知识点18 二次函数概念、性质和图象、代数方面的应用2020

合集下载

二次函数的性质知识点

二次函数的性质知识点

二次函数的性质知识点二次函数是高中数学中的重要内容之一,它在代数学和几何学中都有广泛应用。

了解二次函数的性质是理解和掌握这一概念的关键,下面将介绍二次函数的一些基本性质知识点。

1. 二次函数的定义二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为常数且a≠0。

二次函数的图像是一个抛物线,开口方向由a的正负决定。

2. 顶点二次函数的图像是一个抛物线,其中的最高点或最低点称为顶点。

二次函数的顶点坐标可通过公式x = -b/2a和y = f(-b/2a)求得。

3. 对称轴二次函数的图像关于一条垂直于x轴的直线对称,这条直线称为对称轴。

对称轴的方程可通过公式x = -b/2a求得。

4. 开口方向当二次函数的参数a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

5. 零点和方程二次函数的零点是使得f(x) = 0的x值,可以通过解一元二次方程ax^2 + bx + c = 0来求得。

一元二次方程的解法可以使用因式分解、配方法、求根公式等方法。

6. 判别式对于一元二次方程ax^2 + bx + c = 0,判别式D = b^2 - 4ac可以用来判断方程的根的情况:- 当D > 0时,方程有两个不相等的实根;- 当D = 0时,方程有两个相等的实根;- 当D < 0时,方程无实根,但有两个共轭复根。

7. 函数的增减性和极值点二次函数的增减性与a的正负有关。

当a > 0时,函数在对称轴左侧增大,右侧减小;当a < 0时,函数在对称轴左侧减小,右侧增大。

函数的极值点即为顶点。

8. 函数的图像与平移通过调整二次函数的参数,可以实现图像的平移。

参数a决定抛物线的开口方向,参数b决定了对称轴的位置,参数c则决定了抛物线的顶点位置。

9. 辅助线与焦点二次函数的图像与抛物线相关的辅助线包括准线、焦点和准线上的直径。

焦点的横坐标是对称轴上顶点的横坐标的一半,纵坐标可以根据参数a的值求得。

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结

《二次函数》知识点知识点总结《二次函数》知识点总结一、二次函数的定义一般地,如果形如 y = ax²+ bx + c(a、b、c 是常数,a ≠ 0)的函数,那么就叫做二次函数。

其中,x 是自变量,a 叫做二次项系数,b 叫做一次项系数,c 叫做常数项。

需要注意的是,二次函数的二次项系数 a 不能为 0,如果 a = 0,那么就变成了一次函数。

二、二次函数的图像二次函数的图像是一条抛物线。

当 a > 0 时,抛物线开口向上;当 a < 0 时,抛物线开口向下。

抛物线的对称轴是直线 x = b / 2a 。

抛物线的顶点坐标为(b / 2a,(4ac b²) / 4a)。

三、二次函数的表达式1、一般式:y = ax²+ bx + c(a ≠ 0)2、顶点式:y = a(x h)²+ k(a ≠ 0),其中顶点坐标为(h,k)3、交点式:y = a(x x₁)(x x₂)(a ≠ 0),其中 x₁、x₂是抛物线与 x 轴交点的横坐标四、二次函数的性质1、当 a > 0 时,在对称轴左侧,y 随 x 的增大而减小;在对称轴右侧,y 随 x 的增大而增大。

函数有最小值,当 x = b / 2a 时,y 最小值=(4ac b²) / 4a 。

2、当 a < 0 时,在对称轴左侧,y 随 x 的增大而增大;在对称轴右侧,y 随 x 的增大而减小。

函数有最大值,当 x = b / 2a 时,y 最大值=(4ac b²) / 4a 。

五、抛物线的平移抛物线的平移实质上是它的顶点(h,k)的移动(点的移动规律)。

向左平移 h 个单位长度,顶点坐标变为(h m,k);向右平移 m个单位长度,顶点坐标变为(h + m,k)。

向上平移 n 个单位长度,顶点坐标变为(h,k + n);向下平移 n个单位长度,顶点坐标变为(h,k n)。

六、二次函数与一元二次方程的关系二次函数 y = ax²+ bx + c(a ≠ 0),当 y = 0 时,就变成了一元二次方程 ax²+ bx + c = 0(a ≠ 0)。

二次函数所有知识点

二次函数所有知识点

二次函数所有知识点二次函数是高中数学中的重要概念之一,它在数学和实际应用中具有广泛的应用。

本文将全面介绍二次函数的所有知识点,包括定义、性质、图像特征、方程求解和应用等方面。

1. 二次函数的定义与性质二次函数是指具有形如f(x) = ax² + bx + c的函数,其中a、b、c为常数且a≠0。

二次函数的定义域为所有实数集,因为平方项对于任何实数都有定义。

二次函数的图像通常是一个开口向上或向下的抛物线,抛物线的开口方向取决于a的正负。

2. 二次函数的图像特征二次函数的图像特征包括顶点坐标、对称轴以及开口方向。

对于一般形式的二次函数f(x) = ax² + bx + c,顶点的横坐标为x = -b/2a,纵坐标为f(-b/2a)。

对称轴为经过顶点的直线,方程为x = -b/2a。

开口方向取决于a的正负,当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的方程求解解二次函数的方程常常涉及求根和因式分解两种方法。

对于一般形式的二次函数f(x) = ax² + bx + c,求根可以使用求根公式x = (-b ± √(b²-4ac))/(2a)。

需要注意的是,判别式b²-4ac的值决定了方程的解的性质。

当判别式大于0时,方程有两个不相等的实数解;当判别式等于0时,方程有两个相等的实数解;当判别式小于0时,方程没有实数解。

此外,对于特殊形式的二次函数,如完全平方式、提公因式法等求根方法也很常见。

4. 二次函数的应用二次函数在实际应用中有着广泛的应用价值。

例如,抛物线的运动轨迹可以用二次函数来描述,如抛射物的运动、物体的自由落体等。

此外,二次函数还可以用于最优化问题,如求解二次函数的最值问题,例如求取抛物线上点的最大高度、最大飞行距离等问题。

二次函数还可以用于建模和预测,如财务分析中的收益和成本曲线、市场需求曲线的形成等。

二次函数的性质和应用

二次函数的性质和应用

二次函数的性质和应用二次函数是一种常见的函数形式,在数学中具有重要的地位。

本文将讨论二次函数的性质和应用,希望能帮助读者更好地理解这种函数形式。

一、二次函数的定义和基本性质二次函数的标准形式为f(x)=ax²+bx+c,其中a、b、c都是实数,且a ≠ 0。

它的图象是一个开口向上或向下的抛物线。

1. 对称轴:二次函数的对称轴是垂直于x轴的直线,它的方程式为x=-b/2a。

对称轴把图象分成两个对称的部分。

2. 零点:一个二次函数可以有两个、一个或零个零点。

其中,零点是函数的根,即f(x)=0的解。

3. 最值和顶点:当a>0时,f(x)的最小值为y=c-b²/4a,它位于对称轴上,称为抛物线的最小值。

当a<0时,f(x)的最大值为y=c-b²/4a,它位于对称轴上,称为抛物线的最大值。

最小值或最大值统称为顶点。

4. 函数的增减性:当a>0时,如果x₁<x₂,则f(x₁)<f(x₂)。

当a<0时,如果x₁<x₂,则f(x₁)>f(x₂)。

二、二次函数的应用1. 抛物线的运动学应用:抛物线可以描述物体的抛体运动轨迹,因此它在物理学中经常被使用。

例如,在高尔夫球运动中,运动员需要考虑到地面的摩擦力和空气的阻力等因素,以确定击球的位置和力度。

抛物线方程可以帮助运动员做出更精确的计算,从而提高得分率。

2. 光学应用:抛物线的形状与光的传播有关。

例如,抛物面反射镜常用于望远镜、卫星通信等光学领域中,因为它可以使光线以特定的角度集中在一个点上,从而使视野更宽广。

3. 非线性回归分析:在生物统计学、社会科学、经济学和金融学等领域中,二次函数经常被用于分析非线性回归方程。

非线性回归是指,回归方程中包含二次函数或更高次的函数。

例如,经济学家常用二次函数分析消费者的支出模式,这会帮助他们预测市场的需求变化。

4. 工程应用:二次函数也可以用于工程领域中的计算。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结一、基本概念1. 二次函数的定义二次函数是一种形式为f(x) = ax² + bx + c的函数,其中a、b、c是实数且a≠0。

其中,a 控制抛物线的开口方向和大小,b控制抛物线在x轴方向的平移,c控制抛物线在y轴方向的平移。

2. 二次函数的图像二次函数的图像是一个称为抛物线的曲线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3. 二次函数的顶点和对称轴二次函数的图像在抛物线上的最高(或最低)点称为顶点,顶点的横坐标x=-b/2a,即抛物线的对称轴,纵坐标等于f(-b/2a),即y的最小值或最大值。

