高二数学1、3-1-2导数的几何意义同步练习新人教A版选修1-1
人教新课标版(A)高二选修1-1 3.1变化率与导数同步练习题
人教新课标版(A )高二选修1-1 3.1 变化率与导数同步练习题【基础演练】题型一:变化率问题与导数概念一般地,()()1212x x x f x f x f --=△△我们称为平均变化率,如果0x →△时,()()x x f x x f limx flim000x 0x △△△△△△-+=→→存在,称此极限值为函数()x f y =在0x 处的导数,记作()0x f ',请根据以上知识解决以下1~5题。
1. 一质点运动的方程为2t 35s -=,则在一段时间[]t 1,1△+内相应的平均速度为 A. 6t 3+△ B. 6t 3+-△ C. 6t 3-△ D. 6t 3--△2. 将半径为R 的球加热,若球的半径增加△R ,则球的体积增加△y 约等于A.R R 343△πB. R R 42△πC. 2R 4πD. R R 4△π3. 已知函数1x y +=2的图象上一点(1,2)及邻近一点()y 2,x 1△△++,则xy△△等于A. 2B. 2xC. 2+△xD. 2+△2x4. 自变量0x 变到1x 时,函数值的增量与相应自变量的增量之比是函数A. 在区间[]10x ,x 上的平均变化率B. 在0x 处的变化率C. 在1x 处的变化量D. 在区间[]10x ,x 上的导数5. (2004·山东)若函数()x f 在a x =处的导数为A ,求()()x2x a f x a f lim 0x △△△△--+→。
题型二:导数的物理意义在物体的运动规律中,如果()t s s =,那么物体的瞬时速度()()tt s t t s limt s limv 0t 0t △△△△△△-+==→→;如果()t v v =,那么物体的加速度()()t t v t t v lim t v lim a 0t 0t △△△△△△-+==→→,请根据以上知识解决以下6~7题。
6. 若一物体运动方程如下:()()()⎪⎩⎪⎨⎧≥-+<≤+=3t 3t 3293t 02t 3s 22 求物体在1t =或3t =时的速度。
人教A版高中同步学考数学选修1精品课件 第三章 习题课——导数运算及几何意义的综合问题
探究二
探究三
思想方法
当堂检测
解:(1)由题意得f'(x)=3x2+1,∴曲线y=f(x)在点(3,14)处的切线的斜率
为f'(3)=28.
∴切线的方程为28x-y-70=0.
(2)法一:设切点为(x0,03 +x0-16),
则直线 l 的斜率为 f'(x0)=302 +1,
∴直线 l 的方程为 y=(302 +1)(x-x0)+03 +x0-16.
于
.
解析:因为 f'(x)=aex+ ,
e + = e,
= 1,
1
由已知得
解得
- = e ,
= 0.
e
所以 a,b 的值分别是 1 和 0.
答案:1和0
课堂篇探究学习
探究一
探究二
探究三
思想方法
当堂检测
导数几何意义的综合应用
例1已知函数f(x)=x3+x-16.
(1)求曲线y=f(x)在点(3,14)处的切线方程;
=2lim
ℎ→0
答案:B
2ℎ
=2f'(x0).
)
课前篇自主预习
9
【做一做 3】 曲线 y= 在点 M(3,3)处的切线方程是
.
9
解析:∵y'=- 2 ,∴y'|x=3=-1,
∴过点(3,3)的斜率为-1 的切线方程为 y-3=-(x-3),即 x+y-6=0.
答案:x+y-6=0
1
【做一做 4】 设 f(x)=aex+bln x,且 f'(1)=e,f'(-1)=e ,则 a,b 的值分别等
(新课标人教A版)选修1-1数学同步课件:3-1-2《导数的几何意义》
(3) 若曲线 y = f(x) 在点P(x0 , y0) 处的导数不存在,就是
切线与 y 轴平行或不存在; f′(x0)>0 ,切线与 x 轴正向夹角为 锐角; f′(x0)<0 ,切线与 x 轴正向夹角为钝角; f′(x0) = 0 ,切 线与x轴平行.
注意:只有曲线方程可看成函数解析式时才能利用导
[点评] (1)y=x3在点(0,0)处的切线是x轴,符合切线定
义.这似乎与学过的切线知识有所不同,其实不然,直线 与曲线有两个公共点时,在其中一点也可能相切.如图所 示.
Δy (2)对于曲线在点 x0 处的切线有下面的情形:若Δx当 Δx 无限趋近于 0 时的极限不存在时,可分两种情况:其 一是趋近于∞,则切线的斜率不存在,但切线存在 (为垂 Δy 直于 x 轴的直线);其二是Δx既不是趋近于某一常数也不 趋近于∞,则此时切线不存在.
求出切线的斜率和切线方程;若不存在,请说明理由.
[解析]
令 y=f(x)=x3,Δy=f(0+Δx)′-f(0)=Δx3,
Δy Δy 2 =Δx ,当 Δx 无限趋近于 0 时, 无限趋近于常数 Δx Δx 0,这说明割线会无限趋近于一个极限位置,即曲线在 x Δy =0 处的切线存在, 此时切线的斜率为 0(Δx无限趋近于 0), 又曲线过点(0,0),故切线方程为 y=0.
数来求切线方程,否则不能利用导数来求,如求过圆上某 点的切线方程就不能直接利用导数来求.
2.过曲线外的点P(x1,y1),求曲线的切线方程的步骤: (1)设切点为(x0,y0),求出切点坐标; (2)求出函数y=f(x)在点x0处的导数f′(x0); (3) 根据直 线的点 斜 式方程 , 得切线 方 程为 y - y0 =
[解析]
高二人教A版数学选修1-1同步练习3-2-2导数的运算法则 Word版含答案
2.2.1导数的运算法则一、选择题1.函数y =cos x x 的导数是( )A .-sin xx 2 B .-sin xC .-x sin x +cos xx 2 D .-x cos x +cos xx 2[答案] C[解析] y ′=⎝⎛⎭⎫cos x x ′=(cos x )′x -cos x ·(x )′x 2=-x sin x -cos xx 2.2.已知f (x )=ax 3+3x 2+2,若f ′(-1)=4,则a 的值是() A.193 B.163C.133D.103[答案] D[解析] f ′(x )=3ax 2+6x ,∵f ′(-1)=3a -6,∴3a -6=4,∴a =103.3.曲线运动方程为s =1-tt 2+2t 2,则t =2时的速度为() A .4 B .8C .10D .12[答案] B[解析] s ′=⎝ ⎛⎭⎪⎫1-t t 2′+(2t 2)′=t -2t 3+4t ,∴t =2时的速度为:s ′|t =2=2-28+8=8.4.函数y =(2+x 3)2的导数为( )A .6x 5+12x 2B .4+2x 3C .2(2+x 3)2D .2(2+x 3)·3x[答案] A[解析] ∵y =(2+x 3)2=4+4x 3+x 6,∴y ′=6x 5+12x 2.5.下列函数在点x =0处没有切线的是( )A .y =3x 2+cos xB .y =x sin xC .y =1x+2x D .y =1cos x [答案] C[解析] ∵函数y =1x+2x 在x =0处无定义, ∴函数y =1x+2x 在点x =0处没有切线. 6.函数y =sin ⎝⎛⎭⎫π4-x 的导数为( )A .-cos ⎝⎛⎭⎫π4+xB .cos ⎝⎛⎭⎫π4-xC .-sin ⎝⎛⎭⎫π4-xD .-sin ⎝⎛⎭⎫x +π4 [答案] D[解析] ∵y =sin π4cos x -cos π4·sin x =22cos x -22sin x , ∴y ′=22(-sin x )-22cos x =-22(sin x +cos x ) =-sin ⎝⎛⎭⎫x +π4,故选D. 7.已知函数f (x )在x =x 0处可导,函数g (x )在x =x 0处不可导,则F (x )=f (x )±g (x )在x =x 0处( )A .可导B .不可导C .不一定可导D .不能确定 [答案] B8.(x -5)′=( )A .-15x -6 B.15x -4 C .-5x -6D .-5x 4[答案] C [解析] (x -5)′=-5x -6.9.函数y =3x (x 2+2)的导数是( )A .3x 2+6B .6x 2C .9x 2+6D .6x 2+6[答案] C [解析] ∵y =3x (x 2+2)=3x 3+6x ,∴y ′=9x 2+6.10.已知函数f (x )在x =1处的导数为3,则f (x )的解析式可能为( )A .f (x )=(x -1)2+3(x -1)B .f (x )=2(x -1)C .f (x )=2(x -1)2D .f (x )=x -1[答案] A[解析] f (x )=(x -1)2+3(x -1)=x 2+x -2,f ′(x )=2x +1,f ′(1)=3.二、填空题11.若函数f (x )=1-sin x x,则f ′(π)________________. [答案] π-1π2[解析] f ′(x )=(1-sin x )′·x -(1-sin x )x ′x 2=sin x -x cos x -1x 2, ∴f ′(π)=sinπ-πcosπ-1π2=π-1π2. 12.曲线y =1x和y =x 2在它们交点处的两条切线与x 轴所围成的三角形面积是____________.[答案] 34[解析] 由⎩⎪⎨⎪⎧y =1x y =x 2得交点为(1,1), y ′=⎝⎛⎭⎫1x ′=-1x 2,y ′=(x 2)′=2x , ∴曲线y =1x 在点(1,1)处的切线方程为x +y -2=0,曲线y =x 2在点(1,1)处的切线方程为2x -y -1=0,两切线与x 轴所围成的三角形的面积为34. 13.设f (x )=(ax +b )sin x +(cx +d )cos x ,若已知f ′(x )=x cos x ,则f (x )=________.[答案] x sin x +cos x[解析] ∵f ′(x )=[(ax +b )sin x ]′+[(cx +d )cos x ]′=(ax +b )′sin x +(ax +b )(sin x )′+(cx +d )′cos x +(cx +d )(cos x )′=a sin x +(ax +b )cos x +c cos x -(cx +d )sin x =(a -d -cx )sin x +(ax +b +c )cos x .为使f ′(x )=x cos x ,应满足⎩⎪⎨⎪⎧ a -d =0,c =0,a =1,b +c =0,解方程组,得⎩⎪⎨⎪⎧ a =1,b =0,c =0,d =1.从而可知,f (x )=x sin x +cos x .14.设f (x )=ln a 2x (a >0且a ≠1),则f ′(1)=________.[答案] 2ln a[解析] ∵f (x )=ln a 2x =2x ln a ,∴f ′(x )=(2x ln a )′=2ln a (x )′=2ln a ,故f ′(1)=2ln a .三、解答题15.求下列函数的导数.(1)f (x )=(x 3+1)(2x 2+8x -5); (2)1+x 1-x +1-x 1+x; (3)f (x )=ln x +2xx 2. [解析] (1)∵f ′(x )=[2x 5+8x 4-5x 3+2x 2+8x -5]′,∴f ′(x )=10x 4+32x 3-15x 2+4x +8.(2)∵f (x )=1+x 1-x +1-x 1+x =(1+x )21-x +(1-x )21-x=2+2x 1-x =41-x-2, ∴f ′(x )=⎝ ⎛⎭⎪⎫41-x -2′=-4(1-x )′(1-x )2=4(1-x )2. (3)f ′(x )=⎝⎛⎭⎫ln x x 2+2x x 2′=⎝⎛⎭⎫ln x x 2′+⎝⎛⎭⎫2xx 2′ =1x ·x 2-ln x ·2x x 4+2x (ln2·x 2-2x )x 4=(1-2ln x )x +(ln2·x 2-2x )·2xx 4=1-2ln x +(ln2·x -2)2xx 3. 16.已知f (x )=x 2+ax +b ,g (x )=x 2+cx +d ,又f (2x +1)=4g (x ),且f ′(x )=g ′(x ),f (5)=30,求g (4).[解析] 题设中有四个参数a 、b 、c 、d ,为确定它们的值需要四个方程.由f (2x +1)=4g (x ),得4x 2+2(a +2)x +(a +b +1)=4x 2+4cx +4d . 于是有⎩⎪⎨⎪⎧a +2=2c , ①a +b +1=4d , ② 由f ′(x )=g ′(x ),得2x +a =2x +c ,∴a =c .③由f (5)=30,得25+5a +b =30.④∴由①③可得a =c =2.由④得b =-5,再由②得d =-12. ∴g (x )=x 2+2x -12.故g (4)=16+8-12=472. 17.(2010·湖北文,21)设函数f (x )=13x 3-a 2x 2+bx +c ,其中a >0,曲线y =f (x )在点P (0,f (0))处的切线方程为y =1.求b ,c 的值.[解析] 由f (x )=13x 3-a 2x 2+bx +c ,得f (0)=c ,f ′(x )=x 2-ax +b ,f ′(0)=b ,又由曲线y=f(x)在点P(0,f(0))处的切线方程为y=1,得f(0)=1,f′(0)=0,故b=0,c=1.18.已知函数f(x)=2x3+ax与g(x)=bx2+c的图象都过点P(2,0),且在点P处有公共切线,求f(x)、g(x)的表达式.[解析]∵f(x)=2x3+ax图象过点P(2,0),∴a=-8.∴f(x)=2x3-8x.∴f′(x)=6x2-8.对于g(x)=bx2+c,图象过点P(2,0),则4b+c=0.又g′(x)=2bx,g′(2)=4b=f′(2)=16,∴b=4.∴c=-16.∴g(x)=4x2-16.综上,可知f(x)=2x3-8x,g(x)=4x2-16.。
人教A版高中数学选修1—1第二章3.1.2导数的几何意义达标过关训练
