3.2.3直线的一般式方程教案

合集下载

3.2.2直线的两点式方程 3.2.3直线的一般式方程 教案(人教A版必修2)

3.2.2直线的两点式方程 3.2.3直线的一般式方程 教案(人教A版必修2)

3.2.2直线的两点式方程3.2.3直线的一般式方程●三维目标1.知识与技能(1)掌握直线方程的两点式的形式特点及适用条件.(2)了解直线方程截距式的形式特点及适用条件.(3)明确直线方程一般式的形式特点,会把直线方程的一般式同直线方程的其他形式互化.2.过程与方法(1) 让学生在应用旧知识的探究过程中获得到新的结论,并通过新旧知识的比较、分析、应用获得新知识的特点.(2)通过探究直线与二元一次方程的关系,让学生积极、主动地参与观察、分析、归纳,进而得出直线的一般式方程,培养学生勇于探究的精神和学会用分类讨论的数学思想方法解决问题.3.情感、态度与价值观(1)认识事物之间的普遍联系与相互转化.(2)培养学生用联系的观点看问题.●重点难点重点:直线方程的两点式、一般式.难点:两点式的适用条件及直线方程一般式的形式特征.重难点突破:以具体案例“求过两点的直线方程”为切入点,通过学生解答,发现知识之间的联系,然后通过观察、思考和互相交流,归纳出直线方程的两点式的形式.针对其适用条件,教学时可引导学生从两点式的形式给予突破;从直线方程的点斜式、斜截式、两点式、截距式的形式出发,采用由特殊到一般的方式,通过学生观察、师生交流,寻其共性,得出直线方程一般式的形式特征,最后通过典例训练,熟练掌握直线方程的各种形式,突出重点的同时化解难点.●教学建议本节知识是上一节知识的拓展和补充,旨在培养学生多角度探求直线方程的求法.鉴于本节知识的特点,对于直线方程的两点式的教学,可引导学生由“点斜式方程”出发,探究“过两点的直线方程”求法,整个过程遵循由浅及深、由特殊到一般的认知规律,使学生在已有的知识基础上获得新结论,达到温故知新的目的.对于直线方程的截距式,教学时只需明确以下两点:(1)它是两点式的特殊情形;(2)讲清截距的几何含义和截距式方程的特征及适用条件.对于直线方程的一般式,教学时,可采取“分析法”“讨论法”“归纳法”与多媒体相结合进行教学,增强动感和直观性.在整个教学过程中,引导学生观察、分析、概括、归纳,使学生思维紧紧围绕“一般式的形式特征与直线点斜式方程的互化”层层展开,体现知识的相互交融性,同时为下一节研究直线的交点坐标及距离公式做好铺垫.●教学流程创设问题情境,引出问题:过两定点的直线方程,如何求解?⇒通过引导学生回忆直线的点斜式方程,探究得出直线的两点式方程,明确其适用条件.⇒通过引导学生回答所提问题理解直线方程的一般式与二元一次方程的关系.⇒通过例1及其互动探究,使学生掌握直线的两点式方程的求法.⇒通过例2及其变式训练,使学生掌握直线的截距式方程的求法.⇒1.利用点斜式解答如下问题:(1)已知直线l 经过两点P 1(1,2),P 2(3,5),求直线l 的方程;(2)已知两点P 1(x 1,y 1),P 2(x 2,y 2),其中x 1≠x 2,y 1≠y 2,求通过这两点的直线方程. 【提示】 (1)y -2=32(x -1).(2)y -y 1=y 2-y 1x 2-x 1(x -x 1).2.过点(3,0)和(0,6)的直线能用x 3+y6=1表示吗?【提示】 能.直线方程的两点式和截距式若点12112212的中点,则⎩⎨⎧x =x 1+x 22,y =y 1+y 22.我们已经学习了直线的点斜式y -y 0=k (x-x 0),直线的斜截式y =kx +b ,直线的两点式y -y 1y 2-y 1=x -x 1x 2-x 1,直线的截距式x a +y b =1,并且掌握了它们的适用条件.1.上述方程的四种形式都能用Ax +By +C =0(A ,B 不同时为零)来表示吗? 【提示】 能.2.关于x ,y 的二元一次方程Ax +By +C =0(A ,B 不同时为0)一定表示直线吗? 【提示】 一定. 直线的一般式方程(1)定义:关于x ,y 的二元一次方程Ax +By +C =0(其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.(2)斜率:直线Ax +By +C =0(A ,B 不同时为0),当B ≠0时,其斜率是-AB ,在y 轴上的截距是-CB.当B =0时,这条直线垂直于x 轴,不存在斜率.三角形的三个顶点是A (-1,0),B (3,-1),C (1,3),求三角形三边所在直线的方程.【思路探究】 由两点式直接求出三角形三边所在的直线的方程. 【自主解答】 由两点式,直线AB 所在直线方程为: y -(-1)0-(-1)=x -3-1-3,即x +4y +1=0.同理,直线BC 所在直线方程为: y -3-1-3=x -13-1,即2x +y -5=0. 直线AC 所在直线方程为: y -30-3=x -1-1-1,即3x -2y +3=0.1.已知直线上的两点坐标时,通常用两点式求直线方程.2.利用两点式求直线方程的前提是x 1≠x 2,y 1≠y 2,切忌不注意坐标间的关系盲目套用公式.在题设条件不变的情况下,求AB 中点与点C 连线的方程. 【解】 设AB 边中点为D (x ,y ),则⎩⎨⎧x =-1+32=1,y =0+(-1)2=-12,C ,D 两点横坐标相同,所以直线CD 的方程为x =1.l 的方程. 【思路探究】 思路一:利用直线的截距式方程求解,需分截距“为零”和“不为零”两类分别求解;思路二:利用直线方程的点斜式求解.【自主解答】 法一 设直线l 在两坐标轴上的截距均为a . ①若a =0,则直线l 过原点,此时l 的方程为2x +3y =0; ②若a ≠0,则l 的方程可设为x a +ya =1,因为直线l 过点(3,-2),知3a +-2a =1,即a =1, 所以直线l 的方程为x +y =1, 即x +y -1=0.综上可知,直线l 的方程为x +y -1=0或2x +3y =0.法二 由题意可知,直线l 的斜率存在且不为0,设其斜率为k ,则可得直线的方程为y +2=k (x -3).令x =0,得y =-2-3k . 令y =0,得x =2k+3.由题意-2-3k =2k +3,解得k =-1或k =-23.所以直线l 的方程为y +2=-(x -3)或y +2=-23(x -3),即x +y -1=0或2x +3y =0.1.如果题目中出现直线在两坐标轴上的“截距相等”“截距互为相反数”“在一坐标轴上的截距是另一坐标轴上截距的m 倍(m >0)”等条件时,若采用截距式求直线方程,则一定要注意考虑“零截距”的情况.2.应用截距式方程处理截距相等问题的一般思路:已知直线l 过点(1,1)且在y 轴上的截距是在x 轴上的截距的2倍,求直线l 的方程. 【解】 由条件知直线l 的斜率存在且不为0,可设直线l 的方程为y -1=k (x -1),则由条件知1-k =2(1-1k),解得k =1或k =-2.故l 的方程为y =x 或y =-2x +3.(1)斜率是3,且经过点A (5,3); (2)过点B (-3,0),且垂直于x 轴; (3)斜率为4,在y 轴上的截距为-2; (4)在y 轴上的截距为3,且平行于x 轴; (5)经过A (-1,5),B (2,-1)两点;(6)在x ,y 轴上的截距分别是-3,-1.【思路探究】 根据条件,选择恰当的直线方程的形式,最后化成一般式方程. 【自主解答】 (1)由点斜式方程得y -3=3(x -5), 整理得3x -y +3-53=0. (2)x =-3,即x +3=0. (3)y =4x -2,即4x -y -2=0. (4)y =3,即y -3=0.(5)由两点式方程得y -5-1-5=x -(-1)2-(-1),整理得2x +y -3=0. (6)由截距式方程得x -3+y-1=1, 整理得x +3y +3=0.直线方程的五种形式的比较:若直线Ax +By +C =0(不经过原点)不经过第三象限,则AB ________0,BC ________0. 【解析】 如图所示,若直线l 不经过第三象限,则斜率k <0且在y 轴上的截距大于零,∴B ≠0.由Ax +By +C =0, 得y =-A B x -CB .∴k =-A B <0,b =-CB >0.故AB >0且BC <0. 【答案】><利用坐标法解决实际问题(12分)如图3-2-1所示,某房地产公司要在荒地ABCDE 上划出一块长方形土地(不改变方向)建造一图3-2-1幢8层的公寓,如何设计才能使公寓占地面积最大?并求出最大面积.(精确到1 m 2) 【思路点拨】 本题考查坐标法的应用和二次函数的最值,关键是确定长方形中在AB 上的顶点的位置,可建立坐标系,运用直线的知识求解.【规范解答】 建立如图所示的坐标系,则B (30,0),A (0,20),∴由直线的截距式方程得到线段AB 的方程为: x 30+y20=1(0≤x ≤30).3分 设长方形中在AB 上的顶点为P ,点P 的坐标为(x ,y ), 则有y =20-23x (0≤x ≤30).4分∴公寓的占地面积为: S =(100-x )·(80-y ) =(100-x )·(80-20+23x )=-23x 2+203x +6 000(0≤x ≤30).8分∴当x =5,y =503时,S 取最大值,最大值为S =-23×52+203×5+6 000≈6 017(m 2).10分即当点P 的坐标为(5,503)时,公寓占地面积最大,最大面积约为6 017 m 2.12分本题是用坐标法解决生活问题,点P 的位置由两个条件确定,一是A ,P ,B 三点共线,二是矩形的面积最大.借助三点共线寻求x 与y 的关系,然后利用二次函数知识探求最大值是处理这类问题常用的方法.1.当直线没有斜率(x 1=x 2)或斜率为0(y 1=y 2)时,不能用两点式y -y 1y 2-y 1=x -x 1x 2-x 1求它的方程,此时直线的方程分别是x =x 1和y =y 1,而它们都适合(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1),即两点式的整式形式,因此过任意两点的直线的方程都可以写成(x 2-x 1)(y -y 1)=(y 2-y 1)(x -x 1)的形式.2.