2016武威职业学院数学单招试题测试版(附答案解析)
2016年高职高考数学试卷
2016年高职高考数学试卷注意:本试卷共2页,第1页为选择题和填空题,第2页为答题卡,解答题在答题卡上,满分为150分,考试时间为120分钟。
所有答案必须写在答题卡上,否则不予计分。
一、选择题:共15小题,每小题5分,共75分;在每小题给出的四个选项中,只有一项是符合题目要求。
1.已知集合A={1,2,3},B={x ︱032=-x x },则=B A A.φ B.{3} C.{0,3} D.{0,1,2,3} 2.已知向量)5,2(),1,3(-==b a ,则=-b a 23A.(2,7)B.(13,-7)C.(2,-7)D.(13,13) 3.函数y =)43sin(2π+x 的最小正周期为A.πB.2πC.4πD.32π4.函数xx x f --=3)2(log )(3的定义域是A.)3,2(B.)3,(-∞C.]3,2(D.),3[∞+5.在等差数列{}n a 中,已知前11项之和等于44,则=++++108642a a a a a A.10 B.15 C.40 D.206.已知x x x f -+-=3)113(log )(2,则=)9(f A.10 B.14 C.2 D.-27.设}{n a 是等比数列,如果12,442==a a ,则=6a A.36 B.12 C.16 D.488.设函数13)(2++=x x x f ,则=+)1(x f A.232++x x B.532++x x C.552++x x D.632++x x9.已知三点A (-1,-1),B (4,-2),C (2,6),D 为线段BC 的中点,则=•BC ADA.4B.8C.16D.24 10.若直线m y x =+与圆m y x =+22)0(>m 相切,则m 等于 A.21B.2C.2D.2211.不等式01682≤+-x x 的解集是A.RB.{ x ︱x=4}C.φD.{ x ︱x ≠4} 12.经过点(1,﹣1)且与直线2x -y+5=0平行的直线方程是 A.012=++y x B.032=-+y x C.032=--y x D.062=+-y x13.直线3x -4y+12=0与圆 x 2+y 2+10x -6y -2=0的位置关系是A.相交B.相切C.相离D.相交且过圆心 14.若θ是第二象限角,则=-θ2sin 1A.θθcos sin --B.θθcos sin +C.θθcos sin -D.θθsin cos - 15.已知椭圆的中心在原点,焦点在x 轴上,且长轴长为12,离心率为31,则椭圆的方程是 A.1442x +1282y =1B.362x +202y =1 C .322x +362y =1D .362x +322y =1 二、填空题:共5小题, 每小题5分,共25分.答案请写在答题卡上. 16.设向量a =(-1,2),b =(2,x),且a ⊥b ,则a +b = . 17.方程x x)31(334=-的解集是___________. 18.在△ABC 中,已知∠A=120o,c=3,a=7,则b=____________. 19.已知24παπ<<,若532sin =α,则α2cos 的值是 . 20.直线012=++y x 被圆14)1()2(22=-+-y x 所截得的线段长等于 .2012年高职高考数学试卷答题卡一、选择题:共15小题,每小题5分,共75分填涂样例: 正确填涂(注意:胡乱填涂或模糊不清不记分) 1 [A] [B] [C] [D] 6[A] [B] [C] [D] 11 [A] [B] [C] [D] 2 [A] [B] [C] [D]7 [A] [B] [C] [D] 12 [A] [B] [C] [D] 3 [A] [B] [C] [D]8 [A] [B] [C] [D] 13 [A] [B] [C] [D] 4[A ][B] [C] [D] 9 [A] [B] [C ][D] 14[A] [B] [C] [D] 5 [A] [B] [C] [D] 10 [A] [B] [C] [D]15 [A] [B] [C] [D]二、填空题:共5小题,每小题5分,共25分 16.17.18. 19. 20.三、解答题:共4小题,其中21题10分,22题12分,23、24题14分,共50分.解答应写出文字说明、证明过程或演算步骤. 21.已知2tan =α,求ααααsin cos cos sin -+的值. (10分)22.已知函数bax xx f +=)((a ,b 为常数,且a ≠0)满足1)2(=f ,且方程x x f =)(有唯一解,求:(1))(x f 的表达式;(2))]3([-f f 的值。
2016甘肃工业职业技术学院数学单招试题测试版(附答案解析)
考单招——上高职单招网限时:45分钟 满分:70分一、选择题(共8个小题,每小题5分,共40分)1.已知sin 2α=-2425,α∈⎝⎛⎭⎫-π4,0,则sin α+cos α=( ) A .-15B.15C .-75D.75解析:选B ∵α∈⎝⎛⎭⎫-π4,0,∴cos α>0>sin α且cos α>|sin α|,则sin α+cos α=1+sin 2α=1-2425=15. 2.若sin ⎝⎛⎭⎫π4+α=13,则cos ⎝⎛⎭⎫π2-2α等于( ) A.429B .-429C.79D .-79解析:选D 据已知可得cos ⎝⎛⎭⎫π2-2α=sin 2α= -cos 2⎝⎛⎭⎫π4+α=-⎣⎡⎦⎤1-2sin 2⎝⎛⎭⎫π4+α=-79. 3.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若a =1,c =42,B =45°,则sin C 等于( )A.441B.45考单招——上高职单招网C.425D.44141解析:选B 依题意得b =a 2+c 2-2ac cos B =5,又c sin C =b sin B,所以sin C =c sin B b =42sin 45°5=45. 4.已知tan θ>1,且sin θ+cos θ<0,则cos θ的取值范围是( )A.⎝ ⎛⎭⎪⎫-22,0 B.⎝ ⎛⎭⎪⎫-1,-22 C.⎝⎛⎭⎪⎫0,22 D.⎝⎛⎭⎪⎫22,1解析:选A 依题意,结合三角函数图像进行分析可知,2k π+5π4<θ<2k π+3π2,k ∈Z ,因此-22<cos θ<0. 5.△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若cb <cos A ,则△ABC 为( )A .钝角三角形B .直角三角形C .锐角三角形D .等边三角形解析:选A 依题意得sin Csin B<cos A ,sin C <sin B cos A ,所以sin(A +B )<sin B cos A ,即sin B cos A +cos B sin A -sin B cos A <0,所以cos B sin A <0.又sin A >0,于是有cos B <0,B 为钝角,△ABC 是钝角三角形.6.若α∈⎝⎛⎭⎫0,π2,且sin 2α+cos 2α=14,则tan α的值等于( )A.22B.33考单招——上高职单招网C. 2D. 3解析:选D 由二倍角公式可得sin 2α+1-2sin 2α=14,sin 2α=34,又因为α∈⎝⎛⎭⎫0,π2,所以sin α=32.即α=π3, 所以tan α=tan π3= 3.7.若0<α<π2,-π2<β<0,cos ⎝⎛⎭⎫π4+α=13,cos ⎝⎛⎭⎫π4-β2=33,则cos ⎝⎛⎭⎫α+β2=( ) A.33 B .