负载敏感(LS)控制系统工作原理与操作

合集下载

告诉你负载敏感、负流量、正流量三种系统真正的区别

告诉你负载敏感、负流量、正流量三种系统真正的区别

告诉你负载敏感、负流量、正流量三种系统真正的区别1. 节能旁通流量控制系统节能性较好。

在主控阀全部中位时,旁通溢流阀开启,存在空流压力损失约3.5MPa,此时有最大的旁通流量损失。

操作手柄扳倒一半行程时,主泵流量仍有一部分通过六通滑阀的中立回路流回油箱。

先导传感控制系统节能性好。

由于主控阀为六通滑阀,仍然存在中位回油流量损失,但其比旁通流量控制系统小。

在主控阀中位时,回油背压小,仅0.5MPa左右。

当操作手柄行程加大,主泵流量和执行元件进油量随先导控制压力增加而增加。

在流量控制压力从最小到最大的调速范围内,主泵流量和执行元件进油量近似为等距曲线,流量损失变化不大。

负荷传感系统的节能性较好。

主控阀无串联的中立油路回油箱,因此没有主控阀的中位空流损失。

当操作手柄中位时,因为主泵没有备用流量,主泵的空载流量损失在理论上为零。

但是,在负荷传感主控阀的节流口存在固定的压力损失ΔP(2~2.9MPa),约为系统最高压力的6~8.5%。

当作业中流量增大时,功率损失(执行元件所需流量与压差ΔP的乘积)也不小。

复合作业各执行元件负荷压力相差很大时,由于泵流量只受最高负荷压力控制,主泵供油流量会多于执行元件需求流量之和,也会造成功率损失。

不同流量控制系统的扭矩特性比较如图1所示。

负荷传感控制系统中,主泵吸收的扭矩是变动的。

在额定功率点上,主泵按负荷压力的变化实时调整泵的排量(参看图1-a),因此主泵能够完全吸收发动机输出的扭矩。

旁通流量控制和先导传感控制则因负荷压力变化时,主泵流量调整有一个滞后过程,主泵吸收的扭矩不变,而且为防止发动机超负荷失速,主泵在匹配工作点吸收的扭矩,设计时低于发动机额定转速下输出的扭矩,将损失大约5~8%的功率。

(a)负荷传感系统 (b)其他流量控制系统图1 发动机与主泵的功率匹配需要说明的是,上述有关节能性的对比分析,仅针对流量控制而言。

某一机型是否节能,还要考虑是否采用混合动力技术、发动机本身的燃油消耗特性、发动机的调速特性及其动力适应控制(发动机-主泵功率的动态匹配)、液压主泵的负载适应控制、以及主控阀的负载适应控制等。

负载敏感多路阀工作原理

负载敏感多路阀工作原理

负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiple Valve)是一种常见的液压传动元件,它可以根据系统的负载情况自动调节液压流量和压力。