直线的截距式是两点式的一个特殊情形,用它来画直线以及判断直线经过的象限或求直线与坐标轴围成的三角形的面积比较方便.注意直线过原点或与坐标轴平行时,没有截距式方程,但直线过原点时两截距存在且同时等于零.3.直线方程的一般式同二元一次方程Ax +By +C =0(A ,B 不同时为零)之间是一一对应关系,因此研究直线的几何性质完全可以应用方程的观点来研究,这实际上也是解析几何的思想所在——用方程的思想来研究几何问题.1.过P 1(2,0),P 2(0,3)两点的直线方程是( ) A.x 3+y 2=0 B.x 2+y3=0C.x 2+y 3=1D.x 2-y 3=1 【解析】 由截距式,得所求直线的方程为x 2+y3=1.【答案】 C2.下列语句中正确的是( )A .经过定点P (x 0,y 0)的直线都可以用方程y -y 0=k (x -x 0)表示B .经过任意两个不同点P (x 1,y 1),Q (x 2,y 2)的直线都可以用方程(y -y 1)(x 2-x 1)=(x -x 1)(y 2-y 1)表示C .不经过原点的直线都可以用方程x a +yb =1表示D .经过定点的直线都可以用y =kx +b 表示【解析】 A 不正确,该方程无法表示x =x 0这条直线;C 不正确,该方程无法表示与坐标轴平行的直线;D 不正确,该方程无法表示与x 轴垂直的直线,B 正确.【答案】 B3.直线方程2x +3y +1=0化为斜截式为________;化为截距式为________. 【解析】 直线方程2x +3y +1=0化为斜截式为y =-23x -13.化为截距式为x -12+y-13=1.【答案】 y =-23x -13x-12+y-13=1 4.已知在△ABC 中,A ,B 的坐标分别为(-1,2),(4,3),AC 的中点M 在y 轴上,BC 的中点N 在x 轴上.(1)求点C 的坐标; (2)求直线MN 的方程.【解】 (1)设点C (m ,n ),AC 中点M 在y 轴上,BC 的中点N 在x 轴上,由中点坐标公式得⎩⎨⎧m -12=0,n +32=0,解得⎩⎪⎨⎪⎧m =1,n =-3,∴C 点的坐标为(1,-3).(2)由(1)知:点M 、N 的坐标分别为M (0,-12)、N (52,0),由直线方程的截距式得直线MN 的方程是x 52+y-12=1,即2x -10y -5=0.一、选择题1.直线3x +y +6=0的斜率为k ,在y 轴上的截距为b ,则( ) A .k =3,b =6 B .k =-3,b =-6 C .k =-3,b =6 D .k =3,b =-6 【解析】 化为斜截式,得y =-3x -6, ∴k =-3,b =-6,故选B. 【答案】 B2.直线x 3+y4=1化成一般式方程为( )A .y =-43x +4B .y =-43(x -3)C .4x +3y -12=0D .4x +3y =12【解析】 直线x 3+y4=1化成一般式方程为4x +3y -12=0.【答案】 C3.(2013·周口高一检测)已知点A (1,2),B (3,1),则线段AB 的垂直平分线的方程是( ) A .4x +2y =5 B .4x -2y =5 C .x +2y =5 D .x -2y =5【解析】 ∵A (1,2),B (3,1),∴线段AB 的中点坐标为(2,32).又k AB =1-23-1=-12,故线段AB 的垂直平分线方程为y -32=2(x -2),即4x -2y =5.【答案】 B4.(2013·威海高一检测)若直线ax +by +c =0经过第一、二、三象限,则( ) A .ab >0,bc >0 B .ab >0,bc <0 C .ab <0,bc >0 D .ab <0,bc <0【解析】 把直线ax +by +c =0化成斜截式得 y =-a b x -c b ,由题意可知⎩⎨⎧-ab >0,-cb >0,即ab <0且bc <0.【答案】 D5.(2013·德化高一检测)过点A (4,1)且在两坐标轴上截距相等的直线方程是( ) A .x +y =5 B .x -y =5C .x +y =5或x -4y =0D .x -y =5或x +4y =0【解析】 当直线过点(0,0)时,直线方程为y =14x ,即x -4y =0,当直线不过点(0,0)时,可设为x a +ya =1,把(4,1)代入,可解得a =5,∴直线方程为x +y =5.综上可知直线方程为x+y =5或x -4y =0.【答案】 C 二、填空题6.斜率为2,且经过点A (1,3)的直线的一般式方程为________. 【解析】 由点斜式得,所求直线方程为y -3=2(x -1), 整理得2x -y +1=0. 【答案】 2x -y +1=07.(2012·绵阳高一检测)直线y =23x -2与两坐标轴围成的三角形的面积是________.【解析】 令x =0,得y =-2;令y =0,得x =3.故直线y =23x -2与两坐标轴围成的三角形的面积是12×3×2=3.【答案】 38.在下列各种情况下,直线Ax +By +C =0(A ,B 不同时为零)的系数A ,B ,C 之间各有什么关系:(1)直线与x 轴平行时:________; (2)直线与y 轴平行时:________; (3)直线过原点时:________; (4)直线过点(1,-1)时:________.【解析】 ∵A ,B 不同时为零,故当A =0且B ≠0时(1)成立;当B =0且A ≠0时(2)成立;当C =0时(3)成立;当A -B +C =0时(4)成立.【答案】 (1)A =0且B ≠0 (2)B =0且A ≠0 (3)C =0且A ,B 不同时为0 (4)A -B +C =0三、解答题9.已知直线与x 轴、y 轴分别交于A ,B 两点且线段AB 的中点为P (4,1),求直线l 的方程.【解】 由题意可设A (x,0),B (0,y ),由中点坐标公式可得⎩⎨⎧x +02=4,0+y2=1,解得⎩⎪⎨⎪⎧x =8,y =2,∴A (8,0),B (0,2),由直线方程的截距式得l 方程为x 8+y2=1,即x +4y -8=0.10.设直线l :(m 2-2m -3)x +(2m 2+m -1)y -2m +6=0(m ≠-1),根据下列条件分别确定m 的值:(1)直线l 在x 轴上的截距为-3; (2)直线l 的斜率为1.【解】 (1)令y =0得x =2m -6m 2-2m -3(m 2-2m -3≠0),由题知,2m -6m 2-2m -3=-3,解得m =3(舍),m =-53.(2)∵直线l 的斜率为k =-m 2-2m -32m 2+m -1,∴-m 2-2m -32m 2+m -1=1,解得m =43.11.设直线l 的方程为(a +1)x +y +2-a =0(a ∈R ). (1)若直线l 在两坐标轴上的截距相等,求直线l 的方程; (2)若直线l 不经过第二象限,求实数a 的取值范围.【解】 (1)当直线过原点时,该直线在x 轴和y 轴上的截距都为零,则当a =2时满足条件,此时方程为3x +y =0.当a =-1时,直线为平行于x 轴的直线,在x 轴上无截距,不合题意.当a ≠-1且a ≠2时,由a -2a +1=a -2,得a =0,则当a =0时,直线在x 轴、y 轴上的截距都为-2,此时方程为x +y +2=0.综上所述,当a =2或a =0时,直线l 在两坐标轴上的截距相等,此时方程为3x +y =0或x +y +2=0.(2)将直线l 的方程转化为y =-(a +1)x +a -2,则⎩⎪⎨⎪⎧ -(a +1)>0,a -2≤0,或⎩⎪⎨⎪⎧-(a +1)=0,a -2≤0.解得a ≤-1.故a 的取值范围为(-∞,-1].求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线l 的方程.【思路探究】 要求直线方程,可结合题中的截距的绝对值相等来求,或求出直线的斜率获得直线方程.【自主解答】 法一 设直线在x 轴、y 轴上的截距分别为a ,b . ①当a ≠0,b ≠0时,设l 的方程为x a +yb =1.∵点(4,-3)在直线上,∴4a +-3b =1,若a =b ,则a =b =1,直线方程为x +y =1.若a =-b ,则a =7,b =-7,此时直线的方程为x -y =7. ②当a =b =0时,直线过原点,且过点(4,-3), ∴直线的方程为3x +4y =0.综上知,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0. 法二 设直线l 的方程为y +3=k (x -4), 令x =0,得y =-4k -3;令y =0,得x =4k +3k .又∵直线在两坐标轴上的截距的绝对值相等, ∴|-4k -3|=|4k +3k |,解得k =1或k =-1或k =-34.∴所求的直线方程为x -y -7=0或x +y -1=0或3x +4y =0.1.由于直线的截距式方程不能表示过原点的直线,因此法一首先考虑过原点的特殊情况,截距为0的直线很容易被遗忘,应引起重视.2.求直线在坐标轴上的截距的方法是:令x =0,所得y 值是在y 轴上的截距,令y =0,所得x 值是在x 轴上的截距.求过点A (4,2),且在两坐标轴上的截距的绝对值相等的直线l 的方程.【解】 当直线过原点时,它在x 轴、y 轴上的截距都是0,满足题意.此时,直线的斜率为12,所以直线方程为x -2y =0.当直线不过原点时,由题意可设直线方程为x a +y b =1,过点A ,∴4a +2b =1.①∵直线在两坐标轴上的截距的绝对值相等,所以 |a |=|b |.②由①②联立方程组,解得⎩⎪⎨⎪⎧ a =6,b =6或⎩⎪⎨⎪⎧a =2,b =-2,∴所求直线的方程为x 6+y 6=1或x 2+y-2=1,化简即得直线l 的方程为x +y =6或x -y =2.综上,直线方程为x -2y =0或x +y -6=0或x -y -2=0.。

