的最大值为M ,最小值为N ,则M N +的值为________。
2023年新高考数学选填压轴题汇编(一)(解析版)
2023年新高考数学选填压轴题好题汇编(一)一、单选题1.(2022·广东·广州市真光中学高三开学考试)端午佳节,人们有包粽子和吃粽子的习俗,粽子主要分为南北两大派系,地方细分特色鲜明,且形状各异,裹蒸粽是广东肇庆地区最为出名的粽子,是用当地特有的冬叶、水草包裹糯米、绿豆、猪肉、咸蛋黄等蒸制而成的金字塔形的粽子,现将裹蒸粽看作一个正四面体,其内部的咸蛋黄看作一个球体,那么,当咸蛋黄的体积为4π3时,该裹蒸粽的高的最小值为( )A.4B.6C.8D.10【答案】A 【解析】要使正四面体的高最小,当且仅当球与正四面体相内切,设正四面体的棱长为a ,高为h ,内切球的半径为r ,则4π3r 3=4π3,解得r =1,如图正四面体S -ABC 中,令D 为BC 的中点,O 1为底面三角形的中心,则SO 1⊥底面ABC所以V S -ABC =13S △ABC h =13⋅4S △ABC ⋅r ,即h =4r =4.故选:A2.(2022·广东惠州·高三阶段练习)甲罐中有5个红球,3个白球,乙罐中有4个红球,2个白球.整个取球过程分两步,先从甲罐中随机取出一球放入乙罐,分别用A 1、A 2表示由甲罐取出的球是红球、白球的事件;再从乙罐中随机取出两球,分别用B 、C 表示第二步由乙罐取出的球是“两球都为红球”、“两球为一红一白”的事件,则下列结论中不正确的是( )A.P B A 1 =1021B.P C A 2 =47C.P B =1942D.P C =4384【答案】C【解析】在事件A 1发生的条件下,乙罐中有5红2白7个球,则P B ∣A 1 =C 25C 27=1021,A 正确;在事件A 2发生的条件下,乙罐中有4红3白7个球,则P C ∣A 2 =C 14C 13C 27=1221=47,B 正确;因P A 1 =58,P A 2 =38,P B ∣A 1 =1021,P B ∣A 2 =C 24C 27=621,则P B =P A 1 P B ∣A 1 +P A 2 P B ∣A 2 =58×1021+38×621=1742,C 不正确;因P C ∣A 2 =1221,P C ∣A 1 =C 15C 12C 27=1021,则P C =P A 1 P C ∣A 1 +P A 2 P C ∣A 2 =58×1021+38×1221=4384,D 正确.故选:C .3.(2022·广东·鹤山市鹤华中学高三开学考试)已知直线ax -2by +14=0平分圆C :x 2+y 2-4x -2y -11=0的面积,过圆外一点P a ,b 向圆做切线,切点为Q ,则PQ 的最小值为( )A.4 B.5C.6D.7【答案】A【解析】圆C :x 2+y 2-4x -2y -11=0化为标准方程为x -2 2+y -1 2=16,所以圆心C 2,1 ,半径r =4,因为直线ax -2by +14=0平分圆C :x 2+y 2-4x -2y -11=0的面积,所以圆心C 2,1 在直线ax -2by +14=0上,故2a -2b +14=0,即b =a +7,在Rt △PQC 中,PQ2=PC 2-r 2=a -2 2+b -1 2-16=a -2 2+a +6 2-16=2a 2+8a +24=2a +2 2+16,当a =-2时,PQ 2最小为16,PQ 最小为4.故选:A .4.(2022·广东广州·高三开学考试)设a =ln1.1,b =e 0.1-1,c =tan0.1,d =0.4π,则( )A.a <b <c <d B.a <c <b <dC.a <b <d <cD.a <c <d <b【答案】B【解析】设a x =ln x +1 ,b x =e x -1,c x =tan x ,d x =4πx ,易得a 0 =b 0 =c 0 =d 0 .设y =d x -b x =4πx -e x +1,则令y =4π-e x =0有x =ln 4π,故y =d x -b x 在-∞,ln 4π上单调递增.①因为4π 10>43.2 10=54 10=2516 5>2416 5=32 5>e ,即4π 10>e ,故10ln 4π>1,即ln 4π>0.1,故d 0.1 -b 0.1 >d 0 -b 0 =0,即d >b .②设y =b x -c x =e x -1-tan x ,则y =e x-1cos 2x =e x cos 2x -1cos 2x,设f x =e x cos 2x -1,则f x =e x cos 2x -2sin x =e x -sin 2x -2sin x +1 .设g x =x -sin x ,则g x =1-cos x ≥0,故g x =x -sin x 为增函数,故g x ≥g 0 =0,即x ≥sin x .故f x ≥e x -x 2-2x +1 =e x -x +1 2+2 ,当x ∈0,0.1 时f x >0, f x =e x cos 2x -1为增函数,故f x ≥e 0cos 20-1=0,故当x ∈0,0.1 时y =b x -c x 为增函数,故b 0.1 -c 0.1 >b 0 -c 0 =0,故b >c .③设y =c x -a x =tan x -ln x +1 ,y =1cos 2x -1x +1=x +sin 2xx +1 cos 2x,易得当x ∈0,0.1 时y >0,故c 0.1 -a 0.1 >c 0 -a 0 =0,即c >a .综上d >b >c >a 故选:B5.(2022·广东广州·高三开学考试)若空间中经过定点O 的三个平面α,β,γ两两垂直,过另一定点A 作直线l 与这三个平面的夹角都相等,过定点A 作平面δ和这三个平面所夹的锐二面角都相等.记所作直线l 的条数为m ,所作平面δ的个数为n ,则m +n =( )A.4 B.8C.12D.16【答案】B【解析】将α,β,γ放入正方体OBCD -A 1B 1C 1D 1,根据对称性可知,对角线OC 1分别与三个平面α,β,γ所成角都相等,对角线BD 1分别与三个平面α,β,γ所成角都相等,因为平面BC 1⎳平面α,所以对角线BD 1分别与三个平面α,β,γ所成角都相等,同理对角线B 1D ,A 1C 分别与三个平面α,β,γ所成角都相等,过点A 分别作BD 1,B 1D ,A 1C ,OC 1的平行线,则所作四条平行线分别与三个平面α,β,γ所成角都相等,所以m =4.试卷第1页,共50页如下图,正方体的内接正四面体O -B 1CD 1的四个平面与α,β,γ所夹的锐二面角都相等,所以过A 分别作与正四面体O -B 1CD 1四个面平行的平面即可,所以n =4.故选:B .6.(2022·广东·深圳外国语学校高三阶段练习)已知a =e 0.05,b =ln1.12+1,c = 1.1,则( )A.a >b >c B.c >b >a C.b >a >cD.a >c >b【答案】D【解析】令f x =e x -x -1x >0 ,则f x =e x -1>0,∴f x 在0,+∞ 上单调递增,∴f x >f 0 =0,即e x >x +1,∴e 0.1>1.1,∴e 0.05> 1.1,即a >c ;令g x =ln x -x +1,则g x =1x -1=1-xx,∴当x ∈0,1 时,g x >0;当x ∈1,+∞ 时,g x <0;∴g x 在0,1 上单调递增,在1,+∞ 上单调递减,∴g x ≤g 1 =0,∴ln x ≤x -1(当且仅当x =1时取等号),∴ln x ≤x -1,即ln x 2+1≤x (当且仅当x =1时取等号),∴ln1.12+1< 1.1,即b <c ;综上所述:a >c >b .故选:D .7.(2022·广东·深圳外国语学校高三阶段练习)已知双曲线C :x 2a 2-y 2b2=1(a >0,b >0)的左右焦点分别为F 1,F 2,O 为坐标原点,点P 为双曲线C 中第一象限上的一点,∠F 1PF 2的平分线与x 轴交于Q ,若OQ=14OF 2 ,则双曲线的离心率范围为( )A.1,2 B.1,4 C.2,2 D.2,4【答案】B【解析】设双曲线的半焦距为c c >0 , 离心率为e ,由OQ =14OF 2 ,则QF 1 =54c ,QF 2 =34c ,因为PQ 是∠F 1PF 2的平分线,所以PF 1 :PF 2 =5:3,又因为PF 1 -PF 2 =2a ,所以PF 1 =5a ,PF 2 =3a ,所以5a +3a >2c 2a <2c,解得1<ca<4,即1<e <4,所以双曲线的离心率取值范围为(1,4).故选:B 8.(2022·广东·高三阶段练习)设a =4-ln4e2,b =ln22,c =1e ,则( )A.a <c <b B.a <b <cC.b <a <cD.b <c <a【答案】C 【解析】设f x =ln x x ,则f x =1-ln xx 2,当x >e 时,f x <0,函数单调递减,当0<x <e 时,f x >0,函数单调递增,故当x =e 时,函数取得最大值f e =1e,因为a =22-ln2 e 2=ln e 22e 22=f e 22 ,b =ln22=ln44=f 4 ,c =1e =f e ,∵e <e 22<4,当x >e 时,fx <0,函数单调递减,可得f 4 <f e 22<f e ,即b <a <c .故选:C9.(2022·广东·高三阶段练习)定义在R 上的函数f x 满足f (-x )+f (x )=0,f (x )=f (2-x );且当x ∈[0,1]时,f (x )=x 3-x 2+x .则方程7f (x )-x +2=0所有的根之和为( )A.14 B.12C.10D.8【答案】A【解析】由f (-x )+f (x )=0,f (x )=f (2-x )可得f x 为奇函数,且关于x =1对称.又由题意f (-x )=-f (x ),故f x =f 2-x =-f 2+x ,所以f x 关于2,0 对称,且f x =-f 2+x =f 4+x ,故f x 的周期为4.又当x ∈[0,1]时,f (x )=x 3-x 2+x ,此时f x =3x 2-2x +1=3x -13 2+23>0,故f (x )=x 3-x 2+x 在x ∈[0,1]为增函数.综上可画出y =f (x )的函数部分图象.又方程7f (x )-x +2=0的根即y =f (x )与y =17x -2 的交点,易得在区间-5,2 ,2,9 上均有3个交点,且关于2,0 对称,加上2,0 共7个交点,其根之和为3×2×2+2=14故选:A 10.(2022·广东·高三开学考试)设a =12e,b =ln 2,c =4-ln4e 2,则( )A.a <b <c B.c <b <a C.a <c <bD.b <c <a【答案】A 【解析】设f (x )=ln xx ,x ∈(0,+∞),因为f (x )=1-ln xx2,令f (x )>0,得0<x <e ;令f (x )<0,得x >e .所以f (x )在(0,e )上单调递增,在(e ,+∞)上单调递减,而a =12e =f (e ),b =ln212=ln22=f (2)=ln44=f (4),试卷第1页,共50页c =4-ln4e 2=2-ln2e 22=ln e22e 22=f e 22 ,因为0<e <2<e <e 22<4,所以a <b <c .故选:A .11.(2022·广东·高三开学考试)已知f (x )=2x 2,数列a n 满足a 1=2,且对一切n ∈N *,有a n +1=f a n ,则( )A.a n 是等差数列 B.a n 是等比数列C.log 2a n 是等比数列 D.log 2a n +1 是等比数列【答案】D【解析】由题意知a n +1=2a 2n ,所以log 2a n +1=1+2log 2a n ,所以log 2a n +1+1=2log 2a n +1 ,n ∈N *,所以log 2a n +1 是等比数列,且log 2a n +1=2n ,所以log 2a n =2n -1,选项A ,B ,C 错误,选项D 正确.故选:D .12.(2022·广东·中山一中高三阶段练习)已知a =log 1.10.9,b =0.91.1,c =1.10.9,则a ,b ,c 的大小关系为( )A.a <b <c B.a <c <bC.b <a <cD.b <c <a【答案】A【解析】由函数y =log 1.1x 在0,+∞ 上单调递增,所以a =log 1.10.9<log 1.11=0,由于函数y =0.9x 在R 上单调递减,所以0<0.91.1=b <0.90=1,由于函数y =1.1x 在0,+∞ 上单调递增,所以1.10.9>1.10=1,故a <b <c .故选:A .13.(2022·广东·中山一中高三阶段练习)已知函数f (x )=x 2-2x +a (e x -1+e -x +1)有唯一零点,则a =()A.-12B.13C.12D.1【答案】C【解析】因为f (x )=x 2-2x +a (e x -1+e -x +1)=x -1 2+a (e x -1+e -x +1)-1,设t =x -1,则f x =g t =t 2+a e t +e -t -1,因为g t =g -t ,所以函数g t 为偶函数,若函数f (x )有唯一零点,则函数g t 有唯一零点,根据偶函数的性质可知,只有当t =0时,g t =0才满足题意,即x =1是函数f (x )的唯一零点,所以2a -1=0,解得a =12.故选:C .14.(2022·广东·高三阶段练习)已知平面向量a ,b ,c 满足a =b =a ⋅b=2,且b -c ⋅3b -c =0,则c -a最小值为( )A.22+1B.33-3C.7-1D.23-2【答案】D【解析】因为a=b =a ⋅b =2,所以cos a ,b =a ⋅ba ⋅b=12,又a ,b ∈0,π ,所以a ,b =π3,如图所示:不妨设A 1,3 ,B 2,0 ,C x ,y ,则a =OA =1,3 ,b =OB =2,0 ,c =OC=x ,y ,所以b -c =2-x ,-y ,3b -c=6-x ,-y ,因为b -c ⋅3b -c=0,所以2-x 6-x +y 2=0,即x -4 2+y 2=4,表示点C 在以M 4,0 为圆心,以2为半径的圆上,所以c -a最小值为AM -r =1-4 2+3 2-2=23-2,故选:D15.(2022·湖南·邵阳市第二中学高三阶段练习)已知f (x )是定义在R 上的函数,且对任意x ∈R 都有f (x +2)=f (2-x )+4f (2),若函数y =f (x +1)的图象关于点(-1,0)对称,且f (1)=3,则f (2021)=( )A.6 B.3 C.0 D.-3【答案】D【解析】令x =0,得f (2)=f (2)+4f (2),即f (2)=0,所以f (x +2)=f (2-x ),因为函数y =f (x +1)的图象关于点(-1,0)对称,所以函数y =f (x )的图象关于点(0,0)对称,即f (-x )=-f (x ),所以f (x +2)=f (2-x )=-f (x -2),即f (x +4)=-f (x ),可得f (x +8)=f (x ),则f (2021)=f (253×8-3)=f (-3)=-f (1)=-3,故选:D .16.(2022·湖南·邵阳市第二中学高三阶段练习)对于定义在R 上的函数f x ,若存在正常数a 、b ,使得f x +a≤f x +b 对一切x ∈R 均成立,则称f x 是“控制增长函数”.在以下四个函数中:①f x =e x ;②f x =x ;③f x =sin x 2;④f x =x ⋅sin x .是“控制增长函数”的有( )个A.1 B.2 C.3 D.4【答案】C【解析】对于①,f x +a ≤f x +b 可化为e x +a ≤e x +b ,即e x ≤be a -1对一切x ∈R 恒成立,由函数y =f x 的定义域为R 可知,不存在满足条件的正常数a 、b ,所以,函数f x =e x 不是“控制增长函数”;对于②,若函数f x =x为“控制增长函数”,则f x +a ≤f x +b 可化为x +a≤x +b ,∴x +a ≤x +b 2+2b x 对一切x ∈R 恒成立,又x +a ≤x +a ,若x +a ≤x +b 2+2b x 成立,则x ≥a -b 22a,显然,当a <b 2时,不等式恒成立,试卷第1页,共50页所以,函数f x =x 为“控制增长函数”;对于③,∵-1≤sin x 2 ≤1,∴f x +a -f x ≤2,当b ≥2且a 为任意正实数时,f x +a ≤f x +b 恒成立,所以,函数f x =sin x 2 是“控制增长函数”;对于④,若函数f x =x ⋅sin x 是“控制增长函数”,则x +a ⋅sin x +a ≤x sin x +b 恒成立,∵x +a ⋅sin x +a ≤x +a ,若x +a ≤x sin x +b ≤x +b ,即a ≤b ,所以,函数f x =x ⋅sin x 是“控制增长函数”.因此,是“控制增长函数”的序号是②③④.故选:C17.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)《九章算术》是我国古代著名的数学著作,书中记载有几何体“刍甍”.现有一个刍甍如图所示,底面ABCD 为正方形,EF ⎳底面ABCD ,四边形ABFE ,CDEF为两个全等的等腰梯形,EF =12AB =2,AE =23,则该刍甍的外接球的体积为( )A.642π3B.32πC.643π3D.642π【答案】A【解析】取AD ,BC 中点N ,M ,正方形ABCD 中心O ,EF 中点O 2,连接EN ,MN ,FM ,OO 2,如图,依题意,OO 2⊥平面ABCD ,EF ⎳AB ⎳MN ,点O 是MN 的中点,MN =AB =4,等腰△AED 中,AD ⊥EN ,EN =AE 2-AN 2=22,同理FM =22,因此,等腰梯形EFMN 的高OO 2=EN 2-MN -EF 22=7,由几何体的结构特征知,刍甍的外接球球心O 1在直线OO 2上,连O 1E ,O 1A ,OA ,正方形ABCD 外接圆半径OA =22,则有O 1A 2=OA 2+OO 21O 1E 2=O 2E 2+O 2O 21 ,而O 1A =O 1E ,O 2E =12EF =1,当点O 1在线段O 2O 的延长线(含点O )时,视OO 1为非负数,若点O 1在线段O 2O (不含点O )上,视OO 1为负数,即有O 2O 1=O 2O +OO 1=7+OO 1,即(22)2+OO 21=1+(7+OO 1)2,解得OO 1=0,因此刍甍的外接球球心为O ,半径为OA =22,所以刍甍的外接球的体积为4π3×(22)3=642π3.故选:A18.(2022·湖南·麻阳苗族自治县第一中学高三开学考试)若3x -3y >5-x -5-y ,则( )A.1x >1yB.x 3>y 3C.x >yD.ln x 2+1 >ln y 2+1【答案】B【解析】由3x -3y >5-x -5-y 得3x -5-x >3y -5-y ,设f (x )=3x -5-x ,易知f (x )是增函数,所以由3x -5-x >3y -5-y 得x >y ,当x <0时,C 不存在,错误,A 错误,0>x >y ,则0<x 2<y 2,0<x 2+1<y 2+1,从而ln (x 2+1)<ln (y 2+1),D 错误.由不等式性质,B 正确.故选:B .二、多选题19.(2022·广东·广州市真光中学高三开学考试)已知抛物线C :y 2=2px p >0 的焦点为F ,抛物线C 上的点M 1,m 到点F 的距离是2,P 是抛物线C 的准线与x 轴的交点,A ,B 是抛物线C 上两个不同的动点,O 为坐标原点,则( )A.m =±2B.若直线AB 过点F ,则OA ⋅OB=-3C.若直线AB 过点F ,则PA PB =FAFB D.若直线AB 过点P ,则AF +BF >2PF 【答案】BCD 【解析】由题意得1+p2=2,则p =2,故抛物线C 的方程为y 2=4x ,将M 1,m 代入抛物线的方程,得m 2=4,解得m =±2,所以A 不正确;设A x 1,y 1 ,B x 2,y 2 ,易知直线AB 的斜率不为零,当直线AB 过点F 1,0 时,可设直线AB 的方程为x =ty +1,与抛物线方程联立,得y 2=4xx =ty +1 ,化简得:y 2-4ty -4=0,则y 1y 2=-4,y 1+y 2=4t ,所以x 1x 2=y 21y 2216=1,所以OA ⋅OB =x 1x 2+y 1y 2=1-4=-3,所以B 正确;易知P -1,0 ,则由选项B 得k PA +k PB =y 1x 1+1+y 2x 2+1=y 1ty 2+2 +y 2ty 1+2 x 1+1 x 2+1 =2ty 1y 2+2y 2+y 1 x 1+1 x 2+1 =-8t +8t x 1+1 x 2+1=0,所以直线PF 平分∠APB ,所以PA PB =FAFB,选项C 正确;因为直线AB 过点P -1,0 ,且斜率不为零,所以设直线AB 的方程为x =ty -1,与抛物线方程联立,易得y 1y 2=4,所以x 1x 2=1.因为x 1>0,x 2>0,且x 1≠x 2,所以AF +BF =x 1+1+x 2+1>2x 1x 2+2=4,又PF =2,所以AF +BF >2PF ,所以D 正确.故选:BCD .20.(2022·广东·广州市真光中学高三开学考试)若函数f 2x +2 为偶函数,f x +1 为奇函数,且当x ∈(0,1]时,f x =ln x ,则( )A.f x 为偶函数B.f e =1C.f 4-1e =-1D.当x ∈[1,2)时,f (x )=-ln (2-x )【答案】ACD试卷第1页,共50页【解析】对A ,因为函数f 2x +2 为偶函数,故f 2x +2 =f -2x +2 ,故f x 关于x =2对称.又f x +1 为奇函数,关于原点对称,故f x 关于1,0 对称.综上,f x 关于x =2与1,0 对称. 