Optimization of multi-pass turning operations using hybrid
改进的QPSO 算法在FIR滤波器设计中的应用
改进的QPSO 算法在FIR滤波器设计中的应用崔畅【摘要】针对量子粒子群优化(QPSO)算法对越界粒子处理方式的不足,提出了一种基于边界控制的改进方法,并将其应用在有限长脉冲响应(FIR)滤波器的频率采样设计法中,给出了算法的具体实施步骤。
对 FIR 低通和带通滤波器的仿真结果表明,相对于查表法及标准 QPSO 算法,改进后的 QPSO 算法能够快速、有效地求得频率过渡带样本值的最优解,同时通带波动变小,最小阻带衰减变大,从而对FIR滤波器的设计进行了进一步的优化,验证了改进算法的有效性。
%Considering the premature convergence problem in the conventional quantum particle swarm optimization (QPSO) algorithm,an improved method based on boundary control was proposed and was applied in finite impulse response (FIR)filter design with frequency sampling method.The specific implementation steps of the improved algorithm were presented.In contrast with look-up table method and QPSO algorithm,the simulation results of FIR low pass and band pass filter verified that the improved method could rapidly and effectively find the optimal sample value in the frequency sampling,and the pass band ripple became small and the minimum stop band attenuation became large.The efficiency of the improved QPSO algorithm was verified.【期刊名称】《辽宁石油化工大学学报》【年(卷),期】2014(000)006【总页数】4页(P67-70)【关键词】量子粒子群优化;边界控制;FIR滤波器;频率采样法;最优解【作者】崔畅【作者单位】辽宁石油化工大学信息与控制工程学院,辽宁抚顺 113001【正文语种】中文【中图分类】TP301.6频率采样法是FIR数字滤波器设计中较为常用的一种设计方法。
带变分不等式约束多目标优化问题的等价表示
带变分不等式约束多目标优化问题的等价表示
多目标优化问题(Multi-Objective Optimization Problem, MOP)是研究多
目标优化的基本框架。
它的目的是在满足一组约束的情况下,最大化一组目标函数。
很多情况下,MOP就潜在的有带变分不等式(Variational Inequality)约束,尽
管变分不等式未明确地被表达出来。
因此,在提出MOP前,就需要将其表达为有关重要约束的等价形式,以保持原问题的精确形式。
等价表达方式一般是将变分不等式以其最简形式恰当求近出现,以减少不等式
约束的总数量,使之满足强可行性和对偶问题的性质,进而实现约束条件的有效描述。
除此之外,还需要使得变分不等式的粒子几何、最优化或联立不等式的等价形式,用以替代带变分不等式约束的非凸优化问题。
幸运的是,在此类情形下,依据不同形式可以有效地调整添加新的变量,抑制约束数和优化速度,以解决带变分不等式约束的多目标优化问题的等价表示。
综上,提出带变分不等式约束的多目标优化问题的等价表示,是一项重要的研
究领域,它有利于更进一步减少约束数量,提高优化效率,完善多目标优化的相关技术与应用。
技术上,数学分析和算法技术是实现此类研究目标的主要手段,但需要根据不同情形进行有效应用,以最大化求解多目标优化问题的可行性与实用性。
液液提取-固相萃取-高效液相色谱-串联质谱测定人体血液中16种有机磷酸酯
2021年1月January 2021Chinese Journal of ChromatographyVol.39 No.169〜76青年编委专辑(上)•研究论文DOI : 10.3724/SP.J. 1123.2020.07033液液提取-固相萃取-高效液相色谱-串联质谱测定人体血液中16种有机磷酸酯侯敏敏W ,史亚利,蔡亚岐W(1.中国科学院生态环境研究中心,环境化学与生态毒理学国家重点实验室,北京100083; 2.中国科学院大学,北京100049)摘要:人体体液中有机磷酸酯(OPEs )浓度的测定对于了解人体OPEs 的暴露水平以及评估人体健康风险具有重要意义。
然而,目前的研究大多数集中于尿液中OPEs 代谢物含量的分析测定,将其作为人体OPEs 暴露的生物标 志物,而对人体血液中OPEs 的分析研究较少,仅有的少量研究涉及的OPEs 种类有限。
该研究在优化前处理过程 (固相萃取,SPE )和色谱分离的基础上,建立了人体血液中16种OPEs 的超高效液相色谱-串联质谱(UPLC-MS- MS )测定方法。
血液样品经过乙睛摇床萃取后,经ENVI-18 SPE 小柱净化,然后采用Acquity UPLC BEH C18色谱 柱,以甲醇/5 mmol/L 的乙酸铵水溶液为流动相进行梯度洗脱对目标物进行分离,最后进行LC-MS/MS 测定。
质 谱分析采用电喷雾正离子模式电离,多重反应监测模式测定,内标法定量。
在优化的检测条件下,16种OPEs 的检 出限为0. 003 8~0. 882 ng/mL 。
除磷酸三甲酯(TMP )外,其余15种OPEs 在3个浓度水平的血液基质加标回收率 为53. 1% -126%,相对标准偏差为0. 15% - 12. 6%。
样品的基质效应检测发现,4种OPEs 存在明显的基质抑制,选 用合适的同位素内标进行定量,可以部分消除基质影响。
该方法样品前处理简单,灵敏度高,适用于人体血液样品中OPEs 阻燃剂的测定。
太古长输供热工程高可靠通讯方案配置及优化
山西建筑SHANXI ARCHITECTURE第42卷第4期・46・2。
2 1年2月Vol. 22 No. 2Feb. ZU文章编号:10494825 (2221) 44-0106-03太古长输供热工程高可靠通讯方案配置及优化齐卫雪 冯关儒 荆剑 岳斌(太原市热力集团有限责任公司,山西太原430004)摘要:太古长输供热管线已安全平稳运行四个采暖季,是目前世界上已投运的最长供热管线,在供热行业意义重大。
泵站及沿 线监测点分散且设备众多,为实现对设备控制和调节,同时监测系统运行状况和设备运行参数,保证设备平稳运行,稳定的通讯系统至关重要。
从实际运行角度介绍了太古长输管线的通讯方式以及在使用期间遇到的问题及解决方案,为以后长输供热通讯系统的设置提供了宝贵经验。
关键词:长输供热,高可靠通讯,监测,通讯系统中图分类号:TU833.1 文献标识码:A1项目概况太古长输供热工程以古交兴能电厂为热源,敷设4根 DN1 444管线,设置两套系统。
管线长度32.8 km,包括穿 山隧道15.2 km 、野外架空2.2 km ,中间设置3座中继泵站 和1座事故补水站,6级热网循环泵逐级加压。
目前项目已安全平稳运行四个采暖季,最大供热面积达2 122万m 2。
该工程供热半径71 k 叫远远超过了 22 km 的行业共 识。
长输热网口径大、输送距离长、供水温度高(设计 m °C )、运行压力高(实际运行2.3 MPa ),电厂至中继能源站直连高差m 叫要保证所有工况不超压、不汽化,需要实现对整个系统的控制与调节,实时监测重点设备运行 参数,以往的集中供热工程,以数据监测和平衡调整为主要目标,而长输供热工程必须首先保证系统的安全,才能保证 市区a 。
多万平方米稳定供热。
稳定可靠的通讯系统是 系统安全平稳运行的基础。
2通讯系统该工程在古交兴能电厂设置供热首站,由于管线距离长,沿途设置3座中继泵站,座事故补水站,座中继能源 站,泵站设置计较分散。
Φ450mm口径空间天文相机轻量化碳化硅主反射镜组件设计
第50卷第2期Vol.50No.22021年2月Feb.2021红外与激光工程Infrared and Laser Engineering0450mm口径空间天文相机轻量化碳化硅主反射镜组件设计凤良杰,成鹏飞,王炜(中国科学院西安光学精密机械研究所空间光学技术研究室,陕西西安710119)摘要:针对某空间天文相机对轻量化、光学效率、杂光抑制与探测能力的需求,设计0450mm口径碳化硅主反射镜,镜体轻量化率超过70%;选取线膨胀系数匹配的殷钢材料,设计基于两脚架柔性结构的侧面支撑以消除装配应力和热应力,通过渗硅改性获取高反射率光学镜面。
光学加工完成后反射镜质量7kg,反射率优于98%O在严格的工艺条件控制下,对反射镜组件进行精密装配。
光学检测结果表明,反射镜装配完成后面形误差优于0.02A RMS,与分析结果吻合。
证明了空间天文相机主反射镜组件结构设计方案与装调工艺的合理性,满足空间天文相机光学设计要求。
关键词:空间天文相机;碳化硅反射镜;轻量化设计;柔性支撑中图分类号:V447+.1文献标志码:A DOI:10.3788/IRLA20200175Design of¢450mm light-weighted SiC mirror subsystem inspace-based astronomy telescopeFeng Liangjie,Cheng Pengfei,Wang Wei(The Space Optical Technology Research Department,Xi'an Institute of Optics and Precision Mechanics ofChinese Academy of Sciences,Xi'an710119,China)Abstract:A¢450mm primary mirror subsystem of a space-based astronomy telescope was designed with mass,optical surface distortion and reflectivity requirement.The opeback primary mirror was made of pressureless sintering silicon carbide,light-weighted at a ratio of approximately70%.Three side supporting invar flexure bipods were designed to minimize the assembling stress and the thermal stress.The high reflection was obtained from the optical surface cementite.The mirror weighted7kg and the reflectivity was98%after optical polishing. The mirror subsystem was precisely assembled under the strict technical condition.The optical test with interferometer show that the optical surface distortion is less than0.02z RMS,which meet the critical optical requirements for the primary mirror of the space-based astronomy telescope.Key words:space-based astronomy telescope;SiC mirror;light-weighted design;flexure support收稿日期:2020-05-16;修订日期:2020-09-09基金项目:中法合作天文卫星项目(Space Variable Objects Monitor)0引言伽玛射线暴(又称伽玛暴)是宇宙中发生的最剧烈的爆炸,数十年来,人们对其本质了解的还不很清楚,但基本上可以确定是发生在宇宙学尺度上的恒星级天体中的爆发过程。
多模态函数聚类后再创种群的并行搜索佳点集萤火虫算法
浙江理工大学学报(自然科学版),第37卷,第6期,20:17年月Journal of Zhejiang Sci-Tech U niversity(Natural Sciences)V o l.37,N o. 6,N ov.2017D Q I:10. 3969/j.issn. 1673-3851. 201 7. 11. 015多模态函数聚类后再创种群的并行搜索佳点集萤火虫算法方贤1,铁治欣1,李敬明2,高雄1(1.浙江理工大学信息学院,杭州310018;.合肥工业大学管理学院,合肥230009)摘要:萤火虫算法在求解多模态函数时,随着峰值个数的增加,往往需要更大的种群规模才能得到较为理想 的结果,而且初始种群是否均匀分布对结果也有很大影响。
针对萤火虫算法的这些不足,提出了一种多模态函数的 聚类后再创种群的并行搜索佳点集萤火虫算法。
该算法首先以数论佳点集的思想将萤火虫均匀分布于搜索空间 中,在粗糙搜索完成后,通过密度聚类算法进行捕峰操作,重新构造等同于峰值点数的各个平行空间;然后在各空间 中继续加入少量佳点集生成的萤火虫并行精细搜索,最终可获得各个平行空间的局部最优解以及整个空间的全局 最优解。
与其他算法在12个典型多模态函数中的测试结果进行对比,该算法总体上缩小了种群规模,加快了收效速 度,搜索精度更高,时间成本更低,稳定性能更好。
关键词:萤火虫算法;多模态函数;圭点集;密度聚类算法;并行搜索中图分类号:TP391.9文献标志码:A文章编号:1673-3851 (2017) 06-0843-080引言在工程技术、科学计算、经济管理等领域中,绝 大多数实际问题可以通过构建模型归结为函数优化问题。
其中,一些函数由于自身维数高、峰值点多、震荡严重等因素造成性态差。
采用传统的算法,如 D F P变尺度算法、P o w e ll方向加速法等,往往难以或无法找到全局最优解。
近年来随着智能计算学科的发展,一些仿生算法应运而生,如粒子群算法(particle swarm optimization,P S())、遗传算法(genetic algorithm,G A)、蚁群算法(ant clony optimization,AC O)、蜂群算法(artificial bee colony algorithm,A B C)、鱼群算法(artificial fish swarm algorithm,A F S A)等。
最优化方法有关牛顿法的矩阵的秩为一的题目
