Detection of Bovine Milk in Ovine Milk by an Indirect Enzyme-Linked Immunosorbent Assay
高效液相色谱-串联质谱法测定婴幼儿奶粉中核苷酸
第42卷第1期2021年1月Vol42No1Jan'2021质谱学报JournalofChinese MassSpectrometrySociety高效液相色谱-串联质谱法测定婴幼儿奶粉中核苷酸陈晶燕,陈万勤,王峰,陈碧莲,周霞,刘柱,梁晶晶(浙江省食品药品检验研究院,浙江杭州310052)摘要:建立了高效液相色谱-串联质谱法(HPLC-MS/MS)测定婴幼儿奶粉中胞嘧啶核苷酸(CMP)、腺嘌吟核苷酸(AMP)、鸟嘌吟核苷酸(GMP)、尿嘧啶核苷核(UMP)、次黄嘌吟核苷酸(IMP)等5种核苷酸含量。
使用碱性磷酸酶去磷酸化作用,把样品中的核苷酸水解成相应核苷,经选择性硼酸固相萃取净化,ACQUITY UPLC HSS T3(2.1mmX100mmXi.8"m)色谱柱分离,以5mmol/L甲酸铵溶液和乙腈为流动相进行梯度洗脱。
采用电喷雾正离子源,内标法定量,以多反应监测(MRM)模式进行质谱分析°结果表明,奶粉中5种核苷在各自线性范围内的线性关系良好,相关系数均大于0.998,回收率为74.2%〜110.7%,相对标准偏差在0.8%〜5.3%之间(n=6),CMP、AMP、GMP、UMP、IMP的定量限分别为0.7、0.1、0.7、3.3、0.6mg/100g°该方法灵敏度高、重现性好、定量准确,可用于测定婴幼儿奶粉中核苷酸含量°关键词:高效液相色谱-串联质谱法(HPLC-MS/MS);奶粉;核苷酸;核苷;多反应监测(MRM)中图分类号:O657.63文献标志码:A文章编号:10042997(2021)01009308doi:10.7538/zpxb.2019.0156开放科学(资源服务)标识码(OSID):Determination of Nucleotides in Infant Milk Powder by HighPerformance Liquid Chromatography-Tandem Mass SpectrometryCHENJing-yan,CHEN Wan-qin,WANG Feng,CHEN Bi-lian,ZHOU Xia,LIU Zhu,LIANGJing-jing(.Zhejiang Institute for Food and Drug Control,Hangzhou310052,China)Abstract:Nucleotides are biologically important small molecules composed of a nitroge-nousbase,afive-carbon sugar(ribose or deoxyribose)and at least one phosphate group.Theyplayimportantroleinimprovinggastrointestinaltractrepairafterdamage, maintainingtheimmunesystem andregulatinglipoprotein metabolism.Nowadaysthe roleofdietarynucleotideshasbeenpaidincreaseda t entionininfantnutrition.Dietary nucleotidesarecrucialtomaintainingnormalgrowthanddevelopmentininfants.There-forethecontentsofnucleotidesininfantmilkpowderbecomeimportant.A methodfor收稿日期:2019-11-15;修回日期:2020-03-10基金项目:浙江省市场监管局项目(018007)浙江省食品药品监督管理局科技计划项目(019002)资助作者简介:陈晶燕(1993—),女(汉族),浙江杭州人,助理研究员,从事分析化学研究。
牛乳酪蛋白基因多态性研究进展
牛乳酪蛋白基因多态性研究进展赵烜影,刘振民,雍靖怡,穆海菠,李 楠*(乳业生物技术国家重点实验室,上海乳业生物工程技术研究中心,光明乳业股份有限公司乳业研究院,上海 200436)摘 要:牛乳被称为“白色血液”,是最理想的天然食品之一,富含蛋白质、乳脂、钙、维生素和人体必需的8 种氨基酸,也被称为“接近完美的食品”。
但我国的牛乳多用于液态乳的加工,其营养价值未得到充分利用。
酪蛋白基因多态性被认为会影响乳产量、乳的理化特性和营养成分、乳制品加工特性以及营养价值,因此得到学者们的重视。
本文对现有研究中关于酪蛋白基因多态性及其检测方法和应用进行归纳总结,为奶牛的定向选育、改善牛乳品质、精准开发功能性乳制品提供一定参考。
关键词:酪蛋白;多态性;检测方法;加工特性;人体健康Progress in the Study of Bovine Milk Casein Gene PolymorphismZHAO Xuanying, LIU Zhenmin, YONG Jingyi, MU Haibo, LI Nan *(Shanghai Engineering Research Center of Dairy Biotechnology, State Key Laboratory of Dairy Biotechnology,Dairy Research Institute, Bright Dairy and Food Co. Ltd., Shanghai 200436, China)Abstract: Bovine milk is known as the “white blood” and is one of the most ideal natural foods, rich in protein, milk fat, calcium, vitamins and the eight essential amino acids, also known as a near-perfect food. However, in China, cow ’s milk is mostly used for liquid milk processing, and its nutritional value has not been fully utilized. Casein gene polymorphisms are thought to affect milk yield, physicochemical properties and nutritional composition, dairy product manufacturing performance and nutrition, and hence have received much attention from scholars. In this paper, we summarize the existing studies on casein gene polymorphism, the methods used for its detection, and its application, hoping to provide some reference for the targeted breeding of dairy cows, the improvement of milk quality, and the precise development of functional dairy products.Keywords: casein; polymorphism; detection methods; processing performance; human health DOI:10.15922/ki.jdst.2021.01.009中图分类号:TS252.1 文献标志码:A 文章编号:1671-5187(2021)01-0044-07引文格式:赵烜影, 刘振民, 雍靖怡, 等. 牛乳酪蛋白基因多态性研究进展[J]. 乳业科学与技术, 2021, 44(1): 44-50. DOI:10.15922/ki.jdst.2021.01.009. ZHAO Xuanying, LIU Zhenmin, YONG Jingyi, et al. Progress in the study of bovine milk casein gene polymorphism[J]. Journal of Dairy Science and Technology, 2021, 44(1): 44-50. DOI:10.15922/ki.jdst.2021.01.009. 收稿日期:2020-10-26基金项目:“十三五”国家重点研发计划重点专项(2018YFC1604205);上海乳业生物工程技术研究中心项目(19DZ2281400)第一作者简介:赵烜影(1993—)(ORCID: 0000-0002-0478-2455),女,硕士,研究方向为乳品营养与加工。
ABC-ELISA法检测牛乳过敏小鼠模型中的特异性IgE
MA 0 Lu-tianl,XIA NG Jun-jian2,ZHA NG Zai-jun2 1.Department of Biology,Huizhou College of Guangdong,Huizhou 516007;2.Molecule Immunology and Antibody Engi- neering Lab,College of Life Science and Technology,Jinan University,Gnangzhou 510632,China
万方数据
用链霉亲和素代替亲和素,建立ABC—EUSA。步骤如下。用 乳清蛋白包板,4qC包被过夜;用PBS—T洗板3次,每次3 min;封 闭,加封闭液为150斗L/孔,37℃孵育2 h后同上洗涤;加待测血 清和阴性对照血清,37℃反应2 h后洗涤5次,每次3 min;加生 物素化羊抗鼠IgE,湿盒中37℃孵育2 h,同上洗涤;加链霉亲和 素一辣根过氧化物酶结合物,37℃反应1 h,同上洗涤;加底物 (OPD—H202),37℃显色充分后用2 mol/L的H2SO。终止反应。于 492 nm/570 Hill双波长下测定吸光度值(D),以P/N值大于或 等于2.1判为阳性。 1.5最佳包被抗原量的确定
0.80
O.60
0.40
O.20
0.00
1:100
1:200
1:400
1:B00 1:1600 1:3200
血清系列稀释度
图2不同pH条件的包被效果比较
1.00
O.80
O.60 0.40
O.20
O.00
1:100
1:200
1:400
1:800 1:1600 1:3200
血清系列稀释度
牛肉中疯牛病特殊风险物质荧光RT-PCR检测方法的建立
农业生物技术学报 Journal of Agricultural Biotechnology2007,15(5):752~756*基金项目: 国家科技奥运专项 (No.207001000560716)资助。
**通讯作者。
Author for correspondence.研究员,主要从事进出口动物检疫工作和疯牛病研究。
Tel: 861058619200; Fax:861058619201;Email:<magp@>.收稿日期: 20070207接受日期: 20070404·研究论文·牛肉中疯牛病特殊风险物质荧光 RTPCR检测方法的建立*史喜菊, 马贵平 **, 李冰玲, 杨金良, 王 宇,刘旭辉, 李炎鑫, 刘全国(北京出入境检验检疫局, 北京 100026)摘要:建立了检测牛肉中疯牛病特殊风险物质 (主要是中枢神经组织) 标记物胶原纤维酸性蛋白 ( )mRNA的荧光 RTPCR检测技术。
结果表明,该技术具有良好的种属特异性和组织特异性,只能从牛源和羊源的中枢神经组织中检测到 GFAP, 猪源和禽源检测结果为阴性, 而且只有脑和脊髓等中枢神经组织产生阳性反应, 其它内脏组织以及不同部位牛肉检测 结果均为阴性; 敏感性检测结果表明, 该方法最低检测限达到 0.001%以下; 稳定性试验结果表明, 100 ℃加热处理 30min对检 测结果无明显影响, 中枢神经组织在30 ℃以上室温可以稳定存放 4d, 在 4 ℃可以稳定冷藏 2周, 检测结果仍然为阳性。
所建 立的荧光 RTPCR技术用于牛肉中疯牛病特殊风险物质的检测具有特异性强、 敏感性高、 稳定性好、 快速方便等优点, 适合于 在日常检测工作中推广使用。