它主要应用于液压系统中,可以有效地控制和调节工作装置的运动速度,提高系统的工作效率。

负载敏感多路阀的工作原理是基于流量和压力的反馈控制。

它由多个节点和一个控制器组成。

每个节点都有一个单向或双向阀门,用于控制液压流量和压力。

控制器通过感知系统的负载情况,通过调节阀门的开关状态,以达到控制液压流量和压力的目的。

当负载敏感多路阀工作时,首先需要测量系统的负载情况。

这可以通过安装传感器来实现,传感器可以测量液体的流速、压力和温度等参数。

这些数据将传输给控制器,控制器将分析这些数据并根据负载情况做出相应的调节。

根据系统的负载情况,控制器会判断是否需要增加或减少液压流量。

当系统负载较小时,控制器会适当地增加阀门的开度,以增加液压流量。

当系统负载较大时,控制器会相应地减少阀门的开度,以减少液压流量。

这样,就可以在不同的负载情况下保持适当的液压流量,以达到最佳工作状态。

另外,负载敏感多路阀还可以自动调节液压压力。

在系统负载较小的情况下,控制器会增加阀门的压力限制,以增加液压压力。

而在系统负载较大的情况下,控制器会减小阀门的压力限制,以减少液压压力。

这样,就可以在不同的负载情况下保持适当的液压压力,以确保系统的安全和稳定运行。

负载敏感多路阀还可以通过组合和联动控制多个阀门,以实现更复杂的液压系统控制。

通过调节不同阀门的开关状态和流量限制,可以精确控制工作装置的运动速度和位置。

总之,负载敏感多路阀通过感知系统的负载情况,自动调节液压流量和压力,从而提高液压系统的工作效率。

它是现代液压系统中不可或缺的重要元件,广泛应用于工程机械、农业机械、船舶等领域。

随着科技的不断进步,负载敏感多路阀将进一步发展和应用,为更多行业带来更高效、更安全的液压系统。

在现代工程领域,负载敏感多路阀扮演着举足轻重的角色。

负载敏感液压系统典型工况原理分析

负载敏感液压系统典型工况原理分析

负载敏感液压系统典型工况原理分析作者:李现友来源:《价值工程》2013年第26期摘要:重点讲述了负载敏感系统的基本结构,包括负载敏感泵及匹配元件。

详细分析了系统待机状态,压力自适应变化,流量按需分配及过载安全保护的四个典型工作工况及负载敏感系统中存在的流量欠饱和现象及处理方案。

Abstract: The structure of load sensing hydraulic system was described,including the load sensing pump and matched element. Four typical working conditions were analyzed, that including standby model, adaptive changes in pressure, flow distribution according to need and overload protection. The solution of under saturated flow in load sensing hydraulic system was presented.关键词:负载敏感技术;变量泵;流量分配;压力最适应Key words: loading sensing technology;variable pump;flow distribution;adaptive changes in pressure中图分类号:TH137 文献标识码:A 文章编号:1006-4311(2013)26-0051-020 引言液压控制技术所具有的优势使其在各个领域得到了广泛应用,但其在应用过程中为了满足控制需求必然存在节流、溢流、减压等工况,这种工况会使工作过程的效率降低、能耗变大。

如果系统在运行中存在执行机构需要多少流量、压力液压泵就能提供多大的流量、压力,而不存在溢流、节流、减压的损失,真正达到“按需供给”,那么将大大改善液压控制技术的效率问题。

ls工作原理

ls工作原理
各阀开口大小比例分配。这样一来最大流量回路的流量继续增加而其他回路会等比例减少。
还有一种压力补偿,
对照压力取自节流阀输入端,
使补偿压力维持入口处
(就是节流出
口处)恒定,这样当然也不受负载变化的影响。但是这种情形在
Δ
P
维持不了的时候,就会
出现负载压力最高回路和其他回路不平衡的情形,
P

LS
压力等同
Δ
P
,遂使流量保持稳定。至于
LS
压力具体大小,和控制没关系。这种结果,保证了流量和负载压力无关。
右图是多个并行回路负载的情况。
每一路负载都有一个控制流量的节流阀,
单独控制本
回路的流量。
然而要使流量和负载压力无关,
就必须保持节流阀出口的压力保持固定,
流量减少,
使压力差减少。
压力差越高,
两端压差越大,
对油缸推力越大,
斜盘角度越小,流量随之减少越多。反之,压力差比定量
Δ
P
小,
LS
调节阀阀心经弹簧反
弹向上,
油缸内压力经阀心向回油路释放,
油缸弹出,
斜盘角度增加,
流量加大,
这样一来,
使压力差比定量
Δ
P
逐渐增加,恢复到
负载最高回路的节流压力差减少而使流量
无法和其他回路等比例分配。
下图就是受节流阀入口处控制的带压力补偿的流量控制阀。
大多数单独使用的带压力补
偿流量控制阀是这种类型。然而力士乐、林达等都采用前面一种
方式控制多路流量比例控制。力士乐称之为
LUDV

