SPSS进行主成分分析的步骤 图文

合集下载

SPSS进行主成分分析

SPSS进行主成分分析

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

SPSS进行主成分分析的步骤(图文)

SPSS进行主成分分析的步骤(图文)

主成分分析の操作過程

原始數據如下(部分)

調用因子分析模塊(Analyze―Dimension Reduction―Factor),將需要參與分析の各個原始變量放入變量框,如下圖所示:

單擊Descriptives按鈕,打開Descriptives次對話框,勾選KMO and Bartlett’s test of sphericity選項(Initial solution選項為系統默認勾選の,保持默認即可),如下圖所示,然後點擊Continue按鈕,回到主對話框:

其他の次對話框都保持不變(此時在Extract次對話框中,SPSS已經默認將提取公因子の方法設置為主成分分析法),在主對話框中點OK按鈕,執行因子分析,得到の主要結果如下面幾張表。

①KMO和Bartlett球形檢驗結果:

KMO為0.635>0.6,說明數據適合做因子分析;Bartlett球形檢驗の顯著性P值為

0.000<0.05,亦說明數據適合做因子分析。

②公因子方差表,其展示了變量の共同度,Extraction下面各個共同度の值都大於0.5,說明提取の主成分對於原始變量の解釋程度比較高。本表在主成分分析中用處不大,此處列出來僅供參考。

③總方差分解表如下表。由下表可以看出,提取了特征值大於1の兩個主成分,兩個主成分の方差貢獻率分別是55.449%和29.771%,累積方差貢獻率是85.220%;兩個特征值分別是3.327和1.786。

④因子截荷矩陣如下:

根據數理統計の相關知識,主成分分析の變換矩陣亦即主成分載荷矩陣U 與因子載荷矩陣A 以及特征值λの數學關系如下面這個公式:

SPSS进行主成分分析

SPSS进行主成分分析

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

SPSS进行主成分分析(PCA)

SPSS进行主成分分析(PCA)

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

利用SPSS进行主成分分析

利用SPSS进行主成分分析

利用S P S S进行主成分

分析

TYYGROUP system office room 【TYYUA16H-TYY-TYYYUA8Q8-

利用SPSS 进行主成分分析

【例子】 以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze →Data Reduction →Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables )栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈ 设置Descriptives 选项。

单击Descriptives 按钮(图4),弹出Descriptives 对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

利用SPSS进行主成分分析

利用SPSS进行主成分分析

利用SPSS进行主成分分析以全国31个省市的8项经济指标为例,进行主成分分析。第一步:录入或调入数据(图1)。图1 原始数据(未经标准化)第二步:打开“因子分析”对话框。沿着主菜单的“Analyze→Data Reduction→Factor EMBED Equation.3 ”的路径(图2)打开因子分析选项框(图3)。EMBED MSPhotoEd.3 图2 打开因子分析对话框的路径图3 因子分析选项框第三步:选项设置。首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value EMBED Equation.3 ”栏。下面逐项设置。图4 将变量移到变量栏以后= 1 \* GB1 ⒈ 设置Descriptives选项。单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。图5 描述选项框在Statistics栏中选中Univariate descriptives复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。在Correlation Matrix栏中,选中Coefficients复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant复选项,则会给出相关系数矩阵的行列式,如果希望在Excel中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。设置完成以后,单击Continue按钮完成设置(图5)。= 2 \* GB1 ⒉ 设置Extraction选项。打开Extraction对话框(图6)。因子提取方法主要有7种,在Method栏中可以看到,系统默认的提取方法是主成分(????????????????????),因此对此栏不作变动,就是认可了主成分分析方法。在Analyze栏中,选中Correlation matirx复选项,则因子分析基于数据的相关系数矩阵进行分析;如果选中Covariance matrix复选项,则因子分析基于数据的协方差矩阵进行分析。对于主成分分析而言,由于数据标准化了,这两个结果没有分别,因此任选其一即可。在Display栏中,选中Unrotated factor solution(非旋转因子解)复选项,则在分析结果中给出未经旋转的因子提取结果。对于主成分分析而言,这一项选择与否都一样;对于旋转因子分析,选择此项,可将旋转前后的结果同时给出,以便对比。选中Scree Plot(“山麓”图),则在分析结果中给出特征根按大小分布的折线图(形如山麓截面,故得名),以便我们直观地判定因子的提取数量是否准确。在Extract栏中,有两种方法可以决定提取

