1.2.1集合之间的关系导学案 new
高中数学必修一 《1 2 集合间的基本关系》获奖说课导学案
【新教材】1.2 集合的基本关系学案(人教A版)1. 了解集合之间包含与相等的含义,能识别给定集合的子集.2. 理解子集.真子集的概念.3. 能使用venn图表达集合间的关系,体会直观图示对理解抽象概念的作用。
重点:集合间的包含与相等关系,子集与其子集的概念.难点:难点是属于关系与包含关系的区别.一、预习导入阅读课本7-8页,填写。
1.集合与集合的关系(1)一般地,对于两个集合A,B,如果集合A中_____________元素都是集合B中的元素,我们就说这两个集合有_____________关系,称集合A为B的______.记作:A_________ B(或B _________ A)读作:A包含于B(或B包含A).图示:(2)如果两个集合所含的元素完全相同(A______ B且B ______ A),那么我们称这两个集合相等.记作:A ______B读作:A等于B.图示:2. 真子集A ,存在元素x______ B且x______ A,则称集合A是集合B的真子集。
若集合B记作:A ______B (或B ______A ) 读作:A 真包含于B (或B 真包含A )3.空集__________________的集合称为空集,记作:∅. 规定:空集是任何集合的子集。
4.常用结论(1)A __________ A (类比a a ≤)(2)空集是__________的子集,是_____________的真子集。
(3)若,,A B B C ⊆⊆则A __________ C (类比b a ≤,c b ≤则c a ≤)(4)一般地,一个集合元素若为n 个,则其子集数为________个,其真子集数为________个,特别地,空集的子集个数为________,真子集个数为________。
1.判断(正确的打“√”,错误的打“×”)(1)空集中只有元素0,而无其余元素. ( ) (2)任何一个集合都有子集. ( ) (3)若A =B ,则A ⊆B . ( ) (4)空集是任何集合的真子集. ( ) 2.用适当的符号填空(1) a______{a,b,c} (2) 0_______{x|x 2=0} (3) ∅________{x ∈R|x 2+1=0} (4) {0,1}_____N(5) {∅}_____{x|x 2=x} (6){2,1}____{x|x 2−3x +2=0} 3.设a ∈R ,若集合{2,9}={1-a,9},则a =________.例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题:由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?例2 下列能正确表示集合M={-1,0,1}和N={x|x 2+x=0}的关系的维恩图是( )例3 已知集合A={x|-5<x<2},B={x|2a-3<x<a-2}. (1)若a=-1,试判断集合A,B 之间是否存在子集关系; (2)若A ⊇B,求实数a 的取值范围.变式1. [变条件] 【例3】(2)中,是否存在实数a,使得A ⊆B?若存在,求出实数a 的取值范围;若不存在,试说明理由.变式2. [变条件] 若集合A={x|x<-5或x>2},B={x|2a-3<x<a-2},且A ⊇B,求实数a 的取值范围.1.已知集合A ={2,-1},集合B ={m 2-m ,-1},且A =B ,则实数m 等于( )A .2B .-1C .2或-1D .42.已知集合A ={x|-1-x<0},则下列各式正确的是( )A .0⊆AB .{0}∈AC .∅∈AD .{0}⊆A3.已知集合A ⊆{0,1,2},且集合A 中至少含有一个偶数,则这样的集合A 的个数为( )A .6B .5C.4 D.34.已知集合A={x|x=3k,k∈Z},B={x|x=6k,k∈Z},则A与B之间的关系是( ) A.A⊆B B.A=BC.A B D.A B5.已知集合A={x|ax2+2x+a=0,a∈R},若集合A有且仅有两个子集,则a的值是( ) A.1 B.-1C.0,1 D.-1,0,1=1},则A,B的关系是________.6.设x,y∈R,A={(x,y)|y=x},B={(x,y)|yx7.已知集合A={x|x<3},集合B={x|x<m},且A⊆B,则实数m满足的条件是________.8.已知A={x∈R|x<-2或x>3},B={x∈R|a≤x≤2a-1},若B⊆A,求实数a的取值范围.答案小试牛刀1.答案:(1) ×(2) √(3) √ (4)×2.(1)∈(2)= (3)=(4)⊆(5)⊈(6)=3.-1自主探究例1【答案】见解析【解析】分析:(1)利用子集的概念,按照集合中不含任何元素、含有一个元素、含有两个元素、含有三个元素这四种情况分别写出子集.(2)由特殊到一般,归纳得出.解:(1)不含任何元素的子集为⌀;含有一个元素的子集为{0},{1},{2};含有两个元素的子集为{0,1},{0,2},{1,2};含有三个元素的子集为{0,1,2}.故集合{0,1,2}的所有子集为⌀,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)由此猜想:含n 个元素的集合{a 1,a 2,…,a n}的所有子集的个数是2n,真子集的个数是2n-1,非空真子集的个数是2n-2. 例2【答案】B【解析】∵N={x|x 2+x=0}={x|x=0或x=-1}={0,-1},∴N ⫋M,故选B. 例3【答案】见解析【解析】分析:(1)令a=-1,写出集合B,分析两个集合中元素之间的关系,判断其子集关系;(2)根据集合B 是否为空集进行分类讨论;然后把两集合在数轴上标出,根据子集关系确定端点值之间的大小关系,进而列出参数a 所满足的条件.解:(1)若a=-1,则B={x|-5<x<-3}. 如图在数轴上标出集合A,B.由图可知,B ⫋A. (2)由已知A ⊇B.①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合, 由图可得{2a -3≥-5,a -2≤2,解得-1≤a≤4.又因为a<1,所以实数a 的取值范围为-1≤a<1 变式1.【答案】见解析【解析】因为A={x|-5<x<2},所以若A ⊆B,则B 一定不是空集.此时有{2a -3≤-5,a -2≥2,即{a ≤-1,a ≥4,显然实数a 不存在.变式2.【答案】见解析【解析】①当B=⌀时,2a-3≥a-2,解得a ≥1.显然成立. ②当B ≠⌀时,2a-3<a-2,解得a<1.由已知A ⊇B,如图在数轴上表示出两个集合,由图可知2a-3≥2或a-2≤-5,解得a ≥52 或a ≤-3.又因为a<1,所以a ≤-3.综上,实数a 的取值范围为a ≥1或a ≤-3. 当堂检测1-5.CDADD 6.B A 7.m≥38.【答案】见解析【解析】∵B ⊆A ,∴B 的可能情况有B ≠∅和B =∅两种. ①当B =∅时,由a>2a -1,得a<1. ②当B≠∅时,∵B ⊆A ,∴⎩⎪⎨⎪⎧a>3,a≤2a-1或⎩⎪⎨⎪⎧2a -1<-2,a≤2a-1成立,解得a>3;综上可知,实数a 的取值范围是{a|a<1或a>3}.。
