分段函数知识点

合集下载

中考知识点分段函数

中考知识点分段函数

中考知识点分段函数一、定义域和值域分段函数的定义域和值域是由各个分段的定义域和值域确定的。

以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,其定义域为整个实数集,值域为 (-∞, +∞)。

二、分段函数的图像对于分段函数,要根据每个分段的函数表达式来绘制图像。

以函数f(x) = { x+3, x<0 2x, x>=0} 为例,在x<0时,图像是一条斜率为1的直线,过原点,并且在x=0处有一个开口向上的拐点。

三、分段函数的连续性分段函数在分段点处可能不连续,需要通过计算极限来确定。

以函数f(x) = { x+3, x<0 2x, x>=0} 为例,分段点x=0处的左极限等于0,右极限等于0,与f(0)=0相符,因此该分段函数在x=0处连续。

四、分段函数的性质1. 分段函数的奇偶性由各个分段的奇偶性决定。

以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,第一段函数x+3是奇函数,第二段函数2x是偶函数,所以整个分段函数为奇函数。

2. 分段函数的单调性由各个分段的单调性决定。

以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,第一段函数x+3是递增函数,第二段函数2x也是递增函数,所以整个分段函数是递增函数。

3. 分段函数的最大值和最小值在每个分段函数的最大值和最小值中取得。

以函数f(x) = { x+3, x<0 2x, x>=0 } 为例,在第一段函数中,最小值为3,最大值不存在;在第二段函数中,最小值不存在,最大值也不存在。

四、分段函数的应用1. 分段函数可以描述现实生活中的一些问题,如电话费计费等。

以电话费计费为例,某通信公司的计费标准为:前50分钟,每分钟0.5元;超过50分钟,每分钟0.3元。

假设通话时长为x分钟,对应的通话费用为函数f(x) = { 0.5x,x<=50 0.3(x-50)+25, x>50 }。

分段函数知识点总结

分段函数知识点总结

分段函数知识点总结一、分段函数的定义分段函数是指在定义域上将函数分成若干段,每一段上使用不同的函数表达式来描述函数的行为。

它可以是由有限个函数组成的,也可以是由无限个函数组成的。

一般来说,分段函数的定义域可以被划分成有限个不相交的区域,每个区域内使用不同的函数表达式描述函数的行为。

例如,一个简单的分段函数可以是这样的:\[f(x) = \begin{cases}2x, & \text{ if } x < 0 \\x^2, & \text{ if } x \geq 0\end{cases}\]在这个例子中,定义域被分成两段:$x < 0$和$x \geq 0$,分别在这两个区域内使用不同的函数表达式来描述函数的行为。

二、分段函数的图像分段函数的图像通常是由多个部分组成的,每个部分对应于函数定义域中的一个区域。

因此,对于一个有限段的分段函数,其图像是由一些部分图像组成的;对于一个无限段的分段函数,则可能包含无限个部分图像。

以前面的例子$f(x) = \begin{cases}2x, & \text{ if } x < 0 \\x^2, & \text{ if } x \geq 0\end{cases}$为例,其图像可以通过分别画出$y = 2x$和$y = x^2$的图像来得到。