3.1.2 导数的几何意义一、选择题1.设曲线y =f (x ),若f ′(3)=0,则曲线在(3,f (3))处的切线( ) A.与x 轴平行 B.与x 轴垂直 C.与x 轴斜交D.与x 轴平行或重合解析:由导数的几何意义知,曲线y =f (x )在点(3,f (3))处的切线斜率为0,所以切线与x 轴平行或重合.答案:D2.(2019·辽宁实验中学月考)设函数f (x )=x (x -6),则f (x )在x =0处的切线斜率为( )A.0B.-1C.-6D.3解析:f (x )=x (x -6)=x 2-6x , ∴f ′(0)=lim Δx →0Δx 2-6Δx -0Δx =-6.∴f (x )在x =0处的切线斜率为-6,故选C. 答案:C3.如图,函数y =f (x )在A ,B 两点间的平均变化率是( )A.1B.-1C.2D.-2 解析:由题图知A (1,3),B (3,1),则k AB =1-33-1=-1.由导数的定义及几何意义知,函数y =f (x )在A 、B 两点间的平均变化率是-1.答案:B4.(2019·山东泰安期末)设函数f (x )=x 3+(a -1)x 2+ax ,若f (x )为奇函数,则曲线y =f (x )在点(0,0)处的切线方程为( )A.y =-2xB.y =-xC.y =2xD.y =x解析:∵f (x )为奇函数,∴a -1=0,∴a =1. ∴f (x )=x 3+x ,f ′(0)=lim Δx →0Δx 3+Δx -0Δx =lim Δx →0(Δx 2+1)=1.∴y =f (x )在点(0,0)处的切线方程为y =x ,故选D. 答案:D5.已知f ′(x )=2x -1,则曲线y =f (x )在点(1,f (1))处的切线的倾斜角为( ) A.30° B.45° C.60°D.120°解析:∵f ′(x )=2x -1,∴f ′(1)=2×1-1=1,由导数的几何意义知tan α=1,又α∈[0°,180°),∴α=45°.答案:B 二、填空题6.已知曲线y =2x 2上一点A (2,8),则在点A 处的切线方程为 . 解析:∵y =2x 2,∴Δy =2(x +Δx )2-2x 2=4x Δx +2(Δx )2, ∴y ′=lim Δx →0ΔyΔx =lim Δx →0(4x +2Δx )=4x .∴k=y′|x=2=4×2=8.又过点A(2,8).∴切线方程为y-8=8(x-2),即8x-y-8=0.答案:8x-y-8=07.(2019·山东东营期中)已知函数y=f(x)的图象在点A(0,f(0))处的切线方程是y=2x+1,则f(0)+f′(0)=.解析:由题可知f(0)=1,f′(0)=2,∴f(0)+f′(0)=3.答案:38.如图是函数f(x)及f(x)在点P处切线的图象,则f(2)+f′(2)=.解析:由题意可得切线的方程为x4+y4.5=1,其斜率为k=-4.54=-98.又点(2,f(2))为切点,∴f′(2)=-98.又2 4+f(2)4.5=1,∴f(2)=94.∴f(2)+f′(2)=94-98=98.答案:9 8三、解答题9.(2019·山西大学附中月考)已知f (x )=13x 3+43,若直线l 过点(2,4)且与f (x )图象相切,求直线l 的方程.解:设切点P (x 0,y 0),f ′(x 0)=lim Δx →013(x 0+Δx )3+43-13x 30-43Δx =x 20,y 0=f (x 0)=13x 30+43,∴切线方程为y -⎝ ⎛⎭⎪⎫13x 30+43=x 20(x -x 0), 将点(2,4)代入切线方程, 4-13x 30-43=x 20(2-x 0),即x 30-3x 20+4=0,即(x 0+1)(x 0-2)2=0, ∴x 0=-1或x 0=2.∴切线方程为4x -y -4=0或x -y +2=0. 10.曲线y =x 2上哪一点处的切线: (1)平行于直线y =4x -5; (2)垂直于直线2x -6y +5=0; (3)与x 轴成135°的倾斜角. 解:f ′(x )=limΔx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )2-x 2Δx =lim Δx →02x Δx +(Δx )2Δx =2x ,设P (x 0,y 0)是满足条件的点. (1)∵切线与直线y =4x -5平行, ∴2x 0=4,x 0=2,y 0=4.∴P (2,4). (2)∵切线与直线2x -6y +5=0垂直,∴2x 0×13=-1,得x 0=-32,y 0=94,∴P ⎝ ⎛⎭⎪⎫-32,94.(3)∵切线与x 轴成135°的倾斜角,∴斜率k =-1.即2x 0=-1,x 0=-12,y 0=14, ∴P ⎝ ⎛⎭⎪⎫-12,14.。
人教新课标版(A)高二选修1-1 3.2.1导数的计算(一)同步练习题
人教新课标版(A )高二选修1-1 3.2.1 导数的计算(一)同步练习题【基础演练】题型一:几个常用函数的导数 根据导数的定义,容易得到几个常用函数的导数公式:①c y =,0y =';②x y =,1y =';③2x y =,x 2y =';④x 1y =,2x1y -=',请根据以上知识解决以下1~5题。
1. 函数3x y =的导数是A. x 3B. x 31C. 32x 31--D. 32x 31-2. 函数()x x1x f -=的导数是A. x 1x 12-B. x21x 12+-C.x21x 12- D. x21x 12--3. 曲线()2x x x f 3-+=在0P 点处的切线平行于直线1x 4y -=,则0P 点的坐标为A. (1,0)或(-1,-4)B. (0,1)C. (-1,0)D. (1,4)4. 抛物线2x y = 的点到直线02y x =--的最短距离为__________。
5. 给出下列命题,其中正确的命题是__________(填序号)①任何常数的导数都是零;②直线x y =上任意一点处的切线方程是这条直线本身;③双曲线x1y =任意一点处的切线斜率都是负值;④直线x 2y =和抛物线2x y =在()∞+∈,0x 上函数值增长的速度一样快。
题型二:基本初等函数的导数公式的应用 正确熟练的运用导数公式,方便快捷的处理与导数有关的问题,关键是熟记导数公式,请根据以上知识解决以下6~9题。
6. 2x y =的斜率为2的切线方程为A. 01y x 2=+-B. 01y x 2=+-或01y x 2=--C. 01y x 2=+-D. 0y x 2=-7. 已知()x f α=x ,若()41f -=-',则α的值等于A. 4B. –4C. 5D. –58. 在曲线2x y =上的点( )处的切线倾角为43π。
A. (0,0) B. ()4,2C. ⎪⎭⎫ ⎝⎛16141,D. ⎪⎭⎫ ⎝⎛-4121,9. 曲线x cos y =在点A ⎪⎪⎭⎫⎝⎛π23,6处的切线方程__________。
高二人教A版数学选修1-1同步练习3-1-2导数的几何意义 Word版含答案
3.1.2导数的几何意义一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( )A .9B .6C .-3D .-1 [答案] A[解析] Δy =(2+Δx )3-3(2+Δx )-23+6=9Δx +6Δx 2+Δx 3,Δy Δx=9+6Δx +Δx 2, lim Δx →0 Δy Δx =lim Δx →0(9+6Δx +Δx 2)=9, 由导数的几何意可知,曲线y =x 3-3x 在点(2,2)的切线斜率是9.2.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( ) A .30°B .45°C .135°D .60° [答案] B[解析] Δy =13(-1+Δx )3-13×(-1)3=Δx -Δx 2+13Δx 3,Δy Δx =1-Δx +13Δx 2, lim Δx →0 Δy Δx =lim Δx →0 (1-Δx +13Δx 2)=1, ∴曲线y =13x 3-2在点⎝⎛⎭⎫-1,-73处切线的斜率是1,倾斜角为45°. 3.函数y =-1x 在点(12,-2)处的切线方程是( ) A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 [答案] B[解析] Δy =2Δx Δx +12,Δy Δx =2Δx +12,lim Δx →0 2Δx +12=4, ∴切线的斜率为4.∴切线方程为y =4⎝⎛⎭⎫x -12-2=4x -4. 4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( )A .f ′(x 0)>0B .f ′(x 0)<0C .f ′(x 0)=0D .f ′(x 0)不存在[答案] B[解析] 由导数的几何意义可知f ′(x 0)=-12<0,故选B. 5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线[答案] C[解析] 由于对导数在某点处的概念及导数的几何意义理解不透彻,不能认真分析题中所给选项,事实上A 、B 是一样的.它们互为逆否命题,讨论的是“f ′(x 0)存在与否”与切线存在与否的关系,而在导数的几何意义中讨论的是“切线的斜率”与“f ′(x 0)”,得C 是正确的,而A 、B 、D 都是不正确的,可一一举例说明.6.设f (x )为可导函数且满足lim x →0 f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2 [答案] B[解析] lim x →0f (1)-f (1-2x )2x =lim x →0 f (1-2x )-f (1)-2x=lim -2x →0 f [1+(-2x )]-f (1)-2x=f ′(1)=-1.7.在曲线y =x 2上的点________处的倾斜角为π4( ) A .(0,0)B .(2,4)C .(14,116) D .(12,14) [答案] D[解析] 倾斜角的正切值即为斜率,设点(x 0,y 0)则k =y ′|x =x 0=lim Δx →0(x 0+Δx )2-x 20Δx =lim Δx →02x 0Δx +Δx 2Δx =lim Δx →0(2x 0+Δx )=2x 0=1, ∴x 0=12,y 0=x 20=14,∴点坐标(12,14). 8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( )A .90°B .0°C .锐角D .钝角 [答案] C[解析] 函数图像在点(4,f (4))处的切线斜率为f ′(4)=-sin4>0,所以函数图像在点(4,f (4))处的切线的倾斜角为锐角.9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( )A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1) [答案] C[解析] k =lim Δx →0f (x 0+Δx )-f (x 0)Δx =lim Δx →0(x 0+Δx )3+(x 0+Δx )-x 30-x 0Δx =lim Δx →0[3x 20+3x 0Δx +(Δx )2+1] =3x 20+1=4,∴3x 20=3,即x 0=±1, ∴点P 0的坐标为(1,0)或(-1,-4).10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( )A .1B.12 C .-12D .-1[答案] A[解析] ∵y ′|x =1=lim Δx →1a (1+Δx )2-a ×12Δx =lim Δx →02a Δx +a (Δx )2Δx =lim Δx →0(2a +a Δx )=2a , ∴2a =2,∴a =1.二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________.[答案] 12[解析] f ′(2)=lim Δx →0(2+Δx )3+2-23-2Δx =lim Δx →0(2+Δx -2)[(2+Δx )2+(2+Δx )·2+22]Δx =lim Δx →0[4+4Δx +(Δx )2+4+2Δx +4] =lim Δx →0[12+6Δx +(Δx )2]=12. 12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________.[答案] (2,4)[解析] 设切点坐标为(x 0,y 0),y ′|x =x 0=lim Δx →0(x 0+Δx )2-3(x 0+Δx )-(x 20-3x 0)Δx =lim Δx →02x 0Δx -3Δx Δx =2x 0-3=1=k , 故x 0=2,y 0=x 20=4,故切点坐标为(2,4).13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________.[答案] 83[解析] y ′=lim Δx →0(x +Δx )3-x 3Δx =3x 2,所以k =y ′|x =1=3×1=3,所以在点(1,1)处的切线方程为y =3x -2,它与x 轴的交点为⎝⎛⎭⎫23,0,与x =2的交点为(2,4),所以S =12×⎝⎛⎭⎫2-23×4=83. 14.曲线y =x 3+x +1在点(1,3)处的切线是________.[答案] 4x -y -1=0[解析] 因为y ′=lim Δx →0(x +Δx )3+(x +Δx )+1-(x 3+x +1)Δx =3x 2+1, 所以k =y ′|x =1=3+1=4,所以切线的方程为y -3=4(x -1),即4x -y -1=0.三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程.[分析] 点是曲线上的点→求切线的斜率k →得切线方程[解析] y ′|x =1=lim Δx →0(1+Δx )2+3(1+Δx )+1-(12+3×1+1)Δx =lim Δx →05Δx +(Δx )2Δx =lim Δx →0(5+Δx )=5, 即切线的斜率k =5,∴曲线在点(1,5)处的切线方程为y -5=5(x -1)即5x -y =0.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切.(1)求a 的值;(2)求切点的坐标.[解析] 设直线l 与曲线C 相切于P (x 0,y 0)点.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx =lim Δx →0(x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx =3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1. 于是切点的坐标为⎝⎛⎭⎫-13,2327或(1,1).当切点为⎝⎛⎭⎫-13,2327时,2327=-13+a ,a =3227; 当切点为(1,1)时,1=1+a ,a =0(舍去).∴a 的值为3227,切点坐标为(-13,2327). [点评] 利用曲线在一点处的导数等于在这一点的切线的斜率,确定出切点.17.求过点(2,0)且与曲线y =1x相切的直线方程. [解析] 易知(2,0)不在曲线y =1x 上,令切点为(x 0,y 0),则有y 0=1x 0. 又y ′=lim Δx →0 Δy Δx =lim Δx →01x +Δx -1x Δx =-1x 2, 所以y ′|x =x 0=-1x 20, 即切线方程为y =-1x 20(x -2)① 而y 0x 0-2=-1x 20② 由①②可得x 0=1,故切线方程为y +x -2=0.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标.[解析] 设P (x 0,y 0),Δy =(x +Δx )2-3(x +Δx )-(x 2-3x )=2x ·Δx +(Δx )2-3Δx ,Δy Δx =2x ·Δx +(Δx )2-3Δx Δx=2x +Δx -3. lim Δx →0 Δy Δx =lim Δx →0(2x +Δx -3)=2x -3, ∴y ′|x =x 0=2x 0-3,令2x 0-3=0得x 0=32, 代入曲线方程得y 0=-94, ∴P ⎝⎛⎭⎫32,-94.。
2019-2020学年高二数学人教A版选修1-1训练:3.1.3 导数的几何意义 Word版含解析
答案:B
6.曲线 y=x2-2x+2 在点(2,2)处的切线方程为 .