负载敏感多路阀工作原理

负载敏感多路阀工作原理

负载敏感多路阀工作原理负载敏感多路阀(Load Sensitive Multiport Valve)是一种可以根据负载变化自动调节流量的阀门。

它在液压系统中具有重要作用,可以有效地平衡流体的压力,降低系统的能量消耗,提高系统的响应速度和稳定性。

负载敏感多路阀由阀体、阀芯、弹簧、调节阀、负载敏感元件等组成。

当液压系统中有负载变化时,负载敏感元件会感知负载的变化,并通过调节阀控制阀芯的移动,进而改变液压系统的流量。

具体工作原理如下:当液压系统中没有负载作用时,阀芯处于初始位置,流体通过阀体的中心通道直接流过,不受阀芯控制,流量较大。

同时,弹簧的压力将阀芯保持在初始位置。

当液压系统中有负载作用时,负载敏感元件会感知到负载的变化。

如果负载增加,负载敏感元件会发出信号,通过调节阀补充液压系统中的压力。

增加液压系统中的压力可以推动阀芯的运动。

阀芯的运动会改变阀体中通道的截面积,从而改变液体的流量。

负载敏感多路阀会根据负载的变化,自动调整阀芯的位置,控制液体的流量。

当液压系统中的负载减少时,负载敏感元件会感知到负载的变化,并通过调节阀降低液压系统中的压力。

降低压力可以使阀芯回到初始位置,恢复到较大的流量状态。

通过以上工作原理,负载敏感多路阀可以根据负载的变化自动调节流量,从而使液压系统能够更好地适应实际的工作状态。

它可以实时监测负载的变化,并迅速响应,及时调整流量,平衡系统的压力,提高系统的工作效率和稳定性。

负载敏感多路阀在液压系统中的应用非常广泛。

例如,在挖掘机、起重机、农机等大型设备中,负载敏感多路阀可以根据负载变化,精确控制液压系统的流量,从而实现平稳的工作,减少能量消耗,延长设备的使用寿命。

负载敏感多路阀的工作原理简单而可靠,它通过监测负载的变化,自动调节流量,提高了液压系统的工作效率和稳定性。

同时,它还可以降低系统的能源消耗,节约成本。

因此,负载敏感多路阀在液压系统中具有重要作用,为现代工程机械的发展提供了有力的支撑。

负载敏感(LS)控制系统工作原理与操作

负载敏感(LS)控制系统工作原理与操作

Eaton®中等负载柱塞泵(斜盘-轴向)负载敏感(LS)控制系统工作原理与操作——Load Sensing Sytem-Principle and Operation王清岩[译]CCE(JLU,CHINA)15-09-2005Load Sensing Principle of OperationPage序言 (3)何谓负载敏感? (4)负载敏感系统是如何工作的 (5)采用负载敏感控制的优点 (14)开发与调试 (25)系统比较 (26)应用 (27)负载敏感控制技术的前景 (27)Load Sensing Principle of Operation序言早在二十世纪六十年代后期,一些年轻的工程师对液压传动技术的优缺点进行了仔细的分析。

中位开放式液压系统,采用了一个定排量的齿轮泵,提供恒定的流量,系统压力是由作用于工作介质上的载荷决定的。

为限制系统的最高工作压力,必须设置一个高压溢流阀。

当系统工作压力达到设定值,液压泵近乎全部流量将通过溢流阀流回油箱,因而导致极高的功率损失,并在系统中产生大量的热损耗致使系统效率极低。

相比之下中位封闭的液压系统具有排量可调的优点,排量调节的范围可从最小排量至最大排量,甚至正向最大排量至反向最大排量;并且无需在系统中设置溢流阀。

其最大工作压力的控制是通过液压泵内部的补偿器实现的。

此类补偿器可在系统因负载超出额定范围导致系统受到阻滞的状态下通过限压变量活塞使泵卸荷即液压泵处于高压运转状态、但排量近乎为零。

此时液压泵将进入等待状态,并保持较高的工作压力,直至负载被克服或恢复操作阀的控制状态。

中位闭式系统的缺点是液压泵试图在所有的工况下均实现所限定的最高工作压力附近的排量调节。

但是液压系统还有这样一类工况,即期望获得较大的流量而所要求的工作压力却很低。

中位闭式的系统在此种工况下导致了较高的压力降并在能量损失过程中产生大量的热。

工程师们于是设想,若能将两种系统的优点进行合并将得到最佳的性能。

负载敏感技术原理

负载敏感技术原理

负载敏感技术原理1)关于负载敏感控制,从基本类型来讲可以区分为两大类:阀控系统与泵控系统。

楼主的示例是泵控系统。

2)在阀控系统中,如果只考虑用途比较广泛的传统方式,区分为比例方向阀前串联定差减压阀的负载补偿型,和比例方向阀并联定差溢流阀的负载敏感型。

在一般工业系统中,或者使用前者,或者使用后者,两者不可兼得。

3)第二点中,串联定差减压阀的负载敏感系统,其基本优点是所控制负载速度只与输入信号有关,不受负载压力变化的影响。

其缺点在于这是个定压系统,还存在较大的能量损失。

4)第二点中,并联定差溢流阀的负载敏感系统,除了所控制负载速度只与输入信号有关,不受负载压力变化的影响之外,其基本优点是节能,即不是定压系统,泵的出口压力仅仅比负载高一个固定的数值,例如5-10bar。

同时,阀内可配置先导压力阀,当系统压力达到其调定值时,就与主阀构成系统安全阀,限于系统的最高压力,省去另设系统安全阀。

在第3、第4中,有些产品还通过设置附加液压半桥,获得比例方向阀阀口压差的小范围可调,以适应用户的要求。

5)如前所述,上述第3、第4所讲的定差减压型,与定差溢流型在一般的比例方向阀系统中,两者只能选一。

这种负载补偿情况,在多路阀控制的多负载系统中,得到了新的发展(在多路阀中能够构成负载敏感系统的只有4通型多路阀,一般的6通型多路阀是无法实现的)。

这就是:多路阀中每一联配置定差减压阀,同时通过梭阀网络将同时动作各联的最高负载压力(LS信号)引到泵出口的定差溢流阀,总体上构成负载敏感适应系统。

也就是说,这种配置的负载敏感系统中各联之间互不干扰,速度只与各联输入信号相关;而且泵的出口压力不是一个定值,它随时随刻都只是比当时的最高负载压力高出一个固定的数值。