高中数学必修一导学案:1 1 2集合间的基本关系
第一章集合与函数的概念1.1.2集合间的基本关系【导学目标】1.通过实例理解集合之间包含与相等的含义,理解子集、真子集等概念,能识别给定集合的子集.2.在具体情景中,了解空集的含义.3.体会类比方法,渗透分类思想,提高数学思维能力【自主学习】知识回顾:集合中元素的性质?集合的表示方法?新知梳理:1.子集类比两个实数间的大小关系,分析课本的三个引例,总结两个集合不能用大小来称呼,如果集合A的元素都是集合B的元素,这时我们就说这两个集合有关系,并称集合A为集合B的子集,记做(或).图形表示:感悟:这里我们讲的集合的基本关系主要就指包含关系(相等关系是包含关系的特例),包含关系中蕴含着子集、集合相等、真子集等概念,而子集又分集合相等与真子集两种情况对点练习:1. 已知A={1,2,3,5,7},B={2,5},则()A、A>BB、A⊇BC、B∈AD、A=B2. 集合相等分析课本的引例(3),集合C,D都是由所有组成的集合,集合C,D的元素是,所以集合C与集合D相等.⊆),且集合B也从子集的角度来理解,如果集合A是集合B的 ________ (A B是集合A的⊆),称集合A与集合B相等,记做 _________ ._____ (B A感悟:集合相等的概念在前一节已出现,这里从子集的角度提升对此概念的理解.a+=对点练习:2.若集合A={1,a},B={3,b},且A=B,则b3.真子集⊆,但,称集合A为集合B的真子集,记做(或如果集合A B____________ ).图形表示:感悟:关键把握在子集的前提下,增加什么条件使之成为真子集,正确理解这一条件. 对点练习:3. 集合{2,5}的真子集的个数有()A 、4 个B 、 3个C 、2个D 、1个 对点练习:4. 用适当的符号填空:(1)1 {x|x 2=1} (2){1} {x|x 2=1}(3)φ {x|x 2+2=0}(4){2,3} {x|(x-2)(x-3)=0}4.空集我们把 的集合叫做空集,记为 ______ ,并规定 .5. 子集的有关性质(1)任何一个集合是它本身的____________,即__________;(2)空集是任何集合的 ,是任何非空集合的 ;(3)对于集合A ,B ,C ,如果A ⊆B ,B ⊆C ,那么___________.6.结合实例说明A a ∈与{}a A ⊆的区别.7.思考:(1)集合A={0}和φ有什么区别?(2)如果一个集合中含有n 个元素,则该集合子集的个数为多少?真子集的个数有多少?非空真子集的个数呢?【合作探究】典例精析例1、写出集合{}b a ,的所有子集,并指出哪些是它的真子集.变式练习1、写出集合{0,1,2}的所有子集,并指出哪些是它的真子集.例题2、已知集合{}{}的自然数是不大于3,12x x B x x A ===,满足,C A ⊆C B ⊆,则集合C 中元素最少有( )A. 2个B. 4个C.5个D.6个**变式2: 已知集合⎭⎬⎫⎩⎨⎧∈+==Z a a x x A ,61,⎭⎬⎫⎩⎨⎧∈-==Z b b x x B ,312,⎭⎬⎫⎩⎨⎧∈+==Z c c x x C ,612,则集合 C B A ,,满足的关系是 (用,,⊆⊂=中的符号连接)例题3、{},21≤≤=x x A {}1,1≥≤≤=a a x x B .(1)若A B ,求a 的取值范围(2)若B ⊆A ,求a 的取值范围变式训练2、已知集合{}21<<=ax x A ,B={}1<x x ,若A ⊆B ,求实数a 的取值范围【课堂小结】。
1.2集合之间的关系导学案
编制人: 苏义富 吴振芹 吴军华
审核 :王秀梅
审批:
編号:3
― ― ― ― ― ― ― ― ― ― ― ― ― 装 ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― 订 ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― 线 ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― ― ―
集合之间的关系
【使用说明及学法指导】 1.先精读一遍教材, 用红色笔勾画; 再针对导学案问题导学部分阅读并回答, 时间不超过 15 分钟; 2.限时完成导学案合作探究部分,书写规范;3.找出自己的疑惑点; 4.必须记住的内容:
规律总结
【学习目标】 1. 了解集合之间包含与相等的含义,能识别给定集合的子集; 2. 理解子集、真子集的概念; 3. 能利用 Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用; 4. 了解空集的含义. 【重难点】 学习重点:集合间的包含与相等关系,子集与其子集的概念. 学习难点:难点是属于关系与包含关系的区别. 一、课前预习 阅读教材第 10-13 页中的相关内容,并思考回答下列问题: (1)集合 A 是集合 B 的真子集的含义是什么? 集合 A 与集合 B 相等的含义是什么?
,并用 Venn 图表示.
三、课后巩固 1. 已知集合 A= x | 1 x 2 ,B= x | 0 x 1 ,则( A.A>B B.A B C. B A D.A B 2.已知集合 M A. 2个 )
2, 3, 5 ,且 M 中至少有一个奇数,则这样的集合共有( )
a 1
D. {0} {0,1} ,则实数 a 的取值范围为( ).
x x 1 , B x x a ,且 A B
【人教B版】2013-2014学年高中数学必修一:1.2.1 集合之间的关系 教案
A.3个B. 4个C. 5个D. 8个
2.已知集合M满足 写出集合M.
题型三有关两个集合相等的问题
例3设A={x, x , xy},B={1,x, y},且A=B,求实数x, y的值。
题型四集合关系的判定
例4判定下列集合A 与B的关系
3)集合的表示方法___本并填空
1)、对于两个集合A 和B,如果集合A中__ ____一个元素都是集合 的元素,那么集合 叫作集合 的________,记作_____或______(读作: 包含于 或 包含 )
注(1) 有两种可能:
① 中所有元素是 中的一部分元素② 与 中的所有元素都相同;
注:(1)如果两个集合所含的元素完全相同,那么这两个集合相等;
(2) 且
6)、集合关系的传递性: , ;
7)、集合的维恩图表示法
我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做_________.
图(3)
如果集合A是集合B的真子集,那么就把表示A的区域画在表示B的区域的内部(如图(3))
★2.设集合A= ,B= ,若 .求实数 的取值范围
课堂小测
1.已知集合A= , B= ,且A=B,则实数x=________ y= ____
2.已知M= , N= ,则集合M和N的关系为__
3.已知a , x , A= , B= ,
求:(1)使A= 的x的值;(2)使2 ,B A的a, x的值;
★4.已知非空集合 ,
(1)若 .求实数 的取值范围(2)若A=B,求 的值。
5.设集合 , ,且 ,求实数a的取值范围。
变式训练:在以下六个选择中(1).Φ {0} (2). . (3).
