【doc】数学
高中数学排列组合公式大全_高中数学排列组合重点知识.doc
高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全_高中数学排列组合重点知识高中数学排列组合公式大全1.排列及计算公式从n个不同元素中,任取m(m n)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n 个不同元素中取出m(m n)个元素的所有排列的个数,叫做从n 个不同元素中取出m个元素的排列数,用符号p(n,m)表示.p(n,m)=n(n-1)(n-2) (n-m+1)= n!/(n-m)!(规定0!=1).2.组合及计算公式从n个不同元素中,任取m(m n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号c(n,m) 表示.c(n,m)=p(n,m)/m!=n!/((n-m)!*m!);c(n,m)=c(n,n-m);3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r)/r=n!/r(n-r)!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!).k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m).排列(Pnm(n为下标,m为上标))Pnm=n (n-1)....(n-m+1);Pnm=n!/(n-m)!(注:!是阶乘符号);Pnn(两个n分别为上标和下标) =n!;0!=1;Pn1(n为下标1为上标)=n组合(Cnm(n为下标,m为上标))Cnm=Pnm/Pmm ;Cnm=n!/m!(n-m)!;Cnn(两个n分别为上标和下标) =1 ;Cn1(n为下标1为上标)=n;Cnm=Cnn-m高中数学排列组合公式记忆口诀加法乘法两原理,贯穿始终的法则。
与序无关是组合,要求有序是排列。
两个公式两性质,两种思想和方法。
归纳出排列组合,应用问题须转化。
高一数学公式大全(完整资料).doc
【最新整理,下载后即可编辑】1. 元素与集合的关系U x A x C A ∈⇔∉,U x C A x A ∈⇔∉. 2.德摩根公式();()U U U U U U C A B C A C B C A B C A C B ==.3.包含关系A B A A B B =⇔=U U A B C B C A ⇔⊆⇔⊆ U A C B ⇔=ΦU C A B R ⇔=4.容斥原理()()card A B cardA cardB card A B =+-()()card A B C cardA cardB cardC card A B =++-()()()()card A B card B C card CA card ABC ---+.5.集合12{,,,}n a a a 的子集个数共有2n 个;真子集有2n –1个;非空子集有2n –1个;非空的真子集有2n –2个.6.二次函数的解析式的三种形式 (1)一般式2()(0)f x ax bx c a =++≠; (2)顶点式2()()(0)f x a x h k a =-+≠; (3)零点式12()()()(0)f x a x x x x a =--≠.7.解连不等式()N f x M <<常有以下转化形式 ()N f x M <<⇔[()][()]0f x M f x N --<⇔|()|22M N M Nf x +--<⇔()0()f x N M f x ->- ⇔11()f x N M N>--. 8.方程0)(=x f 在),(21k k 上有且只有一个实根,与0)()(21<k f k f 不等价,前者是后者的一个必要而不是充分条件.特别地, 方程)0(02≠=++a c bx ax 有且只有一个实根在),(21k k 内,等价于)()(21<k f k f ,或)(1=k f 且22211k k a bk +<-<,或)(2=k f 且22122k abk k <-<+. 9.闭区间上的二次函数的最值二次函数)0()(2≠++=a c bx ax x f 在闭区间[]q p ,上的最值只能在abx 2-=处及区间的两端点处取得,具体如下:(1)当a>0时,若[]q p abx ,2∈-=,则{}min max max ()(),()(),()2bf x f f x f p f q a=-=; []q p abx ,2∉-=,{}max max ()(),()f x f p f q =,{}min min ()(),()f x f p f q =. (2)当a<0时,若[]q p ab x ,2∈-=,则{}min ()min (),()f x f p f q =,若[]q p abx ,2∉-=,则{}max ()max (),()f x f p f q =,{}min ()min (),()f x f p f q =.10.一元二次方程的实根分布依据:若()()0f m f n <,则方程0)(=x f 在区间(,)m n 内至少有一个实根 .设q px x x f ++=2)(,则(1)方程0)(=x f 在区间),(+∞m 内有根的充要条件为0)(=m f 或2402p q p m ⎧-≥⎪⎨->⎪⎩; (2)方程0)(=x f 在区间(,)m n 内有根的充要条件为()()0f m f n <或2()0()0402f m f n p q p m n>⎧⎪>⎪⎪⎨-≥⎪⎪<-<⎪⎩或()0()0f m af n =⎧⎨>⎩或()0()0f n af m =⎧⎨>⎩; (3)方程0)(=x f 在区间(,)n -∞内有根的充要条件为()0f m <或2402p q pm ⎧-≥⎪⎨-<⎪⎩ .11.定区间上含参数的二次不等式恒成立的条件依据(1)在给定区间),(+∞-∞的子区间L (形如[]βα,,(]β,∞-,[)+∞,α不同)上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是min (,)0()f x t x L ≥∉.(2)在给定区间),(+∞-∞的子区间上含参数的二次不等式(,)0f x t ≥(t 为参数)恒成立的充要条件是(,)0()man f x t x L ≤∉.(3))(24>++=c bx ax x f 恒成立的充要条件是000a b c ≥⎧⎪≥⎨⎪>⎩或240a b ac <⎧⎨-<⎩. 12.真值表14.四种命题的相互关系逆命题 若q则p互 为 为 互 否 否 逆 逆逆否命题 若非q则非p15.充要条件(1)充分条件:若p q ⇒,则p 是q 充分条件.(2)必要条件:若q p ⇒,则p 是q 必要条件.(3)充要条件:若p q ⇒,且q p ⇒,则p 是q 充要条件. 注:如果甲是乙的充分条件,则乙是甲的必要条件;反之亦然.16.函数的单调性(1)设[]2121,,x x b a x x ≠∈⋅那么[]1212()()()0x x f x f x -->⇔[]b a x f x x x f x f ,)(0)()(2121在⇔>--上是增函数;[]1212()()()0x x f x f x --<⇔[]b a x f x x x f x f ,)(0)()(2121在⇔<--上是减函数.(2)设函数)(x f y =在某个区间内可导,如果0)(>'x f ,则)(x f 为增函数;如果0)(<'x f ,则)(x f 为减函数.17.如果函数)(x f 和)(x g 都是减函数,则在公共定义域内,和函数)()(x g x f +也是减函数; 如果函数)(u f y =和)(x g u =在其对应的定义域上都是减函数,则复合函数)]([x g f y =是增函数.18.奇偶函数的图象特征奇函数的图象关于原点对称,偶函数的图象关于y 轴对称;反过来,如果一个函数的图象关于原点对称,那么这个函数是奇函数;如果一个函数的图象关于y 轴对称,那么这个函数是偶函数.19.若函数)(x f y =是偶函数,则)()(a x f a x f --=+;若函数)(a x f y +=是偶函数,则)()(a x f a x f +-=+.20.对于函数)(x f y =(R x ∈),)()(x b f a x f -=+恒成立,则函数)(x f 的对称轴是函数2b a x +=;两个函数)(a x f y +=与)(x b f y -= 的图象关于直线2b a x +=对称.21.若)()(a x f x f +--=,则函数)(x f y =的图象关于点)0,2(a对称;若)()(a x f x f +-=,则函数)(x f y =为周期为a 2的周期函数.22.多项式函数110()n n n n P x a x a x a --=+++的奇偶性多项式函数()P x 是奇函数⇔()P x 的偶次项(即奇数项)的系数全为零.多项式函数()P x 是偶函数⇔()P x 的奇次项(即偶数项)的系数全为零.23.函数()y f x =的图象的对称性(1)函数()y f x =的图象关于直线x a =对称()()f a x f a x ⇔+=- (2)()f a x f x ⇔-=.(2)函数()y f x =的图象关于直线2a b x +=对称()()f a mx f b mx ⇔+=-()()f a b mx f mx ⇔+-=.24.两个函数图象的对称性(1)函数()y f x =与函数()y f x =-的图象关于直线0x =(即y 轴)对称.(2)函数()y f mx a =-与函数()y f b mx =-的图象关于直线2a b x m+=对称.(3)函数)(x f y =和)(1x f y -=的图象关于直线y=x 对称.25.若将函数)(x f y =的图象右移a 、上移b 个单位,得到函数b a x f y +-=)(的图象;若将曲线0),(=y x f 的图象右移a 、上移b 个单位,得到曲线0),(=--b y a x f 的图象.26.互为反函数的两个函数的关系 a b f b a f =⇔=-)()(1.27.若函数)(b kx f y +=存在反函数,则其反函数为])([11b x f k y -=-,并不是)([1b kx fy +=-,而函数)([1b kx fy +=-是])([1b x f ky -=的反函数. 28.几个常见的函数方程(1)正比例函数()f x cx =,()()(),(1)f x y f x f y f c +=+=.(2)指数函数()x f x a =,()()(),(1)0f x y f x f y f a +==≠.