英文回答:The Newton-Raphson method is an iterative optimization algorithm utilized for locating the local minimum or maximumof a given function. Within the realm of optimization, the Newton-Raphson method iteratively updates the current solution by leveraging the second derivative information of the objective function. This approach enables the method to converge towards the optimal solution at an accelerated pacepared to first-order optimization algorithms, such as the gradient descent method. Nonetheless, the Newton-Raphson method necessitates the solution of a system of linear equations involving the Hessian matrix, which denotes the second derivative of the objective function. Of particular note, when the Hessian matrix possesses a rank of one, it introduces a special case for the Newton-Raphson method.牛顿—拉弗森方法是一种迭代优化算法,用于定位特定函数的局部最小或最大值。
【机械类文献翻译】多功能工具钻参数的优化选择
英文原文原文节选自Journal of Materials Processing Technology 103 (2000) 318-323 《Optimal selection of parameters in multi-tool drilling》原文:Optimal selection of parameters in multi-tool drillinga.Department of Mechanical Engineering, Indian Institute of Technology, Chennai 600 036, Indiab.Department of Humanities and Social Sciences, Indian Institute of Technology, Chennai 600 036,IndiaAccepted 4 January 2000AbstractIn hole-making operation, the final size may be obtained by drilling with a single drill orpilot-drilling of one or more holes followed by enlargement to the final size. In this paper, a model based on production cost is presented and the optimal conditions are obtained considering technological and machine tool constraints. This approach is quite useful in arriving at the cutting parameters automatically in a computer-assisted process planning system.Keywords: Optimal selection; Multi-tool drilling; Computer-assisted process planning systemNomenclatureD drill diameter, mmd pilot-drill diameter, mmF thrust force in drilling, Nh1 tool return rate, min/mmh2 time for tool retract-advance, mink1 operating cost of drilling machine, $/minkt drill cost, $l depth of drilling, mmM torque in drilling, N ms feed, mm/revT drill-life, minTR preventive tool-lifet depth of cut, 错误!未找到引用源。
双层优化的求解方法
双层优化的求解方法As a student or researcher looking to solve a complex problem with a dual optimization approach, it's important to have a clear understanding of the concept itself. 双层优化方法是一种综合利用两个优化问题解决方案的技术,它能够更精准地找到问题的最优解。
By incorporating two levels of optimization, it allows for a more in-depth analysis of the problem at hand and can lead to more efficient solutions. 这种方法需要在不同层次上进行优化,以确保在解决问题的同时使得整体效果达到最优。
Dual optimization is especially useful when dealing with complex systems or problems that require a multi-faceted approach. 在处理复杂的系统或问题时,采用双层优化方法可以更好地从不同的角度进行分析和解决,提高问题的解决效率。
One of the key advantages of a dual optimization approach is that it allows for a more nuanced understanding of the problem. 双层优化方法能够深入挖掘问题的本质,找到解决问题的根本途径。
By breaking down the problem into two levels of optimization, it becomes easier to identify the key variables and constraints that need to be addressed. 通过将问题拆解为两个层次的优化,可以更好地识别需要解决的关键变量和约束条件。
3DMAX8中英互译
3DMAX8.0菜单中英文对照表43DMAX8.0菜单中英文对照表1GEOMETRY几何休CONFORM 适配变形BOMB 爆炸MODIFIER-BASED 基于修改器BEND 弯曲NOISE 噪波SKEW 倾斜TAPER 锥化TWIST 扭曲STRETCH 拉伸SYSTEMS 系统BONES 骨骼SUNLIGHT 太阳光DAYLIGHT 日光BIPED 两足动物修改面板SELECTION MODIFIERS 选择修改器MESH SELECT 网格选择POLY SELECT 多边形选择PATCH SELECT 面片选择SPLINE SELECT 样条线选择FFD SELECT FFD选择SELECT BY CHANNEL 按通道选择SURFACE SELECT(NSURF SEL) NURBS 曲面选择PATCH/SPLINE EDITING 面片/样条线编辑EDIT PATCH 编辑面片EDIT SPLINE 编辑样条线CROSS SECTION 横截面SURFACE 曲面DELETE PATCH 删除面片DELETE SPLINE 删除样条线LATHE 车削NORMALIZE SPLINE 规格化样条线FILLET/CHAMFER 圆角/切角TRIM/EXTEND 修剪/延伸RENDERABLE SPLINE 可渲染样条线SWEEP 扫描MESH EDITING 网格编辑DELETE MESH 删除网格EDIT MESH 编辑网格EDIT POLY 编辑多边形EXTRUDE 挤出FACE EXTRUDE 面挤出NORMAL 法线SMOOTH 平滑BEVEL 倒角BEVEL PROFILE 倒角剖面TESSELLATE 细化STL CHECK STL检查CAP HOLES 补洞VERTEXPAINT 顶点绘制OPTIMIZE 优化MULTIRES 多分辨率VERTEX WELD 顶点焊接SYMMETRY 对称EDIT NORMALS 编辑法线EDITABLE POLY 可编辑多边形EDIT GEOMETRY 编辑几何体SUBDIVISION SURFACE 细分曲面SUBDIVISION DISPLACEMENT 细分置换PAINT DEFORMATION 绘制变形CONVERSION 转化TURN TO POLY 转换为多边形TURN TO PATCH 转换为面片TURN TO MESH 转换为网格ANIMATION MODIFIERS 动画EDIT ENVELOPE 编辑封套WEIGHT PROPERTIES 权重属性MIRROR PARAMETERS 镜像参数DISPLAY 显示ADVANCED PARAMETERS 高级参数GIZMO 变形器MORPHER 变形器CHANNEL COLOR LEGEND 通道颜色图例GLOBAL PARAMETERS 全局参数CHANNEL LIST 通道列表CHANNEL PARAMETERS 通道参数ADVANCED PARAMETERS 高级参数FLEX 柔体PARAMETERS 参数SIMPLE SOFT BODIES 简章软体WEIGHTS AND PAINTING 权重和绘制FORCES AND DEFLECTORS 力和导向器ADVANCED PARAMETERS 高级参数ADVANCED SPRINGS 高级弹力线MELT 融化LINKED XFORM 链接变换PATCH DEFORM 面片变形PATH DEFORM 路径变形SURF DEFORM 曲面变形PATCH DEFORM(WSM)面片变形(WSM)PATH DEFORM(WSM)路径变形(WSM)SURF DEFORM(WSM)曲面变形(WSM)SKIN MORPH 蒙皮变形SKIN WRAP 蒙皮包裹SKIN WRAP PATCH 蒙皮包裹面片SPLINE IK CONTROL 样条线IK控制ATTRIBUTE HOLDER 属性承载器UV COORDINATES MODIFIERS UV坐标修改器UVW MAP UVW贴图UNWRAP UVW 展开UVWUVW XFORM UVW变换MAPSCALER(WSM)贴图缩放器(WSM)MAPSCALER 贴图缩放器(OSM)CAMERA MAP 摄影机贴图CAMERA MAP(WSM)摄影机贴图(WSM)SURFACE MAPPER(WSM)曲面贴图(WSM)PROJECTION 投影UVW MAPPING ADD UVW贴图添加UVW MAPPING CLEAR UVW贴图清除CACHE TOOLS 缓存工具POINT CACHE 点缓存POINT CACHE(WSM)点缓存(WSM)SUBDIVISION SURFACES 细分曲面TURBOSMOOTH 涡轮平滑MESHSMOOTH 网格平滑HSDS MODIFIER HSDS修改器FREE FORM DEFORMATIONS 自由形式变形FFD MODIFIERS FFD修改FFD BOX/CYLINDER FFD长方形/圆柱体PARAMETRIC MODIFIERS 参数化修改器BEND 弯曲TAPER 锥化TWIST 扭曲NOISE 噪波STRETCH 拉伸SQUEEZE 挤压PUSH 推力RELAX 松弛RIPPLE 涟漪WAVE 波浪SKEW 倾斜ALICE 切片SPHERIFY 球形化AFFECT REGION 影响区域LATTICE 晶格MIRROR 镜像DISPLACE 置换XFORM 变换SUBSTITUTE 替换PRESERVE 保留SHELL 壳SURFACE 曲面MATERIAL 材质MATERIAL BY ELEMENT 按元素分配材质DISP APPROX 置换近似DISPLACE MESH(WSM)置换网格(WSM)DISPLACE NURBS(WSM)置换网格(WSM)RADIOSITY MODIFIERS 沟通传递修改器SUBDIVIDE(WSM)细分(WSM)SUBDIVIDE 细分CAMERAS 摄影机CAMERA CORRECTION 摄影机校正CLOTH MODIFIERS 布料修改器CLOTH 布料GARMENT MAKER 衣服生成器DEFORMATIONS 变形REACTOR CLOTH REACTOR布料REACTOR ROPE REACTOR绳索REACTOR SOFTBODY REACTOR软体层次命令面板PIVOT 轴ADJUST PIVOT 调节轴ADJUST TRANSFORM 调整变换SKIN POSE 蒙皮姿势IK 反向运动INVERSE KINEMATICS 反向运动学OBJECT PARAMETERS 对象参数AUTO TERMINATION 自动终结SLIDING/ROTATIONAL JOINTS 滑动/转动关节LINK INFO 链接信息运动命令面板PARAMETERS 参数ASSIGN CONTROLLER 指定控制器PRS PARAMETERS 变换参数KEY INFO(BASIC)关键信息(基本)KEY INFO(ADVANCED)关键信息(高级)TRAJECTORIES 轨迹显示命令面板DISPLAY COLOR 显示颜色HIDE BY CATEGORY 按类别隐藏HIDE 隐藏FREEZE 冻结DISPLAY PROPERTIES 显示属性LINK DISPLAY 链接显示STANDARD PRIMITIVES标准几何体BOX长方体CONE圆锥体SPHERE球体GEO SPHERE几何球体CYLINDER 圆柱体TUBE 管状体TORUS 圆环PYRAMID 四棱锥TEAPOT 茶壶PLANE 平面EXTENDED PRIMITIVES 扩展基本体HEDRA 异面体TORUS KNOT环形结CHAMFERBOX 切角长方体CHAMFERCYL 切角圆柱体OIL TANK 油罐CAPSULE 胶囊SPINDLE 纺缍L-EXT L形墙C-EXT C形墙RING EAVE 环形波HOSE 软管PRISM 棱柱COMPOUND OBJECTS 复合对象MORPH 变形SCATTER 散布CONFORM 一致CONNECT 连接MESHER 网格化LOFT 放样TERRAIN 地形SHAPE MERGE 图形合并BOOLEAN 布尔BLOB MESH水滴网格PARTICLE SYSTEMS 粒子系统SPRAY 喷射SHOW 雪BLIZZARD 暴风雪PARRAY 粒子陈列PCLOUD 粒子云SUPER SPRAY 超级喷射PATCH GRIDS 面片栅格QUAD PATCH 四边形面片TRI PATCH 三角形面片EDITABLE PATCH 可编辑面片DOORS 门WINDOWS 窗AEC EXTENDED AEC扩展FOLIAGE 植物RAILING 栏杆WALL 墙DYNAMICS OBJECTS 动力学对象DAMPER 阻尼哭SPRING 弹簧STAIRS 楼梯L-TYPE STAIR L型楼梯SPIRAL STAIR 螺旋楼梯STRAIGHT STAIR 直线楼梯U-TYPE STAIR U型楼梯SHAPES 图形SPLINES 样条线LINE 