-33 C.539D .-69解析:选C 对于cos ⎝⎛⎭⎫α+β2=cos ⎣⎡⎦⎤⎝⎛⎭⎫π4+α-⎝⎛⎭⎫π4-β2=cos ⎝⎛⎭⎫π4+αcos ⎝⎛⎭⎫π4-β2+sin ⎝⎛⎭⎫π4+αsin ⎝⎛⎭⎫π4-β2,而⎝⎛⎭⎫π4+α∈⎝⎛⎭⎫π4,3π4,⎝⎛⎭⎫π4-β2∈⎝⎛⎭⎫π4,π2, 因此sin ⎝⎛π4+ )α=223,sin ⎝⎛⎭⎫π4-β2=63,则cos ⎝⎛⎭⎫α+β2=13×33+223×63=539.8.若AB =2,AC =2BC ,则S △ABC 的最大值为( )A .2 2 B.32C.23D. 3 2解析:选A 设BC =x ,则AC =2x ,根据面积公式得S △ABC =12×AB ×BC sin B=x 1-cos 2B ①,考单招——上高职单招网根据余弦定理得cos B =AB 2+BC 2-AC 22AB ·BC =4+x 2-2x 24x =4-x 24x②,将②代入①得,S △ABC =x1-⎝ ⎛⎭⎪⎫4-x 24x 2= 128-(x 2-12)216,由三角形的三边关系得⎩⎨⎧2x +x >2,x +2>2x ,解得22-2<x <22+2,故当x =23时,S △ABC 取得最大值2 2. 二、填空题(共6个小题,每小题5分,共30分)9.若点P (cos α,sin α)在直线y =-2x 上,则tan ⎝⎛⎭⎫α+π4=________.解析:由题意得tan α=-2,所以tan ⎝⎛⎭⎫α+π4=tan π4+tan α1-tan αtanπ4=1+(-2)1-(-2)=-13. 答案:-1310.已知sin α+3cos α3cos α-sin α=5,则sin 2α-sin αcos α的值是________.解析:依题意得tan α+33-tan α=5,则tan α=2,sin 2α-sin αcos α=sin 2α-sin αcos αsin 2α+cos 2α=tan 2α-tan αtan 2α+1=22-222+1=25.答案:2511.在△ABC 中 ,角A ,B ,C 所对边的长分别为a ,b ,c ,若a 2+b 2=2c 2,则cos C 的最小值为________.考单招——上高职单招网解析:由余弦定理得a 2+b 2-c 2=2ab cos C ,又c 2=12(a 2+b 2),得2ab cos C =12(a 2+b 2),即cos C =a 2+b 24ab ≥2ab 4ab =12.答案:1212.在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,已知点D 是BC 边的中点,且AD ·BC =12(a 2-3ac ),则角B =________.解析:∵AD ·BC =(BD -BA )·BC =BD ·BC -BA ·BC =a2·a -a ·c ·cos B =12(a 2-3ac ), ∴a 2·a -a ·c ·cos B =12(a 2-3ac ),∴cos B =32, ∴B =30°. 答案:30°13.已知α∈⎝⎛⎭⎫0,π2,sin α=35,则1cos 2α+tan 2α的值为________. 解析:cos α=1-sin 2α=45,cos 2α=1-2sin 2α=725,tan α=sin αcos α=34,tan 2α=2tan α1-tan α=247,1cos 2α+tan 2α=257+247=7.答案:714.在海岛A 上有一座海拔1千米的山,山顶上有一个观察站,上午11时,测得一轮船在岛的北偏东30°,俯角30°的B 处,到11时10分又测得该船在岛的北偏西60°,俯角60°的C 处,则轮船航行速度是________千米/小时.考单招——上高职单招网解析:如图所示,设海岛的底部为点D. 在Rt △ABD 中,BD =1tan 30°=3;在Rt △ACD 中,CD =1tan 60°=33.故在Rt △BCD 中,BC =3+13=303. 所以轮船的速度为30316=230(千米/小时).答案:230。
四川高职单招数学试题(附答案)
一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.二 .数学 单项选择(共10小题,计30分)1.设集合{}{}0,1,2,0,1M N ==,则MN =( )A .{}2 B.{}0,1 C.{}0,2 D .{}0,1,2 2. 不等式的解集是( )A.x<3 B.x >-1 C .x <-1或x>3 D.-1<x<3 3.已知函数()22x f x =+,则(1)f 的值为( ) A.2 B.3 C.4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数 D. 既增又减函数 5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D .127. 已知{a n}为等差数列,a 2+a8=12,则a 5等于( ) A.4 ﻩB.5 C.6 ﻩ D.78.已知向量a (2,1)=,b (3,)λ=,且a ⊥b,则λ=( ) A .6- B.6 C.32 D .32- 点)5,0(到直线x y 2=的距离为(ﻩﻩ)21<-xA.25 B.5 C .23ﻩﻩD.2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 ﻩﻩﻩ B .10种 C .9种 ﻩﻩD .8种二、填空题:本大题共5小题,每小题5分,共25分 11.(5分)(2014•四川)复数= _________ .12.(5分)(2014•四川)设f(x)是定义在R 上的周期为2的函数,当x∈[﹣1,1)时,f(x )=,则f()= _________ .13.(5分)(2014•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m.(用四舍五入法将结果精确到个位.参考数据:s in67°≈0.92,cos67°≈0.39,si n37°≈0.60,cos37°≈0.80,≈1.73)14.(5分)(2014•四川)设m ∈R,过定点A 的动直线x+my=0和过定点B 的动直线mx﹣y﹣m+3=0交于点P(x ,y).则|PA|•|PB|的最大值是 _________ .15.(5分)(2014•四川)以A 表示值域为R 的函数组成的集合,B表示具有如下性质的函数φ(x)组成的集合:对于函数φ(x),存在一个正数M,使得函数φ(x)的值域包含于区间[﹣M ,M ].例如,当φ1(x)=x 3,φ2(x)=s inx 时,φ1(x )∈A ,φ2(x)∈B .现有如下命题: ①设函数f(x)的定义域为D,则“f(x)∈A ”的充要条件是“∀b ∈R ,∃a ∈D,f(a )=b ”; ②函数f(x)∈B的充要条件是f(x )有最大值和最小值;③若函数f(x ),g (x )的定义域相同,且f (x)∈A,g (x )∈B ,则f (x)+g (x )∉B. ④若函数f (x)=aln(x+2)+(x>﹣2,a ∈R )有最大值,则f (x)∈B.其中的真命题有 _________ .(写出所有真命题的序号)三、解答题:本大题共6小题,共75分.解答应写出文字说明、证明过程或演算步骤.16.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。
中职单招数学试题及答案