关键词:疯牛病;风险物质; 荧光 RTPCR; 牛肉中图分类号:S188 文献标识码: A 文章编号:10061304(2007)05075205Detection of Bovine Central Nervous System Tissue as Bovine SpongiformEncephalopathy Specified Risk Material in Beef by Real Time RTPCRSHI Xiju,MA Guiping**,LI Bingling,YANG Jinliang,WANG Yu,LIU Xuhui, LI Yanxin,LIUQuanguoA real time RTPCR detection of bovine central nervous system tissue (CNS)as bovine spongiform encephalopathy (BSE)specified risk material(SRM)in beef and beef products based on glial fibrillary acidic protein( )mRNA was reported. The results showed that the developed method allowed the detection of CNS tissues from bovine and ovine origins,but not from porcine and avian origins,and that the lowest detection limit was below0.001%bovine brain homogenate,and the mRNA sig nal detection was not affected by100 ℃ heating treatment for30min and long period of storage at over30 ℃ room temperature(RT) for4d and at4 ℃ for15d.It is concluded that real time RTPCR based on mRNA can serve as a sensitive and specific test inroutine inspection and quarantine detection for illegal use of bovine CNS tissues in beef and beefproducts.bovine spongiform encephalopathy;specified risk material; real time RTPCR;beef牛海绵状脑病(bovine spongiform encephalopa thy,BSE), 俗称疯牛病, 是牛的一种进行性和致死性 神经系统疾病 (Wells ., 1995)。
牛乳中亚硝酸盐测定
牛乳中亚硝酸盐测定英文回答:Determining Nitrite Content in Milk.Nitrites are chemical compounds that can be found in various food products, including milk. The presence of nitrites in milk can be harmful to human health, as theycan react with certain components in the body to form nitrosamines, which are known to be carcinogenic. Therefore, it is important to measure the nitrite content in milk to ensure its safety for consumption.There are several methods available for the determination of nitrite content in milk. One commonly used method is the Griess reaction. In this method, nitritesreact with sulfanilic acid and N-(1-naphthyl)ethylenediamine dihydrochloride to form a pink azo dye. The intensity of the color produced is directly proportional to the nitrite concentration in the milksample. This colorimetric method is relatively simple and can provide accurate results.To perform the Griess reaction, the milk sample needs to be first treated with an acidic solution to convert any nitrate present into nitrite. Then, the sample is mixed with sulfanilic acid and N-(1-naphthyl)ethylenediamine dihydrochloride, and the color development is measured using a spectrophotometer. The absorbance of the colored solution is compared to a standard curve prepared using known nitrite concentrations to determine the nitrite content in the milk sample.Another method that can be used for nitrite determination in milk is high-performance liquid chromatography (HPLC). This method involves separating the nitrite from other components in the milk sample using a chromatographic column and then quantifying the nitrite using a detector. HPLC provides high sensitivity and specificity for nitrite analysis, making it a reliable method for this purpose.In addition to these methods, there are also commercial test kits available for nitrite determination in milk. These kits usually utilize colorimetric or enzymatic reactions to detect and quantify nitrites. They are convenient to use and can provide rapid results.中文回答:牛乳中亚硝酸盐测定。
211251901_气相色谱-氢火焰离子化检测器测定婴幼儿乳粉中37种脂肪酸含量
罗叶丽,李国薇,董梅,等. 气相色谱-氢火焰离子化检测器测定婴幼儿乳粉中37种脂肪酸含量[J]. 食品工业科技,2023,44(11):245−253. doi: 10.13386/j.issn1002-0306.2022040281LUO Yeli, LI Guowei, DONG Mei, et al. Determination of 37 Kinds of Fatty Acids in Infant Milk Powder by Gas Chromatography-Hydrogen Flame Ionization Detector[J]. Science and Technology of Food Industry, 2023, 44(11): 245−253. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2022040281· 分析检测 ·气相色谱-氢火焰离子化检测器测定婴幼儿乳粉中37种脂肪酸含量罗叶丽1,李国薇2, *,董 梅1,赵 璧2,强 鑫2(1.渭南市检验检测研究院,陕西渭南 714000;2.富平县检验检测中心(陕西省羊乳产品质量监督检验中心),陕西富平 711700)摘 要:目的:建立气相色谱-氢火焰离子化检测器测定乳粉中37种脂肪酸含量的分析方法。
方法:婴幼儿乳粉样品运用乙酰氯-甲醇法(10%乙酰氯甲醇溶液于80 ℃±1 ℃水浴2 h )甲酯化,离心取上清液过0.22 μm 的有机滤膜后经SP-2560(100 m×250 μm×0.2 μm )分离,气相色谱法检测,外标法定量。
结果:37种脂肪酸甲酯在0.002~0.2 mg/mL 浓度范围内线性良好,相关系数均大于0.999,回收率低梯度在85.5%~100.0%之间,中梯度在91.2%~104.2%之间,高梯度在86.8%~103.8%之间,精密度在0.88%~3.81%之间,实际样品测定结果符合相关标准要求。
牛乳头状瘤病的诊断与治疗
养殖与饲料2023年第8期牛乳头状瘤病是由牛乳头状瘤病毒(BPV )感染引起,于1929年由Creech 首次报道,目前为止广泛流行于世界各地,我国于1973年首次发现该病[1]。
牛乳头状瘤病毒主要通过接触方式进行传播,引起皮肤或黏膜上皮细胞过度增生形成散在肿瘤。
牛乳头状瘤病是自限性疾病,恢复时间较长,皮肤长时间病变会影响皮革质量,奶牛乳房部位病变则会使产奶量降低,并且可能导致奶中混有病毒[2],消化道内壁的病变则会影响动物对营养物质的消化和吸收,甚至危害病畜生命,因此要对病畜进行及时有效地治疗。
1流行病学1.1病原学牛乳头状瘤病毒(BPV )属乳多空病毒科乳头状瘤病毒属,病毒粒子为无包膜的近二十面体结构,基因组为环形、双链DNA ,大小为7.2~8.0bp [3]。
病毒基因组主要包括长调控区(LCR )、早期基因区(E 区)、晚期基因区(L 区)三大区域,其中长调控区(LCR )包含病毒转录和复制的所需元素,早期基因区(E 区)主要包括、、、、、、等基因,该区基因编码病毒复制、转录和转化的相关蛋白,晚期基因区(L 区)主要包含和基因,负责编码衣壳蛋白。
目前,已经报道的BPV 基因型有29种,根据衣壳蛋白L1区基因同源性的差异和生物学特征,将BPV 分为6个属,分别为δ乳头瘤病毒属(BPV-1、BPV-2、BPV-13、BPV-14)、ξ乳头瘤病毒属(BPV -3、BPV -4、BPV -6、BPV -9、BPV -10、BPV-11、BPV-12、BPV-15、BPV-17、BPV-20、BPV-23、BPV-24、BPV-26、BPV-28、BPV-29)、ε乳头瘤病毒属(BPV-5、BPV-8、BPV-25)、Dyokappa 乳头瘤病毒属(BPV-16、BPV-18、BPV-22)、Dyoxi 乳头瘤病毒属(BPV-7)以及未分类的乳头瘤病毒属(BPV-19、BPV-21、BPV-27)。
超高效液相串联质谱法测定牛奶中8种氟喹诺酮类兽药残留
分析检测超高效液相串联质谱法测定牛奶中8种氟喹诺酮类兽药残留张瑞婷(北京市产品质量监督检验研究院,北京 101300)摘 要:建立了超高效液相串联质谱法同时测定牛奶中8种氟喹诺酮类兽药残留的分析方法。
牛奶样品用提取剂提取后,用固相萃取柱净化,选用C18色谱柱梯度洗脱分离。
通过串联质谱在电喷雾电离-正离子、多反应监测模式下进行定性和定量分析。
结果表明,8种兽药在0.5~500.0 μg·mL-1呈良好的线性关系,R2>0.996,在10 μg·kg-1、50 μg·kg-1、100 μg·kg-1 3个浓度添加水平下,回收率为81.3%~98.8%,RSD为2.3%~9.8%。
该方法灵敏、快速、可靠,适用于牛奶中多种兽药残留的快速筛查。
关键词:超高效液相串联质谱法;氟喹诺酮类;牛奶Determination of 8 Fluoroquinolones Veterinary Drug Residues in Milk by Ultra Performance Liquid ChromatographyTandem Mass SpectrometryZHANG Ruiting(Beijing Institute of Product Quality Supervision and Inspection, Beijing 101300, China) Abstract: A method for the simultaneous determination of eight fluoroquinolone veterinary drug residues in milk by ultra performance liquid chromatography tandem mass spectrometry was established. After the milk sample was extracted with the extractant, it was purified by a solid phase extraction column and separated by gradient elution on a C18 chromatographic column. Qualitative and quantitative analyzes were then performed by tandem mass spectrometry in electrospray ionization-positive ion, multiple reaction monitoring mode. The results showed that the eight veterinary drugs showed a good linear relationship in the range of 0.5~500.0 μg·mL-1, R2>0.996. The recoveries ranged from 81.3% to 98.8% at the spiked levels of 10 μg·kg-1, 50 μg·kg-1, 100 μg·kg-1 with the RSD of 2.3% to 9.8%. The method is sensitive, rapid and reliable, and is suitable for rapid screening of various veterinary drug residues in milk.Keywords: ultra performance liquid chromatography tandem mass spectrometry; fluoroquinolones; milk氟喹诺酮类药物为白色或淡黄色晶型粉末,属于广谱抗生素,常被用于预防和治疗奶牛疾病[1]。