1.2.1集合之间的关系教案学生版
§1.2集合之间的关系与运算1.2.1 集合之间的关系【学习要求】1.理解子集、真子集、两个集合相等的概念.2.掌握有关子集、真子集的符号及表示方法,能利用Venn图表达集合间的关系.3.会求已知集合的子集、真子集.4.能判断两集合间的包含、相等关系,并会用符号准确地表示出来.【学法指导】通过使用基本的集合语言表示有关的数学对象,感受集合语言在描述客观现实和数学问题中的意义;培养用集合的观点分析问题、解决问题的能力;学习用数学的思维方式解决问题、认识世界.填一填:知识要点、记下疑难点1.子集:一般地,如果集合A中的任意一个元素都是集合B的元素,那么集合A叫做集合B的子集,记作A⊆B或B⊇A,读作“A包含于B”,或“B包含A”.2.子集的性质:①A⊆A(任意一个集合A都是它本身的子集);②∅⊆A(空集是任意一个集合的子集).3.真子集:如果集合A是集合B的子集,并且B中至少有一个元素不属于A,那么集合A叫做集合B的真子集,记作或,读作“ A真包含于B ”,或“ B真包含A ”.4.维恩图:我们常用平面内一条封闭曲线的内部表示一个集合,这种图形通常叫做维恩(Venn)图 .5.集合相等:一般地,如果集合A的每一个元素都是集合B的元素,反过来,集合B的每一个元素也都是集合A的元素,我们就说集合A等于集合B ,记作A=B .用数学语言表示为:如果 A⊆B ,且 B⊆A ,那么A=B .6.一般地,设A={x|p(x)},B={x|q(x)},如果A⊆B,则x∈A⇒x∈B,即 p(x)⇒q(x) .反之,如果p(x)⇒q(x),则 A⊆B研一研:问题探究、课堂更高效[问题情境] 已知任意两个实数a,b,则它们的大小关系可能是a<b或a=b或a>b,那么对任意的两个集合A,B,它们之间有什么关系?今天我们就来研究这个问题.探究点一子集与真子集的概念导引前面我们学习了集合、集合元素的概念以及集合的表示方法.下面我们来看这样三组集合:(1)A={1,3},B={1,3,5,6};(2)C={x|x是长方形},D={x|x是平行四边形};(3)P={x|x是菱形},Q={x|x是正方形}.问题1 哪些集合表示方法是列举法?哪些集合表示方法是描述法?问题2 这三组集合每组彼此之间有何关系?问题3 类比表示两集合间子集关系的符号与表示两个实数大小关系的等号之间有什么类似之处?问题4 在导引中集合P与集合Q之间的关系如何表示?问题5 空集与任意一个集合A有什么关系,集合A与它本身有什么关系?问题6 对于集合A,B,C,如果A⊆B,B⊆C,那么集合A与C有什么关系?问题7 “导引”中集合A中的元素都是集合B的元素,集合B中的元素不都是集合A的元素,我们说集合A是集合B的真子集,那么如何定义集合A是集合B的真子集?问题8 集合A,B的关系能不能用图直观形象的表示出来?问题9 如何用维恩(Venn)图表示集合A是集合B的真子集?例1 写出集合A={1,2,3}的所有子集和真子集.跟踪训练1 写出满足⊆{0,1,2,3,4}的所有集合P.探究点二集合的相等问题1 观察下面几个例子,你能发现两个集合间有什么关系吗?(1)集合C={x|x是两条边相等的三角形},D={x|x是等腰三角形};(2)集合C={2,4,6},D={6,4,2}; (3)集合A={x|(x+1)(x+2)=0},B={-1,-2}.问题2 与实数中的结论“若a≥b,且b≥a,则a=b”相类比,在集合中,你能得出什么结论?例2 说出下列每对集合之间的关系:(1)A={1,2,3,4,5},B={1,3,5};(2)P={x|x2=1},Q={x||x|=1}; (3)C={x|x是奇数},D={x|x是整数}.跟踪训练2 用适当的符号(∈,∉,=,,)填空:(1)0______{0};0______∅;∅______{0};(2)∅______{x|x2+1=0,x∈R}; {0}______{x|x2+1=0,x∈R};(3)设A={x|x=2n-1,n∈Z},B={x|x=2m+1,m∈Z},C={x|x=4k±1,k∈Z},则A______B______C.探究点三集合关系与其特征性质之间的关系问题1 已知集合A的特征性质为p(x),集合B的特征性质为q(x).“如果p(x),那么q(x)”是正确命题,试问集合A和B的关系如何?并举例说明.问题2 如果命题“p(x)⇒q(x)”和命题“q(x)⇒p(x)”都是正确的命题,那么怎样表示p(x),q(x)的关系?例3 判定下列集合A与集合B的关系:(1)A={x|x是12的约数},B={x|x是36的约数}; (2)A={x|x>3},B={x|x>5};(3)A={x|x是矩形},B={x|x是有一个角为直角的平行四边形}.跟踪训练3 确定下列每组两个集合的包含关系或相等关系:(1)A={n|n=2k+1,k∈Z}和B={m|m=2l-1,l∈Z}; (2)C={n|n=2k+1,k∈N*}和D={m|m=2l-1,l∈N*}.练一练:当堂检测、目标达成落实处1.下列命题:①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅,则A≠∅. 其中正确的个数是 ( )A.0 B.1 C.2 D.32.满足条件⊆{1,2,3,4,5}的集合M的个数是 ( )A.3 B.6C.7 D.83.若集合{2x,x+y}={7,4},则整数x,y分别等于__________.4.观察下面几组集合,集合A与集合B具有什么关系?(1)A={1,2,3},B={1,2,3,4,5}. (2)A={x|x>3},B={x|3x-6>0}.(3)A={正方形},B={四边形}. (4)A={育才中学高一(11)班的女生},B={育才中学高一(11)班的学生}.课堂小结:1.能判断存在子集关系的两个集合,谁是谁的子集,进一步确定其是否为真子集;注意:子集并不是由原来集合中的部分元素组成的集合.2.空集是任何集合的子集,是任何非空集合的真子集.3.注意区别“包含于”,“包含”,“真包含”.4.注意区分“∈”与“⊆”的不同涵义.。
高一数学人教B版必修1:1.2.1 集合之间的关系 学案