中职单招数学试题及答案一、选择题(每题3分,共15分)1. 下列哪个选项不是正整数?A. 1B. 2C. 3D. 4答案:D2. 如果一个数的平方等于16,那么这个数是:A. 4B. -4C. 4或-4D. 0答案:C3. 函数f(x) = 2x + 3在x=1时的值是:A. 5B. 6C. 7D. 8答案:A4. 圆的半径为5,其面积是:A. 25πB. 50πC. 100πD. 200π答案:B5. 以下哪个是二次方程的根?A. x = 2B. x = -2C. x = 3D. x = 1/2答案:B二、填空题(每题2分,共10分)6. 一个直角三角形的两条直角边分别为3和4,其斜边的长度是________。
答案:57. 一个数的立方根是2,那么这个数是________。
答案:88. 一个圆的直径是10,其周长是________。
答案:π0(或31.4)9. 函数y = x^2 - 4x + 4的顶点坐标是________。
答案:(2, 0)10. 一个数的相反数是-5,那么这个数是________。
答案:5三、计算题(每题5分,共20分)11. 计算下列表达式的值:(3x - 2)^2,其中x = 1。
答案:(3*1 - 2)^2 = 1^2 = 112. 解方程:2x + 5 = 11。
答案:2x = 11 - 5 => 2x = 6 => x = 313. 化简并求值:(2a + 3b)(2a - 3b),其中a = 2,b = 1。
答案:(2*2 + 3*1)(2*2 - 3*1) = (4 + 3)(4 - 3) = 7*1 = 714. 计算下列三角函数值:sin(30°)。
答案:sin(30°) = 1/2四、解答题(每题10分,共20分)15. 一个长方体的长、宽、高分别是5cm、4cm和3cm,求其体积。
答案:长方体的体积 = 长 * 宽 * 高 = 5cm * 4cm * 3cm =60cm³16. 一个等腰三角形的底边长为6cm,两腰相等,求其周长。
2016年高职高考数学答案
2016年高职高考数学答案篇一:2016年高职数学模拟试卷高职高考班《数学》模拟试题班别学号姓名一、选择题:(本大题共15小题,每小题5分,共75分。
请把每题唯一的正确答案填入表格内)1、设集合M?{xx?1?1},集合N?{1,2,3,4},则集合M?N?()A. {1,2} B. {2,3} C. {3,4} D. {2,3,4}2、x?2是x?4的()A. 充分条件B. 必要非充分条件C. 充要条件D. 既非充分条件又非必要条件3、函数y?x?1在区间(?1,??)上是()A. 奇函数B. 偶函数C. 增函数D. 减函数4、不等式1?x0的解集为()1?xA. (??,?1)?[1,??)B. [?1,1]C. (??,?1]?[1,??)D. [?1,1) 5、已知tan?cos??0,且tan?sin??0,则角?是()A.第一象限角B. 第二象限角C. 第三象限角D. 第四象限角6、函数f(x)?2x?8?x?2x?152的定义域是()A. (?3,5)B. (??,?3)?(5,??)C. [?3,5]D. (?3,4)?(4,5)2x1,x17、设函数f(x)??2,则f[f(?3)]?()?x?2,x?1A. ?5 B. 15 C. ?11 D. 7 8、已知向量?(1,2)与向量?(4,y)垂直,则y?()A. ?8 B. 8C. 2 D. ?2 9、已知两条直线y?ax?2和y?(a?2)x?1互相垂直,则a?()A. 1 B.2 C. 0D. ?110、函数f(x)??x2?4x?7在区间[?3,4]上的最大值是()A. ?25B. 19C. 11D. 10111、等比数列{an}中,a1?,a4?3,则该数列的前5项之积为()9A. ?1B. 3C. 1D. ?312、已知数列{an}中,a1?3,an?an?1?3则a10?()A. 30B. 27C. 33D. 36x?13、函数f(x)?3sin(?)(x?R)的最小正周期是()46A. 2?B. 4?C. 8?D. ? 14、中心在原点,焦点在y轴上,离心率为,的椭圆标准方程为()2x2y2x2x2y2y222y1 C. ?1 ??1 B. ??1 D. x?A.44622615、在10件产品中有4件次品,现从中任取3件产品,至少有一件次品的概率是() A.2531 B.C.D.5656二、填空题:(每小题5分,共5×5=25分。
2016对口单招数学第三次模拟试卷
2016年江苏省对口单招数学模拟试卷(满分:150 时间:120分钟)一、选择题(本大题共10小题,每小题4分,共40分)1.已知集合则()2.是“cos2”的()A.充要条件B.必要不充分条件C.充分不必要条件D.既不充分也不必要条件3.已知函数则角为()A.第一象限角B.第二象限角C.第三象限角D.第四象限角4.已知复数满足则复数()A. B. C. D.5.已知向量且则的值为()A. B. C. D.6.展开式的中间项为()A. B. C. D.7.在等差数列中,若则的值为()A.24B.22C.20D.-88.在正方体中,侧面对角线与上底面对角线所成的角等于()A. B. C. D.9.若直线与直线垂直,则()A.2B.-3或1C.2或0D.0或110.抛物线C:的焦点为F,弦AB过焦点F,则以AB为直径的圆与抛物线C 的准线的位置关系是()A.相离B.相切C.相交D.无法确定一、选择题答题卡:题号12345678910答案二、填空题(本大题共5小题,每小题4分,共20分)11.将二进制转换成十进制为 .12.函数的单调增区间是 .13.已知则的最小值是 .14.工作代码 紧前工作紧后工作工期/天A 无D,E 7B 无C 2CBD,E3D A,C F 2E A,CF 1F D,E 无1S=0,T=0,n=0T > SS= S+5n=n+2T=T+n输出T 结束开始是(第14题) (第15题)15.某项工程的明细表如图所示,此工程的关键路径是 .三、解答题(本大题共8小题,共90分)16.(本题满分8分)已知函数(1)求函数的定义域;(2)解不等式.17.(本题满分10分)在中,AB=2,BC=3,CA=4.(1)判断的形状;(2)求sinA的值;(3)求的面积.18.(本题满分12分)已知在等差数列中,,,.求:(1)x的值;(2)数列的通项公式;(3)的值.19.(本题满分12分)已知函数是定义在上的增函数,并且对于x>0,y>0有(1)求的值;(2)若,解不等式.20. (本题满分12分)为了了解甲、乙两厂的产品质量,采用分层抽样的方法从甲、乙两厂生产的产品中分别抽取14件和5件,测量产品中微量元素x、y的含量(单位:毫克)。
2016中职生对口升学数学试题,真题
2016中职生对口升学数学试题本试卷分选择题和非选择题两部分,满分100分,考试时间为90分钟。
选择题注意事项:1.选择题答案必须填涂在答题卡上,写在试卷上的一律不计分。
2.答题前,考生必须将自己的姓名、准考证号、座位号、考试科目涂写在答题卡上。
3.考生须按规定正确涂卡,否则后果自负。