学案4:3.2.2 直线的两点式方程~3.2.3 直线的一般式方程

学案4:3.2.2 直线的两点式方程~3.2.3 直线的一般式方程

3.2.2 直线的两点式方程~3.2.3 直线的一般式方程1.会根据条件写出直线的两点式方程和截距式方程.(重点)2.了解二元一次方程与直线的对应关系,掌握直线的一般形式.(重点、难点) 3.能根据所给条件求直线方程,并能在几种形式间相互转化.(难点、易混点) 基础·初探教材整理1 直线方程的两点式和截距式,1.一条直线不与坐标轴平行或重合,则它的方程( ) A .可以写成两点式或截距式 B .可以写成两点式或斜截式或点斜式 C .可以写成点斜式或截距式D .可以写成两点式或截距式或斜截式或点斜式 教材整理2 线段的中点坐标公式若点P 1,P 2的坐标分别为(x 1,y 1),(x 2,y 2),设P (x ,y )是线段P 1P 2的中点,则⎩⎨⎧x =x 1+x 22,y =y 1+y22.预习自测2.已知A (1,2)及AB 的中点(2,3),则B 点的坐标是________. 教材整理3 直线的一般式方程1.定义:关于x ,y 的二元一次方程 (其中A ,B 不同时为0)叫做直线的一般式方程,简称一般式.2.斜率:直线Ax +By +C =0(A ,B 不同时为0),当B ≠0时,其斜率是-AB ,在y 轴上的截距是-CB .当B =0时,这条直线垂直于x 轴,不存在斜率.预习自测3.直线3x -2y =4的截距式方程是( ) A.3x 4-y2=1 B.x 13-y 12=4 C.3x 4-y-2=1 D.x 43+y-2=1 合作学习类型1 直线的两点式方程例1 在△ABC 中,A (-3,2),B (5,-4),C (0,-2), (1)求BC 所在直线的方程;(2)求BC 边上的中线所在直线的方程. 名师指导求直线的两点式方程的策略以及注意点(1)当已知两点坐标,求过这两点的直线方程时,首先要判断是否满足两点式方程的适用条件:两点的连线不平行于坐标轴,若满足,则考虑用两点式求方程.(2)由于减法的顺序性,一般用两点式求直线方程时常会将字母或数字的顺序错位而导致错误.在记忆和使用两点式方程时,必须注意坐标的对应关系. 跟踪训练1.(1)若直线l 经过点A (2,-1),B (2,7),则直线l 的方程为________; (2)若点P (3,m )在过点A (2,-1),B (-3,4)的直线上,则m =________. 类型2 直线的截距式方程例2 求过点(4,-3)且在两坐标轴上截距的绝对值相等的直线l 的方程. 名师指导用截距式方程解决问题的优点及注意事项1.由截距式方程可直接确定直线与x轴和y轴的交点的坐标,因此用截距式画直线比较方便.2.在解决与截距有关或直线与坐标轴围成的三角形面积、周长等问题时,经常使用截距式.3.但当直线与坐标轴平行时,有一个截距不存在;当直线通过原点时,两个截距均为零.在这两种情况下都不能用截距式,故解决问题过程中要注意分类讨论.跟踪训练2.求过定点P(2,3)且在两坐标轴上的截距相等的直线l的方程.探究共研型探究点直线一般式方程的应用探究1已知直线l过点(2,0),(0,3),能否写出直线l的方程的五种形式?探究2直线的一般式方程与其他形式比较,有什么优点?探究3当A=0,或B=0,或C=0时,方程Ax+By+C=0分别表示什么样的直线?例3(1)已知直线l1:2x+(m+1)y+4=0与直线l2:mx+3y-2=0平行,求m的值;(2)当a为何值时,直线l1:(a+2)x+(1-a)y-1=0与直线l2:(a-1)x+(2a+3)y+2=0互相垂直?名师指导1.利用一般式解决直线平行与垂直问题的策略直线l1:A1x+B1y+C1=0,直线l2∶A2x+B2y+C2=0,①若l1∥l2⇔A1B2-A2B1=0且B1C2-B2C1≠0(或A1C2-A2C1≠0).②若l1⊥l2⇔A1A2+B1B2=0.2.与已知直线平行(垂直)的直线方程的求法①与直线Ax+By+C=0平行的直线方程可设为Ax+By+m=0,(m≠C).②与直线Ax+By+C=0垂直的直线方程可设为Bx-Ay+m=0.)跟踪训练3.已知两直线方程l1:mx+2y+8=0和l2:x+my+3=0,当m为何值时:(1)两直线互相平行?(2)两直线互相垂直?课堂检测1.过点A(3,0)和B(2,1)的直线方程为()A.x+y-3=0B.x-y-3=0C.x+y+3=0D.x-y+3=02.经过P(4,0),Q(0,-3)两点的直线方程是()A.x4+y3=1 B.x3+y4=1C.x4-y3=1 D.x3-y4=13.过点A(-1,3)且平行于直线x-2y+3=0的直线方程为________.4.在平面直角坐标系xOy中,若直线l1:x-2y-1=0和直线l2:2x-ay-a=0平行,则常数a的值为__________.5.求过点A(4,2)且在两坐标轴上截距之和为12的直线l的方程.参考答案预习自测1.【答案】B【解析】由于直线不与坐标轴平行或重合,所以直线的斜率存在,且直线上任意两点的横坐标及纵坐标都不相同,所以直线能写成两点式或斜截式或点斜式.由于直线在坐标轴上的截距有可能为0,所以直线不一定能写成截距式,故选B. 预习自测2. 【答案】 (3,4)【解析】 设B (x ,y ),则⎩⎨⎧1+x2=2,2+y2=3,∴⎩⎪⎨⎪⎧x =3y =4,即B (3,4). 教材整理3 直线的一般式方程 1. Ax +By +C =0 预习自测 3. 【答案】 D【解析】 将3x -2y =4化为x 43+y-2=1即得.合作学习类型1 直线的两点式方程例1 【解析】 (1)由两点式直接求BC 所在直线的方程; (2)先求出BC 的中点,再由两点式求直线方程.解:(1)∵BC 边过两点B (5,-4),C (0,-2),∴由两点式得y -(-4)(-2)-(-4)=x -50-5,即2x +5y +10=0.故BC 所在直线的方程为2x +5y +10=0. (2)设BC 的中点为M (x 0,y 0), 则x 0=5+02=52,y 0=(-4)+(-2)2=-3.∴M ⎝⎛⎭⎫52,-3, 又BC 边上的中线经过点A (-3,2). ∴由两点式得y -2-3-2=x -(-3)52-(-3),即10x +11y +8=0.故BC 边上的中线所在直线的方程为10x +11y +8=0. 跟踪训练1.【答案】 (1)x =2 (2)-2【解析】 (1)由于点A 与点B 的横坐标相等,所以直线l 没有两点式方程,所求的直线方程为x =2.(2)由两点式方程得,过A ,B 两点的直线方程为y -(-1)4-(-1)=x -2-3-2,即x +y -1=0.又点P (3,m )在直线AB 上,所以3+m -1=0,得m =-2. 类型2 直线的截距式方程例2 【解析】 解此题可以利用两种方法,法一:利用截距式,分三种情况,截距相等不为零,截距互为相反数不为零,截距均为零,法二:利用点斜式,然后利用截距的绝对值相等求斜率.解:法一 设直线在x 轴、y 轴上的截距分别为a ,b . ①当a ≠0,b ≠0时,设l 的方程为x a +yb =1.∵点(4,-3)在直线上,∴4a +-3b =1,若a =b ,则a =b =1,直线方程为x +y =1.若a =-b ,则a =7,b =-7,此时直线的方程为x -y =7. ②当a =b =0时,直线过原点,且过点(4,-3), ∴直线的方程为3x +4y =0.综上知,所求直线方程为x +y -1=0或x -y -7=0或3x +4y =0. 法二 设直线l 的方程为y +3=k (x -4), 令x =0,得y =-4k -3;令y =0,得x =4k +3k .又∵直线在两坐标轴上的截距的绝对值相等, ∴|-4k -3|=⎪⎪⎪⎪4k +3k ,解得k =1或k =-1或k =-34.∴所求的直线方程为x -y -7=0或x +y -1=0或3x +4y =0. 跟踪训练2.解:设直线的两截距都是a ,则有①当a =0时,直线为y =kx ,将P (2,3)代入得k =32,∴l :3x -2y =0;②当a ≠0时,直线设为x a +ya =1,即x +y =a ,把P (2,3)代入得a =5,∴l :x +y =5. ∴直线l 的方程为3x -2y =0或x +y -5=0.探究共研型探究点 直线一般式方程的应用探究1 【答案】 能.直线l 的斜率k =3-00-2=-32,点斜式方程y -0=-32(x -2);斜截式方程y =-32x +3;两点式方程y -03-0=x -20-2;截距式方程x 2+y3=1,一般式方程3x +2y -6=0.探究2 【答案】 坐标平面内的任何一条直线,都可以用一般式表示,而其他形式都有一定的局限性.探究3 【答案】 (1)若A =0,则y =-CB ,表示与y 轴垂直的一条直线.(2)若B =0,则x =-CA ,表示与x 轴垂直的一条直线.(3)若C =0,则Ax +By =0,表示过原点的一条直线.例3 【解析】 解答本题可以从两直线的位置关系与斜率的对应关系入手,也可以根据斜率关系求出参数值后,代入验证. 解:(1)法一:由l 1:2x +(m +1)y +4=0, l 2:mx +3y -2=0知:①当m =0时,显然l 1与l 2不平行. ②当m ≠0时,l 1∥l 2,需2m =m +13≠4-2.解得m =2或m =-3,∴m 的值为2或-3. 法二:令2×3=m (m +1), 解得m =-3或m =2.当m =-3时,l 1:x -y +2=0,l 2:3x -3y +2=0, 显然l 1与l 2不重合,∴l 1∥l 2.同理当m =2时,l 1:2x +3y +4=0,l 2:2x +3y -2=0, 显然l 1与l 2不重合,∴l 1∥l 2. ∴m 的值为2或-3.(2)法一:由题意知,直线l 1⊥l 2.①若1-a =0,即a =1时,直线l 1:3x -1=0与直线l 2:5y +2=0显然垂直. ②若2a +3=0,即a =-32时,直线l 1:x +5y -2=0与直线l 2:5y -4=0不垂直.③若1-a ≠0,且2a +3≠0,则直线l 1,l 2的斜率k 1,k 2都存在,k 1=-a +21-a ,k 2=-a -12a +3.当l 1⊥l 2时,k 1·k 2=-1,即⎝ ⎛⎭⎪⎫-a +21-a ·⎝ ⎛⎭⎪⎫-a -12a +3=-1,∴a =-1.综上可知,当a =1或a =-1时,直线l 1⊥l 2. 法二:由题意知直线l 1⊥l 2. ∴(a +2)(a -1)+(1-a )(2a +3)=0, 解得a =±1,将a =±1代入方程,均满足题意. 故当a =1或a =-1时,直线l 1⊥l 2. 跟踪训练3. 解:(1)当m =0时,l 1与l 2显然不平行. 当m ≠0时,l 1的斜率k 1=-m2,在y 轴上的截距b 1=-4,l 2的斜率k 2=-1m ,在y 轴上的截距b 2=-3m .∵l 1∥l 2,∴k 1=k 2,且b 1≠b 2. 课堂检测 1.【答案】 A【解析】 由两点式方程得y -01-0=x -32-3,整理得x +y -3=0. 2.【答案】 C【解析】 因为由点坐标知直线在x 轴,y 轴上截距分别为4,-3, 所以直线方程为x 4+y-3=1.3.【答案】 x -2y +7=0【解析】 由题意可设所求直线方程为x -2y +m =0, 将点A (-1,3)代入,可得m =7, 所以所求直线的方程为x -2y +7=0. 4.【答案】 4【解析】 由于l 1∥l 2,所以1×(-a )-(-2)×2=0且-2×(-a )-(-a )×(-1)≠0,得a =4. 5.解:设直线l 的方程为x a +yb =1,由题意⎩⎪⎨⎪⎧4a +2b =1,a +b =12.∴4b +2a =ab ,即4(12-a )+2a =a (12-a ), ∴a 2-14a +48=0,解得a =6或a =8.因此⎩⎪⎨⎪⎧ a =6,b =6,或⎩⎪⎨⎪⎧a =8,b =4.∴所求直线l 的方程为x +y -6=0或x +2y -8=0.。

