Momentum, Heat, and Mass Transfer
计算流体力学中英文词汇对照
流体动力学fluid dynamics 连续介质力学mechanics of continuous media 介质medium 流体质点fluid particle无粘性流体nonviscous fluid, inviscid fluid 连续介质假设continuous medium hypothesis 流体运动学fluid kinematics 水静力学hydrostatics液体静力学hydrostatics 支配方程governing equation伯努利方程Bernoulli equation 伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law 欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem 开尔文定理Kelvin theorem涡片vortex sheet 库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution 达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number 施特鲁哈尔数Strouhal number随体导数material derivative 不可压缩流体incompressible fluid质量守恒conservation of mass 动量守恒conservation of momentum能量守恒conservation of energy 动量方程momentum equation能量方程energy equation 控制体积control volume液体静压hydrostatic pressure 涡量拟能enstrophy压差differential pressure 流[动] flow流线stream line 流面stream surface流管stream tube 迹线path, path line流场flow field 流态flow regime流动参量flow parameter 流量flow rate, flow discharge涡旋vortex 涡量vorticity涡丝vortex filament 涡线vortex line涡面vortex surface 涡层vortex layer涡环vortex ring 涡对vortex pair涡管vortex tube 涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell 卷筒涡胞roll cell涡eddy 涡粘性eddy viscosity环流circulation 环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point 总压[力] total pressure总压头total head 静压头static head总焓total enthalpy 能量输运energy transport速度剖面velocity profile 库埃特流Couette flow单相流single phase flow 单组份流single-component flow均匀流uniform flow 非均匀流nonuniform flow二维流two-dimensional flow 三维流three-dimensional flow准定常流quasi-steady flow 非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow 分层流stratified flow无旋流irrotational flow 有旋流rotational flow轴对称流axisymmetric flow 不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter 阻力drag, resistance减阻drag reduction 表面力surface force表面张力surface tension 毛细[管]作用capillarity来流incoming flow 自由流free stream自由流线free stream line 外流external flow进口entrance, inlet 出口exit, outlet扰动disturbance, perturbation 分布distribution传播propagation 色散dispersion弥散dispersion 附加质量added mass ,associated mass收缩contraction 镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity 动力相似[性] dynamic similarity平面流plane flow 势potential势流potential flow 速度势velocity potential复势complex potential 复速度complex velocity流函数stream function 源source汇sink 速度[水]头velocity head拐角流corner flow 空泡流cavity flow超空泡supercavity 超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics气动热力学aerothermodynamics 亚声速流[动] subsonic flow跨声速流[动] transonic flow 超声速流[动] supersonic flow锥形流conical flow 楔流wedge flow叶栅流cascade flow 非平衡流[动] non-equilibrium flow细长体slender body 细长度slenderness钝头体bluff body 钝体blunt body翼型airfoil 翼弦chord薄翼理论thin-airfoil theory 构型configuration后缘trailing edge 迎角angle of attack失速stall 脱体激波detached shock wave波阻wave drag 诱导阻力induced drag诱导速度induced velocity 临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex 气动中心aerodynamic center气动力aerodynamic force 气动噪声aerodynamic noise气动加热aerodynamic heating 离解dissociation地面效应ground effect 气体动力学gas dynamics稀疏波rarefaction wave 热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow 可压缩流[动] compressible flow可压缩流体compressible fluid 绝热流adiabatic flow非绝热流diabatic flow 未扰动流undisturbed flow等熵流isentropic flow 匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state 完全气体perfect gas拉瓦尔喷管Laval nozzle 马赫角Mach angle马赫锥Mach cone 马赫线Mach line马赫数Mach number 马赫波Mach wave当地马赫数local Mach number 冲击波shock wave激波shock wave 正激波normal shock wave斜激波oblique shock wave 头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer 压缩波compression wave反射reflection 折射refraction散射scattering 衍射diffraction绕射diffraction出口压力exit pressure 超压[强] over pressure反压back pressure 爆炸explosion爆轰detonation 缓燃deflagration水动力学hydrodynamics 液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave 瑞利数Rayleigh number自由面free surface 波速wave speed, wave velocity波高wave height 波列wave train波群wave group 波能wave energy表面波surface wave 表面张力波capillary wave规则波regular wave 不规则波irregular wave浅水波shallow water wave深水波deep water wave 重力波gravity wave椭圆余弦波cnoidal wave 潮波tidal wave涌波surge wave 破碎波breaking wave船波ship wave 非线性波nonlinear wave孤立子soliton 水动[力]噪声hydrodynamic noise 水击water hammer 空化cavitation空化数cavitation number 空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics 洪水波flood wave涟漪ripple 消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula欧拉数Euler number 弗劳德数Froude number水力半径hydraulic radius 水力坡度hvdraulic slope高度水头elevating head 水头损失head loss水位water level 水跃hydraulic jump含水层aquifer 排水drainage排放量discharge 壅水曲线back water curve压[强水]头pressure head 过水断面flow cross-section明槽流open channel flow 孔流orifice flow无压流free surface flow 有压流pressure flow缓流subcritical flow 急流supercritical flow渐变流gradually varied flow 急变流rapidly varied flow临界流critical flow 异重流density current, gravity flow堰流weir flow 掺气流aerated flow含沙流sediment-laden stream 降水曲线dropdown curve沉积物sediment, deposit 沉[降堆]积sedimentation, deposition沉降速度settling velocity 流动稳定性flow stability不稳定性instability 奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow 剪切流shear flow粘性流[动] viscous flow 层流laminar flow分离流separated flow 二次流secondary flow近场流near field flow 远场流far field flow滞止流stagnation flow 尾流wake [flow]回流back flow 反流reverse flow射流jet 自由射流free jet管流pipe flow, tube flow 内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity动力粘性dynamic viscosity 泊poise厘泊centipoise 厘沱centistoke剪切层shear layer 次层sublayer流动分离flow separation 层流分离laminar separation湍流分离turbulent separation 分离点separation point附着点attachment point 再附reattachment再层流化relaminarization 起动涡starting vortex驻涡standing vortex 涡旋破碎vortex breakdown涡旋脱落vortex shedding 压[力]降pressure drop压差阻力pressure drag 压力能pressure energy型阻profile drag 滑移速度slip velocity无滑移条件non-slip condition 壁剪应力skin friction, frictional drag 壁剪切速度friction velocity 磨擦损失friction loss磨擦因子friction factor 耗散dissipation滞后lag 相似性解similar solution局域相似local similarity 气体润滑gas lubrication液体动力润滑hydrodynamic lubrication 浆体slurry泰勒数Taylor number 纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation 边界层boundary layer附面层boundary layer 层流边界层laminar boundary layer湍流边界层turbulent boundary layer 温度边界层thermal boundary layer边界层转捩boundary layer transition 边界层分离boundary layer separation边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness 能量厚度energy thickness焓厚度enthalpy thickness 注入injection吸出suction 泰勒涡Taylor vortex速度亏损律velocity defect law 形状因子shape factor测速法anemometry 粘度测定法visco[si] metry流动显示flow visualization 油烟显示oil smoke visualization孔板流量计orifice meter 频率响应frequency response油膜显示oil film visualization 阴影法shadow method纹影法schlieren method 烟丝法smoke wire method丝线法tuft method 氢泡法nydrogen bubble method相似理论similarity theory 相似律similarity law部分相似partial similarity 定理pi theorem, Buckingham theorem 静[态]校准static calibration 动态校准dynamic calibration风洞wind tunnel 激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank 旋臂水池rotating arm basin扩散段diffuser 测压孔pressure tap皮托管pitot tube 普雷斯顿管preston tube斯坦顿管Stanton tube 文丘里管Venturi tubeU形管U-tube 压强计manometer微压计micromanometer 多管压强计multiple manometer静压管static [pressure]tube 流速计anemometer风速管Pitot- static tube 激光多普勒测速计laser Doppler anemometer, laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer 流量计flow meter粘度计visco[si] meter 涡量计vorticity meter传感器transducer, sensor 压强传感器pressure transducer热敏电阻thermistor 示踪物tracer时间线time line 脉线streak line尺度效应scale effect 壁效应wall effect堵塞blockage 堵寒效应blockage effect动态响应dynamic response 响应频率response frequency底压base pressure 菲克定律Fick law巴塞特力Basset force 埃克特数Eckert number格拉斯霍夫数Grashof number 努塞特数Nusselt number普朗特数prandtl number 雷诺比拟Reynolds analogy施密特数schmidt number 斯坦顿数Stanton number对流convection 自由对流natural convection, free convec-tion强迫对流forced convection 热对流heat convection质量传递mass transfer 传质系数mass transfer coefficient热量传递heat transfer 传热系数heat transfer coefficient对流传热convective heat transfer 辐射传热radiative heat transfer动量交换momentum transfer 能量传递energy transfer传导conduction 热传导conductive heat transfer热交换heat exchange 临界热通量critical heat flux浓度concentration 扩散diffusion扩散性diffusivity 扩散率diffusivity扩散速度diffusion velocity 分子扩散molecular diffusion沸腾boiling 蒸发evaporation气化gasification 凝结condensation成核nucleation 计算流体力学computational fluid mechanics 多重尺度问题multiple scale problem 伯格斯方程Burgers equation对流扩散方程convection diffusion equation KDU方程KDV equation修正微分方程modified differential equation 拉克斯等价定理Lax equivalence theorem 数值模拟numerical simulation 大涡模拟large eddy simulation数值粘性numerical viscosity 非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis 相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition狄里克雷边界条件Dirichlet boundarycondition熵条件entropy condition 远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition 近似因子分解法approximate factorization method 人工压缩artificial compression 人工粘性artificial viscosity边界元法boundary element method 配置方法collocation method能量法energy method 有限体积法finite volume method流体网格法fluid in cell method, FLIC method通量校正传输法flux-corrected transport method通量矢量分解法flux vector splitting method 伽辽金法Galerkin method积分方法integral method 标记网格法marker and cell method, MAC method 特征线法method of characteristics 直线法method of lines矩量法moment method 多重网格法multi- grid method板块法panel method 质点网格法particle in cell method, PIC method 质点法particle method 预估校正法predictor-corrector method投影法projection method 准谱法pseudo-spectral method随机选取法random choice method 激波捕捉法shock-capturing method激波拟合法shock-fitting method 谱方法spectral method稀疏矩阵分解法split coefficient matrix method 不定常法time-dependent method时间分步法time splitting method 变分法variational method涡方法vortex method 隐格式implicit scheme显格式explicit scheme 交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme 守恒差分格式conservation difference scheme 克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme 戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme 拉克斯-温德罗夫格式Lax-Wendroff scheme 蛙跳格式leap-frog scheme 单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme穆曼-科尔格式Murman-Cole scheme 半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme迎风格式upstream scheme , upwind scheme计算区域computational domain 物理区域physical domain影响域domain of influence 依赖域domain of dependence区域分解domain decomposition 维数分解dimensional split物理解physical solution 弱解weak solution黎曼解算子Riemann solver 守恒型conservation form弱守恒型weak conservation form 强守恒型strong conservation form散度型divergence form 贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh 适应网格生成adaptive grid generation自动网格生成automatic grid generation 数值网格生成numerical grid generation交错网格staggered mesh 网格雷诺数cell Reynolds number数植扩散numerical diffusion 数值耗散numerical dissipation数值色散numerical dispersion 数值通量numerical flux放大因子amplification factor 放大矩阵amplification matrix阻尼误差damping error 离散涡discrete vortex熵通量entropy flux 熵函数entropy function分步法fractional step method。
冶金工程专业英语词汇
冶金工程专业英语词汇1. 冶金学冶金学是冶金工程专业的核心课程,主要讲授钢铁冶金和有色金属冶金过程的基本原理、工艺及装备,包括炼铁、炼钢、精炼、连铸、铝冶金、铜冶金、稀土冶金等内容。
中文英文冶金学metallurgy钢铁冶金iron and steel metallurgy有色金属冶金nonferrous metal metallurgy炼铁ironmaking炼钢steelmaking精炼refining连铸continuous casting铝冶金aluminum metallurgy铜冶金copper metallurgy稀土冶金rare earth metallurgy高炉blast furnace转炉converter电炉electric furnace真空精炼vacuum refining钢包ladle结晶器crystallizer铝电解槽aluminum electrolytic cell铜闪速熔炼copper flash smelting稀土萃取分离rare earth extraction and separation熔盐电解法molten salt electrolysis method冶炼产品smelting products生铁pig iron钢水molten steel铝锭aluminum ingot铜阳极泥copper anode slime稀土氧化物rare earth oxides冶炼渣smelting slag炉渣性质slag properties脱硫desulfurization脱磷dephosphorization脱氧deoxidation合金化alloying溅渣护炉splashing slag lining protection终点控制endpoint control中文英文出钢操作tapping operation凝固传热机制solidification heat transfer mechanism凝固结构与缺陷solidification structure and defects氧化还原反应oxidation-reduction reaction造渣反应与造渣制度slagging reaction and slagging system2. 冶金物理化学冶金物理化学是冶金工程专业的基础理论课程,主要讲授冶金过程中涉及的物理化学原理和方法,包括平衡与相图、溶液理论、电化学、表面与胶体化学、传递现象等内容。
CFX流场分析_域设置_多相设置教程
草泥马的就没有人翻译ANSYS CFX 13.0 的多相流的具体设置方法么?让我手动翻译咩?!!!安世亚太的人都吃咩的?好吧,吐槽结束,我边翻译边学习吧。
对各位和自己有用的话,也不算白忙活。
1、第一个选项卡——basic settings基础设置来一张设置的总图。
两项流的设置在域设置里面。
创建完固体材料后,直接进域创建窗口。
-------------Morphology(形态)对话框Continuous fluid——连续流体Dispersed fluid——分散液Dispersed solid——分散固体Particle transport fluid——粒子运输液体Particle transport solid——粒子运输固体Poly dispersed fluid——波粒分散流体Droplets (phase change)——液滴(相变)===========我做的是沙子和水的仿真,所以用分散固体颗粒就行。