关于x =2对称有f x =f 4-x ,关于1,0 对称有f 4-x =-f x -2 ,f x =-f 2-x ,故-f x -2 =-f 2-x ,即f x =f -x ,所以f x 为偶函数,故A 正确;对B ,由A ,因为e ∈2,3 ,f e =-f 2-e =-f e -2 =-ln e -2 ,故B 错误;对C ,由A ,f 4-1e =f 1e =ln 1e=-1,故C 正确;对D ,当x ∈[1,2)时,2-x ∈0,1 ,故f x =-f 2-x =-ln 2-x ,故D 正确;故选:ACD21.(2022·广东惠州·高三阶段练习)如图,在棱长为2的正方体ABCD -A 1B 1C 1D 1中,M ,N ,P 分别是C 1D 1,C 1C ,A 1A 的中点,则( )A.M ,N ,B ,D 1四点共面B.异面直线PD 1与MN 所成角的余弦值为1010C.平面BMN 截正方体所得截面为等腰梯形D.三棱锥P -MNB 的体积为13【答案】BCD【解析】对于A ,易知MN 与BD 1为异面直线,所以M ,N ,B ,D 1不可能四点共面,故A 错误;对于B ,连接CD 1,CP ,易得MN ⎳CD 1,所以∠PD 1C 为异面直线PD 1与MN 所成角,设AB =2,则CD 1=22,D 1P =5,PC =3,所以cos ∠PD 1C =(22)2+(5)2-322×22×5=1010,所以异面直线PD 1与MN 所成角的余弦值为1010,故B 正确;对于C ,连接A 1B ,A 1M ,易得A 1B ⎳MN ,所以平面BMN 截正方体所得截面为梯形MNBA 1,故C 正确;对于D ,易得D 1P ⎳BN ,因为D 1P ⊄平面MNB ,MN ⊂平面MNB ,所以D 1P ⎳平面MNB ,所以V P -MNB =V D 1-MNB =V B -MND 1=13×12×1×1×2=13,故D 正确.故选:BCD22.(2022·广东·鹤山市鹤华中学高三开学考试)已知椭圆C :x 216+y 29=1的左,右焦点为F 1,F 2,点P 为椭圆C上的动点(P 不在x 轴上),则( )A.椭圆C 的焦点在x 轴上B.△PF 1F 2的周长为8+27C.|PF 1|的取值范围为94,4 D.tan ∠F 1PF 2的最大值为37【答案】ABD【解析】对于A ,由椭圆的方程可知,椭圆焦点在x 轴上,故A 正确;对于B ,因为c =16-9=7,而△PF 1F 2的周长为2a +2c =8+27,故B 正确;对于C ,因为P 不在x 轴上,所以a -c <PF 1 <a +c ,所以PF 1 的取值范围为4-7,4+7 ,故C 不正确;对于D ,设椭圆的上顶点为B ,则0≤∠F 1PF 2≤∠F 1BF 2<π2,所以tan ∠F 1PF 2的最大值为tan ∠F 1BF 2.设∠OBF 2=α,则tan α=73,且∠F 1BF 2=2α,而tan2α=2tan α1-tan 2α=37,所以tan ∠F 1PF 2的最大值为37,故D 正确.故选:ABD .23.(2022·广东广州·高三开学考试)若f x =sin x +cos x ,则下列说法正确的有( )A.f x 的最小正周期是πB.方程x =-π2是f x 的一条对称轴C.f x 的值域为1,2D.∃a ,b >0,对∀x ∈R 都满足f x +a +f a -x =2b ,(a ,b 是实常数)【答案】BC【解析】对A ,因为f x =sin x +cos x ,所以f x +π2 =sin x +π2 +cos x +π2=cos x +sin x =f x ,故π2是f x 的一个周期,故最小正周期是π是错误的,对B ,因为f x -π =sin x -π +cos x -π =sin x +cos x =f x ,故x =-π2是f x 的一条对称轴是正确的,对C ,当x ∈0,π2 时,f x =sin x +cos x =sin x +cos x =2sin x +π4 ,由x ∈0,π2 ,则x +π4∈π4,3π4 ,故sin x +π4 ∈22,1 ,因此f (x )∈1,2 ,由A 知π2是f x 的周期,故f x 的值域为1,2 ,C 正确,对D ,因为当x ∈0,π2 时,f x =sin x +cos x =sin x +cos x =2sin x +π4 ,且π2是f x 的周期,故画出f (x )的图象如图:由图可知,f (x )没有对称中心,故不存在a ,b ,使得f x +a +f a -x =2b ,故D 错误.故选:BC24.(2022·广东广州·高三开学考试)已知抛物线y 2=2px 上的四点A 2,2 ,B ,C ,P ,直线AB ,AC 是圆M :x -22+y 2=1的两条切线,直线PQ 、PR 与圆M 分别切于点Q 、R ,则下列说法正确的有( )A.当劣弧QR 的弧长最短时,cos ∠QPR =-13B.当劣弧QR 的弧长最短时,cos ∠QPR =13C.直线BC 的方程为x +2y +1=0D.直线BC 的方程为3x +6y +4=0试卷第1页,共50页【答案】BD【解析】由已知得抛物线y 2=2px 过点A 2,2 ,即22=2p ×2,所以p =1,即抛物线为y 2=2x ,对于AB 选项,如图所示,设点P y 202,y 0当劣弧QR 的弧长最短时,∠QMR 最小,又∠QMR +∠QOR =π,所以∠QPR 最大,即cos ∠QPR 最小,又cos ∠QPR =cos2∠QPM =1-2sin 2∠QPM =1-2⋅MQ 2PM 2,又圆M :x -2 2+y 2=1,所以圆心M 2,0 ,半径r =QM =1,cos ∠QPR =1-2PM2,又PM 2=y 202-22+y 20=14y 20-2 2+3,所以当y 20=2时,PM 2取最小值为3,此时cos ∠QPR 最小为1-23=13,所以A 选项错误,B 选项正确;对于CD 选项,设过点A 作圆M 切线的方程为y -2=k x -2 ,即kx -y -2k +2=0,所以d =2k -0-2k +21+k2=r =1,解得k =±3,则直线AB 的方程为:y -2=3x -2 ,即y =3x -23+2,直线AC 的方程为:y -2=-3x -2 ,即y =-3x +23+2,联立直线AB 与抛物线y =3x -23+2y 2=2x ,得y 2-233y +433-4=0,故2y B =433-4,y B =233-2,B 83-433,233-2 ,同理可得C 83+433,-233-2 ,所以k BC =233-2 --233-2 83-433 -83+433=-12,直线BC 的方程为y -233-2 =-12x -83-433,即3x +6y +4=0,所以C 选项错误,D 选项正确;故选:BD .25.(2022·广东广州·高三开学考试)已知函数f x 及其导函数f x 的定义域均为R ,对任意的x ,y ∈R ,恒有f x +y +f x -y =2f x ⋅f y ,则下列说法正确的有( )A.f 0 =1 B.f x 必为奇函数C.f x +f 0 ≥0D.若f 1 =12,则2023n =1f n =12 【答案】BCD【解析】对于A ,令x =y =0,则由f x +y +f x -y =2f x ⋅f y 可得2f 0 =2f 20 ,故f (0)=0或f 0 =1,故A 错误;对于B ,当f (0)=0时,令y =0,则f x +f x =2f x ⋅f 0 =0,则f (x )=0 ,故f (x )=0,函数f x 既是奇函数又是偶函数;令x =0,则f y +f -y =2f 0 ⋅f y ,则f y -f -y =2f 0 ⋅f y ,当f 0 =1时,f y -f -y =2f y ,则f -y =-f y ,y ∈R 为奇函数,综合以上可知f x 必为奇函数,B 正确;对于C ,令x =y ,则f 2x +f 0 =2f 2x ,故f 2x +f 0 ≥0。
高考数学压轴题精选
高考数学压轴题精选(一)1.(本小题满分12分)设函数x axxx f ln 1)(+-=在),1[+∞上是增函数。
求正实数a 的取值范围;设1,0>>a b ,求证:.ln 1bb a b b a b a +<+<+ 解:(1)01)(2'≥-=axax x f 对),1[+∞∈x 恒成立, xa 1≥∴对),1[+∞∈x 恒成立又11≤x1≥∴a 为所求。
(2)取b b a x +=,1,0,1>+∴>>bba b a Θ,一方面,由(1)知x axxx f ln 1)(+-=在),1[+∞上是增函数,0)1()(=>+∴f bba f 0ln 1>+++⋅+-∴b b a b b a a b ba即ba b b a +>+1ln另一方面,设函数)1(ln )(>-=x x x x G)1(0111)('>>-=-=x xx x x G Θ ∴)(x G 在),1(+∞上是增函数且在0x x =处连续,又01)1(>=G∴当1>x 时,0)1()(>>G x G∴x x ln >即bba b b a +>+ln 综上所述,.ln 1bb a b b a b a +<+<+2.已知椭圆C 的一个顶点为(0,1)A -,焦点在x 轴上,右焦点到直线10x y -+=(1)求椭圆C 的方程;(2)过点F (1,0)作直线l 与椭圆C 交于不同的两点A 、B ,设,(2,0)FA FB T λ=u u u r u u u r,若||],1,2[+--∈求λ的取值范围。
解:(1=1c =…………………1分由题意1,b a =∴=所以椭圆方程为2212x y +=………………………3分 (2)容易验证直线l 的斜率不为0。
故可设直线l 的方程为1x ky =+,2212x y +=代入中,得.012)2(22=-++ky y k设1122(,),(,),A x y B x y则22221+-=+k k y y .21221+-=k y y ……………………………5分 ∵,FB FA λ=∴有.021<=λλ,且y y222122212()414222y y k k y y k k λλ+∴=-⇒++=-++由021212125]1,2[≤++≤-⇒-≤+≤-⇒--∈λλλλλ.72072024212222≤≤⇒≤⇒≤+-≤-⇒k k k k …………7分∵).,4(),,2(),,2(21212211y y x x y x y x +-+=+∴-=-=又.2)1(42)(4,22222121221++-=-+=-+∴+-=+k k y y k x x k k y y 故2212212)()4(||y y x x ++-+=+222222222222)2(8)2(28)2(16)2(4)2()1(16+++-+=++++=k k k k k k k222)2(822816+++-=k k ……………………………………………………8分令720.2122≤≤+=k k t Θ∴21211672≤+≤k ,即].21,167[∈t ∴.217)47(816288)(||222--=+-==+t t t t f而]21,167[∈t ,∴169()[4,]32f t ∈∴].8213,2[||∈+TB TA ………………………………………………………10分3.设函数322()f x x ax a x m =+-+(0)a >(1)若1a =时函数()f x 有三个互不相同的零点,求m 的范围; (2)若函数()f x 在[]1,1-内没有极值点,求a 的范围;(3)若对任意的[]3,6a ∈,不等式()1f x ≤在[]2,2x ∈-上恒成立,求实数m 的取值范围. 解:(1)当1a =时32()f x x x x m =+-+,因为()f x 有三个互不相同的零点,所以32()0f x x x x m =+-+=, 即32m x x x =--+有三个互不相同的实数根。
2024届北京师大附中高三压轴卷数学试卷含解析
2024年高考数学模拟试卷注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。
2.选择题必须使用2B 铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。
3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。
4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知双曲线2222:1(0,0)x y C a b a b-=>>的右焦点为F ,过右顶点A 且与x 轴垂直的直线交双曲线的一条渐近线于M点,MF 的中点恰好在双曲线C 上,则C 的离心率为( ) A1BCD2.生活中人们常用“通五经贯六艺”形容一个人才识技艺过人,这里的“六艺”其实源于中国周朝的贵族教育体系,具体包括“礼、乐、射、御、书、数”.为弘扬中国传统文化,某校在周末学生业余兴趣活动中开展了“六艺”知识讲座,每艺安排一节,连排六节,则满足“数”必须排在前两节,“礼”和“乐”必须分开安排的概率为( ) A .760B .16C .1360D .143.设n S 为等差数列{}n a 的前n 项和,若3578122()3()66a a a a a ++++=,则14S = A .56 B .66 C .77D .784.将函数()sin(2)f x x ϕ=-的图象向右平移18个周期后,所得图象关于y 轴对称,则ϕ的最小正值是( ) A .8π B .34π C .2π D .4π 5.在ABC ∆中,,,a b c 分别为,,A B C ∠∠∠所对的边,若函数()()322213f x x bx a c ac x =+++- 1+有极值点,则B 的范围是( )A .0,3π⎛⎫⎪⎝⎭ B .0,3π⎛⎤⎥⎝⎦C .,3ππ⎡⎤⎢⎥⎣⎦D .,3π⎛⎫π⎪⎝⎭6.设等比数列{}n a 的前项和为n S ,若2019201680a a +=,则63S S 的值为( )A .32B .12C .78 D .987.设函数'()f x 是奇函数()()f x x R ∈的导函数,当0x >时,1'()ln ()<-f x x f x x,则使得2(1)()0x f x ->成立的x 的取值范围是( ) A .(1,0)(0,1)-B .(,1)(1,)-∞-+∞C .(1,0)(1,)D .(,1)(0,1)-∞-8.如图是一个几何体的三视图,则这个几何体的体积为( )A .53π B .2πC .52π D .3π9.记集合(){}22,16A x y xy =+≤和集合(){},4,0,0B x y x y x y =+≤≥≥表示的平面区域分别是1Ω和2Ω,若在区域1Ω内任取一点,则该点落在区域2Ω的概率为( ) A .14πB .1πC .12πD .24ππ- 10.双曲线C :2215x y m-=(0m >),左焦点到渐近线的距离为2,则双曲线C 的渐近线方程为( ) A .250x y ±=B .250x =C 520x y ±=D 50x y ±=11.设,m n 是两条不同的直线,,αβ是两个不同的平面,下列命题中正确的是( ) A .若//m α,//m β,则//αβ B .若m α⊥,m n ⊥,则n α⊥ C .若m α⊥,//m n ,则n α⊥D .若αβ⊥,m α⊥,则//m β12.在区间[]3,3-上随机取一个数x ,使得301xx -≥-成立的概率为等差数列{}n a 的公差,且264a a +=-,若0n a >,则n 的最小值为( ) A .8B .9C .10D .11二、填空题:本题共4小题,每小题5分,共20分。
2024年新高考数学选填压轴题汇编(一)(解析版)
2024年新高考数学选填压轴题汇编(一)一、多选题1(2023·广东深圳·高三红岭中学校考阶段练习)已知长方体的表面积为10,十二条棱长度之和为16,则该长方体()A.一定不是正方体B.外接球的表面积为6πC.长、宽、高的值均属于区间1,2D.体积的取值范围为5027,2【答案】ABD【解析】设长方体的长宽高分别为a ,b ,c ,则可得2ab +ac +bc =104a +b +c =16,即ab +ac +bc =5a +b +c =4 ,又因为a +b +c 2=a 2+b 2+c 2 +2ab +ac +bc =16,所以a 2+b 2+c 2=6,由不等式可得,a 2+b 2+c 2≥ab +ac +bc ,当且仅当a =b =c 时,等号成立,而a 2+b 2+c 2>ab +ac +bc ,取不到等号,所以得不到a =b =c ,即该长方体一定不是正方体,故A 正确;设长方体外接球的半径为R ,则2R =a 2+b 2+c 2=6,即R =62,则外接球的表面积为4π622=6π,故B 正确;由a +b +c =4可得,c =4-a +b ,代入ab +ac +bc =5可得,ab +4-a +b a +b =5,即ab =5-4-a +b a +b ,因为a ,b >0,由基本不等式可得ab ≤a +b24,即5-4-a +b a +b ≤a +b24,设a +b =t ,则t >0,则5-4-t t ≤t 24,化简可得3t 2-16t +20≤0,即3t -10 t -2 ≤0,所以2≤t ≤103,即2≤a +b ≤103,又因为a +b =4-c ,则23≤c ≤2,同理可得a ,b ∈23,2 ,故C 错误;设长方体的体积为V ,则V =abc =5-4-a +b a +b 4-a +b ,且a +b =t ,2≤t ≤103,即V =5-4-t t 4-t ,其中t ∈2,103,化简可得,V =4-t 5-4t +t 2 ,t ∈2,103,且V =-5-4t +t 2 +4-t -4+2t =-3t -7 t -3 ,t ∈2,103,令V =0,则t =73或3,当t ∈2,73时,V <0,即V 单调递减,当t ∈73,3时,V >0,即V 单调递增,当t ∈3,103时,V <0,即V 单调递减,所以,当t =73时,V 有极小值,且V 73 =4-73 5-4×73+499 =5027,当t =3时,V 有极大值,且V 3 =4-3 5-4×3+9 =2,又因为V 2 =4-2 5-4×2+4 =2,V 103 =4-103 5-4×103+1009 =5027,所以V ∈5027,2 ,故D 正确;故选:ABD2(2023·广东·高三校联考阶段练习)对于数列a n ,若存在正数M ,使得对一切正整数n ,都有a n ≤M ,则称数列a n 是有界的.若这样的正数M 不存在,则称数列a n 是无界的.记数列a n 的前n 项和为S n ,下列结论正确的是()A.若a n =1n,则数列a n 是无界的 B.若a n =12nsin n ,则数列S n 是有界的C.若a n =-1 n ,则数列S n 是有界的 D.若a n =2+1n2,则数列S n 是有界的【答案】BC【解析】对于A ,∵a n =1n=1n≤1恒成立,∴存在正数M =1,使得a n ≤M 恒成立,∴数列a n 是有界的,A 错误;对于B ,∵-1≤sin n ≤1,∴-12n≤a n =12n⋅sin n ≤12n,∴S n =a 1+a 2+⋯+a n <12+122+⋯+12n=121-12 n1-12=1-12n<1,S n =a 1+a 2+⋯+a n >-12+12 2+⋯+12 n=-1+12 n>-1,所以存在正数M =1,使得S n ≤M 恒成立,∴则数列S n 是有界的,B 正确;对于C ,因为a n =-1 n ,所以当n 为偶数时,S n =0;当n 为奇数时,S n =-1;∴S n ≤1,∴存在正数M =1,使得S n ≤M 恒成立,∴数列S n 是有界的,C 正确;对于D ,1n 2=44n 2<42n -1 2n +1=412n -1-12n +1 ,∴S n =2n +1+122+132+⋅⋅⋅1n2≤2n +41-13+13-15+⋅⋅⋅+12n -1-12n +1 =2n +41-12n +1 =2n +8n 2n +1=2n -22n +1+2 ;∵y =x -22x +1在0,+∞ 上单调递增,∴n -22n +1∈13,+∞,∴不存在正数M ,使得S n ≤M 恒成立,∴数列S n 是无界的,D 错误.故选:BC .3(2023·广东·高三校联考阶段练习)如图,正方体ABCD -A 1B 1C 1D 1中,E 为A 1B 1的中点,P 为棱BC 上的动点,则下列结论正确的是()A.存在点P ,使AC 1⊥平面D 1EPB.存在点P ,使PE =PD 1C.四面体EPC 1D 1的体积为定值D.二面角P -D 1E -C 1的余弦值取值范围是55,23【答案】BC【解析】(向量法)为简化运算,建立空间直角坐标系如图,设正方体棱长为2,CP =20≤a ≤2 ,则P a ,2,2 ,E 2,1,0 ,A 2,0,0 ,C 10,2,2 ,AC 1 =-2,2,-2 ,D 1E ⋅AC 1 =-2≠0,故AC 1与D 1E 不垂直,故A 错误.由PE =PD 1知a 2+22+22=a -2 2+12+22,a =14∈0,2 ,故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.又D 1E =2,1,0 ,D 1P =a ,2,2 ,设平面D 1EP 的法向量n 1 =x ,y ,z ,由D 1E ⋅n 1=0D 1P ⋅n 1 =0,2x +y =0ax +2y +2z =0 ,令x =2则y =-4,z =4-a ,∴n 1=2,-4,4-a ,又平面D 1EC 1的法向量n 2=0,0,1 ,∴cos n 1 ,n 2 =4-a 22+-4 2+4-a 2=11+204-a2,又0≤a ≤2,∴4≤4-a 2≤16,∴cos n 1 ,n 2 ∈66,23.故D 错误.(几何法)记棱A 1D 1,D 1D ,DC ,CB ,BB 1中点分别为F ,G ,J ,I ,H ,易知AC 1⊥平面EFGJIH ,而EF ⊂平面EFGJIH则AC 1⊥EF ,若AC 1⊥平面D 1EP ,D 1E ⊂平面D 1EP ,则AC 1⊥D 1E ,由EF ∩D 1E =E ,EF ,D 1E ⊂平面D 1EF ,所以AC 1⊥平面D 1EF ,与已知矛盾,故AC 1不垂直于平面D 1EP .故A 错误.