4. 二次函数的零点二次函数在x轴上的交点称为零点,满足f(x)=0时的x值。

零点的判别式为Δ=b²-4ac,当Δ>0时,有两个不相等的实根;当Δ=0时,有两个相等的实根;当Δ<0时,无实根。

5. 二次函数的最值当a>0时,二次函数的最小值是顶点的纵坐标;当a<0时,二次函数的最大值是顶点的纵坐标。

二、解析式求解1. 一般形式二次函数的一般形式是f(x) = ax² + bx + c。

通过配方法、完全平方式或因式分解,可以将二次函数转化为标准形式或顶点形式来方便求解相关参数。

2. 标准形式将一般形式的二次函数转化为标准形式f(x) = a(x-h)²+k,其中(h,k)为顶点坐标,a为抛物线的开口方向和大小。

3. 顶点形式将一般形式的二次函数转化为顶点形式f(x) = a(x-p)(x-q),其中(p,q)为零点的坐标。

4. 判别式通过二次函数的判别式Δ=b²-4ac,可以方便地判断二次函数的零点类型和数量。

三、图像解析1. 抛物线的开口方向二次函数的参数a的正负决定了抛物线的开口方向,a>0时,开口向上;a<0时,开口向下。

2. 抛物线的顶点、对称轴和最值通过二次函数的顶点坐标和对称轴方程,可以方便地求得抛物线的顶点和对称轴,并进而求得最小值或最大值。

二次函数的像与性质知识点总结

二次函数的像与性质知识点总结

二次函数的像与性质知识点总结一、二次函数的定义及性质二次函数是指一般形式为f(x) = ax² + bx + c的函数,其中a ≠ 0。

它是二次方程的图象。

1. 定义二次函数的定义域是一组实数,范围可根据上下文中的题目来确定。

它是实数集到实数集的映射关系。

2. 对称性二次函数的图象关于直线x = -b/2a对称。

3. 零点二次函数的零点就是使得f(x) = 0的x值。

零点可以通过求解二次方程ax² + bx + c = 0来得到。

二、二次函数的图象与特点1. 图象的开口方向二次函数开口向上(a > 0)或开口向下(a < 0)。

开口方向直接取决于二次函数的系数a。

2. 图象的顶点顶点是二次函数的极值点,其横坐标为x = -b/2a,纵坐标为f(-b/2a)。

顶点是二次函数图象的最高点(开口向下)或最低点(开口向上)。

3. 最值当二次函数开口向上时,它在定义域上无下界,但有一个最小值;当二次函数开口向下时,它在定义域上无上界,但有一个最大值。

4. 对称轴对称轴是指二次函数图象的对称轴,其方程为x = -b/2a。

图象关于对称轴对称。

5. 零点零点是指二次函数的图象与x轴交点的横坐标。

零点的个数和种类取决于二次函数的判别式Δ = b² - 4ac。

- 当Δ > 0时,二次函数有两个不同的实根,图象与x轴有两个交点。

- 当Δ = 0时,二次函数有一个实根,图象与x轴有一个交点。

- 当Δ < 0时,二次函数无实根,图象与x轴无交点。

6. 区间根据二次函数开口的方向,可以将定义域分成两个区间。

在每个区间内,二次函数具有相同的增减性。

7. 渐近线二次函数没有水平渐近线,但有一条垂直渐近线x = -b/2a,这条线是对称轴。

如果a ≠ 0,则二次函数有斜渐近线。

三、二次函数的变形与应用1. 平移变换将二次函数沿x轴平移h个单位,或沿y轴平移k个单位,可通过将x或y的值替换为x ± h或y ± k来实现。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中的重要章节,它在数学和实际生活中有着广泛的应用。

所以,对于二次函数的知识点的掌握对于学习数学和解决实际问题都是非常重要的。

下面将从定义、图像、性质、解析式和实际应用等方面详细归纳二次函数的知识点。

一、定义和基本形态二次函数是指一个一元二次方程确定的函数,它的一般形式可以表示为:f(x) = ax² + bx + c,其中a、b、c为实数且a ≠ 0。

它的定义域是全体实数集R。

二次函数的图像是一个抛物线,其开口方向和抛物线的开口相同。

当a > 0时,抛物线向上开口;当a < 0时,抛物线向下开口。

这个基本形态是理解二次函数的关键。

二、图像的性质1. 零点:二次函数的零点是使得f(x) = 0的x值。

二次函数的零点可以通过解一元二次方程来求得,也就是求解 ax² + bx + c = 0 的解。

当零点存在时,它的个数最多为2个。

2. 对称轴:二次函数的图像总是关于一个直线对称的。

这条直线称为二次函数的对称轴。

对称轴方程的求法是x = -b / 2a。

3. 顶点和最值:二次函数总是有一个最值点,也就是函数的最大值或最小值。

当a > 0时,函数的最小值出现在顶点上;当a < 0时,函数的最大值出现在顶点上。

顶点的坐标可以通过对称轴的x坐标带入函数中求得。

4. 开口:二次函数的开口决定了其函数值的增减。

当 a > 0时,函数是向上开口的,函数值随着x的增大而增大;当a < 0时,函数是向下开口的,函数值随着x的增大而减小。

三、解析式及其对称性根据二次函数的定义,我们可以得到它的一般解析式 f(x) = ax² + bx + c。

在解析式中,a是二次项的系数,b是一次项的系数,c是常数项。

二次函数的解析式可以通过给定的系数a、b、c进一步确定函数的性质。

1. 对称性:二次函数具有对称性,也就是函数图像在对称轴两侧关于对称轴对称。

二次函数知识点归纳

二次函数知识点归纳

二次函数知识点归纳二次函数是高中数学中重要的内容之一,它在数学以及其他科学领域中有着广泛的应用。

下面是针对二次函数的相关知识点的归纳,希望能够对您理解和掌握二次函数有所帮助。

一、基本概念1. 二次函数的定义: 二次函数是形如f(x) = ax^2+bx+c的函数,其中a、b、c为常数且a不等于零。

2. 二次函数的图像: 二次函数的图像是一个抛物线,其开口方向由二次项系数a的符号确定。

- 若a>0,则抛物线开口向上;- 若a<0,则抛物线开口向下。

二、图像的性质1. 对称轴:二次函数的图像关于直线x=-b/2a对称。

2. 最值点:二次函数的最值点即为图像的顶点,其横坐标为-x/2a,纵坐标为f(-x/2a)。

- 当a>0时,函数的最小值为f(-x/2a);- 当a<0时,函数的最大值为f(-x/2a)。

3. 零点:二次函数的零点即为使函数取值为零的x值,可通过解二次方程ax^2+bx+c=0来求得。

三、函数的变换1. 平移:二次函数可以通过改变h和k的值来进行平移操作。

- f(x)的图像向左平移|k|个单位,新函数为f(x+h);- f(x)的图像向右平移|k|个单位,新函数为f(x-h);- f(x)的图像向上平移|k|个单位,新函数为f(x)+k;- f(x)的图像向下平移|k|个单位,新函数为f(x)-k。

2. 压缩和拉伸:二次函数可通过改变a的值来改变图像的形状。

- 若|a|>1,则函数图像纵向压缩;- 若0<|a|<1,则函数图像纵向拉伸。

四、函数的性质1. 定义域:对于二次函数,其定义域为实数集R,即所有实数x都在定义域内。

2. 奇偶性:二次函数一般是偶函数,除非存在线性项b,则二次函数为奇函数。

3. 单调性:当a>0时,二次函数在抛物线的开口范围内是单调递增的;当a<0时,二次函数在抛物线的开口范围内是单调递减的。

4. 零点和交点: 二次函数与x轴的交点即为零点,与y轴的交点为常数项c,与抛物线的交点为实数解。

二次函数知识点总结大全

二次函数知识点总结大全

二次函数知识点总结大全二次函数是高中数学中的重要内容之一,掌握了二次函数的相关知识,能够解决很多与实际问题相关的数学计算。

下面是二次函数的知识点总结。

一、基本概念1. 二次函数的定义:一个二次函数是指形如y=ax²+bx+c(a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数。

2.二次函数的图像:二次函数的图像是一个开口朝上或朝下的抛物线。

3.二次函数的顶点:二次函数的图像的最高点或最低点称为顶点,记为(Vx,Vy)。

4.二次函数的轴对称性:二次函数的图像关于顶点所在的直线对称。

5.二次函数的零点:二次函数的图像与x轴交点的横坐标称为零点。

6.二次函数的平移:二次函数的图像在平面上的平移。

二、二次函数的图像1.抛物线开口的方向:当a>0时,抛物线开口朝上;当a<0时,抛物线开口朝下。

2. 求顶点:对于形如y=ax²+bx+c的二次函数,顶点坐标为(Vx, Vy),其中Vx=-b/2a,Vy=f(Vx)。

3.确定抛物线的图像:已知顶点和另一点,可以确定一个抛物线的图像。

4.求零点:二次函数的零点可以通过解一元二次方程求得。

三、二次函数的性质1. 平移性质:对于二次函数y=ax²+bx+c,平移后的函数是y=a(x-h)²+k,其中(h,k)为平移后的抛物线的顶点。

2.对称性质:二次函数的图像关于顶点对称。

3.零点性质:一个二次函数最多有两个零点,可以通过求解一元二次方程求得。

4.范围性质:对于抛物线开口朝上的二次函数,其值域为[y,+∞);对于抛物线开口朝下的二次函数,其值域为(-∞,y]。

四、二次函数的解析式1. 标准型:形如y=ax²+bx+c的二次函数。

2.顶点式:形如y=a(x-h)²+k的二次函数。

3.概率型:形如y=a(x-p)(x-q)的二次函数。

五、二次函数的应用1.最值问题:二次函数的最值可以通过求顶点得到。

初中数学二次函数的知识点

初中数学二次函数的知识点

初中数学二次函数的知识点二次函数是数学中非常重要的一个概念,它在初中数学中经常会出现,掌握好二次函数的知识点对于学习数学以及数学解题是非常有帮助的。

下面我将为你详细介绍初中数学中与二次函数相关的知识点。

一、二次函数的定义及基本性质1. 二次函数的定义:二次函数是指自变量的二次函数关系,可以表示成f(x)=ax²+bx+c(a≠0)的形式,其中a、b、c为常数且a为二次函数的二次系数。