=================Mean diameter——平均直径!==========Minimum volume fraction——最小体积分数我这里没有,就不设置了。
==========Maximum packing——最大粒度。
应该是这麽翻译的。
==========Restitution coefficient——恢复系数这个不知道咋设置,就不设置了。
==========================至此,基础设置已经完成了。
——话说粒子浓度是在后面设置的么?2、第二个选项卡——fluid models流体模型Fluid models——流体模型选项卡Multiphase》homogeneous model——多相》均质模型》自由表面模型------------Heat transfer》homogeneous model——传热》均质模型-------------Turbulence》homogeneous model——湍流》均质模型--------------Combustion——燃烧--------------Thermal radiation——热辐射==========================================3、第三个选项卡——fluid specific models流体特定模型Fluid specific models——流体特定模型Kinetic theory——动力学理论Solid pressure model——固体压力模型Elastic modulus——弹性模量GidaspowSolid bulk viscosity——固体体积粘性Solid shear viscosity——固体剪切粘度====================================4、第四个选项卡——fluid pair models流体对模型Fluid pair——流体对Interphase transfer——相间转移Mass transfer——传质=============5、第五个选项卡——initialization初始化==========================边界条件中的翻译边界细节选项卡Mass and momentum——质量和动量Wall roughness——壁粗糙度==============出口边界选项卡Flow regime——液态——subsonic亚音速Mass and momentum——质量和动量Flow direction——流方向Turbulence——湍流===============混合比例Fluid valuesVolume fraction——体积分数这个不会设置啊不设置的时候会出现下面的错误警告。
传热传质 英语
传热传质英语Heat and mass transfer, also known as transport phenomena, is a discipline that studies the transfer of heat, mass, and momentum in various physical systems. It plays a crucial role in many fields, including engineering, physics, chemistry, and environmental science.Heat transfer focuses on the study of the transfer of thermal energy, including conduction, convection, and radiation. Conduction occurs when heat is transferred through solid materials, while convection involves the movement of fluids and the transfer of heat. Radiation is the transfer of heat through electromagnetic waves. Understanding heat transfer is essential for designing efficient heating and cooling systems, engines, electronics, and energy conversion devices.Mass transfer, on the other hand, deals with the movement and transport of substances or chemicals in different phases. It includes diffusion, convection, and phase change processes. Diffusion occurs when substances move from a region of higher concentration to a region of lower concentration. Convection is also involved in mass transfer when fluids carry substances. Phase change processes, such as evaporation and condensation, play a significant role in mass transfer. Mass transfer is important in areas like chemical engineering, environmental science, and biological systems.Together, heat and mass transfer form the foundation of transport phenomena. They are intricately interconnected and influence each other in many processes. For example, in heat exchangers, both heat and mass transfer occur simultaneously as fluids exchange heat and substances. In chemical reactors, the rates of chemical reactions are often governed by heat and mass transfer.Understanding and predicting heat and mass transfer is crucial for engineers and scientists to optimize processes, design efficient equipment, and develop sustainable technologies. By studying transport phenomena, we can improve energy efficiency, enhance separation processes, and develop novel materials and devices.。
FLUENT软件操作界面中英文对照
FLUENT软件操作界面中英文对照编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(FLUENT软件操作界面中英文对照)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为FLUENT软件操作界面中英文对照的全部内容。
FLUENT 软件操作界面中英文对照File 文件Grid 网格Models 模型 : solver 解算器Read 读取文件:scheme 方案 journal 日志profile 外形Write 保存文件Import:进入另一个运算程序Interpolate :窜改,插入Hardcopy : 复制,Batch options 一组选项Save layout 保存设计Pressure based 基于压力Density based 基于密度implicit 隐式, explicit 显示Space 空间:2D,axisymmetric(转动轴),axisymmetric swirl (漩涡转动轴);Time时间:steady 定常,unsteady 非定常Velocity formulation 制定速度:absolute绝对的; relative 相对的Gradient option 梯度选择:以单元作基础;以节点作基础;以单元作梯度的最小正方形。
Porous formulation 多孔的制定:superticial velocity 表面速度;physical velocity 物理速度;solver求解器Multiphase 多相 energy 能量方程Visous 湍流层流,流态选择Radiation 辐射Species 种类,形式(燃烧和化学反应)Discrete phase 离散局面Solidification & melting (凝固/熔化)Acoustics 声音学:broadband noise sources多频率噪音源models模型Materials 定义物质性质Phase 阶段,相Operating conditions 操作压力条件Boundary conditions 边界条件Periodic conditions 周期性条件Grid interfaces 两题边界的表面网格Dynamic mesh 动力学的网孔Mixing planes 混合飞机?混合翼面?Turbo topology 涡轮拓扑Injections 注射DTRM rays DTRM射线Custom field functions 常用函数Profiles 外观,Units 单位User-defined 用户自定义materials 材料Name 定义物质的名称 chemical formula 化学反应式 material type 物质类型(液体,固体)Fluent fluid materials 流动的物质 mixture 混合物order materials by 根据什么物质(名称/化学反应式)Fluent database 流体数据库 user-defined database 用户自定义数据库Propertles 物质性质从上往下分别是密度比热容导热系数粘滞系数Operating conditions操作条件操作压力设置:operating pressure操作压力reference pressure location 参考压力位置gravity 重力,地心引力gravitational Acceleration 重力加速度operating temperature 操作温度variable—density parameters 可变密度的参数specified operating density 确切的操作密度Boundary conditions边界条件设置Fluid定义流体Zone name区域名 material name 物质名 edit 编辑Porous zone 多空区域 laminar zone 薄层或者层状区域 source terms (源项?)Fixed values 固定值motion 运动rotation—axis origin旋转轴原点Rotation—axis direction 旋转轴方向Motion type 运动类型: stationary静止的; moving reference frame 移动参考框架; Moving mesh 移动网格Porous zone 多孔区Reaction 反应Source terms (源项)Fixed values 固定值velocity—inlet速度入口Momentum 动量 thermal 温度 radiation 辐射 species 种类DPM DPM模型(可用于模拟颗粒轨迹) multipahse 多项流UDS(User define scalar 是使用fluent求解额外变量的方法)Velocity specification method 速度规范方法: magnitude,normal to boundary 速度大小,速度垂直于边界;magnitude and direction 大小和方向;components 速度组成?Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区Velocity magnitude 速度的大小Turbulence 湍流Specification method 规范方法k and epsilon K—E方程:1 Turbulent kinetic energy湍流动能;2 turbulent dissipation rate 湍流耗散率Intensity and length scale 强度和尺寸: 1湍流强度 2 湍流尺度=0.07L(L为水力半径)intensity and viscosity rate强度和粘度率:1湍流强度2湍流年度率intensity and hydraulic diameter强度与水力直径:1湍流强度;2水力直径pressure-inlet压力入口Gauge total pressure 总压supersonic/initial gauge pressure 超音速/初始表压constant常数direction specification method 方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界mass—flow—inlet质量入口Mass flow specification method 质量流量规范方法:1 mass flow rate 质量流量;2 massFlux 质量通量 3mass flux with average mass flux 质量通量的平均通量supersonic/initial gauge pressure 超音速/初始表压direction specification method 方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界Reference frame 参考系:absolute绝对的;Relative to adjacent cell zone 相对于邻近的单元区pressure-outlet压力出口Gauge pressure表压backflow direction specification method 回流方向规范方法:1direction vector方向矢量;2 normal to boundary 垂直于边界;3 from neighboring cell 邻近单元Radial equilibrium pressure distribution 径向平衡压力分布Target mass flow rate 质量流量指向pressure-far—field压力远程Mach number 马赫数 x-component of flow direction X分量的流动方向outlet自由出流Flow rate weighting 流量比重inlet vent进口通风Loss coeffcient 损耗系数 1 constant 常数;2 piecewise—linear分段线性;3piecewise-polynomial 分段多项式;4 polynomial 多项式EditPolynomial Profile高次多项式型线Define 定义 in terms of 在一下方面 normal-velocity 正常速度 coefficients系数intake Fan进口风扇Pressure jump 压力跃 1 constant 常数;2 piecewise—linear分段线性;3piecewise—polynomial 分段多项式;4 polynomial 多项式exhaust fan排气扇对称边界(symmetry)周期性边界(periodic)Wall固壁边界adjicent cell zone相邻的单元区Wall motion 室壁运动:stationary wall 固定墙Shear condition 剪切条件: no slip 无滑;specified shear 指定的剪切;specularity coefficients 镜面放射系数 marangoni stress 马兰格尼压力?Wall roughness 壁面粗糙度:roughness height 粗糙高度 roughness constant粗糙常数Moving wall移动墙壁Translational 平移rotational 转动components 组成Solve/controls/solution 解决/控制/解决方案Equations 方程 under—relaxation factors 松弛因子: body forces 体积力Momentum动量 turbulent kinetic energy 湍流动能turbulent dissipation rate湍流耗散率Turbulent viscosity 湍流粘度 energy 能量Pressure-velocity coupling 压力速度耦合: simple ,simplec,plot和coupled是4种不同的算法。
风机英语术语
风机英语术语一、压缩机类型 Type of compressor1. 容积式(正位移)压缩机positive displacement compressor往复式压缩机 reciprocating compressor活塞式压缩机 piston compressor柱塞式压缩机 plunger compressor隔膜式压缩机 diaphragm compressor回转式压缩机 rotary compressor双螺杆压缩机 double screw compressor单螺杆压缩机 single screw compressor滚动活塞式压缩机 rolling piston compressor滑片式压缩机 sliding vane compressor液环式压缩机 liquid ring compressor三角转子压缩机 triangle rotor compressor涡旋式压缩机 scroll compressor罗茨鼓风机 Roots blower2. 动力式压缩机 dynamic compressor透平压缩机 turbo compressor离心式压缩机 centrifugal compressor轴流式压缩机 axial flow compressor亚音速压缩机 subsonic compressor超音速压缩机 supersonic compressor二、通、鼓风机类型 type of fan and blower离心式通风机centrifugal fan轴流式通风机axial flow fan横流式通风机 cross-flow fan斜流式通风机 mixed-flower fan前向离心通风机 forward(curve) centrifugal fan后向离心通风机 backward(curve) centrifugal fan罗茨鼓风机 roots blower离心鼓风机centrifugal blower三、零部件parts转子 rotator静子 stator轴 shaft轴承 bearing刚性轴 stiff-shaft柔性轴 flexible-shaft叶轮 impeller闭式叶轮 shrouded impeller半开式叶轮 unshrouded impeller叶片 blade, vane导流叶片组件 pre-rotary vane assembly 扩压器 diffuser蜗壳 scroll,volute进风口 air intake导流器deflector进口entrance, inlet出口exit, outlet截止阀 line valve, stop valve排气截止阀 discharge line valve 吸气截止阀 suction line valve联轴器Shaft coupling消声器 muffler轴承bearing滑动轴承 sleeve bearing滚珠轴承 ball bearing滚柱轴承 roller bearing止推盘 thrust collar止推轴承 thrust bearing轴承箱 bearing housing滚针轴承 needle bearing电动机Electric motor/motor 四、总体参数 total parameter转速 speed比转速specific speed损失 loss效率efficiency功率系数 power coefficient压力系数pressure coefficient 流量系数 flow coefficient压缩比compression ratio 五、流动参参数 flow parameter速度velocity雷诺数Reynolds number流场flow field总压 total pressur静压 static pressure压差 pressure drop阻力 drag, resistance表压力gauge pressure绝对压力 absolute pressure相对压力 relative pressure总温 total temperature静温 static pressure质量流量 mass flow rate体积流量 volume flow rate滑动 slip涡流 swirl流动 flow层流 laminar flow湍流 turbulent flow二次流 secondary flow均匀流 uniform flow流动分离 flow separation层流分离 laminar separation湍流分离 turbulent separation定常流动 steady flow非定常流动 unsteady flow可压缩流动 compressible flow不可压缩流动 incompressible flow流体动力学fluid dynamics计算流体动力学 computational fluid dynamics 相似律 similarity law相似理论 similarity theory边界条件 boundary condition质量守恒 conservation of mass动量守恒 conservation of momentum能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation状态方程 equation of state六、传热参数 heat transfer parameter对流convection热对流 heat convection质量传递 mass transfer传质系数 mass transfer coefficient热量传递 heat transfer传热系数 heat transfer coefficient对流传热 convective heat transfer辐射传热 radiative heat transfer动量交换 momentum transfer能量传递 energy transfer传导 conduction热传导 conductive heat transfer热交换 heat exchange六、几何参数 structure parameter翼型 airfoil翼弦 chord叶栅cascade迎角 angle of attack两级压缩机 compound compressor多级压缩机 multistage compressor进口叶片安装角 blade installation angle of inlet 出口叶片安装角blade installation angle of outlet 进口气流角 flow angle of inlet出口气流角 flow angle of outlet气流冲角angle of attack flow七、机械参数 Geometric parameters振动 vibration喘振 surging临界转速 critical speed叶片颤振 blade flutter叶片通过频率 blade passing frequency 叶轮反作用度 impeller reaction机械密封 mechanical seal轴封 crankcase seal, shaft seal。
流体力学常用名词中英文对照