人教版数学必修二3.2.3《直线的一般方程》表格教案

人教版数学必修二3.2.3《直线的一般方程》表格教案

【三】例题解析例1:已知直线经过点()4,6-A ,斜率为34-,求直线的点斜式和一般式方程。

变式训练:由下列条件,写出直线的方程,并把它化成一般式:(1)在y 轴上的截距为2,斜率是1-;(2)经过点()2,3-A 并与直线01243=--y x 垂直。

讲解例题,学生自行完成变式训练。

根据条件选择合适的直线方程形式表示直线,再写成一般式。

特别注意,变式训练(2)有两种方法,若有直接设出方程3x -4y +m =0的须号召大家鼓掌表扬!例2:把直线l 的一般方程x -2y +6=0化成斜截式,求出直线l 的斜率以及它在x 轴与y 轴上的截距,并画出图形.变式训练:求直线l :2x -5y -10=0与坐标轴围成的三角形的面积.设计意图:例1是从“数”的方面加深了对一般式的认识,例2则从“形”的方面来进一步认识一般式,于是数与形就有了和谐的结合。

这里还要注意提醒学生:画出一条直线的基本步骤是:画平面直角坐标系,找直线上不同的2点(方法任选,如赋值法等),连接这2点并延长。

【画、找、连】【四】探究与升华我们通过直线的点斜式可以看出直线上的一点和它的斜率,通过截距式可以看出直线在x ,y 轴上的截距,但是这些直线方程的特殊形式都不能表示平面直角坐标系内任意一条直线。

而可以表示平面直角坐标系内的任意一条直线的一般式的系数A ,B ,C 与直线的位置和特征有什么联系呢?探究1.在方程Ax +By +C =0(A ,B 不同时为0)中,(1)当A =0,B ≠0,C ≠0时,方程表示的直线与y 轴 ;(2)当A 、B 不同时为0,C =0时,方程表示的直线必过 。

探究2:在方程Ax +By +C =0(A ,B 不同时为0)中,A ,B ,C 为何值时,方程表示的直线:(1)平行于轴;(2)与两坐标轴都相交。

练习:1.已知直线l :Ax +By +C =0的图象如图所示,则( )A.若C >0,则A >0,B >0B.若C >0,则A <0,B >0C.若C <0,则A >0,B <0D.若C <0,则A >0,B >02.设点()00,y x P 在直线Ax +By +C =0。

2019-2020年高中数学《3.2.3直线的一般式方程》学案 新人教A版必修2

2019-2020年高中数学《3.2.3直线的一般式方程》学案 新人教A版必修2

2019-2020年高中数学《3.2.3直线的一般式方程》学案 新人教A 版必修2一.学习目标:根据确定直线位置的几何要素,探索并掌握直线方程的一般式,体会一般式与直线其它方程形式之间的关系.二.重点、难点:重点:难点:三.知识要点:1. 一般式(general form ):,注意A 、B 不同时为0. 直线一般式方程化为斜截式方程,表示斜率为,y 轴上截距为的直线.2 与直线平行的直线,可设所求方程为;与直线垂直的直线,可设所求方程为. 过点的直线可写为.经过点,且平行于直线l 的直线方程是;经过点,且垂直于直线l 的直线方程是.3. 已知直线的方程分别是:(不同时为0),(不同时为0),则两条直线的位置关系可以如下判别:(1); (2)1212211221//0,0l l A B A B AC A B ⇔-=-≠;(3)与重合122112210,0A B A B AC A B ⇔-=-=; (4)与相交.如果时,则;与重合;与相交.四.自主探究例题精讲:【例1】已知直线:,:,问m 为何值时:(1); (2).解:(1)时,,则,解得m =0.(2)时,, 解得m =1.【例2】(1)求经过点且与直线平行的直线方程;(2)求经过点且与直线垂直的直线方程.解:(1)由题意得所求平行直线方程,化为一般式.(2) 由题意得所求垂直直线方程,化为一般式.【例3】已知直线l 的方程为3x+4y -12=0,求与直线l 平行且过点(-1,3)的直线的方程.分析:由两直线平行,所以斜率相等且为,再由点斜式求出所求直线的方程.解:直线l:3x+4y -12=0的斜率为,∵ 所求直线与已知直线平行, ∴所求直线的斜率为,又由于所求直线过点(-1,3),所以,所求直线的方程为:,即.点评:根据两条直线平行或垂直的关系,得到斜率之间的关系,从而由已知直线的斜率及点斜式求出所求直线的方程. 此题也可根据直线方程的一种形式而直接写出方程,即,再化简而得.【例4】直线方程的系数A 、B 、C 分别满足什么关系时,这条直线分别有以下性质?(1)与两条坐标轴都相交;(2)只与x 轴相交;(3)只与y 轴相交;(4)是x 轴所在直线;(5)是y 轴所在直线.分析:由直线性质,考察相应图形,从斜率、截距等角度,分析系数的特征.解:(1)当A ≠0,B ≠0,直线与两条坐标轴都相交.(2)当A ≠0,B=0时,直线只与x 轴相交.(3)当A =0,B ≠0时,直线只与y 轴相交.(4)当A =0,B ≠0,C =0,直线是x 轴所在直线.(5)当A ≠0,B =0,C =0时,直线是y 轴所在直线.点评:结合图形的几何性质,转化为方程形式所满足的代数形式. 对于直线的一般式方程,需要特别注意以上几种特殊位置时的方程形式.五.目标检测(一)基础达标1.如果直线的倾斜角为,则有关系式().A. B. C. D. 以上均不可能2.若,则直线必经过一个定点是().A. B. C. D.3.直线与两坐标轴围成的面积是().A. B. C. D.4.(xx京皖春)直线()x+y=3和直线x+()y=2的位置关系是().A. 相交不垂直B. 垂直C. 平行D. 重合5.已知直线mx+ny+1=0平行于直线4x+3y+5=0,且在y轴上的截距为,则m,n的值分别为().A. 4和3B. -4和3C. -4和-3D. 4和-36.若直线x+ay+2=0和2x+3y+1=0互相垂直,则a= .7.过两点(5,7)和(1,3)的直线一般式方程为;若点(,12)在此直线上,则=.(二)能力提高8.根据下列各条件写出直线的方程,并且化成一般式:(1)斜率是-,经过点A(8,-2);(2)经过点B(4,2),平行于轴;(3)在轴和轴上的截距分别是,-3;(4)经过两点(3,-2)、(5,-4).9.已知直线的方程分别是:(不同时为0),(不同时为0),且. 求证.(三)探究创新10.已知直线,,求m的值,使得:(1)l1和l2相交;(2)l1⊥l2;(3)l1//l2;(4)l1和l2重合.2019-2020年高中数学《3.2.4互斥事件》教案新人教版必修3【教学目标】1、用集合的观点理解互斥与对立事件;2、注意一题多解,和方法的灵活性。

21-22版:3.2.3 直线的一般式方程(创新设计)

21-22版:3.2.3 直线的一般式方程(创新设计)

28
课前预习
课堂互动
课堂反馈
@《创新设计》
2.直线的一般式方程的结构特征 (1)方程是关于x,y的二元一次方程. (2)方程中等号的左侧自左向右一般按x,y,常数的先后顺序排列. (3)x的系数一般不为分数和负数. (4)虽然一般式直线方程有三个系数,但只需两个独立的条件即可求得直线的方程. 特别提醒 在利用直线方程的四种特殊式时,一定要注意其适用的前提条件.
规律方法 已知含参数的直线的一般式方程求参数的值或范围的步骤
@《创新设计》
13
课前预习
课堂互动
课堂反馈
@《创新设计》
【训练2】 已知方程(2m2+m-3)x+(m2-m)y=4m-1表示直线.当m=____________ 时,直线的倾斜角为45°;当m=____________时,直线在x轴上的截距为1.
22
课前预习
课堂互动
@《创新设计》 课堂反馈
@《创新设计》
课堂达标
1.若方程Ax+By+C=0表示直线,则A,B应满足的条件为( )
A.A≠0
B.B≠0
C.A·B≠0
D.A2+B2≠0
解析 方程Ax+By+C=0表示直线的条件为A,B不能同时为0,即A2+B2≠0. 答案 D
23
课前预习
课堂互动
课堂反馈
@《创新设计》
法二 (1)由 l′与 l 平行,可设 l′的方程为 3x+4y+m=0(m≠-12).将点(-1,3) 代入上式得 m=-9. ∴所求直线的方程为 3x+4y-9=0. (2)由 l′与 l 垂直,可设 l′的方程为 4x-3y+n=0. 将(-1,3)代入上式得 n=13. ∴所求直线的方程为 4x-3y+13=0.