2.二次函数的图像特征:a)平移到抛物线的顶点和开口方向:当二次函数为f(x)=a(x-h)²+k 时,顶点为(h,k)。

b)对称性:二次函数关于直线x=h对称。

c)开口情况:当a>0时,二次函数开口向上;当a<0时,二次函数开口向下。

d)零点:即方程f(x)=0的解,可以通过因式分解、配方法等求得。

e) 判别式:Δ=b²-4ac,当Δ>0时,方程f(x)=0有两个实数解;当Δ=0时,方程f(x)=0有两个相等的实数解;当Δ<0时,方程f(x)=0无实数解。

二、二次函数的图像与其参数的关系1.a的大小对图像的影响:a决定了二次函数开口的方向,即a>0时,开口向上;a<0时,开口向下。

当a的绝对值越大时,开口越窄。

2.h的大小对图像的影响:h决定了二次函数图像的平移。

当h>0时,图像在x轴正方向平移;当h<0时,图像在x轴负方向平移。

当,h,越大时,平移的距离越大。

3.k的大小对图像的影响:k决定了二次函数图像的平移。

当k>0时,图像在y轴正方向平移;当k<0时,图像在y轴负方向平移。

当,k,越大时,平移的距离越大。

三、二次函数与二次方程的关系1. 二次函数的零点与二次方程的解:二次函数f(x)=ax²+bx+c的零点就是方程f(x)=0的解。

可以通过因式分解、配方法、求根公式等来求解二次方程。

2.二次方程与二次函数图像的交点:二次方程f(x)=0的解就是二次函数f(x)与x轴的交点,即二次函数的零点。

二次函数知识点总结

二次函数知识点总结

二次函数知识点总结二次函数是数学中一种重要的函数形式,具有较广泛的应用。

本文将详细介绍二次函数的定义、性质、图像与变换、解析式、根与判别式、与其他函数的关系以及应用等知识点。

一、定义与性质:二次函数是指形式为f(x) = ax^2 + bx + c的函数,其中a、b、c为已知常数,且a ≠ 0。

二次函数的定义域为全体实数集R,值域根据a的正负值有所不同。

二次函数的图像为抛物线,开口向上或向下。

性质1:二次函数f(x) = ax^2 + bx + c的导数为f'(x) = 2ax + b。

性质2:当二次函数的对称轴为x=h时,最高/最低点的横坐标为x=h,纵坐标为f(h)。

性质3:如果a>0,则抛物线开口向上,最低点为最小值;如果a<0,则抛物线开口向下,最高点为最大值。

二、图像与变换:二次函数的图像为一条抛物线,关键要素有顶点、对称轴、开口方向以及最高/最低点等。

1.顶点:二次函数的顶点坐标为(-b/2a,f(-b/2a)),其中-b/2a为对称轴的横坐标,f(-b/2a)为对称轴上的纵坐标。

2.对称轴:二次函数的对称轴是垂直于x轴的一条线,其方程为x=-b/2a。

3.开口方向:二次函数的开口方向由二次项系数a的正负决定。

若a>0,开口向上;若a<0,开口向下。

4.最高/最低点:顶点即为最高或最低点,纵坐标为二次函数的最值。

变换1:平移变换二次函数f(x) = ax^2 + bx + c关于横轴上下平移h个单位的函数为f(x) = a(x-h)^2 + bx + c。

变换2:垂直伸缩与翻转二次函数f(x) = ax^2 + bx + c关于纵轴上下压缩k倍且翻转ξ度的函数为f(x) = a(k(x-ξ))^2 + bx + c。

三、解析式:二次函数的一般形式为f(x) = ax^2 + bx + c,其中a、b、c为已知常数,且a ≠ 0。

根据实际问题的要求,可以确定二次函数的具体形式。

二次函数概念与性质

二次函数概念与性质

二次函数概念与性质二次函数是高中数学学科中的一个重要内容,是解决实际问题和数学建模的常用工具之一。

在本文中,我们将探讨二次函数的基本概念和性质,以帮助读者更好地理解和应用该函数。

一、二次函数的定义二次函数是指函数的表达式为 $y=ax^2+bx+c$(其中 $a\neq 0$),其中 $x$ 是自变量,$y$ 是因变量,$a$、$b$、$c$ 是常数。

二次函数的图像是一个抛物线,其开口方向由 $a$ 的正负决定。

当 $a>0$ 时,抛物线开口向上;当 $a<0$ 时,抛物线开口向下。

二、二次函数的性质1. 零点:二次函数 $y=ax^2+bx+c$ 的零点就是方程$ax^2+bx+c=0$ 的解。

利用求根公式可以求得零点的坐标。

如果零点存在,那么抛物线与 $x$ 轴相交于该点。

2. 对称轴:二次函数的图像关于对称轴对称。

对称轴的方程可以通过将 $x$ 替换为 $-\frac{b}{2a}$ 得到。

对称轴将图像划分为两个对称的部分。

3. 顶点:对称轴与抛物线的交点称为顶点。

顶点的坐标可以通过将$x$ 替换为 $-\frac{b}{2a}$ 得到,再带入函数表达式求得 $y$ 的值。

4. 最值:当二次函数的开口向上时,最小值为顶点的纵坐标;当二次函数的开口向下时,最大值为顶点的纵坐标。

5. 单调性:当 $a>0$ 时,二次函数递增;当 $a<0$ 时,二次函数递减。

6. 函数图像:通过确定顶点、零点和对称轴等关键点,可以绘制出二次函数的图像。

借助图像可以更直观地理解函数的性质。

三、二次函数的应用二次函数在实际问题中有广泛的应用。

例如:1. 物体自由落体:当一个物体自由落体时,其下落过程可以用一个二次函数来描述。

通过分析二次函数的图像,我们可以得到物体的运动规律,计算出物体的高度、速度等相关信息。

2. 抛体运动:抛体运动也可以使用二次函数来描述。

二次函数可以帮助我们预测抛体的轨迹、最高点、最远距离等。

初中数学二次函数最全知识点总结

初中数学二次函数最全知识点总结

初中数学二次函数最全知识点总结二次函数是初中数学的重点内容之一,掌握二次函数的知识对于解决实际问题和提高数学能力都具有重要意义。

以下是二次函数的最全知识点总结:一、基本概念1.函数:函数是一种特殊的关系,它可以用来描述自变量和因变量之间的对应关系。

2. 二次函数:二次函数是形如y = ax² + bx + c的函数,其中a、b、c为常数,a ≠ 0。

二、图像和性质1.基本图像:二次函数的基本图像是抛物线,开口方向由常数a的正负决定。

2. 零点:二次函数的零点即为方程ax² + bx + c = 0的解,可以用求根公式或配方法求出。

3.对称轴:二次函数的对称轴是抛物线的轴线,其方程为x=-b/(2a)。

4.最值:二次函数的最值可以通过对称轴得到,最值为抛物线的顶点。

5.单调性:当抛物线开口向上时,二次函数是增函数;开口向下时,二次函数是减函数。

6.平移:二次函数的图像可以通过上下平移、左右平移和扩大缩小来获得新图像。

三、二次函数的解析式1. 标准形式:当a = 1时,二次函数的标准形式是y = x² + px + q。

2.顶点式:二次函数的顶点式是y=a(x-h)²+k,其中(h,k)为顶点的坐标。

3. 一般形式:二次函数的一般形式是y = ax² + bx + c,实际问题中常用。

四、二次函数的变形1. 增长量:二次函数y = ax² + bx + c中,增长量即为b。

2.曲线方向:二次函数的曲线方向由a的正负决定,a>0时,开口向上;a<0时,开口向下。

3.平移:二次函数的图像可以通过上下平移、左右平移和扩大缩小进行变形。

4.翻折:二次函数的图像可以进行关于x轴或y轴的翻折,得到新的图像。

五、二次函数的性质1.零点性质:二次函数的零点个数最多为2个。

2.对称性质:二次函数关于对称轴具有对称性。

3.成立范围:二次函数在全体实数范围内都成立。

初中数学二次函数知识点整理

初中数学二次函数知识点整理

初中数学二次函数知识点整理二次函数是初中数学中的一个重要知识点,它在数学中有很广泛的应用。

下面将对初中数学二次函数的相关知识点进行整理。

一、基本概念1. 二次函数的定义:二次函数是形如y=ax²+bx+c(其中a≠0)的函数,其中a、b、c为常数,且a表示二次项的系数,b表示一次项的系数,c表示常数项。

2.二次函数的图像:二次函数的图像是一个抛物线。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

3.二次函数的顶点:二次函数的图像上的最高点(a<0)或最低点(a>0)称为二次函数的顶点,其坐标为(h,k),其中h为顶点的横坐标,k为顶点的纵坐标。

4.对称轴:二次函数图像的对称轴是通过顶点的一条垂直线。

5.零点:二次函数与x轴交点的横坐标称为零点,即二次函数的根。

6. 判别式:对于二次函数y=ax²+bx+c,其判别式Δ=b²-4ac的值能够确定二次函数的图像与x轴的交点个数。

a)当Δ>0时,二次函数与x轴有两个交点,即有两个不相等的根。

b)当Δ=0时,二次函数与x轴有一个交点,即有一个重根。

c)当Δ<0时,二次函数与x轴没有交点,即没有实根。

二、性质和特点1. 对于二次函数y=ax²+bx+c,等价于y=a(x-h)²+k,其中(h,k)为顶点的坐标。

二次函数的特点有:a)当a>0时,教材开口向上,最小值为k。

b)当a<0时,教材开口向下,最大值为k。

c)当a>1时,抛物线越“瘦长”,曲线变化越快。

d)当a<1时,抛物线越“胖宽”,曲线变化越慢。

e)当a=1时,曲线为标准的抛物线。

2.二次函数的平移和缩放a)平移:对于函数y=ax²+bx+c,平移后的函数为y=a(x-h)²+k,其中(h,k)为平移的向量。

b)缩放:对于函数y=x²,缩放后的函数为y=ax²,其中a的取值决定了缩放的程度。

二次函数概念及其性质

二次函数概念及其性质

二次函数概念及其性质二次函数是高中数学中重要的一个概念,它在代数学和几何学中有着广泛的应用。

本文将介绍二次函数的基本概念、性质以及一些相关的知识点。

一、二次函数的定义二次函数是一个以自变量的平方为最高次项的函数。

一般来说,二次函数的标准形式可以表示为f(x) = ax^2 + bx + c,其中a、b、c为实数且a≠0。

二、二次函数的图像特征1. 首先,二次函数的图像通常为一条平滑曲线,被称为抛物线。

抛物线可以开口向上,也可以开口向下。

当a>0时,抛物线开口向上;当a<0时,抛物线开口向下。

2. 其次,二次函数的图像关于其顶点对称。

顶点是抛物线的最低点或最高点,其中横坐标为-x轴方向的对称点。

顶点坐标可以通过求解二次函数的一次导数为零得到。

3. 最后,二次函数的图像可能与x轴相交于两个点、一个点或者没有交点。

这取决于二次函数与x轴的交点个数以及判别式的值。

三、二次函数的性质1. 首先,二次函数的导数是一个一次函数,它可以用来表示抛物线的切线斜率。

具体来说,二次函数f(x) = ax^2 + bx + c的导数为f'(x) =2ax + b。

2. 其次,二次函数的最值点即为其顶点。

当a>0时,二次函数的最小值为顶点的纵坐标;当a<0时,二次函数的最大值为顶点的纵坐标。

最值点的横坐标可以通过求解二次函数的一次导数为零得到。

3. 最后,二次函数的对称轴与顶点的横坐标相等。

对称轴是抛物线的对称轴,它是一条垂直于x轴过抛物线顶点的直线。

对称轴的方程可以通过顶点的横纵坐标得到。

四、二次函数的应用二次函数在现实生活中有着广泛的应用。

例如,在物理学中,二次函数可以描述自由落体运动的位移随时间的变化;在经济学中,二次函数可以用来建模成本、收益等与产量的关系;在工程学中,二次函数可以用来优化问题和设计曲线等。