线RECTANGLE 矩形CIRCLE 圆ELLIPSE 椭圆ARC 弧DOUNUT 圆环NGON 多边形STAR 星形TEXT 文本HELIX 螺旋线SECTION 截面NURBS CURVES NURBS曲线EXTENDED SPLINES 扩展样条线WRECTANGLE W矩形CHANNEL 通道ANGLE 角度TEE 三通WIDE FLANGE 宽法兰LIGHTS 灯光STANDARD 标准灯光TARGET SPOT 目标聚光灯FREE SPOT 自由聚光灯TARGET DIRECT 目标平行光FREE DIRECT 自由平行光OMNI 泛光灯SKYLIGHT 天光MR AREA OMNI MR区域泛光灯MR AREA SPOT MR区域聚光灯PHOTOMETRIC 光度学灯光TARGET POINT LIGHT 目标点光源FREE POINT LIGHT 自由点光源TARGET LINEAR LIGHT 目标线光源FREE LINEAR LIGHT 自由线光源TARGET AREA LIGHT 目标面光源FREE AREA LIGHT 自由面光源IES SUN LIGHT IES太阳光IES SKY LIGHT IES天光ISOTROPIC/DIFFUSE LIGHT DISTRIBUTION 等向/漫反射灯光分布SPOTLIGHT DISTRIBUTION 聚光灯分布WEB DISTRIBUTION 光域网分布PHOTOMETRIC WEBS 光域网灯光共同参数GENERAL PARAMETERS 常规参数SHADOW PARAMETERS 阴影参数SPOTLIGHT PARAMETERS 聚光灯参数ADVANCED EFFECTS 高级效果MENTAL RAY INDIRECT ILLUMINATION MENTAL RAY间接照明MENTAL RAY LIGHT SHADER MENTAL RAY灯光明暗器标准灯光附加参数INTENSITY/COLOR/ATTENUATION 强度/颜色/衰减DIRECTIONAL PARAMETERS 平行光参数ATMOSPHERES&EFFECTS 大气和效果HAIR LIGHT ATTRIBUTE 头发灯光属性光度学灯光附加参数INTENSITY/COLOR/DISTRIBUTION 强度/颜色/分布LINEAR LIGHT PARAMETERS 线光源参数AREA LIGHT PARAMETERS 区域光源参数AREA LIGHT SAMPLING 区域灯光采样WEB PARAMETERS 光域网参数特定阴影类型ADVANCED RAY-TACED PARAMETERS 高级光线跟踪参数AREA SHADOWS 区域阴影RAY-TRACED SHADOW PARAMETERS 光线跟踪阴影参数SHADOW MAP PARAMETERS 阴影贴图参数OPTIMIZATIONS 优化MENTAL RAY SHADOW MAP MENTAL RAY 阴影贴图CAMERAS 摄影机FREE CAMERA 自由摄影机TARGET CAMERA 目标摄影机摄影机共同参数MULTI-PASS DEPTH OF FIELD 多过程景深MULTI-PASS MOTION BLUR 多过程运动模糊DEPTH OF FIELD(MENTAL RAY)景深(MENTAL RAY)HELPERS 辅助对象STANDARD 标准辅助工具DUMMY 虚拟对象GRID 栅格POINT 点TAPE 卷尺PROTRACTOR 量角器COMPASS 指南针ATMOSPHERIC APPARATUS 大气装置BOXGIZMO 长方形框SPHEREGIZMO 球形框CYLGIZMO 圆柱体框CAMERAMATCH 摄影机匹配ASSEMBLY HEADS 集合引导物MANIPULATOR 操纵器CONE ANGLE MANIPULATOR 圆锥体角度操纵器PLANE ANGLE MANIPULATOR 平面角度操纵器SLIDER MANIPULATOR 滑块操纵器VRML97ANCHOR 锚TOUCHSENSOR 触动感应器PROXSENSOR 范围感应器TIMESENSOR 时间感应器NAVINFO 漫游信息BACDGROUND 背景FOG 雾AUDIO CLIP 音频剪辑SOUND 声音BILLBOARD 布告牌LOD 细节级别INLINE 内嵌SPACE WARPS 空间扭曲FORCE 力MOTOR 马达PUSH 推力VORTEX 漩涡DRAG 阻力PATH FOLLOW 路径跟随PBOMB 粒子爆炸DISPLACE 置换GRAVITY 重力WIND 风DEFLECTORS 导向器DEFLECTOR 导向板SDEFLECTOR 导向球UDEFLECTOR 全导向器POMNIFLECT 泛方向导向板SOMNIFLECT 泛方向导向球UOMNIFLECT 全泛方向导向器PDYNAFLECT 动力学导向板SDYNAFLECT 动力学导向球UDYNAFLECT 全动力学导向器GEOMETRIC/DEFORMABLE 几何/可变形FFD(BOX) FFD长方形FFD(CYL) FFD圆柱体WAVE 波浪RIPPLE 涟漪DISPLACE 置换UNDO 撤消REDO 重做SELECT AND LIND 选择并链接UNLINK SELECTION 断开当前选择链接BIND TO SPACE WARP 绑定到空间扭曲SELECT OBJECT 选择对象SELECTION FILTER 选择过滤器SELECT BY NAME 按名称选择SELECTION REGION 选择区域WINDOW/CROSSING 窗口/交叉SELECT AND MOVE 选择并移动SELECT AND ROTATE 选择并旋转SELECT AND SCALE 选择并缩放REFERENCE COORDINATE SYSTEM 参考坐标系SELECT AND MANIPULATE 选择并操作SNAP TOGGLE 捕捉开关ANGLE SNAP TOGGLE 角度捕捉切换PERCENT SNAP 百分比捕捉切换SPINNER SNAP TOGGLE 微调器捕捉切换EDIT NAMED SELECTION SETS 编辑命名选择MIRROR 镜像ALIGN 对齐QUICK ALIGN 快速对齐NORMAL ALIGN 法线对齐PLACE HIGHLIGHT 放置高光ALIGN CAMERA 对齐摄影机ALIGN TO VIEW 对齐到视图LAYER MANAGER 层管理器CURVE EDITOR 曲线编辑器SCHEMATIC VIEW 图解视图MATERIAL EDITOR 材质编辑器LAYER 层LAYER MANAGER 层管理器KEYBOARD SHORTCUT OVERRIDE TOGGLE 键盘快捷键覆盖切换AUTO GRID 自动栅格ARRAY 阵列SNAPSHOT 快照SPACING TOOL 间隔工具CLONE AND ALIGN 克隆并对齐MAX SCRIPT 脚本袖珍侦听器SELECTION LOCK TOGGLE 选择并锁定切换TIME TAG 时间标记TRACK BAR 轨迹栏OPE MINI CURVE EDITOR 打开迷你曲线编辑器KEY MODE TOGGLE 关键点模式切换TIME CONFIGURATION 时间配置AUTO KEY 自动关键点SET KEY 设置关键点DEFAULT IN/OUT TANGENTS FOR NEW KEYS 新建关键点的默认入/出切换FILE 文件NEW 新建RESET 重置OPEN 打开OPEN RECENT 打开最近SAVE 保存SAVE AS 另存为SAVE COPY AS 保存副本为SAVE SELECTED 保存选定对象XREF OBJECTS 外部参照对象XREF SCENE 外部参照场景FILE LIND MANAGER 文件链接管理器MERGE 合并MERGE ANIMATION 合并动画REPLACE 替换LOAD ANIMATION 加载动画SAVE ANIMATION 保存动画EXPORT SELECTED 导出选定对象ASSET TRACKING 资源追踪ARCHIVE 归档SUMMARY INFO 摘要信息FILE PROPERTIES 文件属性VIEW IMAGE FILE 查看图像文件EXIT 退出EDIT 编辑UNDO 撤消REDO 重做HOLD 暂存FETCH 取回DELETE 删除CLONE 克隆SELECT ALL 全选SELECT NONE 全部不选SELECT INVERT 反选SELECT BY COLOR 按颜色选择SELECT BY NAME 按名称选择SELECT BY RECTANGULAR REGION 矩形选区SELECT BY CIRCULAR REGION 圆形选区SELECT BY FENCE REGION 围栏选区SELECT BY LASSO REGION 套索选区REGION 区域REGION WINDOW 区域窗口REGION CROSSING 区域交叉EDIT NAMED SELECTION SETS 编辑命名选择集OBJECT PROPERTIES 对象属性GENERAL 常规ADV LIGHTING 高级照明USER DEFINED 用户定义TOOLS 工具TRANSFORM TYPE-IN 变换输入SELECTION FLOATER 选择浮动框DISPLAY FLOATER 显示浮动框LAYER MANAGER 层管理器LIGHT LISTER 灯光列表MANAGE SCENE STATES 管理场景状态MIRROR 镜像ARRAY 阵列ALIGN 对齐QUICK ALIGN 快速对齐SNAPSHOT 快照SPACING TOOS 间隔工具CLONE AND ALIGN 克隆并对齐NORMAL ALIGN 法线对齐ALIGN CAMERA 对齐摄影机ALIGN TO VIEW 对齐到视图PLACE HIGHLIGHT 放置高光ISOLATE SELECTION 孤立当前选择RENAME OBJECTS 重命名对象ASSIGN VERTEX COLORS 指定顶点颜色COLOR CLIPBOARD 颜色剪贴板CAMERA MATCH 摄影机匹配GRAB VIEWPORT 抓取视口MEASURE DISTANCE 测量距离CHAMMEL INFO 通道信息GROUP 组GROUP 成组UNGROUP 解组OPEN 打开CLOSE 关闭ATTACH 附加DETACH 分离EXPLODE 炸开ASSEMBLY 集合DISASSEMBLE 分解VIEW 视图UNDO VIEW CHANGE 撤消视图更改REDO VIEW CHANGE 重做视图更改SAVE ACTIVE VIEW 保存活动视图RESTORE ACTIVE VIEW 还原活动视图GRID 栅格SHOW HOME GRID 显示主栅格ACTIVATE GRID OBJECT 激活栅格对象ACTIVATE HOME GRID 激活主栅格ALIGN GRID TO VIEW 对齐栅格到视图VIEWPORT BACKGROUND 视口背景UPDATE BACKGROUND IMAGE 更新背景图像RESET BACKGROUND TRANSFORM 重置背景变换SHOW TRANSFORM GIZMO 显示变换GIZMOSHOW GHOSTING 显示重影SHOW KEY TIMES 显示关键点时间SHADE SELECTED 着色选定对象SHOW DEPENDENCIES 显示从属关系CREATE CAMERA FROM VIEW 从视图创建摄影机ADD DEFAULT LIGHTS TO SCENE 添加默认灯光到场景REDRAW ALL VIEWS 重画所有视图ACTIVATE ALL MAPS 激活所有贴图DEACTIVATE ALL MAPS 取消激活所有贴图UPDATE DURING SPINNER DRAG 微调器拖动期间更新ADAPTIVE DEGRADATION TOGGLE 自适应降级OBJECT DISPLAY CULLING 对象显示消隐EXPERT MODE 专家模式CREATE 创建MODIFIERS 修改器CHARACTER 角色CREATE CHARACTER 创建角色DESTROY CHARACTER 销毁角色LOCK 锁定UNLOCK 取消锁定INSERT CHARACTER 插入角色SAVE CHARACTER 保存角色BON E TOOLS 骨骼工具BONE EDITING TOOLS 骨骼编辑工具FIN ADJUSTMENT TOOLS 鳍调整工具OBJECT PROPERTIES 对象属性SKIN POSE OPTIONS 蒙皮姿势选项ANIMATION 动画IK SOLVERS IK解算器HI SOLVERS HI解算器HD SOLVERS HD解算器IK LIMB SOLVERS IK肢体解算器SPLINE IK SOLVERS 样条线IK解算器CONSTRAINTS 约束ATTACHMENT CONSTRAINT 附着约束SURFACE CONSTRAINT 曲面约束PATH CONSTRAINT 路径约束POSITION CONSTRAINT 位置约束LINK CONSTRAINT 链接约束LOOD AT CONSTRAINT 注视约束ORIENTATION CONSTRAINT 方向约束CONTROLLERS 控制器AAUDIO CONTROLLER 音频控制器BEZIER CONTROLLER BEZIER控制器BARYCENTRIC MORPH CONTROLLER 重心变形控制器BLOCK CONTROLLER 块控制器BOOLEAN CONTROLLER 布尔控制器COLOR RGB CONTROLLER 颜色RGB控制器EULER XYZ ROTATION CONTROLLER EULER XYZ旋转控制器EXPRESSION CONTROLLERS 表达式控制器IK CONTROLLER 反向运动控制器LINEAR CONTROLLER 线性控制器LIST CONTROLLER 列表控制器MASTER POINT CONTROLLER 主点控制器MOTION CAPTURE CONTROLLER 运动捕捉控制器NOISE CONTROLLER 噪波控制器ON/OFF CONTROLLER 启用/禁用控制器POSITION XYZ CONTROLLER 位置XYZ控制器PRS TRANSFORM CONTROLLER PRS控制器REACTOR CONTROLLERS 反应控制器SCALE XYZ CONTROLLER 缩放XYZ控制器SCRIPT CONTROLLER 脚本控制器SMOOTH ROTATION CONTROLLER 平滑旋转控制器SPRING CONTROLLER 弹簧控制器TCB CONTROLLER TCB控制器TRANSFORM SCRIPT CONTROLLER 变形脚本控制器WAVEFORM CONTROLLER 波形控制器PARAMETER EDITOR 参数编辑器PARAMETER COLLECTOR 参数收集器WIRE PARAMETERS 关联参数PARAMETERS WIRE DIALOG 关联参数对话框REACTION MANAGER 反应管理器MAKE PREVIEW 生成预览VIEW PREVIEW 查看预览RENNAME PREVIEW 重命名预览TOGGLE LIMITS 切换限制DELETE SELECTED ANIMATION 删除选定动画GRAPH EDITOR 图表编辑器TRACK VIEW 轨迹视图CURVE EDITOR 曲线编辑器NEW TRACK VIEW 新建轨迹视图DELETE TRACK VIEW 