一、选择题(本大题共12小题,每小题3分,共36分)1. 下列函数中,既是奇函数又在区间()+∞,0上单调递减的是( ) A. x e y = B.xy 1= C.12+-=x y D.23x y = 2. 数列-1,3,-5,7,-9,…的一个通项公式为( ) A. 12-=n a n B.()()121-•-=n a n n B. ()()n a n n 211-•-= C.()()121+•-=n a n n 3. 40lg 25lg +的值是( )A.1000B.65C.3D.1 4. 下列那对直线互相垂直( )A. 52:,12:21-=+=x y l x y lB.5:,2:21=-=y l y l B. 5:,1:21--=+=x y l x y l D.53:,13:21--=+=x y l x y l 5. 用列举法表示“大于2且小于9的偶数的全体”构成的集合是( ) A. Ø B.{}8,6,4C.{}7,5,3D.{}8,7,6,5,4,36. 若312cos =a ,则=a cos ( )A. 97-B.31-C.31D.32 7. 在△ABC 中, 30,34,4=∠==A b a 则B ∠的度数为( ) A. 30 B. 30或 150 C. 60 D. 60或 1208. 实轴长为10,虚轴长为8,焦点在x 轴上的双曲线的标准方程是( )A. 1162522=-y xB.181022=-y xC.1251622=-y x C. 16410022=-y x 9. 向量()2,1-=a 与向量()2,m b =垂直,则m 的值是( ) A. -4 B.-1 C.1 D.4 10.同时掷两枚均匀的骰子,出现数字和大于10的概率是( )A. 61 B.121 C.181 D.241 非选择题注意事项:用蓝黑色钢笔或圆珠笔将答案直接写在试卷上。
2016浙江单招单考数学真题卷答案
2016年浙江省高等职业技术教育招生考试数学试卷参考答案填空题(本大题共小题,每小题分,共分)19.( ,3 (5,)21. x 2123.4三、简答题(本大题共 8小题,共60分)27. (8 分)解:原式 6(28)8 4 2? log 2 1^2 1) 1 si11 62 5 1 — 1 225 228. (6 分)3 所以cos54丄sin atana五4 cosa3 354 解:(1)因为sina , a 是第二象限角,5 (2)因为a 是第二象限角,是锐角,所以20.7 22.52 24. 425.32 ~3126‘ 或 2为第二或第三象限角,又因为sin (5)畐,所以是第二象限角,由题意要求常数项,令62得r 4. 所以常数项为:T 5 C :( 2)416 15 24030. ( 8 分)(1)由题意联立方程组得:2x 3y 8 0 x y 229. (7 分)因为(x所以cos (12 13所以 sin sin ()sin( )cosa cos( 5 . 312 4 () 13 5 13 533 65)sin a2x )n 二项展开式的二项式系数之和为64,所以2n 64,即n 6二项展开式的通项公式为:r r C 6( 2) x 6C 6( 2)rx3rT(x6 rx 2解得:,即M( 2,4),y 4又因为半径r 3所以,所求圆的方程为(x 2)2(y 4)29(2)如图,0M | J(0 2)2(0 4)2后2屁所以当动点P与P*重合时,|0P|最大,此时|0P|最大=3+2.5因为A是三角形的内角,所以当A 60 时,C=90 ;当A=120 时,C=30。
32.(8分)(1)由题意得:从2016年起,该城市公积金逐年支出金额成等差数列, 2016年支出金额为a1 =3500万元,公差d 200万元,所以a n a1 (n 1)d 3500 (n 1)200 200 n 3300( n N*)从2016年起,该城市公积金逐年的收入金额成等比数列,设为b n ,2016年收入金额为b| 3000,公比q=1.1所以b n dq n 13000 1.1n 1(n N*)所以2018年的支出为:a3=3 200+3300=3900 (万元)22018 年的收入为:b3=3000 1.1 =3000 1.2仁3630 (万元)(2)到2025年共10年时间,支出的总金额为:设0M的延长线与圆M交于点P*,则|0P||0M | |MP | |0P* | 3 2,5 , 31.(7分)在三角形ABC中,由已知条件应用正弦定理得: sin Aasin Bb 2*3A 60 或120设为a n到2025年共10年时间,收入的总金额为:b i b2 b3 L L 时泄卫=30坐U=30000 (2.594-1 )=47820 (万元)q 1 1.1 1余额=收入+库存-支出=47820+20000-44000=23820 (万元)即到2025年底该城市的公积金账户金额23820万元。
2016四川高职单招数学试题(附答案)
四川省2016年高职院校单独招生统一考试文化素质(模拟卷)数学一、选择题:本大题共10小题,每小题5分,共50分.在每小题给处的四个选项中,只有一项是符合题目要求的.1.设集合{}{}0,1,2,0,1M N ==,则MN =( )A .{}2B .{}0,1C .{}0,2D .{}0,1,2 2. 不等式的解集是( )A .x<3B .x>-1C .x<-1或x>3D .-1<x<3 3.已知函数()22x f x =+,则(1)f 的值为( ) A .2 B .3 C .4 D .6 4. 函数12+-=x y 在定义域R 内是( )A. 减函数B. 增函数C. 非增非减函数D. 既增又减函数5. 设 1.50.90.4814,8,2a b c -⎛⎫=== ⎪⎝⎭,则,,a b c 的大小顺序为 ( )A 、a b c >>B 、a c b >>C 、b a c >>D 、c a b >>6.已知a (1,2)=,b (),1x =,当2a +b 与2a -b 共线时,x 值为( ) A. 1 B.2 C .13 D.127. 已知{a n }为等差数列,a 2+a 8=12,则a 5等于( ) A.4 B.5C.6D.721<-x8.已知向量a (2,1)=,b (3,)λ=,且a ⊥b ,则λ=( ) A .6- B .6 C .32 D .32- 点)5,0(到直线x y 2=的距离为() A .25B .5C .23 D .2510. 将2名教师,4名学生分成2个小组,分别安排到甲、乙两地参加社会实践活动,每个小组由1名教师和2名学生组成,不同的安排方案共有 ( ) A .12种 B .10种 C .9种D .8种二、填空题:本大题共3小题,每小题4分,共12分11.(2015•四川)设f (x )是定义在R 上的周期为2的函数,当x ∈[﹣1,1)时,f (x )=,则f ()= _________ .12.(2015•四川)如图,从气球A 上测得正前方的河流的两岸B ,C 的俯角分别为67°,30°,此时气球的高是46m ,则河流的宽度BC 约等于 _________ m .(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos67°≈0.39,sin37°≈0.60,cos37°≈0.80,≈1.73)13.(2015•四川)设m ∈R ,过定点A 的动直线x+my=0和过定点B 的动直线mx ﹣y ﹣m+3=0交于点P (x ,y ).则|PA|•|PB|的最大值是 _________ .三、解答题:本大题共3小题,共38分.解答应写出文字说明、证明过程或演算步骤.14.(本小题12分)设数列{}n a 的前n 项和12n n S a a =-,且123,1,a a a +成等差数列。
2016级高职单招对口升学数学试题