(3)对数函数()log a f x x =,()()(),()1(0,1)f xy f x f y f a a a =+=>≠. (4)幂函数()f x x α=,'()()(),(1)f xy f x f y f α==.(5)余弦函数()cos f x x =,正弦函数()sin g x x =,()()()()()f x y f x f y g x g y -=+,()(0)1,lim1x g x f x→==.29.几个函数方程的周期(约定a>0)(1))()(a x f x f +=,则)(x f 的周期T=a ; (2)0)()(=+=a x f x f ,或)0)(()(1)(≠=+x f x f a x f , 或1()()f x a f x +=-(()0)f x ≠,或[]1(),(()0,1)2f x a f x =+∈,则)(x f 的周期T=2a ; (3))0)(()(11)(≠+-=x f a x f x f ,则)(x f 的周期T=3a ;(4))()(1)()()(212121x f x f x f x f x x f -+=+且1212()1(()()1,0||2)f a f x f x x x a =⋅≠<-<,则)(x f 的周期T=4a ;(5)()()(2)(3)(4)f x f x a f x a f x a f x a +++++++()()(2)(3)(4)f x f x a f x a f x a f x a =++++,则)(x f 的周期T=5a ; (6))()()(a x f x f a x f +-=+,则)(x f 的周期T=6a. 30.分数指数幂(1)m na =0,,a m n N *>∈,且1n >). (2)1m nm naa-=(0,,a m n N *>∈,且1n >).31.根式的性质(1)n a =.(2)当na =; 当n为偶数时,,0||,0a a a a a ≥⎧==⎨-<⎩.32.有理指数幂的运算性质 (1) (0,,)r s r s a a a a r s Q +⋅=>∈. (2) ()(0,,)r s rs a a a r s Q =>∈. (3)()(0,0,)r r r ab a b a b r Q =>>∈. 注: 若a >0,p 是一个无理数,则a p 表示一个确定的实数.上述有理指数幂的运算性质,对于无理数指数幂都适用.33.指数式与对数式的互化式log ba Nb a N =⇔=(0,1,0)a a N >≠>. 34.对数的换底公式log log log m a m N N a=(0a >,且1a ≠,0m >,且1m ≠, 0N >).推论log log m n a a nb b m=(0a >,且1a >,,0m n >,且1m ≠,1n ≠, 0N >). 35.对数的四则运算法则若a >0,a ≠1,M >0,N >0,则 (1)log ()log log a a a MN M N =+;(2)log log log aa a MM N N=-; (3)log log ()n a a M n M n R =∈.36.设函数)0)((log )(2≠++=a c bx ax x f m ,记ac b 42-=∆.若)(x f 的定义域为R ,则0>a ,且0<∆;若)(x f 的值域为R ,则0>a ,且0≥∆.对于0=a 的情形,需要单独检验.37. 对数换底不等式及其推广 若0a >,0b >,0x >,1x a≠,则函数log ()ax y bx =(1)当a b >时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为增函数.,(2)当a b <时,在1(0,)a 和1(,)a+∞上log ()ax y bx =为减函数.推论:设1n m >>,0p >,0a >,且1a ≠,则 (1)log ()log m p m n p n ++<.(2)2log log log 2a a a m nm n +<. 38. 平均增长率的问题如果原来产值的基础数为N ,平均增长率为p ,则对于时间x 的总产值y ,有(1)x y N p =+.39.数列的同项公式与前n 项的和的关系11,1,2n n n s n a s s n -=⎧=⎨-≥⎩( 数列{}n a 的前n 项的和为12n n s a a a =+++).40.等差数列的通项公式*11(1)()n a a n d dn a d n N =+-=+-∈;其前n 项和公式为1()2n n n a a s +=1(1)2n n na d -=+ 211()22d n a d n =+-. 41.等比数列的通项公式1*11()n nn a a a q q n N q-==⋅∈; 其前n 项的和公式为11(1),11,1n n a q q s q na q ⎧-≠⎪=-⎨⎪=⎩ 或11,11,1n n a a qq q s na q -⎧≠⎪-=⎨⎪=⎩.42.等比差数列{}n a :11,(0)n n a qa d a b q +=+=≠的通项公式为1(1),1(),11n n n b n d q a bq d b q d q q -+-=⎧⎪=+--⎨≠⎪-⎩;其前n 项和公式为(1),(1)1(),(1)111n n nb n n d q s d q db n q q q q +-=⎧⎪=-⎨-+≠⎪---⎩. 43.分期付款(按揭贷款)每次还款(1)(1)1nnab b x b +=+-元(贷款a 元,n 次还清,每期利率为b ). 44.常见三角不等式(1)若(0,)2x π∈,则sin tan x x x <<.(2) 若(0,)2x π∈,则1sin cos x x <+≤(3) |sin ||cos |1x x +≥.45.同角三角函数的基本关系式22sin cos 1θθ+=,tan θ=θθcos sin ,tan 1cot θθ⋅=.46.正弦、余弦的诱导公式212(1)sin ,sin()2(1)s ,nn n co απαα-⎧-⎪+=⎨⎪-⎩212(1)s ,s()2(1)sin ,nn co n co απαα+⎧-⎪+=⎨⎪-⎩47.和角与差角公式sin()sin cos cos sin αβαβαβ±=±;cos()cos cos sin sin αβαβαβ±=;tan tan tan()1tan tan αβαβαβ±±=.22sin()sin()sin sin αβαβαβ+-=-(平方正弦公式); 22cos()cos()cos sin αβαβαβ+-=-.sin cos a b αα+=)αϕ+(辅助角ϕ所在象限由点(,)a b 的象限决定,tan b aϕ= ).48.二倍角公式 sin 2sin cos ααα=.2222cos 2cos sin 2cos 112sin ααααα=-=-=-.22tan tan 21tan ααα=-. 49. 三倍角公式3sin 33sin 4sin 4sin sin()sin()33ππθθθθθθ=-=-+.3cos34cos 3cos 4cos cos()cos()33ππθθθθθθ=-=-+.323tan tan tan 3tan tan()tan()13tan 33θθππθθθθθ-==-+-.50.三角函数的周期公式函数sin()y x ωϕ=+,x ∈R 及函数cos()y x ωϕ=+,x ∈R(A,ω,ϕ为常数,且A ≠0,ω>0)的周期2T πω=;函数tan()y x ωϕ=+,,2x k k Zππ≠+∈(A,ω,ϕ为常数,且A ≠0,ω>0)的周期T πω=. 51.正弦定理2sin sin sin a b cR A B C===. 52.余弦定理2222cos a b c bc A =+-; 2222cos b c a ca B =+-;2222cos c a b ab C =+-.53.面积定理 (1)111222a b c S ah bh ch ===(a b c h h h 、、分别表示a 、b 、c 边上的高).(2)111sin sin sin 222S ab C bc A ca B ===. (3)OABS ∆=54.三角形内角和定理在△ABC 中,有()A B C C A B ππ++=⇔=-+222C A B π+⇔=-222()C A B π⇔=-+. 55. 简单的三角方程的通解sin (1)arcsin (,||1)k x a x k a k Z a π=⇔=+-∈≤. s 2arccos (,||1)co x a x k a k Z a π=⇔=±∈≤.tan arctan (,)x a x k a k Z a R π=⇒=+∈∈. 特别地,有sin sin (1)()k k k Z αβαπβ=⇔=+-∈. s cos 2()co k k Z αβαπβ=⇔=±∈.tan tan ()k k Z αβαπβ=⇒=+∈.56.最简单的三角不等式及其解集sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Zπππ>≤⇔∈++-∈.sin (||1)(2arcsin ,2arcsin ),x a a x k a k a k Z πππ<≤⇔∈--+∈. cos (||1)(2arccos ,2arccos ),x a a x k a k a k Z ππ>≤⇔∈-+∈. cos (||1)(2arccos ,22arccos ),x a a x k a k a k Z πππ<≤⇔∈++-∈.tan ()(arctan ,),2x a a R x k a k k Z πππ>∈⇒∈++∈.tan ()(,arctan ),2x a a R x k k a k Z πππ<∈⇒∈-+∈.57.实数与向量的积的运算律 设λ、μ为实数,那么 (1) 结合律:λ(μa )=(λμ)a ;(2)第一分配律:(λ+μ)a =λa +μa; (3)第二分配律:λ(a +b )=λa +λb . 58.向量的数量积的运算律: (1) a ·b= b ·a (交换律); (2)(λa )·b= λ(a ·b )=λa ·b = a ·(λb ); (3)(a +b )·c= a ·c +b ·c. 59.平面向量基本定理如果e 1、e 2是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数λ1、λ2,使得a=λ1e 1+λ2e 2. 不共线的向量e 1、e 2叫做表示这一平面内所有向量的一组基底. 60.