删除轨迹视图SAVED TRACK VIEWS 保存的轨迹视图NEW SCHEMATIC VIEW 新建图解视图DELETE SCHEMATIC VIEW 删除图解视图SAVE SCHEMATIC VIEWS 保存的图解视图PARTICLE VIEW 粒子视图MOTION MIXER 运动混合器RENDERING 渲染RENDER 渲染ENVIRONMENT 环境EFFECTS 效果ADVANCED LIGHTING 高级照明RENDER TO TEXTURE 渲染到纹理BATCH RENDER 批处理渲染RAYTRACER SETTINGS 光线跟踪设置RAYTRACE GLOBAL INCLUDE/EXCLUDE 光线跟踪全局包含/排除MENTALRAY MESSAGE WINDOW MENTALRAY 消息窗口ACTIVE SHADE FLOATER 动态着色浮动框ACTIVE SHADE VIEWPORT 动态着色视口MATERIAL EDITOR 材质编辑器MATERIAL/MAP BROWSER 材质/贴图浏览器VIDEO POST 视频合成器SENS EFFECTS 镜头效果过滤器SHOW LAST RENDERING 显示上一次渲染PANORAMA EXPORTER 全景导出器PRINT SIZE WIZARD 打印大小向导RAM PLAYER 内存播放器CUSOMIZE 自定义CUSTOMIZE USER INTERFACE 自定义用户界面KEYBOARD 键盘TOOLBARS 工具栏QUADS 四元菜单MENUS 菜单COLORS 颜色LOAD CUSTOM UI SCHEME 加载自定义UI方案SAVE XUSTOM UI SCHEME 保存自定义UI方案REVERT TO STARTUP LAYOUT 还原为启动布局CUSTOM UI AND DEFAULTS SWICHER 自定义UI与默认设置切换器SHOW UI 显示UILOCK UI LAYOUT 锁定UI布局CONFIGURE USER PATHS 配置用户路径EXTERNAL FILES 外部文件FILE I/O 文件I/OXREFS 外部参照3RDPARTY PLUG-INS 第三方插件CONFIGURE SYSTEM PATHS 配置系统路径UNITS SETUP 单位设置GRID AND SNAP SETTINGS 栅格和捕捉设置SNAPS 捕捉OPTIONS 选项HOME GRID 主栅格USER GRIDS 用户栅格VIEWPORT CONFIGURATION 视口配置RENDERING METHOD 渲染方法LAYOUT 布局SAFE FRAMES 安全框ADAPTIVE DEGRADATION 自适应降级切换REGIONS 区域PLUG-IN MANAGER 插件管理器PREFERENCES 首选项GENERAL 常规设置FILES 文件设置VIEWPORTS 视口设置GAMMA AND LUT GAMMA和LUT设置RENDERING 渲染设置ANIMATION 动画设置INVERSE KINEMATICS 反向动力学设置GIZMOS 线框设置MAX SCRIPT 脚本设置RADIOSITY 光能传递设置MENTAL RAY 设置MAX SCRIPT MAX脚本HELP 帮助NEW FEATURES GUIDE 新功能指南USER REFERENCE 用户参考MAXSCRIPT REFERENCE MAXSCRIPT参考TUTORIALS 教程HOTKEY MAP 热键映射ADDITIONAL HELP 附加帮助3DSMAX ON THE WEB 网上3DSMAXACTIVATE 3DS MAX 激活3DS MAXABOUT 3DS MAX 关于3DS MACONTOUR SHADERS 轮廓线明暗器COMBI 组合轮廓线CONTOUR COMPOSITE 轮廓线合成CONTOUR CONTRAST FUNCTION LEVELS 轮廓线对比函数等级CONTOUR ONLY 只输出轮廓线CONTOUR PS(POST SCRIPT) 轮廓线POST SCRIPT CONTOUR STORE FUNCTION 轮廓线存储功能CURVATURE 曲率DEPTH FADE 深度褪色FACTOR COLOR 颜色系数LAYER THINNER 层厚度SIMPLE 简单WIDTH FROM COLOR 来自颜色的宽度WIDTH FROM LIGHT 来自灯光的宽度WIDTH FROM LIGHT DIR 来自灯光方向的宽度BASE SHADERS 基本明暗器DIELECTRIC 绝缘LIGHT INFINITE 无衰减灯光LIGHT POINT 点光源LIGHT SPOT 聚光灯PHOTON BASIC 光子基础REFLECT 反射REFRACT 折射TRANSPARENCY 透明OPACITY 不透明TEXTURE REMAP 贴图变换TEXTURE ROTATE 贴图旋转TEXTURE WAVE 贴图波纹TWO-SIDED 双面SHADOW TRANSPARENCY 阴影透明AMBIENT/REFLECTIVE OCCLUSION 环境光/反射阻光SSS FAST MATERIAL 快速表面散色材质SSS FAST SKIN MATERIAL 快速皮肤材质SSS FAST SKIN MATERIAL+DISPLACE 快速皮肤材质+置换SSS PHYSICAL MATERIAL(MI) 次表面散色高级材质PHYSICS SHADERS 物理明暗器DGS MATERIAL PHOTON DGS材质光子PARTI VOLUME 多样介质体积PARTIVOLUME PHOTON 多样介质体积光子TRANSMAT 透明材质TRANSMAT PHOTON 透明材质光子HAIR AND FUR(WSM) 毛发修改器SELECTION 选择卷展栏TOOLS 工具卷展栏STYLE HAIR 设计头发编辑器RECOMB FROM SPLINES 从样条线重组RESET REST 复位其余REGROW HAIR 重生头发PRESETS 预设值HAIRDO 发型INSTANCE NODE 实例节点CONVERT 转换GENERAL PARAMETERS 常规参数卷展栏MATERIAL PARAMETERS 材质参数卷展栏FRIZZ PARAMETERS 卷发参数卷展栏KINK PARAMETERS 纽结参数卷展栏MULTI STRAND PARAMETERS 多股参数卷展栏DYNAMICS 动态卷展栏DISPLAY 显示卷展栏HAIR AND FUR RENDER EFFECT 毛发渲染效果HAIR LIGHT ATTR 头发灯光属性PARTICLE FLOW 粒子流系统PARTICLE VIEW 粒子视图FLOWS 流EMPTY FLOW 空流STANDARD FLOW 标准流OPERATORS 操作符BIRTH OPERATOR 出生操作符BIRTH SCRIPT OPERATOR 出生脚本操作符DELETE OPERATOR 删除操作符POSITION ICON OPERATOR 位置图标操作符ROTATION OPERATOR 旋转操作符SPIN OPERATOR 自旋操作符SCALE OPERATOR 缩放操作符SPEED OPERATOR 速度操作符SPEED BY ICON OPERATOR 速度按图标操作符SPEED BY SURFACE OPERATOR 速度按曲面操作符KEEP APART OPERATOR 保持分离操作符SHAPE OPERATOR 图形操作符SHAPE FACING OPERATOR 图形朝向操作符SHAPE INSTANCE OPERATOR 图形实例操作符SHAPE MARK OPERATOR 图形标记操作符MATERIAL STATIC OPERATOR 材质静态操作符MATERIAL FREQUENCY OPERATOR 材质频率操作符MATERIAL DYNAMIC OPERATOR 材质动态操作符MAPPING OPERATOR 贴图操作符CACHE OPERATOR 缓存操作符DISPLAY OPERATOR 显示操作符FORCE OPERATOR 力操作符NOTES OPERATOR 注释操作符RENDER OPERATOR 渲染操作符SCRIPT OPERATOR 脚本操作符TEST 测试AGE TEST 年龄测试COLLISION TEST 碰撞测试COLLISION SPAWN TEST 碰撞繁殖测试FIND TARGET TEST 查找目标测试GO TO ROTATION TEST 转达到旋转测试SCALE TEST 缩放测试SCRIPT TEST 脚本测试SEND OUT TEST 发出测试SPAWN TEST 繁殖测试SPEED TEST 速度测试SPLIT AMOUNT TEST 分割量测试SPLIT SELECTED TEST 分割选定测试SPLIT SOURCE TEST 分割源测试REACTOR 动力学系统PREVIEW & ANIMATION 预览和动画DISPLAY 显示卷展栏参数WORLD 世界卷展栏COLLISIONS 碰撞卷展栏UTILS 工具卷展栏CHARACTER STUDIO 角色动画系统CREATION METHOD 创建方法组STRUCTURE SOURCE 结构源组ROOT NAME 根名称组BODY TYPE 躯干类型STRUCTURE 结构TWIST LINDS 扭曲链接BIPED 两足动物FIGURE MODE 体形模式FOOTSTEP MODE 足迹模式MOTION FLOW MODE 运动流模式MIXER MODE 混合器模式FREE MODE 自由模式FLOATING BONES 浮动骨骼卷展栏PHYSIQUE LEVEL OF DETAIL PHYSIQUE细节级别卷展栏PHYSIQUE ENVELOPE 封套子对象PHYSIQUE SELECTION STATUS PHYSIQUE选择状态卷展栏BLENDING ENVELOPES 混合封套卷展栏PHYSIQUE LINK PHYSIQUE链接子对象LINK SETTINGS 链接设置卷展栏JOINT INTERSECTIONS 关节交点卷展栏PHYSIQUE BULGE PHYSIQUE凸出子对象BULGE 凸出子对象卷展栏PHYSIQUE TENDONS 腱子对象TENDONS 腱卷展栏PHYSIQUE VERTEX 顶点子对象VERTEX LINK ASSIGNMENT 顶点链接指定卷展栏GROWD ANIMATION 群组动画DELEGATE 代理GEOMETRY PARAMETERS 几何体参数卷展栏MOTION PARAMETERS 运动参数卷展栏GROWD 群组SETUP 设置卷展栏SOLVE 解算卷展栏PRIORITY 优先级卷展栏SMOOTHING 平滑卷展栏COLLISIONS 碰撞卷展栏GEOMETRY 几何体卷展栏GLOGAL CLIP CONTROLLERS 全局剪辑控制器卷展栏WORKBENCH 工作台ANIMATION WORKBENCH TAB PANEL 动画工作台选项卡面板ANALYZE 分析面板FIX 修正面板FILTER 过滤面板WORKBENCH TOOLBAR 动画工作台工具栏CURVE VIEW TOOL BARS 曲线视图工作栏TRACK VIEW 轨迹视图CLOTH 布料系统SIMULATION PARAMETERS 模拟参数GROUP PARAMETERS 编组参数PANEL 面板子对象层级修改面板SEAMS 接合口子对象层级修改面板FACE 面子对象层级修改面板OBJECT PROPERTIES 对象属性对话框GARMENT MAKER 衣服生成器修改器UTILITIES 工具面板MAX SCRIPT LISTENER MAX SCRIPT侦听器DEBUGGER DIALOG 调试器对话框ARCH_GLALL 建筑玻璃材质HDR DOMELIGHT HDR天光模拟系统VULCANIA32 自然景观生成器DEEPVALLEY 山脉地形生成器TREE_MAKER 树木生成器ADVANCED PAINTER 高级画笔GAME LEVEL BUILDER 游戏关卡建筑师FREEHAND TOOLS 手绘工具插件CLAY STUDIO PRO 黏土建模METAREYES 肌肉建模HEAD DESIGNER 人头设计器FACE GEN 头像生成器GREATURE CREATOR 怪兽生成器DARWIN 动物建模XFROG 植物建模TREE STORM 树木风暴SPEED TREE 树木制作系统DREAMSCAPE 自然环境模拟FOREST PRO 森林系统IMAGE MODELER 照片建模REALPEOPLE 全息模型POWER SOLIDS 强力倒角GESTURE MAX POSER 导入3DMAX插件DARK TREE 程序纹理生成器DEEP PAINT 3D 三维手绘BODY PAINT 3D 三维手绘BONES PRO 超级骨骼系统ACT 完美肌肉系统CAT 多足骨骼STITCH 服装布料模拟CLOTHREYS 超级布料REALFLOW 流体动力学VEHICLE SIMULATOR 车辆动力学模拟THINKING PARTICLES 思维粒子特效插件AFTER BURN 烟火特效ILLUSION 幻影粒子PHOENIX 凤凰火焰LIGHTNING 弧光闪电FIRESTORM 火焰风暴ULTRASHOCK 超级爆破渲染类插件BRAXIL 巴西渲染器V_RAY 渲染器FINALRENDER 渲染器MAXWELL RENDERCHAMELEON 变色龙DEPTH OF FIELD RPO 超级景深ILLUSTRATE 矢量画QUICK DIRT 快速做旧SAND BLASTER 沙漠风暴TERRASCAPE 山川地形TREE FACTORY 树木工厂BOV 体积光束FREE PYRO 自由烟雾。
利用离散最优传输的纹理重整算法
关键词: 离散最优传输; 网格参数化; 纹理重整
中图法分类号: TP391.41
DOI: 10.3724/SP.J.1089.2021.18632
Texture Integrationvia Discrete Optimal Mass Transportation
Zhou Yuming1), Su Kehua1)*, Jiao Chong1), Xin Ning2), and Ren Shubo2)
并且最优传输映射是一个非对称映射, 即起始区
域和目标区域是不能够互换的, 因此直接对最优
传输映射进行求解是非常困难的. 为解决这个难
题, Kantorovich[7]来自出了松弛的概念. 对于 X Y
上的联合测度 , 任何一个从 到 的映射都可
以表示为 (AY ) (A) , (X B) (B) , 其中,
X
(1)
通过式(1)可以看到, 最优传输问题的核心目
的是计算物质传输方案 T :Ω Ω , T 将物质从起
始区域以一定的代价运输到目标区域, 并保证运
输过程中的代价最小. 而式(1)保证了传输过程中
的物质不会凭空地增加或减少, 因此该条件称为
保持测度条件.
在计算最优传输的过程中, 起始区域和目标
区域也可看做有限数量离散点所构成的集合. 这
1 最优传输
最优传输问题的目标是找到一个将物质从起 始区域移动到目标区域的映射, 该映射能够最小 化物质运输的代价, 而又保证物质的总量不变. 设 物质所在的区域为 , 从起始区域到目标区域的 映射为 T :Ω Ω , 从起始点 x 到目标点 T(x) 的运
输代价为 c(x,T(x)) , 则传输代价最小的映射为
点一个狄拉克测度. 这样, 最优传输问题就可以表
本次操作由于这台计算机的限制而被取消(最新解决方案)(Thisope..