流体力学常用名词流体动力学fluid dynamics连续介质力学mechanics of continuous介质medium流体质点fluid particle无粘性流体nonviscous fluid, inviscid连续介质假设continuous medium hypothesis流体运动学fluid kinematics水静力学hydrostatics液体静力学hydrostatics支配方程governing equation伯努利方程Bernoulli equation伯努利定理Bernonlli theorem毕奥-萨伐尔定律Biot-Savart law欧拉方程Euler equation亥姆霍兹定理Helmholtz theorem开尔文定理Kelvin theorem涡片vortex sheet库塔-茹可夫斯基条件Kutta-Zhoukowski condition 布拉休斯解Blasius solution达朗贝尔佯廖d'Alembert paradox雷诺数Reynolds number施特鲁哈尔数Strouhal number随体导数material derivative不可压缩流体incompressible fluid质量守恒conservation of mass动量守恒conservation of momentum能量守恒conservation of energy动量方程momentum equation能量方程energy equation控制体积control volume液体静压hydrostatic pressure涡量拟能enstrophy压差differential pressure流[动] flow流线stream line流面stream surface流管stream tube迹线path, path line流场flow field流态flow regime流动参量flow parameter流量flow rate, flow discharge 涡旋vortex涡量vorticity涡丝vortex filament涡线vortex line涡面vortex surface涡层vortex layer涡环vortex ring涡对vortex pair涡管vortex tube涡街vortex street卡门涡街Karman vortex street 马蹄涡horseshoe vortex对流涡胞convective cell卷筒涡胞roll cell涡eddy涡粘性eddy viscosity环流circulation环量circulation速度环量velocity circulation 偶极子doublet, dipole驻点stagnation point总压[力] total pressure总压头total head静压头static head总焓total enthalpy能量输运energy transport速度剖面velocity profile库埃特流Couette flow单相流single phase flow单组份流single-component flow均匀流uniform flow非均匀流nonuniform flow二维流two-dimensional flow三维流three-dimensional flow准定常流quasi-steady flow非定常流unsteady flow, non-steady flow 暂态流transient flow 周期流periodic flow振荡流oscillatory flow分层流stratified flow无旋流irrotational flow有旋流rotational flow轴对称流axisymmetric flow不可压缩性incompressibility不可压缩流[动] incompressible flow 浮体floating body定倾中心metacenter阻力drag, resistance减阻drag reduction表面力surface force表面张力surface tension毛细[管]作用capillarity来流incoming flow自由流free stream自由流线free stream line外流external flow进口entrance, inlet出口exit, outlet扰动disturbance, perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量added mass ,associated mass 收缩contraction镜象法image method无量纲参数dimensionless parameter 几何相似geometric similarity运动相似kinematic similarity动力相似[性] dynamic similarity平面流plane flow势potential势流potential flow速度势velocity potential复势complex potential复速度complex velocity流函数stream function源source汇sink速度[水]头velocity head拐角流corner flow空泡流cavity flow超空泡supercavity超空泡流supercavity flow空气动力学aerodynamics低速空气动力学low-speed aerodynamics 高速空气动力学high-speed aerodynamics 气动热力学aerothermodynamics亚声速流[动] subsonic flow跨声速流[动] transonic flow超声速流[动] supersonic flow锥形流conical flow楔流wedge flow叶栅流cascade flow非平衡流[动] non-equilibrium flow细长体slender body细长度slenderness钝头体bluff body钝体blunt body翼型airfoil翼弦chord薄翼理论thin-airfoil theory构型configuration后缘trailing edge迎角angle of attack失速stall脱体激波detached shock wave波阻wave drag诱导阻力induced drag诱导速度induced velocity临界雷诺数critical Reynolds number 前缘涡leading edge vortex 附着涡bound vortex约束涡confined vortex气动中心aerodynamic center气动力aerodynamic force气动噪声aerodynamic noise气动加热aerodynamic heating离解dissociation地面效应ground effect气体动力学gas dynamics稀疏波rarefaction wave热状态方程thermal equation of state 喷管Nozzle 普朗特-迈耶流Prandtl-Meyer flow瑞利流Rayleigh flow可压缩流[动] compressible flow可压缩流体compressible fluid绝热流adiabatic flow非绝热流diabatic flow未扰动流undisturbed flow等熵流isentropic flow匀熵流homoentropic flow兰金-于戈尼奥条件Rankine-Hugoniot condition 状态方程equation of state量热状态方程caloric equation of state完全气体perfect gas拉瓦尔喷管Laval nozzle马赫角Mach angle马赫锥Mach cone马赫线Mach line马赫数Mach number马赫波Mach wave当地马赫数local Mach number冲击波shock wave激波shock wave正激波normal shock wave斜激波oblique shock wave头波bow wave附体激波attached shock wave 激波阵面shock front激波层shock layer压缩波compression wave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exit pressure超压[强] over pressure反压back pressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylor instability 盖斯特纳波Gerstner wave斯托克斯波Stokes wave瑞利数Rayleigh number自由面free surface波速wave speed, wave velocity 波高wave height波列wave train波群wave group波能wave energy表面波surface wave表面张力波capillary wave规则波regular wave不规则波irregular wave浅水波shallow water wave深水波deep water wave重力波gravity wave椭圆余弦波cnoidal wave潮波tidal wave涌波surge wave破碎波breaking wave船波ship wave非线性波nonlinear wave孤立子soliton水动[力]噪声hydrodynamic noise 水击water hammer空化cavitation空化数cavitation number空蚀cavitation damage超空化流supercavitating flow 水翼hydrofoil水力学hydraulics洪水波flood wave涟漪ripple消能energy dissipation海洋水动力学marine hydrodynamics 谢齐公式Chezy formula 欧拉数Euler number弗劳德数Froude number水力半径hydraulic radius水力坡度hvdraulic slope高度水头elevating head水头损失head loss水位water level水跃hydraulic jump含水层aquifer排水drainage排放量discharge壅水曲线back water curve压[强水]头pressure head过水断面flow cross-section明槽流open channel flow孔流orifice flow无压流free surface flow有压流pressure flow缓流subcritical flow急流supercritical flow渐变流gradually varied flow急变流rapidly varied flow临界流critical flow异重流density current, gravity flow 堰流weir flow掺气流aerated flow含沙流sediment-laden stream降水曲线dropdown curve沉积物sediment, deposit沉[降堆]积sedimentation, deposition 沉降速度settling velocity流动稳定性flow stability不稳定性instability奥尔-索末菲方程Orr-Sommerfeld equation 涡量方程vorticity equation 泊肃叶流Poiseuille flow奥辛流Oseen flow剪切流shear flow粘性流[动] viscous flow层流laminar flow分离流separated flow二次流secondary flow近场流near field flow远场流far field flow滞止流stagnation flow尾流wake [flow]回流back flow反流reverse flow射流jet自由射流free jet管流pipe flow, tube flow内流internal flow拟序结构coherent structure 猝发过程bursting process表观粘度apparent viscosity 运动粘性kinematic viscosity 动力粘性dynamic viscosity泊poise厘泊centipoise厘沱centistoke剪切层shear layer次层sublayer流动分离flow separation层流分离laminar separation 湍流分离turbulent separation 分离点separation point附着点attachment point再附reattachment再层流化relaminarization起动涡starting vortex驻涡standing vortex涡旋破碎vortex breakdown涡旋脱落vortex shedding压[力]降pressure drop压差阻力pressure drag压力能pressure energy型阻profile drag滑移速度slip velocity无滑移条件non-slip condition壁剪应力skin friction, frictional drag 壁剪切速度friction velocity磨擦损失friction loss磨擦因子friction factor耗散dissipation滞后lag相似性解similar solution局域相似local similarity气体润滑gas lubrication液体动力润滑hydrodynamic lubrication浆体slurry泰勒数Taylor number纳维-斯托克斯方程Navier-Stokes equation 牛顿流体Newtonian fluid 边界层理论boundary later theory边界层方程boundary layer equation边界层boundary layer附面层boundary layer层流边界层laminar boundary layer湍流边界层turbulent boundary layer温度边界层thermal boundary layer边界层转捩boundary layer transition边界层分离boundary layer separation 边界层厚度boundary layer thickness 位移厚度displacement thickness动量厚度momentum thickness能量厚度energy thickness焓厚度enthalpy thickness注入injection吸出suction泰勒涡Taylor vortex速度亏损律velocity defect law形状因子shape factor测速法anemometry粘度测定法visco[si] metry流动显示flow visualization油烟显示oil smoke visualization孔板流量计orifice meter频率响应frequency response油膜显示oil film visualization阴影法shadow method纹影法schlieren method烟丝法smoke wire method丝线法tuft method 说明氢泡法nydrogen bubble method相似理论similarity theory相似律similarity law部分相似partial similarity定理pi theorem, Buckingham theorem 静[态]校准static calibration动态校准dynamic calibration风洞wind tunnel激波管shock tube激波管风洞shock tube wind tunnel 水洞water tunnel拖曳水池towing tank旋臂水池rotating arm basin扩散段diffuser测压孔pressure tap皮托管pitot tube普雷斯顿管preston tube斯坦顿管Stanton tube文丘里管Venturi tubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiple manometer静压管static [pressure]tube流速计anemometer风速管Pitot- static tube激光多普勒测速计laser Doppler anemometer,laser Doppler velocimeter 热线流速计hot-wire anemometer热膜流速计hot- film anemometer流量计flow meter粘度计visco[si] meter涡量计vorticity meter传感器transducer, sensor压强传感器pressure transducer 热敏电阻thermistor示踪物tracer时间线time line脉线streak line尺度效应scale effect壁效应wall effect堵塞blockage堵寒效应blockage effect动态响应dynamic response响应频率response frequency底压base pressure菲克定律Fick law巴塞特力Basset force埃克特数Eckert number格拉斯霍夫数Grashof number努塞特数Nusselt number普朗特数prandtl number雷诺比拟Reynolds analogy施密特数schmidt number斯坦顿数Stanton number对流convection自由对流natural convection, free convec-tion 强迫对流forced convection热对流heat convection质量传递mass transfer传质系数mass transfer coefficient热量传递heat transfer传热系数heat transfer coefficient对流传热convective heat transfer辐射传热radiative heat transfer 动量交换momentum transfer能量传递energy transfer传导conduction热传导conductive heat transfer 热交换heat exchange临界热通量critical heat flux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusion velocity分子扩散molecular diffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computational fluid mechanics多重尺度问题multiple scale problem伯格斯方程Burgers equation对流扩散方程convection diffusion equationKDU方程KDV equation修正微分方程modified differential equation拉克斯等价定理Lax equivalence theorem数值模拟numerical simulation大涡模拟large eddy simulation数值粘性numerical viscosity非线性不稳定性nonlinear instability希尔特稳定性分析Hirt stability analysis相容条件consistency conditionCFL条件Courant- Friedrichs- Lewy condition ,CFL condition 狄里克雷边界条件Dirichlet boundary condition熵条件entropy condition远场边界条件far field boundary condition流入边界条件inflow boundary condition无反射边界条件nonreflecting boundary condition 数值边界条件numerical boundary condition流出边界条件outflow boundary condition冯.诺伊曼条件von Neumann condition近似因子分解法approximate factorization method 人工压缩artificial compression人工粘性artificial viscosity边界元法boundary element method配置方法collocation method能量法energy method有限体积法finite volume method流体网格法fluid in cell method,FLIC method通量校正传输法flux-corrected transport method 通量矢量分解法flux vector splitting method伽辽金法Galerkin method积分方法integral method标记网格法marker and cell method, MAC method 特征线法method of characteristics直线法method of lines矩量法moment method多重网格法multi- grid method板块法panel method质点网格法particle in cell method, PIC method 质点法particle method预估校正法predictor-corrector method投影法projection method准谱法pseudo-spectral method随机选取法random choice method激波捕捉法shock-capturing method激波拟合法shock-fitting method谱方法spectral method稀疏矩阵分解法split coefficient matrix method不定常法time-dependent method时间分步法time splitting method变分法variational method涡方法vortex method隐格式implicit scheme显格式explicit scheme交替方向隐格式alternating direction implicit scheme, ADI scheme 反扩散差分格式anti-diffusion difference scheme紧差分格式compact difference scheme守恒差分格式conservation difference scheme克兰克-尼科尔森格式Crank-Nicolson scheme杜福特-弗兰克尔格式Dufort-Frankel scheme指数格式exponential scheme戈本诺夫格式Godunov scheme高分辨率格式high resolution scheme拉克斯-温德罗夫格式Lax-Wendroff scheme蛙跳格式leap-frog scheme单调差分格式monotone difference scheme保单调差分格式monotonicity preserving diffe-rence scheme 穆曼-科尔格式Murman-Cole scheme半隐格式semi-implicit scheme斜迎风格式skew-upstream scheme全变差下降格式total variation decreasing scheme TVD scheme 迎风格式upstream scheme , upwind scheme计算区域computational domain物理区域physical domain影响域domain of influence依赖域domain of dependence区域分解domain decomposition维数分解dimensional split物理解physical solution弱解weak solution黎曼解算子Riemann solver守恒型conservation form弱守恒型weak conservation form强守恒型strong conservation form散度型divergence form贴体曲线坐标body- fitted curvilinear coordi-nates [自]适应网格[self-] adaptive mesh适应网格生成adaptive grid generation自动网格生成automatic grid generation数值网格生成numerical grid generation交错网格staggered mesh网格雷诺数cell Reynolds number数植扩散numerical diffusion数值耗散numerical dissipation数值色散numerical dispersion数值通量numerical flux放大因子amplification factor放大矩阵amplification matrix阻尼误差damping error离散涡discrete vortex熵通量entropy flux熵函数entropy function分步法fractional step method。
Separation Process Principles-3-3
Surface renewal theory The penetration theory is not satisfying because the assumption of a constant contact time for all eddies that temporarily reside at the surface is not reasonable, especially for stirred tanks, contactors with random packings, and bubble and spray columns where the bubbles and droplets cover a wide range of sizes. In 1951, Danckwerts suggested an improvement to the penetration theory that involves the replacement of the constantssumption of a residence-time distribution, wherein the probability of an eddy at the surface being replaced by a fresh eddy is independent of the age of the surface eddy.
3.5 Mass transfer in turbulent flow In the two previous sections, diffusion in stagnant media and in laminar flow were considered. For both cases, Fick’s law can be applied to obtain rates of mass transfer. A more common occurrence in engineering is turbulent flow, which is accompanied by much higher transport rates, but for which theory is still under development and the estimation of mass transfer rates relies heavily on empirical correlations of experimental data and analogies with heat and momentum transfer. As shown by the famous dye experiment of Osborne Reynolds in 1883, a fluid in laminar flow moves parallel to the solid boundaries in streamline patterns. Every particle of fluid moves with the same velocity along a streamline and there are no fluid velocity components normal to these streamline. For a Newtonian fluid, the momentum transfer, heat transfer, and mass transfer are by molecular transport, governed by Newton’ law of viscosity, Fourier’s law of heat conduction, and Fick’s law of molecular diffusion, respectively. In turbulent flow, the rates of momentum, heat, and mass transfer are orders of magnitude greater than for molecular transport. This occurs because streamlines no longer exist and particles or eddies of fluid, which are large compared to the mean free path of the molecules in the fluid, mix with each other by moving from one region to another in fluctuating motion. This eddy mixing by velocity fluctuations occurs not only in the direction of flow but also in the direction normal to flow, with the latter being of more interest. Momentum, heat, and mass transfer now occur by two parallel mechanisms: (1) molecular motion, which is slow; and (2) turbulent or eddy motion, which is rapid except near a solid surface, where the flow velocity accompanying turbulence decreases to zero.