解析:∵Δy=(2+Δx)2-2(2+Δx)+2-(22-2×2+2)=2Δx+(Δx)2,
∴ΔΔ������������ = 2 + Δ������.
∴y'|x=2 = lim (2 + Δ������) = 2.
Δ������→0
.②
又抛物线过点 Q,∴4a+2b+c=-1.③
由①②③得 a=3,b=-11,c=9.
1
10.若函数 f(x)=x ‒ ������,求曲线������(������)与������轴交点处的切线的方程.
解:由
f(x)=x
‒
1 ������
=
0,得x=±1,
即与 x 轴交点坐标为(1,0)或(-1,0).
解析:由在点
M
处的切线方程
y
=
1
2������
+
2,得f(1)
=
1 2
×
1
+
2
=
5
2,������'(1)
=
1
2,则f(1)+f'(1)
51
= 2 + 2 = 3.
答案:3
8.已知两条曲线 y=x2-1 与 y=1-x3在点 x0处的切线平行,则 x0= .
解析:由 y=x2-1,得 y'|������ = ������0 = 2������0,
解:∵抛物线过点 P,∴a+b+c=1.①
又 y' =
a(x + ������x)2 + ������(������ + ������x) - ax2 - ������������
人教A版高中数学选修1-2 3.1.1同步练习习题
高中数学人教A版选修1-2 同步练习1.复数(a2-a-2)+(|a-1|-1)i(a∈R)是纯虚数,则有()A.a≠0B.a≠2C.a≠-1且a≠2 D.a=-1解析:选D.需要a2-a-2=0,且|a-1|-1≠0,即a=-1.2.设集合C={复数},A={实数},B={纯虚数},若全集S=C,则下列结论正确的是() A.B∪(∁S B)=C B.∁S A=BC.A∩(∁S B)=∅D.A∪B=C解析:选A.依据复数的分类可知B∪(∁S B)=C.3.以3i-2的虚部为实部,以-3+2i的实部为虚部的复数是__________.解析:3i-2的虚部为3,-3+2i的实部为-3.∴以3i-2的虚部为实部,以-3+2i的实部为虚部的复数是3-3i.答案:3-3i4.下列四个命题:①两个复数不能比较大小;②若x,y∈R,则x+y i=1+i的充要条件是x=y=1;③若实数a与a i对应,则实数集与纯虚数集一一对应;④纯虚数集相对复数集的补集是虚数集.其中真命题的个数是________.解析:①中当这两个复数都是实数时,可以比较大小.②由复数相等的充要条件知②是真命题.③若a=0,则a i不是纯虚数.④由纯虚数集、虚数集、复数集之间的关系知:所求补集应是非纯虚数集与实数集的并集.答案:1[A级基础达标]1.复数i-1的虚部为()A.0 B.1C.i D.-2解析:选B.i-1的虚部为1.2.下列说法正确的是()A.如果两个复数的实部的差和虚部的差都等于0,那么这两个复数相等B.若a,b∈R且a>b,则a i>b iC .如果复数x +y i 是实数,则x =0,y =0D .复数a +b i 不是实数解析:选A.由两个复数相等的充要条件知这两个复数的实部与虚部分别相等,即它们的实部差与虚部差都为0.3.若sin 2θ-1+i(2cos θ+1)是纯虚数,则θ的值为( )A .2k π-π4B .2k π+π4C .2k π±π4 D.k π2+π4(以上k ∈Z) 解析:选B.由⎩⎨⎧sin 2θ-1=0,2cos θ+1≠0,解得⎩⎨⎧θ=k π+π4,k ∈Z ,θ≠2k π+3π4且θ≠2k π+5π4,k ∈Z .∴θ=2k π+π4,k ∈Z.故选B. 4.若4=a +b i(i 为虚数单位,a ,b ∈R),则a +b =________.解析:∵a +b i =4,∴a =4,b =0,∴a +b =4.答案:45.已知复数z =k 2-3k +(k 2-5k +6)i(k ∈Z),且z <0,则k =________.解析:⎩⎪⎨⎪⎧k 2-3k <0k 2-5k +6=0⇒⎩⎪⎨⎪⎧0<k <3k =2或k =3⇒k =2. 答案:26.已知关于实数x ,y 的方程组⎩⎪⎨⎪⎧(2x -1)+i =y -(3-y )i ①(2x +ay )-(4x -y +b )i =9-8i ②有实数解,求实数a ,b 的值. 解:根据复数相等的充要条件,得⎩⎪⎨⎪⎧2x -1=y 1=-(3-y ), 解得⎩⎪⎨⎪⎧x =52y =4③.把③代入②, 得5+4a -(6+b )i =9-8i ,且a 、b ∈R ,∴⎩⎪⎨⎪⎧5+4a =96+b =8,解得⎩⎪⎨⎪⎧a =1b =2. [B 级 能力提升]7.下列命题中,正确命题的个数是( )①若x ,y ∈C ,则x +y i =1+i 的充要条件是x =y =1;②若a ,b ∈R 且a >b ,则a +i >b +i ;③a i 一定为纯虚数.A .0B .1C .2D .3解析:选A.①由于x ,y ∈C ,∴x +y i 不一定是复数的代数形式,不符合复数相等的充要条件,①是假命题.②由于两个虚数不能比较大小,∴②是假命题.③当a ∈R 且a ≠0时,a i 才是纯虚数,∴③是假命题. 8.已知M ={1,2,m 2-3m -1+(m 2-5m -6)i},N ={-1,3},M ∩N ={3},则实数m 的值为( )A .-1或6B .-1或4C .-1D .4解析:选C.由M ∩N ={3},知m 2-3m -1+(m 2-5m -6)i =3,∴⎩⎪⎨⎪⎧m 2-3m -1=3,m 2-5m -6=0,解得m =-1. 9.已知z 1=-4a +1+(2a 2+3a )i ,z 2=2a +(a 2+a )i ,其中a ∈R ,z 1>z 2,则a 的值为________. 解析:由z 1>z 2,得⎩⎪⎨⎪⎧2a 2+3a =0,a 2+a =0,-4a +1>2a ,即⎩⎪⎨⎪⎧a =0或a =-32,a =0或a =-1,a <16.解得a =0.答案:010.已知关于t 的一元二次方程t 2+(2+i)t +2xy +(x -y )i =0(x ,y ∈R),若方程有实数根,求x ,y 满足的关系式.解:设实数根为a ,代入方程得(a 2+2a +2xy )+(a +x -y )i =0.由复数相等的充要条件,得⎩⎪⎨⎪⎧a 2+2a +2xy =0,①a +x -y =0,②由②得a =y -x ,③把③代入①,得(y -x )2+2(y -x )+2xy =0,整理,得(x -1)2+(y +1)2=2.故所求的关系式为(x -1)2+(y +1)2=2.11.(创新题)已知集合M ={(a +3)+(b 2-1)i ,8},集合N ={3i ,(a 2-1)+(b +2)i}同时满足M ∩N M ,M∩N ≠∅,求整数a 、b .解:依题意得(a +3)+(b 2-1)i =3i ,①或8=(a 2-1)+(b +2)i ,②或(a +3)+(b 2-1)i =(a 2-1)+(b +2)i.③由①得a =-3,b =±2,经检验,a =-3,b =-2不合题意,舍去.∴a=-3,b=2.由②得a=±3,b=-2.又a=-3,b=-2不合题意.∴a=3,b=-2.③中,a,b无整数解不符合题意.综上所述得a=-3,b=2或a=3,b=-2.。
(人教版)数学高中选修1-1同步练习 (全书完整版)
(人教版)高中数学选修1-1(全册)同步练习汇总►基础梳理1.命题的定义.一般地,我们把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.其中判断为真的语句叫做真命题,判断为假的语句叫做假命题.♨思考:如何判断一个语句是不是命题? 答案:判断一个语句是不是命题,就是要看它是否符合“是陈述句”和“可以判断真假”这两个条件.2.命题的结构.本章中我们只讨论“若p ,则q ”这种形式的命题.我们把这种形式的命题中的p 叫做命题的条件,把q 叫做命题的结论.►自测自评1.下列语句是命题的是①(填序号). ①π2是无限不循环小数 ②3x ≤5③什么是“温室效应”? ④明天给我买本《金版学案》解析:选项①,“π2是无限不循环小数”是陈述句,并且它是真的,所以是命题;选项②,因为无法判断“3x ≤5”的真假,所以选项②不是命题;选项③是疑问句,选项④是祈使句,故都不是命题.2.语句“若a >b ,则a +c >b +c ”(C ) A .不是命题 B .是假命题 C .是真命题 D .不能判断真假3.把命题“垂直于同一平面的两条直线互相平行”改成“若p ,则q ”的形式:若两条直线垂直于同一个平面,则这两条直线互相平行.1.下列语句是命题的是(B )①72+1≠50 ②5-x =0 ③存在x ∈R ,使x 2-4>0 ④平行于同一条直线的两条直线平行吗?A .①②B .①③C .②④D .③④2.下列命题中是真命题的是(B ) A.3是有理数 B .22是实数C .e 是有理数D .{x |x 是小数}R3.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两相等,则该四棱柱为直四棱柱;④若四棱柱的四条体对角线两两相等,则该四棱柱为直四棱柱.其中,真命题的序号是________. 答案:②④4.将下列命题改写成“若p ,则q ”的形式,并判断其真假. (1)正n 边形(n ≥3)的n 个内角全相等; (2)方程x 2-x +1=0有两个实根; (3)菱形的对角线互相垂直; (4)偶函数的图象关于y 轴对称.答案:(1)若n (n ≥3)边形是正多边形,则它的n 个内角全相等.真命题. (2)若一个方程是x 2-x +1=0,则它有两个实根.假命题. (3)若一个四边形是菱形,则它的对角线互相垂直.真命题. (4)若一个函数是偶函数,则它的图象关于y 轴对称.真命题.1.下列语句中,是命题的个数是(B )①求证:3是无理数 ②-5∈Z ③5是无理数 ④x 2-4x +7≥0.A .1个B .2个C .3个D .4个 2.下列四个命题中是真命题的为(C ) A .若sin A =sin B ,则∠A =∠B B .若lg x 2=0,则x =1C .若a >b ,且ab >0,则1a <1bD .若b 2=ac ,则a 、b 、c 成等比数列 3.下列说法正确的是(D )A .命题“直角相等”的条件和结论分别是“直角”和“相等”B .语句“最高气温30 ℃时我就开空调”不是命题C .命题“对角线互相垂直的四边形是菱形”是真命题D .语句“当a >4时,方程x 2-4x +a =0有实根”是假命题 解析:A 写成“若p 则q ”的形式,B 是命题,C 假命题. 4.(2013·肇庆二模)对于平面α和直线m ,n ,下列命题中假命题的个数是(D )①若m ⊥α,m ⊥n ,则n ∥α ②若m ∥α,n ∥α,则m ∥n ③若m ∥α,n ⊂a ,则m ∥n ④若m ∥n ,n ∥α,则m ∥αA .1个B .2个C .3个D .4个5.设A 、B 、C 、D 是空间四个不同的点,在下列命题中,不正确的是(C ) A .若AC 与BD 共面,则AD 与BC 共面B .若AC 与BD 是异面直线,则AD 与BC 是异面直线 C .若AB =AC ,DB =DC ,则AD =BC D .若AB =AC ,DB =DC ,则AD ⊥BC 6.(2013·广州二模)对于任意向量a 、b 、c ,下列命题中正确的是(D ) A .|a ·b |=|a ||b | B .|a +b |=|a |+|b | C .(a ·b )c =a (b ·c ) D .a ·a =|a |27.命题“末位数字是0或5的整数,能被5整除”,条件p :________________________________________________________________________;结论q :________________________________________________________________________;是________命题(填“真”或“假”). 解析:“末位数字是0或5的整数,能被5整除”改写成“若p ,则q ”的形式为:若一个整数的末位数是0或5,则这个数能被5整除,为真命题.答案:一个整数的末位数是0或5 这个数能被5整除 真8.命题“ax 2-2ax -3>0不成立”是真命题,则实数a 的取值范围是________.解析:ax 2-2ax -3≤0恒成立,当a =0时,-3≤0成立;当a ≠0时,⎩⎪⎨⎪⎧a <0,Δ=4a 2+12a ≤0, 得-3≤a <0.∴-3≤a ≤0. 答案:[-3,0]9.下面是关于四棱柱的四个命题: ①若有两个侧面垂直于底面,则该四棱柱为直四棱柱;②若两个过相对侧棱的截面都垂直于底面,则该四棱柱为直四棱柱;③若四个侧面两两全等,则该四棱柱为直四棱柱;④若四棱柱的四条体对角线两两相等,则四棱柱为直四棱柱.其中,真命题的序号是________. 答案:②④10.已知定义在R 上的偶函数f (x )满足条件:f (x +1)=-f (x ),且在[-1,0]上是增函数,给出下面关于f (x )的命题:①f (x )是周期函数;②f (x )的图象关于直线x =-1对称;③f (0)≤f (1);④f (2)=f (0);⑤f (x )在[1,2]上是减函数.其中正确的命题序号是________. 答案:①②④11.将下列命题改成“若p ,则q ”的形式,并判断其真假. (1)正n 边形(n ≥3)的n 个内角全相等; (2)方程x 2-x +1=0有两个实根; (3)菱形的对角线互相垂直; (4)偶函数的图象关于y 轴对称.答案:(1)若n (n ≥3)边形是正多边形,则它的n 个内角全相等.真命题. (2)若一个方程是x 2-x +1=0,则它有两个实根.假命题. (3)若一个四边形是菱形,则它的对角线互相垂直.真命题. (4)若一个函数是偶函数,则它的图象关于y 轴对称.真命题.12.