本次操作由于这台计算机的限制而被取消(最新解决方案)(This operation has been cancelled due to the limitation of this computer (the latest solution))This operation has been cancelled due to the limitation of this computer (the latest solution)Gpedit.msc operationIn the gpedit.msc group strategy to prevent access to drives from the "my computer" - "user configuration management templates -" Windows components - "Windows Explorer" - (from the top of line twelfth), that is the default setting (not configured) has not been modified settings, modify the configuration for the "enabled". And select the C drive, and then re entered the configuration change back to "not configured, the C drive back to normal.Try the following operation:Gpedit.msc operationEntering gpedit.msc group policy, user configuration -- management template -- Windows component -- Windows resource manager -- prevents access to drive from my computer (twelfth lines from top to bottom)=========================================================== =======================A: the operation of "gpedit.msc" (Group Policy), the systemwill prompt: this operation was canceled because of the limitation of computer, please contact the administrator and I found other running programs sometimes report the same mistake, but I was logged in as administrator. What should I do?Solution: check whether the set of "run only allowed Windows application" strategy, and will not allow the system to add the gpedit.msc itself to run the program. Open the command prompt input: MMC c:\windows\system32\gpedit.msc enter). If CMD is also banned, can restore, restart the computer through the following method, press the F8 key at boot time, select "safe mode with command prompt, the system will automatically run the CMD command window, now you can run at the prompt: MMCc:\windows\ system32\gpedit.msc, which will open the group policy. Expand the "user configuration management template to system", find the "only run permission Windows application" policy on the right, set it to "not configured", and then "OK" can beTwo:Method 1. Save the following three lines of code as an extension file named un.reg, such as.Reg, and double-click the file to import the content into the registry[HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersio n\Policies\System]"DisableRegistryTools" =dword:00000000Method 2, run gpedit.msc, and then open"Local computer" strategy -- user configuration -- after the system branch,Double click disable registry editing tool,Select enable to not use regedit.exe and regedt32.exe,Select disable to use regedit.exe and regedt32.exe.In system safety optimization settings where more guidance disable registry regedit on the "V" symbol to remove it open again!Three: to solve the lock problem of Windows XP Group Policy1. plan task methodOpen the "control panel" to "task plan", start the wizard to create a task plan called MMC, the implementation of the program is "C:\Windows\System32\mmc.exe"". After the completion of the mission plan window right click the new MMC select "run", in the console window opens, click the menu bar "file", "open" position to "C:\Windows\System32\gpedit.msc" program, open the Group Policy Editor window, expand the local computer policy "to" user configuration "," management template "," system ", double-click the right pane of the" run only specified Windows applications ", in the pop-up window, set it to" not configured". Click OK to exit and close the group policy edit window. When the system pops up to save the change to gpedit.msc,ask the window, click OK to save, and then unlock.2. safety model methodIn fact, this limitation of group policy is implemented by loading registry specific key values, but this limit is not loaded in security mode. After reboot, press and hold the F8 button. In the open multiple Startup menu window, select the safe mode with command prompt". After entering the desktop, enter the "C:\Windows\System32\mmc.exe" at the start command prompt, start the console, and then according to the above operation can be lifted restrictions, and finally restart the normal login system can unlock. In addition, many restrictions on group policy can not be implemented in security mode, if you can not get rid of the restrictions, you may go down to find solutions.Rename program method, rename program methodNamed program method and rename program method3. rename program methodSet the "run only specified Windows Applications" strategy, the need to add allow programs to the list, if you remember when setting the permission to run the program name, and add in the Allow list ,.Bat,.Exe in any type of file, for example, only allowed to "qq.exe", then you can open the"C:\Windows\System32" folder, rename the mmc.exe program for qq.exe, then you can run. Similarly, if you want to keep a limit, you can rename the program you want to run to qq.exe, but otherpeople can only run QQ when using the computer. If allowed to run the program in the list contains regedit.exe, can also open the registry, launched "HKEY_LOCAL_MACHINE\SOFTWARE\Microsoft\WindowsNT\CurrentVersion\Winlogon" Userinit sub branch, click on the right side of the window. In the open window, change the value to "C:\Windows\System32\userinit.exe, mmc.exe" to implement mmc.exe boot up. After this modification and restart, the console will automatically run when the next boot, to open the Group Policy Editor to unlock.4. rename program methodThis setting of group policy can only prevent users from starting the program from the Windows explorer, in fact, many programs in the system can run independently. If the desktop process, system service, system screen protection, etc. are loaded, it does not stop, so you can replace the mmc.exe as the above file. To replace the screen saver logon.scr as an example, first open the "C:\Windows\System32\dllcache" folder, locate the logon.scr file copy it to the D:\ disk, and then delete the files in the C:\windows\System32\dllcache folder to prevent the file protection function of the system to stop us change and delete system files, then the system will pop-up "system file has been changed to unrecognized version, ask the window please insert the WinXP SP2 repair, click" cancel "". Then open the "C:\Windows\System32" folder, find the logon.scr file, delete it, and rename mmc.exe to logon.scr.In the blank back to the desktop, right click and select "properties" in the pop-up window, click the screen saver tab,then select "logon" on the screen protection list, click the "Preview", although this time the system will prompt the selected file cannot be found, but in the background but start the console program "mmc.exe, on the lifting of the restrictions can be set. Note that after the completion of the operation, it is best to copy the d:\logon.scr file back to the original folder.5. combination key starting methodAlthough all the programs in the system are locked, it is possible to start the task manager by pressing the Ctrl+Alt+Del key. Now that you can start the taskmgr.exe program with the combination key. So you can start group policy to unlock if you replace taskmgr.exe with mmcexe. Ditto, first enter the "C:\Windows \System32\dllcache" folder, find the taskmgr.exe program, rename it to taskmgr1.exe, and then enter the"C:\Windows\System32" folder, find and taskmgr.Rename EXE file to taskmgr1.exe. Now rename the mmc.exe file to taskmgr.exe, and then press the Ctrl+Alt+Del key, and you'll find the console program started. After you set the group policy, restore the task manager back to the original name.Four:Click "control panel", will have this message, according to the above method to solve. In fact, the real reason is to modify the registry:HKEY_CURRENT_USER\Software\Microsoft\Windows\CurrentVersion \Policies\ Explorer "DisallowRun" =dword: 00000001DisallowRun above should be deleted, that is to solve such restrictions.Five: please check if you are logged in as an administrator=========================================================== =======================In addition, on a blog to see the use of a "shadow disable tools" software, do not know how ~!Text as follows:A small software easy to solve: Shadow disable tool V1.01 version of the official version of the input MMC.EXE, the following choice to enable the above programPlan task method and safety model methodIn order to ensure the security of Windows XP system, many friends set up a group policy "only run Windows application" item on the public computer, so as to prevent the damage of the external program to the system.Careless or in order to prevent others to modify the group strategy, some friends simply even "gpedit.msc" file also excluded from allowing the operation of the program, resulting in the system locked, resulting in failureRun all programs, but had to reinstall the system. In fact, there are some reasons, but there are still some solutions tothis problem.Exe lost, running regedit to choose to open the way, read the basic table file win.ovl error, tmmr.rem error, memory read file c:\windows\system32\rundll32.exe~~ could not find the application, choose the operation mode, the operation because the computer restriction was canceled, please solve with your system administrator "problemFirst, can not open the registry solutionSave the following code in Notepad or new text text block, and then save as recover.reg, then double-click the recover.reg prompt to import the registry, and then determine the problem can be solvedWindows Registry Editor Version 5[HKEY_CURRENT_USER \ Software \ Microsoft \ Windows \ CurrentVersion \ Policies \ System]"DisableRegistryTools" =dword:00000000Two, the EXE Association lost the solutionWhen booting, press the F8 key (xp.2000 system) to select a safe mode with command lineEnter assoc< space >.exe=exefile< carriage return >Re display:.Exe=exefileFtype exefile= "%1"%OK, that's fine.Exe file association loss caused by the following code, save in Notepad or new text text block, and then save as exe.Reg, and then double-click the exe.reg prompted to import the registry, according to determine, the problem can be solvedWindows Registry Editor Version 5[HKEY_CLASSES_ROOT\exefile\shell\open\command]@= \%%1\ ""Three, I met the group strategy "this operation because the computer restriction is canceled, please contact your system administrator" problem and to solve all the problems above, this method is blind since pure out, any similarity is purely coincidental (for reference)Double click the EXE.Reg and recover.reg I can't import in c:\windows\system32 double click gpedit.msc to open the group policy, in order to open the "computer strategy" to "user configuration", "management template", "system", double-click the right pane of the "run only specified Windows applications" add the above recover.Reg close the group policy after double click any program "the operation was canceled due to the limitation of computer,please contact your system administrator, I do not know even the" gpedit.msc "files are also excluded in the program is allowed to run, the system is locked, the result can not run all programs only open my computer, enter the URL in the address bar on the Internet can only listen to MP3 and read, can not watch movies, download anything online to find a solution to this problem with /u/537521a2010006eiI tried the 2 way to start, and the first one didn't work.Try 2 safe mode methodIn fact, this limitation of group policy is implemented by loading registry specific key values, but this limit is not loaded in security mode. After reboot, press and hold the F8 button. In the open multiple Startup menu window, select the