当然,我们也可以直接画出$f(x)$的图像,只需在$x = 0$处将两个部分对接起来即可。

对于无限段的分段函数,我们可能无法通过直接画出所有部分图像来得到完整的图像,但是我们可以通过分析函数表达式的性质来对函数的整体行为有所了解。

三、分段函数的性质分段函数可以具有各种不同的性质,这取决于定义域内不同区域上使用的函数表达式。

首先,在定义域的各个区域内,分段函数可以具有不同的函数性质。

在一个区域上,它可能是线性的;在另一个区域上,它可能是二次的,甚至是高次的多项式函数;在另一个区域上,它可能是指数函数、对数函数或者三角函数等。

3.1.2 第2课时 分段函数

3.1.2 第2课时 分段函数

第2课时 分段函数学习目标1.会用解析法及图象法表示分段函数.2.给出分段函数,能研究有关性质.3.能用分段函数解决生活中的一些简单问题.知识点一 分段函数(1)定义:像y =⎩⎨⎧-x ,x <0,x ,x ≥0这样的函数称为分段函数.(2)实质:函数f (x ),x ∈A ,自变量x 在A 中□1不同的取值范围内,有着不同的□2对应关系. 知识点二 分段函数的性质(1)定义域:各段自变量取值范围的□3并集,注意各段自变量取值范围的□4交集为空集,这是由函数定义中的唯一性决定的.(2)值域:各段函数在相应区间上函数取值集合的□5并集. (3)图象:根据不同定义域上的解析式分别作出,再将它们组合在一起得到整个分段函数的图象.[微练1] (多选题)下列给出的函数是分段函数的是( ) A .f (x )=⎩⎨⎧x 2+1,1≤x ≤5,2x ,x <1B .f (x )=⎩⎨⎧x +1,x ≥4,x 2,x ≤4C .f (x )=⎩⎨⎧2x +3,1≤x ≤5,x 2,x ≤1D .f (x )=⎩⎨⎧x 2+3,x <0,x -1,x ≥5解析:AD B 中的函数f (x )=⎩⎨⎧x +1,x ≥4,x 2,x ≤4中,当x =4时,有两个值与之对应,不满足函数的定义,不是分段函数;C 中的函数f (x )=⎩⎨⎧2x +3,1≤x ≤5,x 2,x ≤1中,当x =1时,有两个值与之对应,不满足函数的定义,不是分段函数;只有A 、D中的函数满足分段函数的定义,是分段函数.故选AD .[微练2] 已知函数f (x )=⎩⎨⎧1x +1,x <-1,x -1,x >1,则f (2)=( )A .0B .13C .1D .2解析:C ∵2>1,∴f (2)=2-1=1.题型一 分段函数求值(范围)问题已知函数f (x )=⎩⎪⎨⎪⎧x +2,x ≤-1,2x ,-1<x <2,x 22,x ≥2.(1)求f (-3),f (f (32))的值; (2)若f (a )=2,求a 的值. [解] (1)因为-3<-1, 所以f (-3)=-3+2=-1. 因为-1<32<2,所以f (32)=2×32=3. 又3>2,所以f (f (32))=f (3)=92.(2)当a ≤-1时,由f (a )=2,得a +2=2,a =0,舍去; 当-1<a <2时,由f (a )=2,得2a =2,a =1; 当a ≥2时,由f (a )=2, 得a 22=2,a =2或a =-2(舍去). 综上所述,a 的值为1或2. [发散思维]若本例函数f (x )不变,求满足f (x )>2x 的x 的取值范围. 解:当x ≤-1时,有x +2>2x .解得x <2,∴x ≤-1,当-1<x <2时,2x >2x ,x 无解, 当x ≥2时,x 22>2x .解得x >4, ∴x >4,综上,x 的取值范围为(-∞,-1]∪(4,+∞).1.分段函数求函数值的方法(1)确定要求值的自变量属于哪一段区间;(2)代入该段的解析式求值,直到求出值为止.当出现f (f (x 0))的形式时,应从内到外依次求值.2.已知函数值或不等式求范围的步骤(1)先将参数分情况代入解析式,列出方程(不等式);(2)解方程(不等式)求参数的值(范围),并检验是否符合参数的取值范围; (3)符合题意的所有值(范围的并集)即为所求.1.已知f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0,则f (-43)+f (43)等于( )A .-2B .4C .2D .-4解析:B ∵f (x )=⎩⎨⎧2x ,x >0,f (x +1),x ≤0,∴f (-43)=f (-43+1)=f (-13)=f (-13+1)=f (23)=23×2=43,f (43)=2×43=83, ∴f (-43)+f (43)=43+83=4.2.已知f (x )=⎩⎨⎧1,x ≥0,0,x <0,则不等式xf (x )+x ≤2的解集为( )A .[0,1]B .[0,2]C .(-∞,1]D .(-∞,2]解析:C 当x ≥0时,x ×1+x ≤2,解得0≤x ≤1;当x <0时,x ≤2,所以x <0.所以不等式xf (x )+x ≤2的解集为(-∞,1].故选C .3.设函数f (x )=⎩⎨⎧-x ,x ≤0,x 2,x >0,若f (α)=9,则α=________.解析:由题意得⎩⎨⎧α≤0,-α=9或⎩⎨⎧α>0,α2=9.∴α=-9或α=3. 答案:-9或3题型二 分段函数的图象及应用 角度1 分段函数的图象(1)(2023·许昌市高一六校联考)函数y =|x |x +x 的大致图象是( )(2)作出下列函数的图象: f (x )=⎩⎨⎧-x -1,x ≤-1,x 2-x -2,-1<x ≤2,x -2,x >2.(1)[解析] 法一:易得函数y =|x |x +x 的定义域为{x |x ≠0},排除A ,B ; 当x =-1时,y =-2,选项D 中的图象不符合,排除D .故选C . 法二:函数y =|x |x +x 的定义域为{x |x ≠0},依据绝对值的概念可得y =⎩⎨⎧1+x ,x >0,-1+x ,x <0,易知选项C 对应的图象正确. [答案] C(2)[解] 画出一次函数y =-x -1的图象,取(-∞,-1]上的一段;画出二次函数y =x 2-x -2的图象,取(-1,2]上的一段;画出一次函数y =x -2的图象,取(2,+∞)上的一段,如图所示.角度2 分段函数图象的应用(链接教材P 68例6)已知函数f (x )=-x 2+2,g (x )=x ,令φ(x )=min{f (x ),g (x )}(即f (x )和g (x )中的较小者).(1)分别用图象法和解析式表示φ(x ); (2)求函数φ(x )的定义域,值域.[解] (1)在同一个坐标系中画出函数f (x ),g (x )的图象如图①.由图①中函数取值的情况,结合函数φ(x )的定义,可得函数φ(x )的图象如图②.令-x 2+2=x ,得x =-2或x =1.结合图②,得出φ(x )的解析式为φ(x )=⎩⎨⎧-x 2+2,x ≤-2,x ,-2<x <1,-x 2+2,x ≥1.(2)由图②知,φ(x )的定义域为R ,φ(1)=1, ∴φ(x )的值域为(-∞,1].1.分段函数图象的画法作分段函数的图象时,分别作出各段的图象,在作每一段图象时,先不管定义域的限制,作出其图象,再保留定义域内的一段图象即可,作图时要特别注意接点处点的虚实,保证不重不漏.2.根据分段函数图象求解析式(1)首先从图象上看分段点及各段定义域.(2)其次看各段图象所代表的函数,用待定系数法求解析式,最后写成分段函数.4.已知函数f (x )=⎩⎨⎧x +1,-1≤x ≤0,x 2+1,0<x ≤1,则函数f (x )的图象是( )答案:A5.已知函数f (x )的图象如图所示,求f (x )的解析式.解:当-1≤x <0时,设f (x )=ax +b (a ≠0), 将(-1,0),(0,1)代入解析式, 则⎩⎨⎧-a +b =0,b =1.∴⎩⎨⎧a =1,b =1.∴f (x )=x +1. 当0≤x ≤1时,设f (x )=kx (k ≠0), 将(1,-1)代入,则k =-1.∴f (x )=-x . 即f (x )=⎩⎨⎧x +1,-1≤x <0,-x ,0≤x ≤1.题型三 分段函数在实际问题中的应用某市“招手即停”公共汽车的票价按下列规则制定: (1)5 km 以内(含5 km),票价2元;(2)5 km 以上,每增加5 km ,票价增加1元(不足5 km 的按5 km 计算). 如果某条线路的总里程为20 km ,请根据题意,写出票价与里程之间的函数解析式,并画出函数的图象.[解] 设票价为y 元,里程为x km.由题意可知,自变量x 的取值范围是(0,20].由“招手即停”公共汽车票价的制定规则,可得到以下函数解析式:y =⎩⎨⎧2,0<x ≤5,3,5<x ≤10,4,10<x ≤15,5,15<x ≤20.函数图象如图.分段函数应用问题的两个关注点(1)应用情境日常生活中的出租车计费、自来水费、电费、个人所得税的收取等,都是最简单的分段函数.(2)注意问题求解分段函数模型问题应明确分段函数的“段”,一定要分得合理.6.