§1.2集合之间的关系与运算1.2.1集合之间的关系自主学习学习目标了解子集、真子集、空集的概念,掌握用V enn图表示集合的方法,通过子集理解两集合相等的意义.自学导引1.一般地,对于两个集合A、B,如果集合A中________________元素都是集合B中的元素,我们就说这两个集合有包含关系,称集合A为集合B的子集,记作________(或________),读作“____________”(或“____________”).2.如果集合A是集合B的子集(A⊆B),且________________________,此时,集合A 与集合B中的元素是一样的,因此集合A与集合B相等,记作________.3.如果集合A⊆B,但存在元素x∈B,且x∉A,我们称集合A是集合B的__________,记作________(或________).4.________是任何集合的子集,________是任何非空集合的真子集.对点讲练知识点一写出给定集合的子集例1 (1)写出集合{0,1,2}的所有子集,并指出其中哪些是它的真子集;(2)填写下表,并回答问题.原集合子集子集的个数∅{a}{a,b}{a,b,c}由此猜想:含n个元素的集合{a1,a2,…,a n}的所有子集的个数是多少?真子集的个数及非空真子集的个数呢?规律方法(1)分类讨论是写出所有子集的有效方法,一般按集合中元素个数的多少来划分,遵循由少到多的原则,做到不重不漏.(2)集合A中有n个元素,则集合A有2n个子集,有(2n-1)个真子集,(2n-1)个非空子集,(2n-2)个非空真子集.变式迁移1 已知集合M满足{1,2}⊆M⊆{1,2,3,4,5},写出集合M.知识点二 集合基本关系的应用例2 (1)已知集合A ={x |-3≤x ≤4},B ={x |2m -1<x <m +1},且B ⊆A .求实数m 的取值范围;(2)本题(1)中,若将“B ⊆A ”改为“A ⊆B ”,其他条件不变,求实数m 的取值范围.规律方法 (1)分析集合关系时,首先要分析、简化每个集合.(2)此类问题通常借助数轴,利用数轴分析法,将各个集合在数轴上表示出来,以形定数,还要注意验证端点值,做到准确无误,一般含“=”用实心点表示,不含“=”用空心点表示.(3)此类问题还应注意“空集”这一“陷阱”,尤其是集合中含有字母参数时,初学者会想当然认为非空集合而丢解,因此分类讨论思想是必须的.变式迁移2 已知A ={x |x 2-5x +6=0},B ={x |mx =1},若B A ,求实数m 所构成的集合M .知识点三 集合相等关系的应用例3 已知集合A ={2,x ,y },B ={2x,2,y 2}且A =B ,求x ,y 的值.规律方法 集合相等则元素相同,但要注意集合中元素的互异性,防止错解.变式迁移3 含有三个实数的集合可表示为⎩⎨⎧⎭⎬⎫a ,b a,1,也可表示为{a 2,a +b,0},求a ,b .1.元素、集合间的关系用符号“∈”或“∉”表示,集合、集合间的关系用“⊆”、“=”或“”等表示.2.在特定的情况下集合也可以作为元素,如集合B ={∅,{0},{1},{0,1}},则此时{1}∈B ,而不能是{1}B .3.解集合关系的问题时还需注意以下几个方面:(1)当A ⊆B 时,A =B 或A B .(2)判断两个集合间的关系:①先用列举法表示两个集合再判断;②分类讨论.(3)解数集问题学会运用数轴表示集合.(4)集合与集合间的关系可用V enn 图直观表示.课时作业一、选择题1.下列命题①空集没有子集;②任何集合至少有两个子集;③空集是任何集合的真子集;④若∅A 时,则A ≠∅,其中正确的个数是( )A .0B .1C .2D .32.已知集合A ={x |a -1≤x ≤a +2},B ={x |3<x <5},则能使A ⊇B 成立的实数a 的取值范围是( )A .{a |3<a ≤4}B .{a |3≤a ≤4}C .{a |3<a <4}D .∅3.设B ={1,2},A ={x |x ⊆B },则A 与B 的关系是( )A .A ⊆B B .B ⊆AC .A ∈BD .B ∈A4.若集合A ={x |x =n ,n ∈N },集合B =⎩⎨⎧⎭⎬⎫x |x =n 2,n ∈Z ,则A 与B 的关系是( ) A .A B B .A B C .A =B D .A ∈B5.在以下六个写法中:①{0}∈{0,1};②∅{0};③{0,-1,1}⊆{-1,0,1};④0∈∅;⑤Z ={正整数};⑥{(0,0)}={0},其中错误写法的个数是( )A .3B .4C .5D .6二、填空题6.满足{0,1,2}A ⊆{0,1,2,3,4,5}的集合A 的个数是________.7.设M ={x |x 2-1=0},N ={x |ax -1=0},若N ⊆M ,则a 的取值集合为________.8.若{x |2x -a =0,a ∈N }⊆{x |-1<x <3},则a 的所有取值组成的集合为________________.三、解答题9.设集合A ={1,a ,b },B ={a ,a 2,ab },且A =B ,求实数a 、b 的值.10.已知集合A ={x |-2k +3<x <k -2},B ={x |-k <x <k },若A B ,求实数k 的取值范围.【探究驿站】11.已知集合M={x|x=m+16,m∈Z},N={x|x=n2-13,n∈Z},P={x|x=p2+16,p∈Z},请探求集合M、N、P之间的关系.§1.2集合之间的关系与运算1.2.1集合之间的关系答案自学导引1.任意一个A⊆B B⊇A A包含于BB包含A2.集合B是集合A的子集(B⊆A)A=B3.真子集A B B A4.空集空集对点讲练例1 解(1)不含任何元素的集合:∅;含有一个元素的集合:{0},{1},{2};含有两个元素的集合:{0,1},{0,2},{1,2};含有三个元素的集合:{0,1,2}.故集合{0,1,2}的所有子集为∅,{0},{1},{2},{0,1},{0,2},{1,2},{0,1,2}.其中除去集合{0,1,2},剩下的都是{0,1,2}的真子集.(2)原集合子集子集的个数∅∅ 1{a}∅,{a} 2{a,b}∅,{a},{b},{a,b} 4{a,b,c}∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}8这样,含n个元素的集合{a1,a2,…,a n}的所有子集的个数是2n,真子集的个数是2n -1,非空真子集的个数是2n-2.变式迁移1解由已知条件知所求M为:{1,2},{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.例2 解(1)∵B⊆A,①当B=∅时,m+1≤2m-1,解得m≥2.