safe mode with command prompt". After entering the desktop, start at the command prompt, enter"C:\Windows\System32\mmc.exe" to start the console, in the console window opens, click the menu bar "file", "open" position to "C:\Windows\System32\gpedit.msc" program, open the Group Policy Editor window, expand the local computer policy "to" user configuration "." the template management "to" system ", double-click the right pane of the" run only specified Windows applications ", in the pop-up window, set it to" not configured". Click OK to exit and close the Group Policy Editor window, when the system pop-up "save changes to gpedit.msc query window, click OK to save, is" unlocked, and finally restart the normal login system can be unlocked.Heavy machine did not respond, press the reset button to enterafter the double IE appeared. The operation was canceled due to the computer and then, please contact your system administrator to close again, double-click the IE inside, and then double-click the EXE.Reg and recover.reg into the registry, the whole issue resolved.New problem -- expert help1. known systems have the following Trojan horse found "Infostealer.Lineage" virus. Hacker software black city 2. when the control panel is opened, the sound card that cannot be detected cannot be checked. Please see if your sound card is installed and connected correctly."3. administator landed a lot of "read the underlying table file winabc.ovl error, read the memory file tmmr.rem error" and "error loading c:\windows\system32\supdate2.dllshi cannot find the specified module," DOS "command prompt" came out, and then automatically restart. Ascend with user only"Error when loading c:\windows\system32\supdate2.dllshi, unable to find the specified module", "DOS command prompt" also come out, and then automatically restart. There are also hints with guestBut not automatically restart, and then I use super magic rabbit optimization system, re use user can also landed, but appearlikechartAfter login, we found the Windows XP security update program (KB893066) with WindowsXP automatic updateQuick descriptionA security problem has been identified, and an attacker may use this problem to remotely endanger the security of the Windows system and gain control over the system.After using windows automatically update to twenty-first stuck, and 17, 18, 19, 20 all failed, do not know with the system restore there is no use, and administrator dare not try.4. open the system, open the page, drag the scroll, change technetium slow5.Word also appears。
基于RBFNN代理模型的高速机车横向动力学性能多目标优化
第 54 卷第 4 期2023 年 4 月中南大学学报(自然科学版)Journal of Central South University (Science and Technology)V ol.54 No.4Apr. 2023基于RBFNN 代理模型的高速机车横向动力学性能多目标优化吴锐东,姚远,李广(西南交通大学 牵引动力国家重点实验室,四川 成都,610031)摘要:针对高速机车横向动力学中的悬挂参数优化问题,首先,以国内某型2B0轴式高速机车为基础,采用SIMPACK 软件建立该机车动力学模型;其次,以蛇行稳定性和横向平稳性指标为优化目标,同时兼顾新轮和磨耗轮2种轮轨接触状态,通过拉丁超立方试验设计方法对关键悬挂参数进行采样设计;最后,根据试验设计结果构建转向架悬挂参数映射到机车横向动力学性能的RBFNN 代理模型,并利用Sobol 敏感性和Pearson 相关性分析方法来量化悬挂参数对优化目标的影响程度。
研究结果表明:在参数给定优化范围内,机车横向动力学性能几乎不受二系横向减振器节点刚度变化的影响;而蛇行稳定性对一系纵向刚度、抗蛇行减振器节点刚度以及抗蛇行减振器阻尼较敏感,前后司机室横向平稳性对二系横向刚度最敏感,在高速机车转向架设计中应该给予重视。
此外,将代理模型结合遗传算法NSGA-Ⅲ搭建快速多目标优化平台,并通过动力学仿真结果验证该平台的准确性,可有效替代车辆系统动力学模型仿真计算及优化。
关键词:高速机车;蛇行稳定性;横向平稳性;代理模型;多目标优化中图分类号:U260.11 文献标志码:A 开放科学(资源服务)标识码(OSID)文章编号:1672-7207(2023)04-1644-09Multi-objective optimization of high-speed locomotive lateraldynamics performance based on RBFNN surrogate modelWU Ruidong, YAO Yuan, LI Guang(State Key Laboratory of Traction Power, Southwest Jiaotong University, Chengdu 610031, China)Abstract: Aiming at the optimization problem of suspension parameters in high-speed locomotive lateral dynamics, firstly, based on a certain type of domestic 2B0 high-speed locomotive, the locomotive dynamics model was established by SIMPACK. Secondly, key suspension parameters were designed by the method of Latin hypercube sampling, which took the evaluating indexes of hunting stability and lateral ride comfortas收稿日期: 2022 −07 −10; 修回日期: 2022 −09 −15基金项目(Foundation item):国家自然科学基金资助项目(U2268211);四川省自然科学基金资助项目(2022NSFSC0034,2022NSFSC1901);牵引动力国家重点实验室自主研究课题(2022TPL-T02) (Project(U2268211) supported by the National Natural Science Foundation of China; Projects(2022NSFSC0034, 2022NSFSC1901) supported by the Natural Science Foundation of Sichuan Province; Project(2022TPL-T02) supported by the Independent Research and Development Project of State Key Laboratory of Traction Power)通信作者:姚远,博士,研究员,从事机车车辆设计理论和车辆系统动力学研究;E-mail :*****************DOI: 10.11817/j.issn.1672-7207.2023.04.039引用格式: 吴锐东, 姚远, 李广. 基于RBFNN 代理模型的高速机车横向动力学性能多目标优化[J]. 中南大学学报(自然科学版), 2023, 54(4): 1644−1652.Citation: WU Ruidong, YAO Yuan, LI Guang. Multi-objective optimization of high-speed locomotive lateral dynamics performance based on RBFNN surrogate model[J]. Journal of Central South University(Science and Technology), 2023, 54(4): 1644−1652.第 4 期吴锐东,等:基于RBFNN代理模型的高速机车横向动力学性能多目标优化optimization objectives, and two types of wheel-rail contact states of new wheel and worn wheel were considered.Finally, according to the design of experiment results, a radial basis function neutral network surrogate model was established, which mapped the bogie suspension parameters to the lateral dynamics performance of high-speed locomotive. Besides, Sobol sensitivity analysis and Pearson correlation analysis methods were utilized to quantify the effect degree between the suspension parameters and optimization objectives. The results show that in the given optimization range of parameters, the lateral dynamics performance of high-speed locomotive is almost not affected by the variation of the secondary lateral damper series stiffness. Hunting stability is more sensitive to suspension parameters including the primary longitudinal stiffness, the yaw damper series stiffness, and the damping of yaw damper. Moreover, lateral ride comfort is sensitive extremely to the secondary lateral stiffness, which should be given more consideration in the bogie design of high-speed locomotive. In addition, a fast multi-objective optimization platform was built for the surrogate model through the genetic algorithm NSGA-Ⅲ, and the accuracy was verified by the results of dynamic simulation, which can effectively replace the simulation calculation and optimization of the vehicle system dynamics model.Key words: high-speed locomotive; hunting stability; lateral ride comfort; surrogate model; multi-objective optimization随着车辆运营速度不断提高,高速机车横向动力学的研究具有越来越重要的意义。
考虑装船机联机作业的煤炭出口码头装船作业调度优化
从相应垛位取出,经前端横向连接线运往相应装船
线,并由与之相连的装船机完成装船。为提高作业
效率,码头配置移动式装船机,在条件允许的情况下
可为相邻泊位装船,既可单机作业,也可联机作 业[1](因此,在制订装船线调度方案时,不仅要考
虑联机作业的高效性和灵活性,而且要尽可能降低
装船机移泊作业对其原本对应泊位装船作业的影
机可在工作区任意位置结束工作的条件下,给出多 项式时间最优算法;VAN VIANEN等⑷以减少列车
等待时间、提升码头作业效率为目标,对堆取料机调 度进行了仿真研究;HU等[5]针对堆取料机调度问
题,以完成时间最短为目标,建立混合整数规划模型, 并设计了遗传算法进行求解;KALINOWSKI等⑷将
取料 调 问题
煤炭出 头 合调 问题提出 行遗
,
提高码头通过能力;MENEZES等)10*针对散货出口
码头调度问题,考虑皮带机路径限制,提出使用分支
定价算法求解的数学规划模型;BURDETT等⑴*将
煤炭出口码头综合调度问题转化为柔性车间调度问
题,并使用元启发式算法求解;UNSAL等「12*考虑了
散货出口码头的泊位、取料机和堆场调度问题,提出
htp :z//www. smajovrnol . co
hyxC@ simta. edu. co
2
冯鹏,等:考虑装船机联机作业的煤炭出口码头装船作业调度优化
27
0引言
煤炭在我国的能源结构中占有重要地位。由于 煤炭供需关系在地域分布上的差异,我国煤炭存在
大规模的“西煤东调”“北煤南运”现象。港口作为 煤炭运输链的枢纽,其服务水平的提升是保障我国
码方案的遗传算法求解。用实例验证模型的可行性和算法的有效性 。结果表明,研究成果可为具
压力传感器波纹膜片低应力激光焊接工艺
第 31 卷第 11 期2023 年 6 月Vol.31 No.11Jun. 2023光学精密工程Optics and Precision Engineering压力传感器波纹膜片低应力激光焊接工艺杜晓辉1*,陈凡红1,刘帅1,朱敏杰1,许佳豪2(1.机械工业仪器仪表综合技术经济研究所,北京 100055;2.南昌航空大学,江西南昌 330063)摘要:设计了利用激光焊接技术进行波纹膜片焊接的工艺方案,提出了基于正交试验的关键焊接工艺参数优化方法,设计关键焊接工艺正交试验表,完成以焊缝残余应力为评价指标的正交试验。
基于正交试验获得的较优焊接工艺参数组合,焊接压力传感器,完成了焊接密封性、拉伸强度和传感器静态性能指标的测试验证。
结果表明,较优的压力传感器波纹膜片激光焊接工艺参数组合是激光功率350 W、脉冲频率150 Hz、脉冲宽度1.5 ms、转台转速4 200 (°)/min;压力传感器焊缝的拉伸强度高达499.60 MPa,具备较好的密封性;焊接波纹膜片后的传感器零点输出提高了17%左右,灵敏度、满量程输出、非线性、迟滞和重复性等指标变化不大,但是非线性、迟滞和重复性比同厂家的同类型传感器改善约1倍左右。
正交试验确定的激光焊接工艺能够保障压力传感器的高质量封装应用。
关键词:压力传感器;波纹膜片;激光焊接;残余应力;正交试验;静态性能中图分类号:TH812 文献标识码:A doi:10.37188/OPE.20233111.1652Low stress laser welding technology for corrugated diaphragm ofpressure sensorDU Xiaohui1*,CHEN Fanhong1,LIU Shuai1,ZHU Minjie1,XU Jiahao2(1.Instrumentation Technology and Economy Institute, Beijing 100055, China;2.Nanchang University of Aeronautics, Nanchang 330063, China)* Corresponding author, E-mail: dxh@Abstract: To develop a low-stress laser welding process for the corrugated diaphragm of a pressure sen⁃sor,a process scheme for the welding of the corrugated diaphragm using laser welding technology is de⁃signed, an optimization method for the key welding process parameters based on an orthogonal test is pro⁃posed, the orthogonal test table of the welding process is designed, and an orthogonal test with the residu⁃al stress of welding as the evaluation index is completed. Based on the best combination of welding process parameters obtained via the orthogonal test, the pressure sensors are welded, and the testing and verifica⁃tion of welding sealing,tensile strength,and static performance indicators of the sensors are completed. The experimental results indicate that a laser power of 350 W, pulse frequency of 150 Hz, pulse width of 1.5 ms, and turntable speed of 4 200 (°)/min are the optimal combination parameters of the laser welding process for the corrugated diaphragm of the pressure sensor; a rough calculation value of 499.60 MPa is obtained for the weld tensile strength of the pressure sensor, and the weld has a good sealing property. Af⁃文章编号1004-924X(2023)11-1652-08收稿日期:2022-11-24;修订日期:2023-01-13.基金项目:国家重点研发计划资助项目(No.2020YFB2009200);国家自然科学基金资助项目(No.62004079)第 11 期杜晓辉,等:压力传感器波纹膜片低应力激光焊接工艺ter welding the corrugated diaphragm, the zero output of the sensor is increased by approximately 17%,and indices such as sensitivity,full-scale output,nonlinearity,hysteresis,and repeatability exhibit little change. However, the nonlinearity, hysteresis, and repeatability are approximately two times better than those of the same type of sensor from the same manufacturer.The optimal laser welding process deter⁃mined via the orthogonal test can ensure the high-quality packaging application of pressure sensors.Key words: pressure sensor;corrugated diaphragm;laser welding;residual stress;orthogonal test;stat⁃ic performance1 引言压力传感器广泛应用于消费、医疗、工业生产和国防建设等领域[1-2],主要用于气体和液体压力的测量。
一种利用混合优化算子求解旅行商问题的方法
一种利用混合优化算子求解旅行商问题的方法作者:贾玉福陶懿丰霄来源:《软件导刊》2019年第03期摘要:利用遺传算法、社会群体优化算法和模拟退火算法等仿生类整体探索算法求解旅行商问题(TSP),往往需要局部优化算子促进算法收敛。
目前大多采用单一的n-opt算子而没有考虑利用其它算子或算子组合对旅行商路线进行优化。
为此定义了P_Swap、FP_Swap和L_Swap等3个算子,在TSPLIB 数据集中选取18个实例,分别利用各个算子及组合对旅行商路线问题进行优化。
对比分析结果显示,P_Swap算子的优化能力与2-opt算子相当,3个算子组合的优化能力明显强于2-opt算子,组合优化算法求得的最优解优于目前已知的大部分算法。
关键词:旅行商问题;n-opt 算子;组合优化;全局探索能力;随机扰动DOI:10. 11907/rjdk. 182712中图分类号:TP301 文献标识码:A 文章编号:1672-7800(2019)003-0062-030 引言旅行商问题(TSP)是一个典型的NP-Hard 难题,精确求解大规模城市节点算法效率低下,取而代之的是一些启发式和仿生类探索性算法,比如社会群体优化算法(SGO) [1-2]、细菌觅食优化算法[3-4]、遗传算法[5-6]、蚁群算法[7]和模拟退火算法[8]等。
这些算法虽然具有较好的全局探索能力,但往往需要局部优化算子促进算法收敛[9-11]。
相关研究有:张子成[12]、韩伟等[13]在利用改进的模拟退火自适应离散型布谷鸟算法和离散型贝壳漫步优化算法求解TSP时采用2-opt 算子作局部优化;姚丽莎等[14]将局部搜索算法与遗传算法相结合求解异构多核系统的任务调度问题,利用3-opt对部分个体优化变异;宁桂英等[15]利用离散型差分进化算法求解TSP,王勇臻[16]、宋尧[17]等利用细菌觅食算法求解TSP,陈立云等[18]利用遗传算法求解运输车调度问题,都采用2-opt 算子作局部优化。
基于RSM的多响应稳健性设计方法的研究
estimation of the responses are ignored in this approach.Thus an improved desirability function method is presented.The implementation and effectiveness of the
influence of noise factors,and a new desirability function method is proposed to take into account the mean squared error of。the responses.Both the mean value and variance models are incorporated into the two methods,in which the variance combines the variance due to the noise factors with the variance due to predictions,
methodology are explored when the design parameters are reset based on simple block reseeting policy,modified block resetting policy and age resetting policy.