PCR方法扩增种属特异性片段检测猪源成分
中国动物检疫2008年第25卷第8期PCR方法扩增种属特异性片段检测猪源成分毕道荣1,高宏伟2,孙敏2,梁君妮2(1.中国动物卫生与流行病学中心,山东青岛266032;2.山东出入境检验检疫局,山东青岛266001)摘要:针对猪线粒体基因的保守序列,设计特异性引物,优化反应条件和反应参数,建立了食品和饲料中猪源性成分的PCR检测方法。
该方法灵敏、特异,检测低限达0.01%。
其推广使用,对于加强食品、饲料的质量控制和监督监管,具有参考价值。
关键词:PCR;猪;检测中图分类号:S851.347.1,TS251.5+1文献标识码:A文章编号:1005-944X(2008)08-0034-03我国每年需从国外进口大量肉骨粉类饲料,为了防范疯牛病、痒病发生风险,我国相关部门先后颁布了《关于严防牛海绵状脑病传入中国的通知》、《关于禁止用反刍动物源性饲料饲喂反刍动物的通知》、《关于加强肉骨粉等动物性饲料产品管理的通知》和《动物源性饲料产品安全卫生管理办法》。
上述文件明确提出,禁止在反刍动物饲料中使用、添加以哺乳类动物为原料的动物性饲料产品,各出入境检验检疫部门要依法严格对允许进口的动物饲料产品实施检验检疫。
为有效防止动物疫病通过进入食物链发生传播,同时减少因食用含有猪成分的食品而引发的宗教、食物过敏等问题,建立食品和饲料中猪源性成分的快速检测方法很有必要。
笔者参考文献,建立了猪源性成分的PCR检测方法,并对方法的灵敏性和特异性进行了分析,探讨了其用于食品和饲料中猪成分检测的可行性。
1材料与方法1.1样品用于做引物特异性实验和PCR 灵敏度实验的样品及其来源见表1。
其中各种动物血液用于猪引物特异性实验,猪肉和鸡肉用于猪成分PCR鉴定的灵敏性实验,与肉骨粉、血粉和羽毛粉的混合样品用于验证在实际饲料中的灵敏性和特异性。
1.2仪器台式离心机(Eppendorf5810R,Germany),基因扩增仪(EppendorfMastercycler gradient,Germany),电泳仪(EPS301,Amersham PhamaciaBiotech),核酸蛋白分析仪(BeckmanDU640,Germany),恒温干燥箱(SANYO mov-212F,Japan)。
超高效液相色谱-串联质谱测定新生儿母乳性黄疸早期胆汁酸谱的意义
•妇幼卫生研究•超高效液相色谱-串联质谱测定新生儿母乳性黄疸早期胆汁酸谱的意义沈仁,杨善浦,刘红艳,许敏,项拉丽,李素琴玉环市人民医院新生儿科,浙江玉环317600摘要:目的采用超高效液相色谱-串联质谱(U P L C-M S/M S)法早期检测新生儿母乳性黄疸的胆汁酸含量,了解其血清胆汁酸谱的特征,探讨胆汁酸谱预测母乳性黄疸的价值。
方法选择2018年6月一2019年2月在玉环市人民医院产科分娩的正常新生儿320例,依据新生儿小时胆红素列线图,经皮胆红素水平低于75百分位的新生儿,在出生72 h采集足底血样标本,晾干后密封冷藏包装备检和随访。
根据随访结果,将新生儿分为母乳性黄疸组(36例)与正常新生儿组(48例),以U P L C-M S/M S方法检测备检标本的15种胆汁酸浓度。
结果母乳性黄疸组与正常新生儿组血胆汁酸谱有一定差异,2组的甘氨石胆酸水平、甘氨石胆酸/熊脱氧胆酸比值、熊脱氧胆酸/总熊脱氧胆酸比值分别为(〇.4l ±〇.31)n m o l/L和(0_58 ±0.39)n m o l/L、0. 11 ±0. 19 和0. 30土0. 51、0• 28 ±0.23和0. 19 ±0.14,差异均有统计学意义(均P<0. 05)。
母乳性黄疸组和正常新生儿组胆酸、脱氧胆酸、石胆酸、鹅脱氧胆酸、熊脱氧胆酸、甘氨胆酸、甘氨脱氧胆酸、甘氨鹅脱氧胆酸、甘氨熊脱氧胆酸、牛磺胆酸、牛磺脱氧胆酸、牛磺石胆酸、牛磺鹅脱氧胆酸、牛磺熊脱氧胆酸、总胆汁酸和胆酸/鹅脱氧胆酸水平比较,差异均无统计学意义(均P>0.05)。
结论U P L C-M S/M S方法可以敏感地发现新生儿母乳性黄疸在高胆红素血症出现前血胆汁酸谱的变化特点,有助于早期预测高胆红素血症及其病因的分析研究。
关键词:新生儿;母乳性黄疸;胆汁酸;新生儿高胆红素血症中图分类号:R722.1R446文献标识码:A文章编号:16744152(2020)12-20514)3D01:10. 16766/j. cnki. issn. 1674 -4152.001686Significance of determ ination of bile acid spectrum in early stageof neonatal breast milk jaundice by U PLC-M S/M SS H E N R e n,Y A N G S han-pu, L I U H o n g-y a n,X U M i n,X I A N G La-li, LI Su-qinDepartment o f Neonatology, Yuhuan Peoples Hospital o f Zhejiang Province, Yuhuan, Zhejiang 317600,ChinaA b stract:O bjective T o understand the characteristics of s e r u m bile acid spectrum, a n d to explore the value of bileacid spectrum in predicting breast milk jaundice. M ethods Total 320 normal neonatus delivered in our hospital wer e selected. According to the hourly bilirubin chart of newbo r n s,n e w b o r n s w h o s e bilirubin level w a s below 75%w e r e collected at 72 hours after birth. T h e blood samples w e r e sealed a n d refrigerated for inspection a n d follow-up. Accor d i n g to thefollow-up results,the neonatus w er e divided into breast milk jaundice group (n = 36)a n d normal neonatal group (n=48)•T h e concentrations of 15 kinds of bile acids w e r e m e a s u r e d b y ultra high performance liquid chromatography t a n d e mm a s s spectrometry (U P L C-M S/M S).Results The r e w ere s o m e differences in blood bile acid profiles b e t w e e n the twogroups. T h e difference of glycine cholic acid [ (0. 41 ±0.31 ) n m o l/L a n d(0. 58 ±0.39)n m o l/L],the ratio of glycinecholic acid to ursodeoxycholic acid (0. 11 ±0. 19 a n d 0. 30 ±0.51)a n d the ratio of ursodeoxycholic acid to total ursode-oxychol (0. 28 ±0.23a n d 0. 19 ±0. 14) were statistically significant (all P<0.05).T h e r e w a s n o significant differencein the levels of cholic acid, deoxycholic acid, lithocholic acid, anthropodesoxycholic acid, ursodeoxycholic acid, glyco-cholic acid, glycodesoxycholic acid, glycochenodeoxycholic acid, glycine ursodeoxycholic acid, cholaic acid, taurodeoxy-cholic acid, taurolithocholic acid, taurine goose deoxycholic acid, tauroursodeoxycholic a c i d,total bile acid a n d cholicacid/anthropodesoxycholic acid b e t w e e n the two groups (all P>0.05).Conclusion U P L C-M S/M S m e t h o d can sensitively detect the c h anges of blood bile acid spectrum in neonatal breast milk jaundice before the occurrence of hyperbilirubinemia, w h i c h is helpful to predict hyperbilirubinemia a n d its etiology in the early stage.Key w o rd s:N e o n a t u s;Breast milk jaundice;Bile a c i d;Neonatal hyperbilirubinemia母乳性黄疸(breast milk jaundice,BMJ)是指母乳 喂养的新生儿出现以未结合胆红素升高为主的高胆红 素血症,以足月儿多见,根据发病时间不同可分为早发 型和晚发型[1]。
DETECTION OF ANTIBIOTICS IN MILK
专利名称:DETECTION OF ANTIBIOTICS IN MILK 发明人:BROWN, Rodney J.,SWAISGOOD, Harold E.申请号:EP81900913.0申请日:19810320公开号:EP0047784A1公开日:19820324专利内容由知识产权出版社提供摘要: heterogeneous enzyme immunoassay competition for the detection in milk of antibiotics containing a lactam ring. The two essential characteristics that allow a more balanced competition between free and conjugated forms of the antibiotic are the use of 1) a specific antibody purified prepared with an immunogen composed of the antibiotic binds by means of its lactam has a protein and 2) a combined antibiotic enzyme formed by the binding of the enzyme to the antibiotic in a manner such that the ring lactam remains free to compete with the antibody. The preparation of the antibody is shown in Figure 1. The diagram of the analysis is shown in Figures 4, 7 and 8. The analysis is relatively inexpensive and allows to detect antibiotics has a density of 0.01 units per milliliter by a relatively small staff leads.申请人:RESEARCH TRIANGLE INSTITUTE地址:Hanes Building, Cornwallis Road Research Triangle Park, North Carolina 27709-2194 US国籍:US更多信息请下载全文后查看。
Eurofins Technologies Hungary Kft. SENSI Spec ELIS