向量平行的坐标表示设a =11(,)x y ,b =22(,)x y ,且b ≠0,则a b(b ≠0)12210x y x y ⇔-=.53. a 与b 的数量积(或内积) a ·b =|a ||b |cos θ. 61. a ·b 的几何意义数量积a ·b 等于a 的长度|a |与b 在a 的方向上的投影|b |cos θ的乘积.62.平面向量的坐标运算(1)设a =11(,)x y ,b =22(,)x y ,则a+b=1212(,)x x y y ++. (2)设a =11(,)x y ,b =22(,)x y ,则a-b=1212(,)x x y y --. (3)设A 11(,)x y ,B 22(,)x y ,则2121(,)AB OB OA x x y y =-=--.(4)设a =(,),x y R λ∈,则λa=(,)x y λλ.(5)设a =11(,)x y ,b =22(,)x y ,则a ·b=1212()x x y y +. 63.两向量的夹角公式cos θ=(a =11(,)x y ,b =22(,)x y ).64.,A B d =||AB AB AB =⋅=11(,)x y ,B 22(,)x y ).65.向量的平行与垂直设a =11(,)x y ,b =22(,)x y ,且b ≠0,则 A ||b ⇔b =λa 12210x y x y ⇔-=.a ⊥b(a ≠0)⇔a ·b=012120x x y y ⇔+=. 66.线段的定比分公式设111(,)P x y ,222(,)P x y ,(,)P x y 是线段12P P 的分点,λ是实数,且12PP PP λ=,则121211x x x y y y λλλλ+⎧=⎪⎪+⎨+⎪=⎪+⎩⇔121OP OP OP λλ+=+ ⇔12(1)OP tOP t OP =+-(11t λ=+). 67.三角形的重心坐标公式△ABC 三个顶点的坐标分别为11A(x ,y )、22B(x ,y )、33C(x ,y ),则△ABC 的重心的坐标是123123(,)33x x x y y y G ++++. 68.点的平移公式''''x x h x x h y y k y y k⎧⎧=+=-⎪⎪⇔⎨⎨=+=-⎪⎪⎩⎩''OP OP PP ⇔=+ .注:图形F 上的任意一点P(x ,y)在平移后图形'F 上的对应点为'''(,)P x y ,且'PP 的坐标为(,)h k .69.“按向量平移”的几个结论(1)点(,)P x y 按向量a =(,)h k 平移后得到点'(,)P x h y k ++.(2) 函数()y f x =的图象C 按向量a =(,)h k 平移后得到图象'C ,则'C 的函数解析式为()y f x h k =-+.(3) 图象'C 按向量a =(,)h k 平移后得到图象C ,若C 的解析式()y f x =,则'C 的函数解析式为()y f x h k =+-.(4)曲线C :(,)0f x y =按向量a =(,)h k 平移后得到图象'C ,则'C 的方程为(,)0f x h y k --=.(5) 向量m =(,)x y 按向量a =(,)h k 平移后得到的向量仍然为m =(,)x y .70. 三角形五“心”向量形式的充要条件 设O 为ABC ∆所在平面上一点,角,,A B C 所对边长分别为,,a b c ,则(1)O 为ABC ∆的外心222OA OB OC ⇔==. (2)O 为ABC ∆的重心0OA OB OC ⇔++=.(3)O 为ABC ∆的垂心OA OB OB OC OC OA ⇔⋅=⋅=⋅. (4)O 为ABC ∆的内心0aOA bOB cOC ⇔++=. (5)O 为ABC ∆的A ∠的旁心aOA bOB cOC ⇔=+. 71.常用不等式:(1),a b R ∈⇒222a b ab +≥(当且仅当a =b 时取“=”号).(2),a b R +∈⇒2a b+≥(当且仅当a =b 时取“=”号).(3)3333(0,0,0).a b c abc a b c ++≥>>>(4)柯西不等式22222()()(),,,,.a b c d ac bd a b c d R ++≥+∈(5)b a b a b a +≤+≤-. 72.极值定理已知y x ,都是正数,则有(1)若积xy 是定值p ,则当y x =时和y x +有最小值p 2; (2)若和y x +是定值s ,则当y x =时积xy 有最大值241s . 推广 已知R y x ∈,,则有xy y x y x 2)()(22+-=+(1)若积xy 是定值,则当||y x -最大时,||y x +最大; 当||y x -最小时,||y x +最小.(2)若和||y x +是定值,则当||y x -最大时, ||xy 最小; 当||y x -最小时, ||xy 最大.73.一元二次不等式20(0)ax bx c ++><或2(0,40)a b ac ≠∆=->,如果a 与2ax bx c ++同号,则其解集在两根之外;如果a 与2ax bx c ++异号,则其解集在两根之间.简言之:同号两根之外,异号两根之间.121212()()0()x x x x x x x x x <<⇔--<<; 121212,()()0()x x x x x x x x x x <>⇔--><或. 74.含有绝对值的不等式 当a> 0时,有22x a x a a x a <⇔<⇔-<<.22x a x a x a >⇔>⇔>或x a <-. 75.无理不等式(1()0()0()()f x g x f x g x ≥⎧⎪>⇔≥⎨⎪>⎩. (22()0()0()()0()0()[()]f x f x g x g x g x f x g x ≥⎧≥⎧⎪>⇔≥⎨⎨<⎩⎪>⎩或. (32()0()()0()[()]f x g x g x f x g x ≥⎧⎪<⇔>⎨⎪<⎩. 76.指数不等式与对数不等式 (1)当1a >时,()()()()f x g x a a f x g x >⇔>;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪>⎩.(2)当01a <<时,()()()()f x g x a a f x g x >⇔<;()0log ()log ()()0()()a a f x f x g x g x f x g x >⎧⎪>⇔>⎨⎪<⎩77.斜率公式2121y y k x x -=-(111(,)P x y 、222(,)P x y ).78.直线的五种方程(1)点斜式 11()y y k x x -=- (直线l 过点111(,)P x y ,且斜率为k ). (2)斜截式 y kx b =+(b 为直线l 在y 轴上的截距). (3)两点式 112121y y x x y y x x --=--(12y y ≠)(111(,)P x y 、222(,)P x y (12x x ≠)). (4)截距式1x ya b+=(a b 、分别为直线的横、纵截距,0a b ≠、) (5)一般式 0Ax By C ++=(其中A 、B 不同时为0). 79.两条直线的平行和垂直 (1)若111:l y k x b =+,222:l y k x b =+ ①121212||,l l k k b b ⇔=≠; ②12121l l k k ⊥⇔=-.(2)若1111:0l A x B y C ++=,2222:0l A x B y C ++=,且A 1、A 2、B 1、B 2都不为零,①11112222||A B C l l A B C ⇔=≠;②1212120l l A A B B ⊥⇔+=; 80.夹角公式 (1)2121tan ||1k k k k α-=+. (111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan ||A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1与l 2的夹角是2π. 81. 1l 到2l 的角公式 (1)2121tan 1k k k k α-=+.(111:l y k x b =+,222:l y k x b =+,121k k ≠-) (2)12211212tan A B A B A A B B α-=+.(1111:0l A x B y C ++=,2222:0l A x B y C ++=,12120A A B B +≠). 直线12l l ⊥时,直线l 1到l 2的角是2π.82.四种常用直线系方程(1)定点直线系方程:经过定点000(,)P x y 的直线系方程为00()y y k x x -=-(除直线0x x =),其中k 是待定的系数; 经过定点000(,)P x y 的直线系方程为00()()0A x x B y y -+-=,其中,A B 是待定的系数.(2)共点直线系方程:经过两直线1111:0l A x B y C ++=,2222:0l A x B y C ++=的交点的直线系方程为111222()()0A x B y C A x B y C λ+++++=(除2l ),其中λ是待定的系数. (3)平行直线系方程:直线y kx b =+中当斜率k 一定而b 变动时,表示平行直线系方程.与直线0Ax By C ++=平行的直线系方程是0Ax By λ++=(0λ≠),λ是参变量.(4)垂直直线系方程:与直线0Ax By C ++= (A ≠0,B ≠0)垂直的直线系方程是0Bx Ay λ-+=,λ是参变量.83.点到直线的距离d =(点00(,)P x y ,直线l :0Ax By C ++=).84. 0Ax By C ++>或0<所表示的平面区域设直线:0l Ax By C ++=,则0Ax By C ++>或0<所表示的平面区域是:若0B ≠,当B 与Ax By C ++同号时,表示直线l 的上方的区域;当B 与Ax By C ++异号时,表示直线l 的下方的区域.简言之,同号在上,异号在下.若0B =,当A 与Ax By C ++同号时,表示直线l 的右方的区域;当A 与Ax By C ++异号时,表示直线l 的左方的区域. 简言之,同号在右,异号在左.85. 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域 设曲线111222:()()0C A x B y C A x B y C ++++=(12120A A B B ≠),则 111222()()0A x B y C A x B y C ++++>或0<所表示的平面区域是: 111222()()0A x B y C A x B y C ++++>所表示的平面区域上下两部分; 111222()()0A x B y C A x B y C ++++<所表示的平面区域上下两部分. 