连接EB ,D 1C ,易知BC ⊥EB ,BC ⊥D 1C ,设正方体棱长为2,知EB =5,D 1C =22,记BP =m 0≤m ≤2 ,则EP =m 2+5,D 1P =2-m2+8,由m 2+5=2-m 2+8,得m =74∈0,2 .故B 正确.V E -PC 1D 1=V P -C 1D 1E =13⋅2⋅S △C 1D 1E =13⋅2⋅12⋅2⋅2=43,为定值.故C 正确.过点P 作PM ⊥B 1C 1于点M ,易知PM ⊥D 1E ,过点M 作MN ⊥D 1E 于点N ,知D 1E ⊥平面PMN ,所以PN ⊥D 1E ,则二面角P -D 1E -C 1的平面角为∠PNM ,现在△PNM 中求解cos ∠PNM .设正方体棱长为2,NM =x ,则NP =x 2+4,∴cos ∠PNM =NMNP=xx 2+4,只需求x 取值范围即可:记BP =m 0≤m ≤2 ,则B 1M =BP =m ,分析易知M 在C 1时x 取到最大值,此时x =C 1N 1,M 在B 1时x 取到最小值,此时x =B 1N 2,又C 1N 1C 1D 1=D 1A 1D 1E 即C 1N 1=2⋅25=455,B 1N 2D 1A 1=B 1E D 1E 即B 1N 2=2⋅15=255,所以255≤x ≤455即45≤x 2≤165,∴cos ∠PNM =x x 2+4=1-4x 2+4∈66,23 .故D 错误.故选:BC4(2023·广东·高三校联考阶段练习)已知f x =xe x ,g x =x ln x .若存在x 1∈R ,x 2∈0,+∞ ,使得f x 1 =g x 2 =t 成立,则下列结论中正确的是()A.当t >0时,x 1x 2=tB.当t >0时,e ln t ≤x 1x 2C.不存在t ,使得f x 1 =g x 2 成立D.f x >g x +mx 恒成立,则m ≤2【答案】AB【解析】选项A ,∵f x 1 =g x 2 =t ∴t =x 1e x 1=x 2ln x 2=ln x 2e ln x 2>0,则x 1>0,x 2>0,ln x 2>0,且t =f (x 1)=f (ln x 2)>0,由f x =xe x ,得f x =e x x +1 ,当x >0时,f x >0,则f x 在0,+∞ 上递增,所以当t >0时,f x =t 有唯一解,故x 1=ln x 2,∴x 1x 2=x 2ln x 2=t ,故A 正确;选项B ,由A 正确,得ln t x 1x 2=ln tt(t >0),设φt =ln t t ,则φ t =1-ln tt 2,令φ t =0,解得t =e易知φt 在0,e 上单调递增,在e ,+∞ 上单调递减,∴φt ≤φe =1e ,∴ln t x 1x 2≤1e ,∴e ln t ≤x 1x 2,故B 正确;选项C ,由f x =e x x +1 ,g x =ln x +1=0,得f -1 =g 1e=0,又验证知f -1 =g 1e =-1e ,故存在t =-1e ,使得f -1 =g 1e=0,C 错误;选项D ,由x >0,f x >g x +mx 恒成立,即e x -ln x >m 恒成立,令r x =e x -ln x ,则r x =e x -1x ,由r x 在0,+∞ 上递增,又r 12=e -2<0,r 1 =e -1>0,∴存在x 0∈12,1 ,使r x 0 =0,∴r x 在0,x 0 上递减,在x 0,+∞ 上递增(其中x 0满足e x 0=1x 0,即x 0=-ln x 0).∴r x ≥r x 0 =e x 0-ln x 0=1x 0+x 0>2,要使m <e x -ln x 恒成立,∴m <r (x 0),存在2<m <r (x 0)满足题意,故D 错误.故选:AB .5(2023·广东梅州·高三大埔县虎山中学校考开学考试)已知f x 是定义在R 上的偶函数,且对任意x ∈R ,有f 1+x =-f 1-x ,当x ∈0,1 时,f x =x 2+x -2,则()A.f x 是以4为周期的周期函数B.f 2021 +f 2022 =-2C.函数y =f x -log 2x +1 有3个零点D.当x ∈3,4 时,f x =x 2-9x +18【答案】ACD【解析】依题意,f x 为偶函数,且f 1+x =-f 1-x ⇒f x 关于1,0 对称,则f x +4 =f 1+x +3 =-f 1-x +3 =-f -2-x=-f -2+x =-f 2+x =-f 1+1+x =f 1-1+x =f -x =f x ,所以f x 是周期为4的周期函数,A 正确.因为f x 的周期为4,则f 2021 =f 1 =0,f 2022 =f 2 =-f 0 =2,所以f 2021 +f 2022 =2,B 错误;作函数y =log 2x +1 和y =f x 的图象如下图所示,由图可知,两个函数图象有3个交点,C 正确;当x ∈3,4 时,4-x ∈0,1 ,则f x =f -x =f 4-x =4-x 2+4-x -2=x 2-9x +18,D 正确.故选:ACD6(2023·广东梅州·高三大埔县虎山中学校考开学考试)如图,正方形ABCD 中,E 、F 分别是AB 、BC的中点将△ADE,ΔCDF,△BEF分别沿DE、DF、EF折起,使A、B、C重合于点P.则下列结论正确的是A.PD⊥EFB.平面PDE⊥平面PDFC.二面角P-EF-D的余弦值为13D.点P在平面DEF上的投影是ΔDEF的外心【答案】ABC【解析】对于A选项,作出图形,取EF中点H,连接PH,DH,又原图知ΔBEF和ΔDEF为等腰三角形,故PH⊥EF,DH⊥EF,所以EF⊥平面PDH,所以PD⊥EF,故A正确;根据折起前后,可知PE,PF,PD 三线两两垂直,于是可证平面PDE⊥平面PDF,故B正确;根据A选项可知∠PHD为二面角P-EF-D的平面角,设正方形边长为2,因此PE=PF=1,PH=22,DH=22-22=322,PD=DF2-PF2=2,由余弦定理得:cos∠PHD=PH2+HD2-PD22PH⋅HD =13,故C正确;由于PE=PF≠PD,故点P在平面DEF上的投影不是ΔDEF的外心,即D错误;故答案为ABC.7(2023·广东·高三校联考阶段练习)在正方体ABCD-A1B1C1D1中,E,F,G分别为BC,CC1,BB1的中点,则()A.直线D1D与EF所成的角为30°B.直线A1G与平面AEF平行C.若正方体棱长为1,三棱锥A1-AEF的体积是112D.点B 1和B 到平面AEF 的距离之比是3:1【答案】BCD【解析】对于选项A ,由图可知CC 1与DD 1显然平行,所以∠EFC =45°即为所求,故选项A 不正确;对于选项B ,取B 1C 1的中点M ,连接A 1M 、GM ,如图所示,易知A 1M ⎳AE ,且A 1M ⊄平面AEF ,AE ⊂平面AEF ,所以A 1M ⎳平面AEF .又易知GM ⎳EF ,GM ⊄平面AEF ,EF ⊂平面AEF ,所以GM ⎳平面AEF .又A 1M ∩GM =M ,A 1M 、GM ⊂面A 1MG ,所以平面A 1MG ⎳平面AEF .又A 1G ⊂平面A 1MG ,所以A 1G ⎳平面AEF ,故选项B 正确;对于选项C ,由选项B 知,A 1G ⎳平面AEF ,所以A 1和G 到平面AEF 的距离相等,所以V A 1-AEF =V G -AEF =V A -FEG =13×12×12×1×1=112.故选项C 正确;对于选项D ,平面AEF 过BC 的中点E ,即平面AEF 将线段BC 平分,所以C 与B 到平面AEF 的距离相等,连接B 1C 交EF 于点H ,如图所示,显然B 1H :HC =3:1,所以B 1与B 到平面AEF 的距离之比为3:1,故选项D 正确.故选:BCD .8(2023·广东·高三校联考阶段练习)已知数列a n 满足a 1=1,a 2=3,S n 是前n 项和,若n S n +1-S n -1=n +1 S n -S n -1 ,(n ∈N *且n ≥2),若不等式a n <n -2t 2-a +1 t +a 2-a +2 对于任意的n ∈N *,t ∈1,2 恒成立,则实数a 的值可能为()A.-4 B.0C.2D.5【答案】AD【解析】由n S n +1-S n -1=n +1 S n -S n -1 ,n ≥2,则na n +1-1=n +1 a n ,n ≥2,得a n +1-1n =n +1n a n ,n ≥2;a 2-11=2=21a 1,所以a n +1n +1-a n n =1n n +1=1n -1n +1,n ≥1,则a n n -a n -1n -1=1n -1-1n ,a n -1n -1-a n -2n -2=1n -2-1n -1,⋯,a 22-a 11=1-12,上述式子累加可得a n n -a 1=1-1n ,所以a n n =2-1n<2.所以-2t 2-a +1 t +a 2-a +2≥2对于任意的t ∈1,2 恒成立,整理得2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立.方法一:对选项A ,当a =-4时,不等式为2t +5 t -4 ≤0,其解集-52,4包含1,2 ,故选项A 正确;对选项B ,当a =0时,不等式为2t +1 t ≤0,其解集-12,0不包含1,2 ,故选项B 错误;对选项C ,当a =2时,不等式为2t -1 t +2 ≤0,其解集-2,12不包含1,2 ,故选项C 错误;对选项D ,当a =5时,不等式为2t -4 t +5 ≤0,其解集-5,2 包含1,2 ,故选项D 正确.方法二:令f t =2t -a -1 t +a ,若2t -a -1 t +a ≤0对于任意的t ∈1,2 恒成立,只需f 1 ≤0f 2 ≤0,即3-a 1+a ≤05-a 2+a ≤0 ,解得a ≥5或a ≤-2.故选:AD .9(2023·广东·高三统考阶段练习)已知函数f x =sin n x +cos n x x ∈N * ,则()A.对任意正奇数n ,f x 为奇函数B.对任意正整数n ,f x 的图像都关于直线x =π4对称C.当n =3时,f x 在0,π2上的最小值22D.当n =4时,f x 的单调递增区间是-π4+k π,k π k ∈Z 【答案】BC【解析】取n =1,则f x =sin x +cos x ,从而f 0 =1≠0,此时f x 不是奇函数,则A 错误;因为f π2-x =sin n π2-x +cos n π2-x =cos n x +sin n x =f x ,所以f x 的图象关于直线x =π4对称,则B 正确;当n =3时,f x =3sin 2x cos x -3cos 2x sin x =3sin x cos x sin x -cos x ,当x ∈0,π4时,fx <0;当x ∈π4,π2 时,f x >0.所以f x 在0,π4 上单调递减,在π4,π2 上单调递增,所以f x 的最小值为f π4 =22 3+22 3=22,故C 正确;当n =4时,f x =sin 4x +cos 4x =sin 2x +cos 2x 2-2sin 2x cos 2x =1-12sin 22x=1-1-cos4x 4=14cos4x +34,则f x 的递增区间为-π4+k π2,k π2k ∈Z ,则D 错误.故选:BC .10(2023·广东·高三统考阶段练习)若实数a ,b 满足2a +3a =3b +2b ,则下列关系式中可能成立的是()A.0<a<b<1B.b<a<0C.1<a<bD.a=b【答案】ABD【解析】设f(x)=2x+3x,g(x)=3x+2x,则f(x)=2x+3x,g(x)=3x+2x都为增函数,作出两函数的图象,两个函数图象有2个交点,分别为(0,1),(1,5),对于A,作直线y=m(1<m<5)分别与f(x),g(x)图象相交,交点横坐标为a,b,且0<a<b<1,此时f(a)=g(b)=m,即2a+3a=3b+2b能成立,故A正确;对于B,作直线y=n(n<0)分别与f(x),g(x)图象相交,交点横坐标为b,a,且b<a<0,此时f(a)=g(b) =n,即2a+3a=3b+2b能成立,故B正确;对于C,a=2,f(a)=f(2)=10,因为2=a<b,所以f(b)=3b+2b>32+4=13,所以此时2a+3a=3b+2b 不可能成立,故C不正确;对于D,a=b=0或a=b=1,2a+3a=3b+2b成立,所以D正确.故选:ABD.11(2023·广东·高三统考阶段练习)已知正方体ABCD -A 1B 1C 1D 1的棱长为4,M 为DD 1的中点,N 为ABCD 所在平面上一动点,N 1为A 1B 1C 1D 1所在平面上一动点,且NN 1⊥平面ABCD ,则下列命题正确的是()A.若MN 与平面ABCD 所成的角为π4,则点N 的轨迹为圆B.若三棱柱NAD -N 1A 1D 1的表面积为定值,则点N 的轨迹为椭圆C.若点N 到直线BB 1与直线DC 的距离相等,则点N 的轨迹为抛物线D.若D 1N 与AB 所成的角为π3,则点N 的轨迹为双曲线【答案】ACD【解析】A :连接DN ,因为MD ⊥平面ABCD ,所以∠MND 是MN 与平面ABCD 所成的角,即∠MND =π4,因为M 为DD 1的中点,所以MD =12DD 1=2,在直角三角形MND 中,tan ∠MND =MD DN ⇒1=2DN⇒DN =2,因此点N 的轨迹为以D 为圆心半径为2的圆,所以本选项命题是真命题;B :过N 做EN ⊥AD ,设三棱柱NAD -N 1A 1D 1的表面积为S ,所以S =2×12×4⋅NE +(AD +DN +AN )⋅4=4(4+DN +AN +NE )=定值,显然有N 到A 、D 、直线AD 的距离之和为定值,这与椭圆的定义不符合,故本选项命题是假命题;C :连接BN ,因为BB 1⊥平面ABCD ,BN ⊂平面ABCD ,所以BB 1⊥BN ,即点N 到直线BB 1与NB 相等,所以点N 的轨迹为点N 到点B 与直线DC 的距离相等的轨迹,即抛物线,所以本选项命题是真命题;D :以D 为空间坐标系的原点,DA 、DC 、DD 1所在的直线分别为x 、y 、z ,D (0,0,0)、A (4,0,0)、B (4,4,0)、N (x ,y ,0)、D 1(0,0,4),则有AB =(0,4,0)、D 1N =(x ,y ,-4),因为D 1N 与AB 所成的角为π3,所以cos π3=AB ⋅D 1N AB ⋅D 1N ⇒12=4y 4⋅x 2+y 2+16⇒3y 2-x 2=16,所以点N 的轨迹为双曲线,故本选项命题是真命题,故选:ACD12(2023·广东江门·高三台山市第一中学校考阶段练习)已知函数f (x )=e x -1+e 1-x +x 2-2x ,若不等式f (2-ax )<f x 2+3 对任意x ∈R 恒成立,则实数a 的取值可能是()A.-4B.-12C.2D.32【答案】BC【解析】由函数f (x )=e x -1+e 1-x +x 2-2x ,令t =x -1,则x =t +1,可得g (t )=e t +e -t +t 2-1,可得g (-t )=e -t +e t +(-t )2-1=e t +e -t +t 2-1=g (t ),所以g t 为偶函数,即函数f x 的图象关于x =1对称,又由g (t )=e t -e -t +2t ,令φ(t )=g (t )=e t -e -t +2t ,可得φ (t )=e t +e -t +2>0,所以φ(t )为单调递增函数,且φ(0)=0,当t >0时,g (t )>0,g t 单调递增,即x >1时,f x 单调递增;当t <0时,g (t )<0,g t 单调递减,即x <1时,f x 单调递减,由不等式f (2-ax )<f x 2+3 ,可得2-ax -1 <x 2+3-1 ,即1-ax <x 2+2所以不等式1-ax <x 2+2恒成立,即-x 2-2<ax -1<x 2+2恒成立,所以x 2+ax +1>0x 2-ax +3>0 的解集为R ,所以a 2-4<0且(-a )2-12<0,解得-2<a <2,结合选项,可得BC 适合.故选:BC .13(2023·广东·高三河源市河源中学校联考阶段练习)已知三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,若函数g x =f x -1也有三个不同的零点t 1,t 2,t 3t 1<t 2<t 3 ,则下列等式或不等式一定成立的有()A.b 2<3cB.t 3>x 3C.x 1+x 2+x 3=t 1+t 2+t 3D.x 1x 2x 3-t 1t 2t 3=1【答案】BC【解析】f x =3x 2+2bx +c ,因为原函数有三个不同的零点,则f x =0有两个不同的实根,即3x 2+2bx +c =0,则Δ=4b 2-12c >0,即b 2>3c ,所以A 错误;因为三次函数f x =x 3+bx 2+cx +d 有三个不同的零点x 1,x 2,x 3x 1<x 2<x 3 ,所以x 3+bx 2+cx +d =x -x 1 x -x 2 x -x 3 =x 3-x 1+x 2+x 3 x 2+x 1x 2+x 2x 3+x 1x 3 x -x 1x 2x 3=0,所以x 1+x 2+x 3=-b ,x 1x 2x 3=-d ,同理t 1+t 2+t 3=-b ,t 1t 2t 3=1-d ,所以x 1+x 2+x 3=t 1+t 2+t 3,x 1x 2x 3-t 1t 2t 3=-1,故C 正确,D 错误;由f x 的图象与直线y =1的交点可知t 3>x 3,B 正确.故选:BC .14(2023·广东·高三河源市河源中学校联考阶段练习)已知直线l 过抛物线E :y 2=4x 的焦点F ,与抛物线相交于A x 1,y 1 、B x 2,y 2 两点,分别过A ,B 作抛物线的准线l 1的垂线,垂足分别为A 1,B 1,以线段A 1B 1为直径作圆M ,O 为坐标原点,下列正确的判断有()A.x 1+x 2≥2B.△AOB 为钝角三角形C.点F 在圆M 外部D.直线A 1F 平分∠OFA【答案】ABD 【解析】如图所示:对选项A ,由抛物线的焦半径公式可知AB =x 1+x 2+2≥2p =4,所以x 1+x 2≥2,故A 正确;对于选项B ,OA ⋅OB =x 1x 2+y 1y 2=y 1y 2216+y 1y 2,令直线l 的方程为x =my +1,代入y 2=4x 得y 2-4my -4=0,所以y 1y 2=-4,所以OA ⋅OB=-3<0,所以△AOB 是钝角三角形,故B 正确;对选项C ,D ,由AA 1 =AF 可知∠AA 1F =∠AFA 1,又AA 1∥OF ,所以∠AA 1F =∠OFA 1=∠AFA 1,所以直线FA 1平分角∠AFO ,同理可得FB 平分角∠BFO ,所以A 1F ⊥B 1F ,即∠A 1FB 1=90°,所以圆M 经过点F ,故C 错误,D 正确.故选:ABD15(2023·广东·高三河源市河源中学校联考阶段练习)已知圆O :x 2+y 2=4和圆C :(x -3)2+(y -3)2=4,P ,Q 分别是圆O ,圆C 上的动点,则下列说法错误的是()A.圆O 与圆C 相交B.PQ 的取值范围是32-4,32+4C.x -y =2是圆O 与圆C 的一条公切线D.过点Q 作圆O 的两条切线,切点分别为M ,N ,则存在点Q ,使得∠MQN =90°【答案】AC【解析】对于A 选项,由题意可得,圆O 的圆心为O 0,0 ,半径r 1=2,圆C 的圆心C 3,3 ,半径r 2=2,因为两圆圆心距OC =32>2+2=r 1+r 2,所以两圆外离,故A 错误;对于B 选项,PQ 的最大值等于OC +r 1+r 2=32+4,最小值为OC -r 1-r 2=32-4,故B 正确;对于C 选项,显然直线x -y =2与直线OC 平行,因为两圆的半径相等,则外公切线与圆心连线平行,由直线OC :y =x ,设外公切线为y =x +t ,则两平行线间的距离为2,即t2=2,故y =x ±22,故C 错误;对于D 选项,易知当∠MQN =90°时,四边形OMQN 为正方形,故当QO =22时,∠MQN =90°,故D 正确.故选:AC .16(2023·广东佛山·高三校考阶段练习)已知函数f x =3sin ωx +cos ωx (0<ω<3)满足f x +π2 =-f x ,其图象向右平移s s ∈N * 个单位后得到函数y =g x 的图象,且y =g x 在-π6,π6上单调递减,则()A.ω=1 B.函数f x 的图象关于5π12,0 对称C.s 可以等于5D.s 的最小值为2【答案】BCD【解析】对于A ,因为f x +π2 =-f x ,f x =3sin ωx +cos ωx =2sin ωx +π6,所以2sin ωx +π2ω+π6 =-2sin ωx +π6 ,π2ω=2k +1 π,k ∈Z ,则ω=4k +2,k ∈Z ,又0<ω<3,故ω=2,故A 错误;对于B ,由选项A 得f x =2sin 2x +π6,所以f 5π12=2sin 5π6+π6 =2sinπ=0,故5π12,0 是f x 的一个对称中心,故B 正确;对于C ,f x 的图象向右平移s s ∈N * 个单位后得到函数g x =2sin 2x -s +π6的图象,则g x =2sin 2x +π6-2s ,因为g x 在-π6,π6上单调递减,所以2×-π6 +π6-2s ≥2k π+π22×π6+π6-2s ≤2k π+3π2k ∈Z ,解得-k π-π2≤s ≤-k π-π3k ∈Z ,当k =-2时,3π2≤s ≤5π3,因为s ∈N *,所以s =5,故C 正确;对于D ,因为s ∈N *,所以-k π-π3>0,则k <-13,又k ∈Z ,故k ≤-1,当k =-1时,π2≤s ≤2π3,可知s min =2,故D 正确.