②当B ≠∅时,有⎩⎪⎨⎪⎧ -3≤2m -1m +1≤42m -1<m +1,解得-1≤m <2,综上得m ≥-1.(2)显然A ≠∅,又A ⊆B ,∴B ≠∅,如图所示,∴⎩⎪⎨⎪⎧ 2m -1<m +12m -1<-3m +1>4,解得m ∈∅.变式迁移2 解 由x 2-5x +6=0得x =2或x =3.∴A ={2,3}由B A 知B =∅或B ={2}或B ={3}若B =∅,则m =0;若B ={2},则m =12;若B ={3},则m =13. ∴M =⎩⎨⎧⎭⎬⎫0,12,13. 例3 解 方法一 ∵A =B∴集合A 与集合B 中的元素相同∴⎩⎪⎨⎪⎧ x =2x y =y 2或⎩⎪⎨⎪⎧x =y 2y =2x , 解得x ,y 的值为⎩⎪⎨⎪⎧ x =0y =0或⎩⎪⎨⎪⎧ x =0y =1或⎩⎨⎧ x =14y =12验证得,当x =0,y =0时,A ={2,0,0}这与集合元素的互异性相矛盾,舍去.∴x ,y 的取值为⎩⎪⎨⎪⎧ x =0,y =1,或⎩⎨⎧x =14,y =12. 方法二 ∵A =B ,∴A 、B 中元素分别对应相同.∴⎩⎪⎨⎪⎧ x +y =2x +y 2,x ·y =2x ·y 2,即⎩⎪⎨⎪⎧x +y (y -1)=0, ①xy (2y -1)=0. ② ∵集合中元素互异,∴x 、y 不能同时为0.∴y ≠0.由②得x =0或y =12. 当x =0时,由①知y =1或y =0(舍去);当y =12时,由①得x =14. ∴⎩⎪⎨⎪⎧ x =0,y =1,或⎩⎨⎧ x =14,y =12.变式迁移3 解 由集合相等得:0∈⎩⎨⎧⎭⎬⎫a ,b a,1,易知a ≠0, ∴b a=0,即b =0,∴a 2=1且a 2≠a ,∴a =-1. 综上所述:a =-1,b =0.课时作业1.B [仅④是正确的.]2.B [∵A ⊇B ,∴⎩⎪⎨⎪⎧a -1≤3a +2≥5∴3≤a ≤4.]3.D [∵B 的子集为{1},{2},{1,2},∅,∴A ={x |x ⊆B }={{1},{2},{1,2},∅},∴B ∈A .]4.A 5.B6.7解析 本题即求集合{3,4,5}的非空子集个数,共23-1=7个.7.{-1,1,0}8.{0,1,2,3,4,5}9.解 ∵A =B 且1∈A ,∴1∈B .若a =1,则a 2=1,这与元素互异性矛盾,∴a ≠1.若a 2=1,则a =-1或a =1(舍).∴A ={1,-1,b },∴b =ab =-b ,即b =0.若ab =1,则a 2=b ,得a 3=1,即a =1(舍去). 故a =-1,b =0即为所求.10.解 ∵A B ,①若A =∅,且B ≠∅,则k >0,且-2k +3≥k -2⇒0<k ≤53; ②若A ≠∅,且B ≠∅,则⎩⎪⎨⎪⎧ k >0-2k +3<k -2-k ≤-2k +3k ≥k -2且-k =-2k +3与k =k -2不同时成立,解得53<k ≤3. 由①②可得实数k 的取值范围为{k |0<k ≤3}.11.解 M ={x |x =m +16,m ∈Z }={x |x =6m +16,m ∈Z }. N ={x |x =n 2-13,n ∈Z }={x |x =3n -26,n ∈Z }. P ={x |x =p 2+16,p ∈Z }={x |x =3p +16,p ∈Z }. ∵3n -2=3(n -1)+1,n ∈Z ,∴3n -2,3p +1都是3的整数倍加1,从而N =P .而6m +1=3×2m +1是3的偶数倍加1,∴M N =P .。
集合间的基本关系导学案
导学案(设计:朱巧)班别: 姓名:一、学习目标: 1、了解集合之间包含与相等的含义,能识别给定集合的子集。
2、理解子集、真子集的概念。
3、能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。
二、学习过程: 思考:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢? 探究:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5} ; (2)设A 为昭平中学高一(6)班全体女生组成的集合,B 为这个班全体学生组成的集合; (3) {}C x x =是两条边相等的三角形,{}D x x =是等腰三角形;(4)C={2,4,6},D={6,4,2} (5)M={}210x +=方程的实数根结论:1、一般的,对于两个集合A,B ,如果集合 中任意一个元素都是集合 中的元素,我们就说这两个集合有 关系,称集作 或 。
读作:或 。
用图可以表示为:2、在数学中,我们经常用平面上封闭曲线的内部代表集合,这种图称为 。
思考:你能在生活中举出几个具有包含关系、相等关系的集合实例吗?3、如果集合 是集合 的子集()A B ⊆,且集合 是 集合 的子集()B A ⊆,此时,集合A 与集合B 的元素是一样的,因此,集合A 与集合B , 记作:用Venn 图表示为:思考:与实数中的结论“若a b ≥,且b a ≥,则a b =”相类比,你有什么体会?4、如果集合A B ⊆,但存在元素 ,且 ,我们称集合导学案(设计:朱巧)班别: 姓名:一、学习目标: 1、了解集合之间包含与相等的含义,能识别给定集合的子集。
2、理解子集、真子集的概念。
3、能使用venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。
二、学习过程: 思考:实数有相等、大小关系,如5=5,5<7,5>3等等,类比实数之间的关系,你会想到集合之间有什么关系呢? 探究:观察下面几个例子,你能发现两个集合间有什么关系了吗?(1)A={1,2,3},B={1,2,3,4,5} ; (2)设A 为昭平中学高一(6)班全体女生组成的集合,B 为这个班全体学生组成的集合; (3) {}C x x =是两条边相等的三角形,{}D x x =是等腰三角形;(4)C={2,4,6},D={6,4,2} (5)M={}210x +=方程的实数根结论:1、一般的,对于两个集合A,B ,如果集合 中任意一个元素都是集合 中的元素,我们就说这两个集合有 关系,称集作 或 。
《集合间的基本关系》课件与导学案
1.求集合子集、真子集个数的3个步骤
2.与子集、真子集个数有关的4个结论
假设集合A中含有n个元素,则有
(1)A的子集的个数有2n个.