6)就以多路阀为例,介绍泵控负载敏感系统。

实际上就是上面第5点的LS信号不是引到定差溢流阀,而是引到负载敏感泵就成了(即以负载敏感泵代替第5点的定量泵和定差溢流阀)。

7)对于多路阀系统,第5点的系统一般称为开中心负载敏感系统,它还是有一定的能量损失。

负载敏感液压系统压力振荡问题的解决办法

负载敏感液压系统压力振荡问题的解决办法

负载敏感液压系统压力振荡问题的解决办法◎ 应金玲 吴碧青 中国科学院南海海洋研究所摘 要:本文主要根据负载敏感液压系统的基本原理,结合实际应用过程中遇到的故障及解决经验,介绍负载敏感液压系统压力振荡问题的一种简单有效的解决办法,供相关液压设计人员及用户参考,希望液压设计人员在设计负载敏感液压系统时能够充分考虑各种复杂工况,设计更加合理,在实际应用中能够不断发展和完善。

关键词:负载敏感液压系统;压力振荡;蓄能器;节流孔1.负荷敏感液压系统基本原理负载敏感液压系统L S(lo a d senser)是一种液压系统中感受压力、流量变化和控制的需求,提供液压系统设备所需要的压力和流量的液压回路。

系统将控制阀后负载压力传递给负载敏感的变量泵,变量泵根据负载压力变化改变泵的排量,使泵提供系统所需求的流量。

下面结合某科考船6000米地质绞车液压控制系统部分截图来简单介绍一下负载敏感液压系统基本原理。

负载敏感液压系统主要的部件有负载敏感变量柱塞泵(见图1)、电液比例换向阀、压力补偿阀等功能阀件(见图2)。

负载敏感系统的工作原理核心为系统将负载的压力反馈到负载敏感泵上,压力油通过泵上的LS口,传入到泵内,泵内的负载敏感阀的弹簧感受压力油压力大小,改变泵的斜盘角度,从而改变泵的输出流量。

进一步讲是负载敏感阀上的弹簧,感受压力油而获得的弹簧变形的程度来改变泵的输出排量。

电液比例换向阀与压力补偿阀配合使用,由于压力补偿阀能保证换向阀前后压差(即泵出口压力和负载压力之差)恒定,去执行元件的流量仅由比例换向阀的开口大小决定,与负载压力无关。

电液比例换向阀前后压差(即泵出口压力和负载压力之差),即为压力补偿阀的调定弹簧值△P。

由于△P为常量,从而各执行元件的流量取决于电液比例换向阀阀口面积A的大小,即与压力无关的流量分配,可以很精准地控制执行元件的速度。

采用负载敏感技术的优点是:系统的输出压力及流量直接取决于负载,能确保液压泵的压力与负载所需自动匹配,可以大大提高系统的功率利用率;而且也能精确地控制负载的速度,使绞车速度变化平滑,根据负载调节泵输出流量,减少系统发热和能量损耗。