故选:BCD .17(2023·广东佛山·高三校考阶段练习)已知函数f x 的定义域为0,+∞ ,其导函数为f x ,且f x +f x =x ln x ,f 1e =-1e,则()A.f 1e⋅e 1e-1>f 1B.f e ⋅e e -1>f 1C.f x 在0,+∞ 上是增函数D.f x 存在最小值【答案】ABC【解析】设F x =e x -1f x ,则F x =e x -1f x +f x =e x -1x ln x ,当x >1时,F x >0,当0<x <1时,F x <0,F x =e x -1f x 在1,+∞ 上单调递增,在0,1 上单调递减,A 选项,因为1e <1,所以F 1e >F 1 ,即e 1e-1f 1e>f 1 ,A 正确;B 选项,因为e >1,所以F e >F 1 ,即e e -1f e >f 1 ,B 正确;C 选项,f x =F x e x -1,则fx =F x -F x e x -1,令g x =F x -F x ,则g x =e x -1x ln x -e x -1x ln x =e x -11+ln x ,当x >1e 时,g x >0,当0<x <1e时,g x <0,故g x =F x -F x 在0,1e 上单调递减,在1e ,+∞ 单调递增,又g 1e =F 1e -F 1e =e 1e -1⋅1e ln 1e -e 1e -1f 1e =-e 1e -1⋅1e +e 1e-1⋅1e =0,故g x =F x -F x ≥0恒成立,所以fx =F x -F x ex -1≥0在0,+∞ 上恒成立,故f x 在0,+∞ 上是增函数,C 正确;D 选项,由C 选项可知,函数f x 在0,+∞ 上单调递增,故无最小值.故选:ABC18(2023·广东惠州·高三统考阶段练习)已知定义域为R 的函数f x 满足f -x -2 =-f x +2 ,f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718 ,x >1 ,则下列说法正确的是()A.函数f x 在-13,13上单调递减B.若函数f x 在0,p 内f x <1恒成立,则p ∈0,23C.对任意实数k ,y =f x 的图象与直线y =kx 最多有6个交点D.方程f x =m m >0 有4个解,分别为x 1,x 2,x 3,x 4,则x 1+x 2+x 3+x 4>-143【答案】BD【解析】因为定义域为R 的函数f x 满足f -x -2 =-f x +2 ,即f -x -2 +f x +2 =0,所以函数为奇函数,因为f x 在0,+∞ 解析式为f x =3x 2-2x +1,0<x ≤1log 13x 2-718,x >1 ,故作出函数的图象,如图所示.选项A :由图可知,当x ∈-13,0 时,函数单调递减,当x ∈0,13时,函数单调递减,但当x ∈-13,13,并不是随着x 增加而减少,故选项A 错误;选项B :因为函数f x 在0,p 内f x <1恒成立,所以由图象可知,0<p <1由3x 2-2x +1=1解得,x 1=0,x 2=23,所以0<p ≤23,故选项B 正确;选项C :取k =74时,如图所示,1°当x ∈0,1 时,联立方程组y =74x y =3x 2-2x +1 ,化简得3x 2-154x +1=0,设函数h (x )=3x 2-154x +1,因为Δ>0h (0)=1>0h (1)=14>0且对称轴为x =58∈0,1 ,所以方程3x 2-154x +1=0在0,1 上有两个不相等的实数根,2°设m (x )=74x -log 13x 2-718 ,x ∈1,+∞ ,因为函数m (x )=74x -log 13x 2-718 在x ∈1,+∞ 上单调递增,且m (1)=74-2<0,m (2)=72-log 131118 >0,所以m (x )=74x -log 13x 2-718 在x ∈1,+∞ 在只有一个零点,所以直线y =74x 与函数y =f (x )图象在x ∈1,+∞ 有1个交点,所以当x ∈0,+∞ 时,直线y =74x 与函数y =f (x )图象有3个交点,因为函数y =74x 与函数y =f (x )均为奇函数,所以当x ∈-∞,0 时,直线y =74x 与函数y =f (x )图象有3个交点,又当x =0时,直线y =74x 与函数y =f (x )图象有1个交点,所以此时直线y =74x 与函数y =f (x )图象有7个交点,故选项C 错误;选项D :当m >0时,则根据图象可得f (x )=m 的4个解所在大致范围为x 1<0,0<x 2<13,13<x 3<1,x 4>1,因为f (x )=m 有4个解,所以23<m <1,所以23<log 13x 42-718 <1,解得139<x 4<21323+79,所以6<9x 4-7<181323,由二次函数的对称性可知,3x 2-2x +1=m 的解x 2、x 3满足x 2+x 3=23,因为函数y =f (x )为奇函数,且当x >1时解析式为y =log 13x 2-718,所以当x <-1时解析式为y =-log 13-x 2-718,所以log 13x 42-718=-log 13-x 12-718 ,所以有-x 12-718 x 42-718 =1,即x 1=-369x 4-7-79,所以x 1+x 4=x 4+-369x 4-7-79=9x 4-79-369x 4-7,设9x 4-7=t ,6<t <181323,又因为函数y =t 9-36t 在6,1813 23单调递增,所以x 1+x 4=t 9-36t >69-366=23-6=-163,所以x 1+x 2+x 3+x 4>-163+23=-143,所以选项D 正确,故选:BD .19(2023·广东揭阳·高三校考阶段练习)若定义在-1,1 上的函数f x 满足f x +f y =f x +y 1+xy,且当x >0时,f x <0,则下列结论正确的是( ).A.若x 1,x 2∈-1,1 ,x 2>x 1 ,则f x 1 +f x 2 >0B.若f 12 =-12,则f 4041 =-2C.若f 2-x +g x =4,则g x 的图像关于点2,4 对称D.若α∈0,π4,则f sin2α >2f sin α 【答案】BC【解析】令y =-x ,则f x +f -x =f 0 =0,∴f x 为奇函数,把y 用-y 代替,得到f x -f y =f x -y1-xy,设-1<y <x <1,1-x 1+y >0,∴0<x -y1-xy<1.又∵当x >0时,f x <0,∴f x <f y ,∴f x 在-1,1 上单调递减.∵x 1,x 2∈-1,1 ,x 2>x 1 ,当x >0时,f x <0,则当x 1>0时,则x 2>x 1>0,f x 1 +f x 2 <0,当x 1<0时,则x 2>-x 1>0,f x 1 +f x 2 =f x 2 -f -x 1 <0.综上,f x 1 +f x 2 <0,∴A 错误.令x =y =12,得2f 12 =f 45 ,∴f 45 =-1,令x =y =45,得2f 45 =f 4041 ,∴f 4041 =-2,∴B 正确.由f 2-x +g x =4,得f 2-x =4-g x ,得f x =4-g 2-x ,又∵f -x =4-g 2+x ,f x 为奇函数,∴f x +f -x =0,则g 2-x +g 2+x =8,则g x 的图像关于点2,4 对称,∴C 正确.f sin2α =f 2sin α⋅cos α =f2tan α1+tan 2α=2f tan α ,假设f sin2α >2f sin α ,可得f tan α >f sin α ,即tan α<sin α,当α∈0,π4时,不成立得出矛盾假设不成立,∴D 错误.故选:BC .20(2023·广东东莞·高三校联考阶段练习)已知函数f x =3sin2ωx +cos2ωx ω>0 的零点构成一个公差为π2的等差数列,把f x 的图象沿x 轴向右平移π3个单位得到函数g x 的图象,则()A.g x 在π4,π2上单调递增 B.π4,0 是g x 的一个对称中心C.g x 是奇函数 D.g x 在区间π6,2π3上的值域为0,2 【答案】AB【解析】因为f x =3sin2ωx +cos2ωx ω>0 ,所以f x =232sin2ωx +12cos2ωx =2sin 2ωx +π6 ,因为函数f x =3sin2ωx +cos2ωx ω>0 的零点依次构成一个公差为π2的等差数列,∴12⋅2π2ω=π2,∴ω=1,所以f (x )=2sin 2x +π6 ,把函数f (x )的图象沿x 轴向右平移π3个单位,得到g (x )=2sin 2x -π3 +π6 =2sin 2x -π2 =-2cos2x ,即g (x )=-2cos2x ,所以g (x )为偶函数,故C 错误;对于A :当x ∈π4,π2 时2x ∈π2,π ,因为y =cos x 在π2,π 上单调递减,所以g x 在π4,π2上单调递增,故A正确;对于B:gπ4=-2cos2×π4=-2cosπ2=0,故π4,0是g x 的一个对称中心,故B正确;对于D:因为x∈π6,2π3,所以2x∈π3,4π3,所以cos2x∈-1,12,所以g x ∈-1,2,故D错误;故选:AB21(2023·广东东莞·高三校联考阶段练习)对于函数f(x)=xln x,下列说法正确的是()A.f(x)在(1,e)上单调递增,在(e,+∞)上单调递减B.若方程f(|x|)=k有4个不等的实根,则k>eC.当0<x1<x2<1时,x1ln x2<x2ln x1D.设g(x)=x2+a,若对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,则a≥e 【答案】BD【解析】函数f(x)=xln x的定义域为(0,1)∪(1,+∞),f(x)=ln x-1(ln x)2,当0<x<1或1<x<e时,f (x)<0,当x>e时,f (x)>0,f(x)在(0,1),(1,e)上都单调递减,在(e,+∞)上单调递增,A不正确;当x∈(1,+∞)时,f(x)的图象在x轴上方,且在x=e时,f(x)min=e,f(x)在(0,1)上的图象在x轴下方,显然f(|x|)是偶函数,在方程f(|x|)=k中,k<0或k=e时,方程有两个不等实根,0≤k<e时,方程无实根,k>e时,方程有4个不等的实根,B正确;因0<x1<x2<1,则有f(x2)<f(x1)<0,即x2ln x2<x1ln x1<0,于是得x2ln x1<x1ln x2,C不正确;当x∈R时,g(x)的值域为[a,+∞),当x∈(1,+∞)时,f(x)的值域为[e,+∞),因对∀x1∈R,∃x2∈(1,+∞),使得g(x1)=f(x2)成立,从而得[a,+∞)⊆[e,+∞),即得a≥e,D正确.故选:BD二、单选题22(2023·广东深圳·高三红岭中学校考阶段练习)过直线y=x上的一点作圆(x-5)2+(y-1)2=2的两条切线l1,l2,当直线l1,l2关于y=x对称时,它们之间的夹角为()A.30°B.45°C.60°D.90°【答案】C【解析】圆(x-5)2+(y-1)2=2的圆心(5,1),过(5,1)与y=x垂直的直线方程为x+y-6=0,它与y=x的交点N(3,3),N到(5,1)距离是22,圆的半径为2,两条切线l1,l2,它们之间的夹角为2×30°=60°.故选C.23(2023·广东·高三校联考阶段练习)如图,在边长为2的正方形ABCD中,E,F分别是AB,BC的中点,将△AED,△BEF,△DCF分别沿DE,EF,DF折起,使得A,B,C三点重合于点A ,若三棱锥A -EFD的所有顶点均在球O的球面上,则球O的表面积为()A.2πB.3πC.6πD.8π【答案】C【解析】根据题意可得A D ⊥A E ,A D ⊥A F ,A E ⊥A F ,且A E =1,A F =1,A D =2,所以三棱锥D -A EF 可补成一个长方体,则三棱锥D -A EF 的外接球即为长方体的外接球,如图所示,设长方体的外接球的半径为R ,可得2R =12+12+22=6,所以R =62,所以外接球的表面积为S =4πR 2=4π⋅622=6π,故选:C24(2023·广东·高三校联考阶段练习)已知f x =2sin ωx +π3+a -1 sin ωx (a >0,ω>0)在0,π 上存在唯一实数x 0使f x 0 =-3,又φx =f x -23,且有φx max =0,则实数ω的取值范围是()A.1<ω≤53B.1≤ω<53C.56<ω<32D.56<ω≤32【答案】A【解析】由题意可得f x =sin ωx +3cos ωx +a -1 sin ωx ,=a sin ωx +3cos ωx =a 2+3sin ωx +φ ,其中φ满足tan φ=3a,又φx max =0,即f x max =23,所以a 2+3=23,又a >0,解得a =3,所以f x =23sin ωx +π6,又0<x <π,所以π6<ωx +π6<ωπ+π6,因为f x 在上存在唯一实数x 0使f x 0 =-3,即sin ωx 0+π6 =-12,所以7π6<ωx +π6≤11π6,解得1<ω≤53,故选:A 25(2023·广东梅州·高三大埔县虎山中学校考开学考试)在△ABC 中,角B ,C 的边长分别为b ,c ,点O 为△ABC 的外心,若b 2+c 2=2b ,则BC ⋅AO的取值范围是()A.-14,0 B.0,2C.-14,+∞ D.-14,2【答案】D【解析】取BC 的中点D ,则OD ⊥BC ,所以BC ·AO =BC ·AD +DO =BC ·AD +BC ·DO =BC ·AD=AC -AB ⋅12AC +AB =12AC 2-AB 2=12b 2-c 2 =12b 2-2b -b 2 =b 2-b =b -122-14.因为c 2=2b -b 2>0,则b b -2 <0,即0<b <2.所以-14≤BC ⋅AO <2,故选:D .26(2023·广东·高三校联考阶段练习)已知等腰直角△ABC 中,∠C 为直角,边AC =6,P ,Q 分别为AC ,AB 上的动点(P 与C 不重合),将△APQ 沿PQ 折起,使点A 到达点A 的位置,且平面A PQ ⊥平面BCPQ .若点A ,B ,C ,P ,Q 均在球O 的球面上,则球O 体积的最小值为()A.8π3B.4π3C.82π3D.42π3【答案】C【解析】显然P 不与A 重合,由点A ,B ,C ,P ,Q 均在球D 的球面上,得B ,C ,P ,Q 共圆,则∠C +∠PQB =π,又△ABC 为等腰直角三角形,AB 为斜边,即有PQ ⊥AB ,将△APQ 翻折后,PQ ⊥A Q ,PQ ⊥BQ ,又平面A PQ ⊥平面BCPQ ,平面A PQ ∩平面BCPQ =PQ ,A Q ⊂平面A PQ ,BQ ⊂平面BCPQ ,于是A Q ⊥平面BCPQ ,BQ ⊥平面A PQ ,显然A P ,BP 的中点D ,E 分别为△A PQ ,四边形BCPQ 外接圆圆心,则DO ⊥平面A PQ ,EO ⊥平面BCPQ ,因此DO ⎳BQ ,EO ⎳A Q ,取PQ 的中点F ,连接DF ,EF ,则有EF ⎳BQ ⎳DO ,DF ⎳A Q ⎳EO ,四边形EFDO 为矩形,设A Q =x 且0<x <23,DO =EF =12BQ =23-x 2,A P =2x ,设球O 的半径R ,有R 2=DO 2+A P 2 2=34x 2-3x +3=34x -2332+2,当x =233时,R 3min=22,所以球O 体积的最小值为4πR 33=82π3.故选:C .27(2023·广东·高三校联考阶段练习)已知正项等比数列a n 的前n 项和为S n ,且满足a n S n =22n -1-2n -1,设b n =log 2S n +1 ,将数列b n 中的整数项组成新的数列c n ,则c 2023=()A.4048B.2023C.2022D.4046【答案】B【解析】令数列a n 的公比为q ,∵a n >0,∴a 1>0,q >0,因为a n S n =22n -1-2n -1,所以当n =1时,a 21=21-20=1,即a 1=1或a 1=-1(舍去),当n =2时,a 2S 2=23-21=6,即q 1+q =6,解得q =2或q =-3(舍去),所以a n =2n -1,S n =1×1-2n 1-2=2n -1,即b n =log 2S n +1 =n ,因为数列b n 中的整数项组成新的数列c n ,所以n =k 2,k ∈N *,此时b k 2=k 2=k ,即c n =n ,∴c 2023=2023.故选:B28(2023·广东·高三统考阶段练习)已知AB ⊥AC ,|AB |=t ,|AC |=1t.若点P 是△ABC 所在平面内一点,且AP =AB |AB |+2AC|AC |,则PB ⋅PC 的最大值为()A.13 B.5-22C.5-26D.10+22【答案】B【解析】以A 为坐标原点,建立如图所示的直角坐标系,设P (x ,y )则B (t ,0),C 0,1t (t >0),可得AB AB=(1,0),2AC |AC |=(0,2),所以AP =(1,2),即P (1,2),故PB =(t -1,-2),PC =-1,1t-2 ,所以PB ⋅PC =1-t +4-2t =5-t +2t ≤5-22,当且仅当t =2t即t =2时等号成立.故选:B .29(2023·广东·高三统考阶段练习)已知-π2<α-β<π2,sin α+2cos β=1,cos α-2sin β=2,则sin β+π3=A.33B.63C.36D.66【答案】A【解析】由sin α+2cos β=1,cos α-2sin β=2,将两个等式两边平方相加,得5+4sin α-β =3,sin α-β =-12,∵-π2<α-β<π2,∴α-β=-π6,即α=β-π6,代入sin α+2cos β=1,得3sin β+π3 =1,即sin β+π3 =33.故选A30(2023·广东江门·高三台山市第一中学校考阶段练习)设函数f (x )=log 2(1-x ),-1≤x <k ,x 3-3x +1,k ≤x ≤3 的值域为A ,若A ⊆[-1,1],则f (x )的零点个数最多是()A.1B.2C.3D.4【答案】C【解析】令g (x )=log 2(1-x ),则g (x )=log 2(1-x )在(-∞,1)上单调递减;令h (x )=x 3-3x +1,则h (x )=3x 2-3.由h (x )>0,得x >1或x <-1;由h (x )<0,得-1<x <1,所以h (x )在(-∞,-1)和(1,+∞)上单调递增,在(-1,1)上单调递减,于是,h (x )的极大值为h (-1)=3,极小值为h (1)=-1.在同一坐标系中作出函数g (x )和h (x )的图象,如下图:显然f (-1)=g (-1)=1;由g (x )=-1,得x =12;由f (x )的解析式,得-1<k ≤1.(1)若-1<k <0,当k ≤x <0时,f (x )>f (0)=1,不符合题意;(2)若12<k ≤1,当12<x <k 时,f (x )<f 12=-1,不符合题意;(3)若0≤k ≤12,①当-1≤x <k 时,-1<f (x )≤1;②当k ≤x ≤3时,f (1)≤f (x )≤max {f (k ),f (3)}≤1,即-1≤f (x )≤1.由①②,0≤k ≤12时符合题意.此时,结合图象可知,当k =0时,f (x )在[-1,k )上没有零点,在[k ,3]上有2个零点;当0<k ≤12时,f (x )在[-1,k )上有1个零点,在[k ,3]上有1个或2个零点,综上,f (x )最多有3个零点.故选:C .31(2023·广东江门·高三台山市第一中学校考阶段练习)设a =511,b =ln 2111,c =sin 511,则()A.c <a <bB.c <b <aC.a <b <cD.b <c <a【答案】A 【解析】当x ∈0,π2 时,记f x =x -sin x ,则f x =1-cos x ≥0,故f (x )在x ∈0,π2单调递增,故f (x )>f 0 =0,因此得当x ∈0,π2 时,x >sin x ,故511>sin 511,即a >c ;b -a =ln 2111-511=ln 1+2×511 -511,设g (x )=ln (1+2x )-x 0<x <12 ,则b -a =g 511,因为g (x )=21+2x -1=1-2x1+2x,当0<x <12时,g (x )>0.所以g (x )在0,12 上单调递增,所以g 511>g (0)=0,即b >a ,所以b >a>c .故选:A32(2023·广东·高三河源市河源中学校联考阶段练习)设椭圆x 2a 2+y 2b2=1(a >b >0)的左、右焦点分别为F 1、F 2,P 是椭圆上一点,PF 1 =λPF 2 ,12≤λ≤2 ,∠F 1PF 2=π2,则椭圆离心率的取值范围为()A.0,22B.22,53C.23,53D.53,1 【答案】B【解析】设F 1(-c ,0),F 2(c ,0),运用椭圆的定义和勾股定理,求得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=21m -12 2+12,运用二次函数的最值的求法,解不等式可得所求范围.设F 1(-c ,0),F 2(c ,0),由椭圆的定义可得,|PF 1|+|PF 2|=2a ,可设|PF 2|=t ,可得|PF 1|=λt ,即有(λ+1)t =2a ,①由∠F 1PF 2=π2,可得|PF 1|2+|PF 2|2=4c 2,即为(λ2+1)t 2=4c 2,②由②÷①2,可得e 2=λ2+1(λ+1)2,令m =λ+1,可得λ=m -1,即有λ2+1(λ+1)2=m 2-2m +2m 2=21m -12 2+12,由12≤λ≤2,可得32≤m ≤3,即13≤1m ≤23,则当m =2时,取得最小值12;当m =32或3时,取得最大值59,即有12≤e 2≤59,解得:22≤e ≤53,所以椭圆离心率的取值范围为22,53.故选:B .33(2023·广东·高三河源市河源中学校联考阶段练习)设a =ln1.1,b =e 0.1-1,c =tan0.1,则()A.a <b <cB.c <a <bC.a <c <bD.b <a <c【答案】C【解析】令f x =e x -x +1 ,所以f x =e x -1,当x >0时f x >0,当x <0时f x <0,即函数f x 在-∞,0 上单调递减,在0,+∞ 上单调递增,所以f x min =f 0 =0,即e x ≥x +1,当且仅当x =0时取等号,令x =0.1,可得b =e 0.1-1>0.1,令h (x )=tan x -x ,x ∈0,π2 ,则在x ∈0,π2 时,h (x )=1cos 2x -1>0,∴h (x )=tan x -x 在x ∈0,π2 上单调递增,∴h (x )>h (0)=0,∴x ∈0,π2时,tan x >x .∴c =tan0.1>0.1,令g x =ln x -x +1,则g x =1x -1=1-xx,所以当0<x <1时g x >0,当x >1时g x <0,即函数g x 在0,1 上单调递增,在1,+∞ 上单调递减,所以g x max =g 1 =0,即ln x ≤x -1,当且仅当x =1时取等号,所以当x =1.1,可得a =ln1.1<1.1-1=0.1,所以a 最小,设t x =e x -1-tan x x ∈0,0.1 ,则t (x )=e x -1cos 2x>0,∴t (x )在0,0.1 上单调递增,∴t (0)<t (0.1),∴t (0.1)=e 0.1-1-tan0.1>e 0-1-tan0=0,∴b =e 0.1-1>tan0.1=c ,综上可得b >c >a ;故选:C34(2023·广东佛山·高三校考阶段练习)符号x 表示不超过实数x 的最大整数,如 2.3 =2,-1.9 =-2.已知数列a n 满足a 1=1,a 2=5,a n +2+4a n =5a n +1.若b n =log 2a n +1 ,S n 为数列8100b n b n +1的前n 项和,则S 2025 =()A.2023B.2024C.2025D.2026【答案】B【解析】因为a n +2+4a n =5a n +1,则a n +2-a n +1=4a n +1-a n ,且a 2-a 1=4,所以,数列a n +1-a n 是首项为4,公比也为4的等比数列,所以,a n +1-a n =4×4n -1=4n ,①由a n +2+4a n =5a n +1可得a n +2-4a n +1=a n +1-4a n ,且a 2-4a 1=1,所以,数列a n +1-4a n 为常数列,且a n +1-4a n =1,②由①②可得a n =4n -13,因为4n +1-13-4n=4⋅4n -1-3⋅4n 3=4n -13>0,4n +1-13-2⋅4n =4⋅4n -1-6⋅4n 3=-2⋅4n +13<0,则4n <a n +1=4n +1-13<2⋅4n ,。