已知p :x 2+mx +1=0有两个不等的负根,q :4x 2+4(m -2)x +1=0无实根.若p ,q 一真一假,求m 的取值范围.解析:当p 为真命题时, ⎩⎪⎨⎪⎧Δ=m 2-4>0,x 1+x 2=-m <0,x 1·x 2=1>0,∴m >2.当q 为真命题时,Δ=42(m -2)2-16<0, ∴1<m <3.若p 、q 一真一假,则, p 真q 假或p 假q 真, ①若p 真q 假, ∴⎩⎪⎨⎪⎧m >2,m ≤1或m ≥3, ∴m ≥3.②若p 假q 真,∴⎩⎪⎨⎪⎧m ≤2,1<m <3, ∴1<m ≤2.综上m 的取值范围是(1,2]∪[3,+∞). 13.已知集合A ={x |x 2-4mx +2m +6=0},B ={x |x <0},若命题“A ∩B =∅”是假命题,求实数m 的取值范围.解析:因为A ∩B =∅是假命题,所以A ∩B ≠∅. 设全集U ={m |Δ=(-4m )2-4(2m +6)≥0},则U =⎩⎨⎧⎭⎬⎫m |m ≤-1或m ≥32. 假设方程x 2-4mx +2m +6=0的两根x 1,x 2都非负,则有⎩⎪⎨⎪⎧m ∈U ,x 1+x 2≥0,x 1x 2≥0,即⎩⎪⎨⎪⎧m ∈U ,4m ≥0,2m +6≥0,解得m ≥32.又集合⎩⎨⎧⎭⎬⎫m |m ≥32在全集U 中的补集是{m |m ≤-1},所以实数m 的取值范围是{m |m ≤-1}.►体验高考1.给定下列四个命题:①若一个平面内的两条直线与另一个平面都平行,那么这两个平面相互平行; ②若一个平面经过另一个平面的垂线,那么这两个平面相互垂直; ③垂直于同一直线的两条直线相互平行;④若两个平面垂直,那么一个平面内与它们的交线不垂直的直线与另一个平面也不垂直.其中,是真命题的是(D ) A .①和② B .②和③ C .③和④ D .②和④解析:①中没有强调这两条直线是相交的. ③中这两条直线也可以相交或是异面. 2.设a ,b 为正实数,现有下列命题: ①若a 2-b 2=1,则a -b <1;②若1b -1a=1,则a -b <1;③若|a -b |=1,则|a -b |<1; ④若|a 3-b 3|=1,则|a -b |<1.其中真命题有____________(写出所有真命题的序号). 答案:①④►基础梳理1.四种命题的概念.(1)一般地,对于两个命题,如果一个命题的条件和结论分别是另一个命题的结论和条件,那么我们把这样的两个命题叫做互逆命题.其中一个命题叫做原命题,另一个叫做原命题的逆命题.(2)如果一个命题的条件和结论恰好是另一个命题的条件的否定和结论的否定,我们把这样的两个命题叫做互否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的否命题.(3)如果一个命题的条件和结论恰好是另一个命题的结论的否定和条件的否定,我们把这样的两个命题叫做互为逆否命题.如果把其中一个命题叫做原命题,那么另一个叫做原命题的逆否命题.2.四种命题的相互关系.3.四种命题的真假性.由于逆命题和否命题也是互为逆否命题,因此四种命题的真假性之间的关系如下:(1)两个命题互为逆否命题,它们有相同的真假性.(2)两个命题为互逆命题或互否命题,它们的真假性没有关系.,►自测自评1.命题“若函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数,则log a2<0”的逆否命题是(A)A.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数B.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内不是减函数C.若log a2≥0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数D.若log a2<0,则函数f(x)=log a x(a>0,a≠1)在其定义域内是减函数2.在原命题及其逆命题、否命题、逆否命题这四个命题中,真命题的个数可以是(D) A.1或2或3或4B.1或3C.0或4D.0或2或43.若命题p的逆命题为q,命题q的否命题为r,则p是r的逆否命题.解析:设p为:“若m,则n”,则q为:“若n,则m”,所以r为:“若綈n,则綈m”.故p是r的逆否命题.1.“若x,y∈R且(x-1)2+(y-1)2=0,则x,y全为1”的否命题是(B)A.若x,y∈R且(x-1)2+(y-1)2≠0,则x,y全不为1B.若x,y∈R且(x-1)2+(y-1)2≠0,则x,y不全为1C.若x,y∈R且x,y全为1,则(x-1)2+(y-1)2=0D.若x,y∈R且xy≠1,则(x-1)2+(y-1)2=02.下列命题中,不是真命题的是(D)A.“若b2-4ac>0,则二次方程ax2+bx+c=0有实根”的逆否命题B.“四边相等的四边形是正方形”的逆命题C.“x2=9,则x=3”的否命题D.“内错角相等”的逆命题3.命题“a,b是实数,若|a-1|+|b-1|=0,则a=b=1”,用反证法证明时反设为:________________________________________________________________________.答案:若a≠1或b≠14.已知命题:“已知a,b,c,d是实数,若a=b,c=d,则a+c=b+d.”写出其逆命题、否命题、逆否命题,并判断真假.答案:逆命题:已知,a,b,c,d是实数,若a+c=b+d,则a=b,c=d.假命题.否命题:已知,a,b,c,d是实数,若a≠b或c≠d,则a+c≠b+d.假命题.逆否命题:已知,a,b,c,d是实数,若a+c≠b+d,则a≠b或c≠d.真命题.5.已知函数y=f(x)是R上的增函数,对a,b∈R,若f(a)+f(b)≥f(-a)+f(-b)成立,证明a+b≥0.证明:原命题的逆否命题为:a,b∈R,若a+b<0,则f(a)+f(b)<f(-a)+f(-b).以下证明其逆否命题:若a+b<0,则a<-b,b<-a,又因为y=f(x)是R上的增函数,所以f(a)<f(-b),f(b)<f(-a),所以f(a)+f(b)<f(-a)+f(-b),即逆否命题为真命题.又因为原命题和逆否命题有相同的真假性,所以求证成立.1.否定结论“至多有两个解”的说法中,正确的是(C)A.有一个解B.有两个解C.至少有三个解D.至少有两个解2.下列说法中正确的是(D)A.一个命题的逆命题为真,则它的逆否命题一定为真B.“a>b”与“a+c>b+c”不等价C.“a2+b2=0,则a,b全为0”的逆否命题是“若a,b全不为0,则a2+b2≠0”D.一个命题的否命题为真,则它的逆命题一定为真解析:否命题和逆命题是互为逆否命题,有着一致的真假性.3.已知原命题“若两个三角形全等,则这两个三角形面积相等”,那么它的逆命题、否命题、逆否命题中,真命题的个数是(B)A.0个B.1个C.2个D.3个4.有下列四个命题:①“若x+y=0,则x、y互为相反数”的逆命题;②“若a>b,则a2>b2”的逆否命题;③“若x≤-3,则x2+x-6>0”的否命题;④“若ab是无理数,则a、b是无理数”的逆命题.其中真命题的个数是(B)A.0个B.1个C.2个D.3个5.命题“若c>0,则函数f(x)=x2+x-c有两个零点”的逆否命题的是:________________________________________________________________________ ________________________________________________________________________,则c ≤0.答案:若函数f (x )=x 2+x -c 没有两个零点6.若命题p 的否命题是q ,命题q 的逆命题是r ,则r 是p 的逆命题的________. 解析:本题主要考查四种命题的相互关系.显然,r 与p 互为逆否命题. 答案:否命题 7.(x -1)(x +2)=0的否定形式是________________________________________________________________________.答案:(x -1)(x +2)≠0 8.命题“若a >b ,则2a >2b -1”的否命题为________________________________________________________________________________________________________________________________________________. 答案:若a ≤b ,则2a ≤2b -1 9.有下列五个命题:①“若a 2+b 2=0,则ab =0”的逆否命题; ②“若a >b ,则ac >bc ”的逆命题③“若a <b <0,则1a >1b”的逆否命题;④“若1a <1b <0,则ab <b 2”的逆否命题;⑤“若b a >ab,则a <b <0”的逆命题其中假命题有________.解析:①逆否命题为“若ab ≠0,则a 2+b 2≠0”,这是一个真命题. ②逆命题为“若ac >bc ,则a >b ”,这是一个假命题. ③原命题是一个真命题,所以逆否命题也为真命题.④若1a <1b<0,则b <a <0,则ab >b 2故原命题为真命题,所以逆否命题也为真命题.⑤逆命题为“若a <b <0,则b a >ab”.若a <b <0,则⎩⎪⎨⎪⎧-a >-b >0,1b <1a<0,则⎩⎪⎨⎪⎧-a >-b >0,-1b >-1a >0,故a b >b a . 故这是一个假命题. 答案:②⑤10.若a ,b ,c 均为实数,且a =x 2-2y +π2,b =y 2-2z +π3,c =z 2-2x +π6,求证:a ,b ,c 中至少有一个大于0.证明(用反证法):假设a ,b ,c 都不大于0,即a ≤0,b ≤0,c ≤0,则a +b +c ≤0,而a +b +c =⎝⎛⎭⎫x 2-2y +π2+⎝⎛⎭⎫y 2-2z +π3+⎝⎛⎭⎫z 2-2x +π6=(x 2-2x )+(y 2-2y )+(z 2-2z )+π =(x -1)2+(y -1)2+(z -1)2+π-3,显然a +b +c >0,这与假设a +b +c ≤0相矛盾. 因此a ,b ,c 中至少有一个大于0.►体验高考1.给出命题:若函数y =f (x )是幂函数,则函数y =f (x )的图象不过第四象限,在它的逆命题、否命题、逆否命题三个命题中,真命题的个数是(C )A .3个B .2个C .1个D .0个解析:本小题主要考查四种命题的真假,易知原命题是真命题,则其逆否命题也是真命题,而逆命题、否命题是假命题,故它的逆命题、否命题、逆否命题三个命题中,真命题有一个,选C.2.已知a ,b ,c ∈R ,命题“若a +b +c =3,则a 2+b 2+c 2≥3”的否命题是(A ) A .若a +b +c ≠3,则a 2+b 2+c 2<3 B .若a +b +c =3,则a 2+b 2+c 2<3 C .若a +b +c ≠3,则a 2+b 2+c 2≥3 D .若a 2+b 2+c 2≥3,则a +b +c =33.命题“若一个数是负数,则它的平方是正数”的逆命题是(B ) A .若一个数是负数,则它的平方不是正数 B .若一个数的平方是正数,则它是负数 C .若一个数不是负数,则它的平方不是正数 D .若一个数的平方不是正数,则它不是负数 4.命题“若p 则q ”的逆命题是(A )A .若q 则pB .若綈p 则綈qC .若綈q 则綈pD .若p 则綈q5.命题“若a =π4,则tan α=1”的逆否命题是(C )A .若α≠π4,则tan α≠1B .若α=π4,则tan α≠1C .若tan α≠1,则α≠π4D .若tan α≠1,则α=π4►基础梳理1.充分条件和必要条件. 一般地,“若p ,则q ”为真命题,是指由p 通过推理可以得出q .这时,我们就说,由p 可推出q ,记作p ⇒q ,并且说p 是q 的充分条件,q 是p 的必要条件.2.充要条件.一般地,如果既有p ⇒q ,又有q ⇒p ,就记作p ⇔q ,此时我们说,p 是q 的充分必要条件,简称充要条件.显然,如果p 是q 的充要条件,那么q 也是p 的充要条件.概括地说,如果p ⇔q ,那么p 与q 互为充要条件.♨思考:如何从集合与集合之间的关系上理解充分条件、必要条件和充要条件?答案:对于集合A ={x |p (x )},B ={x |q (x )},分别是使命题p 和q 为真命题的对象所组成的集合.,►自测自评1.已知集合A ,B ,则“A ⊆B ”是“A ∩B =A ”的(C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分又不必要条件 2.“a =1”是“直线x +y =0和直线x -ay =0互相垂直”的(C ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件3.若a ∈R ,则“a =2”是“(a -1)(a -2)=0”的充分不必要条件. 解析:由a =2能得到(a -1)(a -2)=0,但由(a -1)·(a -2)=0得到a =1或a =2,而不是a =2,所以a =2是(a -1)(a -2)=0的充分不必要条件.1.在△ABC 中,“A >30°”是“sin A >12”的(B )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:当A =170°时,sin 170°=sin 10°<12,所以“过不去”;但是在△ABC 中,sinA >12⇒30°<A <150°⇒A >30°,即“回得来”. 2.(2014·湛江一模)“x >2”是“(x -1)2>1”的(B ) A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 3.