(2)A的非空子集的个数有2n-1个.
(3)A的真子集的个数有2n-1个.
(4)A的非空真子集的个数有2n-2个.
(2)A={x|x是平行四边形},B={x|x是菱形},C={x|x是四边形},D
={x|x是正方形};
(3)A={x|-1<x<4},B={x|x<5}.
[解]
(1)因为若x是12的约数,则必定是36的约数,反之不成立,所
以A B.
(2)由图形的特点可画出Venn图如图所示,从而D B A C.
的关系.
1.能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}
关系的Venn图是(
)
B [解x2-x=0得x=1或x=0,故N={ 0,1} ,易得N M,其对应的
Venn图如选项B所示.]
子集、真子集的个数问题
【例2】
的可能情况.
已知集合M满足:{1,2} M⊆{1,2,3,4,5},写出集合M所有
【分析】可把子集分为三类:
①不含元素的:∅
②含有一个元素的
③含有两个元素的
④含有三个元素的
【解】子集有∅,{1},{2},{3},{1,2},{1,3},{2,3},{1,2,3}
其中真子集有∅,{1},{2},{3},{1,2},{1,3},{2,3}
【注意】书写子集的时候千万不要漏掉空集∅
2.判断下列各组集合A是否是集合B的子集,说明理由。
1.2.1 集合之间的关系
N.故选 B. (k∈Z),集合 N 的元素:
解法二:集合 M 的元素:x= + = 2 4 4 2 4
b 解:∵ 1,a, ={0,a2,a+b}, a b ∴0∈ 1,a, . a
∴b=0,此时有{1,a,0}={0,a2,a}, ∴a =1,a=〒1. 当 a=1 时,不满足互异性, ∴a=-1. ∴a2 009+b2 010=-1.
在上述子集中,除去集合A本身,即{1,2,3}剩下的都是 集合A的真子集.
方法归纳
(1)正确区分子集与真子集概念是解题的关键. (2)写一个集合的子集时,按子集中元素个数多少,以一
定顺序来写不易发生重复和遗漏现象.
(3)集合中含有n个元素,则此集合有2n个子集,记住这个 结论可以提高解答速度,其中要注意空集 漏掉. 和集合本身易
这个命题还可以表述为:
X是有理数推出x是实数.
“推出”一词用符号“
”,读作“推出”
于是上述说法可以表示为:
x是有理数
x是实数
反过来,如果上述说法正确,那么有理数Q也一定是实数 R的子集. 由此可见,我们可以通过判断两个集合之间的关系来判
断它们的特征性质之间的关系, 或用集合特征性质之间
的关系,判断集合之间的关系.
(2)星期一升国旗时,每个班的同学都聚集在一起站在
旗杆附近指定的区域内,一字排开,校长在讲话时,从 主席台向下看,每位同学是哪个班的,一目了然.试想一 下高一(5)班全体学生与高一年级全体学生之间是怎样 的关系呢?
高中数学人教版(新教材)必修1:1.2 集合间的基本关系学案 导学案
1.2 集合间的基本关系学习目标 1.理解子集、真子集、集合相等、空集的概念.2.能用符号和Venn图表达集合间的关系.3.掌握列举有限集的所有子集的方法.知识点一子集、真子集、集合相等1.子集、真子集、集合相等定义符号表示图形表示子集如果集合A中的任意一个元素都是集合B中的元素,就称集合A是集合B的子集A⊆B(或B⊇A)真子集如果集合A⊆B,但存在元素x∈B,且x∉A,就称集合A是集合B的真子集A B(或B A)集合相等如果集合A的任何一个元素都是集合B的元素,同时集合B的任何一个元素都是集合A的元素,那么集合A与集合B相等A=B2.Venn图用平面上封闭曲线的内部代表集合,这种图称为Venn图.3.子集的性质(1)任何一个集合是它本身的子集,即A⊆A.(2)对于集合A,B,C,如果A⊆B,且B⊆C,那么A⊆C.知识点二空集1.定义:不含任何元素的集合叫做空集,记为∅.2.规定:空集是任何集合的子集.思考{0}与∅相等吗?答案不相等.{0}表示一个集合,且集合中有且仅有一个元素0;而∅表示空集,其不含有任何元素,故{0}≠∅.1.空集中不含任何元素,所以∅不是集合.(×)2.任何一个集合都有子集.(√)3.若A=B,则A⊆B且B⊆A.(√)4.空集是任何集合的真子集.(×)一、集合间关系的判断例1(1)下列各式中,正确的个数是()①{0}∈{0,1,2};②{0,1,2}⊆{2,1,0};③∅⊆{0,1,2};④∅{0};⑤{0,1}={(0,1)};⑥0={0}.A.1B.2C.3D.4答案 C解析对于①,是集合与集合的关系,应为{0}{0,1,2};对于②,实际为同一集合,任何一个集合是它本身的子集;对于③,空集是任何集合的子集;对于④,{0}是含有单元素0的集合,空集不含任何元素,并且空集是任何非空集合的真子集,所以∅{0};对于⑤,{0,1}是含有两个元素0与1的集合,而{(0,1)}是以有序实数对(0,1)为元素的单点集,所以{0,1}与{(0,1)}不相等;对于⑥,0与{0}是“属于与否”的关系,所以0∈{0}.故②③④是正确的.(2)指出下列各组集合之间的关系:①A={-1,1},B={(-1,-1),(-1,1),(1,-1),(1,1)};②M={x|x=2n-1,n∈N*},N={x|x=2n+1,n∈N*}.解①集合A的代表元素是数,集合B的代表元素是有序实数对,故A与B之间无包含关系.②方法一两个集合都表示正奇数组成的集合,但由于n∈N*,因此集合M含有元素“1”,而集合N不含元素“1”,故N M.方法二由列举法知M={1,3,5,7,…},N={3,5,7,9,…},所以N M.反思感悟判断集合间关系的方法(1)用定义判断①任意x∈A时,x∈B,则A⊆B.②当A⊆B时,存在x∈B,且x∉A,则A B.③若既有A⊆B,又有B⊆A,则A=B.(2)数形结合判断对于不等式表示的数集,可在数轴上标出集合,直观地进行判断,但要注意端点值的取舍.跟踪训练1能正确表示集合M={x∈R|0≤x≤2}和集合N={x∈R|x2-x=0}关系的Venn图是()答案 B解析x2-x=0得x=1或x=0,故N={0,1},易得N M,其对应的V enn图如选项B所示.二、子集、真子集的个数问题例2已知集合M满足{1,2}M⊆{1,2,3,4,5},写出集合M所有的可能情况.解由题意可以确定集合M必含有元素1,2,且至少含有元素3,4,5中的一个,因此依据集合M的元素个数分类如下:含有3个元素:{1,2,3},{1,2,4},{1,2,5};含有4个元素:{1,2,3,4},{1,2,3,5},{1,2,4,5};含有5个元素:{1,2,3,4,5}.故满足条件的集合M为{1,2,3},{1,2,4},{1,2,5},{1,2,3,4},{1,2,3,5},{1,2,4,5},{1,2,3,4,5}.反思感悟公式法求有限集合的子集个数(1)含n个元素的集合有2n个子集.(2)含n个元素的集合有(2n-1)个真子集.(3)含n个元素的集合有(2n-1)个非空子集.(4)含n个元素的集合有(2n-2)个非空真子集.跟踪训练2已知集合A={x|0≤x<5,且x∈N},则集合A的子集的个数为()A.15B.16C.31D.32答案 D解析A={0,1,2,3,4},含有5个元素的集合的子集的个数为25=32.三、集合间关系的应用例3已知集合A={x|-2≤x≤5},B={x|m+1≤x≤2m-1},若B A,求实数m的取值范围.解(1)当B≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1≥-2,2m -1<5,2m -1≥m +1或⎩⎪⎨⎪⎧m +1>-2,2m -1≤5,2m -1≥m +1,解这两个不等式组,得2≤m ≤3. (2)当B =∅时,由m +1>2m -1,得m <2.综上可得,m 的取值范围是{m |m ≤3}. 延伸探究1.若本例条件“A ={x |-2≤x ≤5}”改为“A ={x |-2<x <5}”,其他条件不变,求m 的取值范围.解 (1)当B =∅时,由m +1>2m -1,得m <2. (2)当B ≠∅时,如图所示.∴⎩⎪⎨⎪⎧m +1>-2,2m -1<5,m +1≤2m -1,解得⎩⎪⎨⎪⎧m >-3,m <3,m ≥2,即2≤m <3,综上可得,m 的取值范围是{m |m <3}.2.若本例条件“B A ”改为“A ⊆B ”,其他条件不变,求m 的取值范围. 解 当A ⊆B 时,如图所示,此时B ≠∅.∴⎩⎪⎨⎪⎧2m -1>m +1,m +1≤-2,2m -1≥5,即⎩⎪⎨⎪⎧m >2,m ≤-3,m ≥3,∴m不存在.即不存在实数m使A⊆B.反思感悟(1)利用数轴处理不等式表示的集合间的关系问题时,可化抽象为直观,要注意端点值的取舍,“含”用实心点表示,“不含”用空心点表示.(2)涉及到“A⊆B”或“A B且B≠∅”的问题,一定要分A=∅和A≠∅两种情况讨论,不要忽视空集的情况.跟踪训练3若集合A={x|1<x<2},B={x|x>a},满足A B,则实数a的取值范围是() A.{a|a≥2} B.{a|a≤1}C.{a|a≥1} D.{a|a≤2}答案 B解析如图所示,A B,所以a≤1.1.下列四个集合中,是空集的是()A.{0} B.{x|x>8,且x<5}C.{x∈N|x2-1=0} D.{x|x>4}答案 B解析选项A,C,D都含有元素,而选项B中无元素,故选B.2.已知集合A={x|-1-x<0},则下列各式正确的是()A.0⊆A B.{0}∈A C.∅∈A D.{0}⊆A答案 D解析集合A={x|-1-x<0}={x|x>-1},所以0∈A,{0}⊆A,∅⊆A,D正确.3.已知A={x|x是菱形},B={x|x是正方形},C={x|x是平行四边形},那么A,B,C之间的关系是()A.A⊆B⊆C B.B⊆A⊆CC.A B⊆C D.A=B⊆C答案 B解析集合A,B,C关系如图.4.已知集合A={-1,3,m},B={3,4},若B⊆A,则实数m=________.答案 4解析∵B⊆A,∴元素3,4必为A中元素,∴m=4.5.已知集合A={x|x≥1或x≤-2},B={x|x≥a},若B A,则实数a的取值范围是________.答案a≥1解析∵B A,∴a≥1.1.知识清单:(1)子集、真子集、空集、集合相等的概念及集合间关系的判断.(2)求子集、真子集的个数问题.(3)由集合间的关系求参数的值或范围.2.方法归纳:数形结合、分类讨论.3.常见误区:忽略对集合是否为空集的讨论,忽视是否能够取到端点.。