SPSS之主成分分析

SPSS之主成分分析

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式。如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项0一般不用,但在特殊情况下可以用到(本例不选)。

SPSS进行主成分分析的步骤(图文)

SPSS进行主成分分析的步骤(图文)

SPSS进行主成分分析的步骤(图文) SPSS进行主成分分析的步骤

主成分分析(Principal Component Analysis, PCA)是一种常用的多元统计分析方法,用于降低数据维度并探索数据之间的关系。SPSS是一个功能强大的统计分析软件,本文将介绍使用SPSS进行主成分分析的步骤,以图文形式进行详细说明。

一、打开SPSS软件并导入数据

1. 在SPSS软件中,点击菜单栏的 "File",然后选择 "Open"。

2. 在打开的窗口中,找到并选择你要进行主成分分析的数据文件。

3. 点击 "Open",将数据导入SPSS软件中。

二、准备数据

1. 在SPSS软件的数据编辑视图中,确保你要进行主成分分析的变量都已经正确导入。

2. 如果有需要,可以对数据进行预处理(如去除离群值、标准化等),以符合主成分分析的要求。

三、进行主成分分析

1. 在SPSS软件的菜单栏中,选择 "Analyze",然后点击 "Dimension Reduction",再选择 "Factor..."。

2. 在弹出的对话框中,将需要进行主成分分析的变量依次移至右侧的框中。

3. 点击 "Extraction" 选项卡,选择主成分提取方法(如常用的主成分法)并设置参数。

4. 点击 "Rotation" 选项卡,选择主成分旋转方法(如常用的方差最大旋转法)并设置参数。

5. 可以点击 "Descriptives" 选项卡,勾选 "Correlation matrix" 和"KMO and Bartlett's test" 以获取更详细的分析结果。

怎样用SPSS进行主成分分析

怎样用SPSS进行主成分分析

怎样用SPSS进行主成分分析

主成分分析的最终目标是发现可以用来表达原始数据集的基础的较小

的变量数组,称为主成分。解释的变量越少,变量的贡献就越大,可以用

更简明的方式来表示原始数据集。

SPSS中的主成分分析流程:

(1)确定变量:确定要使用的变量,我们需要根据分析的目录确定

变量的个数和类型。

(2)从SPSS主窗口中打开分析:从SPSS主窗口,选择“分析”-

“统计分析”-“综合分析”,然后在新的对话框中打开“主成分分析”,点击确定。

(3)在SPSS主成分分析对话框中确定参数:

(a)选择需要分析的变量:点击右侧的“变量”按钮,在新的对话

框中选择想要的变量。

(b)选择需要计算的主成分:在SPSS主成分分析对话框中,可以选

择计算的主成分的个数。

SPSS进行主成分分析

SPSS进行主成分分析

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

SPSS进行主成分分析的步骤(图文)

SPSS进行主成分分析的步骤(图文)

主成分分析の操作過程

原始數據如下(部分)

調用因子分析模塊(Analyze―Dimension Reduction―Factor),將需要參與分析の各個原始變量放入變量框,如下圖所示:

單擊Descriptives按鈕,打開Descriptives次對話框,勾選KMO and Bartlett’s test of sphericity選項(Initial solution選項為系統默認勾選の,保持默認即可),如下圖所示,然後點擊Continue按鈕,回到主對話框:

其他の次對話框都保持不變(此時在Extract次對話框中,SPSS已經默認將提取公因子の方法設置為主成分分析法),在主對話框中點OK按鈕,執行因子分析,得到の主要結果如下面幾張表。

①KMO和Bartlett球形檢驗結果:

KMO為0.635>0.6,說明數據適合做因子分析;Bartlett球形檢驗の顯著性P值為0.000<0.05,亦說明數據適合做因子分析。

②公因子方差表,其展示了變量の共同度,Extraction下面各個共同度の值都大於0.5,說明提取の主成分對於原始變量の解釋程度比較高。本表在主成分分析中用處不大,此處列出來僅供參考。

③總方差分解表如下表。由下表可以看出,提取了特征值大於1の兩個主成分,兩個主成分の方差貢獻率分別是55.449%和29.771%,累積方差貢獻率是85.220%;兩個特征值分別是3.327和1.786。

④因子截荷矩陣如下:

根據數理統計の相關知識,主成分分析の變換矩陣亦即主成分載荷矩陣U 與因子載荷矩陣A 以及特征值λの數學關系如下面這個公式:

SPSS进行主成分分析(PCA)

SPSS进行主成分分析(PCA)

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

利用SPSS进行主成分分析

利用SPSS进行主成分分析

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析”对话框。

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置。

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏。下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选)。

SPSS进行主成分分析(PCA)

SPSS进行主成分分析(PCA)

利用SPSS进行主成分分析

【例子】以全国31个省市的8项经济指标为例,进行主成分分析。

第一步:录入或调入数据(图1)。

图1 原始数据(未经标准化)

第二步:打开“因子分析"对话框.