高考数学压轴题系列训(共六套)(含答案及解析详解)
高考数学压轴题系列训练一(含答案及解析详解)1.(12分)已知抛物线、椭圆和双曲线都经过点()1,2M ,它们在x 轴上有共同焦点,椭圆和双曲线的对称轴是坐标轴,抛物线的顶点为坐标原点.(Ⅰ)求这三条曲线的方程;(Ⅱ)已知动直线l 过点()3,0P ,交抛物线于,A B 两点,是否存在垂直于x 轴的直线l '被以AP 为直径的圆截得的弦长为定值?若存在,求出l '的方程;若不存在,说明理由.解:(Ⅰ)设抛物线方程为()220y px p =>,将()1,2M 代入方程得2p =24y x ∴= 抛物线方程为: ………………………………………………(1分)由题意知椭圆、双曲线的焦点为()()211,0,1,0,F F -∴ c=1…………………(2分) 对于椭圆,1222a MF MF =++(222222211321a ab ac ∴=∴=+=+∴=-=+∴= 椭圆方程为:………………………………(4分)对于双曲线,1222a MF MF '=-=2222221321a abc a '∴=-'∴=-'''∴=-=∴= 双曲线方程为:………………………………(6分)(Ⅱ)设AP 的中点为C ,l '的方程为:x a =,以AP 为直径的圆交l '于,D E 两点,DE 中点为H令()11113,,,22x y A x y +⎛⎫∴ ⎪⎝⎭ C ………………………………………………(7分)()1112312322DC AP x CH a x a ∴==+=-=-+()()()2222221112121132344-23246222DH DC CH x y x a a x a aa DH DE DH l x ⎡⎤⎡⎤∴=-=-+--+⎣⎦⎣⎦=-+==-+=∴=='= 当时,为定值; 此时的方程为: …………(12分)2.(14分)已知正项数列{}n a 中,16a =,点(n n A a 在抛物线21y x =+上;数列{}n b 中,点(),n n B n b 在过点()0,1,以方向向量为()1,2的直线上.(Ⅰ)求数列{}{},n n a b 的通项公式;(Ⅱ)若()()()n n a f n b ⎧⎪=⎨⎪⎩, n 为奇数, n 为偶数,问是否存在k N ∈,使()()274f k f k +=成立,若存在,求出k 值;若不存在,说明理由; (Ⅲ)对任意正整数n ,不等式1120111111n n n ab b b +≤⎛⎫⎛⎫⎛⎫+++ ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭成立,求正数a 的取值范围.解:(Ⅰ)将点(n n A a 代入21y x =+中得()11111115:21,21n n n n n n a a a a d a a n n l y x b n ++=+∴-==∴=+-⋅=+=+∴=+ 直线 …………………………………………(4分)(Ⅱ)()()()521n f n n ⎧+⎪=⎨+⎪⎩, n 为奇数, n 为偶数………………………………(5分)()()()()()()27274275421,42735227145,24k k f k f k k k k k k k k k k ++=∴++=+∴=+∴++=+∴==当为偶数时,为奇数, 当为奇数时,为偶数, 舍去综上,存在唯一的符合条件。
历届高考数学压轴题汇总及答案
历届高考数学压轴题汇总及答案1.2019年高考数学上海卷:已知等差数列$\{a_n\}$的公差$d\in(0,\pi]$,数列$\{b_n\}$满足$b_n=\sin(a_n)$,集合$S=\{x|x=b_n,n\in N^*\}$。
1) 若$a_1=0,d=\frac{\pi}{6}$,求集合$S$的元素个数;2) 若$a_1=\frac{2\pi}{3}$,求集合$S$;3) 若集合$S$有三个元素$b_{n+T}=b_n$,其中$T$是不超过$7$的正整数,求$T$的所有可能值。
2.2019年高考数学浙江卷:已知实数$a\neq0$,函数$f(x)=a\ln x+x+1$,$x>0$。
1) 当$a=-1$时,求函数$f(x)$的单调区间;2) 对任意$x\in[\frac{3}{4},+\infty)$,有$f(x)\leq\frac{1}{2}e^{2a}$,求$a$的取值范围。
3.2019年高考数学江苏卷:设$(1+x)=a+a_1x+a_2x^2+\cdots+a_nx^n$,$n^2,n\in N^*$,已知$a_3=2a_2a_4$。
1) 求$n$的值;2) 设$(1+3x)=a+b\sqrt{3}$,其中$a,b\in N^*$,求$a^2-3b^2$的值。
4.2018年高考数学上海卷:给定无穷数列$\{a_n\}$,若无穷数列$\{b_n\}$满足对任意$n\in N^*$,都有$b_n-a_n\leq1$,则称$\{b_n\}$与$\{a_n\}$“接近”。
1) 设$\{a_n\}$是首项为$1$,公比为$\frac{1}{2}$的等比数列,构造一个与$\{a_n\}$接近的数列$\{b_n\}$,并说明理由;2) 设数列$\{a_n\}$的前四项为:$a_1=1,a_2=2,a_3=4,a_4=8$,$\{b_n\}$是一个与$\{a_n\}$接近的数列,记集合$M=\{x|x=b_i,i=1,2,3,4\}$,求$M$中元素的个数$m$;3) 已知$\{a_n\}$是公差为$d$的等差数列,若存在数列$\{b_n\}$满足:$\{b_n\}$与$\{a_n\}$接近,且在$1$的等比数列,$b_n=a_{n+1}+1$,$n\in N^*$,判断数列$\{b_n\}$是否满足$b_2-b_1,b_3-b_2,\cdots,b_{201}-b_{200}$中至少有$100$个为正数,求$d$的取值范围。
高考文科数学压轴题
1.已知关于x 的不等式)0(022≠>++a b x ax 的解集是},1|{R x ax x ∈-≠,且a>b,则ba b a -+22的最小值是A .22B .2C .2D .12.在△ABC 中,∠B=6π,,6||,33||==BC AB 设D 是AB 的中点,O 是△ABC 所在平面内一点,且023=++OC OB OA ,则||DO 的值是A .21B .1C .3D .2 3.设集合}1)(|),{(},4|),{(2+-==-==b x k y y x B x y y x A ,若对任意10≤≤k 都有φ≠B A ,则实数b 的取值范围是 A .]221,221[+- B .]221,3[+-C .]3,221[-D .]3,3[-4.设函数)()(x f x f '的导函数为,对任意)()(x f x f R x >'∈都有成立,则 A .)3(ln 2)2(ln 3f f > B .)3(ln 2)2(ln 3f f =C .)3(ln 2)2(ln 3f f <D .)3(ln 2)2(ln 3f f 与的大小不确定5.若函数32()|1|f x x a x a R =+-∈,则对于不同的实数a ,则函数()f x 的单调区间个数不可能是( )A.1个B. 2个C.3个D.5个6.八个一样的小球按顺序排成一排,涂上红、白两种颜色,5个涂红色,三个涂白色,求恰好有个三个的连续的小球涂红色,则涂法共有 ( )A 24种B 30种C 20种D 36种7.若不等式)(2222y x a xy x +≤+对于一切正数x 、y 恒成立,则实数a 的最小值为 ( )A 2 B212+ C 23D215+ 8.若25(21)x +=24100125a a x a x a x +++,则135a a a ++的值为( )(A) 121 (B)122 (C)124 (D)1209.如图,直角梯形ABCD 中,AD ⊥AB, AB//DC , AB=4,AD=DC=2,设点N 是DC 边的中点,点M 是梯形ABCD 内或边界上的一个动点,则AM AN ⋅的最大值是( )(A )4(B ) 6 (C ) 8 (D )1010.把已知正整数n 表示为若干个正整数(至少3个,且可以相等)之和的形式,若这几个正整数可以按一定顺序构成等差数列,则称这些数为n 的一个等差分拆.将这些正整数的不同排列视为相同的分拆.如:(1,4,7)与(7,4,1)为12的相同等差分拆.问正整数36的不同等差分拆的个数是( ).(A )20 (B )18 (C )19 (D )2111.双曲线12222=-by a x 的左右焦点为21,F F ,P 是双曲线上一点,满足||||211→→=F F PF ,直线PF 1与圆222a y x =+相切,则双曲线的离心率e 为 ( ) (A )3 (B )332 (C ) 35 (D )4512.集合}5,4,3,2,1,0{=S ,A 是S 的一个子集,当A x ∈时,若有且,1A x ∉-A ∉+1x ,则称x 为A 的一个“孤立元素”,那么S 中无“孤立元素”的非空子集有( )个(A )16 (B )17 (C )18 (D )19 13.如图,直线l ⊥平面α,垂足为O ,正四面体ABCD 的棱长为4,C 在平面α内,B 是直线l 上的动点,则当O 到AD 的距离为最大时,正四面体在平面α上的射影面积为 ( ) A .422+ B .222+ C .4 D .43 14.已知函数(),()f x g x ''分别是二次函数()f x 和三次函数()g x 的导函数,它们在同一坐标系下的图象如图所示,设函数()()()h x f x g x =-,则( )A .(1)(0)(1)h h h <<-B .(1)(1)(0)h h h <-<C .(0)(1)(1)h h h <-<D .(0)(1)(1)h h h <<-15.数列{}n a 的各项均为正数,n S 为其前n 项和,对于任意n N *∈,总有2,,n n n a S a 成等差数列。
高考数学压轴题(详细解析)
已知函数在上的最小值为,,是函数图像上的两点,且线段的中点的横坐标为.)若数列的通项公式为, 求数列的前项和;)设数列满足:,设,)中的满足对任意不小于, 恒成立已知函数.)当时,如果函数仅有一个零点,求实数的取值范围;)当时,试比较与的大小;)求证:().设函数,其中为常数.(Ⅰ)当时,判断函数在定义域上的单调性;(Ⅱ)若函数的有极值点,求的取值范围及的极值点;(Ⅲ)当且时,求证:.已知数列是各项均不为的等差数列,公差为,为其前项和,且满足,.列满足,为数列的前)求、和;)若对任意的,不等式恒成立,求实数的取值范围;)是否存在正整数,使得成等比数列?若存在,求出所有的值;若(本小题满分分)已知函数(Ⅰ)求函数的定义域,并证明在定义域上是奇函数;(Ⅱ)若恒成立,求实数的取值范围;(Ⅲ)当时,试比较与的大小关系.分)已知圆的圆心为,半径为,:和直线的如图所示,已知椭圆和抛物线有公共焦点, 的中心和的顶点都在坐标原点,过点的直线与抛物线分别相交于两点)写出抛物线的标准方程;)若,求直线的方程;)若坐标原点关于直线的对称点在抛物线上,直线与椭圆有公共点,求椭圆的长轴已知函数(为自然对数的底数).)求的最小值;)不等式的解集为,若且求实数的取值范围;)已知,且,是否存在等差数列和首项为公比大于列,使得?若存在,请求出数列的通项公已知函数当时,求函数的最值;求函数的单调区间;试说明是否存在实数使的图象与无公共点对于实数,称为取整函数或高斯函数,亦即是不超过的最大整数例如:.平面内,若满足,则的取值范围已知二次函数的导函数为,与轴恰有一个交点,则的最小值为对数列,规定为数列的一阶差分数列,其中N为的阶差分数列,其中.(Ⅰ)若数列的首项,且满足,求数列的通项公式;(Ⅱ)对(Ⅰ)中的数列,若数列是等差数列,使得对一切正整数N都成立,求;在(Ⅱ)的条件下,令设若成立,求最小正整数的值.如图,在四棱柱中,底面是正方形,侧棱与底面垂直,点是正方形对角线的交点,,点,分别在和上,且.(Ⅰ)求证:∥平面;(Ⅱ)若,求的长;(Ⅲ)在(Ⅱ)的条件下,求二面角的余弦值.设函数,其中为常数.)当时,判断函数在定义域上的单调性;)若函数的有极值点,求的取值范围及的极值点;的正整数,不等式都成立已知函数)、若函数在处的切线方程为,求的值;)、若函数在为增函数,求的取值范围;)、讨论方程解的个数,并说明理由。
2022年高考数学压轴训练(一)
2022年高考数学压轴训练(一)含参考答案与试题解析一.选择题(共6小题)1.(2021•新余二模)对于函数y=f(x)与y=g(x),若存在x0,使f(x0)=g(﹣x0),则称M(x0,f(x0)),N(﹣x0,g(﹣x0))是函数f(x)与g(x)图象的一对“隐对称点”.已知函数f(x)=m(x+1),,函数f(x)与g(x)的图象恰好存在两对“隐对称点”,则实数m的取值范围为()A.(﹣1,0)B.(﹣∞,﹣1)C.(0,1)∪(1,+∞)D.(﹣∞,﹣1)∪(﹣1,0)2.(2021•郑州一模)设点A,B分别为双曲线C:﹣=1(a>0,b>0)的左、右焦点,点M,N分别在双曲线C的左、右支上,若=5,2=•,且||<||,则双曲线C的离心率为()A.B.C.D.3.(2021•广州一模)已知e≈2.71828是自然对数的底数,设a=﹣,b=﹣,c =﹣ln2,则()A.a<b<c B.b<a<c C.b<c<a D.c<a<b 4.(2019•浙江)设a,b∈R,函数f(x)=若函数y=f (x)﹣ax﹣b恰有3个零点,则()A.a<﹣1,b<0B.a<﹣1,b>0C.a>﹣1,b<0D.a>﹣1,b>0 5.(2021•江苏一模)已知点A,B,C,D在球O的表面上,AB⊥平面BCD,BC⊥CD,若AB=2,BC=4,AC与平面ABD所成角的正弦值为,则球O表面上的动点P到平面ACD距离的最大值为()A.2B.3C.4D.5 6.(2022•临沂一模)已知F1,F2分别为双曲线C:=1(a>0,b>0)的左、右焦点,点P在第二象限内,且满足|F1P|=a,(+)•=0,线段F1P与双曲线C交于点Q,若|F1P|=3|F1Q|,则C的离心率为()A.B.C.D.二.填空题(共7小题)7.(2022•昌吉州模拟)已知A﹣BCD是球O的内接三棱锥,AB=AC=BC=BD=CD=6,AD=9,则球O的表面积为.8.(2021•广州一模)已知三棱锥P﹣ABC的底面ABC是边长为6的等边三角形,P A=PB =PC=,先在三棱锥P﹣ABC内放入一个内切球O1,然后再放入一个球O2,使得球O2与球O1及三棱锥P﹣ABC的三个侧面都相切,则球O1的体积为,球O2的表面积为.9.(2021•河西区一模)已知菱形ABCD的边长为2,∠BAD=120°,点E,F分别在边BC,DC上,BC=3BE,DC=λDF,若•=1,则λ的值为;若G为线段DC上的动点,则•的最大值为.10.(2022•临沂一模)已知函数f(x)=e x﹣1﹣e1﹣x+x,则不等式f(2﹣x)+f(4﹣3x)≤2的解集是.11.(2022•广东一模)已知直线y=t分别与函数f(x)=2x+1和g(x)=2lnx+x的图象交于点A,B,则|AB|的最小值为.12.(2022•日照一模)设函数已知x1<x2,且f(x1)=f(x2),若x2﹣x1的最小值为e,则a的值为.13.(2022•日照一模)已知向量=(1,1),=(,0),=﹣(•)(n∈N*),则++……+=.三.解答题(共12小题)14.(2021•郑州一模)已知椭圆C:+=1(a>b>0)的离心率为,且过点A(2,1).(1)求C的方程;(2)点M,N在C上,且AM⊥AN,证明:直线MN过定点.15.(2021•郑州一模)已知函数f(x)=x•e x﹣alnx﹣ax.(1)若a=e,讨论f(x)的单调性;(2)若对任意x>0恒有不等式f(x)≥1成立,求实数a的值.16.(2021•深圳一模)△ABC的内角A,B,C的对边分别为a,b,c,已知A为锐角,sin B ﹣cos C=.(1)求A;(2)若b=c,且BC边上的高为2,求△ABC的面积.17.(2021•深圳一模)某校将进行篮球定点投篮测试,规则为:每人至多投3次,先在M 处投一次三分球,投进得3分,未投进不得分,以后均在N处投两分球,每投进一次得2分,未投进不得分.测试者累计得分高于3分即通过测试,并终止投篮.甲、乙两位同学为了通过测试,进行了五轮投篮训练,每人每轮在M处和N处各投10次,根据他们每轮两分球和三分球的命中次数情况分别得到如下图表:若以每人五轮投篮训练命中频率的平均值作为其测试时每次投篮命中的概率.(1)求甲同学通过测试的概率;(2)在甲、乙两位同学均通过测试的条件下,求甲得分比乙得分高的概率.18.(2021•深圳一模)设O是坐标原点,以F1,F2为焦点的椭圆C:=1(a>b>0)的长轴长为2,以|F1F2|为直径的圆和C恰好有两个交点.(1)求C的方程;(2)P是C外的一点,过P的直线l1,l2均与C相切,且l1,l2的斜率之积为,记u为|PO|的最小值,求u的取值范围.19.(2021•深圳一模)已知函数f(x)=aln2x+2x(1﹣lnx),a∈R.(1)讨论函数f(x)的单调性;(2)若函数g(x)=e2f(x)﹣2a2有且仅有3个零点,求a的取值范围.(其中常数e =2.71828…,是自然对数的底数)20.(2021•潍坊一模)在平面直角坐标系中,A1,A2两点的坐标分别为(﹣2,0),(2,0),直线A1M,A2M相交于点M且它们的斜率之积是,记动点M的轨迹为曲线E.(1)求曲线E的方程;(2)过点F(1,0)作直线l交曲线E于P,Q两点,且点P位于x轴上方,记直线A1Q,A2P的斜率分别为k1,k2.①证明:为定值;②设点Q关于x轴的对称点为Q1,求△PFQ1面积的最大值.21.(2021•广州一模)已知点A(1,0),点B是圆O1:(x+1)2+y2=16上的动点,线段AB的垂直平分线与BO1相交于点C,点C的轨迹为曲线E.(1)求E的方程;(2)过点O1作倾斜角互补的两条直线l1,l2,若直线l1与曲线E交于M,N两点,直线l2与圆O1交于P,Q两点,当M,N,P,Q四点构成四边形,且四边形MPNQ的面积为8时,求直线l1的方程.22.(2021•广州一模)已知函数f(x)=xlnx﹣ax2+x(a∈R).(1)证明:曲线y=f(x)在点(1,f(1))处的切线l恒过定点;(2)若f(x)有两个零点x1,x2,且x2>2x1,证明:.23.(2022•盐城一模)设双曲线C:﹣=1(a,b>0)的右顶点为A,虚轴长为,两准线间的距离为.(1)求双曲线C的方程;(2)设动直线l与双曲线C交于P、Q两点,已知AP⊥AQ,设点A到动直线l的距离为d,求d的最大值.24.(2022•临沂一模)已知椭圆C:+=1(a>0,b>0)的左、右焦点分别为F1,F2,离心率为,直线x=被C截得的线段长为.(1)求C的方程;(2)若A和B为椭圆C上在x轴同侧的两点,且=,求四边形ABF1F2面积的最大值及此时λ的值.25.(2022•广东一模)已知f(x)=lnx+ax+1(a∈R),f′(x)为f(x)的导函数.(1)若对任意x>0都有f(x)≤0,求a的取值范围;(2)若0<x1<x2,证明:对任意常数a,存在唯一的x0∈(x1,x2),使得f'(x0)=成立.。
2019全国卷Ⅰ高考压轴卷数学文科Word版含解析
(Ⅰ)求曲线 C 的直角坐标方程;
(Ⅱ)求 |OA|2+ |MA |2 的取值范围.
23.(本小题满分 10 分)选修 4-5:不等式选讲
已知 a> b> c> d> 0, ad=bc.
(Ⅰ)证明: a+d> b+ c;
(Ⅱ)比较
a
a
b
bd c
cd
与
a
ba
bc
c
d
d
的大小.
最新 2019 全国卷Ⅰ高考压轴卷数学文科(一)答案
则 PA 22 42 2 5, PC
32 42 5, PB
22 32 42
29 ,
所以该几何体的最长的棱的长度为
29 ,故选 C.
11. 【答案】 B.