“b 2=ac ”是“ a ,b ,c 成等比数列”的________条件.解析:因为当a =b =c =0时,“b 2=ac ”成立,但是a ,b ,c 不成等比数列; 但是“a ,b ,c 成等比数列”必定有“b 2=ac ”. 答案:必要不充分4.求不等式ax 2+2x +1>0恒成立的充要条件. 解析:当a =0时,2x +1>0不恒成立. 当a ≠0时,ax 2+2x +1>0恒成立 ⇔⎩⎪⎨⎪⎧a >0,Δ=4-4a <0⇔a >1. ∴不等式ax 2+2x +1>0恒成立的充要条件是a >1.5.已知p :x 2-2(a -1)x +a (a -2)≥0,q :2x 2-3x -2≥0,若p 是q 的必要不充分条件,求实数a 的取值范围.解析:令M ={x |2x -3x -2≥0} ={x |(2x +1)(x -2)≥0}⇒⎩⎨⎧⎭⎬⎫x |x ≤-12或x ≥2 N ={x |x 2-2(a -1)x +a (a -2)≥0}={x |(x -a )[x -(a -2)]≥0}⇒{x |x ≤a -2或x ≥a },已知q ⇒p 且p ⇒/ q ,得M ?N .所以⎩⎪⎨⎪⎧a -2≥-12,a <2或⎩⎪⎨⎪⎧a -2>-12,a ≤2⇔32≤a <2或32<a ≤2⇔32≤a ≤2.即所求a 的取值范围是⎣⎡⎦⎤32,2.1.(2013·深圳二模)设x ,y ∈R ,则“x ≥1且y ≥2”是“x +y ≥3”的(A ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 2.“直线与平面α内无数条直线垂直”是“直线与平面α垂直”的(B ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件3.若等比数列{a n }的公比为q ,则“q >1”是“a n +1>a n (n ∈N )”的(D ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分又不必要条件解析:可以借助反例说明:①如数列:-1,-2,-4,-8,…公比为2,但不是增数列;②如数列:-1,-12,-14,-18,…是增数列,但是公比为12<1.4.(2013·东莞二模)已知p :直线l 1:x -y -1=0与直线l 2:x +ay -2=0平行,q :a =-1,则p 是q 的(A )A .充要条件B .充分不必要条件C .必要不充分条件D .既不充分又不必要条件5.已知直线a 、b 和平面α,则a ∥b 的一个必要不充分条件是(D )A .a ∥α,b ∥αB .a ⊥α,b ⊥αC .a ∥α,b ⊂αD .a 、b 与平面α成等角6.圆x 2+y 2=1与直线y =kx +2没有公共点的充要条件是(B ) A .k ∈(-2, 2) B .k ∈(-3, 3)C .k ∈(-∞,-2)∪(2,+∞)D .k ∈(-∞,-3)∪(3,+∞)解析:本小题主要考查直线和圆的位置关系.依题意知圆x 2+y 2=1与直线y =kx +2没有公共点⇔d =21+k 2>1⇔k ∈(-3,3).7.已知命题p :不等式x 2+1≤a 的解集为∅,命题q :f (x )=a x (a >0且a ≠1)是减函数,则p 是q 的____________________.解析:命题p 相当于命题:a <1,命题q 相当于:0<a <1.所以,p 是q 的必要不充分条件.答案:必要不充分条件8.已知条件p :x 2+x -2>0,条件q :x >a ,若q 是p 的充分不必要条件,则a 的取值范围是________.解析:令A ={x |x 2+x -2>0}={x |x >1或x <-2},B ={x |x >a },∵p 是q 的充分不必要条件,∴B ?A ,∴a ≥1.答案:a ≥19.指出下列各组命题中,p 是q 的什么条件. (1)在△ABC 中,p :∠A >∠B ,q :BC >AC ; (2)p :a =3,q :(a +2)(a -3)=0;(3)p :a <b ,q :ab<1.答案:(1)充要条件 (2)充分不必要条件(3)既不充分也不必要条件10.是否存在实数p ,使4x +p <0是x 2-x -2>0的充分条件?如果存在,求出p 的取值范围;如果不存在,请说明理由.解析:由x 2-x -2>0,解得x >2或x <-1, 令A ={x |x >2或x <-1},由4x +p <0,得B =⎩⎨⎧⎭⎬⎫x |x <-p 4.当B ⊆A 时,即-p4≤-1.即p ≥4,此时x <-p4≤-1⇒x 2-x -2>0,∴当p ≥4时,4x +p <0是x 2-x -2>0的充分条件.11.已知p :-2≤-1- x -13≤2,q :x 2-2x +1-m 2≤0(m >0),且綈p 是綈q 的必要不充分条件,求实数m 的取值范围.分析:(1)用集合的观点考察问题,先写出綈p 和綈q ,然后,由綈q ⇒綈p ,但綈p ⇒/綈q 来求m 的取值范围;(2)将綈p 是綈q 的必要不充分条件转化为p 是q 的充分不必要条件再求解. 解析:方法一 由x 2-2x +1-m 2≤0, 得1-m ≤x ≤1+m ,∴綈q :A ={x |x >1+m ,或x <1-m ,m >0}.由-2≤1-x -13≤2,得-2≤x ≤10,∴綈p :B ={x |x >10,或x <-2}.∵綈p 是綈q 的必要不充分条件,结合数轴∴A ?B ⇔⎩⎪⎨⎪⎧m >0,1-m ≤-2,解得m ≥9.1+m ≥10.方法二 ∴綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p ,且綈p ⇒/ 綈q .∴p ⇒q ,且q ⇒/ p ,即p 是q 的充分不必要条件. 结合数轴∵p :C ={x |-2≤x ≤10},q :D ={x |1-m ≤x ≤1+m ,m >0}∴C ?D ,∴⎩⎪⎨⎪⎧1+m ≥10,1-m ≤-2,∴m ≥9.所以实数m 的取值范围是{m |m ≥9}.12.求证:关于x 的一元二次不等式ax 2-ax +1>0对于一切实数x 都成立的充要条件是0<a <4.证明:ax 2-ax +1>0(a ≠0)恒成立 ⇔⎩⎪⎨⎪⎧a >0,Δ=a 2-4a <0⇔0<a <4. ►体验高考 1.(2014·安徽卷)“x <0”是“ln(x +1)<0”的(B ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件D .既不充分也不必要条件解析:由ln(x +1)<0得-1<x <0,故选B. 2.(2014·广东卷)在△ABC 中,角A 、B 、C 所对应的边分别为a 、b 、c ,则“a ≤b ”是“sin A ≤sin B ”的(C )A .充分而不必要条件B .必要而不充分条件C .充要条件D .既不充分也不必要条件解析:a ≤b ⇔2R sin A ≤2R sin B ⇔sin A ≤sin B . 3.(2014·浙江卷)设四边形ABCD 的两条对角线为AC 、BD ,则“四边形ABCD 为菱形”是“AC ⊥BD ”的(A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件 4.(2014·北京卷)设a 、b 是实数,则“a >b ”是“a 2>b 2”的(D ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件 5.(2013·福建卷)设点P (x ,y ),则“x =2且y =-1”是“点P 在直线l :x +y -1=0上”的(A )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件解析:若x =2且y =-1,则x +y -1=0;反之,若x +y -1=0,x ,y 有无数组解,如x =3,y =-2等,不一定有x =2且y =-1,故选A.6.设x ∈R ,则“x >12”是“2x 2+x -1>0”的(A )A .充分不必要条件B .必要不充分条件C .充分必要条件D .既不充分也不必要条件►基础梳理 1.且(and ).(1)定义:一般地,用联结词“且”把命题p 和命题q 联结起来,就得到一个新命题,记作p ∧q .读作“p 且q ”.(2)当p ,q 两个命题都为真命题时,p ∧q 就为真命题;当p ,q 两个命题中只要有一个命题为假命题时,p ∧q 就为假命题.2.或(or ).(1)定义:一般地,用联结词“或”把命题p 和命题q 联结起来,就得到一个新命题,记作p ∨q .读作“p 或q ”.(2)当p ,q 两个命题中,只要有一个命题为真命题时, p ∨q 就为真命题;当p ,q 两个命题都为假命题时,p ∨q 就为假命题.3.非(not ). (1)定义:一般地,对一个命题p 全盘否定,就得到一个新命题,记作綈p .读作“非p ”或“p 的否定”.(2)若p 为真命题时,则綈p 必为假命题;若p 为假命题,则綈p 为真命题.4.复合命题真值表.复合命题的真假可通过真值表加以判断:p q 非p p 或q p 且q 真 真 假 真 真真假假真假假真真真假假假真假假联结词,后确定被联结的简单命题);(2)判断各个简单命题的真假;(3)结合真值表推断复合命题的真假.5.复合命题的否定.(1)命题的否定:“綈p”是命题“p”的否定,命题“綈p”与命题“p”的真假正好相反.(2)命题(p∧q)的否定:命题(p∧q)的否定是“綈p∨綈q”.(3)命题(p∨q)的否定:命题(p∨q)的否定是“綈p∧綈q”.6.常用词语及其否定.原词语等于大于(>)小于(<)是都是否定词语不等于不大于(≤)不小于(≥)不是不都是原词语至多有一个至少有一个至多有n个否定词语至少有两个一个也没有至少有n+1个原词语任意的任意两个所有的能否定词语某个某两个某些不能1.命题:“不等式(x-2)(x-3)<0的解为2<x<3”,使用的逻辑联结词的情况是(B)A.没有使用逻辑联结词B.使用了逻辑联结词“且”C.使用了逻辑联结词“或”D.使用了逻辑联结词“非”2.命题p与非p(C)A.可能都是真命题B.可能都是假命题C.一个是真命题,另一个是假命题D.只有p是真命题3.若命题p:2是偶数,命题q:2是3的约数,则下列命题中为真的是(C)A.非pB.p且qC.p或qD.非p且非q4.若xy=0,则x=0或y=0;若xy≠0,则x≠0且y≠0(填“且”或“或”).1.以下判断正确的是(B)A.若p是真命题,则“p∧q”一定是真命题B.命题“p∧q”是真命题,则命题p一定是真命题C.命题“p∧q”是假命题时,命题p一定是假命题D.命题p是假命题时,命题“p∧q”不一定是假命题2.若p、q是两个简单命题,且“p∨q”的否定是真命题,则必有(B)A.p真q真B.p假q假C.p真q假D.p假q真3.若命题p :不等式ax +b >0的解集为⎩⎨⎧⎭⎬⎫x |x >-b a .命题q :不等式(x -a )(x -b )<0的解集为{x |a <x <b }.则“p ∧q ”,“p ∨q ”,“綈p ”形式的复合命题中的真命题是________. 答案:綈p4.分别写出由下列命题构成的“p ∨q ”,“p ∧q ”,“綈p ”形式的命题,并判断真假. (1)p :3是无理数,q :3>1;(2)p :平行四边形对角线互相平分,q :平行四边形的对角线互相垂直. 解析:(1)p ∧q :3是无理数且3>1;真命题. p ∨q :3是无理数或3>1;真命题.綈p :3不是无理数;假命题.(2)p ∧q :平行四边形的对角线互相平分且垂直;假命题. p ∨q :平行四边形的对角线互相平分或互相垂直;真命题. 綈p :平行四边形的对角线不互相平分;假命题.5.(1)已知命题p :2x 2-3x +1≤0和命题q :x 2-(2a +1)x +a (a +1)≤0,若綈p 是綈q 的必要不充分条件,求实数a 的取值范围;(2)已知命题s :方程x 2+(m -3)x +m =0的一根在(0,1)内,另一根在(2,3)内.命题t :函数f (x )=ln(mx 2-2x +1)的定义域为全体实数.若s ∨t 为真命题,求实数m 的取值范围.解析:(1)对于命题p :2x 2-3x +1≤0,解得12≤x ≤1.对于命题q :x 2-(2a +1)x +a (a +1)≤0,解得a ≤x ≤a +1,∵綈p 是綈q 的必要不充分条件,∴綈q ⇒綈p 且綈pD /⇒綈q ,得p ⇒q 且q ⇒/ p .所以⎩⎪⎨⎪⎧a ≤12a +1≥1解得⎩⎪⎨⎪⎧a ≤12a ≥0即0≤9 ≤12所以实数的取值范围是0≤a ≤12.(2)对于命题s :方程x 2+(m -3)x +m =0的一根在(0.1)内,另一根在(2,3)内, 设g (x )=x 2+(m -3)x +m ,则 ⎩⎪⎨⎪⎧g (0)>0,g (1)<0,g (2)<0,g (3)>0, 即⎩⎪⎨⎪⎧m >0,1+m -3+m <0,4+2m -6+m <0,9+3m -9+m >0.解得0<m <23.对于命题t :函数f (x )=ln(mx 2-2x +1)的定义域为全体实数,则有⎩⎪⎨⎪⎧m >0,Δ=4-4m <0,解得m >1.又s ∨t 为真命题,即s 为真命题或t 为真命题.故所求实数m 的取值范围为0<m <23或m >1.1.已知命题p :∅⊆{0},q :{1}∈{1,2},由它们构成的“p ∨q ”,“p ∧q ”和“綈p ”形式的命题中,真命题有(B )A .0个B .1个C .2个D .3个2.命题p :a 2+b 2<0(a ,b ∈R );命题q :a 2+b 2≥0(a ,b ∈R ),下列结论中正确的是(A ) A .“p ∨q ”为真 B .“p ∧q ”为真 C .“綈p ”为假 D .“綈q ”为真 3.如果命题“p 且q ”是假命题,“非p ”是真命题,那么(D ) A .命题p 一定是真命题 B .命题q 一定是真命题 C .