物理竞赛英文词汇
物理竞赛英文词汇本篇文章主要介绍了物理竞赛中常用的英文词汇,涵盖了力学、热学、光学、电学等方面的词汇。
1. Mechanics (力学)- Force:力量,作用力- Velocity:速度- Acceleration:加速度- Mass:质量- Momentum:动量- Friction:摩擦力- Tension:张力- Work:功- Energy:能量- Power:功率- Torque:扭矩2. Thermodynamics (热学)- Temperature:温度- Heat:热量- Heat capacity:热容- Specific heat:比热- Entropy:熵- Heat engine:热机- Internal energy:内能- Enthalpy:焓- Heat transfer:热传递- Thermal expansion:热膨胀3. Optics (光学)- Light:光- Reflection:反射- Refraction:折射- Diffraction:衍射- Interference:干涉- Polarization:偏振- Prism:棱镜- Lens:透镜- Mirrors:镜子- Optics fiber:光纤4. Electricity and Magnetism (电学和磁学) - Electric field:电场- Magnetic field:磁场- Electric potential:电势- Capacitance:电容- Resistance:电阻- Inductance:电感- Current:电流- Voltage:电压- Electromagnetic waves:电磁波- Circuit:电路以上是物理竞赛中常用的英文词汇,希望对大家学习物理竞赛有所帮助。
流体力学相关中英文词汇对照表
流体力学相关中英文词汇对照表流体动力学名词英语叫法流体动力学fluiddynamics连续介质力学mechanicsofcontinuousmedia介质medium流体质点fluidparticle无粘性流体nonviscousfluid,inviscidfluid连续介质假设continuousmediumhypothesis流体运动学fluidkinematics水静力学hydrostatics液体静力学hydrostatics支配方程governingequation伯努利方程Bernoulliequation伯努利定理Bernonllitheorem毕奥-萨伐尔定律Biot-Savartlaw欧拉方程Eulerequation亥姆霍兹定理Helmholtztheorem开尔文定理Kelvintheorem涡片vortexsheet库塔-茹可夫斯基条件Kutta-Zhoukowskicondition 布拉休斯解Blasiussolution达朗贝尔佯廖d'Alembertparadox雷诺数Reynoldsnumber施特鲁哈尔数Strouhalnumber随体导数materialderivative不可压缩流体incompressiblefluid质量守恒conservationofmass动量守恒conservationofmomentum能量守恒conservationofenergy动量方程momentumequation能量方程energyequation控制体积controlvolume液体静压hydrostaticpressure涡量拟能enstrophy压差differentialpressure流[动]flow流线streamline流面streamsurface流管streamtube迹线path,pathline流场flowfield流态flowregime流动参量flowparameter流量flowrate,flowdischarge 涡旋vortex涡量vorticity涡丝vortexfilament涡线vortexline涡面vortexsurface涡层vortexlayer涡环vortexring涡对vortexpair涡管vortextube涡街vortexstreet卡门涡街Karmanvortexstreet 马蹄涡horseshoevortex对流涡胞convectivecell卷筒涡胞rollcell涡eddy涡粘性eddyviscosity环流circulation环量circulation速度环量velocitycirculation 偶极子doublet,dipole驻点stagnationpoint总压[力]totalpressure总压头totalhead静压头statichead总焓totalenthalpy能量输运energytransport速度剖面velocityprofile库埃特流Couetteflow单相流singlephaseflow单组份流single-componentflow 均匀流uniformflow非均匀流nonuniformflow二维流two-dimensionalflow三维流three-dimensionalflow准定常流quasi-steadyflow非定常流unsteadyflow,non-steadyflow 暂态流transientflow周期流periodicflow振荡流oscillatoryflow分层流stratifiedflow无旋流irrotationalflow有旋流rotationalflow轴对称流axisymmetricflow不可压缩性incompressibility不可压缩流[动]incompressibleflow浮体floatingbody定倾中心metacenter阻力drag,resistance减阻dragreduction表面力surfaceforce表面张力surfacetension毛细[管]作用capillarity来流incomingflow自由流freestream自由流线freestreamline外流externalflow进口entrance,inlet出口exit,outlet扰动disturbance,perturbation分布distribution传播propagation色散dispersion弥散dispersion附加质量addedmass,associatedmass 收缩contraction镜象法imagemethod无量纲参数dimensionlessparameter 几何相似geometricsimilarity运动相似kinematicsimilarity动力相似[性]dynamicsimilarity平面流planeflow势potential势流potentialflow速度势velocitypotential复势complexpotential复速度complexvelocity流函数streamfunction源source汇sink速度[水]头velocityhead拐角流cornerflow空泡流cavityflow超空泡supercavity超空泡流supercavityflow空气动力学aerodynamics低速空气动力学low-speedaerodynamics 高速空气动力学high-speedaerodynamics 气动热力学aerothermodynamics亚声速流[动]subsonicflow跨声速流[动]transonicflow超声速流[动]supersonicflow锥形流conicalflow楔流wedgeflow叶栅流cascadeflow非平衡流[动]non-equilibriumflow 细长体slenderbody细长度slenderness钝头体bluffbody钝体bluntbody翼型airfoil翼弦chord薄翼理论thin-airfoiltheory构型configuration后缘trailingedge迎角angleofattack失速stall脱体激波detachedshockwave波阻wavedrag诱导阻力induceddrag诱导速度inducedvelocity临界雷诺数criticalReynoldsnumber 前缘涡leadingedgevortex附着涡boundvortex约束涡confinedvortex气动中心aerodynamiccenter气动力aerodynamicforce气动噪声aerodynamicnoise气动加热aerodynamicheating离解dissociation地面效应groundeffect气体动力学gasdynamics稀疏波rarefactionwave热状态方程thermalequationofstate 喷管Nozzle普朗特-迈耶流Prandtl-Meyerflow 瑞利流Rayleighflow可压缩流[动]compressibleflow可压缩流体compressiblefluid绝热流adiabaticflow非绝热流diabaticflow未扰动流undisturbedflow等熵流isentropicflow匀熵流homoentropicflow兰金-于戈尼奥条件Rankine-Hugoniotcondition 状态方程equationofstate量热状态方程caloricequationofstate完全气体perfectgas拉瓦尔喷管Lavalnozzle马赫角Machangle马赫锥Machcone马赫线Machline马赫数Machnumber马赫波Machwave当地马赫数localMachnumber冲击波shockwave激波shockwave正激波normalshockwave斜激波obliqueshockwave头波bowwave附体激波attachedshockwave 激波阵面shockfront激波层shocklayer压缩波compressionwave反射reflection折射refraction散射scattering衍射diffraction绕射diffraction出口压力exitpressure超压[强]overpressure反压backpressure爆炸explosion爆轰detonation缓燃deflagration水动力学hydrodynamics液体动力学hydrodynamics泰勒不稳定性Taylorinstability 盖斯特纳波Gerstnerwave斯托克斯波Stokeswave瑞利数Rayleighnumber自由面freesurface波速wavespeed,wavevelocity波高waveheight波列wavetrain波群wavegroup波能waveenergy表面波surfacewave表面张力波capillarywave规则波regularwave不规则波irregularwave浅水波shallowwaterwave深水波deepwaterwave重力波gravitywave椭圆余弦波cnoidalwave潮波tidalwave涌波surgewave破碎波breakingwave船波shipwave非线性波nonlinearwave孤立子soliton水动[力]噪声hydrodynamicnoise 水击waterhammer空化cavitation空化数cavitationnumber空蚀cavitationdamage超空化流supercavitatingflow水翼hydrofoil水力学hydraulics洪水波floodwave涟漪ripple消能energydissipation海洋水动力学marinehydrodynamics 谢齐公式Chezyformula欧拉数Eulernumber弗劳德数Froudenumber水力半径hydraulicradius 水力坡度hvdraulicslope高度水头elevatinghead水头损失headloss水位waterlevel水跃hydraulicjump含水层aquifer排水drainage排放量discharge壅水曲线backwatercurve压[强水]头pressurehead过水断面flowcross-section 明槽流openchannelflow孔流orificeflow无压流freesurfaceflow有压流pressureflow缓流subcriticalflow急流supercriticalflow渐变流graduallyvariedflow急变流rapidlyvariedflow临界流criticalflow异重流densitycurrent,gravityflow堰流weirflow掺气流aeratedflow含沙流sediment-ladenstream降水曲线dropdowncurve沉积物sediment,deposit沉[降堆]积sedimentation,deposition沉降速度settlingvelocity流动稳定性flowstability不稳定性instability奥尔-索末菲方程Orr-Sommerfeldequation 涡量方程vorticityequation泊肃叶流Poiseuilleflow奥辛流Oseenflow剪切流shearflow粘性流[动]viscousflow层流laminarflow分离流separatedflow二次流secondaryflow近场流nearfieldflow远场流farfieldflow滞止流stagnationflow尾流wake[flow]回流backflow反流reverseflow射流jet自由射流freejet管流pipeflow,tubeflow内流internalflow拟序结构coherentstructure 猝发过程burstingprocess表观粘度apparentviscosity 运动粘性kinematicviscosity 动力粘性dynamicviscosity泊poise厘泊centipoise厘沱centistoke剪切层shearlayer次层sublayer流动分离flowseparation层流分离laminarseparation 湍流分离turbulentseparation 分离点separationpoint附着点attachmentpoint再附reattachment再层流化relaminarization起动涡startingvortex驻涡standingvortex涡旋破碎vortexbreakdown涡旋脱落vortexshedding压[力]降pressuredrop压差阻力pressuredrag压力能pressureenergy型阻profiledrag滑移速度slipvelocity无滑移条件non-slipcondition壁剪应力skinfriction,frictionaldrag壁剪切速度frictionvelocity磨擦损失frictionloss磨擦因子frictionfactor耗散dissipation滞后lag相似性解similarsolution局域相似localsimilarity气体润滑gaslubrication液体动力润滑hydrodynamiclubrication浆体slurry泰勒数Taylornumber纳维-斯托克斯方程Navier-Stokesequation 牛顿流体Newtonianfluid边界层理论boundarylatertheory边界层方程boundarylayerequation边界层boundarylayer附面层boundarylayer层流边界层laminarboundarylayer湍流边界层turbulentboundarylayer 温度边界层thermalboundarylayer边界层转捩boundarylayertransition 边界层分离boundarylayerseparation 边界层厚度boundarylayerthickness 位移厚度displacementthickness动量厚度momentumthickness能量厚度energythickness焓厚度enthalpythickness注入injection吸出suction泰勒涡Taylorvortex速度亏损律velocitydefectlaw形状因子shapefactor测速法anemometry粘度测定法visco[si]metry流动显示flowvisualization油烟显示oilsmokevisualization 孔板流量计orificemeter频率响应frequencyresponse油膜显示oilfilmvisualization阴影法shadowmethod纹影法schlierenmethod烟丝法smokewiremethod丝线法tuftmethod氢泡法nydrogenbubblemethod相似理论similaritytheory相似律similaritylaw部分相似partialsimilarity定理pitheorem,Buckinghamtheorem 静[态]校准staticcalibration动态校准dynamiccalibration风洞windtunnel激波管shocktube激波管风洞shocktubewindtunnel水洞watertunnel拖曳水池towingtank旋臂水池rotatingarmbasin扩散段diffuser测压孔pressuretap皮托管pitottube普雷斯顿管prestontube斯坦顿管Stantontube文丘里管VenturitubeU形管U-tube压强计manometer微压计micromanometer多管压强计multiplemanometer静压管static[pressure]tube流速计anemometer风速管Pitot-statictube激光多普勒测速计laserDoppleranemometer, laserDopplervelocimeter热线流速计hot-wireanemometer热膜流速计hot-filmanemometer流量计flowmeter粘度计visco[si]meter涡量计vorticitymeter传感器transducer,sensor压强传感器pressuretransducer 热敏电阻thermistor示踪物tracer时间线timeline脉线streakline尺度效应scaleeffect壁效应walleffect堵塞blockage堵寒效应blockageeffect动态响应dynamicresponse响应频率responsefrequency底压basepressure菲克定律Ficklaw巴塞特力Bassetforce埃克特数Eckertnumber格拉斯霍夫数Grashofnumber努塞特数Nusseltnumber普朗特数prandtlnumber雷诺比拟Reynoldsanalogy施密特数schmidtnumber斯坦顿数Stantonnumber对流convection自由对流naturalconvection,freeconvec-tion 强迫对流forcedconvection热对流heatconvection质量传递masstransfer传质系数masstransfercoefficient热量传递heattransfer传热系数heattransfercoefficient对流传热convectiveheattransfer辐射传热radiativeheattransfer动量交换momentumtransfer能量传递energytransfer传导conduction热传导conductiveheattransfer热交换heatexchange临界热通量criticalheatflux浓度concentration扩散diffusion扩散性diffusivity扩散率diffusivity扩散速度diffusionvelocity分子扩散moleculardiffusion沸腾boiling蒸发evaporation气化gasification凝结condensation成核nucleation计算流体力学computationalfluidmechanics多重尺度问题multiplescaleproblem伯格斯方程Burgersequation对流扩散方程convectiondiffusionequationKDU方程KDVequation 修正微分方程modifieddifferentialequation拉克斯等价定理Laxequivalencetheorem数值模拟numericalsimulation大涡模拟largeeddysimulation数值粘性numericalviscosity非线性不稳定性nonlinearinstability希尔特稳定性分析Hirtstabilityanalysis相容条件consistencyconditionCFL条件Courant-Friedrichs-Lewycondition,CFLcondition狄里克雷边界条件Dirichletboundarycondition熵条件entropycondition远场边界条件farfieldboundarycondition流入边界条件inflowboundarycondition无反射边界条件nonreflectingboundarycondition数值边界条件numericalboundarycondition流出边界条件outflowboundarycondition冯.