3.2.3 直线的一般式方程(教案)

3.2.3 直线的一般式方程(教案)

3.2.3直线的一般式方程教学目标1.掌握直线的一般式方程.2.理解关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)都表示直线.3.会进行直线方程的五种形式之间的转化.【教学重点】直线方程的一般式及各种形式的互化.【教学难点】在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程【教学方法】启发式、讲练结合【教学过程】㈠复习提问:①直线方程有几种形式?③每一个关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)都表示一条直线吗?㈡新课探讨:①任何一条直线的方程都是关于x,y的二元一次方程;②任何关于x,y的一次方程Ax+By+c=0(A,B不同时为零)的图象是一条直线;定义:我们把x,y的一元二次方程Ax+By+C=0(其中A,B不同时为0)叫做直线方程的一般式.注:一般式适用于任何一条直线.对于直线方程的一般式,一般作如下约定:x的系数为正,x,y的系数及常数项一般不出现分数,一般按含x 项,含y 项、常数项顺序排列.探究: 在方程Ax+By+C=0中,A ,B ,C 为何值时,方程表示的直线为:①平行于x 轴; ②平行于y 轴; ③与x 轴重合 ; ④与y 轴重合.(三)例题讲解:例1:已知直线经过点A (6,- 4),斜率为 – 4/3,求直线的点斜式、一般式和截距式方程。

巩固训练1:若直线l 在x 轴上的截距-4时,倾斜角的余弦值是-3/5,则直线l 的点斜式方程线l 的斜截式方程是;直线l 的一般式方程是__4x+3y+16=0_________例2:把直线L 的方程x –2y+6= 0化成斜截式,求出直线L 的斜率和它在x 轴与y 轴上的截距,并画图。

巩固训练2:设直线l 的方程为Ax+By+c=0(A ,B 不同时为零),根据下列各位置特征,写出A ,B ,C 应满足的关系:直线l 过原点:___C=0_________;直线l 过点(1,1):____A+B+C=0 _______;直线l 平行于 轴:_A=0,B=0,C=0___;直线l 平行于轴:__A=0,B=0,C=0_______巩固训练31、若直线(2m2-5m -3)x -(m2-9)y+4=0的倾斜角为450,则m 的值是 ( )(A )3 (B ) 2 (C )-2 (D )2与32、若直线(m+2)x+(2-m)y=2m 在x 轴上的截距为3,则m 的值是__________例4:利用直线方程的一般式,求过点(0,3)并且与坐标轴围 成三角形面积是6的直线方程。

3.2.3 直线的一般式方程

3.2.3 直线的一般式方程
(3)平面上恒过定点P(x0,y0)的直线方程都可以设为中心直线系方 程y-y0=k(x-x0)或x=x0的形式.
1234
当堂检测
1.已知直线2x+ay+b=0在x轴、y轴上的截距分别为-1,2,则a,b的值 分别为( )
A.-1,2 B.-2,2
C.2,-2 D.-2,-2 解析:令 x=0,则 y=-������������=2;令 y=0,则 x=-���2���=-1,得 b=2,a=-1,故选 A. 答案:A
故当a=1或a=-1时,直线l1⊥l2.
探究一
探究二
思想方法
课堂篇 探究学习
反思感悟由直线的一般式方程解决平行与垂直问题
直线l1:A1x+B1y+C1=0,直线l2:A2x+B2y+C2=0. (1)l1∥l2⇔A1B2-A2B1=0,且B1C2-B2C1≠0(或A1C2-A2C1≠0). (2)l1⊥l2⇔A1A2+B1B2=0.
课堂篇 探究学习
探究一
探究二
思想方法
解法一 由题设 l 的方程可化为 y=-34x+3,
∴l 的斜率为-34. (1)∵直线 l'与 l 平行,∴l'的斜率为-34. 又∵直线 l'过(-1,3),由点斜式知方程为 y-3=-34(x+1),即 3x+4y-9=0. (2)由 l'与 l 垂直,∴l'的斜率为4,
当堂检测
1234
2.两直线ax-by-1=0(ab≠0)与bx-ay-1=0(ab≠0)的图象可能是图中的 哪一个( )
解析:当
a<0,b>0
时,直线
ax-by=1

高中数学必修二 3.2.3 直线的一般式方程

高中数学必修二 3.2.3 直线的一般式方程

=
1.
重难点突破
12
由于直线方程的斜截式和截距式是唯一的,而两点式和点斜式不 唯一,因此,通常情况下,一般式不化为两点式和点斜式.
注意:在直线方程的几种形式中,任何形式的方程都可以化成一 般式方程,化为一般式方程以后原方程的限制条件就消失了;其他 形式的方程互化时,限制条件也可能发生变化;一般式方程化为其 他形式的方程时,要注意限制条件,它们有如下的转化关系:
������
������
一般式化截距式的步骤:
(1)把常数项移到方程右边,得 Ax+By=-C;
(2)当
C≠0
时,方程两边同除以-C,得
������������ -������
+
������������ -������
=
1;
(3)化为截距式
������ -������������
+
������ -������������
①当 B≠0 时,则− ������ = ������(斜率), − ������ = ������(������轴上的截距);
������
������
②当
B=0�
=
������(������轴上的截距),
此时斜率不存在.
知识梳理
知识拓展1.当AB>0时,k<0,倾斜角α为钝角;当AB<0时,k>0,倾斜角α 为锐角;当A=0,B≠0时,k=0,倾斜角α=0°;当B=0,A≠0时,k不存在,倾 斜角α=90°.
方法二:由两点式方程得 ������-0 = ������-1 , 即x+3y-1=0.
1-0 -2-1
精选例题
题型一 题型二 题型三 题型四

3.2.3 直线的一般式方程

3.2.3 直线的一般式方程

3.2.3 │ 考点类析
► 考点三 直线的一般式方程的应用
例 3 已知直线 l 的方程为 3x+4y-12=0,若直线 l′与 l 垂直,且 l′与坐标轴围成的三角形面积为 6,则直线 l′的方程
为__4_x_-__3_y_+__1_2_=__0__或__4__x-___3_y_-__1_2_=__0___.
解:设所求的直线方程为 2x-y+c=0, 令 y=0,得 x=-2c,令 x=0,得 y=c, 所以12-2c·c=9,c=±6, 故所求直线的方程为 2x-y±6=0.
3.2.3 │ 当堂自测
当堂自测
1.若直线 3x+y+6=0 的斜率为 k,在 y 轴上的截
距为 b,则( )
A.k=3,b=6
五点说明: (1)对于直线方程 Ax+By+C=0,若 A≠0,则方程可变
为 x+BAy+CA=0,只需确定BA________与_CA_________的值;若 B__≠_0_,__则__方的程 值. 可因变此为,ABx只+要y给+出CB =两0个,独只立需的确 AB条定件_就__可__求_CB_出_直 与
3.2.3 │ 重点难点
重点难点
• 【重点】 • 直线方程的一般式与各种形式的互化. • 【难点】 • 对直线方程一般式的理解与应用.
3.2.3 │ 教学建议
教学建议
(1)根据教材分析直线方程的一般式是本节课的重点,但由于 学生刚接触直线和直线方程的概念,教学中要求不能太高,因
此对直角坐标系中直线与关于x和y的一次方程的对应关系确定
3.2.3 │ 新课导入
新课导入
【导入一】 问题导入
直线的方程都可以写成关于x,y的二元一次方程吗?反过来,
二元一次方程都表示直线吗?

高中数学 第三章 直线与方程 3.2.3 直线的一般式方程学案(含解析)新人教A版必修2(2021

高中数学 第三章 直线与方程 3.2.3 直线的一般式方程学案(含解析)新人教A版必修2(2021

山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为山东省沂水县高中数学第三章直线与方程3.2.3 直线的一般式方程学案(含解析)新人教A版必修2的全部内容。

3.2.3 直线的一般式方程学习目标1。

掌握直线的一般式方程;2.理解关于x,y的二元一次方程Ax+By+C=0(A,B 不同时为0)都表示直线;3。

会进行直线方程的五种形式之间的转化.知识点一直线的一般式方程思考1 直线的点斜式、斜截式、两点式、截距式这四种形式都能用Ax+By+C=0(A,B不同时为0)来表示吗?答案能.思考2 关于x,y的二元一次方程Ax+By+C=0(A,B不同时为0)一定表示直线吗?答案一定.思考3 当B≠0时,方程Ax+By+C=0(A,B不同时为0)表示怎样的直线?B=0呢?答案当B≠0时,由Ax+By+C=0得,y=-错误!x-错误!,所以该方程表示斜率为-错误!,在y轴上截距为-错误!的直线;当B=0时,A≠0,由Ax+By+C=0得x=-错误!,所以该方程表示一条垂直于x轴的直线.形式Ax+By+C=0条件A,B不同时为0知识点二直线的一般式与点斜式、斜截式、两点式、截距式的关系类型一直线一般式的性质例1 设直线l的方程为(m2-2m-3)x-(2m2+m-1)y+6-2m=0.(1)若直线l在x轴上的截距为-3,则m=________。

人教A版高中数学必修二 3.2.3 直线的一般式方程 教案

人教A版高中数学必修二 3.2.3 直线的一般式方程 教案

3.2.3 直线的一般式方程教学目标1.知识与技能:(1)通过推导,了解直线都可以表示成一般式方程; (2)理解直线一般式方程系数的意义; (3)会判断一般式方程的平行垂直问题.2.过程与方法:通过实例初步了解概念,通过探究深入理解概念的实质,关键是要培养学生分析问题、解决问题和转化问题的能力.3.情感态度价值观:(1)本节核心问题是让学生学会转化思想,灵活应用所学知识,加强与实际生活的联系,以科学的态度评价身边的一些现象;(2)用有现实意义的实例,激发学生的学习兴趣,培养学生勇于探索,善于发现的创新思想。

培养学生掌握“理论来源于实践,并把理论应用于实践”的辨证思想 重点难点1.教学重点:了解直线都可以表示成一般式方程,会判断一般式方程的平行垂直问题2.教学难点:理解直线一般式方程系数的意义. 教学过程(一)复习引入:1、直线方程的点斜式、斜截式、两点式、截距式的互相转化: 练习1:由下列条件,写出直线的方程: (1)经过点A (8,– 2),斜率是21-;()8(212--=+x y ) (2)经过点B (4,2),平行于x 轴;(y – 2 = 0) (3)经过点P 1(3,– 2),P 2(5,– 4);(353)2(4)2(--=-----x y )(4)在x 轴,y 轴上的截距分别为23,– 3。

(1323=-+y x )2、直线方程的几种形式:思考:以上方程有什么共同的特点? (二)讲授新课:1、直线与二元一次方程的关系:问题1:平面直角坐标系中的每一条直线都可以用一个关于x 、y 吗?对直线的倾斜角α进行讨论: ① 当︒≠90α时,直线斜率为αtan =k ,其方程可写成:b kx y +=,可变形为:0=++C By Ax ,其中:A = k ,B = – 1,C = b ;A 、B 不同时为零。

(如图) ② 当︒=90α时,直线斜率不存在,其方程可写成1x x =的形式, 也可以变形为:0=++C By Ax ,其中:A = 1,B = 0,1x C =。