总结起来,二次函数是一种以自变量的平方为最高次项的函数。

它具有抛物线的图像特征,且与x轴的交点个数取决于判别式的值。

二次函数的性质与应用

二次函数的性质与应用

二次函数的性质与应用二次函数是数学中一种常见的函数形式,由多项式中的二次幂项(最高次数为2)和常数项构成。

本文将探讨二次函数的性质以及其在实际应用中的具体运用。

一、二次函数的定义和基本形式二次函数的一般定义如下:f(x) = ax^2 + bx + c其中,a、b、c为常数,且a ≠ 0。

二、二次函数的图像特点1. 开口方向:由二次函数的系数a的正负决定。

若a > 0,则二次函数的抛物线开口向上;若a < 0,则抛物线开口向下。

2. 最值与顶点:当二次函数的开口方向向上时,最值为最小值,对应于抛物线的顶点;当开口方向向下时,最值为最大值,也对应于抛物线的顶点。

3. 对称轴和顶点坐标:二次函数的对称轴为经过顶点的直线。

对称轴的方程为x = -b / (2a)。

顶点的坐标为(-b / (2a), f(-b / (2a)))。

4. 零点:二次函数的零点即为方程f(x) = 0的解。

可以通过求解二次方程ax^2 + bx + c = 0来求得。

三、二次函数的应用1. 物理学中的抛体运动:二次函数可以描述抛体运动的轨迹。

通过确定抛物线的方程,可以计算出抛体的高度、飞行时间、最远距离等。

2. 经济学中的成本函数和收益函数:企业的成本函数和收益函数通常采用二次函数来描述。

通过求解最值,可以确定最大利润和最小成本对应的产量。

3. 建筑工程中的拱桥设计:拱桥的形状通常可以用二次函数来描述。

通过调整抛物线的参数,可以使得拱桥的结构更加稳定和美观。

4. 金融学中的期权定价:期权定价模型如Black-Scholes模型中,二次函数被用来描述股票价格的波动性。

这有助于判断期权的价格和风险。

5. 统计学中的回归分析:二次函数可以用来拟合数据,进行回归分析。

通过寻找最佳拟合曲线,可以预测和解释数据的趋势和关系。

四、总结二次函数作为一种常见的函数形式,在数学中具有重要的性质与应用。

通过对二次函数图像特点的了解,我们可以更好地理解和应用二次函数。

初中二次函数最全知识点总结

初中二次函数最全知识点总结

初中二次函数最全知识点总结二次函数是初中数学中的重要知识点,也是高中数学的基础。

下面是对二次函数的最全知识点总结:一、二次函数的定义和表示:1. 定义:二次函数是形如 y = ax^2 + bx + c(a ≠ 0)的函数,其中 a、b、c 是常数,且 a 不等于 0。

2. 一般式:二次函数的一般形式为 y = ax^2 + bx + c。

3.顶点式:二次函数的顶点式为y=a(x-h)^2+k,其中(h,k)是顶点坐标。

4.描述:二次函数的图像为抛物线,开口向上或向下,对称轴为x=-b/(2a),顶点坐标为(-b/(2a),f(-b/(2a)))。

二、二次函数的图像:1.开口方向:当a大于0时,抛物线开口向上;当a小于0时,抛物线开口向下。

2.对称轴:对称轴是垂直于x轴的抛物线的轴线,其方程为x=-b/(2a)。

3. 零点:即二次函数与 x 轴的交点,由二次方程 ax^2 + bx + c =0 求得。

a) 判别式:Δ = b^2 - 4ac,当Δ 大于 0 时,有两个不同实根;当Δ等于 0 时,有一个重根;当Δ 小于 0 时,无实数根。

b)零点公式:x=(-b±√Δ)/(2a)。

4.最值:当a大于0时,抛物线开口向上,最小值为顶点的纵坐标;当a小于0时,抛物线开口向下,最大值为顶点的纵坐标。

5.对称性:二次函数关于顶点对称,即f(x)=f(2h-x)。

6.平移:通过改变顶点坐标可以实现二次函数的平移,顶点坐标为(h,k),则平移后的顶点坐标为(h+p,k+q)。

三、常用二次函数的性质和应用:1.单调性:当a大于0时,抛物线开口向上,函数单调递增;当a小于0时,抛物线开口向下,函数单调递减。

2.单调区间:根据二次函数的开口方向和最值确定函数的单调区间。

3.奇偶性:二次函数一般是奇函数,即f(-x)=-f(x),因为二次项的系数是奇数。

4.零点个数和位置:根据二次函数的开口方向和零点的位置确定零点的个数和位置。

二次函数的知识点总结

二次函数的知识点总结

二次函数的知识点总结二次函数是高中数学中重要的一部分,它在数学和实际问题中都起到了重要作用。

本文将对二次函数的基本定义、性质、图像、应用等方面进行总结和探讨。

一、基本定义和性质二次函数的标准形式为f(x) = ax^2 + bx + c,其中a、b、c为实数且a不等于0。

二次函数的定义域为全体实数集R。

1. 零点和根:二次函数f(x)的零点为方程f(x) = 0的解,也称为根。

根的个数与二次函数与x轴的交点数有关,最多有两个根。

2. 对称轴和顶点:二次函数的对称轴是x = -b/2a,对称轴上的点称为顶点,坐标为(-b/2a, f(-b/2a))。

3. 函数增减性:当a>0时,二次函数开口向上,函数值随x增大而增大;当a<0时,二次函数开口向下,函数值随x增大而减小。

二、图像与性质二次函数的图像是一条平滑的曲线,其形状和位置与a、b和c的值有关。

1. 开口方向:当a>0时,二次函数的图像开口向上;当a<0时,二次函数的图像开口向下。

2. 平移与伸缩:对于一般形式的二次函数y = a(x-h)^2 + k,其中(h, k)为顶点的坐标。

当h>0时,图像向左平移;当h<0时,图像向右平移。

当a>1时,图像纵向收缩;当0<a<1时,图像纵向拉伸。

3. 最值:当a>0时,函数的最小值为k;当a<0时,函数的最大值为k。

三、应用二次函数在实际问题中有广泛的应用,下面举几个例子说明:1. 自由落体运动:假设一个物体自由下落,不考虑空气阻力的影响。

物体从起始位置开始下落,其高度随时间变化可以用二次函数进行建模。

通过分析二次函数的图像,可以求得物体的最大高度、落地时间等信息。

2. 抛物线的跳远问题:假设一个运动员以一定的速度和角度抛出物体,求物体的飞行轨迹和落地点。

通过建立二次函数模型,可以分析出物体的最远距离和落地点的位置。

3. 生活中的经济问题:二次函数也可以用来分析一些与经济有关的问题,例如成本与产量之间的关系、利润最大化问题等。

二次函数的相关知识点总结

二次函数的相关知识点总结

二次函数的相关知识点总结一、二次函数的概念。

1. 定义。

- 一般地,形如y = ax^2+bx + c(a,b,c是常数,a≠0)的函数,叫做二次函数。

其中x是自变量,a、b、c分别是二次项系数、一次项系数、常数项。

- 例如y = 2x^2+3x - 1,这里a = 2,b=3,c=-1。

二、二次函数的图象。

1. 二次函数y = ax^2+bx + c(a≠0)的图象是一条抛物线。

2. 抛物线的顶点坐标。

- 对于二次函数y = ax^2+bx + c(a≠0),其顶点坐标公式为(-(b)/(2a),frac{4ac - b^2}{4a})。

- 例如,对于二次函数y=x^2-2x - 3,其中a = 1,b=-2,c=-3。

根据顶点坐标公式,-(b)/(2a)=-(-2)/(2×1)=1,frac{4ac - b^2}{4a}=frac{4×1×(-3)-(-2)^2}{4×1}=(-12 - 4)/(4)=-4,所以顶点坐标为(1,-4)。

3. 抛物线的对称轴。

- 对称轴方程为x =-(b)/(2a)。

4. 抛物线的开口方向。

- 当a>0时,抛物线开口向上;当a < 0时,抛物线开口向下。

- 例如,y = 3x^2+2x - 1中a = 3>0,开口向上;y=-2x^2+5x+3中a=-2 < 0,开口向下。

三、二次函数的性质。

1. 增减性。

- 当a>0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而减小;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而增大。

- 当a < 0时,在对称轴x =-(b)/(2a)左侧,即x<-(b)/(2a)时,y随x的增大而增大;在对称轴右侧,即x>-(b)/(2a)时,y随x的增大而减小。