(2022·滨州高一检测)某同学设想用“高个子系数k ”来刻画成年男子的高个子的程度,他认为,成年男子身高160 cm 及其以下不算高个子,其高个子系数k 应为0;身高190 cm 及其以上的是理所当然的高个子,其高个子系数k 应为1,请给出一个符合该同学想法、合理的成年男子高个子系数k 关于身高x (cm)的函数关系式________.解析:设身高为x cm ,k (x )=ax +b (a >0),x ∈[160,190], 由⎩⎨⎧160a +b =0,190a +b =1, 解得⎩⎪⎨⎪⎧a =130,b =-163.k (x )=130x -163.故k =⎩⎪⎨⎪⎧0, 0<x ≤160,130(x -160), 160<x <190,1, x ≥190.答案:k =⎩⎪⎨⎪⎧0, 0<x ≤160,130(x -160), 160<x <190,1, x ≥190特别提醒(1)分段函数是一个函数,而不是几个函数,整体及各段符合函数的定义. (2)分段函数的定义域是各段自变量的并集,值域是各段值域的并集. (3)求解分段函数问题的原则是分段讨论.课时规范训练 A 基础巩固练1.已知函数f (x )=⎩⎨⎧x -2,x <2,f (x -1),x ≥2,则f (2)等于( )A .-1B .0C .1D .2解析:A f (2)=f (2-1)=f (1)=1-2=-1.2.著名的Dirichlet 函数D (x )=⎩⎨⎧1,x 为有理数,0,x 为无理数,则D (D (x ))等于( )A .0B .1C .⎩⎨⎧1,x 为无理数,0,x 为有理数D .⎩⎨⎧1,x 为有理数,0,x 为无理数解析:B ∵D (x )∈{0,1},∴D (x )为有理数, ∴D (D (x ))=1.3.一列货运火车从某站出发,匀加速行驶一段时间后开始匀速行驶,过了一段时间,火车到达下一站停车,装完货以后,火车又匀加速行驶,一段时间后再次匀速行驶,下列图象可以近似地刻画出这列火车的速度变化情况的是( )A B C D解析:B 根据题意,知这列火车从静止开始匀加速行驶,所以排除A ,D .然后匀速行驶一段时间后又停止了一段时间,排除C .故选B .4.设f (x )=⎩⎨⎧-x -3(x ≤-1),x 2(-1<x <2),3x (x ≥2),若f (x )=9,则x =()A .-12B .±3C .-12或±3D .-12或3解析:Df (x )=⎩⎨⎧-x -3(x ≤-1),x 2(-1<x <2),3x (x ≥2),f (x )=9,当x ≤-1时,-x -3=9,解得x =-12;当-1<x <2时,x 2=9,解得x =±3,不成立;当x ≥2时,3x =9,解得x =3,所以x =-12或x =3.故选D .5.(多选题)函数f (x )的图象如图所示,则f (x )的解析式是( )A .f (x )=⎩⎨⎧-x +1,x >0,x +1,x ≤0B .f (x )=⎩⎨⎧-x -1,x >0,x +1,x ≤0C .f (x )=-|x |+1D .f (x )=|x +1|解析:AC 由题中图象知 当x ≤0时,f (x )=x +1,当x >0时,f (x )=-x +1,故选AC .6.已知函数f (x )=⎩⎨⎧3x +2,x <1,x 2-ax ,x ≥1,若f (f (0))=a ,则实数a =________.解析:依题意知f (0)=3×0+2=2,则f (f (0))=f (2)=22-2a =a ,得a =43. 答案:437.某市出租汽车收费标准如下:在3 km 以内(含3 km)路程按起步价9元收费,超过3 km 的路程按2.4元/km 收费.收费额(单位:元)关于路程(单位:km)的函数解析式为________.解析:设路程为x km 时,收费额为y 元,则由题意得:当x ≤3时,y =9;当x >3时,按2.4元/km 所收费用为2.4×(x -3),那么有y =9+2.4×(x -3).于是,收费额关于路程的函数解析式为y =⎩⎨⎧9,0<x ≤3,9+2.4×(x -3),x >3,即y =⎩⎨⎧9,0<x ≤3,2.4x +1.8,x >3.答案:y =⎩⎨⎧9,0<x ≤3,2.4x +1.8,x >38.函数f (x )的图象如图所示,求函数f (x )的解析式.解:当x <-1时,设f (x )=ax +b , 则⎩⎨⎧-a +b =1,-2a +b =0,解得⎩⎨⎧a =1,b =2, 所以f (x )=x +2;当-1≤x ≤2时,设f (x )=kx 2, 由4=k ·22得k =1,所以f (x )=x 2; 当x >2时,设f (x )=cx +d ,则⎩⎨⎧2c +d =4,3c +d =6,解得⎩⎨⎧c =2,d =0,所以f (x )=2x ,所以f (x )=⎩⎨⎧x +2,x <-1,x 2,-1≤x ≤2,2x ,x >2.B 能力进阶练9.设x ∈R ,定义符号函数sgn x =⎩⎨⎧1,x >0,0,x =0,-1,x <0,则函数f (x )=|x |sgn x 的图象大致是( )A B C D解析:C由题意知f (x )=⎩⎨⎧x ,x >0,0,x =0,x ,x <0,则f (x )=x ,则f (x )的图象为C 中图象所示.10.(多选题)已知函数f (x )的图象由如图所示的两条线段组成,则( )A .f (f (1))=3B .f (2)>f (0)C .f (x )=-x +1+2|x -1|,x ∈[0,4]D .∃a >0,不等式f (x )≤a 的解集为[12,2]解析:AC 因为f (1)=0,f (0)=3,所以f (f (1))=3,A 正确;f (0)=3,0<f (2)<3,所以f (2)<f (0),B 错误;由题图得,当x ∈[0,1]时,设解析式为y =k 1x +b 1(k 1≠0),图象经过(1,0),(0,3),所以⎩⎨⎧k 1+b 1=0,b 1=3,解得⎩⎨⎧k 1=-3,b 1=3,所以y =3-3x ; x ∈[1,4]时,设解析式为y =k 2x +b 2(k 2≠0),图象经过(1,0),(4,3),所以⎩⎨⎧k 2+b 2=0,4k 2+b 2=3,解得⎩⎨⎧k 2=1,b 2=-1,所以解析式为y =x -1;即f (x )=-x +1+2|x -1|,x ∈[0,4],C 正确;由C 得f (2)=2-1=1,f (12)=3-32=32,如图,所以不存在大于零的a ,使得不等式f (x )≤a 的解集为[12,2],故D 错误.11.(多选题)已知函数f (x )=⎩⎨⎧x +2,x ≤-1,x 2,-1<x <2,关于函数f (x )的结论正确的是( )A .f (x )的定义域为RB .f (x )的值域为(-∞,4)C .若f (x )=3,则x 的值是 3D .f (x )<1的解集为(-1,1)解析:BC 由题意知函数f (x )的定义域为(-∞,2),故A 错误;当x ≤-1时,f (x )的取值范围是(-∞,1].当-1<x <2时,f (x )的取值范围是[0,4),因此f (x )的值域为(-∞,4),故B 正确;当x ≤-1时,x +2=3,解得x =1(舍去),当-1<x <2时,x 2=3,解得x =3或x =-3(舍去),故C 正确;当x ≤-1时,x +2<1,解得x <-1,当-1<x <2时,x 2<1,解得-1<x <1,因此f (x )<1的解集为(-∞,-1)∪(-1,1),故D 错误.故选BC .12.设函数f (x )=⎩⎨⎧x ,0<x <1,2(x -1),x ≥1.若f (a )=f (a +1),则f (1a )=________. 解析:若0<a <1,由f (a )=f (a +1)得a =2(a +1-1),所以a =14,所以f (1a )=f (4)=2×(4-1)=6.若a ≥1,由f (a )=f (a +1)得2(a -1)=2(a +1-1),无解.综上,f (1a )=6.答案:613.如图,该曲线表示一人骑自行车离家的距离与时间的关系.骑车者9时离开家,15时回家.根据这个曲线图,请你回答下列问题:(1)最初到达离家最远的地方是什么时间?离家多远?(2)何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00他骑了多少千米?(5)他在9:00~10:00和10:00~10:30的平均速度分别是多少?(6)他在哪段时间里停止前进并休息用午餐?解:(1)最初到达离家最远的地方的时间是12时,离家30千米.(2)10:30开始第一次休息,休息了半小时.(3)第一次休息时,离家17千米.(4)11:00至12:00他骑了13千米.(5)9:00~10:00的平均速度是10千米/时;10:00~10:30的平均速度是14千米/时.(6)从12时到13时停止前进,并休息用午餐较为符合实际情形.。