诺伊曼条件vonNeumanncondition近似因子分解法approximatefactorizationmethod人工压缩artificialcompression人工粘性artificialviscosity边界元法boundaryelementmethod配置方法collocationmethod能量法energymethod有限体积法finitevolumemethod流体网格法fluidincellmethod,FLICmethod通量校正传输法flux-correctedtransportmethod 通量矢量分解法fluxvectorsplittingmethod伽辽金法Galerkinmethod积分方法integralmethod标记网格法markerandcellmethod,MACmethod特征线法methodofcharacteristics直线法methodoflines矩量法momentmethod多重网格法multi-gridmethod板块法panelmethod质点网格法particleincellmethod,PICmethod质点法particlemethod预估校正法predictor-correctormethod投影法projectionmethod准谱法pseudo-spectralmethod随机选取法randomchoicemethod激波捕捉法shock-capturingmethod激波拟合法shock-fittingmethod谱方法spectralmethod稀疏矩阵分解法splitcoefficientmatrixmethod不定常法time-dependentmethod时间分步法timesplittingmethod变分法variationalmethod涡方法vortexmethod隐格式implicitscheme显格式explicitscheme交替方向隐格式alternatingdirectionimplicitscheme,ADIscheme 反扩散差分格式anti-diffusiondifferencescheme紧差分格式compactdifferencescheme守恒差分格式conservationdifferencescheme克兰克-尼科尔森格式Crank-Nicolsonscheme杜福特-弗兰克尔格式Dufort-Frankelscheme指数格式exponentialscheme戈本诺夫格式Godunovscheme高分辨率格式highresolutionscheme拉克斯-温德罗夫格式Lax-Wendroffscheme蛙跳格式leap-frogscheme单调差分格式monotonedifferencescheme保单调差分格式monotonicitypreservingdiffe-rencescheme 穆曼-科尔格式Murman-Colescheme半隐格式semi-implicitscheme斜迎风格式skew-upstreamscheme全变差下降格式totalvariationdecreasingschemeTVDscheme 迎风格式upstreamscheme,upwindscheme计算区域computationaldomain物理区域physicaldomain影响域domainofinfluence依赖域domainofdependence区域分解domaindecomposition维数分解dimensionalsplit物理解physicalsolution弱解weaksolution黎曼解算子Riemannsolver守恒型conservationform弱守恒型weakconservationform强守恒型strongconservationform散度型divergenceform贴体曲线坐标body-fittedcurvilinearcoordi-nates [自]适应网格[self-]adaptivemesh适应网格生成adaptivegridgeneration自动网格生成automaticgridgeneration数值网格生成numericalgridgeneration交错网格staggeredmesh网格雷诺数cellReynoldsnumber数植扩散numericaldiffusion数值耗散numericaldissipation数值色散numericaldispersion数值通量numericalflux放大因子amplificationfactor放大矩阵amplificationmatrix阻尼误差dampingerror离散涡discretevortex熵通量entropyflux熵函数entropyfunction分步法fractionalstepmethod。
传递过程第5章加总结考点
(t
k tw)
t y
y0
h
k
t
c p (t tw ) y
y0
h
c p
引入对流传质系数,则:
J Aw
DAB
C A y
y0
k
0 C
(C
Aw
C A )
DAB CA CA CAw y
y0 kC0
根据式(※)可得:
f
h
2 u
cp
Newton粘性定律:
yx
d(ux )
dy
Fourier(第一)定律: q d(cpt)
dy
Fick(第一)定律:
JA
DAB
dC A dy
(稳态、二维层流)边界层动量、热量、质量(微分)方程:
ux
u x x
uy
u x y
2u x y 2
ux
t x
(层流、湍流)边界层动量、热量、质量积分方程:
d
dx
0
(u
ux )uxdy
ux y
y0
d
dx
t 0
(t
t)uxdy
t y
y0
d
dx
c 0
(CA
CA )uxdy
DAB
CA y
y0
通过表面(或界面)的动量、热量、质量通量方程:
w
f 2
流体与壁面间交换的动量 流体所具有的总动量(以壁面速度为基准)
f h kC0
2 cpu u
u
u
风机英语术语
风机英语术语一、压缩机类型 Type of compressor1. 容积式(正位移)压缩机positive displacement compressor往复式压缩机 reciprocating compressor活塞式压缩机 piston compressor柱塞式压缩机 plunger compressor隔膜式压缩机 diaphragm compressor回转式压缩机 rotary compressor双螺杆压缩机 double screw compressor单螺杆压缩机 single screw compressor滚动活塞式压缩机 rolling piston compressor滑片式压缩机 sliding vane compressor液环式压缩机 liquid ring compressor三角转子压缩机 triangle rotor compressor涡旋式压缩机 scroll compressor罗茨鼓风机 Roots blower2. 动力式压缩机 dynamic compressor透平压缩机 turbo compressor离心式压缩机 centrifugal compressor轴流式压缩机 axial flow compressor亚音速压缩机 subsonic compressor超音速压缩机 supersonic compressor二、通、鼓风机类型 type of fan and blower离心式通风机centrifugal fan轴流式通风机axial flow fan横流式通风机 cross-flow fan斜流式通风机 mixed-flower fan前向离心通风机 forward(curve) centrifugal fan后向离心通风机 backward(curve) centrifugal fan罗茨鼓风机 roots blower离心鼓风机centrifugal blower三、零部件parts转子 rotator静子 stator轴 shaft轴承 bearing刚性轴 stiff-shaft柔性轴 flexible-shaft叶轮 impeller闭式叶轮 shrouded impeller半开式叶轮 unshrouded impeller叶片 blade, vane导流叶片组件 pre-rotary vane assembly 扩压器 diffuser蜗壳 scroll,volute进风口 air intake导流器deflector进口entrance, inlet出口exit, outlet截止阀 line valve, stop valve排气截止阀 discharge line valve 吸气截止阀 suction line valve联轴器Shaft coupling消声器 muffler轴承bearing滑动轴承 sleeve bearing滚珠轴承 ball bearing滚柱轴承 roller bearing止推盘 thrust collar止推轴承 thrust bearing轴承箱 bearing housing滚针轴承 needle bearing电动机Electric motor/motor 四、总体参数 total parameter转速 speed比转速specific speed损失 loss效率efficiency功率系数 power coefficient压力系数pressure coefficient 流量系数 flow coefficient压缩比compression ratio 五、流动参参数 flow parameter速度velocity雷诺数Reynolds number流场flow field总压 total pressur静压 static pressure压差 pressure drop阻力 drag, resistance表压力gauge pressure绝对压力 absolute pressure相对压力 relative pressure总温 total temperature静温 static pressure质量流量 mass flow rate体积流量 volume flow rate滑动 slip涡流 swirl流动 flow层流 laminar flow湍流 turbulent flow二次流 secondary flow均匀流 uniform flow流动分离 flow separation层流分离 laminar separation湍流分离 turbulent separation定常流动 steady flow非定常流动 unsteady flow可压缩流动 compressible flow不可压缩流动 incompressible flow流体动力学fluid dynamics计算流体动力学 computational fluid dynamics 相似律 similarity law相似理论 similarity theory边界条件 boundary condition质量守恒 conservation of mass动量守恒 conservation of momentum能量守恒 conservation of energy动量方程 momentum equation能量方程 energy equation状态方程 equation of state六、传热参数 heat transfer parameter对流convection热对流 heat convection质量传递 mass transfer传质系数 mass transfer coefficient热量传递 heat transfer传热系数 heat transfer coefficient对流传热 convective heat transfer辐射传热 radiative heat transfer动量交换 momentum transfer能量传递 energy transfer传导 conduction热传导 conductive heat transfer热交换 heat exchange六、几何参数 structure parameter翼型 airfoil翼弦 chord叶栅cascade迎角 angle of attack两级压缩机 compound compressor多级压缩机 multistage compressor进口叶片安装角 blade installation angle of inlet 出口叶片安装角blade installation angle of outlet 进口气流角 flow angle of inlet出口气流角 flow angle of outlet气流冲角angle of attack flow七、机械参数 Geometric parameters振动 vibration喘振 surging临界转速 critical speed叶片颤振 blade flutter叶片通过频率 blade passing frequency 叶轮反作用度 impeller reaction机械密封 mechanical seal轴封 crankcase seal, shaft seal。
大气科学专业英语词汇
大气科学专业英语词汇摘要大气科学是研究地球大气的物理、化学和动力过程及其与地表、海洋和太空的相互作用的科学。
大气科学专业的学生需要掌握一些基本的英语词汇,以便阅读和理解相关的文献、报告和数据,以及进行交流和表达。
本文根据大气科学的主要分支和内容,列举了一些常用的英语词汇,并给出了中文和英文的对照表,供大气科学专业的学生参考和学习。
大气科学的分支大气科学是一个涉及多个领域和方向的综合性科学,根据不同的研究对象、方法和目的,可以分为以下几个分支:中文英文动力气象学Dynamic meteorology大气物理学Atmospheric physics大气化学Atmospheric chemistry大气辐射Atmospheric radiation大气电学Atmospheric electricity大气环境Atmospheric environment气候学Climatology天气预报Weather forecasting卫星气象学Satellite meteorology大气结构和组成大气是地球表面包围的一层混合气体,主要由氮、氧、水汽和其他微量成分组成。
大气按照垂直方向上的温度变化可以划分为几个层次,每个层次有不同的物理特征和过程:中文英文对流层Troposphere对流层顶Tropopause平流层Stratosphere平流层顶Stratopause中间层Mesosphere中间层顶Mesopause热层Thermosphere热层顶Thermopause外逸层Exosphere大气运动大气运动是指大气中各种尺度和形式的空气流动,是由于地球自转、太阳辐射、地形影响等因素造成的。
大气运动可以分为宏观尺度、中观尺度和微观尺度三类:中文英文宏观尺度运动Macro-scale motion中观尺度运动Meso-scale motion微观尺度运动Micro-scale motion中文英文宏观尺度运动又可以分为行星尺度、大陆尺度和天气尺度三种:中文英文行星尺度运动Planetary-scale motion大陆尺度运动Continental-scale motion天气尺度运动Synoptic-scale motion中观尺度运动包括风暴、飓风、锋面、山谷风等现象:中文英文风暴Storm飓风Hurricane锋面Front山谷风Mountain-valley breeze微观尺度运动主要指湍流现象:中文英文湍流Turbulence大气压力和温度大气压力是指大气柱对地面的垂直压力,与海拔高度、温度、水汽含量等因素有关。
化工知识“三传一反”
三传一反"是化工产业中常用的一个术语,它指的是:"三传":表示热传导、质传导和动量传导。
"一反":表示化学反应。
这四个因素在化工生产过程中都起着重要作用,并且相互影响及制约。
具体解释如下:热传导(Heat transfer):这种现象发生在具有不同温度的两个物体接触时,高温对象将其热量传递给低温对象直到两者达到恒定状态。
在化工生产中,控制和利用热传导非常关键。
质传导(Mass transfer):质量从浓度高的区域传递到浓度低的区域。
在化工工艺中也常涉及质传导问题,比如扩散、洗涤、吸附等过程。
动量传导(Momentum transfer):描述了力或动量在流体中的传输行为,这在管道输送、搅拌、泵送等流动过程中尤为重要。
化学反应(Chemical reaction):指的是原料在特定条件下经过某种过程转化为产品。
在化工过程中,通过设计和控制化学反应,可以得到预期的化学品。
这四个因素通常需要同时考虑以优化化工生产过程,确保生产效率和产品质量。
热传导反应装置是化工生产中一个重要的设备,它是利用热传导现象进行化学反应的设备。
这种装置通常可以提供必要的温度条件以进行化学反应,并能有效地管理反应过程中的热量。
以下是一些常见的热传导反应装置:管式反应器(Tubular Reactor):也称为塞流反应器,它通常由一个与周围环境隔离的长管组成,反应物质在其中单向流动。
管式反应器的壁面可以通过冷却液或加热源来控制反应温度,从而实现热传导。
搅拌反应釜(Stirred Tank Reactor):此类反应器内部装有搅拌器,可以保持反应物质充分混合。
反应器的壁面或底部通常设置有加热或冷却设备,以控制反应温度。
包膜反应器(Encapsulated Reactor):这种反应器将反应物质封装在微小的壳体或胶囊内,壳体材料可以有效地进行热传导,以控制反应的热量和速度。
流化床反应器(Fluidized Bed Reactor):在这种反应器中,固态颗粒被气体或液体通过,使其表现出液体的流动特性。
0传输原理-绪论
Drive Force of Momentum, Mass & heat transmission
Velocity gradient Concentration gradient Temperature gradient
三种传输过程的基本方程
动量传输——牛顿粘性定律 热量传输——傅里叶定律
传输原理
哈尔滨工业大学(威海)材料学院 张涛 taoozhang@
关于本课程
课程简介: 本课程36学时,考试课程 教材: 材料加工冶金传输原理,吴树森,机械工业出 版社,2005 参考书目: 流体力学,林建忠等,2005 冶金传输原理,沈巧珍等,2006
绪论
Q&A 1.什么是传输现象? 2.Physical or Chemical process? ① Momentum ② Mass ③ Heat What about the Drive Force?
各向同性的材料,一维温度场,单位时间通过 单位面积的热量与垂直于该截面的温度梯度成 正比:
负号的向同性物质,两组分,单位时间内通过单位 面积的扩散扩散物质的量与垂直于截面方向的 浓度的浓度梯度成正比,
三种传输现象的规律
① ② ③
Momentum, Mass & heat (通量)=-(扩散系数)×(浓度梯度)。 扩散系数有相同的因次,m2/s。 传输方向与该量的浓度梯度方向相反。
质量传输——菲克定律
1.牛顿粘性定律
① ②
Q&A 理想气体和实际气体的区别? 理想流体和实际流体的区别?