2. 最值。

- 当a>0时,抛物线开口向上,函数有最小值,y_min=frac{4ac - b^2}{4a},此时x =-(b)/(2a)。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题9.(2020·衢州)二次函数2y x =的图象平移后经过点(2,0),则下列平移方法正确的是( ) A .向左平移2个单位,向下平移2个单位 B .向左平移1个单位,向上平移2个单位 C .向右平移1个单位,向下平移1个单位 D .向右平移2个单位,向上平移1个单位 {答案}C{解析}由于 A 选项平移后的解析式为y=(x+2)2-2,当x=2时,y=14,所以它不经过(2,0);B 选项平移后的解析式为y=(x+1)2+2,当x=2时,y=7,所以它不经过(2,0);C 选项平移后的解析式为y=(x-1)2-1,当x=2时,y=0,所以它经过(2,0);D 选项平移后的解析式为y=(x-2)2+1,当x=2时,y=1,它不经过(2,0),因此本题选C. 6.(2020·宿迁)将二次函数y =(x -1)2+2的图像向上平移3个单位,得到的图像对应的函数表达式是( ) A .y =(x +2)2+2 B .y =(x -1)2+2 C .y =(x -1)2-1 D .y =(x -1)2+5{答案}D{解析}将二次函数y =(x -1)2+2的图像向上平移3个单位,得到的图像对应的函数表达式是y =(x -1)2+2+3,即y =(x -1)2+5,故选D .9.(2020·宁波)如图,二次函数y =ax 2+bx +c (a >0)的图象与x 轴交于A ,B 两点,与y 轴正半轴交于点C ,它的对称轴为直线x =-1.则下列选项中正确的是 A .abc <0 B .4ac -b 2>0 C .c -a >0 D .当x =-n 2-2(n 为实数)时,y ≥c {答案}D{解析}本题考查了二次函数的图象和性质.∵抛物线开口向上,所以a >0,∵二次函数图象的对称轴为x =-1,所以-2ba =-1,所以b =2a>0,∵抛物线与y 轴正半轴交于点C ,所以c >0,所以abc>0,A 错误;∵抛物线与x 轴有两个不同的交点,∴b2-4ac>0,∴ 4ac -b2<0,B 错误;∵b =2a ,∴当x =-1时,y =a -b +c =c -a <0,∴C 错误;当x =-n2-2(n 为实数)时,y =a(-n2-2)2+b(-n2-2)+c =a(-n2-2)2+2a(-n2-2)+c =a(n2+1)2-a +c ,∵n 为实数,∴n2≥0,(n2+1)2≥1.又∵a >0,∴a(n2+1)2-a≥0.又∵c >0,∴y≥c ,∴D 正确,因此本题选D .9.(2020·温州)9.已知(﹣3,1y ),(﹣2,2y ),(1,3y )是抛物线2312y x x m =--+上的点,则A .3y <2y <1yB .3y <1y <2yC .2y <3y <1yD .1y <3y <2y{答案}{解析}本题考查了二次函数的增减性,当a >0,在对称轴的左侧,y 随x 的增大而减小,在对称轴的右侧,y 随x 的增大而增大;当a <0时,在对称轴左侧,y 随x 的增大而增大,在对称轴右侧,y 随x 的增大而减小,由对称轴x =12222(3)b a --=-=-⨯-,知(-3,y1)和(-1,y1)对称,因为a =-3<0,所以当x≥-2时,y 随x 的增大而减小,-2<-1<1,所以y2>y1>y3,因此本题选B .8.(2020·杭州)设函数2()y a x h k =-+(a ,h ,k 是实数,0a ≠),当1x =时,1y =;当8x =时,8y =,( )A .若4h =,则0a <B .若5h =,则0a >C .若6h =,则0a <D .若7h =,则0a >{答案}C{解析}本题考查了二次函数的图象,因为在2()y a x h k =-+中,当1x =时,1y =;当8x =时,8y =,所以抛物线2()y a x h k =-+经过点A (1,1),(8,8).当抛物线开口向上时,如图①,过点A 作AC ∥10.(2020·杭州)在平面直角坐标系中,已知函数211y x ax =++,222y x bx =++,234y x cx =++,其中a ,b ,c 是正实数,且满足2b ac =.设函数1y ,2y ,3y 的图象与x 轴的交点个数分别为1M ,2M ,3M ,( )A .若12M =,22M =,则30M =B .若11M =,20M =,则30M =C .若10M =,22M =,则30M =D .若10M =,20M =,则30M =∴tan ∠ABC ≥0,∴n ﹣m ≥0,即n ﹣m 无最大值,有最小值,最小值为0,故选项C ,D 都错误; ②当n ﹣m =1时,如图2,过点N 作NH ⊥MQ 于H ,同①的方法得,NH =PQ =b ﹣a ,HQ =PN =m ,∵点M ,N 在抛物线y =x2上,∴m ≥0,当m =0时,n =1,∴点N (0,0),M (1,1), ∴NH =1,此时,∠MNH =45°,∴45°≤∠MNH <90°,∴tan ∠MNH ≥1,∴1b a-≥1,∴b﹣a无最小值,有最大值,最大值为1,故选项A错误. 因此本题选B.图1 图210.(2020·黔西南州)如图,抛物线y=ax2+bx+4交y轴于点A,交过点A且平行于x轴的直线于另一点B,交x轴于C,D两点(点C在点D的右边),对称轴为直线x=52,连接AC,AD,BC.若点B关于直线AC的对称点恰好落在线段OC上,下列结论中错误的是()A.点B坐标为(5,4)B.AB=AD C.a=16-D.OC•OD=16{答案}D{解析}本题考查了二次函数的性质,点的坐标意义,平行线的性质,等腰三角形的判定与性质及勾股定理.因为抛物线y=ax2+bx+4交y轴于点A,所以A(0,4).因为对称轴为直线x=52,AB∥x轴,所以B(5,4),选项A正确,不符合题意.如答图,过点B作BE⊥x轴于点E,则BE=4,AB=5.因为AB∥x轴,所以∠BAC=∠ACO.因为点B关于直线AC的对称点恰好落在线段OC上,所以∠ACO=∠ACB,所以∠BAC=∠ACB,所以BC=AB=5.在Rt△BCE中,由勾股定理得EC=3,所以C(8,0).因为对称轴为直线x=52,所以D(-3,0).在Rt△ADO中,OA=4,OD=3,所以AD=5,所以AB=AD,选项B正确,不符合题意.设y=ax2+bx+4=a(x+3)(x-8),将A(0,4)代入得4=a(0+3)(0-8),解得a=16-,选项C正确,不符合题意.因为OC=8,OD=3,所以OC•OD=24,选项D错误,符合题意,因此本题选D.8.(2020·新疆)二次函数2y ax bx c=++的图象如图所示,则一次函数y ax b=+与反比例函数cyx=在同一平面直角坐标系中的图象可能是 ···························································(){答案}D{解析}本题考查了反比例函数、一次函数和二次函数的图象,由抛物线开口向下知a>0,因为抛物线的对称轴在y轴右侧,所以2ba->0,因为a>0,所以b<0.因为抛物线与y轴的交点在y轴的正半轴上,所以c>0.因为a>0,b<0,所以一次函数y ax b=+经过第一、三、四象限.因为c>0,所以反比例函数cyx=经过第一、三象限,因此本题选D.12.(2020·遵义)抛物线y=ax2+bx+c的对称轴是直线x=-2,抛物线与x轴的一个交点在点(-4,0)和点(-3,0)之间,其部分图象如图所示,下列结论中正确的个数有:①4a-b=0;②c≤3a;③关于x的方程ax2+bx+c=2有两个不相等实数根;④b2+2b> 4ac.A.1个B.2个C.3个D.4个xyba(b,m)(a,n)CEDOABxy(a,m)(b,n)a bHP QOMNxy-4-3-13-2O240b ac ->①;0abc <②;40a b +=③;420a b c -+>④.其中正确结论的个数是( )A .4B .3C .2D .1{答案} B{解析}本题考查了二次函数图像与系数的关系.∵抛物线与x 轴有两个交点,∴方程20ax bx c ++=有两个不相等的实数根,240b ac ∴->,故①正确,由图象知,抛物线的对称轴为直线2x =, 0abc ∴<,故②正确,由图象知,当2x =-时,0y <,420a b c ∴-+<,故④错误.x)2,该抛物线开口向上,对称轴为y.特殊地,当x =2时,y =3,此时重叠部分的面积取最大值.综上所述,选项A 符合.图1图26.(2020·哈尔滨)将抛物线2x y =向上平移3个单位长度,再向右平移5个单位长度,所得到的抛物线为( )A .()532++=x yB .()532+-=x yC .()352++=x yD .()352+-=x y{答案}D{解析}本题考查了二次函数的图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减,将抛物线2x y =向上平移3个单位长度,再向右平移5个单位长度,得到的抛物线的解析式为()352+-=x y ,因此本题选D .9.(2020·绥化)将抛物线y =2(x -3)2+2向左平移3个单位长度,再向下平移2个单位长度,得到抛物线的解析式是( )A .y =2(x -6)2B .y =2(x -6)2+4C .y =2x 2D .y =2x 2+4{答案}C{解析}原抛物线的顶点是(3,2),平移后的顶点是(0,0),因此平移后所得抛物线的解析式是y =2x2.故选C . 12.(2020·枣庄)如图,已知抛物线y =ax 2+bx +c 的对称轴为直线x =1.给出下列结论: ∴ac <0;∴b 2-4ac >0;∴2a -b =0;∴a -b +c =0. 其中,正确的结论有( )A .1个B .2个C .3个D .4个{答案}C{解析}根据抛物线与系数a ,b ,c 的关系特征判断各结论正确与否.∵抛物线开口向下,∴a <0,∵抛物线交于y 轴的正半轴,∴c >0,∴ac <0,故①正确; ∵抛物线与x 轴有两个交点,∴b2-4ac >0,故②正确;∵抛物线的对称轴为直线x =1,∴12b a -=,∴-b =2a ,∴2a+b =0,故③错误;抛物线与x 轴的两个交点关于对称轴对称,则点(3,0)关于直线x =1的对称点为(-1,0),即抛物线又经过点(-1,0),即x =-1时,y =a -b +c =0,故④正确. 综上可知,正确的结论有①②④,共3个. 10.(2020·陕西)在平面直角坐标系中,将抛物线y =x 2-(m -1)x +m -3沿y 轴向下平移3个单位,则平移后得到的抛物线顶点一定在( ) A .第一象限B .第二象限C .第三象限D .