直线的一般式方程教案-数学必修2第三章直线方程3.2.2第一课时人教A版

直线的一般式方程教案-数学必修2第三章直线方程3.2.2第一课时人教A版

第三章 直线方程 3.2.3 直线的一般式方程1 教学目标[1] 明确理解直线一般式方程的形式特征 [2] 理解直线方程几种形式之间的内在联系[3] 能在总体把握直线方程的基础上,掌握各种形式之间的相互转化[4] 通过直线方程一般式的学习,培养学生全面、系统、周密地分类讨论问题的能力 培养学生数学结合思想和严谨的科学态度2教学重点/难点教学重点:直线方程一般式的理解和掌握教学难点:直线方程的一般式与各种直线方程间的互化3专家建议直线方程的一般式是由前面所学习的四种直线方程的形式概括形成的,它克服以点斜式、斜截式、两点式、截距式四种方程“特殊式”的局限性,由于直线方程的一般式)(0不全为零、其中B A c By Ax =++是关于x 、 y 的二元一次方程,因此平面上的直线与二元一次方程)(0不全为零、其中B A c By Ax =++是一一对应的。

直线的各种方程各有各的特点,分别适用于不同条件下的直线,因此教学时要引导同学熟练掌握各自特性,灵活使用。

4 教学方法讲授式、启发式教学5 教学过程5.1 复习引入【师】到目前为止,我们都学习了直线方程的哪几种形式?它们各适用于具有什么条件的求直线方程问题?适用的X 围是什么? 【板演/PPT 】引导学生回答各种直线方程点斜式:已知直线上一点P 1(x 1,y 1)的坐标,和直线的斜率k ,则直线的方程是斜截式:已知直线的斜率k ,和直线在y 轴上的截距b 则直线方程是两点式:已知直线上两点P 1(x 1,y 1),P 2(x 2,y 2)则直线的方程是:截距式:已知直线在X 轴Y 轴上的截距为a ,b ,则直线的方程是【师】他们所适用的X 围是什么? 【生】点斜式:适用于有斜率的直线问题 斜截式:适合存在斜率且已知纵截距的直线问题 两点式:适合已知两点,且不垂直于x 轴或y 轴直线问题)(11x x k y y -=-bkx y +=121121x x x x y y y y --=--1=+by a x截距式:适合已知截距,且截距不为零的直线问题5.2 探索新知 [1] 直线的一般式方程【师】下面我们看一看屏幕上的问题: 【板书/PPT 】1.过点(2,1),斜率为2的直线的方程____________ 2.过点(2,1),斜率为0的直线方程是___________ 3.过点(2,1),斜率不存在的直线的方程_________【师】你能根据实际条件,写出直线方程吗?并思考:你所列出的直线方程能看作是二元一次方程吗?【生】讨论与计算 【板书/PPT 】(1)中方程可化为2x-y-3=0,故直线方程是二元一次方程。

(整理)直线的一般式方程教案28107

(整理)直线的一般式方程教案28107

3.2.3直线的一般式方程一、教材分析:(1)教材中求直线方程采取先特殊后一般的思路,特殊形式的方程几何特征明显,但局限性强;一般形式的方程无任何限制,但几何特征不明显.教学中各部分知识之间过渡要自然流畅,不生硬.(2)直线方程的一般式反映了直线方程各种形式之间的统一性,教学中应充分揭示直线方程本质属性,建立二元一次方程与直线的对应关系,为继续学习“曲线方程”打下基础.直线一般式方程都是字母系数,在揭示这一概念深刻内涵时,还需要进行正反两方面的分析论证.教学中应重点分析思路,还应抓住这一有利时使学生学会严谨科学的分类讨论方法,从而培养学生全面、系统、辩证、周密地分析、讨论问题的能力,特别是培养学生逻辑思维能力,同时培养学生辩证唯物主义观点(3)在强调几种形式互化时要向学生充分揭示各种形式的特点,它们的几何特征,参数的意义等,使学生明白为什么要转化,并加深对各种形式的理解. 二、教学目标: 1、知识与技能:⑴掌握直线方程的一般式Ax+By+C=0的特征(A 、B 不同时为0)⑵能将直线方程的五种形式进行转化,并明确各种形式中的一些几何量(斜率、截距等);2、过程与方法:⑴主动参与探究直线和二元一次方程关系的数学活动,通过观察、推理、探究获得直线方程的一般式。

⑵学会分类讨论及掌握讨论的分界点;3、情感、态度与价值观:体验数学发现和探索的历程,发展创新意识 三、教学重点:直线方程一般式Ax+By+C=0(A 、B 不同时为0)的理解四、教学难点:⑴直线方程一般式Ax+By+C=0(A 、B 不同时为0)与二元一次方程关系的深入理解⑵直线方程一般式Ax+By+C=0(A 、B 不同时为0)的应用。

五、教学方法:引导探究法、讨论法 六、教具准备:ppt ,三角板(直尺)七、教学过程: (一)复习回顾同学们先回忆一下,在上两节课,我们一共学习了四种直线方程,以及对应形式和限制条件。

今天我们再来学习一种新的形式——直线的一般式方程。

高中数学必修二-3.2.3直线的一般式方程学案

高中数学必修二-3.2.3直线的一般式方程学案

顺德区容山中学__高二__年级__数学_学科活力课堂导学案课题§3.2.3直线的一般方程设计者:__杨时香黄宗勤_审核者:__叶建华 _日期:___10月22日____学习目标:1.会求二元一次方程组的解;2.掌握判断两条直线相交的方法,会通过解方程组求两条直线的交点坐标;3.了解过两条直线交点的直线系方程的问题;4.理解平面内两点间距离公式公式的推导过程;5.掌握两点间距离公式及其简单应用。

学习重点:求两条直线的交点坐标及掌握两点间距离公式应用学习难点:过两条直线交点的直线系方程第一部分:个体自学(预习教材P102~ P106,找出疑惑之处)复习1:⑴已知直线经过原点和点(0,4),则直线的方程.⑵在x轴上截距为1-,在y轴上的截距为3的直线方程.⑶已知点(1,2),(3,1)A B,则线段AB的垂直平分线方程是. 复习2:平面直角坐标系中的每一条直线都可以用一个关于,x y的二元一次方程表示吗?第二部分:合作探究新知:关于,x y的二元一次方程0Ax By C++=(A,B不同时为0)叫做直线的一般式方程,简称一般式.注意:直线一般式能表示平面内的任何一条直线问题1:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?问题2:在方程0Ax By C++=中,,,A B C为何值时,方程表示的直线⑴平行于x轴;⑵平行于y轴;⑶与x轴重合;⑷与y重合.第三部分:展示分享例1 已知直线经过点(6,4)A-,斜率为12,求直线的点斜式和一般式方程.例2 把直线l的一般式方程260x y-+=化成斜截式,求出直线l的斜率以及它在x轴与y 轴上的截距,并画出图形.练习1.根据下列各条件写出直线的方程,并且化成一般式:⑴经过点(8,2)A -, 斜率是12-; ⑵ 经过点(4,2)B ,平行于x 轴;⑶经过两点12(3,2),(5,4)P P --;⑷.在x 轴和y 轴上的截距分别是3,32-。

必修2教案3.2.3 直线的一般式方程

必修2教案3.2.3  直线的一般式方程

x, y
By C 0 (A,
B 不同时为 0)都表示一条直线 吗?
x, y 的二元一

By C 0 (A,B
同时为 0)叫做直线的一般式方程,简 称一般式(general form). 2、 直线方程的一般式与其他几种 形式的直线方程相比,它有什么 优点? 使学生理解直 线方程的一般 式的与其他形 学生通过对比、讨论,发现直线方程 的一般式与其他形式的直线方程的一 个不同点是:
学生独立完成。然后教师检查、评价、 反馈。指出:对于直线方程的一般式, 一般作如下约定: 一般按含 x 项、 含y 项、 常数项顺序排列;x 项的系数为正;
x , y 的系数和常数项一般不出现分
数;无特加要时,求直线方程的结果写 成一般式。
5、例 6 的教学
使学生体会直 把 直 线 l 的 一 般 式 方 程 线方程的一般 x 2 y 6 0 化成斜截式, 式化为斜截式, 和已知直线方 求出直线 l 的斜率以及它在 x 轴 程 的 一 般 式 求 直线的斜率和 与 y 轴上的截距,并画出图形。 截距的方法。
的截距。 在直角坐标系中画直线时, 通常找 出直线下两个坐标轴的交点。 6、 二元一次方程的每一个解与坐 标平面中点的有什么关系?直线 与二元一次方程的解之间有什么 关系? 使学生进一步 理解二元一次 方程与直线的 关系, 体会直解 坐标系把直线 与方程联系起 来。 巩固所学知识 学生阅读教材第 105 页, 从中获得对 问题的理解。


设计意图 式的不同点。
师生活动 直线的一般式方程能够表示平面上的 所有直线,而点斜式、斜截式、两点式 方程,都不能表示与 x 轴垂直的直线。 教师引导学生回顾前面所学过的与 与 y 轴平行和重合的 x 轴平行和重合、 直线方程的形式。 然后由学生自主探索 得到问题 C 0