τ
-
粘度
μ= μ (P,t,c),与剪应力、速度无关 气体的粘度与液体的粘度随温度的变化规律? 牛顿型流体与非牛顿型流体 牛顿型流体:大多数气体、相对分子量小的液 体
numerical analysis of heat and mass transfer in the cappillary structure of a loop heat pipe
Numerical analysis of heat and mass transfer in the capillarystructure of a loop heat pipeTarik Kaya *,John GoldakCarleton University,Department of Mechanical and Aerospace Engineering,1125Colonel By Drive,Ottawa,Ont.,Canada K1S 5B6Received 24February 2005;received in revised form 20December 2005Available online 31March 2006AbstractThe heat and mass transfer in the capillary porous structure of a loop heat pipe (LHP)is numerically studied and the LHP boiling limit is investigated.The mass,momentum and energy equations are solved numerically using the finite element method for an evapo-rator cross section.When a separate vapor region is formed inside the capillary structure,the shape of the free boundary is calculated by satisfying the mass and energy balance conditions at the interface.The superheat limits in the capillary structure are estimated by using the cluster nucleation theory.An explanation is provided for the robustness of LHPs to the boiling limit.Ó2006Elsevier Ltd.All rights reserved.Keywords:Two-phase heat transfer;Boiling in porous media;Boiling limit;Loop heat pipes;Capillary pumped loops1.IntroductionTwo-phase capillary pumped heat transfer devices are becoming standard tools to meet the increasingly demand-ing thermal control problems of high-end electronics.Among these devices,loop heat pipes (LHPs)are particu-larly interesting because of several advantages in terms of robust operation,high heat transport capability,operabil-ity against gravity,flexible transport lines and fast diode action.As shown in Fig.1,a typical LHP consists of an evaporator,a reservoir (usually called a compensation chamber),vapor and liquid transport lines and a con-denser.The cross section of a typical evaporator is also shown in Fig.1.The evaporator consists of a liquid-pas-sage core,a capillary porous wick,vapor-evacuation grooves and an outer casing.In many LHPs,a secondarywick between the reservoir and the evaporator is also used to ensure that liquid remains available to the main wick at all times.Heat is applied to the outer casing of the evapo-rator,leading to the evaporation of the liquid inside the wick.The resulting vapor is collected in the vapor grooves and pushed through the vapor transport line towards the condenser.The meniscus formed at the surface or inside the capillary structure naturally adjusts itself to establish a capillary head that matches the total pressure drop in the LHP.The subcooled liquid from the condenser returns to the evaporator core through the reservoir,completing the cycle.Detailed descriptions of the main characteristics and working principles of the LHPs can be found in Maidanik et al.[1]and Ku [2].In this present work,the heat and mass transfer inside the evaporator of an LHP is considered.The formulation of the problem is similar to a previous work performed by Demidov and Yatsenko [3],where the capillary struc-ture contains a vapor region under the fin separated from the liquid region by a free boundary as shown in Fig.2.Demidov and Yatsenko [3]have developed a numerical procedure and studied the growth of the vapor region under increasing heat loads.They also present a qualitative0017-9310/$-see front matter Ó2006Elsevier Ltd.All rights reserved.doi:10.1016/j.ijheatmasstransfer.2006.01.028*Corresponding author.E-mail addresses:tkaya@mae.carleton.ca (T.Kaya),jgoldak@mrco2.carleton.ca (J.Goldak)./locate/ijhmtanalysis of the additional evaporation from the meniscus formed in thefin–wick corner when the vapor region is small without exceeding thefin surface.They report that the evaporation from this meniscus could be much higher than that from the surface of the wick and designs facilitating the formation of the meniscus would be desir-able.Figus et al.[4]have also presented a numerical solu-tion for the problem posed by Demidov and Yatsenko[3] using to a certain extent similar boundary conditions and a different method of solution.First,the solutions are obtained for a single pore-size distribution by using the Darcy model.Then,the solution method is extended to a wick with a varying pore-size distribution by using a two-dimensional pore network model.An important conclusion of this work is that the pore network model results are nearly identical to those of the Darcy model for an ordered single pore-size distribution.On the basis of this study,we consider a capillary structure with an ordered pore distri-bution possessing a characteristics single pore size.A sim-ilar problem has also been studied analytically by Cao and Faghri[5].Unlike[3,4],a completely liquid-saturated wick is considered.Therefore,the interface is located at the sur-face of the wick.They indicate that the boiling limit inside the wick largely depends on the highest temperature under thefin.This statement needs further investigation espe-cially when a vapor region under thefin is present.In a later study,Cao and Faghri[6]have extended their work to a three-dimensional geometry,where a two-dimensional liquid in the wick and three-dimensional vaporflow in the grooves separated by aflat interface at the wick surface is considered.A qualitative discussion of the boiling limit in a capillary structure is provided.They also compare the results of the two-dimensional model without the vapor flow in the grooves and three-dimensional model and con-clude that reasonably accurate results can be obtained by a two-dimensional model especially when the vapor velo-cities are small for certain workingfluids such as Freon-11 and ammonia.Based on these results,in our work,we con-sider a two-dimensional geometry to simplify the formula-tion of the problem.All these referenced works assume a steady-state process.Dynamic phenomena and specifically start-up is also extensively studied[7,8].The superheat at the start-up and temperature overshoots is still not well understood.In this work,the transient regimes and start-up are not investigated.One of the goals of the present study is a detailed inves-tigation of the boiling limit in a capillary structure.There-fore,the completely liquid-saturated and vapor–liquid wick cases are both studied.The boiling limit in a porous struc-ture is calculated by using the method developed by Mish-kinis and Ochterbeck[9]based on the cluster nucleation theory of Kwak and Panton[10].Our primary interest in this study is LHPs.In comparison,the previously refer-enced works focus primarily on capillary pumped loops (CPLs),a closely related two-phase heat transfer device to an LHP.Unlike in a CPL,the proximity of the reservoir to the evaporator in an LHP ensures that the wick is con-tinuously supplied with liquid.However,there is no signif-icant difference in the mathematical modeling of both devices especially because only a cross section of the evap-orator is studied.The main difference here is that LHPs easily tolerate the use of metallic wicks with very small pore sizes,with a typical effective pore radius of1l m,resulting in larger available capillary pressure heads.Nomenclaturec p specific heat at constant pressure[J kgÀ1KÀ1] h c convection heat transfer coefficient[W mÀ2KÀ1] h i interfacial heat transfer coefficient[W mÀ2KÀ1] h fg latent heat of evaporation[J kgÀ1]J nc critical nucleation rate[nuclei mÀ3sÀ1]k thermal conductivity[W mÀ1KÀ1]K permeability[m2]L length[m]p pressure[Pa]D p pressure drop across wick[Pa]Pe Peclet numberQ b heat load for boiling limit[W]q in applied heatflux[W mÀ2]Q in applied heat load[W]r radius[m]r p pore radius[m]Re Reynolds numbert thickness[m]T temperature[K]u velocity vector[m sÀ1]Greek symbolsh angle[degrees]l viscosity[Pa s]q density[kg mÀ3]u porosityr liquid–vapor surface tension[N mÀ1] Subscriptsc casingeffeffectiveg groovein inletint interfacel liquidmax maximumn normal componentsat saturationv vaporw wick3212T.Kaya,J.Goldak/International Journal of Heat and Mass Transfer49(2006)3211–32202.Mathematical formulationA schematic of the computational model for the wick segment studied is shown in Fig.3.Because of the symme-try,a segment of the evaporator cross section is considered,which is between the centerlines of the fin and adjacent vapor groove.The numerical solutions for thisgeometryFig.2.Schematic of evaporation inside theevaporator.Fig.1.Schematic of a typical LHP and cross section of the evaporator.T.Kaya,J.Goldak /International Journal of Heat and Mass Transfer 49(2006)3211–32203213are obtained for two separate configurations.At low heat loads,the wick is entirely saturated by the liquid.At higher heat loads,the wick contains two regions divided by an interface as shown in Fig.3:an all-vapor region in the vicinity of thefin and a liquid region in the remaining part of the wick.Heat is applied on the exterior walls of the cas-ing and it is transferred through thefin and wick to the vapor–liquid interface.This leads to the evaporation of the liquid at the interface and thus theflow of the vapor into the grooves.For the vapor–liquid wick,the vapor formed inside the wick is pushed towards the grooves through a small region at the wick–groove border.In both of the cases,as a result of the pressure difference across the wick,the liquid from the core replaces the outflowing vapor.Under a given heat load,the system reaches the steady state and the operation is maintained as long as the heat load is applied.The mathematical model adopted in this work is based on the following assumptions:the process is steady state; the capillary structure is homogenous and isotropic;radia-tive and gravitational effects are negligible;thefluid is Newtonian and has constant properties at each phase; and there is local thermal equilibrium between the porous structure and the workingfluid.Many of these assump-tions are similar to those made in Demidov and Yatsenko [3]and Figus et al.[4].In addition,we also take into account convective terms in the energy(advection–diffu-sion)equation.The validity of the Darcy equation for the problem studied is also discussed.Under these assump-tions,the governing equations for vapor and liquid phases (continuity,Darcy and energy)are as follows:rÁu¼0ð1Þu¼ÀKlr pð2Þq c p rðu TÞ¼k eff r2Tð3ÞIt should be noted that the Darcy solverfirst calculates the pressure from the Laplace equation for pressure($2p=0), which is obtained by combining Eqs.(1)and(2).The vapor flow in the groove region is not solved to simplify the prob-lem.The boundary conditions for the liquid-saturated wick are described as follows:At r=r ip¼pcore;T¼T satð4ÞAt r=r o and h A6h6h Cu n¼Àk effq l h fgo To n;k effo To n¼h iðTÀT vÞð5ÞAt r=r o and h C6h6h Do p o n ¼0;k co To n¼k effo To nð6ÞAt r=r g and h A6h6h CÀk c o To n¼h cðTÀT vÞð7ÞAt r=r ck co To n¼q inð8ÞAt h=h A and r i6r6r o and r g6r6r co po h¼0;o To h¼0ð9ÞAt h=h C and r o6r6r gÀk co To n¼h cðTÀT vÞð10ÞAt h=h D and r i6r6r co po h¼0;o To h¼0ð11ÞIn the equations above,(o/o n)represents the differentialoperator along the normal vector to a boundary.Theboundary conditions for the wick with the separate vaporand liquid regions are identical to the above equations ex-cept along the wick–groove boundary and for the vapor–liquid interface inside the wick.The following equationssummarize these additional boundary conditions for thevapor–liquid wick:At r=r o and h A6h6h Bu n¼Àk effq l h fgo To n;k effo To n¼h iðTÀT vÞð12ÞAt r=r o and h B6h6h Cp¼pv;o To n¼0ð13ÞThe interface is assumed to have zero thickness.Sharpdiscontinuities of the material properties are maintainedacross the interface.The interfacial conditions are writtenas follows:The mass continuity conditionðu nÞvq v¼ðu nÞlq lð14ÞThe energy conservation conditionðk effÞvo T vo nÀðk effÞlo T lo n¼ðu nÞvqvh fgð15ÞFor the interface temperature condition,we assumelocal thermal equilibrium at the interface inside the wick:T int¼T v¼T lð16ÞHere,we assume that the interface temperature T int is givenby the vapor temperature.This condition is used to locatethe vapor–liquid interface as explained in the followingsection.For the interface at the wick–groove border,a convectiveboundary condition is used,Eqs.(5)and(12).A temper-ature boundary condition ignoring the interfacial resistanceis also possible.The interfacial heat transfer coefficient iscalculated by using the relation given in Carey[11]basedon the equation suggested by Silver and Simpson[12].The heat transfer coefficient h c between the cover plateand the vaporflow is calculated by using a correlation sug-3214T.Kaya,J.Goldak/International Journal of Heat and Mass Transfer49(2006)3211–3220gested by Sleicher and Rouse[13]for fully developedflows in round ducts.It is extremely difficult to experimentally determine the heat transfer coefficient h c and a three-dimen-sional model is necessary to solve the vaporflow in the grooves.A convective boundary condition is more realistic since the use of temperature boundary condition implies h c!1.The convective boundary condition here with a reasonable heat transfer coefficient also allows some heat flux through the groove rather than assuming the entire heat load is transferred to the wick through thefin.3.Numerical procedureThe governing equations and associated boundary con-ditions described previously are solved by using the Galer-kinfinite element method.The computational domain under consideration is discretized with isoparametric and quadratic triangular elements.The numerical solution sequence for the all-liquid wick is straightforward.As the entire process is driven by the liquid evaporation at the vapor–liquid front,the energy equation isfirst solved.The numerical solution sequence is as follows:1.Initialize the problem by solving the energy equationassuming zero velocity inside the wick.2.Calculate the normal component of the outflow velocityat the interface between the wick and groove from the results of the energy equation,which is then used as an outflow boundary condition for the Darcy solver.3.Solve the Darcy equation to obtain the liquid velocityfield inside the wick.4.Solve the energy equation on the entire domain with theDarcy velocities.5.Return to step2until all equations and boundary con-ditions are satisfied to a desired level of accuracy.At high heat loads,when a separate vapor region devel-ops in the wick,the numerical procedure is more compli-cated since the location of the interface is also an unknown of the problem.Therefore,a more involved iter-ative scheme is necessary.The numerical solution proce-dure is summarized as follows:1.Initialize the problem by solving the Laplace equationfor temperature($2T=0)on the entire domain for a liquid-saturated wick.2.Choose an arbitrary temperature isoline close to thefinas the initial guess for the location of the vapor–liquid interface.3.Solve the energy equation for two separate domains:casing-vapor region and liquid region.Calculate the normal conductive heatflux at the vapor–liquid interface.4.Solve the Darcy equation separately in the vapor andliquid regions to calculate the vapor and liquid velocities inside the wick.5.Solve the energy equation with the Darcy velocities onthe entire domain by imposing the energy conservation boundary condition at the interface.6.Check if the temperature condition at the interface issatisfied.If it is not satisfied,the interface shape needs to be modified.7.Return to step3until all equations and boundary con-ditions are satisfied to obtain a preset level of accuracy.After each interface update at step6,the solution domain needs to be remeshed.As the transient terms are not maintained in the governing equations,the numerical procedure presented is not a moving boundary technique and only the converged solutions have a physical meaning. For each solution,the static pressure drop across the inter-face is calculated to make sure that the difference in pres-sures is less than the maximum available capillary pressure in the wick(P vÀP l62r/r p),where the normal viscous stress discontinuity and inertial forces are neglected.Thus,the momentum jump condition across the interface is satisfied as long as the maximum capillary pressure is not exceeded.The accommodation coefficient for all the calculations is assumed to be0.1,leading to a typical value of h i=3.32·106W mÀ2KÀ1.To test the influence of this parameter,the results are also obtained with the accommodation coeffi-cients of0.01and1.Since the resulting interfacial heat transfer coefficients are sufficiently large,the change in the maximum temperature is negligibly small,on the order of less than0.01%.A typical value for the convection heat transfer coefficient h c is100W mÀ2KÀ1.The change of h c from100to50results in an increase of less than3%in the cover plate maximum temperature.However,the over-all change in the wick temperatures is negligibly small. 