高中数学 第一章 集合 1.2.1 集合之间的关系课后作业 新人教B版必修1-新人教B版高一必修1数
1.2 集合之间的关系与运算1.2.1 集合之间的关系1.集合{x∈N|x=5-2n,n∈N}的子集的个数是( )A.9B.8C.7D.6解析:∵x∈N,n∈N,∴集合{x∈N|x=5-2n,n∈N}={1,3,5}.∴其子集的个数是23=8.答案:B2.已知P={0,1},M={x|x⊆P},则P与M的关系为( )A.P⫋MB.P∉MC.M⫋PD.P∈M解析:M={x|x⊆P}={⌀,{0},{1},{0,1}},故P∈M.答案:D3.设集合A={x∈Z|x<-1},则( )A.⌀=AB.∈AC.0∈AD.{-2}⫋A解析:A中⌀与集合A的关系应为⌀⊆A或⌀⫋A,B中∉A,C中0∉A,D正确.答案:D4.已知集合A=,集合B={m2,m+n,0},若A=B,则( )A.m=1,n=0B.m=-1,n=1C.m=-1,n=0D.m=1,n=-1解析:由A=B,得m2=1,且=0,且m=m+n,解得m=±1,n=0.又m≠1,∴m=-1,n=0.答案:C5.设集合M=,集合N=,则(A.M=NB.M⫋NC.N⫋MD.M不是N的子集,N也不是M的子集解析:集合M中的元素x=(k∈Z),集合N中的元素x=(k∈Z),当k∈Z时,2k+1代表奇数,k+2代表所有整数,故有M⫋N.答案:B6.若非空数集A={x|2a+1≤x≤3a-5},B={x|3≤x≤22},则能使A⊆B成立的所有a的集合是( )A.{a|1≤a≤9}B.{a|6≤a≤9}C.{a|a≤9}D.⌀解析:∵A为非空数集,∴2a+1≤3a-5,即a≥6.又∵A⊆B,∴∴1≤a≤9.综上可知,6≤a≤9答案:B7.已知A={y|y=x2-2x-6,x∈R},B={x|4x-7>5},那么集合A与B的关系为.解析:对于二次函数y=x2-2x-6,x∈R,y最小==-7,所以A={y|y≥-7}.又B={x|x>3},由图知B⫋A.答案:B⫋A9.已知集合A={x|x=1+a2,a∈R},B={y|y=a2-4a+5,a∈R},试判断这两个集合之间的关系.解:因为x=1+a2,a∈R,所以x≥1.因为y=a2-4a+5=(a-2)2+1,a∈R,所以y≥1,故A={x|x≥1},B={y|y≥1},所以A=B.10.已知集合A={x||x-a|=4},集合B={1,2,b}.(1)是否存在实数a,使得对于任意实数b都有A⊆B?若存在,求出相应的a值;若不存在,试说明理由;(2)若A⊆B成立,求出相应的实数对(a,b).解:(1)不存在.理由如下:若对任意的实数b都有A⊆B,则当且仅当1和2也是A中的元素时才有可能.因为A={a-4,a+4},所以这都不可能,所以这样的实数a不存在.(2)由(1)易知,当且仅当时A⊆B.解得所以所求的实数对为(5,9),(6,10),(-3,-7),(-2,-6).。
人教版高中数学必修一《集合间的基本关系》导学案
《1.1.2集合间的基本关系》导学案年级______________科目______________课型_______________主备人____________审核人____________教学时间____________学习目标:1.了解集合之间包含与相等的含义,能识别给定集合的子集。
2.理解子集.真子集的概念。
3.能使用图表达集合间的关系,体会直观图示对理解抽象概念的作用.课堂导学:1. 复习巩固:(1)若 x N ∈ ,则{}25,,4x x x -中的元素x 必须满足什么条件?(2)含有三个实数的集合既可表示成,,1b a a ⎧⎫⎨⎬⎩⎭,又可表示成{}2,,0a a b +,求34a b -的值。
2.课前预习:(1)提问:两个实数之间有大小关系,类比:两个集合之间是否具备类似的关系?(2) 几个主要概念:子集:集合相等:真子集:空集:(3)若A={}1,2,3,B={}1,2,3,4,5,则A________B.(4) 已知{}P 2=,Q={}0,2,4,下列式子中不正确的是( ).A. P Q ⊂B. P Q ⊆C. 2P ∈D. 2P ⊂(5) 已知集合{}2M y y x 2x 1,x R ==--∈,{}P x 2x 4,x R =-≤≤∈,则M 、P 之间的关系是_____________.(6) 集合{}1,3的子集共有________个,真子集有_________个,非空真子集分别为__________.(7) 用适当的符号填空: {}a ____a,b,c {}20______x x 0= {}2______x R x 10∅∈+= {}0,1_____N {}{}20______x x x = {}{}22,1_____x x 3x 20-+=2. 教学过程:例1 考察下列各组集合,并指明两集合的关系:(1) A Z,B N == (2) A={}长方形,B={}平行四边形 (3) A={}3x 20-+=2x x ,B={}1,2例2.考察下列集合,并指出集合中的元素是什么? (1) A={}(x,y)x y 2+= (2) B={}2x x 10,x R +=∈练习:利用韦恩图填空:(1) A______A (2) 若A B,B C,A ____C ⊆⊆则 (3) A B,B A ______A B ⊆⊆=例3. (1) 写出集合{}a,b 的所有子集(2)写出集合{}a,b,c 的所有子集(3)写出集合{}a,b,c,d 的所有子集归纳:若集合A 中有n 个元素,则它有________个子集,___________个真子集,__________个非空子集。
1.2.1集合之间的关系[1]
k 4
1 , k Z } ,则( ) 2
A. M N
B. M N
C. M N
D. 无关
4、设集合 A 1,2, a 2 1 , B 1, a 2 3a,0 ,若 A B ,求 a 的值;
5、 .已知集合 A x x 5x 6 0 , B x mx 1 ,若 B A ,求实数 m 的取值所构成的集合
反思提升:如果一个集合中有 n 个元素,则它有
个子集;有
个真子集。
(2)了解集合之间包含与相等的含义,能识别给定集合的子集; (3)能利用 Venn 图表达集合间的关系,体会直观图示对理解抽象概念的作用。 2、重点难点: 子集、真子集的概念;集合之间包含与相等的含义。 3、教学方法: 自主探究,小组合作2 Nhomakorabea
M ,并写出 M 的所有子集;
人缺少的不是成功的能力而是勤奋的意志【导学案】
规律总结
【温馨提示】
变
式
训
练
:
设
集
合
A x x 2 4x 0, x R
,
B x x 2 2(a 1) x a 2 1 0, x R,若 B A ,求实数 a 的取值;
二、自学检测
: (分钟)
1、试试:用适当的符号填空. (1) {a, b} {a, b, c} , a (2) (3)N
的取值范围;
2、设 A x x 1 , B x x a ,且 A B ,则实数 a 的取值范围为( A. a 1 C. a 1 B. a 1 D. a 1
集合之间的关系教案
【课题】1.2 集合之间的关系
【教学目标】
知识目标:
(1)掌握子集、真子集的概念;
(2)掌握两个集合相等的概念;
(3)会判断集合之间的关系.
能力目标:
通过集合语言的学习与运用,培养学生的数学思维能力.
【教学重点】
集合与集合间的关系及其相关符号表示.
【教学难点】
真子集的概念.
【教学设计】
(1)从复习上节课的学习内容入手,通过实际问题导入知识;
(2)通过实际问题引导学生认识真子集,突破难点;
(3)通过简单的实例,认识集合的相等关系;
(4)为学生们提供观察和操作的机会,加深对知识的理解与掌握.【教学备品】
教学课件.
【课时安排】
2课时.(90分钟)
【教学过程】
}6
x<.
是用来表示集合与集合之间关系的符号;
”是用来表示元素与集合之间关系的符号.首先要分清楚对象,然后再根据关系,正确选用符号.
的元素,因此
}6
x<的元素,
}6
x<.
∈”或“∉
(2){∅;
2,3
(4){}
}2
的子集,并且集合
叫做集合
B(或B A),读作“
.
空集是任何非空集合的真子集.