【解析】 ABC 中, AB 5 , AC 10 , AB AC 25 ,
5 10 cos A 25 , cos A 1 , A 60 , B 90 ; 2
a
2
,
16 a2
9 b2
1 ,解得 b2
3, c2
a2 b2
7, c
7, e c a
7 ,故选: C . 2
9. 【答案】 B 【解析】:模拟程序的运行,可得:
1
i 1,S lg
lg 3 1 ,否;
3
131 i 3,S lg lg lg
lg 5
1 ,否;
355
i 5, S lg 1 lg 5 lg 1 lg 7 1 ,否; 577
2
A.7
B. 9
C . 10
10.一个几何体的三视图如图所示,则该几何体的最长棱的长度为(
D .11 )
A. 2 5
B. 5
C. 29
高考数学高三模拟考试试卷压轴题文一轮:一课双测A+B精练九二次函数与幂函数
高考数学高三模拟考试试卷压轴题(文)一轮:一课双测A+B 精练(九)二次函数与幂函数1.已知幂函数f(x)=x α的部分对应值如下表:x 1 12 f(x)122则不等式f(|x|)≤2的解集是( ) A .{x|0<x ≤2}B .{x|0≤x ≤4} C .{x|-2≤x ≤2}D .{x|-4≤x ≤4}2.已知函数y =ax2+bx +c ,如果a>b>c 且a +b +c =0,则它的图象可能是( )3.已知f(x)=x 12,若0<a<b<1,则下列各式中正确的是( )A .f(a)<f(b)<f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1bB .f ⎝ ⎛⎭⎪⎫1a <f ⎝ ⎛⎭⎪⎫1b <f(b)<f(a)C .f(a)<f(b)<f ⎝ ⎛⎭⎪⎫1b <f ⎝ ⎛⎭⎪⎫1aD .f ⎝ ⎛⎭⎪⎫1a <f(a)<f ⎝ ⎛⎭⎪⎫1b <f(b) 4.已知f(x)=x2+bx +c 且f(-1)=f(3),则( )A .f(-3)<c<f ⎝ ⎛⎭⎪⎫52B .f ⎝ ⎛⎭⎪⎫52<c<f(-3)C .f ⎝ ⎛⎭⎪⎫52<f(-3)<cD .c<f ⎝ ⎛⎭⎪⎫52<f(-3)5.设二次函数f(x)=ax2-2ax +c 在区间[0,1]上单调递减,且f(m)≤f(0),则实数m 的取值范围是( )A .(-∞,0]B .[2,+∞)C .(-∞,0]∪[2,+∞)D .[0,2]6.若方程x2-2mx +4=0的两根满足一根大于1,一根小于1,则m 的取值范围是( )A.⎝ ⎛⎭⎪⎫-∞,-52B.⎝ ⎛⎭⎪⎫52,+∞ C .(-∞,-2)∪(2,+∞) D.⎝ ⎛⎭⎪⎫-52,+∞7.对于函数y =x2,y =x 12有下列说法:①两个函数都是幂函数;②两个函数在第一象限内都单调递增; ③它们的图象关于直线y =x 对称; ④两个函数都是偶函数;⑤两个函数都经过点(0,0)、(1,1); ⑥两个函数的图象都是抛物线型. 其中正确的有________.8.(·北京西城二模)已知函数f(x)=x2+bx +1是R 上的偶函数,则实数b =________,不等式f(x -1)<x 的解集为________.9.若x ≥0,y ≥0,且x +2y =1,那么2x +3y2的最小值为________.10.如果幂函数f(x)=x -12p2+p +32(p ∈Z)是偶函数.且在(0,+∞)上是增函数.求p 的值,并写出相应的函数f(x)的解析式.11.已知二次函数f(x)的图象过点A(-1,0)、B(3,0)、C(1,-8). (1)求f(x)的解析式;(2)求f(x)在x ∈[0,3]上的最值; (3)求不等式f(x)≥0的解集.12.已知函数f(x)=ax2-2ax +2+b(a ≠0),若f(x )在区间[2,3]上有最大值5,最小值2.(1)求a ,b 的值;(2)若b<1,g(x)=f(x)-m ·x 在[2,4]上单调,求m 的取值范围.1.已知y =f(x)是偶函数,当x>0时,f(x)=(x -1)2,若当x ∈⎣⎢⎡⎦⎥⎤-2,-12时,n ≤f(x)≤m 恒成立,则m -n 的最小值为( )A.13B.12 C.34D .1 2.(·青岛质检)设f(x)与g(x)是定义在同一区间[a ,b]上的两个函数,若函数y =f(x)-g(x)在x ∈[a ,b]上有两个不同的零点,则称f(x)和g(x)在[a ,b]上是“关联函数”,区间[a ,b]称为“关联区间”.若f(x)=x2-3x +4与g(x)=2x +m 在[0,3]上是“关联函数”,则m 的取值范围为________.3.(·滨州模拟)已知函数f(x)=ax2+bx +c(a>0,b ∈R ,c ∈R).(1)若函数f(x)的最小值是f(-1)=0,且c =1,F(x)=⎩⎪⎨⎪⎧f x ,x>0,-f x ,x<0,求F(2)+F(-2)的值;(2)若a =1,c =0,且|f(x)|≤1在区间(0,1]上恒成立,试求b 的取值范围.[答 题 栏]A 级1._________2._________3._________4._________5._________6._________B 级1.______2.______7.__________8.__________9.__________高考数学(文)一轮:一课双测A+B 精练(九)A 级1.D2.D3.C4.D5.选D 二次函数f(x)=ax2-2ax +c 在区间[0,1]上单调递减,则a ≠0,f ′(x)=2a(x -1)≤0,x ∈[0,1],所以a>0,即函数图象的开口向上,对称轴是直线x =1. 所以f(0)=f(2),则当f(m)≤f(0)时,有0≤m ≤2.6.选B 设f(x)=x2-2mx +4,则题设条件等价于f(1)<0,即1-2m +4<0,解得m>52.7.解析:从两个函数的定义域、奇偶性、单调性等性质去进行比较. 答案:①②⑤⑥8.解析:因为f(x)=x2+bx +1是R 上的偶函数,所以b =0,则f(x)=x2+1,解不等式(x -1)2+1<x ,即x2-3x +2<0得1<x<2.答案:0{x|1<x<2}9.解析:由x ≥0,y ≥0,x =1-2y ≥0知 0≤y ≤12,令t =2x +3y2=3y2-4y +2,则t =3⎝ ⎛⎭⎪⎫y -232+23.在⎣⎢⎡⎦⎥⎤0,12上递减,当y =12时,t 取到最小值,tmin =34.答案:3410.解:∵f(x)在(0,+∞)上是增函数, ∴-12p2+p +32>0,即p2-2p -3<0. ∴-1<p<3.又∵f(x)是偶函数且p ∈Z , ∴p =1,故f(x)=x2.11.解:(1)由题意可设f(x)=a(x +1)(x -3), 将C(1,-8)代入得-8=a(1+1)(1-3),得a =2. 即f(x)=2(x +1)(x -3)=2x2-4x -6. (2)f(x)=2(x -1)2-8,当x ∈[0,3]时,由二次函数图象知, f(x)min =f(1)=-8,f(x)max =f(3)=0. (3)f(x)≥0的解集为{x|x ≤-1,或x ≥3}. 12.解:(1)f(x)=a(x -1)2+2+b -a. 当a>0时,f(x)在[2,3]上为增函数,故⎩⎪⎨⎪⎧ f 3=5,f 2=2,⇒⎩⎪⎨⎪⎧ 9a -6a +2+b =5,4a -4a +2+b =2,⇒⎩⎪⎨⎪⎧a =1,b =0.当a<0时,f(x)在[2,3]上为减函数,故⎩⎪⎨⎪⎧f 3=2,f2=5,⇒⎩⎪⎨⎪⎧9a -6a +2+b =2,4a -4a +2+b =5,⇒⎩⎪⎨⎪⎧a =-1,b =3.(2)∵b<1,∴a =1,b =0, 即f(x)=x2-2x +2.g(x)=x2-2x +2-mx =x2-(2+m)x +2, ∵g(x)在[2,4]上单调, ∴2+m 2≤2或m +22≥4.∴m ≤2或m ≥6. B 级1.选D 当x<0时,-x>0,f(x)=f(-x)=(x +1)2, ∵x ∈⎣⎢⎡⎦⎥⎤-2,-12, ∴f(x)min =f(-1)=0,f(x)max =f(-2)=1, ∴m ≥1,n ≤0,m -n ≥1.2.解析:由题意知,y =f(x)-g(x)=x2-5x +4-m 在[0,3]上有两个不同的零点.在同一坐标系下作出函数y =m 与y =x2-5x +4(x ∈[0,3])的图象如图所示,结合图象可知,当x ∈[2,3]时,y =x2-5x +4∈⎣⎢⎡⎦⎥⎤-94,-2,故当m ∈⎝ ⎛⎦⎥⎤-94,-2时,函数y =m 与y =x2-5x +4(x ∈[0,3])的图象有两个交点.答案:⎝ ⎛⎦⎥⎤-94,-2 3.解:(1)由已知得c =1,a -b +c =0,-b2a =-1,解得a =1,b =2.则f(x)=(x +1)2.则F(x)=⎩⎪⎨⎪⎧x +12,x>0,-x +12,x<0.故F(2)+F(-2)=(2+1)2+[-(-2+1)2]=8.(2)由题意得f(x)=x2+bx ,原命题等价于-1≤x2+bx ≤1在(0,1]上恒成立,即b ≤1x -x 且b ≥-1x-x 在(0,1]上恒成立.又当x ∈(0,1]时,1x -x 的最小值为0,-1x -x 的最大值为-2,故-2≤b ≤0.高考理科数学试卷普通高等学校招生全国统一考试注意事项: 1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.第Ⅰ卷1至3页,第Ⅱ卷3至5页. 2.答题前,考生务必将自己的姓名、准考证号填写在本试题相应的位置. 3.全部答案在答题卡上完成,答在本试题上无效. 4.考试结束后,将本试题和答题卡一并交回.第Ⅰ卷一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.(1)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则AB =(A ){1}(B ){12},(C ){0123},,,(D ){10123}-,,,, (2)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是(A )(31)-,(B )(13)-,(C )(1,)∞+(D )(3)∞--, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m= (A )-8(B )-6 (C )6 (D )8(4)圆2228130x y x y +--+=的圆心到直线10ax y +-=的距离为1,则a= (A )43-(B )34-(C )3(D )2(5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为(A )24 (B )18 (C )12 (D )9(6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π(B )24π(C )28π(D )32π(7)若将函数y=2sin 2x 的图像向左平移π12个单位长度,则评议后图象的对称轴为(A )x=kπ2–π6 (k ∈Z) (B )x=kπ2+π6 (k ∈Z) (C )x=kπ2–π12 (k ∈Z) (D )x=kπ2+π12 (k ∈Z)(8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a 为2,2,5,则输出的s= (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)=35,则sin 2α=(A )725(B )15(C )–15(D )–725(10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,nx ,1y ,2y ,…,ny ,构成n 个数对()11,x y ,()22,x y ,…,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π的近似值为(A )4n m (B )2n m (C )4m n (D )2m n(11)已知F1,F2是双曲线E 22221x y a b-=的左,右焦点,点M 在E 上,M F1与x 轴垂直,sin 2113MF F ∠=,则E 的离心率为 (AB )32(CD )2(12)已知函数学.科网()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x+=与()y f x =图像的交点为1122(,),(,),,(,),m m x y x y x y ⋅⋅⋅则1()mi i i x y =+=∑(A )0 (B )m (C )2m (D )4m第II 卷本卷包括必考题和选考题两部分.第(13)题~第(21)题为必考题,每个试题考生都必须作答.第(22)题~第(24)题为选考题,考生根据要求作答.二、填空题:本大题共3小题,每小题5分(13)△ABC 的内角A 、B 、C 的对边分别为a 、b 、c ,若cos A=45,cos C=513,a=1,则b=. (14)α、β是两个平面,m 、n 是两条直线,有下列四个命题:(1)如果m ⊥n ,m ⊥α,n ∥β,那么α⊥β. (2)如果m ⊥α,n ∥α,那么m ⊥n.(3)如果α∥β,m ⊂α,那么m ∥β. (4)如果m ∥n ,α∥β,那么m 与α所成的角和n 与β所成的角相等.其中正确的命题有.(填写所有正确命题的编号)(15)有三张卡片,分别写有1和2,1和3,2和3。
广东省惠州市示范名校2025届高考压轴卷数学试卷含解析
广东省惠州市示范名校2025届高考压轴卷数学试卷考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。
2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。
3.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( ) A .12B .45C .38D .342.在101()2x x-的展开式中,4x 的系数为( ) A .-120B .120C .-15D .153.点P 为棱长是2的正方体1111ABCD A B C D -的内切球O 球面上的动点,点M 为11B C 的中点,若满足DP BM ⊥,则动点P 的轨迹的长度为( ) A .55π B .255πC .455πD .855π4.已知定义在R 上的函数()2xf x x =⋅,3(log 5)a f =,31(log )2b f =-,(ln 3)c f =,则a ,b ,c 的大小关系为( ) A .c b a >>B .b c a >>C .a b c >>D .c a b >>5.如图,四边形ABCD 为平行四边形,E 为AB 中点,F 为CD 的三等分点(靠近D )若AF x AC yDE =+,则y x -的值为( )A .12-B .23-C .13-D .1-6.若命题:从有2件正品和2件次品的产品中任选2件得到都是正品的概率为三分之一;命题:在边长为4的正方形内任取一点,则的概率为,则下列命题是真命题的是( )A .B .C .D .结论正确的是( ) A .平均数为20,方差为4 B .平均数为11,方差为4 C .平均数为21,方差为8D .平均数为20,方差为88.函数sin y x x =+在[]2,2x ππ∈-上的大致图象是( )A .B .C .D .9.复数5i12i+的虚部是 ( ) A .iB .i -C .1D .1-10.幻方最早起源于我国,由正整数1,2,3,……,2n 这2n 个数填入n n ⨯方格中,使得每行、每列、每条对角线上的数的和相等,这个正方形数阵就叫n 阶幻方.定义()f n 为n 阶幻方对角线上所有数的和,如(3)15f =,则(10)f =( )A .55B .500C .505D .505011.已知命题p :“关于x 的方程240x x a -+=有实根”,若p ⌝为真命题的充分不必要条件为31a m >+,则实数m 的取值范围是( )A .[)1,+∞B .1,C .(),1-∞D .(],1-∞12. “2a =”是“直线210ax y +-=与(1)20x a y +-+=互相平行”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分也不必要条件二、填空题:本题共4小题,每小题5分,共20分。
数学高考压轴题含答案
数学高考压轴题学校:___________姓名:___________班级:___________考号:___________评卷人得分一、解答题1.已知函数()x f x e ax =-和()ln g x ax x =-有相同的最小值.(1)求a ;(2)证明:存在直线y b =,其与两条曲线()y f x =和()y g x =共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.2.已知点(2,1)A 在双曲线2222:1(1)1x y C a a a -=>-上,直线l 交C 于P ,Q 两点,直线,AP AQ 的斜率之和为0.(1)求l 的斜率;(2)若tan PAQ ∠=PAQ △的面积.3.已知函数()e e ax x f x x =-.(1)当1a =时,讨论()f x 的单调性;(2)当0x >时,()1f x <-,求a 的取值范围;(3)设n *∈Nln(1)n ++>+ .4.已知双曲线2222:1(0,0)x y C a b a b -=>>的右焦点为(2,0)F ,渐近线方程为y =.(1)求C 的方程;(2)过F 的直线与C 的两条渐近线分别交于A ,B 两点,点()()1122,,,P x y Q x y 在C 上,且1210,0x x y >>>.过P 且斜率为Q M .从下面①②③中选取两个作为条件,证明另外一个成立:①M 在AB 上;②PQ AB ∥;③||||MA MB =.注:若选择不同的组合分别解答,则按第一个解答计分.5.已知函数()e ln(1)x f x x =+.(1)求曲线()y f x =在点(0,(0))f 处的切线方程;(2)设()()g x f x '=,讨论函数()g x 在[0,)+∞上的单调性;(3)证明:对任意的,(0,)s t ∈+∞,有()()()f s t f s f t +>+.6.如图,已知椭圆22112x y +=.设A ,B 是椭圆上异于(0,1)P 的两点,且点0,21Q ⎛⎫ ⎪⎝⎭在线段AB 上,直线,PA PB 分别交直线132y x =-+于C ,D两点.(1)求点P 到椭圆上点的距离的最大值;(2)求||CD 的最小值.7.设函数e()ln (0)2f x x x x=+>.(1)求()f x 的单调区间;(2)已知,a b ∈R ,曲线()y f x =上不同的三点()()()()()()112233,,,,,x f x x f x x f x 处的切线都经过点(,)a b .证明:(ⅰ)若e a >,则10()12e a b f a ⎛⎫<-<- ⎪⎝⎭;(ⅱ)若1230e,a x x x <<<<,则22132e 112e e 6e 6ea ax x a --+<+<-.(注:e 2.71828= 是自然对数的底数)参考答案:1.(1)1a =(2)见解析【解析】【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.(2)根据(1)可得当1b >时,e x x b -=的解的个数、ln x x b -=的解的个数均为2,构建新函数()e ln 2x h x x x =+-,利用导数可得该函数只有一个零点且可得()(),f x g x 的大小关系,根据存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点可得b 的取值,再根据两类方程的根的关系可证明三根成等差数列.(1)()e x f x ax =-的定义域为R ,而()e '=-x f x a ,若0a ≤,则()0f x '>,此时()f x 无最小值,故0a >.()ln g x ax x =-的定义域为()0,∞+,而11()ax g x a x x'-=-=.当ln x a <时,()0f x '<,故()f x 在(),ln a -∞上为减函数,当ln x a >时,()0f x '>,故()f x 在()ln ,a +∞上为增函数,故()min ()ln ln f x f a a a a ==-.当10x a <<时,()0g x '<,故()g x 在10,a ⎛⎫⎪⎝⎭上为减函数,当1x a >时,()0g x '>,故()g x 在1,a ⎛⎫+∞ ⎪⎝⎭上为增函数,故min 11()1ln g x g a a ⎛⎫==- ⎪⎝⎭.因为()e x f x ax =-和()ln g x ax x =-有相同的最小值,故11lnln a a a a-=-,整理得到1ln 1a a a -=+,其中0a >,设()1ln ,01a g a a a a -=->+,则()()()222211011a g a a a a a --'=-=≤++,故()g a 为()0,∞+上的减函数,而()10g =,故()0g a =的唯一解为1a =,故1ln 1aa a-=+的解为1a =.综上,1a =.(2)由(1)可得e ()x x f x =-和()ln g x x x =-的最小值为11ln11ln 11-=-=.当1b >时,考虑e x x b -=的解的个数、ln x x b -=的解的个数.设()e xS x x b =--,()e 1x S x '=-,当0x <时,()0S x '<,当0x >时,()0S x '>,故()S x 在(),0∞-上为减函数,在()0,∞+上为增函数,所以()()min 010S x S b ==-<,而()e0bS b --=>,()e 2b S b b =-,设()e 2b u b b =-,其中1b >,则()e 20bu b '=->,故()u b 在()1,+∞上为增函数,故()()1e 20u b u >=->,故()0S b >,故()e xS x x b =--有两个不同的零点,即e x x b -=的解的个数为2.设()ln T x x x b =--,()1x T x x-'=,当01x <<时,()0T x '<,当1x >时,()0T x '>,故()T x 在()0,1上为减函数,在()1,+∞上为增函数,所以()()min 110T x T b ==-<,而()ee0bbT --=>,()e e 20b b T b =->,()ln T x x x b =--有两个不同的零点即ln x x b -=的解的个数为2.当1b =,由(1)讨论可得ln x x b -=、e x x b -=仅有一个零点,当1b <时,由(1)讨论可得ln x x b -=、e x x b -=均无零点,故若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,则1b >.设()e ln 2x h x x x =+-,其中0x >,故1()e 2xh x x'=+-,设()e 1x s x x =--,0x >,则()e 10xs x '=->,故()s x 在()0,∞+上为增函数,故()()00s x s >=即e 1x x >+,所以1()1210h x x x'>+-≥->,所以()h x 在()0,∞+上为增函数,而(1)e 20h =->,31e 333122(e 3e 30e e eh =--<--<,故()h x 在()0,∞+上有且只有一个零点0x ,0311ex <<且:当00x x <<时,()0h x <即e ln x x x x -<-即()()f x g x <,当0x x >时,()0h x >即e ln x x x x ->-即()()f x g x >,因此若存在直线y b =与曲线()y f x =、()y g x =有三个不同的交点,故()()001b f x g x ==>,此时e x x b -=有两个不同的零点1010,(0)x x x x <<,此时ln x x b -=有两个不同的零点0404,(01)x x x x <<<,故11e xx b -=,00e x x b -=,44ln 0x x b --=,00ln 0x x b --=所以44ln x b x -=即44ex bx -=即()44e0x bx b b ----=,故4x b -为方程e x x b -=的解,同理0x b -也为方程e x x b -=的解又11e x x b -=可化为11e xx b =+即()11ln 0x x b -+=即()()11ln 0x b x b b +-+-=,故1x b +为方程ln x x b -=的解,同理0x b +也为方程ln x x b -=的解,所以{}{}1004,,x x x b x b =--,而1b >,故0410x x b x x b =-⎧⎨=-⎩即1402x x x +=.【点睛】思路点睛:函数的最值问题,往往需要利用导数讨论函数的单调性,此时注意对参数的分类讨论,而不同方程的根的性质,注意利用方程的特征找到两类根之间的关系.2.(1)1-;(2)9.【解析】【分析】(1)由点(2,1)A 在双曲线上可求出a ,易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,再根据0AP BP k k +=,即可解出l 的斜率;(2)根据直线,AP AQ 的斜率之和为0可知直线,AP AQ的倾斜角互补,再根据tan PAQ ∠=,AP AQ 的斜率,再分别联立直线,AP AQ 与双曲线方程求出点,P Q 的坐标,即可得到直线PQ 的方程以及PQ 的长,由点到直线的距离公式求出点A 到直线PQ 的距离,即可得出PAQ △的面积.(1)因为点(2,1)A 在双曲线2222:1(1)1x yC a a a -=>-上,所以224111a a -=-,解得22a =,即双曲线22:12x C y -=易知直线l 的斜率存在,设:l y kx m =+,()()1122,,,P x y Q x y ,联立2212y kx m x y =+⎧⎪⎨-=⎪⎩可得,()222124220k x mkx m ----=,所以,2121222422,2121mk m x x x x k k ++=-=--,()()22222216422210120m k m k m k ∆=++->⇒-+>.所以由0AP BP k k +=可得,212111022y y x x --+=--,即()()()()122121210x kx m x kx m -+-+-+-=,即()()()1212212410kx x m k x x m +--+--=,所以()()2222242124102121m mk k m k m k k +⎛⎫⨯+-----= ⎪--⎝⎭,化简得,()2844410k k m k +-++=,即()()1210k k m +-+=,所以1k =-或12m k =-,当12m k =-时,直线():21l y kx m k x =+=-+过点()2,1A ,与题意不符,舍去,故1k =-.