4.Results and discussionNumerical calculations are performed for the evaporator section with an outer diameter of25.4·10À3m as shown in Fig.3.The porous wick inside the evaporator has an outer diameter of21.9·10À3and a thickness of7.24·10À3m. The wick permeability and porosity are K=4·10À14m2 and u=60%,respectively.The workingfluid is ammonia. The LHP saturation temperature and pressure difference on both sides of the wick are calculated by using a one-dimensional mathematical model.The model is based on the steady-state energy conservation equations and the pressure drop calculations along thefluid path inside the LHP.The details of this mathematical model are presented in[14].Fig.4represents the calculated saturation temper-ature and pressure drop values across the wick as a function of the applied power.The pressure drops and heat transfer coefficients in the two-phase regions of the LHP are calculated by using the interfacial shear model of Chen [15].Incompressible fully developedfluidflow relations are used to calculate the pressure drop for the single phase regions.T.Kaya,J.Goldak/International Journal of Heat and Mass Transfer49(2006)3211–32203215Fig.5represents the temperature field and liquid velo-city vectors when the wick is completely saturated by liquid at Q in =100W.The solution is obtained by solving the mass conservation,Darcy and energy equations.At this heat load,by using the one-dimensional mathematical model,it is calculated that T sat =7.81°C and D p =247Pa.As the vapor flows along the grooves,it becomes super-heated due to the heating from the wall.Without solving the vapor flow in the grooves using a three-dimensional model,it is not possible to calculate the vapor temperature in the grooves.Accurate experimental measurements are also difficult although a range for the vapor superheat can be deduced based on the wall-temperature measure-ments.In our calculations,the vapor in the grooves is assumed to be superheated by 3°C.A similar approach is also used in Figus et al.[4].Thus,T v =10.81°C and other related parameters for the calculations are as follows:P v =569784.8Pa,P core =569537.8Pa,q in =1254W m À2,k c =k w =14.5W m À1K À1,k eff=6.073W m À1K À1,and h i =2.733·106W m À2K À1.The thermal properties of ammonia are calculated at the saturation temperature for a given applied power using the relations in [16].In the numerical calculations,the thermal properties are assumed constant for a given saturation temperature.It can be seen from Fig.5that,the working fluid evap-orates at the wick interface under the applied heat load.The liquid flows from the evaporator core into the wick and turns toward the interface under the fin.The heat flux along the fin–wick interface is not constant and varies around 2000W m À2.In comparison,in the previously ref-erenced works [3–5]with an exception in [6],an estimated constant heat flux is directly applied at the fin–wick surface and the temperature drop across the casing is ignored due to the low thermal resistance.Applying the heat at the cas-ing allows the calculation of the temperature distribution at the casing surface.At low heat loads,the liquid velocity is relatively small as well as the corresponding Peclet number (Pe =q in L w c pl /h fg k eff).For example,at Q in =100W,Pe is on the order of 10À2.Therefore,the contribution from the convective terms could be neglected.Therefore,in the earlier solutions [3–5],the Laplace equation for the temper-ature is solved instead of the full energy equation.With this assumption,the Darcy and energy equations are also decoupled,which significantly simplifies the solution algo-rithm.However,at higher heat loads,the convective terms need to be taken account as is done in [6].In our study,we keep the convective terms in the governing equations and solve together the mass conservation,Darcy and energy equations as a coupled problem.The determination of the effective thermal conductivity of the wick k effis not trivial as it depends in a complex man-ner on the geometry of the porous medium.The solution on Fig.5is obtained by assuming that there is no heat transfer between the solid porous matrix and fluid (heat transfer in parallel).This is a well-known correlation obtained by the weighted arithmetic mean of k l and k w (k eff=u k l +(1Àu )k w ),where u is the wick porosity.A number of relations for the prediction of k effis proposed in the literature.To inves-tigate the effect of k effon the results,the same problem is solved for the all-liquid wick case by using six different correlations in addition to the weighted arithmetic mean.These are weighted harmonic (heat transfer in series)and geometric means of the thermal conductivities of k w and k l ,and other relations developed by Maxwell [17],Krupiczka [18],Zehner and Schlunder [19],and Alexander [20].Fig.6represents the results obtained by using the dif-ferent k effvalues at an arbitrarily chosen location of h =80°.The change of slope indicates the wick and fin interface.The temperature profiles directly depend on k eff.The series and parallel arrangements represent the highest and lowest con-ductivities,respectively.The other relations are intermedi-ate between these two.One specific difficulty is that the correlations produce significantly different values when the thermal conductivities of the porous medium and fluid are greatly different from each other as previously studied in Nield [21].As an example,the ratio of the thermal con-ductivities for the liquid and vapor regions of the wick at T sat =7.81°C are k l /k w =0.0362and k v /k w =0.0017,respectively.There is therefore further difficulty when both of the phases are present inside the wick.A given relation for k effwill not have the same accuracy for the liquidandFig.5.Velocity vectors and temperature field at Q in =100W.3216T.Kaya,J.Goldak /International Journal of Heat and Mass Transfer 49(2006)3211–3220vapor regions.The effective thermal conductivity k effobtained by using different relations are given in Table1. The results vary significantly.There is clearly a need for experimental data for an accurate determination of k eff.In the lack of experimental data,we use the parallel arrange-ment for the rest of the numerical calculations.This is also used in several previous works[3–6].As shown in Fig.6,the different values of k efflead to the qualitatively similar tem-perature profiles.The largest temperature difference between the parallel and series solutions was within0.5K. The difference in temperature is small because of the low Peclet numbers.At the lower limit,as Pe!0,the energy equation reduces to the Laplace equation for temperature and the influence of k effon the temperature distribution is primarily through theflux boundary conditions.Note that the temperature at the core is imposed as a boundary con-dition and it has the same value for all cases.The adequacy of using the Darcy’s law for describing theflow inside the wick is also considered.For example, Cao and Faghri[6]use an expression from analogy with Navier–Stokes equation for theflow inside the porous medium,which takes into account the convective(uÆ$)u/u and viscous transport l/u($2u)terms in addition to the Darcy’s law.Especially at high heatflux rates,the non-Darcyflow behavior could be important.Beck[22]has showed that the inclusion of the convection term in the Darcy equation may lead to an under or over specified sys-tem of equations.Similar conclusions have also been reported in[23].For these reasons,we do not take into account the convective terms.The maximum Reynolds number based on the effective pore diameter of the wick of2.4l m is on the order of10À2,which occurs in the vapor region near thefin edge.Therefore,the quadratic inertia terms are negligible in both the vapor and liquid regions.A comparison of the results obtained from Darcy and Brinkman equations for the all-liquid wick case showed that contribution from the Brinkman terms can also be safely neglected.As a result,the non-Darcyflow effects could be ignored without penalty.At sufficiently high heatflux values,it is expected that the nucleation will start at the microscopic cavities at the fin–wick interface.The boiling can initiate at small super-heat values as a result of trapped gas in these cavities. The vapor bubbles formed at thefin–wick interface unite and lead to the formation of a vapor–liquid interface inside the wick as originally suggested by Demidov and Yatsenko [3].With increasing heatflux,the vapor–liquid interface recedes further into the wick because of the increased evap-oration and insufficient supply of the returning subcooled liquid.Thus,the vapor zone under thefin continues to grow in size and starts connecting with the vapor grooves. For a given heat load,there exists a steady-state solution for which the heat transferred to the wick from thefin sur-face is balanced by the convective heat output to the vapor–groove interface where the evaporation takes place. As the applied heat load is increased,the vapor region under thefin grows.For sufficiently large applied heat load,no converged solution is possible unless the removal of vapor from the interface inside the wick is allowed from the wick–groove interface.For the transition from the all-liquid wick to the vapor–liquid wick,a boiling incipient superheat value is assumed. It is difficult to predict the incipient superheat,which depends on several parameters in a complex manner.In our calculations,when the liquid temperature under the fin is4°C higher than T sat,it is assumed that a vapor region will form under thefin.Then,a new solution is obtained by using the numerical procedure outlined for the vapor–liquid wick.These results provide a reference base for the boiling analysis of the LHP using nuclear clus-ter theory,which will be addressed later in the paper.Fig.7 represents the results obtained at a heat load of Q in=300W.The LHP saturation temperature and pres-sure drop is T sat=11.03°C and D p=2181Pa,respec-tively.It should be noted that the one-dimensional model does not take into account the presence of a vapor region inside the wick.The change on the wick effective thermal conductivity in the presence of vapor zone needs to be esti-mated to improve the calculations of the boundary condi-tions from the one-dimensional model.An iterative procedure between the one-and two-dimensional models could be more representative.However,this would be com-putationally intensive and no significant change in the overall results is expected.Other required numerical valuesTable1The effective thermal conductivity values for the liquid and vapor regions computed from different correlationsRelation k l(W mÀ1KÀ1)k v(W mÀ1KÀ1) Harmonic mean(series arrangement)0.8490.040Alexandre[20] 1.0540.093Zehner and Schlunder[19] 1.6840.148Krupiczka[18] 1.7560.152Geometric mean 1.9670.309Maxwell[17] 4.845 4.450Arithmetic mean (parallel arrangement)6.073 5.774T.Kaya,J.Goldak/International Journal of Heat and Mass Transfer49(2006)3211–32203217。
循环流化床锅炉专业词汇英汉对照
循环流化床锅炉专业词汇:CFB boiler (circulating fluidized bed boiler)循环流化床锅炉fuel燃料bottom ash底渣circulating ash循环灰limestone石灰石fluidized air流化风separator分离器circulating combustion循环燃烧heat transfer传热consistence(density) of particles颗粒浓度medium transfer传质desulphurizer脱硫剂combustion chamber燃烧室coal feeder给煤机material feeder给料机air distributor布风板cyclone separator旋风分离器heat exchanger换热器back pass尾部烟道convection heating surface对流受热面bag filter布袋除尘器electrostatic precipitator(ESP)静电除尘器stack, chimney烟囱bed material床料upright pipes(vertical pipe)立管material-returning system回料系统Tapping (bulk packing)density堆积密度Dense region密相区secondary air二次风spout喷口gap rate空隙率Dilute region稀相区airflow气流conical section锥段elutriation扬析Transition region过渡区carryingover phenomena夹带现象Fluidized speed流化速度empty tower velocity空塔速度apparent speed表观速度heat carrying载热formula(equation)公式、方程式flue gas烟气cross-sectionof furnace炉膛截面积dynamic control combustion动力控制燃烧flux通量adaptability适应性peak adjustment调峰heat transfercoefficient传热系数slagging结渣flameout灭火explosion爆炸contamination污染物flue gas and air烟风auxiliary power厂用电abrasion-resistant refractory material耐磨耐火浇筑料expansion膨胀sealing密封boiler proper system锅炉本体系统boilerauxiliary system锅炉辅助系统combustion system燃烧系统steam & water system汽水系统ash handling system灰处理系统ignition system点火系统Furnace炉膛material-returning vessel返料器External heat exchanger外置式热交换器slag cooler冷渣器limestone silo石灰石仓Fluidized air chamber流化风室steam Drum汽包convectionsuperheater对流过热器economizer省煤器Primary air一次风Air preheater空气预热器I.D.fan (induced draft )引风机F.D.fan (forced draft ) 送风机lowersecondary air下二次风Upper secondary air上二次风Limestone fan石灰石风机boiler wall炉墙water wall水冷壁straight section直段denitrogened脱氮denitration脱硝air nozzles风帽orifice小孔air-distributor布风板inner pipe内管external cover外罩annular base plate环形底板bell glass air nozzle钟罩式风帽deformation变形below-bed ignition床下点火secondary air input二次风入口decomposition分解过程superheated wall过热屏reheated wall再热屏separating wall分隔墙parameter参数start-up启动shut down 停机HT insulated cyclone separator高温绝热旋风分离器steam(water)-cooled cyclone separator汽(水)冷旋风分离boilerrating锅炉出力heatradiation loss散热损maintenance维修inertial separator惯性分离器shutter(louver) separator百叶窗分离器air lock device锁气器(rated)nominal load额定负荷evaporative rating蒸发出力fluidized seal material returning device流化密封返料器Valve type material returning device阀型返料器platen heating surface屏式受热面evaporator蒸发器screening 筛分coarse screening宽筛crushing characteristics破碎特性granularity粒度screen cloth筛网screening mesh筛孔mesh diameter筛分孔径screening residue筛余量volatile挥发specific surface area比表面积particle sphericity颗粒球形度spherical degree球形度median diameter中位径gas density气体密度Critical bubbling velocity临界鼓泡速度gas backmixing气体返混fine powder细粉freely falling body motion自由落体运动gravity重力floatage/ bouyance浮力air flow dragging force气流曳力accelerating velocity加速equilibrium