2016级高职单招数学试题一、选择题(每题3分,共45分)1.已知集合{}1,2,3M =,{}1,4B =,那么集合A B 等于( )A.2B. 5C. 10D.2010.已知函数2,0,(),0.x x f x x x ⎧=⎨-<⎩≥如果0()2f x =,那么实数0x 的值为( )A. 4B. 0C. 1或4D. 1或-211、|a|=5是a=5的()A.充分条件B.必要条件C.充要条件D.既不充分也不必要条件12、不等式|2x-1|<5的解集为()A.(-2,3)B.(-∞,-2)∪(3,+∞)C. (-∞,3)D.(-3,2)22、已知一次函数f(x)的图像过点A(1,0),B(2,2),求函数f(x)的解析式(6分)25.(8分)某商品进货价为30元,若按40元一件销售,能卖出50个,若销售单价每涨一元,销售数量就减少一件,为获得最大利润,则商品的最佳售价为多少元?26.(8分)已知圆的方程为22650+-+=x y x(1)求圆心坐标和圆的半径(2)判断该圆与直线432-=的位置关系,并说明理由x y2016级高职单招数学试题一、选择题(15*3=45分)1、设集合{|3}A x x=<,实数2x=,则下列关系式中正确的是()(2,)+∞)C、()D、-B.夹在两平行平面间的等长线段必平行C.若平面外的直线a与平面α内的一条直线平行,则a//平面αD.如果一平面内的无数条直线平行于另一个平面,那么这两个平面平行11.若直线1:210l x ay+-=与直线2:30l x y-=平行,则实数a等于( )A.4B.6C.4-D.6- 12.半径为3,且与y 轴相切于原点的圆的方程为( )。
A.9)3(22=+-y xB.9)3(22=++y xC.9)3(22=++y xD.9)3(22=+-y x 或9)3(22=++y x 13.函数()f x 满足(21)22f x x +=-,则(2)f 等于( ) A.2- B.1- C.1 D.2 14.同时掷两颗骰子,向上点数之和为7的概率为( )A.14B.311C.16D.11115.如图,正方体1111ABCD A BC D -中,异面直线1A D 与1BC 所成的角为( )A.45︒B.60︒C.90︒D.120︒二.填空题。
2016年至2018年江苏省普通高校单独招生文化统考数学试题及答案
2016年至2018年江苏省普通高校单独招生文化统考数学试题及答案江苏省2018年普通高校对口单招文化统考数 学 试卷一、单项选择题(本大题共10小题,每小题4分,共40分。
在下列每小题中,选出一个正确答案,将答题卡上对应选项的方框涂满、涂黑)1.设集合M={1,3},N={a+2,5},若M ∩N={3},则a 的值为 A.-1 B.1 C.3 D.52.若实系数一元二次方程02=++n mx x 的一个根为i -1,则另一个根的三角形式为 A.4sin4cosππi + B.)43sin 43(cos2ππi + C.)4sin4(cos2ππi + D.)]4sin()4[cos(2ππ-+-i3.在等差数列{a n }中,若a 3,a 2016是方程0201822=--x x 的两根,则20181a 33∙a的值为A.31B.1C.3D.9 4.已知命题p:(1101)2=(13)10和命题q:A ·1=1(A 为逻辑变量),则下列命题中为真命题的是A.¬pB.p∧qC.p ∨qD.¬p∧q5.用1,2,3,4,5这五个数字,可以组成没有重复数字的三位偶数的个数是 A.18 B.24 C.36 D.486.在长方体ABCD-A 1B 1C 1D 1中,AB=BC=2,AA 1=62,则对角线BD 1与底面ABCD 所成的角是 A.6π B.4π C.3π D.2π 7.题7图是某项工程的网络图。
若最短总工期是13天,则图中x 的最大值为A.1B.2C.3D.48.若过点P (-1,3)和点Q (1,7)的直线1l 与直线2l :05)73(=+-+y m mx 平行,则m的值为A.2B.4C.6D.8 9.设向量a =(θ2cos ,52),b =(4,6),若53)sin(=-θπ,则b a -25的值为 A.53B.3C.4D.5 10.若函数c bx x x f +-=2)(满足)1()1(x f x f -=+,且5)0(=f ,则)(x b f 与)(x c f 的大小关系是A.)(x b f ≤)(x c fB.)(x b f ≥)(x c fC.)(x b f <)(x c fD.)(x b f >)(x c f 二、填空题(本大题共5小题,每小题4分,共20分)11.设数组a =(-1,2,4),b =(3,m,-2),若a ·b =1,则实数m= 。
2016年职高数学高考试题
A BC P2016内蒙古自治区高等职业院校 对口招收中等职业毕业生单独考试一、 选择题1.已知全集U={1,2,3,4,5,6},A={1,3,5},B={3,4,5},则)(B C A U =( ) A. {3,5} B. {1} C. {1,3,4,5} D. {1,2,3,5,6} 2.不等式0)4(>-x x 的解集是( )A. ),4[]0,-+∞∞ (B. ]4,0[C. )()(+∞∞,40,- D. )4,0( 3.已知55cos =α,且α为第四象限角,则=αsin ( ) A.51- B. 51 C. 552- D.5524.已知向量2),2,0(b 1,|a |=∙==b a 且,则向量与的夹角的大小为( )A.6πB. 4πC. 3πD.2π5.在等比数列}{a n 中,12,8a 128==a ,则=4a ( ) A.316 B. 4 C. 23D. 18 6.两条直线02=++a y x 和01y 2x =-+的位置关系( )A. 垂直B. 相交,但不垂直C. 平行D. 重合 7.当a>1时,在同一坐标系中,函数x a y -=与x a y =的图像可能是( )A. B. C. D.8.151022=-+-k y k x 表示焦点在y 轴上的椭圆,则整数k 的值有( ) A.1个 B.2个 C. 3个 D. 4个 9.若3)1()(2+++=mx x m x f 为偶函数,则)(x f 在区间]1,6[--上是( ) A. 减函数 B. 增函数 C. 先增后减 D.先减后增 10.设m 、n 是两条不同的直线,βα、是两个不同的平面,则下列命题正确的是( ) A.若n m n m //,//,//则αα B.若βαβα//,//,//则m mC.若αα⊥⊥n m n m 则,,//D.若ββαα⊥⊥m m 则,,//11.抛掷三枚硬币,出现两正一反的概率是( )A. 83B. 85C. 81D.5312.已知抛物线的顶点在坐标原点,对称轴是x 轴,抛物线上一点P 的横坐标为3-,点P 到焦点的距离为5,则抛物线的方程为( )A. y x 42-=B. y x 42=C. x y 82-=D. x y 82= 二、填空题13. 函数xx x f 211)(0-+=)(的定义域是 .14. 若一个圆的圆心为)2,a (,半径为22,且圆心在直线01635=-+y x 上,则该圆的标准方程为 .15. 在ABC ∆中,已知=∠=∠==C A c a 则,30,2,1 . 16. 如图,在三棱锥ABC P -中,底面ABC 为∆Rt , 90=∠ACB ,且2==BC AC ,2=⊥PC ABC PC ,平面,则点P 到AB 的距离为 .17. 5212(xx -的展开式中,含x 的项的系数为 .(用数字作答)18. 若双曲线)0(14222>=-b b y x 的渐近线方程为x y 21±=,则b= .三、解答题19.(本小题满分8分)已知C B A ∠∠∠,,是ABC ∆的三个内角,且53cos ,1715cos ==B A ,求C sin 的值.20.