第四象限{答案}D{解析}平移后的抛物线的表达式为y =x2-(m -1)x +m -3,通过配方求出该抛物线的顶点坐标为GABCDE F FE DC BA HO 1 yx3()2341,24m m ⎛⎫-+- ⎪-⎪⎝⎭,由于m >1,所以12m ->0,2312x x x --=-<0,所以平移后的抛物线的顶点一点在第四象限.10.(2020·贵阳)(3分)已知二次函数y =ax 2+bx +c 的图象经过(﹣3,0)与(1,0)两点,关于x 的方程ax 2+bx +c +m =0(m >0)有两个根,其中一个根是3.则关于x 的方程ax 2+bx +c +n =0 (0<n <m )有两个整数根,这两个整数根是( ) A .﹣2或0 B .﹣4或2 C .﹣5或3 D .﹣6或4{答案} B .{解析}解:∴二次函数y =ax2+bx+c 的图象经过(﹣3,0)与(1,0)两点,∴当y =0时,0=ax2+bx+c 的两个根为﹣3和1,函数y =ax2+bx+c 的对称轴是直线x =﹣1, 又∴关于x 的方程ax2+bx+c+m =0(m >0)有两个根,其中一个根是3.∴方程ax2+bx+c+m =0(m >0)的另一个根为﹣5,函数y =ax2+bx+c 的图象开口向上, ∴关于x 的方程ax2+bx+c+n =0 (0<n <m )有两个整数根,∴这两个整数根是﹣4或2, 故选:B .10.(2020自贡)函数y =kx 与y =ax 2+bx +c 的图象如图所示,则函数y =kx ﹣b 的大致图象为( )A .B .C .D .{答案} D .{解析}本题考查了反比例函数的图象与性质、二次函数的图象与性质等知识,根据反比例函数的图象位于一、三象限知k >0,根据二次函数的图象确知a <0,b <0,∴函数y =kx ﹣b 的大致图象经过一、二、三象限, 因此本题选D .9.(2020·泰安)在同一平面直角坐标系内,二次函数y ﹦ax 2+bx +b (a ≠0)与一次函数y ﹦ax +b 的图象可能是( )A .B .C .D . {答案} C{解析}本题考查了一次函数与二次函数的图像性质,选项A 中y=ax 2+bx+c 的图像可知a >0、b <0,y=ax+b 的图像可知a >0、b >0,则选项A 不正确;选项B 中y=ax 2+bx+c 的图像可知a <0、b <0,y=ax+b 的图像可知a >0、b <0,则选项B 不正确;选项C 中y=ax 2+bx+c 的图像可知a >0、b <0,y=ax+b 的图像可知a >0、b <0,则选项C 正确;选项D 中y=ax 2+bx+c 的图像可知a >0、b <0,y=ax+b 的图像可知a <0、b=0,则选项D 不正确;,因此本题选C .(2020·四川甘孜州)10.如图,二次函数y =a (x +1) 2+k 的图象与x 轴交于A (-3,0), B 两点,下列说法错误的是( )A.a <0 B.图象的对称轴为直线x=-1C.点B的坐标为(1,0) D.当x<0时,y随x的增大而增大{答案}D{解析}本题考查了二次函数的图象与系数a、b、c的关系.∵抛物线开口向下,∴a<0,故A正确;∵二次函数y=a(x+1) 2+k的顶点坐标为(-1,k) ,∴图象的对称轴为直线x=-1,故B正确;由抛物线的对称性,得B(2,0) ,故C正确;由图象得,当x<-1时,y随x的增大而增大,当x>-1时,y随x的增大而减小,故D错;综上此题选D.10.(2020·福建)10.已知()111,P x y,()222,P x y是抛物线22=-y ax ax上的点,下列命题正确的是()A.若12|1||1|->-x x,则12>y y B.若12|1||1|->-x x,则12<y yC.若12|1||1|-=-x x,则12=y y D.若12=y y,则12=x x{答案}C{解析}本题考查了二次函数的图象和性质,∵22=-y ax ax=a(x-1)2-a,∴抛物线的对称轴为x=1,根据二次函数的对称性知若12|1||1|-=-x x,则12=y y,因此本题选C.10.(2020·襄阳)二次函数y=ax2+bx+c的图象如图所示,下列结论:①ac<0;②3a+c=0;③4ac-b2<0;④当x>-1时,y随着x的增大而减小.其中正确的有()A.4个B.3个C.2个D.1个{答案}B{解析}(1)由抛物线开口向上且与y轴的负半轴相交,得a>0,c<0,从而ac<0,于是①正确;(2)由抛物线的对称轴为x=1,得-2ba=1,于是b=-2a.由抛物线过点(-1,0),得a-b+c=0,于是a-(-2a)+c=0,即3a+c=0,从而②正确;(3)由抛物线与x轴有两个不同的交点,得b2-4ac>0,从而4ac-b2<0,于是③正确;(4)由图可知,当-1<x≤1时,y随着x的增大而减小,当x>1时,y随着x 的增大而增大,于是④错误.综上,结论正确的有3个,故选B.(2020·南充)10.关于二次函数)0(542≠--=aaxaxy的三个结论:①对任意实数m,都有mx+=21与mx-=22对应的函数值相等;②若3≤x≤4,对应的y的整数值有4个,则134-≤<-a或341<≤a;第10题图1-1OyxA.①②B.①③C.②③D.①②③{答案}D2对称,∴对任意实数m,都有x1=2+m与x2=2﹣m对应的函数值相等,所以①正确;因为二次函数在3≤x≤4上y随x的增大而增大,或增大而减小,而且x=3时y=-3a-5,x=4时y=-5,所以y要有4个整以③正确.故选D.10.(2020·齐齐哈尔)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于点(4,0),其对称轴为直线x=l,结合图象给出下列结论:①ac<0;②4a﹣2b+c>0;③当x>2时,y随x的增大而增大;④关于x的一元二次方程ax2+bx+c=0有两个不相等的实数根.其中正确的结论有()A.1个B.2个C.3个D.4个{答案} C{解析}根据抛物线的开口方向、对称轴、顶点坐标、增减性以及与x轴y轴的交点,综合判断即可.抛物线开口向上,因此a>0,与y轴交于负半轴,因此c<0,故ac<0,所以①正确;抛物线对称轴为x=1,与x轴的一个交点为(4,0),则另一个交点为(﹣2,0),于是有4a﹣2b+c=0,所以②不正确;x>1时,y随x的增大而增大,所以③正确;抛物线与x 轴有两个不同交点,因此关于x 的一元二次方程ax 2+bx +c =0有两个不相等的实数根,所以④正确;综上所述,正确的结论有:①③④, 故选:C .(2020·德州)11.二次函数2y ax bx c =++的部分图象如图所示,则下列选项错误的是 A. 若(-2,y 1),(5,y 2)是图象上两点,则y 1>y 2 B. 30a c +=C. 方程22ax bx c ++=-有两个不相等的实数根D. 当0x ≥时,y 随x 的增大而减小{答案}D{解析}∵抛物线2y ax bx c =++的对称轴是x=1,所以x=-2与x=4时的函数值相等,所以若(-2,y 1),(5,y 2)是图象上两点,则y 1>y 2本选项正确; ∵对称轴x =﹣=1,∴b =﹣2a . 由函数的图象知:当x =﹣1时,y =0;即a ﹣b +c =0,∴a +2a +c =0,即3a +c =0,故本选项正确;∵抛物线2y ax bx c =++与直线y=-2有两个不同的交点,所以 方程22ax bx c ++=-有两个不相等的实数根,故本选项正确;∵抛物线在对称轴x =1的左侧或左侧,y 随着x 的增大而增大(或减小),故本选项错误.8. (2020·岳阳)对于一个函数,自变量x 取c 时,函数值y 等于0,则称c 为这个函数的零点. 若关于x 的二次函数()0102≠+--=m m x x y 有两个不相等的零点()212,1x x x x <,关于x 的方程02102=--+m x x 有两个不相等的非零实数根()434,3x x x x <,则下列关系式一定正确的是( )A . 1310<<x xB .131>x x C .1420<<x x D .142>x x{答案}A{解析}∵关于x 的方程02102=--+m x x 可变形为02102=++--m x x ,∴关于x 的方程02102=++--m x x 有两个不相等的非零实数根()4343,x x x x <,∴二次函数()02102≠++--=m m x x y 有两个不相等的零点()4343,x x x x <,二次函数()02102≠++--=m m x x y 的图象由()0102≠+--=m m x x y 的图象向上平移两个单位而得.对称轴都为直线52102-=---=-=a b x ,画出草图,由图可知:013<<x x ,两边都除以3x 得,1031<<x x ,故选A .8.(2020·湖北孝感)将抛物线C 1:y=x 2-2x+3向左平移1个单位长度,得到抛物线C 2,抛物线C 2与抛物线C 3关于x 轴对称,则抛物线C 3的解析式为( )A.y=-x 2-2B.y=-x 2+2C.y=x 2-2D.y=x 2+2 {答案}A{解析}利用平移得性质“上加下减,左加右减”得抛物线C 2得解析式:y=(x +1)2-2(x+1)+3,整理得y=x 2+2,再利用关于x 轴对称的性质“横坐标不变,纵坐标互为相反数”得:y=-x 2-2.故选A.9.(2020·达州)如图,直线y 1=kx 与抛物线y 2=ax 2+bx +c 交于A 、B 两点,则y = ax 2+(b -k )x +c 的图象可能是( ){答案}B{解析}由直线y 1=kx 与抛物线y 2=ax 2+bx +c 的图象可知k >0,a <0,b <0,c <0,b 2﹣4ac >0,所以b ﹣k <0,(b -k )2﹣4ac= b 2﹣2bk +k 2-4ac >0,即y= ax 2+(b -k )x+c 的图象开口向下,对称轴在y 轴的左侧且与x 轴有两个交点.8.(2020·菏泽)一次函数y =ax +b 与二次函数y =ax 2+bx +c 在同一平面直角坐标系中的图象可能是( ){答案}B{解析}根据一次函数与二次函数系数的取值范围与函数图象的位置关系分类讨论求解.A 、∴二次函数y =ax 2+bx +c 的图象开口向上,对称轴在y 轴右侧,∴a >0,b <0,∴一次函数y =ax +b 的图象应过第一、三、四象限,故A 错误;B 、∴抛物线开口向上,对称轴在y 轴左侧,∴a >0,b >0,∴直线应过第一、二、三象限,故B 正确;C 、∴抛物线开口向下,对称轴在y 轴右侧,∴a <0,b >0,∴直线应过第一、二、四象限,故C 错误;D 、∴抛物线开口向下,对称轴在y 轴左侧,∴a <0,b <0,∴直线应过第二、三、四象限,故D 错误.10.(2020·荆门)若抛物线y =ax 2+bx +c (a >0)经过第四象限的点(1,-1),则关于x 的方程ax 2+bx +c =0的根的情况是( )A .有两个大于1的不相等实数根B .有两个小于1的不相等实数根C .有一个大于1另一个小于1的实数根D .没有实数根 {答案}C{解析}依题意得a +b +c =-1.