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

人教版高中数学必修2第三章直线与方程-《3.2.3直线的一般式方程》教案

3.2.3 直线的一般式方程整体设计教学分析直线是最基本、最简单的几何图形,它是研究各种运动方向和位置关系的基本工具,它既能为进一步学习作好知识上的必要准备,又能为今后灵活地运用解析几何的基本思想和方法打好坚实的基础.直线方程是这一章的重点内容,在学习了直线方程的几种特殊形式的基础上,归纳总结出直线方程的一般形式.掌握直线方程的一般形式为用代数方法研究两条直线的位置关系和学习圆锥曲线方程打下基础.根据教材分析直线方程的一般式是本节课的重点,但由于学生刚接触直线和直线方程的概念,教学中要求不能太高,因此对直角坐标系中直线与关于x和y的一次方程的对应关系确定为“了解”层次.两点可以确定一条直线,给出一点和直线的方向也可以确定一条直线,由两个独立条件选用恰当形式求出直线方程后,均应统一到一般式.直线的一般式方程中系数A、B、C的几何意义不很鲜明,常常要化为斜截式和截距式,所以各种形式应会互化.引导学生观察直线方程的特殊形式,归纳出它们的方程的类型都是二元一次方程,推导直线方程的一般式时渗透分类讨论的数学思想,通过直线方程各种形式的互化,渗透化归的数学思想,进一步研究一般式系数A、B、C的几何意义时,渗透数形结合的数学思想.三维目标1.掌握直线方程的一般式,了解直角坐标系中直线与关于x和y的一次方程的对应关系,培养学生树立辩证统一的观点,培养学生形成严谨的科学态度和求简的数学精神.2.会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式,培养学生归纳、概括能力,渗透分类讨论、化归、数形结合等数学思想.3.通过教学,培养相互合作意识,培养学生思维的严谨性,注意学生语言表述能力的训练.重点难点教学重点:直线方程的一般式及各种形式的互化.教学难点:在直角坐标系中直线方程与关于x和y的一次方程的对应关系,关键是直线方程各种形式的互化.课时安排1课时教学过程导入新课思路1.前面所学的直线方程的几种形式,有必要寻求一种更好的形式,那么怎样的形式才能表示一切直线方程呢?这节课我们就来研究这个问题. 思路2.由下列各条件,写出直线的方程,并画出图形.(1)斜率是1,经过点A (1,8);(2)在x 轴和y 轴上的截距分别是-7,7;(3)经过两点P 1(-1,6)、P 2(2,9);(4)y 轴上的截距是7,倾斜角是45°.由两个独立条件请学生写出直线方程的特殊形式分别为y-8=x-1、77yx +-=1、121696++=--x y 、y=x+7,教师利用计算机动态显示,发现上述4条直线在同一坐标系中重合.原来它们的方程化简后均可统一写成:x-y+7=0.这样前几种直线方程有了统一的形式,这就是我们今天要讲的新课——直线方程的一般式. 推进新课 新知探究 提出问题①坐标平面内所有的直线方程是否均可以写成关于x,y 的二元一次方程?②关于x,y 的一次方程的一般形式Ax+By+C=0(其中A 、B 不同时为零)是否都表示一条直线?③我们学习了直线方程的一般式,它与另四种形式关系怎样,是否可互相转化? ④特殊形式如何化一般式?一般式如何化特殊形式?特殊形式之间如何互化?⑤我们学习了直线方程的一般式Ax+By+C=0,系数A 、B 、C 有什么几何意义?什么场合下需要化成其他形式?各种形式有何局限性?讨论结果:①分析:在直角坐标系中,每一条直线都有倾斜角α.1°当α≠90°时,它们都有斜率,且均与y 轴相交,方程可用斜截式表示:y=kx+b.2°当α=90°时,它的方程可以写成x=x 1的形式,由于在坐标平面上讨论问题,所以这个方程应认为是关于x 、y 的二元一次方程,其中y 的系数是零. 结论1°:直线的方程都可以写成关于x 、y 的一次方程.②分析:a 当B≠0时,方程可化为y=-B A x-B C ,这就是直线的斜截式方程,它表示斜率为-BA,在y 轴上的截距为-B C 的直线.b 当B=0时,由于A 、B 不同时为零必有A≠0,方程化为x=-AC,表示一条与y 轴平行或重合的直线.结论2°:关于x,y 的一次方程都表示一条直线.综上得:这样我们就建立了直线与关于x,y 的二元一次方程之间的对应关系.我们把Ax+By+C=0(其中A,B 不同时为0)叫做直线方程的一般式. 注意:一般地,需将所求的直线方程化为一般式.在这里采用学生最熟悉的直线方程的斜截式(初中时学过的一次函数)把新旧知识联系起来. ③引导学生自己找到答案,最后得出能进行互化.④待学生通过练习后师生小结:特殊形式必能化成一般式;一般式不一定可以化为其他形式(如特殊位置的直线),由于取点的任意性,一般式化成点斜式、两点式的形式各异,故一般式化斜截式和截距式较常见;特殊形式的互化常以一般式为桥梁,但点斜式、两点式、截距式均能直接化成一般式.各种形式互化的实质是方程的同解变形(如图1).图1⑤列表说明如下:应用示例例1 已知直线经过点A(6,-4),斜率为-34,求直线的点斜式和一般式方程.解:经过点A(6,-4)且斜率为-34的直线方程的点斜式方程为y+4=-34(x-6). 化成一般式,得4x+3y-12=0. 变式训练1.已知直线Ax+By+C=0,(1)系数为什么值时,方程表示通过原点的直线? (2)系数满足什么关系时,与坐标轴都相交? (3)系数满足什么条件时,只与x 轴相交? (4)系数满足什么条件时,是x 轴? (5)设P(x 0,y 0)为直线Ax+By+C=0上一点, 证明这条直线的方程可以写成A(x-x 0)+B(y-y 0)=0. 答案:(1)C=0; (2)A≠0且B≠0; (3)B=0且C≠0; (4)A=C=0且B≠0;(5)证明:∵P(x 0,y 0)在直线Ax+By+C=0上, ∴Ax 0+By 0+C+0,C=-Ax 0-By 0. ∴A(x-x 0)+B(y-y 0)=0.2.(2007上海高考,理2)若直线l 1:2x+my+1=0与l 2:y=3x-1平行,则m=____________. 答案:-32例2 把直线l 的方程x-2y+6=0化成斜截式,求出直线l 的斜率和它在x 轴与y 轴上的截距,并画出图形.解:由方程一般式x -2y +6=0, ① 移项,去系数得斜截式y=2x+3. ② 由②知l 在y 轴上的截距是3,又在方程①或②中,令y=0,可得x=-6. 即直线在x 轴上的截距是-6.因为两点确定一条直线,所以通常只要作出直线与两个坐标轴的交点(即在x 轴,y 轴上的截距点),过这两点作出直线l (图2).图2点评:要根据题目条件,掌握直线方程间的“互化”. 变式训练直线l 过点P(-6,3),且它在x 轴上的截距是它在y 轴上的截距的3倍,求直线l 的方程. 答案:x+3y-3=0或x+2y=0. 知能训练课本本节练习1、2、3. 拓展提升求证:不论m 取何实数,直线(2m -1)x -(m+3)y -(m -11)=0恒过一个定点,并求出此定点的坐标.解:将方程化为(x+3y-11)-m(2x-y-1)=0,它表示过两直线x+3y-11=0与2x-y-1=0的交点的直线系. 解方程组⎩⎨⎧=--=-+,012,0113y x y x ,得⎩⎨⎧==3,2y x .∴直线恒过(2,3)点. 课堂小结通过本节学习,要求大家:(1)掌握直线方程的一般式,了解直角坐标系中直线与关于x 和y 的一次方程的对应关系; (2)会将直线方程的特殊形式化成一般式,会将一般式化成斜截式和截距式; (3)通过学习,培养相互合作意识,培养学生思维的严谨性,注意语言表述能力的训练. 作业习题3.2 A 组11.。

直线的一般式方程(教案)

直线的一般式方程(教案)

3.2.3直线的一般式方程(教案)教学目标:1、知识与能力:⑴掌握直线方程的一般式Ax+By+C=0的特征(A、B不同时为0)⑵能将直线方程的五种形式进行转化,并明确各种形式中的一些几何量(斜率、截距等);2、过程与方法:⑴主动参与探究直线和二元一次方程关系的数学活动,通过观察、推理、探究获得直线方程的一般式。

⑵学会分类讨论及掌握讨论的分界点;3、情感、态度与价值观:体验数学发现和探索的历程,发展创新意识教学重点:直线方程一般式Ax+By+C=0(A、B不同时为0)的理解教学难点:⑴直线方程一般式Ax+By+C=0(A、B不同时为0)与二元一次方程关系的深入理解⑵直线方程一般式Ax+By+C=0(A、B不同时为0)的应用。

教学方法:引导探究法、讨论法教学过程:创设情境,引入新课:1、复习:写出前面学过的直线方程的各种不同形式,并指出其局限性:过点(x0,y0)与x轴垂直的直线可表示成x=x0,过点(x0,y0)与y轴垂直的直线可表示成y=y0。

2、问题:上述四种直线方程的表示形式都有其局限性,是否存在一种更为完美的代数形式可以表示平面中的所有直线?提示:上述四种形式的直线方程有何共同特征?能否整理成统一形式?(这些方程都是关于x、y的二元一次方程)猜测:直线和二元一次方程有着一定的关系。

新课探究:问题:(1).过点(2,1),斜率为2的直线的方程是y-1=2(x-2), (2).过点(2,1),斜率为0的直线方程是y=1,(3).过点(2,1),斜率不存在的直线的方程是x=2,思考1 :以上方程是否都可以用Ax+By+C=0表示?任意一条直线是否都可以用二元一次方程Ax+By+C=0(A、B不同时为0)来表示?答:2x-y-3=0 y-1=0 x-2=0在平面直角坐标系中,每一条直线有斜率k存在和k不存在两种情况下,直线方程可分别写为y kx b=+和1=两种形式,它们x x又都可以变形为Ax+By+C=0(A、B不同时为0)的形式,即:直线Ax+By+C=0(A、B不同时为0)【结论:】在平面直角坐标系中,任意一条直线都可以用二元一次方程Ax+By+C=0(A、B不同时为0)来表示。

直线的一般式方程参考教案

直线的一般式方程参考教案

3.2.3 直线的一般式方程【学习目标】1.明确直线方程一般式的形式特征;2.会把直线方程的一般式化为斜截式,进而求斜率和截距;3.会把直线方程的点斜式、两点式化为一般式. 【自主学习】一、基础知识1.直线与二元一次方程的关系(1)在平面直角坐标系中,对于任何一条直线,都可以用一个关于x,y的_____________表示;(2)每个关于x,y的二元一次方程都表示为_________________.2.直线的一般方程把关于x,y的二元一次方程_____________叫做直线的一般..式.方程..,简称一般式...,其中系数A、B满足____________.二、辨析应用1.初步运用(1)根据下列各条件写出直线的方程,并且化成一般式:①斜率是–12,经过点A( 8, -2 ) ;②经过点B (4, 2) ,平行于x 轴;③在x 轴和y 轴上的截距分别是 3 , - 3 2;④经过两点P1(3,-2), P2(5,- 4) .(2)已知直线5x+4y+20=0,则此直线在x轴上的截距是______,在y轴上的截距是______.2.概念辨析在方程Ax + By + C = 0 中,A, B, C 为何值时,方程表示的直线:①平行于x 轴;②平行于y 轴;③与x 轴重合;④与y 重合.【典例精析】例1.设A、B 是x 轴上的两点,点P 的横坐标为2,且|PA|=|PB|,若直线PA的方程为x - y +1 =0 ,求直线PB 的方程.例2.a为何值时,直线(a-1)x-2y+4=0与x-ay-1=0,(1)平行;(2)垂直.例3.光线经过点P(2,3)射到直线x+y+1=0上,反射后经过Q(1,1)点,求反射线所在的直线方程.【当堂检测】1.直线x+my-n=0的倾斜角为120°,则m=___.2.已知斜率为12的直线与直线ax+y+1=0垂直,则a=______.3.直线l1:x+my+6=0和直线l2:(m-2)x+3y+2m=0,试分别求满足下列条件的实数m的值:(1)l1⊥l2;(2)l1∥l2(3)l1与l2重合.【总结提升】已知两直线l1:A1x+B1y+C1=0, l2:A1x+B1y+C1=0,则①l1∥l2的条件是_______________________;②l1⊥l2的条件是_________________________.【巩固练习】基础训练(24)。