INSTRUCTIONS FOR USESENSI Spec ELISA Milk 96/48 Tests Enzyme Immunoassay for the QuantitativeDetermination bovine milk protein in Food(Cat.nr. HU0030014 / HU0030038)Sensitivity (milk protein) 0.05 ppm Recovery 79-122% Incubation Time 60 min1. GENERAL INFORMATIONBovine milk belongs to the most important allergenic food ingredients especially for children. Already very low amounts of bovine milk can cause allergic reac-tions, which may lead to anaphylactic shock in severe cases. Because of this, milk allergic persons must strictly avoid the consumption of milk or milk containing food. In particular the presence of hidden milk proteins such as in sausage, cookies, convenience food or bev-erages represent a critical problem for milk allergic per-sons. According to EU Directive 2003/89/EG the addi-tion of bovine milk has to be labeled. For the detection of bovine milk in foodstuffs, sensitive detection systems are required.Approximately 80% of bovine milk proteins are caseins. ß-Lactoglobulin, the major allergen of whey, represents further 10% of the total proteinThe SENSISpec Milk ELISA represents a highly sensi-tive detection system for milk proteins based on NIST 1549 reference material. The test is likewise capable of the quantification of casein and ß-lactoglobulin residues in food and is validated for cookies, bread crumbs, sau-sage, orange juice, wine, soy products and chocolate.2. PRINCIPLE OF THE TESTThe SENSISpec Milk quantitative test is based on the principle of the enzyme linked immunosorbent assay. An antibody mixture is bound on the surface of a micro-titer plate. Milk protein containing samples or standards are given into the wells of the microtiter plate. After 20 minutes incubation at room temperature, the wells are washed with diluted washing solution to remove un-bound material. A peroxidase conjugated second anti-body mixture directed against milk proteins is given into the wells and after 20 minutes of incubation the plate is washed again. A substrate solution is added and incu-bated for 20 minutes, resulting in the development of a blue colour. The colour development is inhibited by the addition of a stop solution, and the colour turns yellow. The yellow colour is measured photometrically at 450 nm. The concentration of milk proteins is directly proportional to the colour intensity of the test sample.3. PRECAUTIONS Full compliance of the following good laboratory prac-tices (GLP) will determine the reliability of the results: 1) Prior to beginning the assay procedure, bring all re-agents to room temperature (20-25°C).2) All reagents should be mixed by gentle inversion orswirling prior to use. Do not induce foaming.3) Once the assay has been started, all subsequentsteps should be completed without interruption and within the recommended time limits.4) Replace caps in all the reagents immediately afteruse. Do not interchange vial stoppers.5) Use a separate disposable tip for each specimen toprevent cross-contamination.6) All specimens and standards should be run at thesame time, so that all conditions of testing are the same.7) Do not mix components from different batches.8) Do not use reagents after expiration date.9) Check both precision and accuracy of the laboratoryequipment used during the procedure (micropipets, ELISA reader etc.).4. HEALTH AND SAFETY INSTRUCTIONS1) Do not smoke or eat or drink or pipet by mouth in thelaboratory.2) Wear disposable gloves whenever handling patientspecimens.3) Avoid contact of substrate and stop solution withskin and mucosa (possible irritation, burn or toxicity hazard). In case of contact, rinse the affected zone with plenty of water.4) Handling and disposal of chemical products must bedone according to good laboratory practices (GLP).5. REAGENTSThe kit contains reagents for 96/48 determinations. They have to be stored at 2-8°C. Expiry data are found on the labels of the bottles and the outer package.1) Microtiter plate consisting of 12/6 strips with 8breakable wells each, coated with milk protein bind-ing antibodies.2) Milk protein Standards, based on NIST RM 1549 ref-erence material: 5 vials with 2.0 mL (0, 0.4, 1, 4,10 ppm of milk protein), as 100x concentrate, dyedblue. Dilute 20 µL of standard with 1980 µL pre-di-luted extraction and sample dilution buffer to achieve the concentrations named above. Stored at 4°C the diluted standards are stable for at least 24 hours.Note: The concentrations above refer to the 100x diluted standards.3) Conjugate (anti-milk protein-peroxidase):15/7.5 mL, dyed red, ready-to-use.4) Substrate Solution (TMB): 15 mL, ready-to-use.5) Stop Solution (0.5 M H2SO4): 15 mL, ready-to-use.6) Extraction and sample dilution buffer (Carbonatebuffer): 2/1 x 120 mL as 5x concentrate, dyed red.Dilute 1+4 with dis tilled water. Stored at 4°C the di-luted buffer is stable for at least one week. If during the cold storage crystals precipitate, the concentrate should be warmed up to 37°C for 15 minutes.7) Washing Solution (PBS + Tween 20): 60 mL as 10xconcentrate. Dilute 1+9 with distilled water. Stored at 4°C the diluted buffer is stable for at least 4 weeks. If during the cold storage crystals precipitate, the concen trate should be warmed up to 37°C for15 minutes.8) Plastic bag to store unused microtiter strips.9) Instruction Manual.6. ADDITIONAL INSTRUMENTATION AND REA-GENTS (not provided)Instrumentation⏹10, 100 - 1000 µL micropipets⏹Analytical balance⏹Mortar, mixer⏹Water bath⏹Centrifuge⏹ELISA reader (450 nm)Reagents⏹double distilled water 7. SAMPLE PREPARATIONDue to a high risk of cross-contamination all applied in-struments like applicator, mortar, glass vials etc. have to be cleaned thoroughly before and after each sam-ple. To identify possible cross-contamination caused by previous extractions it is strongly recommended to note the sequence of the extractions.The following sample preparation should be applied for solid