86. 圆的四种方程(1)圆的标准方程 222()()x a y b r -+-=.(2)圆的一般方程 220x y Dx Ey F ++++=(224D E F +->0).(3)圆的参数方程 cos sin x a r y b r θθ=+⎧⎨=+⎩.(4)圆的直径式方程 1212()()()()0x x x x y y y y --+--=(圆的直径的端点是11(,)A x y 、22(,)B x y ).87. 圆系方程(1)过点11(,)A x y ,22(,)B x y 的圆系方程是1212112112()()()()[()()()()]0x x x x y y y y x x y y y y x x λ--+--+-----= 1212()()()()()0x x x x y y y y ax by c λ⇔--+--+++=,其中0ax by c ++=是直线AB 的方程,λ是待定的系数.(2)过直线l :0Ax By C ++=与圆C :220x y Dx Ey F ++++=的交点的圆系方程是22()0x y Dx Ey F Ax By C λ+++++++=,λ是待定的系数.(3) 过圆1C :221110x y D x E y F ++++=与圆2C :222220x y D x E y F ++++=的交点的圆系方程是2222111222()0x y D x E y F x y D x E y F λ+++++++++=,λ是待定的系数.88.点与圆的位置关系点00(,)P x y 与圆222)()(r b y a x =-+-的位置关系有三种若d =d r >⇔点P 在圆外;d r =⇔点P 在圆上;d r <⇔点P 在圆内. 89.直线与圆的位置关系直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种: 0<∆⇔⇔>相离r d ; 0=∆⇔⇔=相切r d ; 0>∆⇔⇔<相交r d . 其中22BA C Bb Aa d +++=.90.两圆位置关系的判定方法设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21 条公切线外离421⇔⇔+>r r d ; 条公切线外切321⇔⇔+=r r d ;条公切线相交22121⇔⇔+<<-r r d r r ; 条公切线内切121⇔⇔-=r r d ; 无公切线内含⇔⇔-<<210r r d .91.圆的切线方程(1)已知圆220x y Dx Ey F ++++=.①若已知切点00(,)x y 在圆上,则切线只有一条,其方程是0000()()022D x xE y y x x y yF ++++++=. 当00(,)x y 圆外时, 0000()()022D x xE y y x x y yF ++++++=表示过两个切点的切点弦方程.②过圆外一点的切线方程可设为00()y y k x x -=-,再利用相切条件求k ,这时必有两条切线,注意不要漏掉平行于y 轴的切线.③斜率为k 的切线方程可设为y kx b =+,再利用相切条件求b ,必有两条切线.(2)已知圆222x y r +=.①过圆上的000(,)P x y 点的切线方程为200x x y y r +=; ②斜率为k 的圆的切线方程为y kx =±。
(完整版)高等数学公式大全及常见函数图像.doc
高等数学公式导数公式:(tgx)sec 2x(arcsin x)11x 2 ( ctgx)csc 2 x(arccos x)1(secx)secx tgx1 x 2(cscx)cscx ctgx(arctgx )1( a x )a x ln a1 x 2(log a x) 1(arcctgx ) 11x 2x ln a基本积分表:tgxdx ln cosx Cdxsec 2 xdx tgx Cctgxdxln sin xC cos 2 xdx2secxdx ln secx tgx Csin 2 xcsc xdxctgx Ccscxdx ln cscx ctgx Csecx tgxdxsecx Cdx1xcsc x ctgxdx cscx Ca 2 x 2a arctg aCa x dxa x Cdx1 x aln ax 2a 2 2a lnCx ashxdx chx Cdx 1 a xa 2x 22a lnCchxdx shxCa xdx x 2arcsinxCdx ln( x x 2 a 2 ) Ca 2ax 2 a 22 2 n 1 I nsin n xdxcos n xdx I n2 00 nx 2a 2dxx x 2a 2a 2 ln( xx 2a 2) C22x 2a 2 dx x x2a2a 2 ln xx 2 a 2C22a2x 2 dx x a 2x2a 2arcsin xC22 a三角函数的有理式积分:sin x2u , cos x 1 u 2, u tg x, dx2du1 u2 1 u 22 1 u 2一些初等函数:双曲正弦: shx e x e x2双曲余弦: chx e x e x2双曲正切: thx shx e x e chx e x earshx ln( x x 2 )1archx ln( x x2 1) arthx 1 ln 1 x2 1 x两个重要极限:lim sin x 1x 0 xlim (1 1 )x e 2.718281828459045...x xxx三角函数公式:·诱导公式:函数sin cos tg ctg角 A-α-sin α cos α -tg α -ctg α90°-αcos α sin α ctg α tg α90° +αcos α -sin α -ctg α -tg α180 °-αsin α -cos α -tg α -ctg α180 ° +α -sin α -cos α tg αctg α270 °-α-cos α -sin α ctg α tg α270 ° +α -cos α sin α -ctg α -tg α360 °-α-sin α cos α -tg α -ctg α360 ° +α sin α cos α tg αctg α·和差角公式:·和差化积公式:sin( ) sin cos cos sin sin sin 2 sin coscos( ) cos cos sin sin2 2tg ( )tg tg sin sin 2 cos sin1 tg tg2 2cos cos 2 cos cos ctg ctg 1ctg ( ) 2 2 ctg ctg cos cos 2 sin sin2 2·倍角公式:sin 2 2 sin coscos2 2 cos2 1 1 2sin 2 cos2 sin2 sin 3 3sin 4sin3ctg 2 ctg 2 1 cos3 4 cos3 3 cos 2ctg 3tg tg 3tg32tg 1 3tg 2tg 21 tg 2·半角公式:sin 1 cos cos 1 cos2 22 2tg 1 cos 1 cos sin ctg 1 cos 1 cos sin1 cos sin 1 cos 1 cos sin 1 cos2 2·正弦定理: a b c 2R ·余弦定理: c2 a2 b2 2ab cosC sin A sin B sin C·反三角函数性质:arcsin x2 arccos x arctgx2arcctgx高阶导数公式——莱布尼兹(Leibniz )公式:n(uv) ( n) C n k u (n k ) v(k)k 0u ( n) v nu (n 1) v n( n 1) u( n 2 )v n(n 1) ( n k 1) u(n k )v(k ) uv ( n)2! k!中值定理与导数应用:拉格朗日中值定理:f (b) 柯西中值定理:f (b) f (a) f ( )(b a) f (a) f ( )F (a) F ( )当 F( x) x时,柯西中值定理就是拉格朗日中值定理。
(完整版)高中数学各章节内容
第一章集合与函数概念1.1集合1.2函数及其表示1.3函数的基本性质第二章基本初等函数(Ⅰ)2.1指数函数2.2对数函数2.3幂函数第三章函数的应用3.1函数与方程3.2函数模型及其应用【必修二】第一章空间几何体1.1空间几何体的结构1.2 空间几何体的三视图和直观图1.3 空间几何体的表面积与体积第二章点、直线、平面之间的位置关系2.1空间点、直线、平面之间的位置关系2.2直线、平面平行的判定及其性质2.3直线、平面垂直的判定及其性质第三章直线与方程3.1直线的倾斜角与斜率3.2直线的方程3.3直线的交点坐标与距离公式第四章圆与方程4.1圆的方程4.2直线、圆的位置关系4.3空间直角坐标系第一章算法初步1.1算法与程序框图1.2基本算法语句1.3算法案例第二章统计2.1随机抽样2.2用样本估计总体2.3变量间的相关关系第三章概率3.1随机事件的概率3.2古典概型3.3几何概型【必修四】第一章三角函数1.1任意角和弧度制1.2任意角的三角函数1.3三角函数的诱导公式1.4三角函数的图象和性质1.5函数的图象1.6三角函数模型的简单应用第二章平面向量2.1平面向量的实际背景及基本概念2.2平面向量的线性运算2.3平面向量的基本定理及坐标表示2.4平面向量的数量积2.5平面向量应用举例第三章三角恒等变换3.1两角和与差的正弦、余弦和正切公式3.2简单的三角恒等变换【必修五】第一章解三角形1.1正弦定理和余弦定理1.2应用举例第二章数列2.1数列的概念与简单表示法2.2等差数列2.3等差数列的前n项和2.4等比数列2.5等比数列的前n项和第三章不等式3.1不等关系与不等式3.2一元二次不等式及其解法3.3二元一次不等式(组)与简单的线性规划问题3.4基本不等式选修2-1第一章常用逻辑用语1-1命题及其关系1-2充分条件与必要条件1-3简单的逻辑联结词1-4全称量词与存在量词小结复习参考题第二章圆锥曲线与方程2-1曲线与方程2-2椭圆探究与发现为什么截口曲线是椭圆信息技术应用用《几何画板》探究点的轨迹:椭圆2-3双曲线探究与发现2-4抛物线探究与发现阅读与思考圆锥曲线的光学性质及其应用小结复习参考题第三章空间向量与立体几何3-1空间向量及其运算阅读与思考向量概念的推广与应用3-2立体几何中的向量方法小结复习参考题选修2-2第一章导数及其应用1-1变化率与导数1-2导数的计算1-3导数在研究函数中的应用1-4生活中的优化问题举例1-5定积分的概念1-6微积分基本定理1-7定积分的简单应用小结复习参考题第二章推理与证明2-1合情推理与演绎推理2-2直接证明与间接证明2-3数学归纳法第三章数系的扩充与复数的引入3-1数系的扩充和复数的概念3-2复数代数形式的四则运算小结复习参考题选修2-3第一章计数原理1-1分类加法计数原理与分步乘法计数原理探究与发现子集的个数有多少1-2排列与组合探究与发现组合数的两个性质1-3二项式定理探究与发现“杨辉三角”中的一些秘密小结复习参考题第二章随机变量及其分布2-1离散型随机变量及其分布列2-2二项分布及其应用阅读与思考这样的买彩票方式可行吗探究与发现服从二项分布的随机变量取何值时概率最大2-3离散型随机变量的均值与方差2-4正态分布信息技术应用μ,σ对正态分布的影响小结复习参考题第三章统计案例3-1回归分析的基本思想及其初步应用3-2独立性检验的基本思想及其初步应用实习作业小结复习参考题。