命题q 一定是假命题D .命题q 可能是真命题也可能是假命题解析:因为“非p ”是真命题,所以命题p 为假,所以无论q 是真或是假“p 且q ”都是假命题.所以应选D.4.如果命题“綈p ∨綈q ”是假命题,则在下列各结论中,正确的为(A ) ①命题“p ∧q ”是真命题;②命题“p ∧q ”是假命题; ③命题“p ∨q ”是真命题;④命题“p ∨q ”是假命题. A .①③ B .②④ C .②③ D .①④ 5.(2013·汕头一模)设α、β为两个不同的平面,m 、n 为两条不同的直线,m ⊂α,n ⊂β,有两个命题:p :若α∥β,则m ∥n ;q :若n ⊥α,则α⊥β,那么(D )A .“p 或q ”是假命题B .“p 且q ”是真命题C .“非p 或q ”是假命题D .“非p 且q ”是真命题解析:由已知得,p 是假命题,q 是真命题,则非p 是真命题,故“p 或q ”是真命题,A 错;“p 且q ”是假命题,B 错;“非p 或q ”是真命题,C 错;“非p 且q ”为真命题,D 正确.6.(2013·江门一模)设命题p :函数y =sin ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位得到的曲线关于y 轴对称;命题q :函数y =|3x -1|在[-1,+∞)上是增函数,则下列判断错误的是(D ) A .p 为假 B .綈q 为真 C .p ∧q 为假 D .p ∨q 为真解析:函数y =sin ⎝⎛⎭⎫2x +π3的图象向左平移π6个单位得到的图象的函数解析式为y =sin ⎣⎡⎦⎤2⎝⎛⎭⎫x +π6+π3=sin ⎝⎛⎭⎫2x +2π3,它是非奇非偶函数,它的图象不关于y 轴对称,故p 是假命题;函数y =|3x -1|,由图象可知在(0,+∞)上是增函数,在(-∞,0)上是减函数,故q 也是假命题.綈q 为真命题,p ∧q 为假命题,p ∨q 也是假命题,故D 是不正确的.7.命题p :菱形的对角线互相垂直,则p 的否命题是________________________________________________________________________, 綈p 是________________________________________________________________________.答案:不是菱形的四边形,其对角线不互相垂直 菱形的对角线不互相垂直 8.已知命题p :(x +2)(x -6)≤0,命题q :-3≤x ≤7,若“p 或q ”为真命题,“p 且q ”为假命题,则实数x 的取值范围为________.解析:由题条件可知p 与q 一真一假,p 为真命题时,x 满足-2≤x ≤6,∴满足条件的x 的范围是[-3,-2)∪(6,7].答案:[-3,-2)∪(6,7]9.设有两个命题.命题p :不等式x 2-(a +1)x +1≤0的解集是∅;命题q :函数f (x )=(a +1)x 在定义域内是增函数.如果p ∧q 为假命题,p ∨q 为真命题,求a 的取值范围.解析:对于p :因为不等式x 2-(a +1)x +1≤0的解集是∅,所以Δ=[-(a +1)]2-4<0. 解这个不等式得:-3<a <1.对于q :f (x )=(a +1)x 在定义域内是增函数, 则有a +1>1,所以a >0.又p ∧q 为假命题,p ∨q 为真命题. 所以p 、q 必是一真一假.当p 真q 假时有-3<a ≤0,当p 假q 真时有a ≥1. 综上所述,a 的取值范围是(-3,0]∪[1,+∞).10.设p :函数f (x )=lg ⎝⎛⎭⎫ax 2-x +14a 的定义域为R ;q :关于x 的不等式3x -9x <a 对一切正实数均成立.如果“p ∨q ”为真,且“p ∧q ”为假,求实数a 的取值范围解析:若p 为真,即ax 2-x +14a >0恒成立,则⎩⎪⎨⎪⎧a >0,Δ<0,有⎩⎪⎨⎪⎧a >0,1-a 2<0,∴a >1. 令y =3x -9x=-⎝⎛⎭⎫3x -122+14,由x >0得3x >1,∴y =3x -9x 的值域是(-∞,0).∴若q 为真,则a ≥0.由“p ∨q ”为真,且“p ∧q ”为假,知p ,q 一真一假. 当p 真q 假时,a 不存在;当p 假q 真时,0≤a ≤1. 综上,a 的取值范围是[0,1]. ►体验高考 1(2014·湖南卷)已知命题p :若x >y ,则-x <-y ;命题q :若x >y ,则x 2>y 2.在命题:①p ∧q ;②p ∨q ;③p ∧(綈q );④(綈p )∨q 中,真命题是(C ) A .①③ B .①④ C .②③ D .②④ 2.(2013·湖北卷)在一次跳伞训练中,甲、乙两位学员各跳一次.设命题p 是“甲降落在指定范围”,q 是“乙降落在指定范围”,则命题“至少有一位学员没有降落在指定范围”可表示为(A )A .(綈p )∨(綈q )B .p ∨(綈q )C .(綈p )∧(綈q )D .p ∨q解析:命题“至少有一位学员没有降落在指定范围”包含以下三种情况:“甲、乙均没有降落在指定范围”“甲降落在指定范围,乙没有降落在指定范围”“乙降落在指定范围,甲没有降落在指定范围”.选A.或者,命题“至少有一位学员没有降落在指定范围”等价于命题“甲、乙均降在指定范围”的否命题,即“p ∧q ”的否定.选A.3.设命题p :函数y =sin 2x 的最小正周期为π2;命题q :函数y =cos x 的图象关于直线x =π2对称.则下列判断正确的是(C )A .p 为真B .綈q 为假C .p ∨q 为假D .p ∧q 为真。
人教A版高中数学选修1-1习题课件:3.1.3 导数的几何意义
-1-
M 3.1.3 导数的几何意义
目标导航
UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
1.了解平均变化率与割线之间、瞬时变化率与切线之间的关系, 通过函数的图象理解导数的几何意义.
2.了解导函数的概念,会求导函数. 3.会利用导数的几何意义,求曲线上某点处的切线方程.
-2-
M 3.1.3 导数的几何意义
目标导航
UBIAODAOHANG
123
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
1.切线的概念
点P(x0,f(x0))是曲线上一定点,点Pn(xn,f(xn))是曲线上的点,当点Pn 沿着曲线趋近于点P时,割线PPn趋近于确定的位置,这个确定位置 的直线PT称为点P处的切线.
-4-
M 3.1.3 导数的几何意义
目标导航
UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
123
【做一做1-1】 已知曲线y=f(x)在点(1,f(1))处的切线方程为2xy+2=0,则f'(1)=( )
A.4 B.-4 C.-2 D.2 答案:D
M 3.1.3 导数的几何意义
目标导航
UBIAODAOHANG
Z 知识梳理 HISHI SHULI
Z重难聚焦 HONGNAN JVJIAO
D典例透析 IANLI TOUXI
最新精编高中人教A版选修1-1高中数学强化训练3.1.3导数的几何意义和答案
3.1.3 导数的几何意义课时目标 1.了解导函数的概念;理解导数的几何意义.2.会求导函数.3.根据导数的几何意义,会求曲线上某点处的切线方程.1.导数f′(x0)表示函数____________________,反映了________________________________________.2.函数y=f(x)在点x0处的导数f′(x0)的几何意义是曲线在该点的切线斜率,相应地,曲线y=f(x)在点P(x0,f(x0))处的切线方程为y-f(x0)=f′(x0)·(x-x0).3.如果把y=f(x)看做是物体的运动方程,那么导数f′(x0)表示运动物体在时刻x0的瞬时速度.当x=x0时,f′(x0)是一个确定的数.这样,当x变化时,f′(x)便是x的一个函数,称它为f(x)的________(简称________),有时记作y′,即f′(x)=y′=________________.一、选择题1.已知曲线y=2x3上一点A(1,2),则A处的切线斜率等于( )A.2 B.4C.6+6Δx+2(Δx)2D.62.如果曲线y=f(x)在点(2,3)处的切线过点(-1,2),则有( )A.f′(2)<0 B.f′(2)=0C.f′(2)>0 D.f′(2)不存在3.下面说法正确的是( )A.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处没有切线B.若曲线y=f(x)在点(x0,f(x0))处有切线,则f′(x0)必存在C.若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切线斜率不存在D.若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有可能存在4.若曲线y=h(x)在点P(a,h(a))处的切线方程为2x+y+1=0,那么( )A.h′(a)=0 B.h′(a)<0C.h′(a)>0 D.h′(a)不确定5.设f′(x0)=0,则曲线y=f(x)在点(x0,f(x0))处的切线( )A.不存在B.与x轴平行或重合C.与x轴垂直D.与x轴相交但不垂直6.已知函数f(x)的图象如图所示,下列数值的排序正确的是( )A.0<f′(2)<f′(3)<f(3)-f(2)B.0<f′(3)<f(3)-f(2)<f′(2)C.0<f′(3)<f′(2)<f(3)-f(2)D.0<f(3)-f(2)<f′(2)<f′(3)题号12345 6答案二、填空题7.设f(x)是偶函数,若曲线y=f(x)在点(1,f(1))处的切线的斜率为1,则该曲线在点(-1,f(-1))处的切线的斜率为________.8.过点P(-1,2)且与曲线y=3x2-4x+2在点M(1,1)处的切线平行的直线方程是________.9.如图,函数y=f(x)的图象在点P处的切线方程是y=-x+8,则f(5)+f′(5)=________.三、解答题10.试求过点P(1,-3)且与曲线y=x2相切的直线的斜率.11.设函数f(x)=x3+ax2-9x-1 (a<0).若曲线y=f(x)的斜率最小的切线与直线12x+y=6平行,求a的值.能力提升12.已知抛物线f(x)=ax2+bx-7通过点(1,1),且过此点的切线方程为4x-y -3=0,求a,b的值.13.在曲线E :y =x 2上求出满足下列条件的点P 的坐标. (1)在点P 处与曲线E 相切且平行于直线y =4x -5; (2)在点P 处与曲线E 相切且与x 轴成135°的倾斜角.1.导数f ′(x 0)的几何意义是曲线y=f(x)在点(x 0,f (x 0))处的切线的斜率,即k =0lim x f x 0+Δx -f x 0Δx=f ′(x 0),物理意义是运动物体在某一时刻的瞬时速度.2.“函数f (x )在点x 0处的导数”是一个数值,不是变数,“导函数”是一个函数,二者有本质的区别,但又有密切关系,f ′(x 0)是其导数y =f ′(x )在x =x 0处的一个函数值,求函数在一点处的导数,一般先求出函数的导数,再计算这一点处的导数值.3.利用导数求曲线的切线方程,要注意已知点是否在曲线上.如果已知点在曲线上,则切线方程为y -f(x0)=f′(x0) (x-x0);若已知点不在切线上,则设出切点(x0,f(x0)),表示出切线方程,然后求出切点.3.1.3 导数的几何意义答案知识梳理1.f (x )在x =x 0处的瞬时变化率 函数f (x )在x =x 0附近的变化情况3.导函数导数limΔx→0f x+Δx-fxΔx作业设计1.D [∵y=2x3,∴y′=limΔx→0ΔyΔx=limΔx→0x+Δx3-2x3Δx=limΔx →0x3+6x x2+6x2ΔxΔx=limΔx→0[2(Δx)2+6xΔx+6x2]=6x2.∴y′|x=1=6.∴点A(1,2)处切线的斜率为6.] 2.C [由题意知切线过(2,3),(-1,2),所以k=f′(2)=2-3-1-2=-1-3=13>0.]3.C [f′(x0)的几何意义是曲线y=f(x)在点(x0,f(x0))处切线的斜率.] 4.B [2x+y+1=0,得y=-2x-1,由导数的几何意义知,h′(a)=-2<0.]5.B [曲线y=f(x)在点(x0,f(x0))处的切线斜率为0,切线与x轴平行或重合.] 6.B [根据导数的几何意义,在x∈[2,3]时,曲线上x=2处切线斜率最大,k=f-f3-2=f(3)-f(2)>f′(3).]7.-1解析由偶函数的图象和性质可知应为-1.8.2x-y+4=0解析由题意知,Δy=3(1+Δx)2-4(1+Δx)+2-3+4-2=3Δx2+2Δx,∴y′=limΔx→0ΔyΔx=2.∴所求直线的斜率k=2.则直线方程为y-2=2(x+1),即2x-y+4=0.9.2解析 ∵点P 在切线上,∴f (5)=-5+8=3, 又∵f ′(5)=k =-1, ∴f (5)+f ′(5)=3-1=2.10.解 设切点坐标为(x 0,y 0),则有y 0=x 20.因y ′=lim Δx →0ΔyΔx =limΔx →0x +Δx 2-x 2Δx=2x .∴k =y ′|x =x 0=2x 0.因切线方程为y -y 0=2x 0(x -x 0),将点(1,-3)代入,得:-3-x 20=2x 0-2x 20,∴x 20-2x 0-3=0,∴x 0=-1或x 0=3. 当x 0=-1时,k =-2;当x 0=3时,k =6. ∴所求直线的斜率为-2或6. 11.解 ∵Δy =f (x 0+Δx )-f (x 0)=(x 0+Δx )3+a (x 0+Δx )2-9(x 0+Δx )-1-(x 30+ax 20-9x 0-1) =(3x 20+2ax 0-9)Δx +(3x 0+a )(Δx )2+(Δx )3,∴Δy Δx=3x 20+2ax 0-9+(3x 0+a )Δx +(Δx )2. 当Δx 无限趋近于零时,Δy Δx无限趋近于3x 20+2ax 0-9.即f ′(x 0)=3x 20+2ax 0-9. ∴f ′(x 0)=3⎝⎛⎭⎪⎫x 0+a 32-9-a 23.当x 0=-a 3时,f ′(x 0)取最小值-9-a 23.∵斜率最小的切线与12x +y =6平行, ∴该切线斜率为-12. ∴-9-a 23=-12.解得a =±3. 又a <0,∴a =-3.12.解 f ′(x ) =limΔx →0a x +Δx2+bx +Δx -7-ax 2-bx +7Δx=lim Δx →0(a ·Δx +2ax +b )=2ax +b .由已知可得⎩⎪⎨⎪⎧a +b -7=12a +b =4,解得a =-4,b =12.13.解 f ′(x ) =lim Δx →0 f x +Δx -fxΔx=lim Δx →0x +Δx 2-x 2Δx=2x ,设P (x 0,y 0)为所求的点,(1)因为切线与直线y =4x -5平行, 所以2x 0=4,x 0=2,y 0=4,即P (2,4). (2)因为切线与x 轴成135°的倾斜角, 所以其斜率为-1,即2x 0=-1, 得x 0=-12,即y 0=14,即P ⎝ ⎛⎭⎪⎫-12,14.。