∴c =-(1+a +b ).∵原方程的判别式△=b 2-4ac =b 2+4a (1+a +b )=b 2+4a +4a 2+4ab =(2a +b )2+4a >0,∴原方程有两个不相等的实数根.设两根分别为x 1,x 2,则x 1+x 2=-b a ,x 1x 2=c a ,∴(x 1-1)(x 2-1)=x 1x 2-(x 1+x 2)+1=c a +b a +1=1a (a +b +c )=-1a<0.∴x 1-1与x 2-1异号,这说明x 1,x 2中一个大于1,另一个小于1.故选C .10.(2020·随州)如图所示,已知二次函数c +bx +ax =y 2的图象与x 轴交于A (-1,0),B (3,0)两点,与y 轴的正半轴交于点C ,顶点为D ,则下列结论:①2a+b=0;②2c<3b ;③当△ABC 是等腰三角形时,a 的值有2个;④当△BCD 是直角三角形时,22-=a .其中正确的有( ) A.1个 B.2个 C.3个 D.4个{答案}B{解析}本题考查了二次函数图象与系数的关系、等腰三角形的性质、勾股定理,解答过程如下: ∵二次函数c +bx +ax =y 2的图象与x 轴交于A (-1,0),B (3,0)两点,O xy AO x y BO x y CO x yD∵二次函数c +bx +ax =y 2的图象经过点A (-1,0),∴a-b+c=0.A.154B .4C .−154D .−174直角坐标系中的图象大致是( ){答案}B{解析}由二次函数的图象确定a 、b 、c 的符号,再确定一次函数和反比例函数图象的位置.因为抛物线开11.(2020·深圳)二次函数y =ax 2+bx +c (a ≠0)的顶点坐标为(-1,n ),其部分图象如图所示,以下结论错误..的是( )A .abc >0B .4ac -b 2<0C .3a +c >0D .关于x 的方程ax 2+bx +c =n +1无实数根{答案}C{解析}根据抛物线开口向下,得到a <0,对称轴为直线x =-b2a =-1,知b =2a <0,抛物线与y 轴交于正半轴,c >0,∴abc >0,故选项A 正确;根据抛物线与x 轴有两个交点,∴b 2-4ac >0,即4ac -b 2<0,故选项B 正确;当x =1时,y =a +b +c <0,又∵b =2a ,∴3a +c <0,∴选项C 错误;∵抛物线开口向下,顶点为(-1,n ),∴函数有最大值n ,即抛物线y =ax 2+bx +c 与直线y =n +1无交点,一元二次方程ax 2+bx +c =n +1无实数根,选项D 正确;而要选择结论错误..的,因此本题选C .9.(2020·鄂州)如图,抛物线2(0)y ax bx c a =++≠与x 轴交于点(1,0)A -和B ,与y 轴交于点C .下列结论:①0abc <;②20a b +<;③420a b c -+>;④30a c +>,其中正确的结论个数为( )A .1个B .2个C .3个D .4个 {答案}B{解析}此题考查二次函数图像位置与系数的关系,数形结合是关键.由抛物线的开口方向判断a 与0的关系,由抛物线与y 轴的交点判断c 与0的关系,进而判断①;根据对称轴<1求出2a 与b 的关系,进而判断②;根据x =﹣2时,y >0可判断③;由x =-1和2a 与b 的关系可判断④. ∵抛物线开口向上, ∴a >0,∴-b <2a ,即2a +b >0,故②错误; 当x =-2时,y =4a -2b +c >0,故③正确; 当x =-1时,抛物线过x 轴,即a -b +c =0, ∴b =a +c , 又2a +b >0,∴2a +a +c >0,即3a +c >0,故④正确;10.(2020•湘西州)已知二次函数y =ax 2+bx +c 图象的对称轴为x =1,其图象如图所示,现有下列结论:①abc >0,②b ﹣2a <0,③a ﹣b +c >0,④a +b >n (an +b ),(n ≠1),⑤2c <3b .正确的是( )(第10题图)A .①③B .②⑤C .③④D .④⑤{答案}D{解析}本题主要考查了图象与二次函数系数之间的关系,二次函数y =ax 2+bx +c 系数符号由抛物线开口方向、对称轴和抛物线与y 轴的交点、抛物线与x 轴交点的个数确定.①由图象可知:a <0,b >0,c >0,abc <0,故此选项错误;②当x =﹣2时,y =4a ﹣2b +c <0,即b ﹣2a >2c>0,故此选项错误;③当x=-1时,y=a-b+c <0,故此选项错误;④当x =1时,y 的值最大.此时,y =a +b +c ,而当x =n 时,y =an 2+bn +c ,所以a +b +c >an 2+bn +c ,故a +b >an 2+bn ,即a +b >n (an +b ),故此选项正确.⑤当x =3时函数值小于0,y =9a +3b +c <0,且x 2b a =-=1,即a 2b =-,代入得9(2b-)+3b +c <0,得2c <3b ,故此选项正确;故④⑤正确.因此本题选 D .10.(2020·株洲)二次函数2y ax bx c =++,若0ab <,20a b ->,点()11,A x y ,()22,B x y 在该二次函数的图象上,其中12x x <,120x x +=,则( ) A. 12y y =- B. 12y y >C. 12y y <D. 1y 、2y 的大小无法确定 {答案}B {解析}首先分析出a,b,x 1的取值范围,然后用含有代数式表示y 1,y 2,再作差法比较y 1,y 2的大小. ∵20a b ->,b 2≥0, ∴a>0. 又∵0ab <, ∴b<0∵12x x <,120x x +=, ∴21x x =-,x 1<0.∵点()11,A x y ,()22,B x y 在该二次函数2y ax bx c =++的图象上∴2111y ax bx c =++,2222211y ax bx c ax bx c =++=-+. ∴y 1-y 2=2bx 1>0. ∴y 1>y 2. 故选:B.12.(2020·天津)已知抛物线(是常数,)经过点,其对称轴是直线.有下列结论: ①;②关于x 的方程有两个不等的实数根; ③. 其中,正确结论的个数是( ) A. 0 B. 1 C. 2 D. 3{答案}C{解析}本题考查了二次函数图象与系数的关系:对于二次函数y=ax 2+bx+c (a≠0),二次项系数a 决定抛物线的开口方向和大小:当a >0时,抛物线向上开口;当a <0时,抛物线向下开口;一次项系数b 和二次项系数a 共同决定对称轴的位置:当a 与b 同号时(即ab >0),对称轴在y 轴左; 当a 与b 异号时(即ab <0),对称轴在y 轴右;常数项c 决定抛物线与y 轴交点位置:抛物线与y 轴交于(0,c );抛物线与x 轴交点个数由△决定:△=b 2-4ac >0时,抛物线与x 轴有2个交点;△=b 2-4ac=0时,抛物线与x 轴有1个交点;△=b 2-4ac <0时,抛物线与x 轴没有交点.根据对称轴和抛物线与x 轴的一个交点,得到另一个交点,然后根据图象确定答案即可判断①根据根的判别式,即可判断②;根据以及c=-2a ,即可判断③.∵抛物线经过点,对称轴是直线, ∴抛物线经过点,b=-a当x= -1时,0=a-b+c ,∴c=-2a;当x=2时,0=4a+2b+c , ∴a+b=0,∴ab<0,∵c >1,2y ax bx c =++,,a b c 0,1a c ≠>()2,012x =0abc >2ax bx c a ++=12a <-240b ac ->1c >2y ax bx c =++()2,012x =(1,0)-∴abc <0,由此①是错误的,∵,而 ∴关于x 的方程有两个不等的实数根,②正确; ∵,c=-2a>1, ∴,③正确 故选:C.10.(2020·成都)关于二次函数y =x 2+2x ﹣8,下列说法正确的是( ) A .图象的对称轴在y 轴的右侧 B .图象与y 轴的交点坐标为(0,8) C .图象与x 轴的交点坐标为(﹣2,0)和(4,0) D .y 的最小值为﹣9{答案}D{解析}根据题目中的函数解析式和二次函数的性质,可以判断各个选项中的结论是否正确,从而可以解答本题.解:∴二次函数y =x2+2x ﹣8=(x+1)2﹣9=(x+4)(x ﹣2), ∴该函数的对称轴是直线x =﹣1,在y 轴的左侧,故选项A 错误; 当x =0时,y =﹣8,即该函数与y 轴交于点(0,﹣8),故选项B 错误;当y =0时,x =2或x =﹣4,即图象与x 轴的交点坐标为(2,0)和(﹣4,0),故选项C 错误;当x =﹣1时,该函数取得最小值y =﹣9,故选项D 正确;故选:D . 15.(2020·河北)如图9,现要在抛物线y =x (4-x )上找点P (a ,b ).针对b 的不同取值,所找点P 的个数,三人的说法如下,甲:若b =5,则点P 的个数为0; 乙:若b =4,则点P 的个数为1; 丙:若b =3,则点P 的个数为1. 下列判断正确的是A.乙错,丙对B.甲和乙都错C.乙对,丙错D.甲错,丙对{答案}C{解析}∵y=x(4-x)=-x2+4x=-(x-2)2+4,∴抛物线的顶点坐标为(2,4),即点P 的纵坐标的最大值为4.∴当b=5时,点P 的个数为0;当b=4时,点P 的个数为1;当b=3时,点P 的个数为2.故甲和丙判断错误,乙判断正确,答案为C. 7.(2020·广东)把函数212y x 的图象向右平移1个单位长度,平移后图象的函数解析式为( ) A .22yx B .211y x C .222y x D .213y x{答案}C{解析}本题考查了二次函数图象的平移,由条件得原函数的顶点为(1,2),向右平移1个单位后变成(2,2),所以新函数为222y x ,也可用规律“左加右减”得222y x ,因此本题选C .222224=4(2)890b ac a a a a a a ---=+=>0a ≠2ax bx c a ++=1c >12a <-10.(2020·广东)如题10图,抛物线2yax bx c 的对称轴是x =1.下列结论:∴0abc ;∴240b ac ;∴80a c ;∴520a b c ,正确的有( )A .4个B .3个C .2个D .1个{答案}B{解析}本题考查了二次函数的系数与图象的关系、抛物线与一元二次方程的关系,首先通过图象,可得0a和0c ,再通过对称轴1x,可得2b a和12b a,所以0b 和2b a ,所以:(1)0abc ,故∴错误;(2)由于抛物线与x 轴有两个交点,因此所对应的一元二次方程20ax bx c有两个不相等的实数根,即240b ac,因此∴正确;(3)将2b a 代入原抛物线解析式,得:22y ax axc ,由图象可知,当4x时,0y ,因此1680aac,即80a c,故∴正确;(4)由于当1x 和2x 时,都有0y ,所以有:0a b c和420ab c,两式相加得:520abc,故∴正确综上所述,共有3个正确结论,因此本题选B .12.