初中数学倒角知识点总结doc
初中数学倒角知识点总结.doc一、倒角的基本概念倒角是指将一个直角或锐角改变其角度大小和方向的过程。
在数学中,倒角通常被用于平移、旋转、对称等操作,以简化图形的形状和计算。
二、倒角的方法1.平移法:通过平移图形,将一个角从一个位置移到另一个位置,使角度发生变化。
2.旋转法:通过旋转图形,将一个角围绕一个固定点旋转一定的角度,使角度发生变化。
3.对称法:通过对称变换,将一个角翻转到另一个位置,使角度发生变化。
三、倒角的应用1.在几何图形中的应用:倒角在几何图形中有着广泛的应用,如三角形、四边形、多边形等。
通过倒角操作,可以简化图形的形状和计算,提高解题效率。
2.在实际生活中的应用:倒角在实际生活中也有着广泛的应用,如建筑物的设计、机械零件的制造等。
通过倒角操作,可以使建筑物或机械零件的形状更加美观、实用和方便。
四、倒角的性质1.倒角的度数和方向:倒角的度数和方向可以根据需要进行调整。
通过平移、旋转、对称等操作,可以改变倒角的度数和方向。
2.倒角的角度变化:倒角的角度变化会影响图形的形状和大小。
通过改变倒角的度数和方向,可以改变图形的形状和大小。
3.倒角的对称性:倒角具有对称性,即对于一个倒角,存在一个对称的倒角与之对应。
这种对称性在解决几何问题时非常有用。
五、如何掌握倒角的知识点1.理解概念:要掌握倒角的知识点,首先需要理解倒角的概念和基本操作方法。
可以通过实例和练习题来加深对倒角概念的理解。
2.掌握方法:要掌握倒角的方法,需要了解平移、旋转、对称等操作的特点和应用场景。
可以通过练习题和实践操作来加深对各种倒角方法的理解和掌握。
3.实践应用:要掌握倒角的应用,需要将倒角方法应用到具体的几何问题和实际生活中。
可以通过解决一些具有代表性的几何问题和实际生活问题来提高对倒角应用的理解和掌握。
4.总结规律:要掌握倒角的规律,需要在实践中不断总结和归纳。
可以通过对一些经典例题的分析和归纳,总结出一些常见的规律和技巧,提高解题效率。
(完整word版)高等数学辅导讲义.doc
第一部分函数极限连续函数、极限、连续函数极限连续函数概念函数的四种反函数与复初等函数数列极限函数极限连续概念间断点分类初等函数的连闭区间上连续特征合函数续性函数的性质函数的有界数列极限的函数极限的第一类间断有界性与最大性定义定义点值最小值定理函数的单调收敛数列的函数极限的可去间断点零点定理性性质性质函数的奇偶极限的唯一函数极限的跳跃间断点性性唯一性函数的周期收敛数列的函数极限的第二类间断性有界性局部有界性点收敛数列的函数极限的保号性局部保号性数列极限四函数极限与数则运算法则列极限的关系极限存在准函数极限四则则运算法则夹逼准则两个重要极限单调有界准无穷小的比则较高阶无穷小低阶无穷小同阶无穷小等价无穷小历年试题分类统计及考点分布考点复合函数极限四则两个重要单调有界无穷小的合计运算法则极限准则阶年份19871988 5 3 8 19891990 3 3 6 1991 5 3 8 1992 3 3 1993 5 3 8 1994 3 3 1995 3 3 1996 3 6 3 12 1997 3 3 199819992000 5 5 200120022003 4 4 8 2004 4 4 20052006 12 3 15 2007 4 4 2008 4 4 2009 4 4 2010 4 4 2011 10 10 20 合计8 18 37 32 27本部分常见的题型1.求分段函数的复合函数。
2.求数列极限和函数极限。
3.讨论函数连续性,并判断间断点类型。
4.确定方程在给定区间上有无实根。
一、 求分段函数的复合函数 例 1 (1988, 5 分) 设 f (x)e x2, f [ (x)]1 x 且 ( x) 0 求 (x) 及其定义,域。
解: 由 f (x) e x 2知 f [ ( x)] e2( x)1x ,又 (x) 0 ,则 ( x)ln(1 x), x 0 .例 2 (1990, 3 分) 设函数 f ( x)1, x1则 f [ f ( x)]10, x 1, .1, x1,练习题 : (1)设f (x)0, x1, g ( x)e x , 求f [ g( x)] 和 g[ f (x)] , 并作出这1, x 1,两个函数的图形。
【数学知识点】数学的起源50字简介
【数学知识点】数学的起源50字简介
数学,起源于人类早期的生产活动,为中国古代六艺之一,亦被古希腊学者视为哲学之起点。
数学的希腊语意思是“学问的基础”。
“数学”一词是来自希腊语,字面意思有学习、科学之意。
它起源于人类早期的生产活动,其基本概念的精炼早在古埃及、美索不达米亚及古印度就已经出现。
在中国古代,数学叫作算术,又称算学,最后才改为数学.中国古代的算术是六艺之一(六艺中称为“数”)。
数学主要的学科首要产生于商业上计算的需要、了解数与数之间的关系、测量土地及预测天文事件。
这四种需要大致地与数量、结构、空间及变化(即算术、代数、几何及分析)等数学上广泛的领域相关连著。
已知最古老的数学工具是发现于斯威士兰列朋波山的列朋波骨,大约是公元前35,000年的遗物。
它是一支狒狒的腓骨,上面被刻意切割出29个不同的缺口,使用计数妇女及跟踪妇女的月经周期。
相似的史前遗物也在非洲和法国出土,大约有35,000至20,000年之久,都与量化时间有关。
早期中国数学和世界其它地方的数学有很大不同,因此可以合理认为是独立发展的。
现存最古老的中国数学文献是《周髀算经》,成书年代有很多说法,从公元前1200年到公元前100年都有,但认为是在公元前300年左右似乎是合理的。
以上就是一些数学的起源与历史的相关信息,希望对大家有所帮助。
感谢您的阅读,祝您生活愉快。
【数学知识点】生活中的负数
【数学知识点】生活中的负数
海平面下、温度零下、欠费、透支、数轴的左边、下公差、股票的下跌、利润的亏损、经济的负增长、产量的下降、建筑地下部分的标高等等,都是生活中常见的负数。
1、温度:在计量温度时,以0度作为分界点,比0度低的温度叫零下温度,低于0
度时,在数值前加上负号,如:-3℃表示为零下3度或者负3度。
比0度高的温度叫零上
温度,在数值前加上正号,如:+5℃,表示零上5℃或者5℃。
2、海拔高度:相对于海平面来说的.海平面的高度用0表示的。
比海平面高8848米,用正数表示,称作海拔8848米。
比海平面低155米,用负数表示,
称作海拔-155米。
3、数量统计:例如:学校四年级共转来25名新同学记作+25名,五年级转走了18名同学应记作(-18名)。
做题过程中,“对5道”记作“+5”,“错5道”记作(-5)。
4、方向距离:例如:有规定向东步行500米记为 +500米,那么向西步行200米就记为 -200米。
5、盈利、增产/减产、支出/收入:收入为正,支出为负;以盈余为正,亏欠为负;增
产为正,减产为负。
这些是中国人使用负数在世界上是首创。
例如:收入-支出=负数,本
月收入10万元,本月费用11万元,10-11=-1万元,这样就是亏损。
感谢您的阅读,祝您生活愉快。
【高考复习】高考数学核心考点中的六大模块
【高考复习】高考数学核心考点中的六大模块盘点近年高考数学核心考点中的六大模块:第一:三角部分,包括三角函数,解三角形,平面向量,以这三个为主,并进行一些综合。
第二:概率统计数据。
文科就是概率和统计数据,理科就是概率统计数据与随机变量,它在里面重新加入了报读当中的随机变量的内容。
随机变量的内容就是理科特别必须回去实地考察的。
第三:立体几何。
文科是立体几何,理科则要求立体几何以及空间向量,也就是说理科生需要定量地去分析这个立体几何的问题,而不单单是了解立体几何的一些空间关系。
第四:数列部分。
数列部分文理建议就是差不多的。
按照往年来看,数列在理科里面小题考核通常就是以数列入背景的压轴题。
第五:解析几何。
解析几何部分是很多同学的坎,这块坎主要在三个方面,1、对于题面不熟悉,不能很好地翻译成代数语言。
2,翻译成代数语言之后,化解水平不到位。
3,解析几何里面有很多的细节容易丢失。
第六:函数和导数。
这个模块就是这几年命题变化比较显著的一个地方。
以往的函数、导数的一个问题,就更加女性主义于是常规地分类探讨这样一些基本的考核方法,但是现在的命题特点已经变化了,使学生利用导数这样一个工具回去研究函数,也就说道导数就像是一把尺子一样,像是一个裁缝,我量你这个函数短什么样子,从而对你展开一系列的分析。
但是很多时候我们只注重了怎么用尺子,却没注重至这个尺子用完了之后这个结果彰显出来什么特征。
与此同时这一块的文字描述也就是很多学生难犯下的问题,经常可以用一些很高端的语言,但是就是不给分数的,我们必须回去说道得很精确。
初中数学教案word模板
教案标题:初中数学《有理数的乘法》课时安排:2课时教学目标:知识与技能:1. 掌握有理数的乘法法则。
2. 能够运用有理数的乘法解决实际问题。
过程与方法:1. 通过实例演示,引导学生发现有理数乘法的基本规律。
2. 利用小组合作,探讨有理数乘法法则的适用范围和注意事项。
情感态度与价值观:1. 培养学生对数学的兴趣和好奇心。
2. 培养学生的团队合作意识和解决问题的能力。
教学重点:有理数的乘法法则。
教学难点:有理数乘法法则的灵活运用。
教学过程:第一课时:一、导入(5分钟)1. 复习加法、减法、除法运算。
2. 提问:同学们,我们今天来学习一种新的运算,你们猜猜是什么?二、新课讲解(20分钟)1. 讲解有理数的乘法定义:两个有理数相乘,就是它们的乘积。
2. 引导学生发现有理数乘法的基本规律,如:同号得正,异号得负;绝对值相乘等。
3. 通过实例演示,讲解有理数乘法法则。
4. 总结有理数乘法法则:(1)同号两数相乘,取正号,绝对值相乘。
(2)异号两数相乘,取负号,绝对值相乘。
三、练习与讨论(15分钟)1. 学生自主完成练习题,巩固有理数乘法法则。
2. 小组合作,探讨有理数乘法法则的适用范围和注意事项。
四、总结(5分钟)1. 回顾本节课所学内容,引导学生总结有理数乘法法则。
2. 强调有理数乘法法则在实际问题中的应用。