2021-2022年高中数学 3-1-2导数的几何意义同步练习 新人教B版选修1-1
2021-2022年高中数学 3-1-2导数的几何意义同步练习新人教B版选修1-1一、选择题1.曲线y=x2在x=0处的( )A.切线斜率为1B.切线方程为y=2xC.没有切线D.切线方程为y=0[答案] D[解析] k=y′=limΔx→0(0+Δx)2-02Δx=limΔx→0Δx=0,所以k=0,又y=x2在x=0处的切线过点(0,0),所以切线方程为y=0.2.已知曲线y=x3过点(2,8)的切线方程为12x-ay-16=0则实数a的值是( ) A.-1B.1C.-2D.2[答案] B[解析] k=y′|x=2=limΔx→0(2+Δx)3-23Δx=limΔx→0[12+6Δx+(Δx)2]=12,所以过点(2,8)的切线方程为y-8=12(x-2)即y=12x-16,所以a=1.3.如果曲线y=x3+x-10的一条切线与直线y=4x+3平行,那么曲线与切线相切的切点坐标为( )A.(1,-8)B.(-1,-12)C.(1,-8)或(-1,-12)D.(1,-12)或(-1,-8)[答案] C[解析] 设切点坐标为P(x0,y0),则y0=x30+x0-10的切线斜率为k=lim Δx →0(x 0+Δx )3+(x 0+Δx )-10-(x 30+x 0-10)Δx=lim Δx →03x 20Δx +3x 0(Δx )2+(Δx )3+ΔxΔx=lim Δx →0[(3x 20+1)+3x 0Δx +(Δx )2]=3x 20+1=4,所以x 0=±1,当x 0=1时,y 0=-8,当x 0=-1时,y 0=-12,所以切点坐标为(1,-8)或(-1,-12).4.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .-45° [答案] B[解析] k =y ′|x =-1=lim Δx →0[13(-1+Δx )3-2]-[13×(-1)3-2]Δx=lim Δx →0[1-Δx +13(Δx )2]=1,所以切线的倾斜角为45°. 5.下列点中,在曲线y =x 2上,且在此点处的切线倾斜角为π4的是( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)[答案] D [解析] k =lim Δx →0ΔyΔx=lim Δx →0(x +Δx )2-x2Δx=lim Δx →0(2x +Δx )=2x , ∵倾斜角为π4,∴斜率为1.∴2x =1,x =12,故选D.6.设P 0为曲线f (x )=x 3+x -2上的点,且曲线在P 0处的切线平行于直线y =4x -1,则点P 0的坐标为( )A .(1,0)B .(2,8)C .(1,0)或(-1,-4)D .(2,8)或(-1,-4) [答案] C[解析] 根据导数的定义可求得f ′(x )=3x 2+1,由于曲线f (x )=x 3+x -2在P 0处的切线平行于直线y =4x -1,所以f (x )在P 0处的导数值等于4,设P 0(x 0,y 0),故f ′(x 0)=3x 20+1=4,解得x 0=±1,这时P 0点的坐标为(1,0)或(-1,-4),选C.7.曲线y =13x 3+2在点(1,73)处切线的倾斜角为( )A .30°B .45°C .135°D .60° [答案] B[解析] Δy =13(1+Δx )3-13×(1)3=Δx -Δx 2+13Δx 3,Δy Δx =1-Δx +13Δx 2,lim Δx →0Δy Δx =lim Δx →0 (1-Δx +13Δx 2)=1, ∴曲线y =13x 3+2在点⎝ ⎛⎭⎪⎫1,73处切线的斜率是1,倾斜角为45°. 8.曲线y =-2x 2+1在点(0,1)处的切线的斜率是( ) A .-4 B .0 C .4 D .不存在 [答案] B[解析] Δy =-2Δx 2,Δy Δx =-2Δx ,lim Δx →0Δy Δx =lim Δx →0 (-2Δx )=0,由导数的几何意义可知,函数y =-1x 在点⎝ ⎛⎭⎪⎫12,-2处的切线斜率为0.9.函数y =-1x 在点(12,-2)处的切线方程是( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4 [答案] B[解析] ∵Δy =2Δx Δx +12,Δy Δx =2Δx +12,lim Δx →0 2Δx +12=4, ∴切线的斜率为4.则切线方程为:y +2=4(x -12),即y =4x -4.10.曲线y =x 3在点P 处切线的斜率为k ,当k =3时,P 点坐标是( ) A .(-2,-8) B .(-1,-1)或(1,1) C .(2,8) D.⎝ ⎛⎭⎪⎫-12,-18[答案] B[解析] 由导数的定义可求y =x 3在点P (x 0,x 30)处的斜率为3x 20=3,∴x 0=±1,故选B.二、填空题11.曲线y =2x 2+1在点P (-1,3)处的切线方程为____________. [答案] y =-4x -1[解析] Δy =2(Δx -1)2+1-2(-1)2-1=2Δx 2-4Δx ,Δy Δx=2Δx -4,lim Δx →0 ΔyΔx =lim Δx →0(2Δx -4)=-4,由导数几何意义知,曲线y =2x 2+1在点(-1,3)处的切线的斜率为-4,切线方程为y=-4x -1.12.(xx·泰州高二检测)已知函数f (x )在区间[0,3]上的图象如图所示,记k 1=f ′(1),k 2=f ′(2),k 3=f (2)-f (1),则k 1、k 2、k 3之间的大小关系为________.(请用>连接)[答案] k 1>k 3>k 2[解析] 由导数的几何意义可知k 1,k 2分别为曲线在A ,B 处切线的斜率,而k 3=f (2)-f (1)=f (2)-f (1)2-1为直线AB 的斜率,由图象易知k 1>k 3>k 2.13.已知函数y =f (x )在x =x 0处的导数为11,则当Δx 趋近于零时,f (x 0-Δx )-f (x 0)Δx的极限为________.[答案] -11[解析] 由已知得lim Δx →0=f (x 0-Δx )-f (x 0)-Δx =11,所以lim Δx →0 f (x 0-Δx )-f (x 0)Δx=-11. 14.下列三个命题:①若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处没有切线; ②若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在;③若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线的斜率不存在. 其中正确的命题是________(填上你认为正确的命题序号) [答案] ③[解析] 寻找垂直于x 轴的切线即可. 三、解答题15.求曲线f (x )=2x在点(-2,-1)处的切线的方程.[解析] 由于点(-2,-1)恰好在曲线f (x )=2x上,所以曲线在点(-2,-1)处的切线的斜率就等于函数f (x )=2x在点(-2,-1)处的导数.而f ′(-2)=lim Δx →0f (-2+Δx )-f (-2)Δx=lim Δx →02-2+Δx+1Δx=lim Δx →01-2+Δx =-12,故曲线在点(-2,-1)处的切线方程为y+1=-12(x +2),整理得x +2y +4=0.16.求经过点(2,0)且与曲线y =1x相切的直线方程.[解析] 可以验证点(2,0)不在曲线上,设切点P (x 0,y 0). 由y ′|x =x 0=lim Δx →0 1x 0+Δx -1x 0Δx=lim Δx →0-Δx Δx ·(x 0+Δx )·x 0=lim Δx →0 -1x 0(x 0+Δx )=-1x 20,故所求直线方程为y -y 0=-1x 20(x -x 0).17.(xx·杭州高二检测)已知曲线y =x 2-1在x =x 0点处的切线与曲线y =1-x 3在x =x 0点处的切线互相平行,求x 0的值.[解析] 对于曲线y =x 2-1在x =x 0处,y ′|x =x 0=lim Δx →0[(x 0+Δx )2-1]-(x 20-1)Δx=lim Δx →02x 0·Δx +(Δx )2Δx=lim Δx →0(2x 0+Δx )=2x 0. 对于曲线y =1-x 3在x =x 0处,y ′|x =x 0=lim Δx →0[1-(x 0+Δx )3]-(1-x 30)Δx=lim Δx →0-3x 20Δx -3x 0(Δx )2-(Δx )3Δx=lim Δx →0[-3x 20-3x 0·Δx -(Δx )2]=-3x 20, 又y =1-x 3与y =x 2-1在x =x 0点处的切线互相平行,∴2x 0=-3x 20,解得x 0=0或x 0=-23.18.设点P 是曲线f (x )=x 3-3x +2上的任意一点,k 是曲线在点P 处的切线的斜率. (1)求k 的取值范围;(2)求当k 取最小值时的切线方程. [解析] (1)设P (x 0,x 30-3x 0+2),则k =lim Δx →0 (x 0+Δx )3-3(x 0+Δx )+2-(x 30-3x 0+2)Δx=lim Δx →03x 20Δx +3x 0(Δx )2+(Δx )3-3ΔxΔx=lim Δx →0[3x 20-3+3x 0Δx +(Δx )2] =3x 20-3≥- 3.即k 的取值范围为[-3,+∞). (2)由(1)知k min =-3,此时x 0=0, 即P (0,2),∴此时曲线在点P 处的切线方程为y =-3x +2.J=20028 4E3C 丼24408 5F58 彘26279 66A7 暧xw23684 5C84 岄[36017 8CB1 貱37357 91ED 釭28511 6F5F 潟22707 58B3 墳)35571 8AF3 諳。
人教版高中数学【选修1-1】[重点题型巩固练习]_导数的几何意义_提高
人教版高中数学选修1-1知识点梳理重点题型(常考知识点)巩固练习【巩固练习】一、 选择题1.一个物体的运动方程为21t t s +-=其中s 的单位是米,t 的单位是秒, 那么物体在3秒末的瞬时速度是( )A .7米/秒B .6米/秒C .5米/秒D .8米/秒2.曲线2122y x =-在点3(1,)2-处切线的倾斜角为( ) A .1 B. 4π C. 54π D .-4π 3. 函数)(x f y =在0x x =处的导数)(0/x f 的几何意义是( )A 在点0x x =处的函数值B 在点))(,(00x f x 处的切线与x 轴所夹锐角的正切值C 曲线)(x f y =在点))(,(00x f x 处的切线的斜率D 点))(,(00x f x 与点(0,0)连线的斜率.4.已知曲线y =f (x )在x =5处的切线方程是y =-x +8,则(5)f 及'(5)f 分别为( )A .3,3B .3,-1C .-1,3D .-1,-1 5.已知函数3()f x x =的切线的斜率等于1,则其切线方程有( )A .1条B .2条C .多于2条D .不确定6.设函数()f x 可导,则0(1)(1)lim3t f x f x∆→+∆-∆等于( ) A .'(1)f B .不存在 C .1'(1)3f D .以上都不对 二、 填空题 7.曲线()y f x =在点00(,())x f x 处的切线方程为3x+y+3=0,则0'()f x ________0。
(填“>”“<”“=”“≥”或“≤”)8.已知曲线y =12x 2-2上一点P (1,-32),则过点P 的切线的倾斜角为________. 9.已知函数()y f x =在x=x 0处的导数为11,则000()()lim x f x x f x x ∆→-∆-=∆________。
10.在曲线323610y x x x =++-的切线中,斜率最小的切线的方程为________。
高中数学人教A版选修1-1练习课件:3.1.3 导数的几何意义
C. 若f′(x0)不存在,则曲线y=f(x)在点(x0,f(x0))处的切 线的斜率不存在
D. 若曲线y=f(x)在点(x0,f(x0))处没有切线,则f′(x0)有 可能存在
第五页,编辑于星期日:二十三点 二十四分。
解析:曲线在点(x0,y0)处有导数,则切线一定存在; 但有切线,切线的斜率不一定存在,即导数不一定存在.