Multi Pass Setting
Multi-pass setting(EOW FOUCTION)1first into configuration option to open two item:1-1 use multi-pass option: 10:no 1:yes1-2 Kind of Reprobing : 10: after lot end1: directly after probing2. After into device parameter open your want item:2-1 If you want wafer end after retesting. It is setting as fellow as:2-1-1Regular & Multi pass setting: 10:NO 1: Yes2-1-2 Kind of Regular & Multi pass probing : 10: category over a rate1: set category2-1-3 CATEGORY DATA FOR MULTI PASS PROBING2-2 If you don’t want wafer end after retesting . It is setting as fellow as: 2-2-1 Regular & Multi pass Probing : 0(P.S 2-2 setting process as fellow as old multi pass. If He had test category . you must open “regular & multi pass probing : 1” .after into “CATEGORY DATA FOR MULTI PASS PROBING”. It set you want category. Then close “regular &multi pass probing :0”)Caution:When you Action of this function. Prober does not send wafer end SRQ and continues probing of decided category die. So that total test die will be different from actual number on wafer. In misclenious setting of operational settings, there are a parameter what makes re-calcurlation when unloading. Prober will count up actual number of each category.This function is just works by option settings. Therefore GP-IB type does not matter to this.Yield check does not work.Continuous fail check does not works at re-probing.When you find print out pass die result is different and bin1 can inking. Please check operation >> multi-pass setting >> evaluation of multi pass probing : 0 : last result.。
一种改进的TSP问题启发式算法
(I ) 0
2
不可度量 的 TSP
注: 最坏情况! = C / C # , 其中 C 为近似算法所得的总行程, C # 为最优总行程。
方法。 在最近城市搜索法的基础上, 提出一种改进的启发式方 法— — —两端延伸最近城市搜索法。
在剩下的系数矩阵中, 分别选取第 i 列中最小元 Step 3, 素值 imi (如有多个, 可任选一个) , 第 行中最小元素值 i I (如有多个, 可任选一个) , 并比较 imi 和 i I 的大小。 若 imi > i I , 选取 ( , , 划去第 行和第 I 列, 同时划掉 I) 有序对 ( I ,) , 则路线延伸为 Ci $ C $ CI ; 若 imi < i I , 选取 ( m, , 划去第 m 行和第 i 列, 同时划 i) 掉有序对 ( i, 和 ( , , 则路线延伸为 Cm $ Ci $ C ; m) m) 若 imi = i I , 选取 ( m ,) 和 ( , , 划掉第 m 行和第 行、 I) 第 I 列和第 i 列, 同时划掉有序对 ( i, ( 、 , 、 ( I ,) 、 ( I, m) m) 和 ( I, , 则路线延伸为 Cm $ Ci $ C $ CI 。 i) m) 重复 Step 3, 直至形成一条完整的路线, 即 “… $ Step 4, 。 Ci $ C $…” 在系数矩阵 D 中选取次最小元素值 iIl , 表示选 Step 5, 择从城市 I ( CI ) 到城市 ( , 并以 CI $ Cl 为端点, 重复 l Cl ) 得到一条完整的路线, 即 “…$ CI $ Cl $…” 。 Step 2 ~ Step 4, 在系数矩阵 D 中选取较小元素值 ipg , 表示选择 Step 6, 从城市 ( 到城市 ( , 并以 Cp $ Cg 为端点, 重复 Step p Cp ) g Cg ) 得到一条完整的路线, 即 “…$ Cp $ Cg $…” 。 2 ~ Step 4, …… 计算上述各条路线的总费用, 比较取最小对应的 Step7, 路线为最 (近) 优路线。 — 115 —
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
ORIGINAL ARTICLEOptimization of multi-pass turning operations using hybrid teaching learning-based approachAli R.YildizReceived:6January 2012/Accepted:23July 2012/Published online:11October 2012#Springer-Verlag London Limited 2012Abstract This paper presents a novel hybrid optimization approach based on teaching –learning based optimization (TLBO)algorithm and Taguchi ’s method.The purpose of the present research is to develop a new optimization ap-proach to solve optimization problems in the manufacturing area.This research is the first application of the TLBO to the optimization of turning operations in the literature The pro-posed hybrid approach is applied to two case studies for multi-pass turning operations to show its effectiveness in machining operations.The results obtained by the proposed approach for the case studies are compared with those of particle swarm optimization algorithm,hybrid genetic algo-rithm,scatter search algorithm,genetic algorithm and inte-gration of simulated annealing,and Hooke –Jeeves patter search.Keywords Hybrid optimization .Teaching –learning based optimization algorithm .Taguchi method .Manufacturing .Turning 1IntroductionThe machining processes have been widely used to produce high-quality products by many companies.These machining processes include large number of parameters that may affect the cost and quality of the products.Selection of optimum machining parameters is very important to satisfy all the conflicting objectives of the process.In the first study on the machining economics problems,Gilbert [1]presented theoret-ical analysis of the optimization of the machining process.Various research efforts have been made on single and multi-pass turning problems [2–14].Recently,a comparison of evo-lutionary-based optimization techniques to solve multi-pass turning optimization problems is presented by Yildiz [14].The convergence speed of evolutionary algorithms to the optimal results is better than those of traditional optimiza-tion algorithms.Population-based algorithms such as cuck-oo search algorithm,differential evolution algorithm (DE),particle swarm optimization algorithm (PSO),and genetic algorithm (GA)have been preferred in many applications instead of conventional techniques [8,15–30].The population-based algorithms may have premature convergence towards a local minimum.To find a remedy the mentioned weakness,they have been integrated with other techniques [31–36].In [36],the differential evolution algorithm was integrated with Taguchi method for optimi-zation of multi-pass turning operations.The results of the HRDE were better than those of scatter search,the GA and the simulated annealing powered with a Hooke –Jeeves Pat-tern Search (SA –PS)algorithm for turning operations.In this research,a new hybrid approach based on teaching learning-based optimization (TLBO)algorithm and Taguchi method is presented.The proposed hybrid approach (HRTLBO)is applied to the two case studies to optimize cutting parameters in multi-pass turning operations.The rest of the paper is organized as follows:Section 2describes a detailed formulation of the objective and constraints in multi-pass turning.The TLBO algorithm and Taguchi meth-od are presented in Section 3.In Section 4,two case studies are solved.The results and discussions for case studies are given in Section 4.The paper is concluded in Section 5.2Metal cutting optimization modelIn multi-pass turning operations,the aim is to minimize unit production cost (C U ).The unit production cost is the sum ofA.R.Yildiz (*)Department of Mechanical Engineering,Bursa Technical University,Bursa,Turkeye-mail:aliriza.yildiz@.trInt J Adv Manuf Technol (2013)66:1319–1326DOI 10.1007/s00170-012-4410-ythe cutting cost(C M),machine idle cost(C I),tool replace-ment cost(C R),and tool cost(C T),respectively.The devel-oped hybrid optimization approach is applied to optimize multi-pass turning operation for the determination of cutting parameters considering minimum production cost under a set of machining constraints which are presented and adop-ted in the references of Shin and Joo[5],Chen and Tsai[8], and Chen[30].2.1The cost functionC U¼C MþC IþC RþC Tð1ÞC U¼k0p DLr rd tÀd srþp DLs sh iþk0t cþh1Lþh2ðÞd tÀd sd r þ1h iþk0t eT pp DL1;000V r f rd tÀd sd rþp DL1;000V s f s h iþk tT pp DL1;000V r f rd tÀd sd rþp DL1;000V s f sh ið2Þ2.2Parameter bounds and cutting condition constraintsIn multi-pass turning operations,C U is imposed by differ-ent constraints which are(1)parameter bounds cover depth of cut,cutting speed and feed;(2)tool-life con-straint;(3)cutting force constraint;(4)power constraint;(5)stable cutting region constraint;(6)chip–tool interface temperature constraint;(7)surface finish constraint(only for finish machining);and(8)parameter relations.These constraints are as follow[5]:2.2.1Rough machiningDepth of cut d rL d r d rUð3ÞFeed f rL f r f rUð4ÞCutting speed V rL V r V rUð5ÞToolÀlife contraint T L t r T Uð6ÞCutting force constraint k1fμr d u r F Uð7ÞPower contraint k1fμr d u r V r6120ηP Uð8ÞStable cutting region contraint V l r f r d v r!S Cð9ÞChipÀtool interface temperature constraint Q r¼k q V t R fϕr d d r Q U ð10Þ2.2.2Finish machiningDepthofcut ds L ds ds Uð11ÞFeed fs L f s fs Uð12ÞCutting speed Vs L Vs Vs Uð13ÞToolÀlife constraint T L t s T Uð14ÞCutting force constraint k1fμs d u s F Uð15ÞPower constraint k1fμSd uSV S6120ηP Uð16ÞStable cutting region constraint V l S f S d n S!S Cð17ÞChipÀtool interface temperature constraintQ S¼k2V t s fϕs d d s Q Uð18ÞSurface finish constraint f2s8RSR Uð19Þ2.2.3Parameter relationsV s!k3V rð20Þf r!k4f sð21Þd r!k5d5ð22Þd r¼d tÀd sðÞ=nð23ÞIn addition to these constraints,the total depth of cut is another important constraint for the case study.The totaldepth of cut(d t)is the sum of the depth of finish cut(d s),andthe total depth of rough cut(nd r).The optimization algo-rithm does not determine the optimal depth of roughingsince it can be given by the mathematical manipulation asexpressed in Eq.(24).Therefore,one can eliminate theequality constraint(Eq.23)and the decision variable(d r)in the optimization procedure[8].d s¼d tÀnd rð24ÞTherefore,the equality constraint and the decision vari-able(d r)and(n)in the optimization procedure can be eliminated.The five machining parameters(V r,f r,d s,V s, f s)are determined for turning model optimization.Further details about the turning mathematical model and data with respect to machining can be obtained from Shin and Joo[5] and Chen and Tsai[8]and Chen[30].3The proposed hybrid approach3.1Taguchi methodThe Taguchi method is a universal approach,which is widely used in robust design[37].There are three stages to achieve Taguchi’s objective:(1)concept design,(2)robust parameter design(RPD),and(3)tolerance design.The robust parameter design is used to determine the levels of factors and to mini-mize the sensitivity of noise.That is,a parameter setting should be determined with the intention that the product response has minimum variation while its mean is close to the desired target. Taguchi’s method is based on statistical and sensitivity analysis for determining the optimal setting of parameters to achieve robust performance.The responses at each setting of parame-ters were treated as a measure that would be indicative of not only the mean of some quality characteristic,but also the variance of that characteristic.The mean and the variance would be combined into a single performance measure known as the signal-to-noise(S/N)ratio.Taguchi classifies robust parameter design problems into different categories depending on the goal of the problem and for each category as follows: Smaller the better For these kind of problems,the target value of y,that is,quality variable,is zero.In this situation, S/N ratio is defined as follows:S=N ratio¼À10logXy2i n=ð25ÞLarger the better In this situation,the target value of y,that is, quality variable,is infinite and S/N ratio is defined as follows:S N ratio¼À10logX1y2in=.ð26ÞNominal the best For these kind of problems,the certain target value is given for y value.In this situation,S/N ratio is defined as follows:S N ratio¼À10log Xy2s2.ð27ÞTaguchi’s method uses an orthogonal array and analysis of mean to analyze the effects of parameters based on statistical analysis of experiments.To compare performances of param-eters,the statistical test known as the analysis of variance (ANOV A)is used.Further details and technical merits about robust parameter design can be found in[37,38].3.2Teaching–learning-based optimization algorithm TLBO is a teaching–learning process inspired algorithm pro-posed by Rao et al.[39],which is based on the effect of influence of a teacher on the output of learners in a class.It has been used for optimization of mechanical elements[40], structural design[41],and manuafcturing problems[42].The algorithm mimics the teaching learning ability of teacher and learners in a class room.Teacher and learners are the two vital components of the algorithm and describes two basic modes of the learning,through teacher(known as teacher phase)and interacting with the other learners(known as learner phase). The output in TLBO algorithm is considered in terms of results or grades of the learners which depend on the quality of teacher. So,teacher is usually considered as a highly learned person who trains learners so that they can have better results in terms of their marks or grades.Moreover,learners also learn from the interaction among themselves which also helps in improving their results.TLBO is a population-based method.In this optimization algorithm,a group of learners is considered as population and different design variables are considered as different subjects offered to the learners and learners’result is analogous to the “fitness”value of the optimization problem.In the entire popu-lation the best solution is considered as the teacher.The working of TLBO is divided into two parts,“teacher phase”and“learner phase”.Working of both phases is explained below.(a)Teacher phaseIt is the first part of the algorithm where learners learn through the teacher.During this phase,a teacher tries to increase the mean result of the class room from any value M1to his or her level(i.e.,TA).But practically,it is not possible and a teacher can move the mean of the class room M2to any other value M2which is better than M1depend-ing on his or her capability.Consider M j be as the mean and T i as the teacher at any iteration i.Now,T i will try to improve existing mean M j towards it so the new mean will be T i designated as M new and the difference between the existing mean and new mean is given by Rao et al.[40].Difference Mean i¼r i M new T F M jÀÁð28Þwhere teaching factor(TF)is the teaching factor which decides the value of mean to be changed,and r i is therandom number in the range [0,1].V alue of TF can be either 1or 2which is a heuristic step and it is decided randomly with equal probability as:T F ¼round 1þrand 0;2ðÞ2À1f g ½ð29ÞThe teaching factor is generated randomly during the algorithm in the range of 1–2,in which 1corresponds to no increase in the knowledge level and 2corresponds to complete transfer of knowledge.The in-between values indicates amount of transfer level of knowledge.The transfer level of knowledge can be any depending on the learners capabilities.In the present work,attempt was carried out by considering the values in between 1and 2,but any improvement in the results was not observed.Hence to simplify the algorithm,the teaching factor is suggested to take either 1or 2depending on the rounding up criteria.However,one can take any value of TF in between 1and 2.Based on this difference_mean,the existing solution is updated according to the following expression X new ;i ¼X old ;i þDifference Mean ið30Þ(b)Learner phaseIt is the second part of the algorithm where learners increase their knowledge by interaction among them-selves.A learner interacts randomly with other learners for enhancing his or her knowledge.A learner learns new things if the other learner has more knowledge than him or her.Mathematically,the learning phenom-enon of this phase is expressed below.At any iteration i ,considering two different learners X i and X j where i ≠jX new ;i ¼X old ;i þr i X i ÀX j ÀÁIf f X i ðÞ<f X j ÀÁð31ÞX new ;i ¼X old ;i þr i X j ÀX j ÀÁIf f X j ÀÁ<f X jÀÁð32ÞAccept X new if it gives better function value.The imple-mentation steps of the TLBO are summarized below:Step 1:Initialize the population (i.e.,learners)anddesign variables of the optimization problem (i.e.,number of subjects offered to the learner)with random generation and evaluate them.Step 2:Select the best learner of each subject as ateacher for that subject and calculate mean result of learners in each subject.Step 3:Evaluate the difference between current meanresult and best mean result according to Eq.