第二课时:一、复习导入(5分钟)1. 复习上节课所学内容,提问:同学们,你们还记得有理数乘法法则吗?2. 引导学生回顾有理数乘法法则的适用范围和注意事项。
二、课堂讲解(20分钟)1. 讲解有理数乘法在实际问题中的应用。
2. 举例说明,引导学生学会将有理数乘法法则运用到实际问题中。
三、练习与讨论(15分钟)1. 学生自主完成练习题,巩固有理数乘法在实际问题中的应用。
2. 小组合作,探讨有理数乘法在实际问题中的拓展应用。
四、总结(5分钟)1. 回顾本节课所学内容,引导学生总结有理数乘法在实际问题中的应用。
数学公式大全【完整版】
数学公式大全【完整版】在数学中,公式是用来描述数学关系和规律的一种符号形式。
无论是初中数学还是高中数学,数学公式都是学习的重点和难点之一。
本文将为大家呈现一个数学公式大全的完整版,覆盖了从初中到高中各个阶段的数学公式。
希望通过本文的整理,能够帮助读者更好地理解和掌握数学公式。
一、初中数学公式1. 平方和公式在初中数学中,平方和公式是一个重要的公式之一。
它的公式表达式如下:(a+b)² = a² + 2ab + b²2. 因式分解公式在解题过程中,因式分解是一个重要的技巧。
其中,二次方差公式和完全平方公式是其中两个重要的因式分解公式。
它们的表达式如下:(1) 二次方差公式:a² - b² = (a+b)(a-b)(2) 完全平方公式:a² + 2ab + b² = (a+b)²3. 一次函数公式一次函数是初中数学中最基本的函数之一,它的公式表达式如下:y = kx + b4. 三角函数公式在初中阶段,我们会接触到正弦函数、余弦函数和正切函数等三角函数。
以下为三角函数的常见公式:(1) 正弦函数:sin(x+y) = sin(x)cos(y) + cos(x)sin(y)(2) 余弦函数:cos(x+y) = cos(x)cos(y) - sin(x)sin(y)(3) 正切函数:tan(x+y) = (tan(x) + tan(y))/(1 - tan(x)tan(y))二、高中数学公式1. 二次函数公式二次函数是高中数学中的重点内容,以下为二次函数的一些常见公式:(1) 一般式:y = ax² + bx + c(2) 根与系数关系:若ax² + bx + c = 0的根为x₁和x₂,则有x₁+x₂ = -b/a, x₁x₂ = c/a(3) 平方完成式:对于一般式y = ax² + bx + c,y = a(x -h)² + k为其标准式,其中(-h, k)为顶点坐标。
数学核心素养11个核心词
数学核心素养11个核心词数学六大核心素养如下:1、数学运算。
【数学运算】是指在明晰运算对象的基础上,依据运算法则解决数学问题的过程。
主要包括:理解运算对象,掌握运算法则,探究运算方向,选择运算方法,设计运算程序,求得运算结果等。
数学运算是数学活动的基本形式,是演绎推理的一种形式,是得到数学结果的重要手段。
2、逻辑推理。
逻辑推理是指从一些事实和命题出发,依据逻辑规则推出一个命题的思维过程,主要有两类:一类是从特殊到一般的推理,推理形式主要有归纳、类比;一类是从一般到特殊的推理,推理形式主要有演绎。
3、直观想象。
直观想象是指借助几何直观和空间想象感知事物的形态与变化,利用图形理解、解决数学问题的过程。
包括借助空间认识事物的位置关系、形态变化、运动规律。
4、数学建模。
数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学知识与方法构建模型解决问题的过程。
主要包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、构建模型,求解结论,验证结果并改进模型,最终解决实际问题。
5、数据分析。
数据分析是指针对研究对象获得相关数据,运用统计方法对数据中的有用信息进行分析和推断,形成知识的过程。
主要包括:收集数据,整理数据,提取信息,构建模型对信息进行分析、推断,获得结论。
6、数学抽象。
数学抽象是指舍去事物的一切物理属性,得到数学研究对象的思维过程。
主要有从数量与数量关系、图形与图形关系中抽象出数学概念及概念之间的关系,从事物的具体背景中抽象出一般规律和结构,并且用数学符号或者数学术语予以表征。
【数学知识点】单项式和多项式的定义
【数学知识点】单项式和多项式的定义由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
分数和字母的积的形式也是单项式。
多项式是由若干个单项式相加组成的代数式。
由数或字母的积组成的代数式叫做单项式,单独的一个数或一个字母也叫做单项式。
这个名词是清代数学家李善兰译书时根据原词概念汉化的。
单项式中的数字因数叫做这个单项式的系数,一个单项式中,所有字母的指数的和叫做这个单项式的次数。
单项式是几次,就叫做几次单项式。
在数学中,多项式是指由变量、系数以及它们之间的加、减、乘、幂运算(非负整数次方)得到的表达式。
对于比较广义的定义,1个或0个单项式的和也算多项式。
按这个定义,多项式就是整式。
实际上,还没有一个只对狭义多项式起作用,对单项式不起作用的定理。
0作为多项式时,次数定义为负无穷大(或0)。
单项式和多项式统称为整式。
多项式中不含字母的项叫做常数项。
如:5X+6中的6就是常数项。
1.任意一个字母和数字的积的形式是单项式。
(除法中有:除以一个数等于乘这个数的倒数)。
2.单独一个字母或数字也叫单项式。
0也是数字,也属于单项式。
如果一个单项式,只含有数字因数,那么它的次数为0。
3.分母含有字母的式子不属于单项式。
因为单项式属于整式,而分母含有未知数的式子是分式。
a,-5,x,2xy都是单项式,而0.5m+n,1/x不是单项式。
4.有些分数也属于单项式。
x/π是单项式,因为π不是字母。
5.单项式是字母与数的乘积。
6.用运算符号把表示数的字母或数连接起来的式子叫代数式。
代数式不能含有“≥”、“=”、“<”、“≠”符号等。
感谢您的阅读,祝您生活愉快。
【高中数学】数学中的符号
【高中数学】数学中的符号由于研究的需要,人类创造了大量的数学符号,来代替和表示某些数学概念和规律,简化了数学研究工作,促进了数学的发展。
在中学数学中,常见的数学符号有以下六种:一、数量符号如3/4,圆周率π;a,x等。
二、运算符号如加号(+),减号(-),乘号(×或),除号(÷或-),比号(:)等。
三、关系符号例如“=”就是“等号”,读成“等同于”;“≈”或“=”就是“约等号”读成“相当于”;“≠”就是“不等号”。
读成“不等同于”;“>”就是“大于符号”,读成“大于”;“<”就是“大干活符号”,读成“大于”;“∥”就是“平行符号”,读成“平行于”;“⊥”就是“横向符号”,读成“旋转轴”等。
四、结合符号如小括号(),中括号[],大括号{}。
五、性质符号例如正号(+)、负号(-),绝对值符号(||)。
六、简写符号如三角形(△),圆(⊙),幂()等。
这些符号的产生,一就是源于象形,实际上就是增大的图形。
例如平行符号“∥”就是两条平行的直线;横向符号“⊥”就是互相横向的两条直线;三角形符号“△”就是一个增大了的三角形;符号“⊙”则表示一个圆,中间的一点则表示圆心,以免与数0及英文字母o混为一谈。
二就是源于会意,即为由图形就可以窥见某种特定的意义。
例如用两条长度成正比的线段“=”同列在一起,则表示等号;提一条斜线“≠”,则表示不等号;用符号“>”则表示大于(左侧小,右边大),“<”则表示大于(左侧大,右边小),意思不难理解;用括号“()”、“[]”、“{}”把若干个量融合在一起,也就是不言而喻的。
三就是源于文字的简写。
例如我们以后将要教给的平方根号“”中的“√”,从拉丁字母radix(根值)的第一个字母r演进而去。
相近符号“∽”就是把拉丁字母s横过来写下,而s就是sindlar(相近)的第一个字母。
除了大量的符号就是人们经过规定延用下来的。
当然这些符号并不是一已经开始就都就是这种形状,而是存有一个演进过程的,这里就不多谈了。
关于数学的严谨性.doc
关于数学的严谨性.doc严谨性是数学的独持之美。
它表现在数学定义准确地揭示了概念的本质属性;数学结论存在且唯一,对错分明,不模棱两可;数学的逻辑推理严密,从它的公理开始到演绎的最后一个环节不允许有一句假话,即使错一个符号也不行。
数学的这种严谨性,要求数学工作者具有实事求是,谦虚谨慎,孜孜不倦地追求真理的美德,这正是数学美的伦理价值所在。
数学是最为严谨、最严格的科学。
数学的论证中使用非常严格的演绎推理。
古代的欧几里德几何学以公理、公设为出发点,以演绎的方式构成了几何学。
由HILBERT的几何基础列举了一些基本对象(点、直线)、基本关系(衔接、合同、介于),所谓公理是基本对象和基本关系的属性。
一切几何定理,就是这些属性的演绎推理。
建立起几何学的理论架构,形成了现代基础数学严谨的体系。
数学因为严谨而被信任,因为严谨而被尊重,失去了严谨,数学也就失去了支撑的骨架,空有一堆形式的符号。
爱因斯坦说过:“为什么数学比其他一切科学受到特殊尊重,一个理由是它的命题是绝对可靠的和无可争辩的,而其他一切科学的命题在某中程度上都是可争辩的,并且经常处于会被新发现的事实推翻的危险之中。
”著名数学教育家弗赖登塔尔就把严谨性原则作为数学教学的基本原则之一,而很多数学教学论的著作则提出了严谨性与量力性相结合的原则。
这里的量力量的不是教师的力,而是指“严谨性的要求应受学生可接受性的制约”。
也就是说,在学生可接受范围内,我们的教学必须遵循严谨的原则。
总而言之,数学是严谨的,数学教育也应该是严谨的教育。
作为教师,自己要有一个系统的能满足教学需要的数学体系,同时,在发展学生的多样思维建设开放课堂时,应该把学生的新异思维按其内在规律区别对待,纳入整个数学体系,维护数学的严谨性,让学生数学大厦的基础更为坚实。
四年级(上)数学应用题及解析-类型五 路程问题人教新课标版【精选】.doc
类型五路程问题【知识讲解】1. 路程问题路程问题是专门讲物体运动的速度,时间和路程的应用题。
一共走了多长的路叫做路程,每小时(或每分钟)行的路程叫做速度,行了几小时(或几分钟)叫做时间。
2.速度,时间和路程之间的关系速度×时间=路程路程÷速度=时间路程÷时间=速度3. 相遇问题两个运动的物体同时由两地出发相向而行,在途中相遇。
这类应用题叫做相遇问题。
数量关系:相遇时间=总路程÷(甲速+乙速)总路程=(甲速+乙速)×相遇时间4.追及问题两个运动物体在不同地点同时出发(或者在同一地点而不是同时出发,或者在不同地点又不是同时出发)作同向运动,在后面的,行进速度要快些,在前面的,行进速度较慢些,在一定时间之内,后面的追上前面的物体。