(本小题满分8分)已知向量),2(),3,1(m b a -==,当实数m 为何值时, (1))2(b a a -⊥; (2))2//(b a b + .21.(本小题满分10分)已知公差不为零的等差数列}{a n 中,首项21=a ,且1131,,a a a 成等比数列. (1) 求3a 和11a 的值; (2) 求等差数列}{a n 的前n 项和n S .22.(本小题满分10分)已知二次函数)3(f )1(f ,3bx x 41)x (f 2=-+-=满足,(1)求常数b 的值; (2)设函数)1x (log )x (g b -=,当0)x (g >时,求x 的取值范围.23.(本小题满分12分)已知圆C :096222=+--+y x y x ,直线02543=-+y x l :. (1)判断直线l 与圆C 的位置关系;(2)若圆C 与直线l 相交,求出两交点之间的距离;若圆C 与直线l 相离,求出圆C 上的点到直线l 的最大距离和最小距离.24.(本小题满分12分)如图,在四棱锥ABCD P -中,底面ABCD 是边长为1的菱形,且 60=∠ABC ,⊥PA 平面ABCD ,1=PA ,E 为PC 的中点,对角线BD AC 、交于点O ,连接OE ,BE . (1)求证:BD OE ⊥;(2)求异面直线BE 与AD 所成角的余弦值.A BC DEPO。
2016新疆职业大学数学单招试题测试版(附答案解析)
1.设函数f (θ)=3sin θ+cos θ,其中,角θ的顶点与坐标原点重合,始边与x 轴非负半轴重合,终边经过点P (x ,y ),且0≤θ≤π.(1)若点P 的坐标为⎝ ⎛⎭⎪⎫12,32,求f (θ)的值; (2)若点P (x ,y )为平面区域Ω:⎩⎪⎨⎪⎧ x +y ≥1,x ≤1,y ≤1上的一个动点,试确定角θ的取值X围,并求函数f (θ)的最小值和最大值.解:(1)由点P 的坐标和三角函数的定义可得⎩⎪⎨⎪⎧ sin θ=32,cos θ=12.于是f (θ)=3sin θ+cos θ=3×32+12=2. (2)作出平面区域Ω(即三角形区域ABC )如图,其中A (1,0),B (1,1),C (0,1).于是0≤θ≤π2. 又f (θ)=3sin θ+cos θ=2sin(θ+π6), 且π6≤θ+π6≤2π3, 故当θ+π6=π2,即θ=π3时, f (θ)取得最大值,且最大值等于2;当θ+π6=π6,即θ=0时, f (θ)取得最小值,且最小值等于1.2.已知函数f (x )=kx +b ,-1≤x ≤1,k ,b ∈R ,且是常数.若k 是从-2,-1,0,1,2五个数中任取的1个数,b 是从0,1,2三个数中任取的1个数,求函数y =f (x )是奇函数的概率.解:函数f (x )为奇函数的条件是b =0,基本事件共有5×3=15个,设事件A :“函数y =f (x )是奇函数”,则事件A 包含的基本事件是(-2,0),(-1,0),(0,0),(1,0),(2,0).所以P (A )=515=13. 3.如图所示,已知在直三棱柱ABC -A 1B 1C 1中,∠ACB =90°,E 为棱CC 1上的动点,F 是线段AB 的中点,AC =BC =2,AA 1=4.(1)求证:CF ⊥平面ABB 1;(2)当E 是棱CC 1的中点时,求证:CF ∥平面AEB 1;(3)在棱CC 1上是否存在点E ,使得二面角A -EB 1-B 的大小是45°?若存在,求CE 的长;若不存在,说明理由.解:(1)证明:在直三棱柱ABC -A 1B 1C 1中,侧棱B 1B ⊥底面ABC ,∵CF ⊂平面ABC ,∴B 1B ⊥CF .∵AC =BC ,F 是线段AB 的中点,∴CF ⊥AB .∵AB ,B 1B 是平面ABB 1内两相交直线,∴CF ⊥平面ABB 1.(2)证明:如图所示,取AB 1的中点D ,连接ED ,DF .∵DF 是△ABB 1的中位线,∴DF 綊12B 1B . ∵E 是棱CC 1的中点,∴EC 綊12B 1B .∴DF 綊EC . ∴四边形EDFC 是平行四边形.∴CF ∥ED .∵CF ⊄平面AEB 1,ED ⊂平面AEB 1,∴CF ∥平面AEB 1.(3)假设存在点E ,使二面角A -EB 1-B 的大小为45°,由于∠ACB =90°,易证AC ⊥平面BEB 1,过C 点作CK ⊥直线B 1E 于K ,连接AK ,则∠AKC 为二面角A -EB 1-B 的平面角,∴∠AKC =45°.∴CK =AC =2,设CE =x ,则x 2-42=4-x 2,x =52, 故线段CE =52. 综上,在棱CC 1上存在点E ,使得二面角A -EB 1-B 的大小是45°,此时CE =52. 4.已知{a n }是以a 为首项,q 为公比的等比数列,S n 为它的前n 项和. ()1当S 1,S 3,S 4成等差数列时,求q 的值;()2当S m ,S n ,S l 成等差数列时,求证:对任意自然数k ,a m +k ,a n +k ,a l +k 也成等差数列.解:()1由已知,得a n =aq n -1,因此S 1=a ,S 3=a ()1+q +q 2,S 4=a ()1+q +q 2+q 3.当S 1,S 3,S 4成等差数列时,S 4-S 3=S 3-S 1,可得aq 3=aq +aq 2,化简得q 2-q -1=0.解得q =1±52. ()2若q =1,则{a n }的各项均为a ,此时a m +k ,a n +k ,a l +k 显然成等差数列. 若q ≠1,由S m ,S n ,S l 成等差数列可得S m +S l =2S n ,即a ()q m -1q -1+a ()q l -1q -1=2a ()q n -1q -1,整理得q m +q l =2q n .因此,a m +k +a l +k =aq k -1()q m +q l =2aq n +k -1=2a n +k .所以,a m +k ,a n +k ,a l +k 成等差数列.5.已知椭圆G :x 24+y 2=1.过点(m,0)作圆x 2+y 2=1的切线l 交椭圆G 于A ,B 两点. (1)求椭圆G 的焦点坐标和离心率;(2)将|AB |表示为m 的函数,并求|AB |的最大值.解:(1)由已知得a =2,b =1,所以c =a 2-b 2= 3. 所以椭圆G 的焦点坐标为(-3,0),(3,0),离心率为e =c a =32. (2)由题意知,|m |≥1.当m =1时,切线l 的方程为x =1,点A ,B 的坐标分别为⎝ ⎛⎭⎪⎫1,32,⎝ ⎛⎭⎪⎫1,-32, 此时|AB |= 3.当m =-1时,同理可得|AB |= 3.当|m |>1时,设切线l 的方程为y =k (x -m ). 由⎩⎪⎨⎪⎧ y =k (x -m )x 24+y 2=1,得(1+4k 2)x 2-8k 2mx +4k 2m 2-4=0.设A ,B 两点的坐标分别为(x 1,y 1),(x 2,y 2),则x 1+x 2=8k 2m 1+4k 2,x 1x 2=4k 2m 2-41+4k 2.又由l 与圆x 2+y 2=1相切,得|km |k 2+1=1, 即m 2k 2=k 2+1. 所以|AB |=(x 2-x 1)2+(y 2-y 1)2=(1+k 2)[(x 1+x 2)2-4x 1x 2]= (1+k 2)⎣⎢⎡⎦⎥⎤64k 4m 2(1+4k 2)2-4(4k 2m 2-4)1+4k 2 =43|m |m 2+3.由于当m =±1时,|AB |=3,所以|AB |=43|m |m 2+3,m ∈(-∞,-1]∪[1,+∞).