(2)不妨设直线,PA PB 的倾斜角为(),αβαβ<,因为0AP BP k k +=,所以παβ+=,因为tan PAQ ∠=,所以()tan βα-=,即tan 2α=-,2tan 0αα-=,解得tan α,于是,直线):21PA y x =-+,直线):21PB y x =-+,联立)222112y x x y ⎧=-+⎪⎨-=⎪⎩可得,(23211002x x +-+-=,因为方程有一个根为2,所以103P x -=,P y=53,同理可得,103Q x +=,Q y=53-.所以5:03PQ x y +-=,163PQ =,点A 到直线PQ的距离3d =,故PAQ △的面积为11623⨯=3.(1)()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)12a ≤(3)见解析【解析】【分析】(1)求出()f x ¢,讨论其符号后可得()f x 的单调性.(2)设()e e 1ax xh x x =-+,求出()h x '',先讨论12a >时题设中的不等式不成立,再就102a <≤结合放缩法讨论()h x '符号,最后就0a ≤结合放缩法讨论()h x 的范围后可得参数的取值范围.(3)由(2)可得12ln t t t<-对任意的1t >恒成立,从而可得()ln 1ln n n +-的*n N ∈恒成立,结合裂项相消法可证题设中的不等式.(1)当1a =时,()()1e x f x x =-,则()e xf x x '=,当0x <时,()0f x ¢<,当0x >时,()0f x ¢>,故()f x 的减区间为(),0-∞,增区间为()0,+∞.(2)设()e e 1ax xh x x =-+,则()00h =,又()()1e e ax x h x ax '=+-,设()()1e e ax xg x ax =+-,则()()22e e ax xg x a a x '=+-,若12a >,则()0210g a '=->,因为()g x '为连续不间断函数,故存在()00,x ∈+∞,使得()00,x x ∀∈,总有()0g x ¢>,故()g x 在()00,x 为增函数,故()()00g x g >=,故()h x 在()00,x 为增函数,故()()01h x h >=-,与题设矛盾.若102a <≤,则()()()ln 11e e ee ax ax ax xx h x ax ++'=+-=-,下证:对任意0x >,总有()ln 1x x +<成立,证明:设()()ln 1S x x x =+-,故()11011x S x x x-'=-=<++,故()S x 在()0,+∞上为减函数,故()()00S x S <=即()ln 1x x +<成立.由上述不等式有()ln 12e e e e e e 0ax ax x ax ax x ax x +++-<-=-≤,故()0h x '≤总成立,即()h x 在()0,+∞上为减函数,所以()()01h x h <=-.当0a ≤时,有()e e e 1100ax x axh x ax '=-+<-+=,所以()h x 在()0,+∞上为减函数,所以()()01h x h <=-.综上,12a ≤.(3)取12a =,则0x ∀>,总有12e e 10x x x -+<成立,令12e x t =,则21,e ,2ln x t t x t >==,故22ln 1t t t <-即12ln t t t<-对任意的1t >恒成立.所以对任意的*n N ∈,有<整理得到:()ln 1ln n n +-()ln 2ln1ln 3ln 2ln 1ln n n +-+-+++- ()ln 1n =+,故不等式成立.【点睛】思路点睛:函数参数的不等式的恒成立问题,应该利用导数讨论函数的单调性,注意结合端点处导数的符号合理分类讨论,导数背景下数列不等式的证明,应根据已有的函数不等式合理构建数列不等式.4.(1)2213y x -=(2)见解析【解析】【分析】(1)利用焦点坐标求得c 的值,利用渐近线方程求得,a b 的关系,进而利用,,a b c 的平方关系求得,a b 的值,得到双曲线的方程;(2)先分析得到直线AB 的斜率存在且不为零,设直线AB 的斜率为k ,M (x 0,y 0),由③|AM |=|BM |等价分析得到200283k x ky k +=-;由直线PM 和QM 的斜率得到直线方程,结合双曲线的方程,两点间距离公式得到直线PQ 的斜率03x m y =,由②//PQ AB 等价转化为003ky x =,由①M在直线AB 上等价于()2002ky k x =-,然后选择两个作为已知条件一个作为结论,进行证明即可.(1)右焦点为(2,0)F ,∴2c =,∵渐近线方程为y =,∴ba=b ,∴222244c a b a =+==,∴1a =,∴b =∴C 的方程为:2213y x -=;(2)由已知得直线PQ 的斜率存在且不为零,直线AB 的斜率不为零,若选由①②推③或选由②③推①:由②成立可知直线AB 的斜率存在且不为零;若选①③推②,则M 为线段AB 的中点,假若直线AB 的斜率不存在,则由双曲线的对称性可知M 在x 轴上,即为焦点F ,此时由对称性可知P 、Q 关于x 轴对称,与从而12x x =,已知不符;总之,直线AB 的斜率存在且不为零.设直线AB 的斜率为k ,直线AB 方程为()2y k x =-,则条件①M 在AB 上,等价于()()2000022y k x ky k x =-⇔=-;两渐近线的方程合并为2230x y -=,联立消去y 并化简整理得:()22223440k x k x k --+=设()()3334,,,A x y B x y ,线段中点为(),N N N x y ,则()2342226,2233N N N x x k kx y k x k k +===-=--,设()00,M x y ,则条件③AM BM =等价于()()()()222203030404x x y y x x y y -+-=-+-,移项并利用平方差公式整理得:()()()()3403434034220x x x x x y y y y y ⎡⎤⎡⎤--++--+=⎣⎦⎣⎦,()()3403403434220y y x x x y y y x x -⎡⎤⎡⎤-++-+=⎣⎦⎣⎦-,即()000N N x x k y y -+-=,即200283k x ky k +=-;由题意知直线PM 的斜率为直线QM ,∴由))10102020,y y x x y y x x -=--=-,∴)121202y y x x x -=+-,所以直线PQ的斜率)1201212122x x x y y m x x x x +--==--,直线)00:PM y x x y =-+,即00y y =,代入双曲线的方程22330x y --=,即)3yy +-=中,得:()()00003y y ⎡⎤-=⎣⎦,解得P的横坐标:100x y ⎛⎫=+⎪⎪⎭,同理:200x y ⎛⎫=⎪⎪⎭,∴0012012002222000033,2,33y x x x y x x x x y x y x ⎛⎫-=++-=--⎪--⎭∴03x m y =,∴条件②//PQ AB 等价于003m k ky x =⇔=,综上所述:条件①M 在AB 上,等价于()2002ky k x =-;条件②//PQ AB 等价于003ky x =;条件③AM BM =等价于200283kx ky k +=-;选①②推③:由①②解得:2200002228,433k k x x ky x k k =∴+==--,∴③成立;选①③推②:由①③解得:20223k x k =-,20263k ky k =-,∴003ky x =,∴②成立;选②③推①:由②③解得:20223k x k =-,20263k ky k =-,∴02623x k -=-,∴()2002ky k x =-,∴①成立.5.(1)y x=(2)()g x 在[0,)+∞上单调递增.(3)证明见解析【解析】【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;(3)令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,由第二问结论可知()m x 在[0,+∞)上单调递增,即得证.(1)解:因为()e ln(1)x f x x =+,所以()00f =,即切点坐标为()0,0,又1()e (ln(1))1xf x x x=+++',∴切线斜率(0)1k f '==∴切线方程为:y x =(2)解:因为1()()e (ln(1))1xg x f x x x=++'=+,所以221()e (ln(1))1(1)xg x x x x =++++',令221()ln(1)1(1)h x x x x =++-++,则22331221()01(1)(1)(1)x h x x x x x +=-+=>++++',∴()h x 在[0,)+∞上单调递增,∴()(0)10h x h ≥=>∴()0g x '>在[0,)+∞上恒成立,∴()g x 在[0,)+∞上单调递增.(3)解:原不等式等价于()()()(0)f s t f s f t f +->-,令()()()m x f x t f x =+-,(,0)x t >,即证()(0)m x m >,∵()()()e ln(1)e ln(1)x t x m x f x t f x x t x +=+-=++-+,e e ()e ln(1)e ln(1)()()11x t x x tx m x x t x g x t g x x t x++=++++-=+-++'+,由(2)知1()()e (ln(1))1xg x f x x x=++'=+在[)0,∞+上单调递增,∴()()g x t g x +>,∴()0m x '>∴()m x 在()0,∞+上单调递增,又因为,0x t >,∴()(0)m x m >,所以命题得证.6.(1)11;(2)5.【解析】【分析】(1)设,sin )Q θθ是椭圆上任意一点,再根据两点间的距离公式求出2||PQ ,再根据二次函数的性质即可求出;(2)设直线1:2AB y kx =+与椭圆方程联立可得1212,x x x x +,再将直线132y x =-+方程与PA PB 、的方程分别联立,可解得点,C D 的坐标,再根据两点间的距离公式求出CD ,最后代入化简可得231CD k =⋅+,由柯西不等式即可求出最小值.(1)设,sin )Q θθ是椭圆上任意一点,(0,1)P ,则222221144144||12cos (1sin )1311sin 2sin 11sin 111111PQ θθθθθ⎛⎫=+-=--=-+≤⎭+⎪⎝,当且仅当1sin 11θ=-时取等号,故||PQ (2)设直线1:2AB y kx =+,直线AB 方程与椭圆22112x y +=联立,可得22130124k x kx ⎛⎫++-= ⎪⎝⎭,设()()1122,,,A x y B x y ,所以12212211231412k x x k x x k ⎧+=-⎪+⎪⎪⎨⎪=-⎛⎫⎪+ ⎪⎪⎝⎭⎩,因为直线111:1y PA y x x -=+与直线132y x =-+交于C ,则111114422(21)1C x x x x y k x ==+-+-,同理可得,222224422(21)1D x x x x y k x ==+-+-.则224||(21)1C D x CD x k x =-=+-2=35161656565231555k =⋅=≥=+,当且仅当316k =时取等号,故CD 的最小值为5.【点睛】本题主要考查最值的计算,第一问利用椭圆的参数方程以及二次函数的性质较好解决,第二问思路简单,运算量较大,求最值的过程中还使用到柯西不等式求最值,对学生的综合能力要求较高,属于较难题.7.(1)()f x 的减区间为e 02⎛⎫⎪⎝⎭,,增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)见解析;(ⅱ)见解析.【解析】【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ)31x k x =,1e a m =<,则题设不等式可转化为()()()2131313122236m m m t t m m t t --++--<+,结合零点满足的方程进一步转化为()()()()211312ln 0721m m m m m m ---++<+,利用导数可证该不等式成立.(1)()22e 12e 22xf x x x x -'=-+=,当e02x <<,()0f x ¢<;当e 2x >,()0f x ¢>,故()f x 的减区间为e 02⎛⎫⎪⎝⎭,,()f x 的增区间为e ,2⎛⎫+∞ ⎪⎝⎭.(2)(ⅰ)因为过(),a b 有三条不同的切线,设切点为()(),,1,2,3i i x f x i =,故()()()i i i f x b f x x a '-=-,故方程()()()f x b f x x a '-=-有3个不同的根,该方程可整理为()21e e ln 022x a x b x x x ⎛⎫----+= ⎪⎝⎭,设()()21e e ln 22g x x a x b x x x ⎛⎫=---+ ⎪⎝⎭,则()()22321e 1e 1e22g x x a x x x x x x⎛⎫'=-+-+--+ ⎪⎝⎭()()31e x x a x =---,当0e x <<或x a >时,()0g x ¢<;当e x a <<时,()0g x ¢>,故()g x 在()()0,e ,,a +∞上为减函数,在()e,a 上为增函数,因为()g x 有3个不同的零点,故()e 0g <且()0>g a ,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+< ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+> ⎪⎝⎭,整理得到:12e a b <+且()e ln 2b a f a a >+=,此时()1e 13e11ln ln 2e 2e 22e 222a a a b f a a a a a ⎛⎫⎛⎫---<-+-+=-- ⎪ ⎪⎝⎭⎝⎭,设()3e ln 22u a a a =--,则()2e-202au a a '=<,故()u a 为()e,+∞上的减函数,故()3eln e 022eu a <--=,故()1012e a b f a ⎛⎫<-<- ⎪⎝⎭.(ⅱ)当0e a <<时,同(ⅰ)中讨论可得:故()g x 在()()0,,e,a +∞上为减函数,在(),e a 上为增函数,不妨设123x x x <<,则1230e x a x x <<<<<,因为()g x 有3个不同的零点,故()0g a <且()e 0g >,故()21e e e ln e 0e 2e 2e a b ⎛⎫----+> ⎪⎝⎭且()21e e ln 022a a a b a a a ⎛⎫---+< ⎪⎝⎭,整理得到:1ln 2e 2ea ab a +<<+,因为123x x x <<,故1230e x a x x <<<<<,又()2e e 1ln 2a ag x x b x x+=-+-+,设e t x =,()0,1e a m =∈,则方程2e e 1ln 02a ax b x x+-+-+=即为:2e ln 0e 2ea at t t b +-+++=即为()21ln 02m m t t t b -++++=,记123123e e e ,,,t t t x x x ===则113,,t t t 为()21ln 02m m t t t b -++++=有三个不同的根,设3131e 1x t k t x a ==>>,1eam =<,要证:22122e 112e e 6e 6e a a x x a --+<+<-,即证13e 2e e 26e 6ea at t a --+<+<-,即证:13132166m mt t m --<+<-,即证:131********m m t t t t m --⎛⎫⎛⎫+-+-+< ⎪⎝⎭⎝⎭,即证:()()()2131313122236m m m t t m m t t --++--<+,而()21111ln 02m m t t t b -++++=且()23331ln 02mm t t t b -++++=,故()()()22131313ln ln 102m t t t t m t t -+--+-=,故131313ln ln 222t t t t m m t t -+--=-⨯-,故即证:()()()21313131312ln ln 236m m m t t m t t m t t --+--⨯<-+,即证:()()()1213313ln1312072t t t m m m t t t +--++>-即证:()()()213121ln 0172m m m k k k --+++>-,记()()1ln ,11k k k k k ϕ+=>-,则()()2112ln 01k k k kk ϕ⎛⎫'=--> ⎪⎝⎭-,设()12ln u k k k k =--,则()2122210u k k k k k'=+->-=即()0k ϕ'>,故()k ϕ在()1,+∞上为增函数,故()()k m ϕϕ>,所以()()()()()()22131213121ln 1ln 172172m m m m m m k k m m k m --+--++++>+--,记()()()()()211312ln ,01721m m m m m m m m ω---+=+<<+,则()()()()()()()2232322132049721330721721m mm m m mm m m m m ω---+-+'=>>++,所以()m ω在()0,1为增函数,故()()10m ωω<=,故()()()()211312ln 0721m m m m m m ---++<+即()()()213121ln 0172m m m m m m --+++>-,故原不等式得证:【点睛】思路点睛:导数背景下的切线条数问题,一般转化为关于切点方程的解的个数问题,而复杂方程的零点性质的讨论,应该根据零点的性质合理转化需求证的不等式,常用的方法有比值代换等.。
山西省朔州市怀仁一中2025届高三压轴卷数学试卷含解析
山西省朔州市怀仁一中2025届高三压轴卷数学试卷注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。
用2B 铅笔将试卷类型(B )填涂在答题卡相应位置上。
将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B 铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。
答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。
不按以上要求作答无效。
4.考生必须保证答题卡的整洁。
考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()2cos sin 6f x x x m π⎛⎫=⋅++ ⎪⎝⎭(m ∈R )的部分图象如图所示.则0x =( )A .32π B .56π C .76π D .43π- 2.已知函数在上的值域为,则实数的取值范围为( ) A .B .C .D .3.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( ) A .147B .294C .882D .17644.设i 是虚数单位,复数1ii+=( ) A .1i -+B .-1i -C .1i +D .1i -5.已知集合{|12},{|15}=-<=-A x x B x x ,定义集合*{|,,}==+∈∈A B z z x y x A y B ,则*(*)B A B 等于( ) A .{|61}-<x x B .{|112}<x x C .{|110}-<x xD .{|56}-<x x6.已知全集为R ,集合122(1),{|20}A x y x B x x x -⎧⎫⎪⎪==-=-<⎨⎬⎪⎪⎩⎭,则()A B =R ( )A .(0,2)B .(1,2]C .[0,1]D .(0,1]7.已知复数21z i =+ ,其中i 为虚数单位,则z =( ) ABC .2D8.已知,a b ∈R ,3(21)ai b a i +=--,则|3|a bi +=( ) AB.C .3D .49.已知复数168i z =-,2i z =-,则12z z =( ) A .86i -B .86i +C .86i -+D .86i --10.已知函数21,0()2ln(1),0x x x f x x x ⎧-+<⎪=⎨⎪+≥⎩,若函数()()g x f x kx =-有三个零点,则实数k 的取值范围是( ) A .112⎡⎤⎢⎥⎣⎦,B .112⎛⎫ ⎪⎝⎭,C .(0,1)D .12⎛⎫+∞ ⎪⎝⎭,11.如图,双曲线()2222:10,0x y C a b a b-=>>的左,右焦点分别是()()12,0,,0,F c F c -直线2bc y a =与双曲线C 的两条渐近线分别相交于,A B 两点.若12,3BF F π∠=则双曲线C 的离心率为( )A .2B .423 C .2D .23312.若函数()3cos 4sin f x x x =+在x θ=时取得最小值,则cos θ=( ) A .35B .45-C .45D .35二、填空题:本题共4小题,每小题5分,共20分。
南阳六校2025届高考压轴卷数学试卷含解析
南阳六校2025届高考压轴卷数学试卷考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。
选择题必须用2B 铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。
2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。
3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知函数()f x 满足:当[)2,2x ∈-时,()()22,20log ,02x x x f x x x ⎧+-≤≤=⎨<<⎩,且对任意x ∈R ,都有()()4f x f x +=,则()2019f =( ) A .0B .1C .-1D .2log 32.已知集合{}2(,)|A x y y x ==,{}22(,)|1B x y xy =+=,则A B 的真子集个数为( )A .1个B .2个C .3个D .4个3.若不相等的非零实数x ,y ,z 成等差数列,且x ,y ,z 成等比数列,则x yz+=( ) A .52-B .2-C .2D .724.命题“20,(1)(1)∀>+>-x x x x ”的否定为( )A .20,(1)(1)∀>+>-x x x xB .20,(1)(1)∀+>-x x x xC .20,(1)(1)∃>+-x x x xD .20,(1)(1)∃+>-x x x x5.将函数f (x )=sin 3x3x +1的图象向左平移6π个单位长度,得到函数g (x )的图象,给出下列关于g (x )的结论: ①它的图象关于直线x =59π对称; ②它的最小正周期为23π; ③它的图象关于点(1118π,1)对称;④它在[51939ππ,]上单调递增. 其中所有正确结论的编号是( ) A .①②B .②③C .①②④D .②③④6.《九章算术》“少广”算法中有这样一个数的序列:列出“全步”(整数部分)及诸分子分母,以最下面的分母遍乘各分子和“全步”,各自以分母去约其分子,将所得能通分之分数进行通分约简,又用最下面的分母去遍乘诸(未通者)分子和以通之数,逐个照此同样方法,直至全部为整数,例如:2n =及3n =时,如图:记n S 为每个序列中最后一列数之和,则6S 为( ) A .147 B .294C .882D .17647.双曲线的离心率为,则其渐近线方程为 A .B .C .D .8.已知向量a ,b 夹角为30,()1,2a =,2b = ,则2a b -=( ) A .2B .4C .23D .279.定义运算()()a ab a b b a b ≤⎧⊕=⎨>⎩,则函数()12xf x =⊕的图象是( ). A . B .C .D .10.函数()y f x =,x ∈R ,则“()y xf x =的图象关于y 轴对称”是“()y f x =是奇函数”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件11.ABC 中,点D 在边AB 上,CD 平分ACB ∠,若CB a =,CA b =,2a =,1b =,则CD =( )A .2133a b + B .1233a b +C .3455a b + D .4355a b + 12.若[]x 表示不超过x 的最大整数(如[]2.52=,[]44=,[]2.53-=-),已知2107n n a ⎡⎤=⨯⎢⎥⎣⎦,11b a =,()*110,2n n n b a a n n -=-∈≥N ,则2019b =( )A .2B .5C .7D .8二、填空题:本题共4小题,每小题5分,共20分。
山东省高考数学压轴卷试题 文