这类应用题就叫做追及问题。
数量关系:追及时间=追及路程÷(快速-慢速)追及路程=(快速-慢速)×追及时间【典型例题】【例题1】南京到上海的水路长392千米,一艘轮船从南京开出每小时行49千米,经过几时船到上海?【分析】由题意可知392千米是路程,每小时49千米是轮船速度,问题是求时间,根据数量关系式:路程÷速度=时间可解答出时间。
【解答】392÷49=8(小时)答:经过8时船到上海。
【小结】:解决此类问题首先要弄清已知条件和所求问题,再选取合适的数量关系式进行解答。
【例题2】:甲在乙的后面28千米,两人同时相向而行,甲每小时行16千米,乙每小时行9千米,问甲几小时追上乙?【分析】:本题属于追击问题,甲每小时比乙多行16-9=7千米,也就是甲每小时可以追近乙16-9=7千米,这是速度差,已知甲在乙后面28千米,28千米里包含着几个(16-9)千米,也就是追击所需要的时间,列式28÷(16-9)=4(小时)。
【解答】28÷(16-9)=4(小时)答:甲4小时追上乙。
【小结】:解答本题的关键是认清题目中的路程和速度差,本题用到的数量关系式是追及时间=追及路程÷(快速-慢速)。
【数学知识点】集合符号大全和名称
【数学知识点】集合符号大全和名称1、N:非负整数集合或自然数集合{0,1,2,3,…}2、N*或N+:正整数集合{1,2,3,…}3、Z:整数集合{…,-1,0,1,…}4、Q:有理数集合5、Q+:正有理数集合6、Q-:负有理数集合7、R:实数集合(包括有理数和无理数)8、R+:正实数集合9、R-:负实数集合10、C:复数集合11、∅:空集(不含有任何元素的集合)(1)集合交换律:A∩B=B∩A;A∪B=B∪A。
(2)集合结合律:(A∩B)∩C=A∩(B∩C);(A∪B)∪C=A∪(B∪C)。
(3)集合分配律:A∩(B∪C)=(A∩B)∪(A∩C);A∪(B∩C)=(A∪B)∩(A∪C)。
(1)列举法:把集合中的元素一一列举出来,并用花括号括起来表示集合的方法叫列举法;(2)描述法:用集合所含元素的共同特征表示集合的方法,称为描述法;(3)文氏(Venn)图法:画一条封闭的曲线,用它的内部来表示一个集合。
并集:以属于A或属于B的元素为元素的集合称为A与B的并(集),记作A∪B(或B∪A),读作“A并B”(或“B并A”),即A∪B={x|x∈A,或x∈B}交集:以属于A且属于B的元素为元素的集合称为A与B的交(集),记作A∩B(或B∩A),读作“A交B”(或“B交A”),即A∩B={x|x∈A,且x∈B}无限集:定义:集合里含有无限个元素的集合叫做无限集有限集:令N+是正整数的全体,且Nn={1,2,3,……,n},如果存在一个正整数n,使得集合A与Nn一一对应,那么A叫做有限集合。
差:以属于A而不属于B的元素为元素的集合称为A与B的差(集)。
补集:属于全集U不属于集合A的元素组成的集合称为集合A的补集,记作CuA,即CuA={x|x∈U,且x不属于A}。
感谢您的阅读,祝您生活愉快。
七年级上册数学课本答案人教版【五篇】.doc
七年级上册数学课本答案人教版【五篇】1.解:根据正数、负数的定义可知,正数有:5,o.56,12/5,+2,负数有:-5/7,-3,-25.8,-0.0001.-600.2.解:(1)0.08m表示水面高于标准水位0.08m;-0.2m表示水面低于标准水位0.2m.(2)水面低于标准水位0.1m,记作-0.1m;高于标准水位0.23m,记作+0.23m(或0.23m).3.解:不对.O既不是正数,也不是负数.4.解:表示向前移动5m.这时物体离它两次移动前的位置为Om,即回到了它两次移动前的位置.5.解:这七次测量的平均值为(79.4+80.6+80.8+79.1+80+79.6+80.5)/7=80(m).以平均值为标准,七次测量的数据用正数、负数表示分别为:-0.6m,+0.6m.+0.8m,-0.9m,Om,-0.4m.十0.5rn6.解:氢原子中的原子核所带电荷可以用+1表示,氢原子中的电子所带电荷以用-1表示.7.解:由题意得7-4-4=-1(℃).8.解:中国、意大利服务出口额增长了;美国、德国、英国、日本服务出日额减少了;意大利增长率;日本增长率最低.习题1.2答案1.解:正数:{15,0.15,22/5,+20,…);负数:{-3/8,-30,-12.8,-60,…}.点拨:依据正负数的概念进行准确分类做到不重不漏.2.解:如图1-2-20所示.3.解:当沿数轴正方向移动4个单位长时,点B表示的数是1;当沿数轴反方向移动4个单位长时,点B表示的数是-7.4.解:各数的相反数分别为4,-2,1.5,0,-1/3,9/4.在数轴上表示如图1-2-21所示.5.解:丨-125丨=125,丨+23丨=23,丨-3.5丨=3.5,丨0丨=0,丨2/3丨=2/3,丨-3/2丨=3/2,丨-0.05丨=0.05.-125的绝对值,0的绝对值最小.6.解:-3/2-2/3-1/2-0.25-0.1500.05+2.3.7.解:各城市某年一月份的平均气温(℃)按从高到低的顺序排列为13.1,3.8,2.4,-4.6,-19.4.8.解:因为l+5l=5,丨-3.5丨=3.5,丨+0.7丨=0.7,丨-2.5丨=2.5,丨-0.6丨=0.6,所以从左向右数,第五个排球的质量最接近标准.9.解:-9.6%最小.增幅是负数说明人均水资源占有量在下降.10.解:表示数1的点与表示-2和4的点的距离相等,都是3.11.解:(1)有,如-0.1,-0.12,-0.57,…;有,如-0.15,-0.42,-0.48,….(2)有,-2;-1,0,1.(3)没有.(4)如-101,-102,-102.5.12.解:不一定,x还可能是-2;x=0;x=0.习题1.3答案1.(1)-4;(2)8;(3)-12;(4)-3;(5)-3.6;(6)-1/5;(7)1/15;(8)-41/3.2.(1)3;(2)0;(3)1.9;(4)-1/5.3.(1)-16;(2)0;(3)16;(4)0;(5)-6;(6)6;(7)-31;(8)102;(9)-10.8;(10)0.2.4.(1)1;(2)1/5;(3)1/6;(4)-5/6;(5)-1/2;(6)3/4;(7)-8/3;(8)-8.5.(1)3.1;(2)3/4;(3)8;(4)0.1;(5)-63/4;(6)0.6.解:两处高度相差:8844.43-(-415)=9259.43(m).7.解:半夜的气温为-7+11-9=-5(℃).8.解:132-12.5-10.5+127-87+136.5+98=383.5(元).答:一周总的盈亏情况是盈利383.5元.9.解:25×8+1.5-3+2-0.5+1-2-2-2.5=200-5.5=194.5(kg).答:这8筐白菜一共194.5kg.10.解:各天的温差如下:星期一:10-2=8(℃),星期二:12-1=11(℃),星期三:11-0=11(℃),星期四:9-(-1)=10(℃),星期五:7-(-4)=11(℃),星期六:5-(-5)=10(℃),星期日:7-(-5)=12(℃).答:星期日的温差,星期一的温差最小.11.(1)16(2)(-3)(3)18(4)(-12)(5)(-7)(6)712.解:(-2)+(-2)=-4,(-2)+(-2)+(-2)=-6,(-2)+(-2)+(-2)+(-2)=-8,(-2)+(-2)+(-2)+(-2)+(-2)=-10,(-2)×2=4,(-2)×3=-6,(-2)×4=8,(-2)×5=-10.法则:负数乘正数积为负,积的绝对值等于两个数的绝对值的积. 13.解:第一天:0.3-(-0.2)=0.5(元);第二天:0.2-(-0.1)=0.3(元);第三天:0-(-0.13)=0.13(元).平均值:(0.5+0.3+0.13)÷3=0.31(元).习题1.4答案1.解:(1)(-8)×(-7)=56;(2)12X(-5)=-60;(3)2.9×(-0.4)=-1.16;(4)-30.5X0.2=-6.1;(5)100×(-0.001)=-0.1;(6)-4.8×(-1.25)=6.2.解:(1)1/4×(-8/9)=-2/9;(2)(-5/6)×(-3/10)=1/4;(3)-34/15×25=-170/3;(4)(-0.3)×(-10/7)=3/7.3.解:(1)-1/15;(2)-9/5;(3)-4;(4)100/17;(5)4/17;(6)-5/27. 4.解:(1)-91÷13=-7;(2)-56÷(-14)=4;(3)16÷(-3)=-16/3;(4)(-48)÷(-16)=3;(5)4/5÷(-1)=-4/5;(6)-0.25÷3/8=-2/3.5.解:-5,-1/5,-4,6,5,1/5,-6,4.6.解:(1)(-21)/7=-3;(2)3/(-36)=-1/12;(3)(-54)/(-8)=27/4;(4)(-6)/(-0.3)=20.7.解:(1)-2×3×(-4)=2×3×4=24;(2)-6×(-5)×(-7)=-6×5×7=-210;(3)(-8/25)×1.25×(-8)=8/25×8×5/4=16/5;(4)0.1÷(-0.001)÷(-1)=1/10×1000×1=100;(5)(-3/4)×(-11/2)÷(-21/4)=-3/4×3/2×4/9=-1/2;(6)-6×(-0.25)×11/14=6×1/4×11/14=33/28;(7)(7)×(-56)×0÷(-13)=0;(8)-9×(-11)÷3÷(-3)=-9×11×1/3×1/3=-11.8.解:(1)23×(-5)-(-3)÷3/128=-115+3×128/3=-115+128=13;(2)-7×(-3)×(-0.5)+(-12)×(-2.6)=-7×3×0.5+12×2.6=-10.5+31.2=20.7;(3)(13/4-7/8-7/12)÷(-7/8)+(-7/8)÷(13/4-7/8-7/12)=(7/4-7/8-7/12)×(-8/7)+(-7/8)÷7/24=7/24×(-8/7)-3=-31/3;(4)-丨-2/3丨-丨-1/2×2/3丨-丨1/3-1/4丨-丨-3丨=-2/3-1/3-1/12-3=-49/12.9.解:(1)(-36)×128÷(-74)≈62.27;(2)-6.23÷(-0.25)×940=23424.80;(3)-4.325×(-0.012)-2.31÷(-5.315)≈0.49;(4)180.65-(-32)×47.8÷(-15.5)≈81.97.点拨:本题考查用计算器进行混合运算,要注意计算器的按键顺序与方法和计算结果的精确度.10.(1)7500(2)-140(3)200(4)-12011.解:450+20×60-12×120=210(m).