对于集合A、B、C,如果A
{2}
{1}
{1,2,3,4,5,6}
=9}={3,-3}
x x=={x x= |2}
;⑸a{0}∅;
2
{|x x |10}
x x+=}2。
新人教A版必修1高中数学1.1.2集合间的基本关系导学案
高中数学 1.1.2集合间的基本关系导学案新人教A版必修1 学习目标:1、理解集合之间包含与相等的含义。
2、掌握子集、真子集的概念。
3、了解空集的含义及性质。
4、了解集合的韦恩图表示。
学习难点:子集、真子集、空集概念的应用。
学习过程:观察下面几个例子,你能发现两个集合间的关系吗?1、A={1,2,3},B={1,2,3,4,5}2、设A为开滦二中高一(1)班全体女生组成的集合,B为这个班全体学生组成的集合3、设C={x x是两条边相等的三角形},D={x x是等腰三角形}一、子集的概念:,用符号表示为:,读作:。
用韦恩图表示为:子集的性质:1、2、二、集合相等的概念:。
真子集的概念:,用符号表示为。
三、空集及其性质:。
性质:1、2、例题1、用适当的符号填空:(1)a {a,b,c} (2) o {02=x}x(3) φ {x∈R2x+1=0}(4){0,1} N (5) {0} {x x2=x}(6) {2,1} {x x2-3x+2=0}例题2、写出下列集合的所有子集:(1){a}: (2) {a,b}: (3) {a,b,c}: .例题3、判断下列两个集合之间的关系:(1)A={1,2,4} , B={x x是8的约数};(2)A={x x=3k,k∈N}, B={x x=6z,z N∈}(3)A={x x是4与10的公倍数,x∈N},+}.B={x x=20m,m∈N+例题4、已知:{1,2}⊆A}4,3,2,1{⊂,试写出集合A.例题5、设集合M={x x=2n+1,n∈Z},N={y y=4k±1,k∈Z},则M与N的关系是()A.M⊆NB.M⊇NC.M=ND.M⊂N且M⊃N例题6、已知集合A={x0<x<9},集合B={x1<x<a}, 若非空集合B⊆A,求实数a的取值范围。
例题7、已知集合A={x,xy,x-y}, 集合B={0,x,y}, 且A=B,求实数x、y的值。
1.2集合间的基本关系(导学案)答案版
《1.2集合间的基本关系》导学案参考答案 新课导学(一)新知导入【想一想】 (1)集合A 中的元素都是B 的元素.(2)A 是B 的子集.(3)故事中的“白马非马”意为白马组成的集合与所有马组成的集合不相等。
【思考1】 (1)从元素与集合间的关系来分析集合间的关系。
(2)在每组的两个集合中,第一个集合中任何一个元素都是第二个集合的元素。
(3)前两组例子中,后一个集合中的元素有的不在前一个集合中,第三组例子 中,后一个集合中的元素都在前一个集合中。
(二)子集1. 集合A 中任意一个元素都是集合B 中的元素 (B A A B ⊆⊇或) “A 含于B” (或“B 包含A”)2. Venn 图:用平面上封闭曲线的内部代表集合,这种图称为Venn 图.上述集合A 与B 之间的关系用Veen 图可表示为:【做一做】 1. (1)(否) (2)(否) (3) (是)2. (1)√ (2)× (3)×【探究1】(1)任何一个集合是它本身的子集,即A ⊆A ;(2)对于集合A ,B ,C ,如果A ⊆B ,且B ⊆C ,那么A ⊆C .(集合包含关系的传递性)【探究2】 符号“∈”表达的是元素与集合的从属关系,“⊆”表达的是集合与集合间的包含关系。
【做一做】= ∈(三)集合相等【思考2】(1)集合B={x|x2=x}={0,1},所以两个集合中的元素完全相同,这两个集合相等;(2)集合B={x|x2=x}={0,1},集合A中的元素都属于集合B,所以集合A是B的子集;反之,集合B中元素都属于集合A,所以集合B是A子集,即两个集合互为子集,这两个集合相等。
集合相等:A=B A⊆B B⊆A【做一做】相等(四)真子集【思考3】(1)是的(2)不全是.真子集:A⊆B x∈B x A A B(或B A)“A真含于B”(或B真包含A)【探究3】判断集合A是集合B的真子集时,首先满足集合A是集合B的子集,同时在集合B中含有不属于集合A的元素。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2集合之间的关系与运算
1.2.1集合之间的关系导学案
使用说明&学法指导
1.对照学习目标,先用15分钟自学课本第 10~14 内容,用红色笔做好疑难标记。
2.独立思考,找出疑难点,准备讨论解决。
3小组长在课上讨论环节要在组内起引领作用,控制讨论节奏。
学习目标:
1.知识与技能:理解子集、真子集、集合相等的概念,能利用Venn 图表达集合间的关系;
2.过程与方法:学会观察、比较、抽象、概括的思维方法,体验子集概念的形成过程;
3.情感态度与价值观:增强自主学习及合作探究能力;
【预习案】
一、 子集、真子集的概念
*比较下面几个例子,试发现两个集合之间的关系:
(1){1,2,3}A =,{1,2,3,4,5}B =;
(2){}{}
)班全体学生庄河高中高一(,)班全体女生庄河高中高一(
11==D C (3){1,1},E =-2{|10}F x x =-=. 你的结论是: .
子集的定义:
对于两个集合A ,B ,如果___________________________________,那么集合A 叫做集合B
的子集. 记作: ,读作: .
当集合A 不包含于集合B 时,记作: .
真子集的定义:
若集合A 是集合B 的子集,并且______________________________,那么集合A 叫做集合B
的真子集. 记作: ,读作: .
: 性质1.任何一个集合是它本身的子集,即A ⊆A.
性质2. 空集是任意一个集合的子集,即∅⊆A.
性质3.空集是任何非空集合的真子集,即 ∅A 且A ≠∅
性质4.我们常用平面内一条封闭曲线的内部表示一个集合,用维恩(Venn )图可以形象的
表示出集合之间的关系。
例如:A B ⊆
性质5(1) 对于集合A ,B ,C ,如果A B ⊆,且B C ⊆,那么A C ⊆.
(2)对于集合A ,B ,C ,如果 A B ,且 B C ,那么 A C.
注意:在分析有关集合关系问题时,一定要注意空集的地位.
例1.已知={2,4}A ,B={2,3,4},C={3,24},,则有 A B , A C,,B C C B ⊆⊆
例2.*(1)、(2)中, A B , C D ;
练习1. 写出集合{}3,2,1=A 所有的子集和真子集.
练习2. 填写下表,并回答问题.
12n 非空真子集数呢?
性质6
(1)集合A 中有n 个元素,则集合A 有________个子集,
(2)集合A 中有n 个元素,则集合A 有________个真子集
(3)集合A 中有n 个元素,则集合A 有________个非空子集, (4)集合A 中有n 个元素,则集合A 有________个非空真子集
二、集合的相等
集合的相等:
考察集合 {}{}2,1
,0)2)(1(--==++=B x x x A ,可以看出集合A 与集合B 的元素完全
相同,只是表达形式不同,请同学们归纳出集合相等的定义:
集合相等:一般地,_____________________________________________, 反过来,
___________________________________,那么我们就说集合A 等于集合B ,记作A=B.
由定义可得:如果A ⊆B,又B ⊆A,则 ;反之,如果A=B ,则 .
用维恩图表示:
例3. 2{|P x x ==P 与Q 的关系是: .
练习2.用适当的符号(=∈∉⊆⊇,,,,)填空:
(1)2 {x|x 是质数} , (2){0} ∅
(3)Z R , (4)2{x R|1}x ∈=- 3{x R|1}x ∈=-
【探究案】
探究一
设集合,{|1}X x x =>-下列关系式中成立的为 ( )
A .0X ⊆
B .{}0X ∈
C .X ∅∈
D .{}0X ⊆
探究二
已知集合2{|20},A x R x a
x =∈++=若∅
A ,求a 的范围.
探究三
已知集合M 满足{1,2}⊆M {1,2,3,4,5},写出集合M .
探究四
已知方程2{|-2-30},A x R x x =∈={|10},B x R ax =∈-=,B A ⊆求a 的值.
探究五 已知{25}A x x =-≤≤,{121}B x m x m =+≤≤-,B φ≠,且B A ⊆,求m 的取值范
围.
【训练案】
1.若集合}1,{},,3,1{2x B x A ==且A B ⊆,则满足条件的实数x 的个数是( )
A.1
B.2
C.3
D.4
2. 指出下面各集合之间的关系,并用维恩图表示
{}{}{}{}是正方形,是矩形,是Β,是Αx x D x x C x x x x ====菱形平行四边形
3. 在以下六个写法中:①{0}∈{0,1};②{0}∅⊆;③{0,-1,1}⊆{-1,0,1};④ 0∈∅;
⑤Z ={正整数};⑥{(0,0)}={0},其中错误写法的个数是( )
A .3个
B .4个
C .5个
D .6个
4.设,,{(,)|},x y R A x y y x ∈=={(,)|1},y B x y x
==则A,B 的关系为 (用“=∈∉⊆⊇,,,,”填写)
的个数是否有规律;如果有,这个规律是什么?
2.在“探究五”中,如果将题中B φ≠这个条件去掉,即为:已知{25}A x x =-≤≤,
{121}B x m x m =+≤≤-,B A ⊆,那么m 的取值范围又是多少?
3.已知{|23},A x x x =<->或 {|40},B x x p =+>{|40}.C x px =+>
(1)若B A
⊆,求p的范围;(2)若C A
⊆,求p的范围。