relationship平衡关系maximum sedimentation velocity终端沉降速度relative motion相对运动static particle静止颗粒gas-solid sliding velocity气固滑移速度critical value临界值heat transmission factor传热系数near-wall region近壁区gas phase气相gas film气膜bed layer床层particle mass 颗粒团dispersion phase弥散相heat transfer wall surface传热壁面gas phase convection heat transfer coefficient气相对流换热系数particle convection heat transfer coefficient颗粒对流换热系数radiant heat-transfer coefficient辐射换热系数heat emissioncoefficient放热系数volume flow体积流量high intensity高强度emulsification phase乳化项fixed bed固定床material feeding bunker加料仓separation and returning system分离回送系统pneumatic conveying气力输送vortex flow漩涡流动moving bed移动床ash Balance灰平衡circulating circuit循环回路heat transfer mechanism传热机理air duct风道bed density床层密度thermal-conductivity导热系数(导热率)volatile matter挥发物ash sludge灰浆steam blowing out吹管scrapiron铁屑core-annulus flow环核流动radial distribution径向分布overall pressure drop总压降high-speed fluidized bed快速流化床strip floc条状絮状物burning out燃尽dry-out 烘炉safety valve setting安全门整定steam and water quality汽水品质anthracite coal无烟煤lean coal 贫煤momentum 动量banking characteristic 压火特性oil stone 油石fly ash resistivity 飞灰比电阻coil pipe蛇行管flue gasduct烟道air chamber风室carbon content 含碳量gypsum 石膏industrial data acquisition system 工业用采数系统mineral asbestos矿石棉combustion efficiency燃烧效率combustible content可燃物含量excess air coefficient 过量空气系数typical working condition 典型工况active carbon filter活性碳过滤器包墙过热器 enclosed wall superheater下降管 downcomer屏式过热器 platen/screen-type superheater 工质 working medium蒸发设备 evaporating device膜式水冷壁 membrane water wall排渣口 slag discharging outlet水冷蒸发屏 water-cooled evaporating screen喷水减温器water- spraying desuperheater 喷燃器burner反冲洗阀 back wash valve管组 pipe bank进口集箱 inlet header转向室guiding chamber给料皮带material feeding belt加药管 chemical-dosing tube三通T-joint挡板 damper出渣discharge slag进口导叶 inlet guide vane联杆 linkage动平衡 dynamic balance压头 pressure head喘振 surge水冷套 water cooling jacket炉膛负压 furnace vacuum主燃料切除 main fuel trip (MFT)放气阀 vent/exhaust valve疏水阀 drain valve截止阀 stop valve止回阀 check valve弹簧安全装置 spring safety device给料增压风机material feeding booster fan气固两相流风箱gas-solid two-phase flow air box 密封用风sealing air出口烟道outlet flue gas duct排污管blow-down pipe波形板corrugated plate防漩装置a device against rotation水冷蒸发屏water-cooling evaporating screen耐火、绝热材料层refractory and insulatedmaterial layer 气力输送pneumatic conveying闸板gate board点火器igniter减温器desuperheater/attemperator对空排汽阀steam bleeding valve定容式风机constant volume blower逆流(反向电流)countercurrent干燥箱Drying cabinet给水分配管Feed water distrubited pipe放气阀Vent valve副柱sub-post发光二极管light-emitted diode (LED)点动操作stepping operation超载overload变频电机Frequency-converting motor负压vacuum铣床milling machine增压风机Booster fan (Coal Distribution Air Fan)多孔管perforated pipe涡流eddy current闸板gate aboard上升管riser左右对称 bilateral symmetry热冲击thermal shock水平烟道horizontal flue gas duct水冷风室water-cooled air chamber灰斗ash bunker吹灰器soot blower后墙back wall侧墙side wall下水连接管sewage connecting pipes清扫链clean-out chain原理图(示意图)Schematic Diagram落煤管coal spout进口导叶调节门IGV control valve进气箱air input box调节杆dolly bar驱动机构drive mechanism联动试车interlock test running弹簧储能spring energy集汽室steam trap永久负载permanent load油封oil seal热电阻thermal resistance原煤仓(斗)raw coal bunker联箱header管束(排)tube bundle饱和蒸汽saturated steam减速器speed reducer/decelerator耐用的、持久的durable防磨盖板anti-wear cover plate热传导Thermal conduction卧式汽水分离器Horizontal steam-water separator 热偏差 heat deviation(bias)叶轮blade wheel/impeller传动机构actuator联杆link消声器silence/muffler进渣管Slag inlet tube播煤风coal-spreading air水冷套water jacket烟煤soft coal密封垫圈sealing washer起座压力start pressure回座压力reseating/return pressure变送器transmitter标高Elevation苏单项目专业术语缩写1.1缩写表单位或组织CMECChina National Machinery & Equipment Import & Export Corporation China National Mechanical & Equipment Import & Export Company中国机械设备进出口总公司NEC National Electricity Corporation苏丹国家电力公司IEC International Electrical Commission国际电工协会ISO International Standard Organisation国际标准组织LI Lahmeyer International GmbH, Bad Vilbel雷美尔咨询公司VGBTechnische Vereinigung der G roßkraftwerks Betreiber(Technical Association of large Power Plant Operators) 大型电厂协会其它AC Alternating Current 交流电AVR Automatic Voltage Regulator自动电压调整器CFB Circulating Fluid Bed循环流化床CFBB Circulating Fluid Bed Boiler循环流化床锅炉CCR Central Control Room中央控制室CCW Closed Cooling Water System闭式循环冷却水系统CT Current Transformer电流变压器CW Circulating Water System (Cooling Water System) 循环冷却水系统DC Direct Current直流电DCS Distributed Control System分散控制系统DIN German Industrial Standard德国工业标准FAC Final Acceptance Certificate最终验收证FG Function Group功能组GIS Gas (SF6) Insulated Switch-gear气体(SF6)绝缘开关HB Heat Balance热平衡HP High Pressure高压(力)HV High Voltage ( > 36 kV ) 高电压KKS Kraftwerk-Kennzeichen-System = Power Plant Identification System电厂标识系统I&C Instrumentation and Control仪表和控制LDC Load Dispatch Center负荷分配中心LP Low Pressure低压(力)LV Low Voltage ( < 1 kV ) 低电压( < 1 kV )MCR Maximum Continuous Rating最大连续蒸发量MMI Man/Machine Interface人/机界面MR Meeting Report会议纪要MV Medium Voltage ( > 1 kV < 36 kV ) 中电压MVR Manual Voltage Control手动电压控制PAC Provisional Acceptance Certificate初步验收证书PDAProgramming/ Diagnostic/ Alarms Station工程师站POS Process Operation Station过程操作站PT Potential Transformer电压互感器P&ID Process and Instrumentation Diagram工艺流程和仪表图RTU Remote Terminal Unit远程终端SCADA Supervisory Control & Data Acquisition电气微机监控系统SLD Single Line Diagram电气主接线ST Steam Turbine 汽轮机SWG Switchgear开关UCB Unit Control Board 机组控制盘VDU Video Display Unit显示器、氧化铁ferric oxide 氧化铝alumina 铝aluminum二氧化硅silicon dioxide 氧化钙(生石灰) calcium oxide熟石灰(氢氧化钙) white lime 石灰石limestone氧化镁magnesia 镁magnesium 碳carbon二氧化碳Carbon dioxide 一氧化碳carbon monoxide烟囱chimney, stack 浇注料refractory总图、总平面图General Layout 工艺流程Process Flow安装图Installation Drawing 装配图erection drawing附件、附属物Appurtenance 除去矿物质(除盐)Demineralize灰厍气化设备Gasifying Device of Fly Ash Silo Gasify 使气化接地与防雷Earthing and Lightning Protection变电站、分站、分所Substation 配置、结构、构成configuration综合水泵房Composite water pump house 精炼厂、炼油厂Refinery燃烧、消耗V Combust 燃烧器Combuster 燃烧N combustion废热锅炉、余热锅炉Heat Recovery Steam Generators循环流化床锅炉Circulating Fluid Bed (CFB) boiler蒸汽轮机SteamTurbine Generator (STG) 燃气轮机Gas turbine也就是说(副词)i.e. 从此以后,今后hereafter技术规范(说明)Technical Specification 引风机Induced Draught FanAVR 自动电压调节器automatic voltage regulator 消音器silencers碟片式过滤器debris filter 氯化\用氯气处理Chlorination次氯酸Hypochlorite水除盐装置Water Demineralisation Plant离子交换技术ion exchange technology 阳床(阳离子交换器)cation exchanger 脱二氧化碳器decarbonator 阴床anion exchanger 混床mixed-bedexchanger未净化的水(原水)raw water 澄清水池clarified water basin再生设备Regeneration equipment 凝结剂、絮凝剂Coagulan生活废水Sanitary Waste Water 化粪池septictank饮用水系统Potable Service Water System 水龙头water tap 氨、氨水ammonia 肼、联氨hydrazine 磷酸钠sodiumphosphate 苛性钠、烧碱Caustic soda稀硫酸dilute Sulphuric acid 溴化物Bromide消防栓和消火栓箱Hydrants and hose cabinets推车式灭火器和手提式灭火器Wheeled and portable fire extinguishers备用零件和专用工具Spare parts and special tools往复式无油空气压缩机装置Reciprocating oil free running air compressor unit辅助设备\外部设备ancillary equipment. 过滤设备filtration equipment土建工程和建筑设施Civil Works and Building Facilities沥清防水层asphalt water barriers 钢筋混凝土结构reinforced concrete structure 根据详细规范设计的带有沥青防水层钢筋混凝土屋顶RC concrete roof withasphalt water barriers according detail specification.钢筋混凝土(围)挡墙RC retaining walls 装卸和运输Handling and Transport地磅Weight Bridge 砌筑墙masonrywall 考虑到under consideration混凝土骨架结构concrete skeleton structure 摆放空间lay down areas龙门起重机\龙门吊\行车Gantrycrane 安装和维修erection and maintenance卫生设备,卫生设施sanitary facilities 祈祷prayer(n) pray(V)消防队Fire Brigade 调度室Control Building 管道支架pipe rack测试和校准testing and calibration投标文件Tender Documents试运行和性能试验commissioning and performance testing后翻斗式自卸卡车rear dump truck 磷酸三钠Trisodiumphosphate排水系统和下水道系统Drainage and Sewerage System聚合(高分子)电解质Polyelectrolyte 局域网LAN 母线bus bar电缆沟cable trench 地形勘测topographical survey更改、再布置和重建Modification, relocation and reconstruction。
工程热力学专业英语词汇
工程热力学专业英语词汇一些工程热力学的专业英语词汇Heat pump(热泵)Heat source(热源)Heat(enthalpy) of formation(生成热(生成焓))Heat(热)Helmholtz function(亥姆霍兹函数)Hess’law(赫斯定律)Humidity(湿度)Ideal gas equation of state(理想气体状态方程)Inequality of Clausius(克劳修斯不等式)Intensive quantity(强度量)Internal combustion engine(内燃机)Internal energy(热力学能(内能))Inversion curve(转变曲线)Inversion temperature(转回温度)Irreversible cycle(不可逆循环)Irreversible process(不可逆过程)Isentropic compressibility(绝热压缩系数)Isentropic process(定熵过程)Isobaric process(定压过程)Isolated system(孤立系)Isometric process(定容过程)Isothermal compressibility(定温压缩系数)Isothermal process(定温过程)Joule,J.P.(焦耳)Joule-Thomson effect(焦耳-汤普逊效应)Kelvin, L.(开尔文)Kinetic energy(动能)Kirchhoff’s law(基尔霍夫定律)Latent heat(潜热)Law of corresponding states(对应态定律)Law of partial volume(分体积定律)Le Chatelier’s princip le(吕-查德里原理)Local velocity of sound(当地声速)Lost of available energy(有效能耗散)Mach number(马赫数)Mass flow rate(质量流量)Maximum work from chemical reaction(反应最大功)Maxwell relations(麦克斯韦关系)Mayer’s formula(迈耶公式)Mechanical equilibrium(力平衡)Mixture of gases(混合气体)Moist air(湿空气)Moisture content(含湿量)Molar specific heat(摩尔热容)Nernst heat theorem(奈斯特热定理)Nozzle(喷管)One dimensional flow(一维流动)Open system(开口系)Otto cycle(奥托循环)Parameter of state(状态参数)Perfect gas(理想气体)Perfect gas(理想气体)Perpetual-motion engine of the second kind(第二类永动机)Perpetual-motion engine(永动机)Phase(相)Polytropic process(多变过程)Potential energy(位能)Power cycle(动力循环)Pressure(压力)Principle of increase of entropy(熵增原理)Process(过程)Psychrometric chart(湿空气焓-湿图)Pure substance(纯物质)Push work(推挤功)Quality of vapor-liquid mixture, Dryness(干度)Quantity of refrigeration(制冷量)Quasi-equilibrium process(准平衡过程)Quasi-static process(准静态过程)Rankine cycle(朗肯循环)Ratio of pressure of cycle(循环增压比)Real gas(实际气体)Reduced parameter(对比参数)Refrigerant(制冷剂)Refrigeration cycle(制冷循环)Refrigerator(制冷机)Regenerative cycle(回一些工程热力学的专业英语词汇热循环)Reheated cycle(再热循环)Relative humidity(相对湿度)Reversed Carnot cycle(逆卡诺循环)Reversed cycle(逆循环)Reversible cycle(可逆循环)Reversible process(可逆过程)Saturated air(饱和空气)Saturated vapor(饱和蒸汽)Saturated water(饱和水)Saturation pressure(饱和压力)Saturation temperature(饱和温度)Second law of thermodynamics(热力学第二定律)Simple compressible system(简单可压缩系)Sink(冷源)Specific heat at constant pressure(比定压热容)Specific heat at constant volume(比定容热容)Specific heat(比热容)Specific humidity(绝对湿度)Specific volume(比体积)Stagnation enthalpy(滞止焓)Standard atmosphere(标准大气压)Standard enthalpy of formation(标准生成焓)Standard state(标准状况)State postulate(状态公理)State(状态)Statistical thermodynamics(统计热力学)Steady flow(稳定流动)Steam(水蒸气)Subsonic(亚声速)Superheated steam(过热蒸汽)Supersonic(超声速)Technical work(技术功)Temperature scale(温度标尺)Temperature(温度)Theoretical flame temperature(理想燃烧温度)Thermal coefficient(热系数)Thermal efficiency(热效率)Thermal equilibrium(热平衡)Thermodynamic Probability(热力学概率)Thermodynamic system(热力学系统)Thermodynamic temperature scale(热力学温标)Thermodynamics(热力学)Third law of thermodynamics(热力学第三定律)Throttling(节流)Triple point(三相点)Unavailable energy(无效能)Universal gas constant(通用气体常数)Vacuum(真空度)Van der Waals’equation(范德瓦尔方程)Velocity of sound(声速)Virial equation of state(维里状态方程)Wet saturated steam(湿饱和蒸汽)Wet-Bulb temperature(湿球温度)Work(功)Working substance(工质)Zeroth law of thermodynamics(热力学第零定律)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
Lesson 12第12课Momentum, Heat, and Mass Transfer动量,热量和质量传递In most of the unit operations encountered遇到in the chemical and petroleum石油industries定语, one or more of the processes of momentum, heat, and mass transfer is involved.1、石油化工行业中遇到的大多数单元操作都涉及到动量,热量和质量传递中的一个或是多个过程。
Thus, in the flow of a fluid under adiabatic conditions绝热条件through穿过a bed of granular particles颗粒床层, a pressure gradient is set up in the direction of flow and a velocity gradient速度梯度develops approximately perpendicularly近似垂直to the direction of motion运动in each fluid stream1; momentum transfer takes place between the fluid elements流体分子which are moving at different velocities 速度.2、因此,当流体在绝热条件下穿过固体床层的时候,在流体流动方向上存在压力梯度,而且在近似垂直于每股流体运动方向上形成速度梯度,动量传递就发生在以不同流速运动的流体分子之间。
If there is a temperature difference between the fluid and the pipe wall管壁or the particles, heat transfer will take place as well, and the convective对流的component 部分of the heat transfer will be directly af f ected by the flow pattern of the fluid2. 3、如果流体与管壁或是颗粒之间存在温度差,那么也会出现传热,而且对流传热部分会直接受到流体流型的影响。
Here, then, is an example of a process of simultaneous同时的momentum and heat transfer in which the same fundamental mechanism机理is affecting both processes.4、这个就是同时有动量和热量传递的例子,其中影响这两个过程的机理是相同的。
Fractional distillation and gas absorption are frequently carried out in a packed column in which the gas or vapor stream rises counter-currently to a liquid3.5、在气体或是蒸汽相对于液体逆流上升的填料塔中,分馏和气体吸收会频繁的进行。
The function of the packing in this case is to provide a large inter r acial area between the phases and to promote turbulence湍流within the fluids4.6、这个例子中填料的功能是为两相提供一个大的相界面积,同时也促进流体湍流程度。
In a very turbulent fluid the rates of transfer per unit area单位面积of both momentum and mass are high; and as the pressure rises the rates of transfer of both momentum and mass increase together.7、在湍流程度很高的流体中,单位面积上动量和质量的传递速率很高,并且随着压力的升高两种传递的速率也会同时升高。
In some cases, momentum, heat, and mass transfer all occur simultaneously同时地as, for example, in a water-cooling tower凉水塔, where transfer of sensible heat 显热and evaporation蒸发both take place from the surface of the water droplets水滴5.8、在某些情况下,动量,热量和质量传递会同时发生的。
例如,在凉水塔中显热传热和蒸发传质将同时在水珠表面发生。
It will now be shown not only that the process of momentum, heat, and mass transfer are physically related, but also that quantitative relations between them can be developed.9、动量,热量和质量传递不仅有物理上的联系,而且他们之间还存在着定量关系。
Another form of interaction互动between the transfer processes传递过程is responsible for the phenomenon of thermal d i ffusion热扩散in which a component ina mixture moves under the action of 在什么的作用下a temperature gradient.10、传递过程的另外的互动形式和热扩散现象有关,热扩散就是混合物中的一个组分会在温度梯度的作用下移动。
Although尽管these are important applications of thermal diffusion, the magnitude of the effect is usually small relative to that arising from concentration gradients浓度梯度.11、尽管这些都是热扩散的重要应用,但是它(热扩散)影响的大小相对于由浓度梯度所产生的影响要小。
When a fluid is flowing under streamline conditions over a surface, a forward component正向分量of velocity is superimposed on重叠the random distribution of velocities速度of the molecules分子, and movement at right angles to垂直于the surface occurs solely单独地as a result of the random motion of the molecules6. 12、当流体在流线条件下流过壁面时,速度的正向分量和分子流速的随机分布是重叠的,并且垂直于壁面的动量传递只是由于分子的随机运动造成的。
Thus if two adjacent layers of fluid流体的两个相邻的流层are moving at different velocities, there will be a tendency for the faster moving layer to be retarded 迟钝and the slower moving layer to be accelerated by virtue of the continuous passage of molecules in each direction.13、因此,如果流体的两个相邻流层以不同流速流动,将会出现这样一个趋势:在任意方向,速度较快的流层会趋于缓慢,速度较慢的流层会依靠分子的连续通道的优势变快。
There will therefore be a net transfer净传递of momentum from the fast to the slow moving stream7.14、因此将会有一个净的动量从高速层传向低速层。
Similarly, the molecular motion will tend to reduce any temperature gradient or any concentration gradient if the fluid consists of a mixture of two or more components.15、同样,如果流体是由两个或更多的组分所形成的混合物构成的,那么分子运动将会趋于去降低温度梯度或是浓度梯度。
At the boundary the ef f ects bfthe molecular transfer are balanced by the drag forces at the surface8.16、在边界层上,分子(动量)传递的影响被壁面曳力所平衡。
If the motion of the fluid is turbulent, the transfer of fluid by eddy motion涡流is superimposed on the molecular transfer process.17、如果流体的运动是湍流,那么流体通过涡流的传递是和分子扩散过程相重叠的。
In this case, the rate of transfer to the surface will be a function函数of the degree of turbulence湍流程度.18、在这种情况下,传递到表面的速率将会是湍流程度的函数。
When the fluid is highly turbulent, the rate of transfer by molecular motion will be negligible compared with that by eddy涡流motion.19、当流体高度湍流时,通过分子运动的传递速率相比起通过涡流可以忽略不计。