答:这时直升机所在高度是210m.12.(1),(2),(3),(4)=,=点拨:有理数相乘(除)的法则中明确指出先要确定积的符号,即两数相乘(或相除)同号得正,异号得负.13.解:2,1,-2,-1.一个非0有理数不一定小于它的2倍,因为一个负数比它的2倍大.14.解:(-2+3)a.15.解:-2,-2,2.(1)(2)均成立,从它们可以总结出:分子、分母以及分数这三者的符号,改变其中两个,分教的值不变.习题1.5答案1.解:(1)-27;(2)16;(3)2.89;(4)-64/27;(5)8;(6)36.点拨:本题要根据乘方的意义来计算,还应注意乘方的符号法则,乘方的计算可转化为乘法的计算,计算时应先确定幂的符号.2.解:(1)429981696;(2)112550881;(3)360.944128;(4)-95443,993.3.解:(1)(-1)d×5+(-2)÷4=1×5+16÷4=5+4=9;(2)(-3)-3×(-1/3)=-27-3×1/81=-27-1/27=-271/27;(3)7/6×(1/6-1/3)×3/14÷3/5=7/6×(-1/6)×3/14×5/3=-5/72;(4)(-10)+[(-4)-(1-3)×2]=-1000+(16+8×2)=-1000+32=-968;(5)-2÷4/9×(-2/3)=-8×9/4×4/9=-8;(6)4+(-2)×5-(-0.28)÷4=4-8×5-(-0.07)=4-40+0.07=-35.93. 4.解:(1)235000000=2.35×10;(2)188520000=1.8852×10;(3)701000000000=7.01×10;(4)-38000000=-3.8×10.点拨:科学记数法是一种特定的记数方法,应明白其中包含的基本原理及其结构特征,即要掌握形如a×10的结构特征:1≤丨a丨10,n为正整数.5.解:3×10=30000000;1.3×10=1300;8.05X10 =8050000;2.004×10=200400;-1.96×10=-19600.6.解:(1)0.00356≈0.0036;(2)566.1235≈566;(3)3.8963≈3.90;(4)0.0571≈0.057.7.解:平方等于9的数是±3,立方等于27的数是3.8.解:体积为a.a.b=ab,表面积为2.a.a+4.a.b=2a+4ab.当a=2cm,b=5cm时,体积为ab=2×5=20(cm);表面积为2a+4ab=2×2+4×2×5=48(cm).9.解:340m/s=1224km/h=1.224×10km/h.因为1.1×10krn/hl.224×10kn/h,所以地球绕太阳公转的速度比声音在空气中的传播速度大.点拨:比较用科学记数法表示的两个正数,先看10的指数的大小,10的指数大的那个数就大;若10的指数相同,则比较前面的数a,a 大的则大.10.解:8.64×10×365=31536000=3.1536×10(s).11.解:(1)0.1=0.01;1=1;10=100;100=10000.观察发现:底数的小数点向左(右)移动一位时,平方数小数点对应向左(右)移动两位.(2)0.1-0.001;1=1;10=1000;100=1000000.观察发现:底数的小数点向左(右)移动一位时,立方数小数点对应向左(右)移动三位.(3)0.1=0.0001;1—1;10=10000;100=100000000.观察发现:底数的小数点向左(右)移动一位时,四次方数小数点对应向左(右)移动四位.12.解:(-2)=4;2=4;(-2)=-8,2=8.当a0时,a0,-a0.故a≠-a;a0,-a0,故a≠-a,所以当a0时,(1)(2)成立,(3)(4)不成立,。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
数学
专业代码(070100)
数学是一门在非常广泛意义下研究自然现象和社会现象中的数量关系和空间形式的科学。
它的根本特点是从自然现象的量的侧面抽象出一般性的规律,预见事物的发展并指导人们能动地认识和改造世界。
数学是各门科学的基础,在自然科学、社会科学、工程技术等方面起着思想库的作用;又是经济建设和技术进步的重要工具。
数学科学是一个范围广阔、分支众多、应用广泛的科学体系。
本学科目前在基础数学、计算数学、概率论与数理统计、应用数学、运筹学与控制论五个二级学科招收硕士研究生。
数学学科是我校近几年快速发展的学科之一,于2003年获应用数学二级学科硕士学位授予权, 已培养出硕士研究生45人,2010年获数学一级学科硕士学位授予权。
本学科有一批实力雄厚的教学、科研骨干和在河北省有突出贡献和地位的学术带头人。
现有教授9人,副教授18人,讲师32人,博士14人(其中博士后5人),硕士29人,河北省教学名师1人,河北省有突出贡献的专家1人,博士生导师1人,硕士生导师17人,拥有河北省教学团队1个,河北省精品课程2门。
近五年共承担科研项目56项,其中国家863项目3项,国家自然科学基金项目13项。
主编出版教材6部,其中2部为国家“十一五”规划教材,发表学术论文385余篇,其中被SCI检索的论文82余篇,二区论文10篇,被EI检索的论文96篇。
获河北省科技进步二等奖1项、河北省教育厅自然科学二等奖1项、河北省优秀教学成果奖2项。
本学科经过几代人的不懈努力,已发展成为在河北省乃至国内外有一定影响的数学学科,形成以下几个鲜明的特色与优势:1) 经过十几年的学术积累,针对运筹学与控制论、计算数学、应用数学、基础数学、概率论与数理统计等研究领域,凝练出复杂系统优化控制理论与方法、智能计算理论及应用、动力系统与边值问题、离散与组合几何、随机系统与Banach空间中的数学物理方法5个学术梯队和学科方向。
学术梯队结构合理且后继有人,60后及70后成员占90%以上。
每个学科方向目前都承担有国家自然科学基金项目,且研究课题多,研究经费充足。
本学科近五年科研经费共计249.6万元,其中纵向科研经费220.6万元,发表影响因子高的SCI论文及二区论文多,研究成果丰硕。
2) 本学科自“九五”以来共承担了15项国家863课题,许多合作伙伴如中科院海洋研究所、中国海洋技术中心、中国海洋大学、国家海洋局北海分局、厦门大学等对本学科的数据处理、科学计算、优化控制、统计分析与反演给予高度评价。
国家科技部曾在两次全国863年度总结大会上对河北科技大学本学科作为非涉海单位在完成的海洋监测领域863课题中的杰出工作提出表扬。
中国海洋学会军事海洋分会在2006年召开的“军事海洋战略与发展论坛”年会上也对本学科关于波向反演计算研究成果进行表扬。
2008年美国数学会把本学科离散与组合几何的部分研究成果收入《当代数学》丛书。
本学科给出的随机系统共振算法成功应用于生物信息学的研究成果,得到多位中科院院士的充分肯定。
3) 本学科在注重基础理论研究的同时,还十分注重数学的应用研究,积极为地方经济建设服务,主持完成的河北省自然科学基金等项目取得了显著的经济效益,获河北省科技进步二等奖。
本学科具有较好的科研条件,配备有数学系研究生机房、工程问题数学研究所和应用数学研究所以及教授工作室等设施,能很好满足研究生的学习和科研要求。
本专业硕士研究生毕业后能在科技、生产、工程、经济部门和高等学校从事科学研究、应用开发、管理和教学工作,也可以继续攻读本学科及相关学科的博士学位。
一、培养目标
培养德、智、体全面发展,综合素质高,创新能力强和实践能力强的高级专门人才。
具体要求如下:
1. 深入了解马列主义、毛泽东思想和邓小平理论的基本原理,认真学习江泽民同志的三个代表,坚持四项基本原则,热爱祖国,具有优良的道德品质,遵纪守法,锐意创新,积极进取。
2. 本学科所培养的硕士应具有良好的科学素质、严谨的治学态度及较强的开拓精神,善于接受新知识,提出新思路,探讨新课题,具有较强的适应性。
具备严谨的治学态度和优良的科学作风,掌握数学
学科的基本理论和系统的专门知识,熟悉所从事的科技发展动向,适应能力强,初步具有独立进行理论研究的能力或与有关专业人员合作解决某些实际应用问题的能力,在某个专业方向上做出有理论或实践意义的成果。
具有从事教学工作、科学研究或独立承担本专业理论与技术工作的能力。
3. 熟练地掌握一门外国语,熟悉现代计算机软件工具,有娴熟的计算机使用能力。
二、主要研究方向
目前数学一级学科硕士点已形成五个比较稳定的研究方向:
1.复杂系统优化控制理论与方法;
2.智能计算理论及应用
3.动力系统与边值问题
4.离散与组合几何
5. 随机系统与Banach空间中的数学物理方法。
三、学分要求及培养年限
本学科硕士研究生学制为2.5年,根据具体情况,修业年限为2-5年。
学生在培养期间内学分为30-36学分,其中学位课程学分不低于16学分,学位课考试成绩不低于75分。
四、课程设置
注:备注栏中跨一级学科用*表示,双语教学课程用#表示
五、开题报告
本学科硕士硕士学位论文的选题在研究生研究生指导教师的指导下进行。
在进行充分的文献检索、调研的基础上,选择数学各二级学科领域与经济和社会发展结合紧密、有理论意义或较大实际应用价值、有一定新颖性的题目。
论文的开题由研究生指导教师负责并主持,开题报告要求在第三学期前完成。
开题报告内容包括:研究课题所在领域的现状、历史及前沿问题,论文的已有条件、目标、困难和解决问题的技术途径等。
经本学科开题报告评议小组评审通过、经学院分学位委员会批准并报校学位办公室备案后方可开始论文工作。
学科硕士研究生的开题报告具体组织事宜按研究生学院的规定进行。
六、中期考核
第四学期中期进行研究生的中期考核,根据研究生课程学习的学分是否满足要求,以及是否具有培养前途,决定是否进入学位论文阶段,具体执行研究生院的有关规定。
七、学位论文答辩要求
1. 学位论文工作是研究生获得科学研究能力的主要培养环节。
要注重培养文献查阅及综合评述、开题报告、实验设计与组织、实验数据处理、逻辑思维与理论分析、计算机应用、论文写作与口头报告等方面的能力,要培养严谨求实、一丝不苟的学风和科学作风。
2. 硕士学位论文的水平,关键要看其内容是否有新的见解,同时要考查是否有理论意义和实用价值、经济效益或社会效益。
论文应具有一定的技术难度、先进性以及一定的工作量,应能反映出研究生综合运用所学的理论、知识解决工程实际问题的能力。
论文在研究生指导教师的指导下由研究生独立完成,做到主题明确,内容有一定的创新,对课题有自己独立的见解,立论有理有据,能反映作者掌握本学科宽广的基础理论和系统的专业知识,能够表明作者具有综合应用基础理论和专业知识解决实际问题的能力。
论文写作文笔流畅、数据处理合理,符合《河北科技大学研究生学位论文撰写规范》的要求。