负载敏感液压泵原理

负载敏感液压泵原理

负载敏感液压泵原理负载敏感液压泵是一种能够根据负载情况自动调整输出压力和流量的液压泵。

它利用负载敏感元件和控制系统实现对液压泵输出的精确调节,从而实现对液压系统的动态控制。

在工业生产和机械设备中,负载敏感液压泵被广泛应用,为系统提供高效、稳定的液压能源。

负载敏感液压泵的工作原理可以简单地描述为:根据负载情况自动调节输出压力和流量。

具体来说,当液压系统的负载增加时,负载敏感元件感应到负载的变化,并通过控制系统调整液压泵的输出压力和流量,使其能够满足系统的要求。

而当负载减少时,液压泵也能够相应地减小输出压力和流量,以节约能源和降低系统的运行成本。

负载敏感液压泵的关键在于负载敏感元件和控制系统。

负载敏感元件通常采用压力控制阀或流量控制阀,用于感应和反馈负载的变化。

当负载增加时,压力或流量控制阀会感应到负载的增加,并通过控制系统发送信号给液压泵,要求增加输出压力和流量。

控制系统根据负载的变化信号,调节液压泵的工作状态,使其能够满足系统对压力和流量的需求。

负载敏感液压泵的优点在于其高效、节能的特性。

由于能够根据负载情况自动调节输出压力和流量,负载敏感液压泵能够实现能源的有效利用。

当负载较轻时,液压泵会自动减小输出压力和流量,以减少能源的消耗。

而当负载较重时,液压泵会自动增加输出压力和流量,以满足系统对液压能源的需求。

这种自动调节的能力能够保证系统在不同负载下的稳定运行,提高系统的效率和可靠性。

负载敏感液压泵在工业生产和机械设备中的应用非常广泛。

例如,在机床行业中,负载敏感液压泵能够根据切削负载的变化,自动调整切削液的压力和流量,使机床能够在不同工况下保持稳定的切削质量和加工效率。

在冶金、矿山等行业中,负载敏感液压泵能够根据负载的变化,自动调整工作液的压力和流量,以满足不同工艺的要求。

在工程机械和汽车行业中,负载敏感液压泵能够根据负载的变化,自动调整液压系统的工作状态,以提高机械设备的工作效率和安全性。

负载敏感液压泵是一种能够根据负载情况自动调节输出压力和流量的液压泵。

负载敏感变量泵的工作原理

负载敏感变量泵的工作原理

负载敏感变量泵的工作原理-标准化文件发布号:(9556-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII
附图图是负载敏感变量泵的工作原理图,此原理图是最基本的LS型变量控制方式:泵出口压力是P,执行元件的负载压力是Pls。

泵输出的流量Q通过主阀节流口被引入到执行元件(马达或油缸),主阀节流口两端的压差ΔP=P-Pls;P作用在变量阀芯的左端,负载压力Pls和弹簧预设压力Pk共同作用在变量阀芯的右端。

当变量阀受力平衡时,即Pk= P –Pls=ΔP。

此时泵维持在一个稳定的排量。

(通常Pk设置2Mpa)当节流口变化时,动态的ΔP将会大于或小于弹簧预设压力Pk,此时变量滑阀受力处于不平衡状态,为了恢复到受力平衡状态,变量滑阀会向左或向右移动,变量阀的左右移动就会改变泵的排量,从而使输出流量Q变大或变小,重新使ΔP= Pk =定值。

(压差ΔP变大,说明主阀节流口开度变小,此时变量阀芯向右移动,压力油被引到变量活塞的大腔,压力油的作用下,变量柱塞左移,泵的斜盘倾角变小,流量变小,压差变小,直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不再变化,此时泵输出与节流口相匹配的流量;压差ΔP变小,说明主阀节流口开度变大,此时变量阀芯左移,变量活塞的大腔油被接回油箱,泵的斜盘倾角变大,输出流量变大,直到直到压差ΔP=P k时,滑阀受力平衡,泵的斜盘倾角不在变化,此时泵输出与节流口相匹配的流量。

负载敏感泵是外部节流且压差ΔP为定常,通过外部节流口的开度进行泵的斜盘倾角控制,节流口变小,泵的输出流量变小;节流口变大,泵的输出流量变大。


2。

负载敏感系统概述

负载敏感系统概述

一 载 敏 感 系 统 的 组 成 负
图 示 为 一 负 载 敏 感 液 压 系 统 该 回 路 由 基 本 单 元 组 成 ' # !所 (个 例 换 向 阀 !"比 2 它 是 一 个 比 例 换 向 阀 或 多 路 比 例 换 向 阀 分 手 控 式 和 电 控 式 两 种 其 作 用 除 控 制 液 压 马 达 或 液 压 缸 换 向 外 还 控 制 液 压 马 达 负 载 流 量 以 及 检 测 液 压 马 达 负 载 压 力 载 敏 感 阀 &"负 1 其 它 是 一 个 压 力 控 制 二 边 伺 服 阀 又 称 低 压 压 力 量 补 偿 阀 输 !流 入 记 号 是 液 压 泵 的 输 出 压 力 与 液 压 马 达 负 载 压 力 之 差 输 出 记 + + 限 号 是 压 力 用 来 操 纵 液 压 泵 变 量 机 构 压 阀 于 调 定 泵 的 最 高 + 5用 压 力 量 泵 '"变 ? 是 一 种 压 力 补 偿 式 变 量 泵 其 变 量 斜 盘 液 压 缸 制 载 负 *由 )控 !! 它
!"
# ' !
压 差 增 大 从 而 引 起 负 载 敏 感 阀 的 阀 芯 上 移 变 量 缸 无 杆 腔 与 泵 出 口 连 通 泵 流 量 ! ,的 减 小 这 于 是 泵 出 口 压 力 减 小 直 至 比 例 节 流 阀 端 的 压 差 恢 复 到 变 化 之 前 的 值 时 负 !两 载 敏 感 阀 的 阀 芯 又 重 新 回 到 中 位 系 统 在 比 原 来 较 小 的 流 量 下 达 到 了 新 的 平 衡 增 大 如 在 比 例 节 流 阀 的 开 口 则 系 统 调 解 过 程 与 上 述 过 程 相 反 比 例 节 流 阀 定 后 系 统 即 处 !调 于 平 衡 状 态 这 时 如 果 负 载 减 小 则 负 载 敏 感 阀 端 压 差 增 大 阀 芯 上 移 变 量 缸 '两 ! ,的 无 杆 腔 与 泵 出 口 连 通 使 泵 的 流 量 减 小 出 口 压 力 减 小 直 至 比 例 节 流 阀 端 的 压 差 减 !两 负 小 到 变 化 之 前 的 值 从 而 流 过 比 例 节 流 阀 流 量 和 负 载 减 小 之 前 相 等 载 增 大 也 是 !的 如 此 也 即 比 例 节 流 阀 定 之 后 系 统 即 处 于 恒 流 状 态 负 载 变 化 不 影 响 系 统 流 量 !调 统 压 力 控 制 &"系 当 负 载 压 力 达 到 比 例 调 压 阀 设 定 值 时 压 力 阀 开 启 由 于 液 阻 比 例 调 压 阀 &的 (与 间 构 成 液 压 半 桥 因 此 负 载 敏 感 阀 弹 簧 腔 压 力 降 低 阀 芯 上 移 变 量 缸 无 杆 腔 与 &之 5型 泵 出 口 连 通 泵 流 量 减 小 出 口 压 力 降 低 直 至 负 载 敏 感 阀 两 端 压 力 差 再 度 恢 复 原 值 由 于 这 半 桥 作 用 此 时 比 例 节 流 阀 端 压 差 小 于 负 载 敏 感 阀 两 端 压 差 阀 芯 又 处 于 中 位 !两 时 系 统 在 比 原 来 较 小 的 流 量 下 重 新 达 到 平 衡 即 泵 的 流 量 自 动 与 负 载 需 要 相 适 应 基 本 没 有 溢 流 损 失 当 系 统 压 力 达 到 比 例 压 力 阀 的 设 定 值 之 后 如 果 负 载 进 一 步 增 大 则 由 于 液 压 5型 半 桥 的 存 在 系 统 即 处 于 恒 压 状 态 压 力 不 可 能 继 续 升 高 除 非 增 大 比 例 溢 流 阀 的 电 流 为 防 止 比 例 溢 流 阀 压 力 设 定 过 高 损 坏 系 统 在 泵 出 口 处 装 有 安 全 阀 %