4.设 f(x)在定义域内的每一点处都存在导数,且满足
lim
Δx→0
f1-Δfx1-Δx=-1,则曲线 y=f(x)在点(1,f(1))处
的切线的斜率为__________.
解析:由题意得 lim Δx→0
f[1+--ΔΔxx]-f1=f′(1)=-1,
则曲线 y=f(x)在(1,f(1))处的切线的斜率为 f′(1)=-1.
∴切线方程为 y-1=3(x-1),即 3x-y-2=0.
第十页,编辑于星期日:二十三点 二十四分。
课后提升训练
温馨提示:请点击按扭进入WORD文档作业
第十一页,编辑于星期日:二十三点 二十四分。
第十二页,编辑于星期日:二十三点 二十四分。
答案:-1
第九页,编辑于星期日:二十三点 二十四分。
知识点三
曲线的切线方程ຫໍສະໝຸດ 5.已知曲线C:y=x3,求曲线C在点x=1处的切线方
程. 解:∵ΔΔyx=x+ΔΔxx3-x3=3x2+3Δx·x+(Δx)2,
∴y′=Δlixm→0 ΔΔyx=3x2,切线斜率 k=y′| x=1=3.
又 x=1 时,y=1,
答案:C
第六页,编辑于星期日:二十三点 二十四分。
2.如果曲线y=f(x)在点(x0,f(x0))处的切线方程为x+ 2y-3=0,那么( )
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.1.2导数的几何意义一、选择题1.曲线y =x 3-3x 在点(2,2)的切线斜率是( ) A .9 B .6 C .-3D .-1[答案] A[解析] Δy =(2+Δx )3-3(2+Δx )-23+6=9Δx +6Δx 2+Δx 3, Δy Δx=9+6Δx +Δx 2, lim Δx →0 Δy Δx =lim Δx →0(9+6Δx +Δx 2)=9, 由导数的几何意可知,曲线y =x 3-3x 在点(2,2)的切线斜率是9. 2.曲线y =13x 3-2在点(-1,-73)处切线的倾斜角为( )A .30°B .45°C .135°D .60°[答案] B[解析] Δy =13(-1+Δx )3-13×(-1)3=Δx -Δx 2+13Δx 3,Δy Δx =1-Δx +13Δx 2,lim Δx →0 Δy Δx =lim Δx →0 (1-Δx +13Δx 2)=1, ∴曲线y =13x 3-2在点⎝ ⎛⎭⎪⎫-1,-73处切线的斜率是1,倾斜角为45°.3.函数y =-1x 在点(12,-2)处的切线方程是( )A .y =4xB .y =4x -4C .y =4(x +1)D .y =2x +4[答案] B[解析] Δy =2Δx Δx +12,Δy Δx =2Δx +12,lim Δx →0 2Δx +12=4,∴切线的斜率为4.∴切线方程为y =4⎝ ⎛⎭⎪⎫x -12-2=4x -4.4.如果曲线y =f (x )在点(x 0,f (x 0))处的切线方程为x +2y -3=0,那么( ) A .f ′(x 0)>0 B .f ′(x 0)<0 C .f ′(x 0)=0D .f ′(x 0)不存在[答案] B[解析] 由导数的几何意义可知f ′(x 0)=-12<0,故选B.5.下列说法正确的是( )A .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处就没有切线B .若曲线y =f (x )在点(x 0,f (x 0))处有切线,则f ′(x 0)必存在C .若f ′(x 0)不存在,则曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在D .若曲线y =f (x )在点(x 0,f (x 0))处的切线斜率不存在,则曲线在该点处就没有切线 [答案] C[解析] 由于对导数在某点处的概念及导数的几何意义理解不透彻,不能认真分析题中所给选项,事实上A 、B 是一样的.它们互为逆否命题,讨论的是“f ′(x 0)存在与否”与切线存在与否的关系,而在导数的几何意义中讨论的是“切线的斜率”与“f ′(x 0)”,得C 是正确的,而A 、B 、D 都是不正确的,可一一举例说明.6.设f (x )为可导函数且满足lim x →0f (1)-f (1-2x )2x=-1,则过曲线y =f (x )上点(1,f (1))处的切线斜率为( )A .2B .-1C .1D .-2[答案] B [解析] lim x →0 f (1)-f (1-2x )2x=lim x →0f (1-2x )-f (1)-2x=lim -2x →0f [1+(-2x )]-f (1)-2x=f ′(1)=-1.7.在曲线y =x 2上的点________处的倾斜角为π4( )A .(0,0)B .(2,4)C .(14,116)D .(12,14)[答案] D[解析] 倾斜角的正切值即为斜率,设点(x 0,y 0) 则k =y ′|x =x 0=lim Δx →0 (x 0+Δx )2-x 2Δx =lim Δx →0 2x 0Δx +Δx 2Δx=lim Δx →0(2x 0+Δx )=2x 0=1, ∴x 0=12,y 0=x 20=14,∴点坐标(12,14).8.若函数f (x )的导数为f ′(x )=-sin x ,则函数图像在点(4,f (4))处的切线的倾斜角为( ) A .90° B .0° C .锐角D .钝角[答案] C[解析] 函数图像在点(4,f (4))处的切线斜率为f ′(4)=-sin4>0,所以函数图像在点(4,f (4))处的切线的倾斜角为锐角.9.曲线y =x 3+x -2在点P 0处的切线平行于直线y =4x -1,则点P 0的坐标是( ) A .(0,1)B .(-1,-5)C .(1,0)或(-1,-4)D .(0,1)或(4,1)[答案] C [解析] k =lim Δx →0f (x 0+Δx )-f (x 0)Δx=lim Δx →0 (x 0+Δx )3+(x 0+Δx )-x 30-x 0Δx =lim Δx →0[3x 20+3x 0Δx +(Δx )2+1] =3x 20+1=4, ∴3x 20=3,即x 0=±1,∴点P 0的坐标为(1,0)或(-1,-4).10.设曲线y =ax 2在点(1,a )处的切线与直线2x -y -6=0平行,则a 等于( ) A .1 B.12 C .-12D .-1[答案] A[解析] ∵y ′|x =1=lim Δx →1 a (1+Δx )2-a ×12Δx=lim Δx →0 2a Δx +a (Δx )2Δx =lim Δx →0 (2a +a Δx )=2a , ∴2a =2,∴a =1.二、填空题11.已知函数f (x )=x 3+2,则f ′(2)=________. [答案] 12[解析] f ′(2)=lim Δx →0 (2+Δx )3+2-23-2Δx =lim Δx →0 (2+Δx -2)[(2+Δx )2+(2+Δx )·2+22]Δx =lim Δx →0[4+4Δx +(Δx )2+4+2Δx +4] =lim Δx →0[12+6Δx +(Δx )2]=12. 12.曲线y =x 2-3x 的一条切线的斜率为1,则切点坐标为________. [答案] (2,4)[解析] 设切点坐标为(x 0,y 0),y ′|x =x 0=lim Δx →0 (x 0+Δx )2-3(x 0+Δx )-(x 20-3x 0)Δx =lim Δx →0 2x 0Δx -3Δx Δx =2x 0-3=1=k , 故x 0=2,y 0=x 20=4,故切点坐标为(2,4).13.曲线y =x 3在点(1,1)处的切线与x 轴,x =2所围成的三角形的面积为________. [答案] 83[解析] y ′=lim Δx →0 (x +Δx )3-x 3Δx =3x 2,所以k =y ′|x =1=3×1=3,所以在点(1,1)处的切线方程为y =3x -2,它与x 轴的交点为⎝ ⎛⎭⎪⎫23,0,与x =2的交点为(2,4),所以S =12×⎝ ⎛⎭⎪⎫2-23×4=83.14.曲线y =x 3+x +1在点(1,3)处的切线是________. [答案] 4x -y -1=0 [解析] 因为y ′=lim Δx →0 (x +Δx )3+(x +Δx )+1-(x 3+x +1)Δx=3x 2+1, 所以k =y ′|x =1=3+1=4,所以切线的方程为y -3=4(x -1),即4x -y -1=0. 三、解答题15.求曲线y =x 2+3x +1在点(1,5)处的切线的方程. [分析] 点是曲线上的点→求切线的斜率k →得切线方程 [解析] y ′|x =1=lim Δx →0 (1+Δx )2+3(1+Δx )+1-(12+3×1+1)Δx =lim Δx →0 5Δx +(Δx )2Δx =lim Δx →0 (5+Δx )=5, 即切线的斜率k =5,∴曲线在点(1,5)处的切线方程为y -5=5(x -1) 即5x -y =0.16.直线l :y =x +a (a ≠0)和曲线C :y =x 3-x 2+1相切. (1)求a 的值; (2)求切点的坐标.[解析] 设直线l 与曲线C 相切于P (x 0,y 0)点.f ′(x )=lim Δx →0f (x +Δx )-f (x )Δx=lim Δx →0 (x +Δx )3-(x +Δx )2+1-(x 3-x 2+1)Δx =3x 2-2x .由题意知,k =1,即3x 20-2x 0=1,解得x 0=-13或x 0=1.于是切点的坐标为⎝ ⎛⎭⎪⎫-13,2327或(1,1). 当切点为⎝ ⎛⎭⎪⎫-13,2327时,2327=-13+a ,a =3227; 当切点为(1,1)时,1=1+a ,a =0(舍去). ∴a 的值为3227,切点坐标为(-13,2327).[点评] 利用曲线在一点处的导数等于在这一点的切线的斜率,确定出切点. 17.求过点(2,0)且与曲线y =1x相切的直线方程.[解析] 易知(2,0)不在曲线y =1x 上,令切点为(x 0,y 0),则有y 0=1x 0.又y ′=lim Δx →0 Δy Δx =lim Δx →0 1x +Δx -1x Δx =-1x 2, 所以y ′|x =x 0=-1x 20,即切线方程为y =-1x 0(x -2)①而y 0x 0-2=-1x 20② 由①②可得x 0=1, 故切线方程为y +x -2=0.18.曲线y =x 2-3x 上的点P 处的切线平行于x 轴,求点P 的坐标. [解析] 设P (x 0,y 0),Δy =(x +Δx )2-3(x +Δx )-(x 2-3x ) =2x ·Δx +(Δx )2-3Δx ,Δy Δx =2x ·Δx +(Δx )2-3Δx Δx =2x +Δx -3. lim Δx →0 Δy Δx =lim Δx →0(2x +Δx -3)=2x -3, ∴y ′|x =x 0=2x 0-3,令2x 0-3=0得x 0=32,代入曲线方程得y 0=-94,∴P ⎝ ⎛⎭⎪⎫32,-94.。