samples:1) To maximize homogeneity and representativenessof the sample drawing, a minimum of 5 g sample should be pulverized finely in a mortar, impact mill etc.2) 0.5 g of the homogenized mixture is suspended in10 mL of pre-diluted extraction and sample dilutionbuffer. Afterwards the suspension is incubated for15 min in a pre heated water bath at 60°C. To ensuregood homogeneity, the samples should be shaken every two minutes.3) The samples are centrifuged for 10 minutes at2000 g. If it is not possible to separate the superna-tant from the precipitate completely, the suspension should be filtrated if necessary.4) Due to high matrix effects meat and sausage sam-ples should be further diluted 1 + 4 with pre-diluted extraction and sample dilution buffer.5) 100 µL of p article-free solution are applied per well.If the results of a sample are out of the measuring range, further dilution with the pre-diluted extraction and sample dilution buffer is necessary. The addi-tional dilution has to be considered when calculating the concentration.The following sample preparation should be applied for liquid samples:0.5 mL of liquid sample is diluted in 9.5 mL of pre-di-luted extraction and sample dilution buffer. Afterwards the suspension is incubated for 15 min in a preheated water bath at 60°C. To ensure good homogeneity, the samples should be shaken every two minutes. The pro-cess is continued at point 3 of solid sample extraction process.8. PROCEDUREThe washing solution is supplied as 10x concentrate and has to be diluted1+9 with double distilled water before use.In any case the diluted standards should be deter-mined at least twofold. When samples in great numbers are determined, the standards should be pipetted oncebefore the samples and once after the samples. For fi-nal interpretation the arithmetic mean is used for calcu-lation.In consideration of GLP and quality control require-ments a duplicate measurement of samples is recom-mended.The procedure is according to the following scheme:1) Prepare samples as described above.2) Pipet 100 µL of diluted standards or prepared sam-ples in duplicate into the appropriate wells of the microtiter plate.3) Incubate for 20 minutes at room temperature.4) Wash the plate three times as follows: Discard thecontents of the wells (dump or aspirate). Pipet 300 µL of diluted washing solu tion into each well.After the third repetition empty the wells again and remove residual liquid by striking the plate againsta paper towel. The wash procedure is critical. Insuf-ficient washing will result in poor precision and falsely elevated absorbances.5) Pipet 100 µL of conjugate (anti-milk protein-peroxi-dase) into each well.6) Incubate for 20 minutes at room temperature.7) Wash the plate as outlined in 4.8) Pipet 100 µL of substrate solution into each well.9) Allow the reaction to develop in the dark (e.g. cup-board or drawer; the chromogen is light-sensitive) for 20 minutes at room temperature.10) Stop enzyme reaction by adding 100 µL of stop so-lution (0.5 M H2SO4) into each well. The blue colour will turn yellow upon addition.11) After thorough mixing, measure absorbance at 450nm (reference wavelength 620 nm), using an ELISA reader. The colour is stable for 30 minutes.9. CALCULATION OF RESULTSThe diluted standards are prepared for a direct deter-mination of sample concentrations. The dilution of samples in the extraction process as described in the above stated sample preparation procedure is already considered.Additional dilution due to meat containing samples or high sample concentration has to 1) Calculate the average optical density (OD 450 nm)for each set of reference standards or samples.2) Construct a standard curve by plotting the mean op-tical density obtained for each reference standard against its concentration in ppm on semi-log graph paper with the optical density on the vertical (y) axis and the concentration on the horizontal (x) axis. Al-ternatively the evaluation can be carried out by soft-ware. In this case the 4-parameter method should be preferred.3) Using the mean optical density value for each sam-ple, determine the corresponding concentration of milk protein in ppm from the standard curve. De-pending on experience and/or the availability of computer capability, other methods of data reduc-tion may be employed.For calculation of the amount of a corresponding raw product, the milk protein concentration has to be multi-plied with a product specific conversion factor (F).The following conversion factors have been determined by means of validation experiments:Non fat milk powder (NIST RM1549) 2.7 Whole milk powder (NIST RM8435) 4.4 Caseinate 1.0 ß-Lactoglobulin 1.1 10. TYPICAL STANDARD VALUESThe following table contains an example for a typical standard curve. The binding is calculated as percent of the absorption of the 10 ppm standard. These values are only an example and should not be used instead of the standard curve which has to be measured in each new test.Milk protein (ppm) % binding of 10 ppm10 1006 861 500.4 320 911. PERFORMANCESensitivityThe limit of detection (LOD) of the SENSI Spec Milk test is 0.05 ppm of milk protein.Validation experiments with common matrices resulted in the following LODs [ppm]:Orange juice 0.10 White wine 0.03 Bread crumbs 0.08 Cookies 0.16 Chocolate 0.10 Sausage 0.18The limit of quantification (LOQ) of the SENSI Spec Milk test is 0.4 ppm of milk protein.Due to the variety of sample matrices and their influ-ence on the blank, results less than the LOQ should be treated as negative.11.1. SpecificityFor the following foods no cross-reactivity could be de-tected:Almond Egg PorkBarley Hazelnut RiceBeef Lupin RyeCelery Mustard SesameChicken Oats SoyCocoa Peanut WalnutCod Pistachio WheatCornThe following cross-reactions were determined:Ewe’s milk0.94% Goat’s milk0.01% 11.2. PrecisionThe following precisions based on concentrations were determined:Intra-assay Precision 8 - 10% Inter-assay Precision 10 - 17% 11.3. LinearityThe serial dilution of spiked samples (cookies, bread crumbs, chocolate, sausage, soy milk, orange juice and white wine) resulted in a dilution linearity of 80 - 130%.11.4. RecoveryMean recovery was determined by spiking samples with different amounts of casein:Cookies 102% Bread crumbs 110% Chocolate 99% Sausage 88% Soy milk 79% Orange juice 106%。