(28)by utilizing the TF.Step 4:Update the learners ’knowledge with the helpof teacher ’s knowledge according to Eq.(30).Step 5:Update the learners ’knowledge by utilizing theknowledge of some other learner according to Eqs.(31)and (32).Step 6:Repeat the procedure from steps 2–5till thetermination criterion is met.The next section presents the applications of the proposed algorithm for the parameter optimization of turning operation.3.3The proposed optimization approachIn this paper,a new hybrid optimization approach (hybrid robust teaching –learning based optimization;HRTLBO)is presented to define the optimal machining parameters for multi-pass turning operations.The proposed approach hybrid-izes teaching –learning based optimization algorithm and Taguchi method.It has an important advantage to consider hybridizing TLBO with other techniques to develop a new approach that improves the performance of TLBO to solve optimization problems.A larger population makes the algorithm more likely to locate a good masking string,but also increases the time taken by the algorithm.Therefore,there is a need to define the efficient range of population size to achieve better optimal solutions in shorter times.In this research,this shortcoming is eliminated by introducing Taguchi ’s robust parameter design through the initial population generation for TLBO.The Taguchi method is a method that chooses the most suitable combination of the levels of factors by using S /N table and orthogonal arrays against the factors that form the variation and are uncontrollable in product and process [37].Hence,it tries to reduce the variation in product and process as much as possible.Taguchi ’s robust parameter design uses statistical performance measure which is known as S /N ratio that takes both medium and variation into consideration.Therefore,the current approach uses the issues of robustness to emphasize the statistical and sensitivity analysis of RPD to achieve an efficient exploration using a small population by avoiding the use of a large search space for the evolution process.The current proposed approach involves two stages of optimization:(a)refinement of search space of solutions using Taguchi ’s RPD and (b)TLBO search process using refined population size.4Example of computational machining optimization As stated in the above sections,the metal cutting oper-ation has a complex nature,the objectives are usually in conflict with each other,and they have uncontrollable variations in their design parameters with complexnature.For example,increasing production rate may increase the production cost by increasing the rate of tool wear.As stated in Section2,the complex nature and high nonlinearity of machining optimization prob-lems may present some shortcomings for optimization approaches.There is a crucial need to overcome the limitations owing to the traditional optimization methods and also further to improve the strength of recent approaches to achieve better results for the machining problems in industry.In the present research,the search space is refined based on the effect of the various design variables on objective functions.An aim was to reach optimum solutions by using Taguchi’s RPD ap-proach coupled with TLBO.4.1Metal cutting exampleIn this section,the HRTLBO is used to find the optimummachining parameters for the multi-pass turning problem,which is described in section2.The machining variables(factors)x1(V r),x2(f r),x3(V s),x4(f s),and x5(d s)areselected as feed,cutting speed,and depth of cut in roughand finish turning.Machining data for the first example ofmulti-pass turning are shown in Table1.The equations for calculating S/N ratios for quality charac-teristics are logarithmic functions based on the mean squarequality characteristics.For this problem,S/N ratios for objec-tive function of first example are computed using smaller-the-better(Eq.25)as given in Table2since the objective is theminimization of cost.The relative effect of the different factors can be obtainedby the decomposition of variance,which is called ANOV A.The purpose of ANOV A is to investigate the design parame-ters that affect significantly the quality characteristic.It isdesigned N using S/N ratios as shown in Table3for(case1with d t06mm).The intervals of the design parameters are found regarding the effects of factors on the objective.The intervals of design variables for case1are found as50<x1<200,0.53<x2<0.9,50<x3<200,0.1<x4<0.9,and2.32<x5<3.The computed levels are used to generate the initialpopulation in TLBO.The analysis of variance is applied forcase2with d t08mm and results are given in Table4.It can be seen that the most effective variables and theirlevels are the same as in case1.Therefore,the search spacelimits of the parameters are50<x1<200,0.53<x2<0.9,50<x3<200,0.1<x4<0.9,and2.32<x5<3.The initial populationTable1Data for the example of multi-pass turningD050mm L0300mm d t06.0mmV rU0500m/min V rL050m/min f rU00.9mm/rev f rL00.1mm/rev d rU03.0mm d rL01.0mmV sU0500m/min V sL050m/min f sU00.9mm/rev f sL00.1mm/rev d sU03.0mm d sL01.0mmk o00.5$/min k t02.5$/edge h107×10−4h200.3t c00.75min/piece t e01.5min/edge p05q01.75r00.75C006×10−11T U045min T L025mink f0108μ00.75υ00.95η00.85F U0200kg f P U05kWλ02ν0−1S c0140k q0132τ00.4φ00.2δ00.105Q U01,000°C R n01.2mmk301.0Table2Experimental results and S/N ratioEx.no X1X2X3X4X5F S/N1500.1500.1110.3−20.2 2500.272000.27 1.66 3.1−9.7 3500.533500.53 2.32 1.9−5.7 4500.95000.93 1.4−3.5 52000.12000.533 3.6−11.1 62000.27500.9 2.32 1.8−5.3 72000.533500.1 1.66 3.1−10.1 82000.95000.2719.5−19.5 93500.13500.9 1.6617.9−25.1 103500.275000.53126.7−28.5 113500.53500.273 2.7−8.8 123500.92000.1 2.32 2.2−7.2 135000.15000.27 2.3233.4−30.4 145000.273500.13 3.8−11.8 155000.532000.91 1.8−5.1 165000.9500.27 1.66 2.6−8.5Table3Results of the analysis of variance for objective(case1with d t06mm)Level1Level2Level3Level4SS%Cont. x1−9.8−11.5−17.4−1412711.95 x2−21.7−13.8−7.4−9.7472.444.45 x3−10.7−8.3−13.1−20.5258.624.33 x4−12.3−15.4−15.1−9.771.7 6.74 x5−18.3−13.3−12.1−8.8132.812.44Table4results of the analysis of variance for objective(case2with d t08mm)Level1Level2Level3Level4S S%Cont. x1−13.6−14.3−19.9−16.394.57.9 x2−25.7−17−9.8−11.7599.150.5 x3−12.8−11.4−16.1−24294.524.8 x4−14.4−18−19.1−1358 4.8 x5−21.40−16.1−15.2−11.5139.811.7of TLBO is randomly generated for solutions within the range of50<x1<200,0.53<x2<0.9,50<x3<200,0.1<x4< 0.9,and2.32<x5<3.Then,TLBO evolution is processed to find the best result for objective using the refined search space of solutions.From the comparison of best results given in Table5,it is seen that the minimization of the unit production cost in multi-pass turning operation is achieved by proposed hybrid ap-proach.The comparison of the results obtained by the pro-posed approach,against other techniques,is given in Table5.It can be seen that better results for the best com-puted solutions are achieved for the turning optimization problem compared to PSO,HRGA,scatter search,float-encoding GA(FEGA),and SA/PS as shown in Table5. PSO,HRGA,and FEGA required10,000,27,000, 40,000,60,000function evaluations to find the best solutions,respectively.The FEGA of Chen and Chen[29]required60,000 function evaluations to find the best solutions2.2988and 2.8170for cases1and2,respectively.The use of the HRTLBO improves the convergence rate by computing the best values2.0460and2.4790for case1and case2,respec-tively,and maintaining the less function evaluations9000. 5ConclusionsIn this paper,a hybrid optimization algorithm is presented for the optimization of machining parameters considering mini-mum production cost under a set of machining constraints in turning operation.The HRTLBO is performed quite well on the optimization of machining parameters of turning operation problem finding better solutions compared to other approaches.From the above computational results and dis-cussions,it is demonstrated that HRTLBO can be used as a powerful technique for optimization of machining problems. NomenclatureC0constant pertaining to tool-life equationC I machine idle cost(dollars per piece)C M cutting cost by actual time in cut(dollars per piece)C R tool replacement cost(dollars per piece)C T tool cost(dollars per piece)d r,d s depths of cut for each pass of roughand finish machining(millimeters)d rL,d rU lower and upper bounds of depthof rough cut(millimeters)d sL,d sU lower and upper bounds of depthof finish cut(millimeters)d t total depth of metal to be removed(millimeters)D diameter of work piece(millimeters)f r,f s feeds in rough and finish machining(millimeters per revolution)f r L,f rU lower and upper bounds of feedin rough machining(millimetersper revolution)f sL,f sU lower and upper bounds of feed in finishmachining(millimeters per revolution) F r,F s cutting forces during roughand finish machining(kilogram force)F U maximum allowable cutting force(kilogram force)h1,h2constants pertaining to tool travel andapproach/depart time(minutes)k1,k2,k3constants for roughing and finishingparameter relationsk f coefficient pertaining to specifictool–work piece combinationk o direct labor cost overhead(dollars per minute)k q coefficient pertaining to equationof chip–tool interface temperaturek t cutting edge cost(dollars per edge)L length of work piece(millimeters)n number of rough passesp,q,r constants pertaining to the tool-lifeequationP r,P s cutting power during roughingand finishing(kilowatt)P U maximum allowable cuttingpower(kilowatt)Q r,Q s temperatures during roughingand finishing(degree Celcius)Q U maximum allowable temperature(degree Celcius)Table5Comparison of the best computed optimum results for turning problemHRTLBO PSO[31]HRGA[35]SS[30]FEGA[29]SA/PS[8] Case1:cost($)(d t06mm) 2.0460 2.0470 2.0481 2.0667 2.2988 2.2795 Case2:cost($)(d t08mm) 2.4790 2.4796 2.486 2.5417 2.8170 2.7411 HRTLBO hybrid robust teaching–learning based optimization algorithm,PSO particle swarm optimization algorithm,HRGA hybrid robust genetic algorithm,SS scatter search,SA/PS simulated annealing and Hooke–Jeeves pattern search,FEGA float-encoding genetic algorithmR a maximum allowable surfaceroughness(millimeters)R n nose radius of cutting tool(millimeters) S c limit of stable cutting regiont tool life(minute)t c constant term of machine idling time(minute)t e tool exchange time(minute)t p tool life(minute)considering roughingand finishingt r,t s tool lives(minute)for roughingand finishingt v variable term of machine idlingtime(minute)T I machine idling time(minute)T L,T U lower and upper bounds of tool lifeT M cutting time by actual machining(minute)T Mr, T Ms cutting time by actual machining for roughing and finishing(minute)T R tool replacement time(minute)U C unit production cost except materialcost(dollars per piece)V r,V s cutting speeds in rough and finishmachining(meters per minute)V rL,V rU lower and upper bounds of cuttingspeed in rough machining(meters per minute)V sL,V sU lower and upper bounds of cuttingspeed in finish machining(meters per minute)X vector of machining parametersτ,φ,δconstants pertaining to expressionof chip–tool interface temperatureηpower efficiencyλ,νconstants pertaining to expressionof stable cutting regionμ,υconstants of cutting force equation References1.Gilbert WW(1950)Economics of machining machining theoryand practice.American Society Metals,Cleveland2.Okushima K,Hitomi K(1964)A study of economic machining:ananalysis of maximum profit cutting speed.Int J Prod Res3:73–78 3.Ermer DS(1971)Optimization of the constrained machining eco-nomics problem by geometric programming.Transactions of the ASME Journal of Engineering for Industry93:1067–10724.Boothroyd G,Rusek P(1976)Maximum rate of profit criteria inmachining.Transactions of the ASME,Journal of Engineering for Industry98:217–2205.Shin YC,Joo YS(1992)Optimization of machining conditionswith practical constraints.Int J Prod Res30:2907–29196.Iwata K,Murotsu Y,Iwatsubo T,Oba F(1977)Optimization ofcutting conditions for multi-pass operations considering probabi-listic nature in machining conditions.Journal of Engineering for Industry-Transactions of ASME99:211–217mbert BK,Walvekar A(1978)Optimization of multi pass machin-ing operations.Int J Prod Res16:259–2658.Chen MC,Tsai DM(1996)A simulated annealing approach foroptimization of multi-pass turning operations.Int J Prod Res 34:2803–28259.Ermer DS,Kromodihardo S(1981)Optimization of multi passturning with constraints.Journal of Engineering for Industry-Transactions of the ASME103:462–46810.Gopalkrishan B,Khayyal FA(1991)Machining parameterselection for turning with constraints,pp.an analytical ap-proach based on geometric programming.Int J Prod Res 29:1897–190811.Gupta R,Batra JL,Lal GK(1995)Determination of optimalsubdivision of depth of cut in multi-pass turning with constraints.Int J Prod Res33:2555–256512.Hati SK,Rao SS(1976)Determination of optimum machiningconditions deterministic probabilistic approaches.Transactions of the ASME-Journal of Engineering for Industry98:354–35913.Tan FP,Creese RC(1995)A generalized multi-pass machiningmodel for machining parameter selection in turning.Int J Prod Res 33:1467–148714.Yildiz AR(2012)A comparative study of population-based opti-mization algorithms for turning operations.Inf Sci210:81–88 15.Holland HJ(1975)Adaptation in natural and artificial systems anintroductory analysis with application to biology control and artificial intelligence.The University of Michigan Press,Ann Arbor,USA 16.Rao RV,Pawar PJ(2010)Parameter optimization of a multi-passmilling process using non-traditional optimization algorithms.Appl Soft Comput10:445–45617.Rao RV,Pawar PJ,Shankar R(2008)Multi-objective optimization ofelectro-chemical machining process parameters using a particle swarm optimization algorithm.Journal of Engineering Manufacture 122:949–95818.Yildiz AR(2009)Hybrid immune-simulated annealing algorithmfor optimal design and manufacturing.Int J Mater Prod Tech34(3):217–22619.Yildiz AR(2009)A new design optimization framework based onimmune algorithm and Taguchi put Ind60(8):613–620 20.Durgun I,Yildiz AR(2012)Structural design optimization ofvehicle components using Cuckoo search algorithm.Mater Test 54(3):185–18821.Kunakote T,Bureerat S(2011)Multi-objective topology opti-mization using evolutionary algorithms.Eng Optim43(5):541–55722.Yildiz AR(2012)Cuckoo search algorithm for the selection ofoptimal machining parameters in milling operations.Int J Adv Manuf Tech.doi:10.1007/s00170-012-4013-7(in press)23.Srisompom S,Bureerat S(2008)Geometrical design of plate-fin heatsinks using hybridization of MOEA and RSM.IEEE Transactions on components and packaging technologies31:351–36024.Yildiz AR(2012)A new hybrid differential evolution algorithm forthe selection of optimal machining parameters in milling operations.Appl Soft Comput.doi:10.1016/j.asoc.2011.12.016(in press)25.Yildiz AR,Saitou K(2011)Topology synthesis of multi-componentstructural assemblies in continuum domains.Transactions of ASME, Journal of Mechanical Design133(1):011008–01100926.Yildiz AR(2012)Hybrid Taguchi-differential evolution algorithm foroptimization of multi-pass turning operations.Appl Soft Comput J.doi:10.1016/j.asoc.2012.01.01227.Gokdag H,Yildiz AR(2012)Structural damage detection usingmodal parameters and particle swarm optimization.Mater Test 6:416–420。