(2020·牡丹江)如图是二次函数y =ax 2+bx+c(a≠0)图象的一部分,对称轴为x =21,且经过点(2,0). 下列说法:∴abc <0;∴ -2b+c =0;∴4a+2b+c <0;∴若15()2y -,,25()2y ,是抛物线上的两点,则y 1<y 2;∴41b >m(am+b) (其中m≠21). 其中说法正确的是( )A. ∴∴∴∴B. ∴∴∴C. ∴∴∴D. ∴∴∴{答案}A{解析}根据抛物线开口方向得到a <0,根据抛物线的对称轴得b =﹣a >0,根据抛物线与y 轴的交点在x 轴上方得到c >0,则abc <0,于是可对①进行判断;根据对称轴和一个与x 轴的交点,求得另一个交点,由根与系数的关系即可得出c =﹣2a ,则得到﹣2b+c =0,于是可对②进行判断;由于经过点(2,0),则得到4a+2b+c =0,则可对③进行判断;通过点(25-,y1)和点(25,y2)离对称轴的远近对(第12题图)x=2 Oyx xy题10图–2–11234O④进行判断;根据抛物线的对称轴为直线x =21,开口向下,得到当x =21时,y 有最大值,所以41a+21b >m (am+b )(其中m≠21),由a =﹣b 代入则可对⑤进行判断.具体判断过程如下: ∵抛物线开口向下,∴a <0,∵抛物线对称轴为直线x =a b 2-=21,∴b =﹣a >0,∵抛物线与y 轴的交点在x 轴上方,∴c >0,∴abc <0,所以①正确; ∵对称轴为x =21,且经过点(2,0),∴抛物线与x 轴的另一个交点为(﹣1,0), ∴ac=﹣1×2=﹣2,∴c =﹣2a ,∴﹣2b+c =2a ﹣2a =0,所以②正确; ∵抛物线经过点(2,0)∴x =2时,y =0,∴4a+2b+c =0,所以③错误;∵点(25-,y1)离对称轴要比点(25,y2)离对称轴要远,∴y1<y2,所以④正确. ∵抛物线的对称轴为直线x =21,∴当x =21时,y 有最大值,∴41a+21b+c >am2+bm+c (其中m≠21),∴41a+21b >m (am+b )(其中m≠21), ∵a =﹣b ,∴﹣41b+21b >m (am+b ),∴41b >m (am+b ),所以⑤正确;故选A.7.(2020·咸宁)在平面直角坐标系xOy 中,对于横、纵坐标相等的点称为“好点”.下列函数的图象中不存在...“好点”的是( ) A.y x =-B. 2y x =+C. 2y x=D. 22y x x =-{答案}B{解析}本题考查了函数图像上的点的坐标,根据“好点”的定义,好点即为直线y=x 上的点,令各函数中y=x ,A 、x=-x ,解得:x=0,即“好点”为(0,0),故选项不符合;B 、2x x =+,无解,即该函数图像中不存在“好点”,故选项符合;C 、2x x=,解得:2x =±,经检验2x =±是原方程的解,即“好点”为(2,2)和(-2,-2),故选项不符合;D 、22x x x =-,解得:x=0或3,即“好点”为(0,0)和(3,3),故选项不符合;,因此本题选B . 12.(2020·凉山州)二次函数y =ax 2+bx +c 的图象如图所示,有如下结论:∴abc >0;∴2a +b =0;∴3b -2c <0;∴am 2+bm ≥a +b (m 为实数).其中正确的结论个数是( )A .1个B .2个C .3个D .4个{答案}D{解析}(1)由图可知抛物线开口向上,与y 轴交于负半轴,对称轴为直线x =1,∴a >0,b <0,第12题图321-1O x =1y xc<0,∴abc>0,从而∴正确;(2)∴12ba-=,∴b=-2a.∴2a+b=0,从而∴正确;(3)∴b=-2a,∴3b-2c=-2a+2b-2c=-2(a-b+c).而由图象可知,当x=-1时,y>0,从而a-b+c>0,于是-2(a-b+c)<0,从而3b-2c<0.故∴正确;(4)由图可知,当x=1,ymin=a+b+c,∴当x=m时,am2+bm +c≥a+b+c,即am2+bm≥a+b(m为实数),从而∴正确.故选D.10.(2020·抚顺本溪辽阳)如图,在Rt∴ABC中,∴ACB=90°,AC=BC=CD∴AB于点D.点P从点A出发,沿A D C→→的路径运动,运动到点C停止,过点P作PE∴AC于点E,作PF∴BC于点F.设点P运动的路程为x,四边形CEPF的面积为y,则能反映y与x之间函数关系的图象是()A. B.C. D.{答案}A{解析}根据三个角是直角,得出四边形CEPF为矩形,再结合△APE是等腰直角三角形,用含x 的代数式表示矩形的边PE与EC的长,求出矩形CEPF的面积,再利用二次函数图像性质即可求解.Rt△ABC中,∠ACB=90°,AC=BC=,则AD=DC=2.∵PE⊥AC,PF⊥BC,∴∠ACB =∠PEC=∠PFC=90°,∴四边形CEPF为矩形.当点P在AD上时,即0≤x≤2,∵在等腰直角△APE中,AE=PE=2,∴EC=AC-AE=2,∴矩形CEPF的面积y=PE·EC=2×(-)=-12x2+2x;如图,当点P在CD上时,即2≤x≤4,由题意可知四边形CEPF为正方形,此时CP=4-x,∴四边形形CEPF的面积y=12CP2=12(4-x)2.结合所求的函数关系式,及二次函数图像性质,可知选项A正确.故选择A.10.(2020·安顺)已知二次函数2y ax bx c=++的图象经过(3,0)-与(1,0)两点,关于x的方程20ax bx c m+++=(0)m>有两个根,其中一个根是 3.则关于x的方程20ax bx c n+++=(0)n m<<有两个整数根,这两个整数根是()A.2-或0B.4-或2C.5-或3D.6-或4ACEDPFDA BCE FP{答案}B{解析} ∵二次函数2y ax bx c =++的图象经过(3,0)-与(1,0)两点,∴抛物线的对称轴为直线1,x =-又∵关于x 的方程20ax bx c m +++=(0)m >有两个根,其中一个根是3,∴另一个根为-5.∵0n m <<,且方程20ax bx c n +++=有两个整数根,∴20ax bx c n +++=的根的范围分别是12533x x <<<<--,1,∴方程的两个整数根分别为-4或2.11.(2020·滨州)对称轴为直线x =1的抛物线2y ax bx c =++(a 、b 、c 为常数,(且a≠0)如图所示,小明同学得出了以下结论:∴abc <0,∴b 2>4ac ,∴4a +2b +c >0,∴3a +c >0,ya +b ≤m (am +b )(m 为任意实数),∴当x <-1时,y 随x 的增大而增大,其中结论正确的个数为A .3B .4C .5D .6 {答案}A{解析}本题考查了二次函数图象与系数的关系,:①由图象可知:a >0,c <0,∵2ba -=1,∴b=-2a <0,∴abc <0,故①错误;②∵抛物线与x 轴有两个交点,∴b2-4ac >0,∴b2>4ac ,故②正确;③当x=2,y=4a+2b+c <0,故③错误;④当x=-1时,y=a-b+c >0,∴3a+c >0,故④正确;⑤当x=1时,y 的值最小,此时,y=a+b+c ,而当x=m 时,y=am2+bm+c ,所以a+b+c≤am2+bm+c ,故a+b≤am2+bm ,即a+b≤m (am+b ),故⑤正确,⑥当x <-1时,y 随x 的增大而减小,故⑥错误,因此本题选A . 12.(2020·宜宾)函数y =ax 2+bx +c (a ≠0)的图象与x 轴交于点(2,0),顶点坐标为(﹣1,n ),其中n >0.以下结论正确的是( ) ∴abc >0;∴函数y =ax 2+bx +c (a ≠0)在x =1和x =﹣2处的函数值相等;∴函数y =kx +1的图象与y =ax 2+bx +c (a ≠0)的函数图象总有两个不同交点; ∴函数y =ax 2+bx +c (a ≠0)在﹣3≤x ≤3内既有最大值又有最小值. A .∴∴ B .∴∴∴ C .∴∴ D .∴∴∴ {答案} C{解析}①由函数图象的顶点坐标为(﹣1,n ),其中n >0,可得出顶点在第二象限,b =2a ,且图象与x 轴交于点(2,0),得出抛物线的开口方向向下,∴a <0,b <0,c >0,∴abc >0,∴结论①正确; ②由函数图象的顶点坐标为(﹣1,n ),得出函数图象的对称轴为直线x =﹣1,函数y =ax2+bx+c (a≠0)在x =1和x =﹣3处的函数值相等,或函数y =ax2+bx+c (a≠0)在x =0和x =﹣2处的函数值相等,∴结论②错误;③由函数图象的顶点坐标为(﹣1,n ),与x 轴交于点(2,0),可得b =2a ,c =-8a ,∴y =ax2+2a x -8a ,将y =kx+1与y =ax2+2a x -8a 联立方程组,得到方程ax2+(2a -k )x -8a -1=0,Δ=(2a -k )2-4a (-8a -1),无法判断Δ是否大于0,∴函数y =kx+1的图象与y =ax2+bx+c (a≠0)的函数图象的交点情况无法确定,∴结论③错误;④由③可得y =ax2+2a x -8a ,在﹣3≤x≤3内,当x =﹣1时,y 有最大值n =-9a ,当x =﹣3时,y =7a ,当x =3时,y =-5a ,由①可知a <0,-9a >-5a >7a ,∴函数y =ax2+bx+c (a≠0)在﹣3≤x≤3内既有最大值又有最小值.∴结论④正确.12.(2020·恩施)如图,已知二次函数2y ax bx c =++的图象与x 轴相交于()2,0A -、()10B ,两点.则以下结论:∴0ac >;∴二次函数2y ax bx c =++的图象的对称轴为1x =-;∴20a c +=;∴0a b c -+>.其中正确的有( )个.A. 0B. 1C. 2D. 3{答案}C{解析}根据二次函数的图像性质逐个进行分析:∴:二次函数开口向下,故a <0,与y 轴的交点在y 的正半轴,故c >0,故ac <0,故∴错误; ∴:二次函数的图像与x 轴相交于()2,0A -、()1,0B ,由对称性可知,其对称轴为:21122x -+==-,故∴错误; ∴:由对称轴为21122x -+==-可得:122b a -=-,即:a b =;所以20a c a b c +=++=,故∴正确;∴:当1x =-时对应的y a b c =-+,观察图像可知1x =-时对应的函数图像的y 值在x 轴上方,故0a b c -+>,故∴正确.∴只有∴∴是正确的.故选:C .12.(2020·娄底)二次函数()()2()y x a x b a b =---<与x 轴的两个交点的横坐标分别为m 和n ,且m n <,下列结论正确的是( )A . m a n b <<<B .a m b n <<<C .m a b n <<<D .a m n b <<< {答案}C{解析}本题考查了抛物线与x 轴的交点,二次函数y=(x-a )(x-b )与x 轴交点的横坐标为a 、b ,将其图象往下平移2个单位长度可得出二次函数y=(x-a )(x-b )-2的图象,如图所示.。

相关文档
最新文档