高三分段函数知识点总结

高三分段函数知识点总结

高三分段函数知识点总结在高中数学中,分段函数是一个非常重要的知识点。

它不仅在数学课堂上出现频率较高,而且在现实生活中也有很多实际应用。

掌握分段函数的相关知识,对于提高数学水平和解决实际问题都有着重要的意义。

一、分段函数的概念和定义所谓分段函数,就是将一个定义域分为若干子区间,并且每个子区间上都有一个特定的函数表达式。

在每个子区间上,函数的表达式都是简单的一次或多次函数。

具体来说,一个分段函数可以写成以下形式:\[ f(x) = \begin{cases}f_1(x), & a \leq x < b \\f_2(x), & b \leq x < c \\\cdots \\f_n(x), & y_m \leq x < y_{m+1} \\\end{cases} \]其中,f1(x), f2(x), ..., fn(x)是定义在子区间[a, b), [b, c), ..., [ym, ym+1)上的函数。

每个子区间的两个端点都是开区间,即不包含边界。

二、分段函数的图像特点绘制分段函数的图像是理解和运用分段函数的重要手段。

根据分段函数的定义,我们可以得出以下图像特点:1. 在子区间[a, b)上,函数的图像是一条直线或曲线;2. 在子区间[b, c)上,函数的图像是另一条直线或曲线;3. 不同子区间之间的连接点通常是开口;通过观察一个分段函数的图像,我们可以分别对每个子区间上的函数进行分析,从而确定函数的性质和变化趋势。

三、分段函数的应用举例分段函数的应用非常广泛,几乎涉及到了数学的各个领域。

以下是一些具体的应用示例:1. 路程和时间的关系。

设一辆汽车以常速行驶,行驶时间t与行驶路程d之间的关系可以用分段函数表示。

在不同的行驶时间段内,汽车的行驶速度可能不同,因此在不同的时间段内可能存在多个定义子区间和函数表达式。

2. 升学率与学生积极性的关系。

假设一个学校的升学率与学生积极性之间存在一定的关系,可以用一个分段函数进行表示。

分段函数知识点总结整理

分段函数知识点总结整理

分段函数知识点总结整理分段函数是一种函数表达式,其定义域被分为几个部分,在每个部分,函数的表达式都是不同的。

分段函数在实际问题中有着广泛的应用,而对于学习者而言,掌握分段函数的知识是非常重要的。

本文将通过总结和整理分段函数的知识点,帮助读者更好地理解和掌握这一部分的数学知识。

1.分段函数的基本概念分段函数是由若干个部分组成的函数,每个部分都有自己的定义域和函数表达式。

通常来说,一般形式的分段函数可以表示为:\[ f(x) = \begin{cases} f_1(x), & a_1 \leq x < b_1 \\ f_2(x), & a_2 \leq x < b_2 \\ \vdots \\f_n(x), & a_n \leq x < b_n \\ \end{cases} \]其中,\[ f_1(x), f_2(x), \cdots, f_n(x) \] 分别为不同的函数表达式,\[ a_1, b_1, a_2, b_2,\cdots, a_n, b_n \] 分别为定义域的分割点。

在每个分段区间,函数的表达式可能不同,也可能相同。

2. 分段函数的图像分段函数的图像通常是由若干个部分的图像组成的。

在每个分段区间内,函数的图像可能是一条直线、一个曲线或者其他形式。

需要注意的是,不同分段区间之间可能存在间断点,这些间断点通常需要特别关注。

3. 分段函数的定义域和值域在讨论分段函数的定义域和值域时,需要分别对每个函数表达式的定义域和值域进行分析。

需要注意的是,整个分段函数的定义域和值域需要考虑到每个部分的定义域和值域的并集或交集。

4. 分段函数的性质分段函数的性质通常是由其各个部分的函数表达式决定的。

当各个函数表达式的性质不同的时候,在整体上,分段函数可能具有一些特殊的性质。

例如,分段函数可能是一个单调递增的函数、单调递减的函数或者是非单调的函数。

5. 分段函数的应用分段函数在实际问题中有着广泛的应用。

八年级数学分段函数知识点

八年级数学分段函数知识点

八年级数学分段函数知识点数学是一门需要思维和逻辑能力的学科,而分段函数则是数学中一个比较抽象和难以理解的概念。

在八年级数学教学中,分段函数是一个非常重要的知识点,本文将详细介绍八年级数学分段函数知识点。

一、什么是分段函数分段函数是指一个函数根据自变量不同的取值范围,将一个函数分成不同的部分。

通俗地说,就是一个函数可以有不同的定义域上的表达式。

例如,当x<0时,f(x)=x+3;当x≥0时,f(x)=x-2。

这就是一个简单的分段函数。

二、表示方式分段函数可以用多种方式进行表示。

最常见的方式是用大括号将不同条件下的函数表达式括起来表示。

例如,如下函数就是一个分段函数。

-2x+1 (x>=0)f(x)=x+3 (x<0)另外,也可以用数学符号 Iverson括号表示分段函数,如下:f(x)=[x>=0](-2x+1)+[x<0](x+3)三、分段函数的应用分段函数是数学中十分重要的概念,它在很多领域里都有广泛的应用。