A2β-酪蛋白基因型奶牛鉴别及选育
732022.11·0 引言基因是能够决定生命基本构造的大分子片段,每种基因都有其对应的作用。
A2β-酪蛋白基因型奶牛是从基因角度命名的奶牛,简称A2奶牛,普遍存在于各个奶牛品种中[1-5]。
目前市场上流行的“A2奶”即是由A2β-酪蛋白基因型奶牛所生产的牛奶[6]。
当前进行A2β-酪蛋白基因型奶牛的养殖主要涉及到组建奶牛群、选育和扩繁、饲料营养配比。
由于A2β-酪蛋白基因型奶牛在外貌和生产性能上难以区别于同品种的其他奶牛,在组建A2β-酪蛋白基因型奶牛群的过程中A2β-酪蛋白基因型奶牛的鉴别技术是A2β-酪蛋白基因型奶牛筛选和交易的关键环节。
在扩大A2β-酪蛋白基因型奶牛养殖规模中选育和扩繁是重要的手段。
为此,文章对A2β-酪蛋白基因型奶牛的鉴别和选育方面近年的相关报道进行整理并浅析,以期为A2β-酪蛋白基因型奶牛的养殖及相关技术的进一步研究提供理论参考和科学依据。
1 A2牛奶牛奶中蛋白质主要由酪蛋白和乳清蛋白组成。
在20 ℃且pH 为4.6的牛奶中沉淀的为酪蛋白,溶解的为乳清蛋白。
酪蛋白又可分为α1-酪蛋白、α2-酪蛋白、β-酪蛋白和κ-酪蛋白4种类型。
其中牛奶β-酪蛋白目前已被详细报道了12种亚型,即A1、A2、A3、B 、C 、D 、E 、F 、G 、H1、H2和I 型[7],A1亚型和A2亚型是现代欧洲牛所产牛奶中存在最普遍含量最高的2种亚型[6],β-酪蛋白为A1亚型的牛奶称为A1奶,A2亚型的被称为A2奶。
经流行病学统计发现欧洲一些地区A1牛奶的人均消费量与当地糖尿病和心脏病发病比例存在相关性[8-11]。
在婴幼儿时期摄入A1牛奶较多的地区糖尿病的发病率更高[10]。
此外,有研究指出A1奶可能与婴幼儿猝死、多动症及儿童和成人的消化系统不适症的发生有关[12-14],而A2奶较少涉及这样的问题。
牛奶中富含营养物质,在膳食中有着不可替代的作用,尤其是对婴幼儿而言,因此具有更高安全性的A2牛奶受到越来越多消费者的信赖和欢迎,特别是在婴幼儿食品领域。
不同生理状态下牦牛乳腺组织中SREBP1的表达
中国兽医科学 2021,51 (05):656-662Chinese Veterinary Science网络首发时间:2021-03-04 D01:10.16656/j.issn.l673-4696.2021.0083 中图分类号:S857.2 文献标志码:A文章编号:1673-4696 (2021) 05-0656-07不同生理状态下牦牛乳腺组织中SREBP1的表达包梅,赵生贤,马悦,赵凌,何翱闳,余四九,崔燕,李一娟,杜培岩,周应聪,樊江峰*(甘肃农业大学动物医学院甘肃省牛羊胚胎工程技术研究中心,甘肃兰州730070)摘要:固醇调节元件结合蛋白1(Sterol regulatory element binding protein,SREBP1)作为一种核转录因 子,与哺乳动物体内胆固醇及脂肪的生成密切相关。
为了解牦牛乳腺组织中乳脂合成的机制及其特点,采集 处于不同生理状态下(妊娘期、泌乳期、干奶期)的乳腺组织样品,采用qRT-P C R、Western-blot及免疫组化 (inmunohistochemistry,IHC)等技术检测S R H3R/基因及其蛋白的相对表达情况。
结果显示,泌乳期牦牛乳 腺组织中S R E B P J m R N A表达量显著高于妊娠期和干奶期(P<〇.〇5),且妊娠期S R E B P i m R N A表达量高于 干奶期(P C0.05)。
在牦牛不同生理状态下,SREBP1蛋白表达也发生了显著变化,妊娠期和泌乳期SR E B P1蛋白表达量显著高于干奶期(P<〇.05)。
免疫组化法定位检测结果显示,SREBP1蛋白主要分布在牦牛乳腺 腺泡上皮细胞、乳腺导管上皮细胞及血管内皮细胞。
上述结果表明SREBP1及其编码m R N A的表达在牦牛 乳腺组织中与其所处不同生理状态密切相关,妊娠期和泌乳期S R E B P1的高表达,可能意味着其在牦牛乳腺 发育和乳脂合成的过程中发挥着重要作用。
利用mPCR方法检测巴氏奶中致病菌的鲁棒性研究
刘芝荣,张英华. 利用mPCR 方法检测巴氏奶中致病菌的鲁棒性研究[J]. 食品工业科技,2024,45(2):243−251. doi:10.13386/j.issn1002-0306.2023030210LIU Zhirong, ZHANG Yinghua. Robustness Study of mPCR for Pathogenic Bacteria Detection in Pasteurized Milk[J]. Science and Technology of Food Industry, 2024, 45(2): 243−251. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023030210· 分析检测 ·利用mPCR 方法检测巴氏奶中致病菌的鲁棒性研究刘芝荣1,2,张英华2,3,*(1.黑龙江省绿色食品科学研究院,黑龙江哈尔滨 150028;2.东北农业大学乳品科学教育部重点实验室,黑龙江哈尔滨 150030;3.东北农业大学食品学院,黑龙江哈尔滨 150030)摘 要:为解决巴氏奶货架期短与致病菌传统检测方法耗时长相矛盾问题,建立一种检测巴氏奶中的阪崎克罗诺杆菌、大肠杆菌和沙门氏菌的鲁棒性多重聚合酶链式反应(multiple polymerase chain reaction ,mPCR )方法。
旨在常规mPCR 的基础上深入研究,提高方法的准确性和稳定性。
首先,针对每个目标菌株选择两种基因,并设计两组特异性引物,建立两套mPCR 扩增体系,进行双重检测;然后,在不改变方法灵敏度的前提下,对优化了的退火温度进行范围稳定性选择;最后,将提出方法与国标方法GB 4789.40-2016、GB 4789.38-2012、GB 4789.4-2016进行比较,同时检测人工污染样品并评价应用效果。
两种常用适配体的纳米金比色法快速检测牛奶中黄曲霉毒素M1的评价研究
苏柳,贺伟华,张干,等. 两种常用适配体的纳米金比色法快速检测牛奶中黄曲霉毒素M 1的评价研究[J]. 食品工业科技,2024,45(8):284−292. doi: 10.13386/j.issn1002-0306.2023050332SU Liu, HE Weihua, ZHANG Gan, et al. Evaluation of Gold Nanoparticles Colorimetric Sensing Based on Two Commonly Aptamer for Rapid Detecting Aflatoxin M 1 in Milk[J]. Science and Technology of Food Industry, 2024, 45(8): 284−292. (in Chinese with English abstract). doi: 10.13386/j.issn1002-0306.2023050332· 分析检测 ·两种常用适配体的纳米金比色法快速检测牛奶中黄曲霉毒素M 1的评价研究苏 柳1,贺伟华1, +,张 干1,陈爱亮2,章钢刚1,赖晓翠1,邓省亮1,*(1.江西省科学院微生物研究所,江西南昌 330096;2.中国农业科学院农业质量标准与检测技术研究所,北京 100081)摘 要:目的:建立基于不同序列长度适配体的纳米金(Gold nanoparticles ,AuNPs )比色传感法快速定量检测牛奶中的黄曲霉毒素M 1(Aflatoxin M 1,AFM 1),并评价目前文献报道中常用的21(A21)和72个碱基(A72)长度的AFM 1适配体在实际样品中的检测性能。
方法:采用柠檬酸钠还原法制备AuNPs 溶液,加入AFM 1适配体及AFM 1标准品后,适配体与AFM 1特异性结合形成特殊三维结构,随着NaCl 溶液加入,AuNPs 溶液的稳定性被破坏而发生聚集,导致溶液颜色变化,通过测定AuNPs 溶液的吸光值和吸收光谱定量检测AFM 1。
奶粉中沙门氏菌检测能力验证结果与分析
㊀㊀较高㊂实验中发现不同批次试剂空白会有差异,调零的试剂空白与测试样品所用试剂应为同一批次,否则可能会影响测试结果㊂3.2㊀结果显示,DR900和DR1900型仪器实际水样加标回收率在99.5%~110%之间,测定有证标准物质的结果均值在标准值范围之内,方法准确度高㊂7500型光度计实际水样加标回收率为92.8%~122.4%㊂测量有证标准物质,均值超出标准值范围㊂但是将7500型分光光度计读取的A 650值(0.923和0.898),代入校准曲线y =1.168x +0.086,求得氨氮浓度值分别为0.732mg /L 和0.711mg /L,结果均值为0.722mg /L,在标准值范围内㊂考虑是内置校准曲线与实际校准曲线有偏差,所以该仪器在测定生活饮用水中氨氮时,应需用有证标准物质进行准确度核查,进行修正测量结果㊂3.3㊀两种仪器测定原理为水杨酸法,应用过程中发现,显色后A 值与显色时间密切相关,会随着时间的延长A 值加大,直接读取浓度数增高,因此,实际测定时,按仪器说明书操作应严格控制显色时间㊂3.4㊀部分实验数据与相关文献报道基本相符[10],但是,文中涉及的两种快速检测仪均为国外进口仪器,有必要挑选部分国产相关仪器进行实验评价,为现场卫生监督和应急检测提供更多参考㊂参考文献[1]㊀叶辉,许建华.饮用水中的氨氮问题[J].中国给水排水,2000,16(11):31-34.[2]㊀卫生部.生活饮用水标准检验方法无机非金属指标:GB /T 5750.5-2006[S].北京:中国标准出版社,2007.[3]㊀马晓峰,张静,张振辉.水体中氨氮测定的试剂盒的研制与应用[J].南昌大学学报(理科版),2006,30(3):270-272.[4]㊀彭玉,付韬,周宁.快速测定仪测定生活饮用水中氨氮[J].河南预防医学杂志,2017,28(6):435-436,458.[5]㊀王中贺,李佳伟,刘伶,等.新型环保水质氨氮快速检测试剂盒的研制与应用[J].中国卫生检验杂志,2014,24(15):2146-2148.[6]㊀吴丹,周素锐,刘英.水质中氨氮的快速检测方法[J].分析试验室,2015,34(4):429-432.[7]㊀马新华,袭著革,李晓丽,等.水中氨氮现场快速检测与结果远程无线运输[J].解放军预防医学杂志,2013,31(2):131-133.[8]㊀翟小娟,冉照宽,李煜婷,等.水中氨氮快速检测方法研究[J].资源节约与环保,2016(9):67-68.[9]㊀吕佳,岳银玲,张岚,等.微量纳氏试剂分光光度快速检测方法测定生活饮用水中的氨氮[J].中国卫生检验杂志,2015,25(22):3815-3816.[10]㊀孙娟,苏刚,柏松,等.氨氮TNT 试剂在水环境应急监测中的应用[J].化学分析计量,2015,24(6):23-26.(收稿日期:2019-06-20)中图分类号:R155㊀㊀文献标识码:A㊀㊀文章编号:1673-7830(2020)01-0050-04ʌ实验研究与管理ɔ奶粉中沙门氏菌检测能力验证结果与分析柴洪艳㊀乔璐㊀陈亮ʌ摘要ɔ㊀目的㊀通过参加国家食品安全风险评估中心奶粉中沙门氏菌检验分型能力验证,验证实验室的检验能力,提高实验室对沙门氏菌的检测水平㊂方法㊀按照操作说明和GB 4789.4-2016‘食品安全国家标准食品微生物学检验沙门氏菌检验“进行检测㊂结果㊀2017S -01(002)-1㊁2017S -01(002)-2㊁2017S -01(002)-3的结果,分别为检出肠炎沙门氏菌㊁未检出沙门氏菌和检出斯坦利沙门氏菌㊂检测准确率达100%,与盲样考核指定菌一致,能力验证结果满意㊂结论㊀能力验证提高了实验人员检测水平,使实验室在沙门氏菌检测技术上有了很大提高,同时积累了沙门氏菌的检测经验㊂ʌ关键词ɔ㊀沙门氏菌;能力验证;检测水平Verification and analysis detection ability of Salmonella in milk powderCHAI Hong-yan,QIAO Lu,CHEN Liang(Railway Bureau Center for Disease Control and Prevention of Beijing ,Beijing 100038,China )作者单位:100038,北京铁路疾病预防控制中心ʌAbstract ɔ㊀Objective ㊀To verify the laboratory s testing ability and improve the laboratory s detection level ofSalmonella ,by the way of participating in the ability verification test and typing of Salmonella in milk powder from National FoodSafety Risk Assessment Center.Methods ㊀The test was carried out according to the Food Safety National Standard ,FoodMicrobiological Test,Salmonella Test(GB4789.4-2016).Results㊀As for the samples of2017S-01(002)-1,2017S-01 (002)-2,and2017S-01(002)-3,we could detect the Salmonella enteritidis,the Salmonella and the Salmonella stanley, respectively.We were satisfied with this ability verification for the reason of100percent accuracy dectection rate,according to confirming result from designated bacteria.Conclusion㊀With regard to detection of Salmonella,proficiency testing not only improved the detection level but also accumulated the detection experience.