负载敏感型比例多路阀工作原理介绍

负载敏感型比例多路阀工作原理介绍

负载敏感型比例多路阀工作原理介绍负载敏感型比例多路阀工作原理介绍2012-12-3PSL 和PSV比例多路阀产品介绍PSV 552/220-3-42 H 80/80 /D 2-32 H 40/40 /D 2-32 H 40/40 /D 2-32 H 25/25 C100 /D 2-E 1一运左星轮右星轮喷雾泵介绍的内容提纲 1 构造组成2 负荷传感多路阀优点3 换向阀的节流阀本质4 负荷信号的取得---梭阀作用5 三通流量阀原理6 两通流量阀原理7 对两通流量阀的多种控制 8 效率比较9 PSV 阀与V30D 的配合方案构造结构组成(一)结构组成(二)原理构成1 换向阀的节流作用;2 压力传递—多执行机构压力信号的收集与逻辑比较,选高前递;3 三通流量阀工作原理—由头板的差压溢流阀实现,定量泵用阀(PSL )的配置;4 两通流量阀工作原理—由换向阀片(52…、55…、32…、42…)的定差减压阀实现,复合动作要求时选用,而且控制更精准;5 两通流量阀的其他作用:限压、限位、比例压力控制。

负荷传感多路阀优点1 实现与负载变化无关的速度控制;3 有减振作用,提高系统平稳性; 4 操作稳定,微动性能好;5 压力适应,换向阀片按需取油,在变量泵系统节能效果特别好;6高集成性,模块设计,片式组装,节约安装空间,减轻整化机重量。

换向阀的节流阀本质换向阀的节流阀本质2012-12-3PSL 和PSV 比例多路阀产品介绍阀芯中位时,有一定的掩盖量通常型机能:、、口中位截止阀芯移动:口几乎接通口,口几乎接通口阀芯阀芯阀芯移动:口接通口,开口为;口接通口,开口为接通口、接通口前阀芯的移动接通口、接通口,开口逐步增大即将开口位置开口开口负荷信号的产生:---中位时负荷信号回零;换向时取工作压力负荷压力传递过程-梭阀的作用(1)2012-12-3PSL 和PSV 比例多路阀产品介绍负荷压力传递过程-梭阀的作用(1)负荷压力传递过程-梭阀的作用(2)三通流量阀工作原理(1)---其本质为定差溢流阀结构三通流量阀工作原理(1)---其本质为定差溢流阀结构三通流量控制阀工作原理(2) ---弹簧的作用压力2012-12-3PSL 和PSV 比例多路阀产品介绍三通流量控制阀工作原理(2)---弹簧的作用压力三通流量控制阀工作原理(3)---简化的系统草图 2012-12-3PSL 和PSV 比例多路阀产品介绍三通流量控制阀工作原理(3)---简化的系统草图三通流量控制阀工作原理(4) ---流量稳定理论基础三通阀弹簧压力阀芯开口面积P A C Q =Q -通流量C -流量系数(基本恒定,与设计有关) A 阀芯开口面积 -实际通流面积ΔP 三通阀弹簧压力 -流量控制弹簧三通流量控制阀在定量泵系统中作用没有换向阀工作时把泵油泄掉;有换向阀工作时,保持泵油压力与负荷压力的压差恒定,压力适应;换向阀片不带两通阀时此压差直接起控制流量的作用,流量仅由换向阀开口大小决定;多余流量由三通阀分流回油箱。