数学 (文科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟. 注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上.2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上.3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效. 独立性检验附表:2()P K k ≥ 0.100 0.050 0.010 0.001k 2.706 3.841 6.635 10.828第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题.每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集U {1,2,3,4}=,集合{1,2}M =和{2,3}N =,则=)(N M C U A. {1,3,4} B. {1,2,3} C. {2,4} D. {4}2. 在复平面内,复数11i-(i 是虚数单位)对应的点到原点的距离为 A. 1 B .2C .2D .43. “1k =”是“直线0x y k -+=与圆221x y +=相交”的 A .充分不必要条件 B .必要不充分条件 C .充要条件 D .既不充分又不必要条件4. 某调查机构对某地区小学学生课业负担情况进行了调查,设平均每人每天做作业的时间为x 分钟,有1000名小学生参加了此项调查,调查所得数据用程序框图处理,若输出的结果是320,则平均每天做作业的时间在0~60分钟(包括60分钟)内的学生的频率是A .680B .320C .0.68D .0.325. 函数2xy x =+的零点所在的区间为 A. (2,1)-- B. (1,0)- C. (0,1)D. (1,2)6. 通过随机询问110名性别不同的行人,对过马路是愿意走斑马线还是愿意走人行天桥进行抽样调查,得到如下的列联表:由22()()()()()n ad bc K a b c d a c b d -=++++,算得22110(40302020)7.860506050K ⨯⨯-⨯=≈⨯⨯⨯ 参照独立性检验附表,得到的正确结论是A .有99%的把握认为“选择过马路的方式与性别有关”B .有99%的把握认为“选择过马路的方式与性别无关”C .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别有关”D .在犯错误的概率不超过0.1%的前提下,认为“选择过马路的方式与性别无关” 7. 设l n m 、、为三条不同的直线, αβ、为两个不同的平面,则下列命题中正确的是 A .n m n m //,//⇒⊂⊂βαβα, B .αβαβ//,l l ⇒⊥⊥ C .αα//,n n m m ⇒⊥⊥D .βαβα⊥⇒⊥l l ,//8. 若双曲线1222=-y ax 的一个焦点为(2,0),则该双曲线的离心率为A .5B C D .3 9. 在三棱锥D ABC -中,已知2AC BC CD ===,CD ⊥平面ABC ,90ACB ∠=. 若其直观图、正视图、俯视图如图所示,则其侧视图的面积为A. 6B. 2C. 3D. 2 10. 若函数cos 2y x =与函数sin()y x ϕ=+在[0,]2π上的单调性相同,则ϕ的一个值为A .6πB .4πC .3πD .2π 11. 如图所示,为了在一条河上建一座桥,施工前先要在河两岸打上两个桥位桩 A B 、,若要测算 A B 、两点之间的距离,需要测量人员在岸边定出基线BC ,现测得50BC =米,105ABC ∠=,45BCA ∠=,则 A B 、两点的距离为A .502米B .503米C .252米D .2522米 12. 已知函数()f x 是定义在R 上的奇函数,且满足(2)()f x f x +=-,当01x ≤≤时,x x f 21)(=,则满足21)(-=x f 的x 的值是 A .2()Z n n ∈ B .21()Z n n -∈ C .41()Z n n +∈ D .41()Z n n -∈第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每小题4分,共16分.13. 已知函数x a x f 2log )(-=的图象经过点(1,1)A ,则不等式()1f x >的解集为_________________; 14. 已知4sin()5απ+=-,且α是第二象限的角,那么tan()4πα+等于_________; 15. 已知向量 a b 、夹角为60,且||3a =,||2b =,若(3)a mb a +⊥,则实数m 的值是______________;16.已知实数 x y 、满足0401x y x y x +≥⎧⎪-+≥⎨⎪≤⎩,则2z x y =+的最小值是___________;三、解答题:本大题共6小题,共74分,解答时应写出必要的文字说明、证明过程或演算步骤.17.(本小题满分12分)在如图所示的平面直角坐标系中,已知点(1,0)A 和点(1,0)B -,||1OC =,且AOC x ∠=,其中O 为坐标原点. (Ⅰ)若34x π=,设点D 为线段OA 上的动点,求||OC OD +的最小值; (Ⅱ)若[0,]2x π∈,向量m BC =,(1cos ,sin 2cos )n x x x =--,求m n ⋅的最小值及对应的x 值.18. (本小题满分12分)某日用品按行业质量标准分成五个等级,等级系数X 依次为1,2,3,4,5,现从一批该日用品中随机抽取20件,对其等级系数进行统计分析,得到频率分布表如下:X12 3 4 5fa0.20.45bc(Ⅰ)若所抽取的20件日用品中,等级系数为4的恰有3件,等级系数为5的恰有2件,求a 、b 、c 的值;(Ⅱ)在(Ⅰ)的条件下,将等级系数为4的3件日用品记为1x ,2x ,3x ,等级系数为5的2件日用品记为1y ,2y ,现从1x ,2x ,3x ,1y ,2y 中任取两件(假定每件日用品被取出的可能性相同),写出所有可能的结果,并求这两件日用品的等级系数恰好相同的概率.19.(本小题满分12分)在如图1所示的等腰梯形ABCD 中,//AB CD ,12AB AD BC CD a ====,E 为CD 中点.若沿AE 将三角形DAE 折起,并连结,DB DC ,得到如图2所示的几何体D ABCE -,在图2中解答以下问题:(Ⅰ)设G 为AD 中点,求证://DC 平面GBE ;(Ⅱ)若平面DAE ⊥平面ABCE ,且F 为AB 中点,求证:DF AC ⊥.20.(本小题满分12分)设n S 是数列{}n a (*N n ∈)的前n 项和,已知41=a ,n n n S a 31+=+,设n n n S b 3-=.(Ⅰ)证明:数列{}n b 是等比数列,并求数列{}n b 的通项公式;21.(本小题满分12分)已知中心在坐标原点,坐标轴为对称轴的椭圆C 和等轴双曲线1C ,点(5,1)-在曲线1C 上,椭圆C 的焦点是双曲线1C 的顶点,且椭圆C 与y 轴正半轴的交点M 到直线320x y --=的距离为4.(Ⅰ)求双曲线1C 和椭圆C 的标准方程;(Ⅱ)直线2x =与椭圆C 相交于 P Q 、两点,A 、B 是椭圆上位于直线PQ 两侧的两动点,若直线AB 的斜率为12,求四边形APBQ 面积的最大值.22.(本小题满分14分)设关于x 的函数22()(241)(2)ln f x mx m m x m x =-++++,其中m 为实数集R 上的常数,函数()f x 在1x =处取得极值0.(Ⅰ)已知函数()f x 的图象与直线y k =有两个不同的公共点,求实数k 的取值范围; (Ⅱ)设函数2()(2)p g x p x x+=-+,其中0p ≤,若对任意的[1,2]x ∈,总有22()()42f x g x x x ≥+-成立,求p 的取值范围.数学(文科)参考答案及评分标准一、选择题:本大题共12小题.每小题5分,共60分. DCACB ADCDD AD二、填空题:本大题共4小题,每小题4分,共16分. 13. (0,1) 14. 17-15. 9- 16. 2- 三、解答题:本大题共6小题,共74分 17.(本小题满分12分) 解:(Ⅰ) 设(,0)D t (01t ≤≤),又22(22C - 所以22(,)22OC OD t +=-+ 所以 22211||22122OC OD t t t t +=++=+……………3分221((01)2t t =-+≤≤ 所以当22t =||OC OD +最小值为22………………6分 (Ⅱ)由题意得(cos ,sin )C x x ,(cos 1,sin )m BC x x ==+ 则221cos sin 2sin cos 1cos 2sin 2m n x x x x x x ⋅=-+-=--12sin(2)4x π=-+……………9分因为[0,]2x π∈,所以52444x πππ≤+≤所以当242x ππ+=,即8x π=时,sin(2)4x π+取得最大值1所以8x π=时,12sin(2)4m n x π⋅=-+取得最小值12-所以m n ⋅的最小值为12-,此时8x π=…………………………12分18. (本小题满分12分)解:(Ⅰ)由频率分布表得0.20.451,a b c ++++=即0.35a b c ++=, 因为抽取的20件日用品中,等级系数为4的恰有3件,所以30.1520b ==………………………2分 等级系数为5的恰有2件,所以20.120c ==………………………4分从而0.350.1a b c =--=所以0.1,0.15,0.1a b c ===………………………6分(Ⅱ)从日用品12312,,,,x x x y y 中任取两件,所有可能的结果为:12131112{,},{,},{,},{,}x x x x x y x y ,232122{,},{,},{,}x x x y x y ,3132{,},{,}x y x y ,12{,}y y ………………9分设事件A 表示“从日用品12312,,,,x x x y y 中任取两件,其等级系数相等”, 则A 包含的基本事件为:12132312{,},{,},{,},{,}x x x x x x y y 共4个, 又基本事件的总数为10,故所求的概率4()0.410P A ==………………………12分 19.(本小题满分12分)证明: (Ⅰ)连结AC ,交EB 于O ,连结OG在图1中, E 为CD 中点,ABCD 为等腰梯形所以//,AB EC AB EC a == 则ABCE 为平行四边形,所以AO OC =, 在图2中,AG GD =所以在三角形ACD 中,有//OG CD ……………………4分 因为OG ⊂平面GBE ,CD ⊄平面GBE ,所以//DC 平面GBE …………………………………6分(Ⅱ)在图2中,取AE 中点H ,连结HF ,连结EB因为DAE ∆为等边三角形, 所以DH AE ⊥因为平面DAE ⊥平面ABCE所以DH ⊥平面ABCE ,又AC ⊂平面ABCE 所以AC DH ⊥……………………………8分 因为ABCE 为平行四边形,CE BC a == 所以ABCE 为菱形, 所以AC BE ⊥因为H F 、分别为AE 、AB 中点,所以//HF BE 所以AC HF ⊥………………………………………10分 因为HF ⊂平面DHF ,DH ⊂平面DHF , 所以AC ⊥平面DHF ,而DF ⊂平面DHF 所以DF AC ⊥……………………………………12分 20.(本小题满分12分)解: (Ⅰ)因为n n n S a 31+=+,所以n n n n S S S 31+=-+ 即nn n S S 321+=+则)3(23323111n n n n n n n S S S -=-+=-+++所以n n b b 21=+……………………4分 又133111=-=-=a S b所以{}n b 是首项为1,公比为2的等比数列故数列{}n b 的通项公式为12-=n n b ……………………6分(Ⅱ)由(Ⅰ)得:12222log 2--=+-=n n n n nn b n b c ……………………8分设12322212423221--+-+++++=n n nn M ………………① 则n n nn M 22124232221211432+-+++++=- ……………② ①-②得: n n n n nn M 22122212121212112111432--=-++++++=--所以1122242214---+-=--=n n n nn M所以422)1(1-+++=-n n n n n T ……………………12分21.(本小题满分12分)解:(Ⅰ)设等轴双曲线1C 的方程为22(0)x y λλ-=≠因1C 过(5,1)-点,所以2(5)1λ-=,解得4λ=所以等轴双曲线1C 的方程为224x y -=……3分因为双曲线的顶点即椭圆的焦点坐标为(2,0),(2,0)-所以可设椭圆的方程为222214x y b b+=+,且(0,)M b 因为(0,)M b 到直线320x -=的距离为423413b -=+求得23b =所以椭圆C 的方程为2211612x y +=……………………………6分 (Ⅱ)解:设1122(,),(,)A x y B x y ,直线AB 的方程为12y x t =+ 把12y x t =+代入2211612x y +=并化简得22120x tx t ++-= 由0∆>,解得44t -<<,由韦达定理得21212,12x x t x x t +=-=-……………………………9分又直线2x =与椭圆C 相交于 P Q 、两点,所以||6PQ = 所以四边形APBQ 的面积21216||34832S x x t =⨯⨯-=-则当0t =,面积的最大值为3max 123S =12分22.(本小题满分14分)解:(Ⅰ)22()2(241)m f x mx m m x+'=-+++ 因为函数()f x 在1x =处取得极值0得:2222(1)2(241)2210(1)(241)2310f m m m m m m f m m m m m '⎧=-++++=--+=⎪⎨=-++=---=⎪⎩解得1m =-………………………………4分则(21)(1)()((0,))x x f x x x---'=∈+∞令()0f x '=得1x =或12x =-(舍去)当01x <<时,()0f x '>;当1x >时,()0f x '<.所以函数()f x 在区间(0,1)上单调递增,在区间(1,)+∞上单调递减. 所以当1x =时,函数()f x 取得极大值,即最大值为2(1)ln1110f =-+= ……………………………6分所以当0k <时,函数()f x 的图象与直线y k =有两个交点………………7分 (Ⅱ)设22()2()()422ln p F x f x g x x x x px x+=--+=--若对任意的[1,2]x ∈,22()()42f x g x x x ≥+-恒成立, 则()F x 的最小值min ()0F x ≥(*)……………………………9分2'22222(2)()p px x p F x p x x x +-+++=-+=(1)当0p =时,'222()0x F x x+=>,()F x 在[1,2]递增 所以()F x 的最小值(1)20F =-<,不满足(*)式所以0p =不成立…………………………………………11分(2)当0p ≠时'22(1)()()p p x x pF x x+-+-=①当10p -<<时,211p+<-,此时()F x 在[1,2]递增, ()F x 的最小值(1)220F p =--<,不满足(*)式②当1p <-时,2111p-<+≤,()F x 在[12],递增, 所以min ()(1)220F x F p ==--≥,解得1p ≤- ,此时1p <-满足(*)式③当1p =-时,()F x 在[12],递增,min ()(1)0F x F ==,1p =-满足(*)式 综上,所求实数p 的取值范围为1p ≤-…………………………………14分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2017全国卷Ⅱ高考压轴卷文科数学本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。
注意事项:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。
考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。
2.第Ⅰ卷每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;如需改动,用橡皮擦干净后,在选涂其他答案标号。
第Ⅱ卷必须用0.5毫米黑色签字笔书写作答.若在试题卷上作答,答案无效。
3.考试结束,监考员将试题卷、答题卡一并收回。
第Ⅰ卷一、选择题(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的。
) 1.已知全集,U R =且{}{}2|12,|680,A x x B x x x =->=-+<则()U C A B I 等于(A )[1,4)- (B )(2,3] (C )(2,3) (D )(1,4)-2.已知i z i 32)33(-=⋅+(是虚数单位),那么复数z 对应的点位于复平面内的 (A )第一象限(B )第二象限(C )第三象限(D )第四象限3.若()()()()2,1,1,1,2//a b a b a mb ==-+-r r r r r r,则m =()A .12 B .2 C .-2 D .12- 4.甲、乙等人在微信群中每人抢到一个红包,金额为三个元,一个元,则甲、乙的红包金额不相等的概率为() (A)14(B)12(C) (D)345.已知{}n a 为等比数列,472a a +=,568a a =-,则110a a +=()()A ()B ()C -5()D -76.下列函数中,与函数()3x xe ef x --=的奇偶性、单调性均相同的是()A .ln(y x =B .2y x = C .tan y x =D .xy e =aaaa(7)若正整数N 除以正整数m 后的余数为,则记为(mod )N n m ≡,例如104(mod 6)≡,如图程序框图的算法源于我国古代《孙子算经》中的“孙子定理”的某一环节,执行该框图,输入2a =,3b =,5c =,则输出的N =()(A) (B) (C)12(D)218.已知函数,且f (a )=-3,则f (6-a )=(A )-74(B )-54(C )-34(D )-149.设,y 满足约束条件,1,x y a x y +≥⎧⎨-≤-⎩且z x ay =+的最小值为7,则a =(A )-5 (B )3 (C )-5或3 (D )5或-310.四棱锥P ABCD -的三视图如图所示,其五个顶点都在同一球面上,若四棱锥P ABCD -的侧面积等于4(12)+,则该外接球的表面积是(A) 4π (B)12π (C)24π (D)36π11.直线过双曲线12222=-by a x 的右焦点,斜率k =2.若与双曲线的两个交点分别在左右两支上,则双曲线的离心率e 的范围是()A .e >2B.1<e <3C.e >5D.1<e <512.已知函数2y x =的图象在点()200,x x 处的切线为,若也与函数ln y x =,)1,0(∈x 的图象相切,则0x 必满足()A .012x <<0B .012x <<1 C .2220<<x D 023x <<开始a,b,c输入0N =1N N =+0(mod )N a ≡0(mod )N b ≡1(mod )N c ≡N 输出结束否否否是是是第Ⅱ卷注意事项:须用黑色墨水签字笔在答题卡上作答。
若在试卷上作答,答案无效。
本卷包括必考题和选考题两部分。
第13题~第21题为必考题,每个试题考生都必须作答。
第22题~ 第23题为选考题,考生根据要求做答。
二.填空题:本大题共4小题,每小题5分 13.已知sin()63πθ-=,则cos(2)3πθ-=______ . 14.已知圆22(1)4x y ++=与抛物线2(0)y mx m =≠的准线交于A 、B两点,且||AB =m 的值为__________15.老师给出一个函数=y )(x f ,四个学生甲、乙、丙、丁各指出这个函数的一个性质:甲:对于R x ∈,都有)1()1(x f x f -=+;乙:在(]0,∞-上函数递减;丙:在()+∞,0上函数递增;丁:函数的最小值为0.如果其中恰有三人说得正确,请写出一个这样的函数16.若中心在原点,一个焦点为F 1(0,50)的椭圆截直线y =3x -2所得弦的中点的横坐标为12,是该椭圆的方程为________.三、解答题:解答应写出文字说明,证明过程或演算步骤。
17.(本小题满分12分)如图,一山顶有一信号塔CD (CD 所在的直线与地平面垂直),在山脚A 处测得塔尖C 的仰角为,α沿倾斜角为的山坡向上前进米后到达B 处,测得C 的仰角为β.(1) 求BC 的长;(2) 若24,45,75,30,l αβθ︒==︒==︒求信号塔CD 的高度.AE DCBαβθ18. (本小题满分12分)某市积极倡导学生参与绿色环保活动,其中代号为“环保卫士—12369”的绿色环保活动小组对2016年1月—2016年12月(一年)内空气质量指数API 进行监测,下表是在这一年随机抽取的100天的统计结果:(1)若某市某企业每天由空气污染造成的经济损失P (单位:元)与空气质量指数API (记为)的关系为:0,01004400,1003001500,300t P t t t ≤≤⎧⎪=-≤≤⎨⎪>⎩,在这一年内随机抽取一天,估计该天经济损失(200,600]P ∈元的概率;(2)若本次抽取的样本数据有30天是在供暖季节,其中有8天为重度污染,完成22⨯列联表,并判断是否有95%的把握认为某市本年度空气重度污染与供暖有关?下面临界值表供参考参考公式:22()()()()()n ad bc k a b c d a c b d -=++++,其中n a b c d =+++19.(本小题满分12分)如图,AB 为圆O 的直径,点E .F 在圆O 上,EF AB //,矩形ABCD 和圆O 所在的平面互相垂直,且2=AB ,1==EF AD .(Ⅰ)求证:⊥AF 平面CBF ; (Ⅱ)设FC 的中点为M ,求证://OM 平面DAF ;(Ⅲ)设平面CBF 将几何体EFABCD 分成的两个锥体的体积分别为ABCD F V -求ABCD F V -CBE F V -:.20.(本小题满分12分)已知点(1,0)F ,点P 为平面上的动点,过点P 作直线:1l x =-的垂线,垂足为H ,且HP HF FP FH ⋅=⋅u u u r u u u r u u u r u u u r .(1) 求动点P 的轨迹C 的方程;(2) 过点F 的直线与轨迹C 交于点,A B 两点,在,A B 处分别作轨迹C 的切线交于点N ,求证:NF AB k k ⋅为定值.21.(本小题满分12分)已知函数3()ln f x a x bx =-,a ,b 为实数,0b ≠, e 为自然对数的底数,e 2.71828≈…. (1)当0a <,1b =-时,设函数()f x 的最小值为()g a ,求()g a 的最大值; (2)若关于x 的方程()=0f x 在区间(1e],上有两个不同实数解,求ab的取值范围. 请考生在第22题和第23题中任选一题做答,做答时请在答题卡的对应答题区写上题号,并用2B 铅笔把所选题目对应的题号涂黑.(22)(本小题满分10分)选修4-4:坐标系与参数方程在直角坐标系xOy 中,直线的参数方程为⎩⎨⎧=+=ααsin cos 1t y t x (为参数),以原点O 为极点,轴的非负半轴为极轴建立极坐标系,曲线C 的极坐标方程为.4πρθ⎛⎫=+⎪⎝⎭(Ⅰ)求曲线C 的直角坐标方程,并指出其表示何种曲线; (Ⅱ)设直线与曲线C 交于,A B 两点,若点P 的直角坐标为()1,0,试求当4πα=时,PA PB +的值.23.(本题满分10分)选修4—5:不等式选讲已知函数()|2|f x x =-(I )解不等式:()(1)2f x f x ++≤ (II )若0a <,求证:()(2)()f ax f a af x -≥2017全国卷Ⅱ高考压轴卷文科数学题号 1 2 3 4 5 6 7 8 9 10 11 12 答案 B CDBDAAABBCD1. 解析312|1|≤≤-⇔≤-x x ;42086<<⇔<+-x x x ,()U C A B I =],32(.选B2. 解析:23213332iii z --=+-=,故选C. 3.解析:由()1,2=a ,()1,1-=b ,得()3,32=+b a ,()m m b m a -+=-1,2,由于()()b m a b a -+//2,故()()m m +=-2313,解得21-=m ,故选D.4.解析总的基本事件有四个,甲、乙的红包金额不相等的事件有两个,∴选B .5.解析472a a +=,56474784,2a a a a a a ==-⇒==-或472,4a a =-=471101104,28,17a a a a a a ==-⇒=-=⇔+=- 471011102,48,17a a a a a a =-=⇒=-=⇔+=-选D6.解析:A ,C 都为奇函数,C 为周期函数不符题意,选A7.解析经验证1,2,3,4,5N =必须返回,6N =时通过,∴选A.8.解析:由题意知1127log (1)3,7,(67)(1)224x x f f ---+=-=-=-=-=-,答案选A9.四棱锥的侧面积2112224(12)22a a a ⋅+⋅⋅=+,2a =,球的半径3r =12S π=,选B.10.解析:画出不等式组对应的平面区域,如图所示.在平面区域内,平移直线0x ay +=,可知在点 A 11,22a a -+⎛⎫⎪⎝⎭处,z 取得最值,故117,22a a a -++=解之得a 5或a3.但a5时,z 取得最大值,故舍去,答案为a 3. 选B.11.【解析】如图设直线的倾斜角为α,双曲线渐近线 m 的倾斜角为β.显然。
当β>α时直线与双曲线的两个交点分别在左右两支上.由2222tan tan 245b c a e a a βαβα->⇒>⇒>⇒>⇒>. ∵双曲线中1e >,故取e >5.选C.题12D 由题x x f 2)(=',200)(x x f =,所以的方程为2000)(2x x x x y +-=2002x x x -=,因为也与函数ln y x =的图象相切,令切点坐标为)ln ,(11x x ,xy 1=',所以的方程为1ln 111-+=x x x ,这样有⎪⎩⎪⎨⎧=-=2011ln 112x x x x ,所以2002ln 1x x =+,()01,x ∈+∞,令12ln )(2--=x x x g ,()1,x ∈+∞,所该函数的零点就是0x ,排除A 、B 选项,又因为x x x g 12)(-='x x 122-=,所以)(x g 在()1,+∞上单调增,又02ln )1(<-=g ,022ln 1)2(<-=g,2ln 0g =-0x << D.13.21cos(2)12sin ()363ππθθ-=--=. 14 815.|2|)(2x x x f -=解析:若甲、乙、丁正确,丙不正确的一个函数可以是|2|)(2x x x f -=;若乙、丙、丁正确,甲不正确可以是2)(x x f =.答案不唯一,写出一个即可.16.设椭圆的标准方程为x 2b 2+y 2a2=1(a >b >0)由F 1(0,50),得a 2-b 2=50. ①把直线方程y =3x -2代入椭圆方程,整理得(a 2+9b 2)x 2-12b 2x +b 2(4-a 2)=0,设弦的两个端点为A (x 1,y 1),B (x 2,y 2),则由根与系数的关系得x 1+x 2=12b2a 2+9b 2,又弦AB 的中点的横坐标为12,∴x 1+x 22=6b 2a 2+9b 2=12,∴a 2=3b 2. ②联立①②,解得a 2=75,b 2=25,故所求椭圆的方程为x 225+y 275=1.答案 x 225+y 275=117.(本小题满分12分)【命题意图】本小题主要考查利用解三角形的思想解决实际问题,对考生的抽象概括能力和运算求解能力,化归与转化能力提出一定要求.【试题解析】解:(1) 在ABC ∆中,,(),CAB ABC ACB αθπβθβα∠=-∠=--∠=-,由正弦定理,sin()sin()BC l αθβα-=-.(6分)(2) 由(1)及条件知,sin()sin()BC l αθβα-==-,9015BCD β∠=︒-=︒,45CBD βθ∠=-=︒,120BDC ∠=︒,由正弦定理得,sin 4524sin120CD BC ︒=⋅=-︒.18.解:(1)设在这一年内随机抽取一天, 该天经济损失(200,600]P ∈元为事件A , 由2004400600t <-≤得150250t <≤, 频数为39,39()100P A ∴=. (2)根据以上数据得到2K 的观测值2100(638227) 4.575 3.84185153021k ⨯-⨯=≈>⨯⨯⨯, 所以有95%的把握认为某市本年度空气重度污染与供暖有关. 19.(Ⅰ)证明:Θ平面⊥ABCD 平面ABEF ,AB CB ⊥, 平面I ABCD 平面ABEF =AB ,⊥∴CB 平面ABEF ,⊂AF Θ平面ABEF ,CB AF ⊥∴ ,又AB Θ为圆O 的直径,BF AF ⊥∴,⊥∴AF 平面CBF 。