ʌKeywordsɔ㊀Salmonella;Ability verification;Detection level㊀㊀沙门氏菌在自然界中广泛存在,易污染水源㊁食品等,短时间大量增殖[1,2]㊂沙门氏菌是北京市乃至全国食源性疾病的主要致病菌之一㊂可致败血症和肠炎等[3],对人们身体健康造成危害㊂能力验证是保证检测质量必要手段,可以用来评估检测能力[4,5]㊂2017年底,全国共431个实验室参加了 2017年国家食品安全风险监测网微生物质量控制考核暨2017年国家认监委能力验证计划C类项目-食源性沙门菌检验分型 ㊂北京铁路疾病预防控制中心实验室也参与了该项目,共接到3份奶粉样品,编号分别为2017S-01(002)-1;2017S-01(002)-2;2017S-01(002)-3,并对3份样品进行了沙门氏菌检测且完成血清学分型㊂现将结果报道如下㊂1㊀材料与方法1.1㊀设备㊀低温恒温培养箱(日本SANYO公司)㊁VITEK2全自动微生物鉴定系统(法国梅里埃公司)㊁生物安全柜(美国LABCONCO公司)㊂1.2㊀培养基及试剂㊀缓冲蛋白胨水(BPW)㊁四硫磺酸钠煌绿(TTB)增菌液㊁亚硒酸盐胱氨酸(SC)增菌液㊁亚硫酸铋(BS)琼脂㊁沙门氏菌显色培养基㊁营养琼脂等均购自北京君立康科技发展有限责任公司和陆桥技术有限责任公司;VITEK2GN鉴定卡购自生物梅里埃公司;沙门氏菌诊断血清购自宁波天润生物药业㊂所有培养基和试剂均在有效期内使用㊂1.3㊀方法㊀1.3.1㊀样品处理:㊀根据此次考核检测要求,将装有冻干菌的西林瓶于室温下放置15min复温;无菌操作打开西林瓶,加入1mL缓冲蛋白胨水(BPW)溶液进行复溶,室温静置3min;充分混悬西林瓶内容物,静置30s,以消除产生的泡沫㊂1.3.2㊀预增菌和增菌:㊀将上述溶液转移至含有220mL灭菌BPW的样品均质袋中,再用灭菌BPW充分洗涤西林瓶内壁4次,每次1mL,洗涤合并到样品均质袋中;向样品均质袋中分别加入相应编号样品基质袋中的基质,振荡混匀后,按照GB4789.4-201636ħ预增18h[6];低温恒温培养箱中取出轻轻摇动培养过的样品混合物,移取1mL转种于TTB内,于(42ʃ1)ħ培养24h㊂同时,另取1mL转种于SC内,于36ħ分别培养24h㊂1.3.3㊀分离:㊀使用一次性接种环分别取增菌液1环,分别划线接种于BS琼脂平板和沙门氏菌显色培养基,BS琼脂平板36ħ培养48h,沙门氏菌显色培养基36ħ培养24h㊂1.3.4㊀生化试验:自选择琼脂平板上分别挑取3~5个可疑菌落接种三糖铁琼脂㊂同时接种营养琼脂平板36ħ培养24h㊂选取营养琼脂平板上的纯菌落,按VITEK2全自动微生物鉴定系统的要求进行上机鉴定㊂1.3.5㊀血清学鉴定:㊀将VITEK2全自动微生物鉴定系统和三糖铁结果符合沙门氏菌的菌落进行血清凝集实验㊂首先进行生理盐水对照,如不凝集再进行多价菌体抗原(O)和多价鞭毛抗原(H)抗血清的凝集㊂1.3.6㊀结果判定:㊀根据选择性培养基菌落特征㊁三糖铁初步生化结果和VITEK2全自动微生物系统生化鉴定结果以及血清凝集情况进行综合判定㊂2㊀结果2.1㊀分离菌落形态特征㊀三份奶粉样品在不同培养基上菌落形态特征不同,其中2017S-01(002)-2在BS㊁沙门氏菌显色培养基㊁营养琼脂上均无菌落生长;而2017S-01(002)-1和2017S-01(002)-3均表现为有菌落生长,且特征与沙门氏菌的生长特征基本相符合(表1),2017S-01(002)-2未检出沙门氏菌㊂表1㊀分离菌落形态特征菌号BS沙门氏菌显色培养基营养琼脂2017S-01(002)-1黑色有金属光泽菌落周围培养基呈棕黑色淡紫色菌落灰色光滑菌落2017S-01(002)-2无菌落生长无菌落生长无菌落生长㊀2017S-01(002)-3黑色有金属光泽菌落周围培养基呈黑色淡紫色菌落灰色光滑菌落2.2㊀三糖铁反应结果㊀2017S-01(002)-1考核样品产酸产碱,产气产硫化氢,而2017S-01(002)-3考核样品产酸产碱,不产气产硫化氢(表2)㊂2.3㊀系统生化鉴定结果㊀取营养琼脂平板上的纯菌㊀㊀表2㊀考核样品在三糖铁反应结果菌号斜面底层产气硫化氢2017S -01(002)-1K A ++2017S -01(002)-2----2017S -01(002)-3KA-+㊀㊀注:K,产碱;A,产酸;+,阳性;-,阴性㊂落进行上机鉴定,其中2017S -01(002)-1和2017S -01(002)-3的VITEK2生化结果见表3和4㊂2.4㊀生化鉴定结果㊀从VITEK2全自动微生物鉴定系统生化鉴定结果看出,其中2017S -01(002)-1鉴定为肠炎沙门菌血清型,2017S -01(002)-3被鉴定为沙门菌群,且符合率均较高,分别为98%和99%㊂2.5㊀血清凝集实验结果㊀2017S -01(002)-1和2017S -01(002)-3血清凝集情况不同,生理盐水均不凝集,其中2017S -01(002)-1菌体抗原O4,12㊁O9,12㊁O9均凝集,O4不凝集;鞭毛抗原Hg㊁Hm㊁H1,v㊁H7均凝集,Hv 不凝集㊂其中2017S -01(002)-1菌鞭毛抗原第二相在初始凝集时不凝集,故作了诱导实验㊂用已知的第一相血清做H 抗原第二相的诱导凝集试验,最后第二相凝集㊂2017S -01(002)-3菌体抗原O4㊁O5㊁O27㊁O4,12㊁O9,12均凝集,O9不凝集;鞭毛抗原Hd㊁H1,v㊁H1,2,3,5㊁H2均凝集,Hv㊁H5不凝集(表5)㊂表5㊀血清凝集情况菌号生理盐水对照菌体抗原(O)鞭毛抗原(H)目标菌菌体抗原(O)鞭毛抗原(H)2017S -01(002)-1(-)A-F(+)4,12(+)4(-)9,12(+)9(+)多价2(+)g,p(+)g(+)p(-)m(+)多价3(+)1,v(+)v(-)多价4(+)1,2,3,5(+)2(-)5(-)7(+)肠炎沙门氏菌1,9,12g,m;[1,7]2017S -01(002)-3(-)A-F(+)4(+)5(+)27(+)4,12(+)9,12(+)9(-)多价(+)d(+)多价3(+)1,v(+)v(-)多价4(+)1,2,3,5(+)2(+)5(-)斯坦利沙门氏菌1,4,[5],12,[27]d,;1,22.6㊀鉴定结果㊀根据选择性培养基㊁三糖铁和VITEK2全自动微生物系统生化鉴定结果以及血清凝集情况综合判定为2017S-01(002)-2未检出沙门氏菌㊂2017S-01(002)-1㊁2017S-01(002)-3盲样分别为检出肠炎沙门氏菌㊁检出斯坦利沙门氏菌㊂㊀3㊀讨论3.1㊀通过能力验证可以提高实验室检测水平,确保结果的准确性,同时发现检测问题,及时改进纠正[7,8]㊂沙门菌属血清型别较多,对检测人员技术水平和经验有较高的要求[9]㊂此次能力验证三份奶粉样品检测准确率达100%,与指定菌一致,能力验证结果满意,验证了实验室沙门氏菌的检验能力㊂3.2㊀此次沙门氏菌能力验证表明,在打开样品进行初步分离时,必须按能力验证要求操作,这与相关报道一致[10]㊂首先在室温放置几分钟,其次加入的初次增菌液的次数按要求加入,且反复吹打,尽量使西林瓶内的所有细菌都洗脱下来,有时能力验证所含细菌量少,如果不按此步操作,很容易造成细菌漏检㊂3.3㊀GB4789.4-20165.3中要求划线接种BS平板和XLD平板(或HE平板或沙门显色培养基),3种平板可以自选其一㊂沙门氏菌显色培养基菌落特征明显,容易识别[11],可直接对菌落进行初筛[12,13]㊂使检测者根据颜色特征能初步判定结果方向,可基本排除与沙门氏菌属特征相近的其他细菌,提高检测效率㊂此次能力验证试验提示沙门氏菌显色培养基优于XLD和HE培养基㊂3.4㊀此次能力验证中,2017S-01(002)-1号奶粉样本通过VITEK2全自动微生物鉴定系统鉴定为肠炎沙门菌血清型,但在实际工作中必须按照国标方法要求进行血清凝集试验,综合菌落特征㊁三糖铁㊁生化结果才能最终判定检验结果㊂3.5㊀沙门氏菌血清凝集时难点在H抗原的第二相诱导[14],此次沙门氏菌的能力验证,在血清凝集部分,做了诱导试验㊂传统的方法是使用琼脂粉,用水溶解后再高压灭菌,制成平板或U型管,且每次需要现用现配,过程繁琐㊂本次能力验证为了适应实际需要,改进了原有的半固体琼脂的配制方法,将储备的营养琼脂和营养肉汤煮沸冷却至50ħ左右,使用无菌大试管,分别加入4mL㊁5mL㊁6mL营养琼脂,再加入营养肉汤至20mL,制成不同浓度的半固体琼脂溶液,倒入平板,凝固后进行诱导试验,此次能力验证菌株在加入6mL营养琼脂的比例浓度中诱导情况最好㊂此方法不仅简单便于操作,更能根据不同沙门氏菌的菌株特点,多制备几个浓度,以免半固体琼脂平板太软或太硬影响凝集效果,能够尽可能早出具检测报告㊂另外要从蔓延生长的菌苔边缘挑取菌落凝集[15],否则影响凝集效果㊂参考文献[1]㊀殷欢.实验室沙门氏菌检验能力验证结果与分析[J].现代食品,2019,2(37):127-130.[2]㊀张红莉,殴露真.能力验证试验中沙门氏菌的分离与鉴定[J].食品安全质量检测学报,2016,7(12):4996-4999.[3]㊀王超,陈国利.食源性沙门菌质控考核结果分析[J].世界最新医学信息文摘,2018,18(85):153. [4]㊀牛会敏,王静怡,陈万胜.巧克力中沙门氏菌检验能力验证的分析[J].食品安全质量检测学报,2019,10(4):983-987.[5]㊀朱梦,杨穗珊,林宝英.沙门氏菌检测能力验证结果分析[J].现代食品,2018,17(41):145-148. [6]㊀国家卫生和计划生育委员会,国家食品药品监督管理总局.食品微生物学检验沙门氏菌检验:GB4789.42016[S].北京:中国标准出版社,2016.[7]㊀吉彦莉,郭勇峰,王敬辉,等.食品微生物学检测能力验证分析[J].公共卫生与预防医学,2015,26(3):110-112.[8]㊀贾东,李宏,王金玲,等.食品微生物学能力验证过程质量控制的研究[J].现代测量与实验室管理,2012(6):49-52.[9]㊀王志伟,徐琼,陈欣钦,等.能力验证样品中沙门氏菌的分离与鉴定[J].食品研究与开发,2016,37(7):161-163.[10]㊀孙葳,赵虹,胡蒿,等.一次巧克力中沙门氏菌检验能力验证结果与分析[J].现代食品.2018,23(35):116-120.[11]㊀游元丁,赵阳,徐孟怀,等.奶粉中沙门氏菌检测能力验证分析[J].安徽农业科学,2019,47(5):193-195. [12]㊀王萍,董贵军,乔勇升,等.显色培养基上沙门氏菌及干扰菌的分离鉴定[J].食品研究与开发,2017,38(12):158-161.[13]㊀孙晶,王歆睿,魏静元,等.食品中金黄色葡萄球菌和沙门氏菌检出能力验证结果与分析[J].食品安全质量检测学报,2017,8(9):3561-3564.[14]㊀罗丽珠,陈婉娃,许小妹.能力验证中沙门氏菌的分离鉴定与血清分型[J].食品安全质量检测学报,2018,9(5):1117-1121.[15]㊀陈丹霞,苏妙贞,梁颖思,等.巧克力中沙门氏菌检测能力验证结果与分析[J].食品安全质量检测学报,2018,9(23):6095-6100.(收稿日期:2019-08-30))。
牛奶中蛋白质检测研究
北京理工大学本科生毕业论文
melamine, cyanuric acid, urea and soybean meal was less than 15 % which was in line with the requirements of analysis of biological samples . Thus, this detection technology contains the advantages that high accuracy, data reliability and anti-interference ability. The application of this technology provides a new reliable method for the detection of protein.