《2024年多执行器负载敏感系统分流控制的研究》范文

《2024年多执行器负载敏感系统分流控制的研究》范文

《多执行器负载敏感系统分流控制的研究》篇一一、引言在众多工业应用中,多执行器负载敏感系统的控制技术一直备受关注。

随着工业自动化和智能化的发展,对这类系统的性能要求也日益提高。

多执行器负载敏感系统能够有效地处理多个执行器之间的负载分配问题,提高系统的稳定性和效率。

本文将重点研究多执行器负载敏感系统的分流控制技术,探讨其原理、方法及实际应用。

二、多执行器负载敏感系统概述多执行器负载敏感系统是一种能够根据负载变化自动调整执行器输出力的系统。

该系统通常由多个执行器、传感器、控制器等组成,能够实时监测负载变化,并根据需要调整各执行器的输出力,以实现负载的均衡分配。

这种系统在许多领域都有广泛的应用,如工程机械、航空航天、机器人等。

三、分流控制原理及方法分流控制是多执行器负载敏感系统中的关键技术之一。

其基本原理是通过传感器实时监测各执行器的负载情况,然后根据预设的算法将负载信息传递给控制器。

控制器根据接收到的信息,对各执行器的输出力进行调整,以实现负载的均衡分配。

在分流控制方法中,常用的有基于比例-积分-微分(PID)控制器的控制方法和基于模糊控制的控制方法。

PID控制器能够根据误差和误差变化率调整输出力,使系统快速达到稳定状态。

而模糊控制则能够根据经验知识和规则进行控制,对系统中的不确定性和非线性因素具有较强的适应性。

四、研究现状及问题分析目前,多执行器负载敏感系统的分流控制技术已经得到了广泛的研究和应用。

然而,在实际应用中仍存在一些问题。

首先,由于系统中存在多种不确定性和干扰因素,如负载的动态变化、执行器的非线性特性等,导致系统难以达到理想的控制效果。

其次,现有的分流控制方法大多只考虑了单一流量或单一压力的调整,对于多流量和多压力同时调整的情况,其效果并不理想。

因此,需要进一步研究和改进分流控制技术,以提高系统的稳定性和性能。

五、改进措施及实验验证针对上述问题,本文提出了一种基于自适应模糊控制的分流控制方法。

《2024年多执行器负载敏感系统分流控制的研究》范文

《2024年多执行器负载敏感系统分流控制的研究》范文

《多执行器负载敏感系统分流控制的研究》篇一一、引言随着工业自动化和智能化水平的不断提高,多执行器负载敏感系统的应用越来越广泛。

这种系统通常涉及到多个执行器对负载的共同操作,且需要对不同执行器间的流量分配进行精确控制,以实现最优的系统性能。

本文将深入探讨多执行器负载敏感系统的分流控制技术,包括其重要性、相关技术背景及研究目的。

二、多执行器负载敏感系统概述多执行器负载敏感系统是指多个执行器共同操作一个负载的系统。

在这种系统中,执行器间的协同工作对于提高系统的效率和稳定性至关重要。

由于不同的执行器可能会受到不同的外界干扰或系统误差影响,因此,精确地控制各个执行器的流量分配成为了一个关键问题。

三、分流控制技术分流控制技术是解决多执行器负载敏感系统中流量分配问题的关键技术。

该技术通过实时监测各个执行器的状态和负载情况,对执行器进行精确的流量分配,以保证系统性能的最优化。

下面将详细介绍几种常用的分流控制技术:1. 传统分流控制:传统的分流控制方法通常基于比例、积分、微分(PID)控制算法。

这种方法虽然简单易行,但在处理复杂的非线性系统和时变系统时,其效果并不理想。

2. 模糊控制:模糊控制是一种基于模糊逻辑的控制方法,可以处理复杂的非线性系统。

在多执行器负载敏感系统中,模糊控制可以根据各个执行器的实时状态和负载情况,对流量进行精确的分配。

3. 优化算法:近年来,优化算法在多执行器负载敏感系统的分流控制中得到了广泛应用。

这些算法包括遗传算法、粒子群算法等,可以根据系统的实际情况进行参数优化,以实现最优的流量分配。

四、研究内容与方法本文将采用理论分析、仿真实验和实际测试等方法,对多执行器负载敏感系统的分流控制技术进行研究。

具体研究内容包括:1. 分析多执行器负载敏感系统的特点及影响因素,为后续的研究提供理论基础。

2. 对各种分流控制技术进行详细的数学建模和仿真分析,以评估其性能和适用范围。

3. 设计一套适用于多执行器负载敏感系统的分流控制系统,并进行实际测试,以验证其有效性和可靠性。

负载敏感

负载敏感

一、负载敏感和压力补偿概念(一)负载敏感(Load Sensing)和压力补偿(Pressure Compensation)是60年代提出的液压传动和控制的新概念。