例如,在物理学、经济学、社会学等领域中,分段函数被广泛应用。

在数学中,分段函数常常和绝对值函数一起使用。

例如,对于一个函数f(x)=|x|,它在不同条件下的定义域可能不同。

当x≥0时,f(x)=x;当x<0时,f(x)=-x。

这就是一个分段函数。

四、常见的分段函数1. 常函数:当x属于一个给定的区间时,f(x)等于一个常数c。

例如,f(x)= 2,当x属于[-1,1]时。

2. 反比例函数:当x属于一个给定的区间时,f(x)等于1/x。

例如,f(x)=1/x,当x属于(0,∞)。

3. 绝对值函数:当x属于一个给定的区间时,f(x)等于|x|。

例如,f(x)=|x-1|,当x属于[1,3]。

4. 仿射函数:当x属于一个给定的区间时,f(x)等于ax+b,其中a和b为常数。

例如,f(x)=2x+1,当x属于[0,1]。

五、练习题1. 求下列函数f(x)的解析式:当x≤0时,f(x)=x+1;当0<x≤1时,f(x)=x+2;当x>1时,f(x)=2x-3。

高考分段函数知识点

高考分段函数知识点

高考分段函数知识点高考是每个学生都将经历的一次重要考试,它对于一个人的人生道路具有至关重要的影响。

其中,数学科目一直被认为是让人头疼的科目之一。

而在数学中,分段函数是一个重要的知识点。

本文将向大家介绍高考分段函数的相关知识点。

一、分段函数的定义分段函数是指由两个或多个函数组成的函数,其定义域上按照不同的条件来确定函数表达式。

通常情况下,每个函数表达式只在特定的子区间上有效。

二、分段函数的表示方式在数学中,对于分段函数的表示方式有两种常见的形式,分别是符号函数和条件函数。

1. 符号函数:符号函数是一种用数系的符号表示函数。

一般来说,符号函数的定义可以写成 f(x) = {±1, x>0或x<0},表示在不同的区间上函数取不同的值。

2. 条件函数:条件函数是一种用条件表达式表示函数的形式。

它的定义可以写成 f(x) = {f₁(x), x ∈ D₁;f₂(x), x ∈ D₂;f₃(x), x ∈D₃……},其中D₁、D₂、D₃……表示不同的区间,f₁(x)、f₂(x)、f₃(x)……表示不同的函数表达式。

三、分段函数的性质1. 连续性:一段函数在其定义域上是否连续是其性质之一。

对于分段函数而言,每个子区间内的函数表达式都是连续的,即在各个子区间的边界处函数值存在且相等。

2. 求导性质:在求导过程中,需要根据不同的子区间分别对函数进行求导。

首先,找到函数在定义域内的各个子区间,然后对每个子区间内的函数进行求导,最后将求导结果合并。

3. 极值问题:对于分段函数来说,极值问题也是一个值得关注的问题。

因为分段函数在定义域的不同子区间内可能存在多个极值点,所以需要根据实际题目的条件来确定具体的极值点。

四、解题技巧1. 确定分段函数的子区间:在解答分段函数的题目时,首先需要确定函数的定义域和区间。

这一步是解题的基础,也是问题的关键。

2. 绘制函数图像:根据所给的函数表达式和子区间,可以尝试绘制出函数的图像。

高三数学分段函数知识点

高三数学分段函数知识点

高三数学分段函数知识点分段函数是高中数学中的重要概念之一,广泛应用于各个领域的实际问题中。

在高三数学学习中,理解和掌握分段函数的知识点对于解题和理论应用都具有重要意义。

本文将为您介绍高三数学中与分段函数相关的知识点。

一、分段函数的定义与表达方式分段函数是由不同的函数规则在不同的定义域上确定的一种函数。

分段函数通常由若干段或多个函数规则组合而成,对于不同的自变量取值,函数的表达方式也不相同。

通常,分段函数可以用以下的形式表示:y = f(x),x ∈ D,其中D为定义域。

在定义域D的不同区间上,函数f(x)可以用不同的函数表达式来表示。

二、分段函数的性质1. 定义域和值域:分段函数的定义域由各个函数规则的定义域的并集构成,值域则由各个子区间的值域的并集构成。

2. 连续性和间断点:分段函数在定义域上可能存在间断点。

常见的间断点有可去间断点(函数值可以通过修复后定义),跳跃间断点(函数在间断点处的左右极限存在,但不相等)和无穷间断点(函数在间断点处的左右极限至少有一个为无穷大)。

3. 单调性:针对不同函数规则的子区间,分段函数可以是递增的、递减的或不变的。

4. 极值点:分段函数在每个子区间内寻找最大值和最小值,可以通过求导或者构建不等式来确定。

三、分段函数的图像分段函数的图像通常是一个由多段连接而成的曲线,并且在不同的子区间上可能有不同的形态。

对于每一个子区间,我们可以先画出对应函数规则的图像,然后将这些图像进行连接。

在画图时,需要注意各个子区间的连接点和间断点的特殊处理,以及函数图像的平滑与连续性。

四、分段函数的应用分段函数广泛应用于各个领域的实际问题中,下面举几个例子:1. 费用函数:在一些商业模型中,根据不同的销售数量区间,利用分段函数可以比较准确地计算成本、利润等。

2. 税务计算:税务计算常常需要根据收入或利润的不同区间采用不同的税率,这也可以通过分段函数进行模拟计算。

3. 温度转换:将摄氏度和华氏度进行相互转换时,由于两种温度间存在不同的线性关系,可以使用分段函数表示。

高一分段函数知识点总结

高一分段函数知识点总结

高一分段函数知识点总结分段函数是高中数学中的重要内容,它在应用题中常常能够帮助我们建立正确的数学模型,解决实际问题。

下面是对高一分段函数知识点的总结。

1. 分段函数的定义分段函数由定义域的不同范围内的多个子函数组成,每个子函数的定义域是不重叠的,它们只在各自的定义域内有效。

2. 分段函数的表示方法分段函数可以用解析式、表格和图像三种方式表示。

解析式表示:f(x) = {f1(x), a ≤ x ≤ b; f2(x), c ≤ x ≤ d; ...}表格表示:在一张表格中列出各个子函数的定义域和函数值。