沿着主菜单的“Analyze→Data Reduction→Factor ”的路径(图2)打开因子分析选项框(图3)。

图2 打开因子分析对话框的路径

图3 因子分析选项框

第三步:选项设置.

首先,在源变量框中选中需要进行分析的变量,点击右边的箭头符号,将需要的变量调入变量(Variables)栏中(图3)。在本例中,全部8个变量都要用上,故全部调入(图4)。因无特殊需要,故不必理会“Value ”栏.下面逐项设置。

图4 将变量移到变量栏以后

⒈设置Descriptives选项。

单击Descriptives按钮(图4),弹出Descriptives对话框(图5)。

图5 描述选项框

在Statistics 栏中选中Univariate descriptives 复选项,则输出结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中Initial solution 复选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在Correlation Matrix 栏中,选中Coefficients 复选项,则会给出原始变量的相关系数矩阵(分析时可参考);选中Determinant 复选项,则会给出相关系数矩阵的行列式,如果希望在Excel 中对某些计算过程进行了解,可选此项,否则用途不大。其它复选项一般不用,但在特殊情况下可以用到(本例不选).

:主成分分析SPSS操作方法09

:主成分分析SPSS操作方法09

:主成分分析SPSS操作方法09

实验指导之三

主成分分析的SPSS操作方法

以例12.1为例进行主成分分析操作。

1.在SPSS的数据编辑窗口(见图1)点击Analysize →Data Reduction →Factor,打开Factor Analysis对话框如图

2.

图1 主成分分析操作

将参与主成分分析的变量依次选入Variables框中。例12.1中有9个参与主成分分析的变量,故都选入变量框内。

图2 Factor Analysis 对话框

2.单击Descriptives 按钮,打开Descriptives对话框如图3所示。

✧Statistics栏,指定输出的统计量。

图3 Descriptives对话框

Univariate descriptives 输出每个变量的基本统计描述;(本例选择)

Initial solution 输出初始分析结果。输出主成分变量的相关或协方差矩阵的对角元素。(本例选择)

✧Correlation Matrix栏指定输出考察因子分析条件和方法。

Coefficients相关系数矩阵;(本例选择)

Significance levels 相关系数假设检验的P值;

Determinant 相关系数矩阵行列式的值;

KMO and Bartlett´s test of Sphericity KMO和巴特利检验

KMO值等于变量间单相关系数的平方和与单相关系数平方和加上偏相关系数平方和之比, 值越接近1, 意味着变量间的相关性越强,越适合进行主成分分析, KMO值越接近0, 则变量间的相关性越弱. 越不适合进行主成分分析.

SPSS做主成分分析

SPSS做主成分分析

以下是对我国30个省市自治区经济发展基本情况的8项指标做主成分分析:一、数据录入

图1 数据输入

二、数据标准化

沿着主菜单的“分析→描述统计→描述”的路径打开描述性选项框(图2),在弹出对话框中把需标准化的变量选进变量框中,并在“将标准化得分另存为变量”的选项前打钩,即可将数据进行标准化,标准化后的数据将显示在数据视图里面。

图2

三、选项操作

第一步:打开“因子分析”对话框

沿着主菜单的“分析→降维→因子分析”的路径打开因子分析选项框(图3)。

图3 因子分析选项框

第二步:选项设置。

在原变量框中选中需要进行分析的变量,点击右边的箭头符号,将全部8个变量调入变量栏中(

图3)。

⒈ 设置描述选项

单击描述按钮,弹出描述对话框,在数据栏中选中单变量描述性选项,则输出

结果中将会给出原始数据的抽样均值、方差和样本数目(这一栏结果可供检验参考);选中原始分析结果选项,则会给出主成分载荷的公因子方差(这一栏数据分析时有用)。

在相关矩阵栏中,选中系数选项,则会给出原始变量的相关系数矩阵。设置完成以后,单击继续按钮完成设置(图4)。

图4 描述选项框

⒉ 设置抽取选项。

打开抽取对话框,其中因子提取方法主要有7种,在方法栏中可以看到,系统默认的提取方法是主成分,对此栏不作变动,就是用主成分分析方法。在抽取栏中,有两种方法可以决定提取主成分(因子)的数目。一是根据特征根(的数值,系统默认的是1=c λ。在主成分分析中,主成分得分的方差就是对应的特征根数值。如果默认1=c λ,则所有方差大于等于1的主成分将被保留,其余舍弃。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主成分分析的操作过程