ABSTRACT ................................................................................................................................... I 目 录 ........................................................................................................................................... II 绪 论 ........................................................................................................................... 1
凝胶电泳法(SDS-PAGE)测定乳与乳制品中 β-乳球蛋白的含量
染色液的器皿中,染色 12 h。染色后的凝胶用脱 色也浸泡脱色,至凝胶背景无色为止。用光密度 仪对凝胶进行测定分析,根据光密度值计算 β-乳 球蛋白的含量。
受到较大的阻力而被滞后,这样蛋白质在电泳过 程中就会根据其各自分子量的大小而被分离。因 此,采用不连续系统,对相同样品,相同电流下, 在 5%、12%、15%以及 20%的分离胶上进行电泳, 对分离效果进行了比较,见图 1-图 4。
2.5 确定检出限 根据限量要求,对 0.2376 mg/mL 的标准样品
(较接近于空白样品)20 个平行样进行电泳,得到 标准偏差,由 LOD=3×SD 得到检出限。液态奶中 为 24 mg/100mL,奶粉、奶酪中为 240 mg/100g。 2.6 实际样品的测定
用 SDS -PAGE 测 定 β - 乳 球 蛋 白 的 标 准 溶
述,改良的考马斯亮蓝染色与传统考马斯亮染色 液,其测定结果表明 β-乳球蛋白的标准溶液与
相比,不仅使用低毒的有机试剂,缩短了脱色时 光密度值之间存在着较好的线性关系,相关系数
间,并且能达到与传统考马斯亮蓝染色的定量效 r 为 0.99,回归方程分别为 Y=1.5452X-0.7139,
目前 β-乳球蛋白常用的检测方法有高效液 相色谱法[2-3]和电泳法[4-8],与液相方法相比,电泳 法具有成本低、操作简单,耗时短,重复性高等特 点。
收稿日期:2008-10-22
1 材料与方法
1.1 材料与仪器 30%丙烯酰胺单体贮备液、1 mol/L Tris-HCl
缓 冲 液 ,pH 6.8、1.5 mol/L Tris -HCl 缓 冲 液 ,pH 8.8、10%过硫酸铵、10%SDS 溶液、N,N, N’,N’-四 甲基乙二胺(TEMED)溶液;样品缓冲液(4 mg 溴 酚蓝,1.6 mL 1 mol/L Tris-HCl 缓冲液,pH 6.8,4 mL SDS 溶液,1.2 mL β-巯基乙醇,100%甘油 2.2 mL,全部混合后用水稀释定容至 20 mL);
考马斯亮蓝法测定乳与乳制品中蛋白质含量
对 6份乳与乳制品样品进行精密度试验 ,按照 1. 2. 2 方法测定蛋白质的含量 ,结果表明蛋白质吸 光度的 RSD 为 0189 %。 2. 4 稳定性试验
收稿日期 : 2010 - 02 - 26 修回日期 : 2010 - 03 - 10 作者简介 :冯 昕 ,女 , 1977 年出生 ,讲师 ,主要从事食品生 物技术方面的教学与研究工作 。
量差异较大的蛋白质时 ,有一定的误差 ;福林 - 酚比 色法是灵敏度较高的方法之一 ,但是该法专一性较 差 ,干扰物质较多 ,如酚类 、柠檬酸 、甘氨酸 、糖类 、甘 油等均有干扰作用 ,且操作费时长 ,还要精确控制操 作时间 [ 2 ] 。凯氏定氮法是测定粗蛋白质的经典方 法 ,但由于样品中非蛋白质含氮化合物的干扰 ,使得 测定结果不能完全反映被测样品中真实蛋白质的含 量 。考马斯亮蓝比色法是 1976 年由 B radford等人 建立的一种测定微量蛋白质的方法 ,考马斯亮蓝所 含疏水基团在酸性条件下与蛋白质的疏水微区具有 亲和力 ,通过疏水作用与蛋白质相结合 ,形成的蓝色 蛋白质染料复合物 ,在 595 nm 处有最大吸光度 ,在
分别准确移取一定量的乳与乳制品样品于试管 中 ,加入 410 mL 考马斯亮蓝 G - 250 溶液 ,用蒸馏 水定容至 510 mL ,摇匀 ,在室温下反应 5 m in,以空 白 (不 加 乳 制 品 ) 溶 液 作 参 比 溶 液 , 分 光 光 度 计 595 nm波长处测定样品组的吸光度 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
cation of specific components of milk fat or milk proteins include GLC (10, 20); gel electrophoresis (6, 9, 15, 17); isoelectrofocusing (12,21), and HPLC (3). Although these meth~ ods have their own individual merits, they are relatively costly, time-consuming,and require technical expertise. Immunological methods used for milk species analysis include agar-gel immunodiffusion (5) and its "dry disc" modification (7), radial immunodiffusion (13), rocket immunoelectrophoresis (18), hemagglutination inhibition (14), and inununodotting (1). All these methods use polyclonal antibodies raised against whey ~r casein proteins. Although accurate and sensItive the methods are time consuming and requke a high concentration of the antise~. Enzyme-linked immunosorbent assa~ l~ a rapid method that might have broad application for measuring components of foods that are capable of acting as antigens (4). Immunoassays differ from other modem methods of analysis in that the high technology is built into the reagents rather than the apparatus. Thus, specific and reliable analysis of trace components is possible without expensive apparatus or highly skilled operators. In this report, an indirect ELISA and blocked biotinylated antibodies against bovine whey proteins (BWP) were used to detect and quantify the presence of bovine milk in sheep's milk.
Detection of Bovine Milk in Ovine Milk by an Indirect Enzyme-Linked Immunosorbent Assay
TERESA GARCiA ROSARIO MARTiN, ELENA ROD.RIGUEZ, PALOMA MORALES, , PABLO E. HERNANDEZ, AND BERNABE SANZ Departamento de Higiene y Tecnologia de los Allmentos Facultad de Veterlnaria Universldad CompIutense 28040 Madrid, Spain ABSTRACT
Production of Polyclonal Antibodies
dissolved to 1 mg/ml in dimethylsulfoxide (DMSO, Merck), was added at a molar excess of 50 to the affinity-purified antibodies (antiBWP) dissolved in PBS (1.25 mg/ml, pH 7.2) and incubated for 2 h at room temperature (22). Unbound reagent was separated from the antibodies by overnight dialysis against PBS. Aliquots of biotinylated antibodies (.1 ml) were stored at -20·C until use.
INTRODUCTION
In most countries where ovine milk is produced either for direct consumption or for cheese making, it commands a considerably higher price than bovine milk. For economic as well as ethical reasoscertain that ovine milk offered for sale is free from admixtures with bovine milk. Several methods are available for identification of milk from closely related species. Nonimmunological methods, which require identifi-
1990 1 Dairy Sci 13:1489-1493
1489
1490
GARCIA ET AL.
centrifugation at 5800 x g for 10 min to remove precipitated caseins. The pH of the supernatant was adjusted to 7.0 with 1 M of NaOH and centrifuged at 5800 x g for 20 min to precipitate any remaining caseins. Supernatant containing the whey proteins was dialyzed overnight against phosphate-buffered saline (pBS, pH 7.2, containing .02%, wt/vol, sodium azide) and lyophilized. Dried whey proteins were placed in an airtight container and stored at -20·C until use. Antigenic whey protein extracts from ovine and caprine milk were prepared also.
Blocking of the Blotlnylated Antibodies
Polyclonal antibodies against BWP were raised in New Zealand male white rabbits. Immunization commenced with subcutaneous injection of lyophilized BWP (1 mg) emulsified in 1 ml of Freund's Complete Adjuvant (Difco Laboratories, Detroit, Ml) and 1 ml of deionized and distilled water. Multiple injection sites along the back were used. Booster doses (n 10) made in Freund's Incomplete Adjuvant were applied subcutaneously every 6 d. After 60 d, rabbits were bled. Blood was allowed to clot for 1 h at room temperature before serum was collected by centrifugation at 2000 x g for 10 min. Aliquots (1 ml) of the antiserum were stored at -20·C. Antibodies against BWP (anti-BWP) were recovered from whole antiserum by immunoadsorption (affinity) chromatography conducted at 4·C. Isolation of anti-BWP antibodies involved passage of 18-ml samples of diluted crude antiserum (1:2 with 2x concentrated PBST, pH 7.2 containing .5% Tween 80), through a CNBractivated Sepharose 4B column (Pharmacia Fine Chemicals, Uppsala, Sweden). Column contained 9 g of freeze-dried powder coupled to 158 mg of the lyophilized bovine whey proteins. Antibodies against BWP were released from the column by elution with .1 M glycineHCI buffer, pH 2.5. Eluted fractions with absorbance >.1 at 280 nm were pooled, adjusted to pH 7.2 with solid TRIS (Merck, Darmstadt, FRG), dialyzed overnight against PBS, and lyophilized prior to use in ELISA experiments.