图像表示:在坐标系中绘制出各个子函数的图像。

3. 分段函数的性质分段函数的性质包括奇偶性、单调性、最值等。

要根据具体的子函数来分析其性质。

奇偶性:如果子函数f(x)满足f(-x) = f(x),则该子函数是偶函数;如果子函数f(x)满足f(-x) = -f(x),则该子函数是奇函数;否则为非奇非偶函数。

单调性:对于定义域内部的某个子函数,如果$f'(x)>0$,则该子函数在该区间上是递增的;如果$f'(x)<0$,则该子函数在该区间上是递减的。

最值:要求分段函数取得最大值或最小值,需要分别分析各个子函数的最值,并比较它们之间的大小。

4. 分段函数的应用分段函数在实际问题中的应用非常广泛。

以下列举几个常见的应用:(1) 阶梯函数:描述单位价格不同的商品数量与费用之间的关系。

在一定范围内的商品数量对应一个固定的价格,超过该范围则需要按照不同的价格计算。

(2) 温度转换:将摄氏温度转换为华氏温度或开尔文温度。

(3) 隶属度函数:用于模糊逻辑和模糊集合,描述某个元素对于某种属性或事物的隶属程度。

(4) 门函数:在数字电路中,描述逻辑电平之间的转换关系。

5. 分段函数的解析式的求法当已知分段函数的表达式或图像时,可以根据具体情况,通过以下几种方法求出分段函数的解析式:(1) 分段函数的拼接法:将各个子函数在其定义域范围内的解析式进行拼接。

(完整)2.15 分段函数专题讲义

(完整)2.15 分段函数专题讲义

高三总复习—-分段函数专题分段函数的定义:分段函数;对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数。

它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。

知识点梳理一、定义:分段函数是指自变量在不同范围内,有不同对应法则的函数. 二、注意:1、分段函数是一个函数,而不是几个函数;2、分段函数的定义域是自变量各段取值的并集;3、分段函数的值域是各段函数值的并集。

4、解决分段函数的方法:先分后合 三、涉及的内容及相应的常用方法:1、求解析式: 利用分段中递推关系,如平移、周期、对称关系,已知其中一段的解析式,得到整个定义域的解析式;2、求值、解不等式:注意只有自变量在相应的区间段才可以代入对应的解析式。

不能确定时常需要分情况讨论;3、单调性: 各段单调(如递增)+连接处不等关系.(如()()()12,(,],[,)f x x a f x f x x a ∈-∞⎧⎪=⎨∈+∞⎪⎩在R 上是增函数,则()()()()1212(,)[,)f x a f x a f a f a ⎧-∞↑⎪⎪+∞↑⎨⎪≤⎪⎩①在上②在上③);4、奇偶性: 分段讨论,各段均符合相同的定义中的恒等式,才有奇偶性,否则为非奇非偶函数;A5、图像性质或变换等: 作图、赋值等,注意变量的范围限制;6、最值: 求各段的最值或者上下界再进行比较;7、图像: 分类讨论,如零点分段法得到各段解析式再作图; 例题讲解:题型一、分段函数的图像。

1.作出函数()1y x x =+的图象2. 函数ln |1|xy e x =--的图象大致是 ( )题型二、分段函数的奇偶性 1、判断函数(1)(0),()(1)(0).x x x f x x x x -<⎧=⎨+>⎩的奇偶性2、已知函数)(x f 是定义在R 上的奇函数,且当20,()2 3.x f x x x >=-+时求f (x )的解析式。

高一函数知识点分段函数

高一函数知识点分段函数

高一函数知识点分段函数高一函数知识点:分段函数一、概念介绍分段函数是指在定义域上根据不同区间的取值范围,使用不同的函数表达式定义的函数。

分段函数通常由若干段不同的函数组成,每一段函数可以有不同的表达式。

二、分段函数的表示方式分段函数可以用以下两种表示方式来呈现:1. 显性表示法:即明确给出每个区间上的函数表达式。

例如:当x ≤ a 时,f(x) = g(x)当a ≤ x ≤ b 时,f(x) = h(x)当 x > b 时,f(x) = i(x)2. 隐式表示法:即通过给出条件来定义每个区间上的函数表达式。

例如:当x ≤ a 时,f(x) 满足某个条件当a ≤ x ≤ b 时,f(x) 满足另一个条件当 x > b 时,f(x) 满足另一个条件三、分段函数的图像特点分段函数的图像通常表现出不连续性,即在不同的区间上存在跳变的情况。

在每个区间上,函数的图像可能是线性的、二次的、指数的等等,根据具体的函数表达式而定。

四、分段函数的求值和应用求解分段函数的值时,需要根据给定的定义域范围和不同的函数表达式来进行判断。

对于不同的自变量取值,根据定义域上的条件进行判断,选择相应的函数表达式进行计算。

分段函数在实际应用中有广泛的用途,例如在经济学中表示不同收入范围对应的税率,或者在物理学中表示不同速度范围下的物体运动规律。

通过分段函数的定义,我们能够更好地描述和解决实际问题。

五、分段函数的求导与积分对于分段函数的求导和积分,需要分别对每个区间上的函数表达式进行求导和积分操作,然后整合得到整个定义域范围上的结果。

求导和积分的过程需要注意每个区间的不连续点,以及在不同区间上函数表达式发生变化的情况。

六、例题解析以下是一个简单的分段函数例题解析:已知分段函数 f(x) 如下:当x ≤ 0 时,f(x) = x当 x > 0 时,f(x) = x + 1根据定义,我们可以将函数 f(x) 分为两个区间:1. 当x ≤ 0 时,f(x) = x2. 当 x > 0 时,f(x) = x + 1根据定义域的范围和不同的函数表达式,我们可以计算任意自变量在定义域上的函数值。

分段函数知识点

分段函数知识点

分段函数知识点分段函数,也称为分段定义函数,是指由多个不同定义域上的函数组成的一个整体。

在一个给定的定义域上,该函数按照不同的规则进行定义,因此其函数图像通常由多个不连续的线段或曲线段组成。

一、分段函数的定义分段函数可以通过以下形式进行定义:f(x) = { f1(x), x∈D1f2(x), x∈D2...fn(x), x∈Dn其中,f1(x), f2(x), ..., fn(x) 分别表示在不同的定义域 D1, D2, ..., Dn 上的函数,每个定义域 Dn 为函数 f(x) 的某个区间。