因为|AB |=43|m |m 2+3=43|m |+3|m |≤2,且当m =±3时, |AB |=2,所以|AB |的最大值为2.6.已知函数f (x )=e x +ax ,g (x )=e x ln x .(e ≈2.71828)(1)设曲线y =f (x )在x =1处的切线与直线x +(e -1)y =1垂直,求a 的值;(2)若对于任意实数x ≥0,f (x )>0恒成立,试确定实数a 的取值X 围. 解:(1)由题知,f ′(x )=e x +a .因此曲线y =f (x )在点(1,f (1))处的切线l 的斜率为e +a ,又直线x +(e -1)y =1的斜率为11-e, ∴(e +a )11-e=-1, ∴a =-1.(2)∵当x ≥0时,f (x )=e x +ax >0恒成立;∴若x =0,a 为任意实数,f (x )=e x +ax >0恒成立.若x >0,f (x )=e x +ax >0恒成立,即当x >0时,a >-e x x恒成立. 设Q (x )=-e x x, Q ′(x )=-e x x -e x x 2=(1-x )e x x 2. 当x ∈(0,1)时,Q ′(x )>0,则Q (x )在(0,1)上单调递增,当x ∈(1,+∞)时,Q ′(x )<0,则Q (x )在(1,+∞)上单调递减. ∴当x =1时,Q (x )取得最大值.Q (x )max =Q (1)=-e ,∴要使x ≥0时,f (x )>0恒成立,a 的取值X 围为(-e ,+∞).。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考单招——上高职单招网限时:90分钟 满分:122分一、选择题(共8个小题,每小题5分,共40分) 1.i 是虚数单位,复数5+3i4-i =( )A .1-iB .-1+iC .1+iD .-1-i解析:选C 5+3i 4-i =(5+3i )(4+i )(4-i )(4+i )=20+5i +12i +3i 216-i 2=17+17i17=1+i.2.在某次测量中得到的A 样本数据如下:82,84,84,86,86,86,88,88,88,88.若B 样本数据恰好是A 样本数据每个都加2后所得数据.则A ,B 两样本的下列数字特征对应相同的是( )A .众数B .平均数C .中位数D .标准差解析:选D 只有标准差不变,其中众数、平均数和中位数都加2.3.探索以下规律:则根据规律,从2 012到2 014,箭头的方向依次是( )A .向上再向右B .向右再向上C .向下再向右D .向右再向下考单招——上高职单招网解析:选C根据题意,分析可得箭头的变化情况以4为周期变化,(n为正整数) 具体为从4n到4n+1:箭头向下;从4n+1到4n+2:箭头向右;从4n+2到4n+3:箭头向上;从4n+3到4(n+1):箭头向右,则2 012=4×503,2 014=4×503+2,则箭头方向为先向下再向右.4.小波一星期的总开支分布如图1所示,一星期的食品开支如图2所示,则小波一星期的鸡蛋开支占总开支的百分比为()A.30% B.10%C.3% D.不能确定解析:选C由图1得到小波一星期的总开支,由图2得到小波一星期的食品开支,从而再借助图2计算出鸡蛋开支占总开支的百分比.由图2知,小波一星期的食品开支为30+40+100+80+50=300元,由图1知,小波一星期的总开支为30030%=1000元,则小波一星期的鸡蛋开支占总开支的百分比为301 000×100%=3%.5.如图,在圆心角为直角的扇形OAB中,分别以OA,OB为直径作两个半圆.在扇形OAB内随机取一点,则此点取自阴影部考单招——上高职单招网分的概率是( )A .1-2πB.12-1πC.2πD.1π解析:选A 法一:设分别以OA ,OB 为直径的两个半圆交于点C ,OA 的中点为D ,如图,连接OC ,DC .不妨令OA =OB =2,则OD =DA =DC =1.在以OA 为直径的半圆中,空白部分面积S 1=π4+12×1×1-⎝⎛⎭⎫π4-12×1×1=1,所以整体图形中空白部分面积S 2=2.又因为S 扇形OAB =14×π×22=π,所以阴影部分面积为S 3=π-2.所以P =π-2π=1-2π.法二:连接AB ,设分别以OA ,OB 为直径的两个半圆交于点C ,令OA =2.如图,连接AB ,由题意知C ∈AB 且S 弓形AC =S 弓形BC =S 弓形OC ,所以S 空白=S △OAB =12×2×2=2.又因为S 扇形OAB =14×π×22=π,所以S 阴影=π-2.所以P =S 阴影S 扇形OAB=π-2π=1-2π.6.某地区为了解中学生的日平均睡眠时间(单位:h),随机选择了n 位中学生进行调查,根据所得数据画出样本的频率分布直方图如图所示,且从左到右的第1个、第4个、第2个、第3个小长方形的面积依次构成公差为0.1的等差数列,又第一小组的频数是10,则n 等于( )考单招——上高职单招网A .80B .90C .100D .110解析:选C 设第1个小长方形的面积为S , 则4个小长方形的面积之和为4S +4×32×0.1,由题意知,4S +4×32×0.1=1, 故S =0.1,又因为10n=0.1,所以n =100. 7.下面茎叶图表示的是甲、乙两人在5次综合测评中的成绩,其中一个数字被污损,则甲的平均成绩超过乙的平均成绩的概率为( )A.25B.710C.45D.910解析:选C 记其中被污损的数字为x ,依题意得甲的5次综合测评的平均成绩是15(80×2+90×3+8+9+2+1+0)=90,乙的5次综合测评的平均成绩是15(80×3+考单招——上高职单招网90×2+3+3+7+x +9)=15(442+x ),令90>15(442+x ),由此解得x <8,即x 的可能取值为0~7,因此甲的平均成绩超过乙的平均成绩的概率为810=45. 8.设定义在R 上的函数f (x )是最小正周期为2π的偶函数,f ′(x )是f (x )的导函数.当x ∈[0,π]时,0<f (x )<1;当x ∈(0,π)且x ≠π2时,⎝⎛⎭⎫x -π2f ′(x )>0.则函数y =f (x )-sin x 在[-2π,2π]上的零点个数为( )A .2B .4C .5D .8解析:选B 依题意,当x ∈[0,π]时,0<f (x )<1,由f (x )是偶函数得,当x ∈[-π,0]时,0<f (x )<1,即x ∈[-π,π]时,0<f (x )<1,由f (x )的周期为2π知,0<f (x )<1恒成立.当x ∈[π,2π]时,-1≤sin x ≤0,由0<f (x )<1得,y =f (x )与y =sin x 不相交,即函数y =f (x )-sin x 无零点;当x ∈⎝⎛⎭⎫0,π2时,由⎝⎛⎭⎫x -π2·f ′(x )>0得,f ′(x )<0,f (x )是减函数,而y =sin x 是增函数,由图像知,y =f (x )与y =sin x 有1个交点,即函数y =f (x )-sin x 有1个零点;当x ∈⎝⎛⎭⎫π2,π时,由⎝⎛⎭⎫x -π2f ′(x )>0得,f ′(x )>0,f (x )是增函数,而y =sin x 是减函数,由图像知,y =f (x )与y =sin x 有一个交点,即函数y =f (x )-sin x 有1个零点.故函数y =f (x )-sin x 在[0,2π]上有2个零点.由周期性得,函数y =f (x )-sin x 在[-2π,0)上有2个零点,即函数y =f (x )-sin x 在[-2π,2π]上有4个零点.二、填空题(共6个小题,每小题5分,共30分)9.