以往液压系统在使用操纵过程中,存在着以下需解决的问题:1. 节能要求,适应负载变化提供负载所需要的液压功率(流量和压力),尽量减少流量和压力损失,将节流调速改变为以容积调速为主,特别按负载需要提供负载所需的流量。

2. 操纵阀调速控制时,调速受负载压力变化和油泵流量变化的影响,难以操纵控制。

3. 单泵供多执行器:当多执行器同时动作时,要求相互不干涉,能够操纵各执行器按所需流量供油。

合理地分配流量,实现理想复合动作。

4. 液压泵和原动机的匹配问题,能充分利用原动机的功率,保持在发动机最大功率点工作,同时能防止发动机熄火,为了减少能耗节能,要求液压泵和发动机在联合工作最经济点上工作。

为了解决以上问题,60年代提出液压传动控制新概念—负载敏感和压力补偿。

目前液压传动仍存在问题有待解决。

例如液压传动遵循帕斯卡原理,一个泵供多个执行器时,系统压力由克服各负载中所需最大压力来确定,因此供给负载较低的执行器时必然存在压力损失。

目前人们正在研究采用电路中变压器这类东西,来解决这个问题。

(二)负载敏感和压力补偿的定义:负载敏感是一个系统概念,因此应称为负载敏感系统,可把它看作是一个意义广泛的名词。

(即广义的负载敏感和压力补偿)。

负载敏感通过感应检测出负载压力,流量和功率变化信号,向液压系统进行回馈,实现节能控制、流量和调速控制、恒力矩控制、力矩限制、恒功率控制、功率限制、转速限制、同时动作和与原动机动力匹配等控制的总称。

负载敏感系统所采用的控制方式包括液压控制和电子控制。

从负载敏感系统的液压组件来看可分:负载敏感阀:将压力、流量和功率变化信号,向阀进行回馈,实现控制功能的阀。

负载敏感泵:将压力、流量和功率变化信号,向泵进行回馈,实现控制功能的泵和马达。

挖掘机负载敏感系统介绍(中文)

挖掘机负载敏感系统介绍(中文)
当LUDV系统部协调,即按要求的速度操作所有执行机构所需流量大于泵的最大流量时,其通过所有压力补偿阀产生的压力差来实现,所有动作功能的速度均匀地减小能。
并能防止液压执行机构产生停滞。
LUDV功能
中位
(1)行程限制块(2)二次压力释放/防蚀阀(3)负载保持阀(4) LUDV压力补偿阀(5)先导梭阀
(6)控制阀杆(7)输入测流口pA (8)输入测流口pB (9)输出测流口BT (10)输出测流口AT
这个LUDV部件压力补偿阀安排在控制阀芯测流口的下游,它包含有一个控制阀芯(13)和一个能限定稳固初始位置的微压缩弹簧(14)。
独立操纵或最高负载执行机构
先导控制装置的先导压力使得控制阀芯(6)克服弹簧力相应按比例的移动。这个图中,A口的先导压力推着阀芯克服B侧控制盖内的弹簧力向右移动。控制阀芯的测流输入节流口(7)打开了从泵来的P口与P‘通道的连接。该压力使得压力补偿阀(13)打开并且被施加到单向阀(3)上。
在LUDV系统中,所有执行机构部分的p测流节流口总相同。但不是一个恒定值。根据非饱和状态的程度,它可能在设定值pLS控制器和大约2 bar的压力之间变化(见表:p依赖需求的流量),在这个范围内,LUDV系统按比例相应地分配流量。
由于这个原因,即使在非饱和状态下,LUDV系统内负载压力最高的执行机构也将不会陷入停顿状态,所有使用中的执行机构的速度根据ቤተ መጻሕፍቲ ባይዱ启的通流面积按比例减小。
说明:不同负载压力情况下的压力补偿阀的功能
如果在非饱和状态范围内的同步动作中,执行机构的速度减小,也就是测流节流口关闭,非饱和程度减少,如果其它的仍还起作用的部件的p测流节流口增加,执行机构动作速度的也就相应增加。
给机器的指令控制信号由液压或电子的控制装置动作产生,并立即响应。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档