二、分段函数的图像分段函数的图像通常由多段曲线或线段组成。

每一段的形状和位置由该段定义的函数决定。

在各个定义域的交界处,函数的图像通常出现不连续的情况,也可能存在间断点。

三、分段函数的性质1. 定义域:分段函数的定义域为各个函数定义域的并集,即 D = D1 ∪ D2 ∪ ... ∪ Dn。

2. 奇偶性:分段函数的奇偶性由各个函数分别决定,具体取决于各个函数的奇偶性质。

3. 连续性:分段函数在各个定义域的内部是连续的,但在定义域之间的交界处可能是不连续的,具体取决于函数定义的方式。

4. 极值:分段函数的极值可能出现在每个定义域的端点,以及在各个定义域之间的交界点处。

5. 最值:分段函数在定义域上的最值由各个函数的最值决定,需要分别找到各个函数的最大值和最小值进行比较。

四、常见的分段函数1. 绝对值函数:f(x) = |x| = { x, x≥0-x, x<02. 阶梯函数:f(x) = ⌊x⌋,表示小于等于 x 的最大整数。

3. 取整函数:f(x) = [x],表示不大于 x 的最大整数。

4. 符号函数:f(x) = { -1, x<00, x=01, x>0五、分段函数的应用分段函数在数学和实际应用中有广泛的应用,如经济学中的需求函数、供给函数;物理学中的速度、加速度函数;计算机科学中的条件运算等。

分段函数知识点及常见题型总结

分段函数知识点及常见题型总结
(4)分段函数是一个函数,而不是几个函数;
(5)分段函数在书写时要用大括号把各段函数合并写成一个函数的形式,并在各段解析式的后面标明相应的自变量的取值范围;
(6)处理分段函数问题时,首先要确定自变量的取值在哪一段函数的区间内,再选取相应的对应关系.
二、几种常见的分段函数
1.取整函数 ( 表示不大于 的最大整数).
例4.已知 ,函数 ,若 ,则 的值为_________.
解:当 ,即 时,
∴ ,

∴ ,解之得: ,不符合题意,舍去;
当 ,即 时,
,

∴ ,解之得: ,符合题意.
综上, 的值为 .
习题7.设 ,若 ,则 _________.
习题8.设函数 , ,则当 时, 【】
(A) (B) (C) (D)
习题9.设函数 ,若 ,则实数 的值为【】
解:∵ ,∴ ,∴
∵ ,∴ ,∴ .【C】.
习题1.已知函数 ,则 【】
(A)0(B) (C) (D)1
2.已知分段函数的函数值,求自变量的值.
方法是:先假设函数值在分段函数的各段上取得,解关于自变量的方程,求出各段上自变量的值.
注意:所求出的自变量的值应在相应的各段函数定义域内,不在的应舍去.
例2.已知函数 ,若 ,则 _________.
分段函数知识点及常见题型总结资料编号一分段函数的定义有些函数在其定义域内对于自变量x的不同取值区间有着不同的对应关系这样的函数称为分段函数
分段函数知识点及常见题型总结
资料编号:20190726
一、分段函数的定义
有些函数在其定义域内,对于自变量 的不同取值区间,有着不同的对应关系,这样的函数称为分段函数.
其图象如图(1)所示.

分段函数的知识点总结

分段函数的知识点总结

分段函数的知识点总结一、分段函数的定义1.1 分段函数的基本形式分段函数的基本形式可以表示为:\[ f(x)=\begin{cases}f_{1}(x), & x\in D_{1}\\f_{2}(x), & x\in D_{2}\\… \\f_{n}(x), & x\in D_{n}\\\end{cases} \]其中,\( D_{1}, D_{2},..., D_{n} \)表示函数的定义域的不相交区间,\( f_{1}(x), f_{2}(x),...,f_{n}(x) \)分别表示在不同区间内的函数表达式。

1.2 分段函数的定义域和值域分段函数的定义域由各个子函数的定义域合并而成,而值域则由各个子函数的值域的并集组成。

1.3 分段函数的解析性质对于分段函数,通常要考虑其在各个定义域内的解析表达式。

在定义分段函数时,要考虑到各个分段的连续性、一致性等性质,以确保分段函数在各个区间内的函数表达式具有良好的连续性和可导性。

1.4 分段函数的特殊形式分段函数的特殊形式包括绝对值函数、符号函数、取整函数、阶梯函数等。

这些特殊形式的分段函数在实际问题中具有广泛的应用,例如在信号处理、控制系统等领域中均有重要的作用。

二、分段函数的性质2.1 分段函数的奇偶性对于分段函数,其奇偶性通常由各个子函数的奇偶性来确定。

如果各个子函数均为偶函数,则分段函数也为偶函数;若各个子函数均为奇函数,则分段函数也为奇函数;若各个子函数均为非奇非偶函数,则分段函数既不是奇函数也不是偶函数。

2.2 分段函数的周期性对于分段函数,其周期性通常由各个子函数的周期性来确定。

如果各个子函数均具有相同的周期,则分段函数也具有这一周期;若各个子函数的周期不同,则分段函数通常不具有周期性。

2.3 分段函数的单调性对于分段函数,其单调性通常由各个子函数的单调性来确定。

如果各个子函数均为单调递增或单调递减函数,则分段函数也为单调递增或单调递减函数;若各个子函数既不是单调递增也不是单调递减函数,则分段函数通常不具有单调性。

高中高一分段函数知识点

高中高一分段函数知识点

高中高一分段函数知识点分段函数是高中数学中的重要内容之一,它在数学建模、经济学和物理学等领域都有广泛的应用。

本文将从定义、性质、图像以及实际应用等方面介绍高中高一阶段分段函数的知识点。

一、定义分段函数是由两个或多个函数段组成的函数,不同的自变量区间对应着不同的函数段。

通常,每个函数段的定义域和值域可以是不相交的。

二、性质1. 定义域和值域的确定:分段函数的定义域由各个函数段的定义域交集确定,而值域则根据各个函数段的值域并集确定。

2. 连续性:分段函数在函数段之间可能存在不连续点,即转折点或者分界点。

在这些点上,左右侧的函数值可以不相等。

3. 奇偶性:当分段函数的各个函数段都具有相同的奇偶性时,整个函数可以被归类为奇函数或偶函数。

4. 单调性:分段函数在每个函数段上可能具有不同的单调性,需要分别进行讨论。

5. 极值点:分段函数的极值点可以出现在函数段的内部转折点或者边界点上,需要分别计算。

三、图像绘制分段函数的图像可以帮助我们更好地理解函数的定义域、值域以及函数段之间的关系。

例如,考虑分段函数f(x) = \begin{cases} x^2, & x\geq 0\\ -x^2, & x<0 \end{cases}首先我们可以绘制函数y=x^2和y=-x^2的图像,然后根据x的正负值来确定在哪个函数段上取值。