原始数据如下(部分)

调用因子分析模块(Analyze―Dimension Reduction―Factor),将需要参与分析的各个原始变量放入变量框,如下图所示:

单击Descriptives按钮,打开Descriptives次对话框,勾选KMO and Bartlett’s test of sphericity选项(Initial solution选项为系统默认勾选的,保持默认即可),如下图所示,然后点击Continue按钮,回到主对话框:

其他的次对话框都保持不变(此时在Extract次对话框中,SPSS已经默认将提取公因子的方法设置为主成分分析法),在主对话框中点OK按钮,执行因子分析,得到的主要结果如下面几张表。

①KMO和Bartlett球形检验结果:

KMO为0.635>0.6,说明数据适合做因子分析;Bartlett球形检验的显着性P值为

0.000<0.05,亦说明数据适合做因子分析。

②公因子方差表,其展示了变量的共同度,Extraction下面各个共同度的值都大于0.5,说明提取的主成分对于原始变量的解释程度比较高。本表在主成分分析中用处不大,此处列出来仅供参考。

③总方差分解表如下表。由下表可以看出,提取了特征值大于1的两个主成分,两个主成分的方差贡献率分别是55.449%和29.771%,累积方差贡献率是85.220%;两个特征值分别是3.327和1.786。

④因子截荷矩阵如下:

根据数理统计的相关知识,主成分分析的变换矩阵亦即主成分载荷矩阵U与因子载荷矩阵A以及特征值λ的数学关系如下面这个公式:

故可以由这二者通过计算变量来求得主成分载荷矩阵U。

新建一个SPSS数据文件,将因子载荷矩阵中的各个载荷值复制进去,如下图所示:

计算变量(Transform-Compute Variables)的公式分别如下二张图所示:

计算变量得到的两个特征向量U1和U2如下图所示(U1和U2合起来就是主成分载荷矩阵):所以可以得到两个主成分Y1和Y2的表达式如下:

Y1=0.456X1+0.401X2+0.428X3+0.490X4+0.380X5+0.253X6

Y2=-0.367X1+0.322X2-0.323X3-0.303X4+0.453X5+0.602X6

由上面两个表达式,可以通过计算变量来得到Y1、Y2的值。需要注意的是,在计算变量之前,需要对原始变量进行标准化处理,上述Y1、Y2表达式中的X1~X9应为各原始变量的标准分,而不是原始值。(另外需注意,本操作需要在SPSS原始文件中来进行,而不是主成分载荷矩阵的那个SPSS数据表中。)

调用描述统计:描述模块(Analyze-Descriptive Statistics-Descriptives),将各个原始变量放入变量框,并勾选Save standardized values as variables框,如下图所示:

得到各个原始变量的标准分如下图(部分):

Z人均GDP即为X1,Z固定资产投资即为X2,其余类推。

调用计算变量模块(Transform-Compute Variables),输入公式如下图所示:

计算出来的主成分Y1、Y2如下图所示:

由上述各步骤,我们就求得了主成分Y1和Y2。

通过主成分得分,可以进行聚类分析或者综合评价。

聚类分析不再详述,下面再补充介绍一下综合评价的计算。

根据公式,综合评价得分Y=w1*Y1+w2*Y2,w1、w2的值就是等于旋转之前的方差贡献率(如下图所示),本例中,两个权重w1、w2分别是0.55449和0.29771,故Y=0.55449*Y1+0.29771*Y2。注意:如果需要对权重进行归一化处理,则w1、w2分别是55.449/85.220和29.771/85.220,则Y=(55.449*Y1+29.771*Y2)/85.220。

以未归一化的权重为例,通过计算变量可以得到主成分综合评价得分Y,操作过程如下图所示:

最终可以得出综合评价得分Y值,如下图所示:

相关文档
最新文档