直线方程的一般式教案

直线方程的一般式教案

在教学的过程中,教师要想方设法调动学生的积极情感如自尊、自信、动机、愉快、惊喜等,要让学生积极主动地参与到教学活动中,通过学生探索、研究、交流、讨论、总结归纳出所学内容,有利于学生保待愉快的学习心理状态,有利于形成学生良好的学习行为。

以下是我的一个教学设计,请各位评论。

课题:(人教A版必修2)3.2.3 《直线的一般式方程》教学目标知识与技能明确直线方程一般式的形式特征;理解直线方程几种形式之间的内在联系,能在整体上把握直线的方程,掌握直线方程程各种形式之间的相互转化。

过程与方法通过直线方程一般式的教学,培养学生全面、系统、周密地分类讨论问题的水平.情感态度与价值观通过直线方程特殊式与一般式转化的教学,培养学生灵活的思维品质和辩证唯物主义观点。

渗透分类类讨论的数学思想。

重点与难点重点直线方程的一般式。

难点对直线方程一般式的理解与应用。

教学过程一、直线的一般式方程的探究。

问题1:说出过点(2,1),斜率为1的直线的方程,并观察方程属于哪一类,为什么?问题2:当直线的倾斜角为或时,说出它们的方程,并观察方程是不是二元一次方程,为什么?[师生活动]生:直线的方程为,属于二元一次方程,因为未知数有两个,它们的最高次数为一次。

生:倾斜角的直线可表示成,倾斜角为的直线可表示为(下面观察是不是二元一次方程可能有一定困难,可提示观察系数)方程可看作是关于的二元一次方程,其中的系数是0。

方程可看作关于的二元一次方程,其中的系数为0。

教师进一步指出,在平面直角坐标系中,每一条直线都有倾斜角,当时,直线方程可写成点斜式。

当时,直线可表示为的形式。

根据我们的讨论,上面两种情形得到的方程均可看成是二元一次方程。

在平面直角坐标系中,对于任何一条直线,都能够用一个关于的二元一次方程方程表示。

这样课本第97页的思考(1)就解决了。

2.用到的数学思想方法。

五、布置作业课本第101页B组第1题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

张喜林制
3. 2.3 直线的一般式方程
【教学目标】
(1)明确直线方程一般式的形式特征;
(2)会把直线方程的一般式化为斜截式,进而求斜率和截距; (3)会把直线方程的点斜式、两点式化为一般式。

【教学重难点】
重点:直线方程的一般式。

难点:对直线方程一般式的理解与应用。

【教学过程】
(一)情景导入、展示目标。

1.直线方程有几种形式?指明它们的条件及应用范围.
点斜式:已知直线上一点P1(x1,y1)的坐标,和直线的斜率k ,则直线的方程是
斜截式:已知直线的斜率k ,和直线在y 轴上的截距b 则直线方程是
两点式:已知直线上两点P1(x1,y1),P2(x2,y2
截距式:已知直线在X 轴Y 轴上的截距为a ,b ,
则直线的方程是
2.直线的方程都可以写成关于,x y 的二元一次方程吗?反过来,二元一次方程都表示直线?
提示:讨论直线的斜率是否存在。

直线l 经过点P 0(x 0,y 0),斜率为k ,则直线的方程为:)(00x x k y y -=-① 当直线l 的倾斜角为90°时,直线的方程为x -x 0=0 ②
(二)预习检查、总结疑惑
任意一个二元一次方程:Ax +By +C =0(A ,B 不同时为0)是否表示一条直线? 当B ≠0时,上述方程可变形为:B
C x B A y --= 它表示过点(0,B C -
)斜率为B
A
-的直线。

)(11x x k y y -=-b kx y +=1
21121x x x
x y y y y --=--1=+b
y a x
当B =0时,是一条平行于y 轴的直线。

由上述可知,关于x ,y 的二元一次方程,它表示一条直线。

我们把关于x ,y 的二元一次方程Ax +By +C =0(A ,B 不同时为0)叫做直线的一般式方程,简称一般式(general form )。

(三)合作探究、精讲点拨。

探究一:方程Ax +By +C =0中,A ,B ,C 为何值时,方程表示直线:(1)平行于x 轴;(2)平行于y 轴;(3)与x 轴重合;(4)与y 轴重合。

探究二:直线与二元一次方程具有什么样的关系?
答: 直线与二元一次方程是一对多的对应,同一条直线对应的多个二元一次方程是同解方程
探究三:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?
直线的一般式方程能够表示平面上的所有直线,而点斜式、斜截式、两点式方程,都不能表示与x 轴垂直的直线。

例1.已知直线经过点(6,4),斜率为4
3
,求直线的点斜式和一般式方程. 分析:直接用点斜式写出,然后化简。

解:所求的直线方程为: y +4=-
3
4
(x -6),化为一般式: 4x +3y -12=0。

点评:对刚学的知识进行检验。

变式:
求经过A (3,-2)B (5,-4)的直线方程,化为一般式。

例2、把直线l 的一般式方程x -2y +6=0化成斜截式,求出直线l 的斜率以及它 在x 轴与y 轴上的截距,并画出图形。

分析:对式子变形,考察对截距的理解。

解:将直线l 的一般式方程化成斜截式: y =
2
1
x +3 因此,直线的斜率为k =
2
1
,它在y 轴上的截距为3。

在直线方程x -2y +6=0中,令y =0,得
x=-6
过两点可以画一条直线,就是直线l 的图形。

直线与x轴、y轴的交点分别为A(-6,0),B(0,3)
直线在x轴上的截距为-6。

点评:考察对截距的理解,对式子进行变形,然后描点连续。

变式:已知直线l 经过点(-2,2)且与两坐标轴围成单位面积的三角形,求该直线的方程。

㈣反馈测试
导学案当堂检测
㈤总结反思、共同提高
【板书设计】
一.直线的一般式方程
定义
形式
二.探究问题
三、例题
例1
变式1
例2
变式爬黑板
【作业布置】
导学案课后练习与提高
2
C
AB
3.2.3 直线的一般式方程
课前预习学案
一、预习目标
通过预习同学们知道直线的方程都可以写成关于,x y的二元一次方程吗?反过来,二元一次方程都表示直线?
二、预习内容
1.直线方程有几种形式?指明它们的条件及应用范围.
2.直线的方程都可以写成关于,x y的二元一次方程吗?反过来,二元一次方程都表示直线?
提示:讨论直线的斜率是否存在。

3.任意一个二元一次方程:Ax+By+C=0(A,B不同时为0)是否表示一条直线?
疑惑点疑惑内容
课内探究学案
一、学习目标:
(1)明确直线方程一般式的形式特征;
(2)会把直线方程的一般式化为斜截式,进而求斜率和截距;
(3)会把直线方程的点斜式、两点式化为一般式。

学习重点:直线方程的一般式。

学习难点:对直线方程一般式的理解与应用。

二、学习过程
探究一:方程Ax+By+C=0中,A,B,C为何值时,方程表示直线:(1)平行于x轴;
(2)平行于y轴;(3)与x轴重合;(4)与y轴重合。

探究二:直线与二元一次方程具有什么样的关系?
答:
探究三:直线方程的一般式与其他几种形式的直线方程相比,它有什么优点?
例1.已知直线经过点(6,4),斜率为
4
3
,求直线的点斜式和一般式方程.
分析:直接用点斜式写出,然后化简。


变式:
求经过A(3,-2)B(5,-4)的直线方程,化为一般式。

例2、把直线l的一般式方程x-2y+6=0化成斜截式,求出直线l的斜率以及它
在x轴与y轴上的截距,并画出图形。

分析:对式子变形,考察对截距的理解。

变式:已知直线l经过点(-2,2)且与两坐标轴围成单位面积的三角形,求该直线的方程。

反思总结
二元一次方程的每一组解都可以看与平面直角坐标系中一个点的坐标,这个方程的全体解组的集合,就是坐标满足二元一次方程的体点的集合,这些点的集合组成了一条直线。

平面直角坐标系就是把方程和曲线连起的桥梁。

我们已经学习了直线的一般式方程,那么,直线方程之间的区别与联系是什么?关键是理解方程和直线之间的关系。

当堂检测
1、若直线(2m2-5m-3)x-(m2-9)y+4=0的倾斜角为45度,则m 的值是 ( ) (A )3 (B ) 2 (C )-2 (D )2与3
2、若直线(m+2)x+(2-m)y=2m 在x 轴上的截距为3,则m 的值是________
答案B -6
课后练习与提高
1.若直线0=++C By Ax 通过第二、三、四象限,则系数A 、B 、C 满足条件( A ) (A)AB<0 C<0 (B)AC<0,BC>0 (C)C=0,AB<0 (D)A=0,BC<0
2. 直线Ax+By+C=0通过第一、二、三象限,则(C ) (A) A ·B>0,A ·C>0 (B) A ·B>0,A ·C<0 (C) A ·B<0,A ·C>0 (D) A ·B<0,A ·C<0
3. 设A 、B 是x 轴上的两点,点P 的横坐标为2,且│PA │=│PB │,若直线PA 的方程为x-y+1=0,则直线PB 的方程是(C ) A.2y-x-4=0 B.2x-y -1=0 C.x+y-5=0 D.2x+y-7=0
4.若直线l 在x 轴上的截距-4时,倾斜角的余弦值是-3/5, 则直线l 的点斜式方程是___________
直线l 的斜截式方程是___________
直线l 的一般式方程是___________
5.已知直线l 1:x-a y-1=0和l 2:a 2x+y+2=0,若l 1⊥l 2,求a 的值.
6.直线062
=++y m x 与直线023)2(=++-m my x m 没有公共点,
求实数m 的值。

34
3
4
3
26
22---m m m。

相关文档
最新文档