四、实际应用分段函数在实际问题中具有广泛的应用。

以下是一些常见的实际应用场景:1. 电费计算:电费的计算往往是分段线性函数,不同的用电量对应着不同的电费标准。

2. 温度调节:空调的温度调节可以看作是一个分段函数,不同的温度区间对应着不同的制冷或者制热模式。

3. 运输成本:货物的运输成本往往是根据距离分段计算的,不同的距离区间对应着不同的运费标准。

4. 奖励机制:某些奖励机制可以设计为分段函数形式,根据不同的目标达成程度给予不同的奖励。

5. 税收计算:个人所得税或者企业利润税往往是分段函数,不同的收入水平对应着不同的税率。

高一上学期分段函数知识点

高一上学期分段函数知识点

高一上学期分段函数知识点在高中数学中,分段函数是一个很重要的概念和知识点,它经常出现在数学题中,不仅在高中阶段,甚至在大学里也会涉及到。

分段函数是由两个或多个函数拼接而成的函数,它在不同的区间内有不同的表达式或定义域。

本文将介绍高一上学期分段函数的一些重要知识点。

一、分段函数的定义分段函数是由多个函数组成的复合函数,它的定义域可以分为不相交的区间,并且在每个区间内有不同的函数表达式。

通常用符号“|”来表示,例如f(x) = { 2x, (x<0); 3, (0≤x<1); -x^2, (x≥1) }。

这个例子中,当x小于0时,函数的表达式是2x;当x在0到1之间时,函数的表达式是3;当x大于等于1时,函数的表达式是-x^2。

分段函数可以有两个、三个或多个不同的函数表达式。

二、基本形式分段函数的基本形式可以分为两种,即含有绝对值的分段函数和线性分段函数。

含有绝对值的分段函数通常是在定义域的某些区间内,函数的表达式中带有绝对值符号“|”,例如f(x) = |x+1|。

这个函数在x小于-1时,表达式为-(x+1);在x大于等于-1时,表达式为x+1。

线性分段函数则是在不同的区间内,函数的表达式都是线性函数。

三、性质分段函数具有一些特殊的性质。

首先,它在每个区间内的表达式通常是连续的,即函数图像不存在突变或断裂的情况。

其次,当x趋于某个定点或者某个区间的边界时,分段函数的极限存在。

这使得我们可以通过分段函数来研究一些变量的变化规律。

另外,分段函数的图像是由不同的线段或曲线拼接而成的,它通常呈现出多个折线段或者曲线段的特征。

四、应用分段函数在实际问题中有广泛的应用。

最常见的应用是在建模问题中,例如利润最大化、成本最小化等问题。

分段函数可以帮助我们确定某个变量在不同区间内的变化规律,从而得出最优解。

此外,在物理学中,分段函数也经常用于描述一些非线性规律或者阶段性变化。

五、解题技巧解题中,对于分段函数的处理通常需要根据题目的要求,将给定的条件逐个转化成函数的定义域和表达式。

八年级上册分段函数知识点

八年级上册分段函数知识点

八年级上册分段函数知识点分段函数是高中数学中比较重要的一部分,而在八年级上册课程中,也会涉及一些基础的分段函数知识点。

下面我们就来一起看看,八年级上册分段函数的相关知识点。

1. 分段函数的定义分段函数是指一个函数,它根据自变量的范围可以被分成多个部分。

每个部分都可以用一个函数式来表示,因此整个函数也可以用若干个函数式表示。

其中,每个函数式称为一个分段函数的部分。

2. 分段函数的图像分段函数的图像常常是由多个线段构成的折线。

每个线段的斜率和截距分别与该线段所对应的函数式有关。

3. 分段函数的性质分段函数的定义域和值域都是由该函数的各部分共同决定的。

在不同的自变量范围内,这些部分以不同的方式组合起来,因此函数的图像也相应地发生变化。

此外,由于每个部分都是连续的函数,因此分段函数的图像也是连续的。

这就意味着,在一段区间内,任何一个点的邻域内都存在函数值。

然而,这并不意味着分段函数是可导的。

因为在分段的交界处,函数的导数可能会发生突变。

4. 求解分段函数求解分段函数最基本的方法就是将自变量代入相应的函数式中,并计算出函数值。

通常情况下,我们需要在不同区间内使用不同的函数式进行计算。

这样,我们就可以得到整个函数的值。

需要注意的是,当自变量处于多个区间的交界处时,我们需要对交界点的函数值进行比较。

具体来说,如果交界点处的函数值相等,那么该点就是分段函数的连续点;反之则是分段函数的不连续点。

5. 常见的分段函数在八年级上册的课程中,我们会遇到一些比较简单的分段函数。

比如:y = { x - 1 (x ≤ 2){ -x + 3 (x > 2)这是一个关于自变量 x 的分段函数。

当x ≤ 2 时,函数的部分为 y = x - 1;当 x > 2 时,函数的部分为 y = -x + 3。

在 x = 2 时,两部分的函数值相等,因此该点是分段函数的连续点。

6. 总结通过以上的介绍,我们可以看出,八年级上册的分段函数知识点是比较简单的。

分段函数-初中数学知识点

分段函数-初中数学知识点

分段函数
1.分段函数
(1)一次函数与常函数组合的分段函数.
分段函数是在不同区间有不同对应方式的函数.(注意:在解决分段函数问题时,要特别注意自变量取值范围的划分,既要科学合理,又要符合实际.)
(2)由文字图象信息确定分段函数.
根据图象读取信息时,要把握住以下三个方面:
①横、纵轴的意义,以及横、纵轴分别表示的量.
②关于某个具体点,要求向横、纵轴作垂线来求得该点的坐标.
③在实际问题中,要注意图象与x轴、y轴交点坐标代表的具体意义.
【规律方法】用图象描述分段函数的实际问题需要注意的四点
1.自变量变化而函数值不变化的图象用水平线段表示.
2.当两个阶段的图象都是一次函数(或正比例函数)时,自变量变化量相同,而函数值变化越大的图象与x轴的夹角就越大.
3.各个分段中,准确确定函数关系.
4.确定函数图象的最低点和最高点.
1 / 1。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档