设集合A ={x |-3≤2x -1≤3},集合B 为函数y =lg(x -1)的定义域,则A ∩B =________.解析:由题可知A ={x |-1≤x ≤2},B ={x |x >1},故A ∩B =(1,2].考单招——上高职单招网答案:(1,2]10.交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N ,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N 为________.解析:依题意得知,甲社区驾驶员的人数占总人数的1212+21+25+43=12101,因此有96N =12101,解得N =808.答案:80811.现有10个数,它们能构成一个以1为首项,-3为公比的等比数列,若从这10个数中随机抽取一个数,则它小于8的概率是________.解析:由题意得a n =(-3)n -1,易知前10项中奇数项为正,偶数项为负,所以小于8的项为第一项和偶数项,共6项,即6个数,所以P =610=35. 答案:3512.已知某三棱锥的三视图(单位:cm)如图所示,则该三棱锥的体积等于____________cm 3.考单招——上高职单招网解析:由三视图可得三棱锥的直观图如图所示.三棱锥的底面是两直角边长分别为3,1的直角三角形,且高为2,故V =13×12×3×1×2=1(cm 3).答案:113.如图所示是某学校一名篮球运动员在五场比赛中所得分数的茎叶图,则该运动员在这五场比赛中得分的方差为________.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n的平均数)解析:该运动员五场比赛中的得分为8,9,10,13,15,平均得分x =8+9+10+13+155=11,方差s 2=15[(8-11)2+(9-11)2+(10-11)2+(13-11)2+(15-11)2]=6.8.答案:6.814.设函数f (x )=(x +1)2+sin xx 2+1的最大值为M ,最小值为m ,则M +m =________.解析:f (x )=x 2+2x +1+sin x x 2+1=1+2x +sin x x 2+1,考察函数g (x )=2x +sin xx 2+1,显然函数g (x )为奇函数,所以g (x )的最大值与最小值的和为0,所以函数f (x )的最大值与最小值的和为2.答案:2考单招——上高职单招网三、解答题(共4个小题,每小题13分,共52分)15.某班50位学生期中考试数学成绩的频率分布直方图如图所示,其中成绩分组区间是:[40,50),[50,60),[60,70),[70,80),[80,90),[90,100].(1)求图中x的值;(2)从成绩不低于80分的学生中随机选取2人,该2人中成绩在90分以上(含90分)的人数记为ξ,求ξ的数学期望.解:(1)由题意得:10x=1-(0.006×3+0.01+0.054)×10=0.18,所以x=0.018.(2)∵成绩不低于80分的学生共有(0.018+0.006)×10×50=12人,其中90分以上(含90分)的共有0.006×10×50=3人,ξ的可能值为0,1,2,P(ξ=0)=C29C212=611,p(ξ=1)=C19C13C212=922,P(ξ=2)=C23C212=122,∴ξ的分布列为考单招——上高职单招网∴E(ξ)=0×611+1×922+2×122=12.16.根据以往的经验,某工程施工期间的降水量X(单位: mm)对工期的影响如下表:0.3,0.7,0.9.求:(1)工期延误天数Y的均值与方差;(2)在降水量X至少是300的条件下,工期延误不超过6天的概率.解:(1)由已知条件和概率的加法公式有:P(X<300)=0.3,P(300≤X<700)=P(X<700)-P(X<300)=0.7-0.3=0.4,P(700≤X<900)=P(X<900)-P(X<700)=0.9-0.7=0.2.P(X≥900)=1-P(X<900)=1-0.9=0.1.所以Y的分布列为考单招——上高职单招网于是,E(Y)=0×0.3D(Y)=(0-3)2×0.3+(2-3)2×0.4+(6-3)2×0.2+(10-3)2×0.1=9.8. 故工期延误天数Y的均值为3,方差为9.8.(2)由概率的加法公式,P(X≥300)=1-P(X<300)=0.7,又因为P(300≤X<900)=P(X<900)-P(X<300)=0.9-0.3=0.6.由条件概率,得P(Y≤6|X≥300)=P(X<900|X≥300)=P(300≤X<900)P(X≥300)=0.60.7=67.故在降水量X至少是300的条件下,工期延误不超过6天的概率是6 7.17.为提升学校教学与管理水平,某校在业余时间利用网络对教师进行班级管理培训和学科教学培训,每位教师可以选择参加一项培训、两项培训或不参加培训.已知参加班级管理培训的教师占教师总人数的50%,参加学科教学培训的教师占教师总人数的80%,假设每个人对培训项目的选择是相互独立的,且各人的选择相互之间没有影响.(1)若任选1位教师,求该位教师参加培训的概率;(2)若任选3位教师,记ξ为3位教师中参加培训的人数,求ξ的分布列和数学期望.解:任选1位教师,记“该位教师参加班级管理培训”为事件A,“该位教师参加学科教学培训”为事件B,由题设知,事件A与B相互独立,且P(A)=0.5,P(B)=0.8.考单招——上高职单招网(1)任选1位教师,设该位教师没有参加培训的概率为P1,则P1=P(A∩B)=P(A)·P(B)=0.5×0.2=0.1,所以该位教师参加培训的概率为1-P1=1-0.1=0.9.(2)因为每个人选择培训的项目是相互独立的,所以3位教师中参加培训的人数ξ服从二项分布,则ξ~B(3,0.9),P(ξ=k)=C k3×0.9k×0.13-k,k=0,1,2,3,则ξ的分布列是ξ的数学期望E(ξ18.某超市为了解顾客的购物量及结算时间等信息,安排一名员工随机收集了在该超市购物的100位顾客的相关数据,如下表所示.(1)确定x,y的值,并求顾客一次购物的结算时间X的分布列与数学期望;(2)若某顾客到达收银台时前面恰有2位顾客需结算,且各顾客的结算相互独立,求该顾客结算前的等候时间不超过2.5分钟的概率.(注:将频率视为概率)考单招——上高职单招网解:(1)由已知得25+y+10=55,x+30=45,所以x=15,y=20.该超市所有顾客一次购物的结算时间组成一个总体,所收集的100位顾客一次购物的结算时间可视为总体的一个容量为100的简单随机样本,将频率视为概率得P(X=1)=15100=320,P(X=1.5)=30100=310,P(X=2)=25100=14,P(X=2.5)=20100=15,P(X=3)=10100=110.X的分布列为X的数学期望为E(X)=1×320+1.5×310+2×14+2.5×15+3×110=1.9.(2)记A为事件“该顾客结算前的等候时间不超过2.5分钟”,X i(i=1,2)为该顾客前面第i位顾客的结算时间,则P(A)=P(X1=1且X2=1)+P(X1=1且X2=1.5)+P(X1=1.5且X2=1).由于各顾客的结算相互独立,且X1,X2的分布列都与X的分布列相同,所以P(A)=P(X1=1)×P(X2=1)+P(X1=1)×P(X2=1.5)+P(X1=1.5)×P(X2=1)=3 20×320+320×310+310×320=980.故该顾客结算前的等候时间不超过2.5分钟的概率为9 80.。