2017-2018学年高中数学必修三教材用书:模块综合检测一 含答案 精品

合集下载

2017-2018学年高中数学必修三阶段质量检测一 含答案

2017-2018学年高中数学必修三阶段质量检测一 含答案

阶段质量检测(一)(A 卷 学业水平达标) (时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分) 1.下列给出的赋值语句正确的有( ) ①2=A ; ②x +y =2; ③A -B =-2; ④A =A *AA .0个B .1个C .2个D .3个解析:选B 对于①,赋值语句中“=”左右不能互换,即不能给常量赋值,左边必须为变量,右边必须是表达式,若改写为A =2就正确了;②赋值语句不能给一个表达式赋值,所以②是错误的,同理③也是错误的,这四种说法中只有④是正确的.2.计算机执行下面的程序段后,输出的结果是( )a =1b =3a =a +b b =a -bPRINT a ,bA .1 3B .4 1C .0 0D .6 0解析:选B 输出a =1+3=4,b =4-3=1. 3.把二进制数10 110 011(2)化为十进制数为( ) A .182 B .181 C .180D .179解析:选D 10 110 011(2)=1×27+0×26+1×25+1×24+0×23+0×22+1×21+1×20=128+32+16+2+1=179.4.下图是计算函数y =⎩⎪⎨⎪⎧-x , x ≤-1,0, -1<x ≤2x 2, x >2的值的程序框图,则在①、②和③处应分别填入的是( )A.y=-x,y=0,y=x2B.y=-x,y=x2,y=0C.y=0,y=x2,y=-xD.y=0,y=-x,y=x2解析:选B当x>-1不成立时,y=-x,故①处应填“y=-x”;当x>-1成立时,若x>2,则y=x2,即②处应填“y=x2”,否则y=0,即③处应填“y=0”.5.下面的程序运行后的输出结果为()A.17 B.19C.21 D.23解析:选C第一次循环,i=3,S=9,i=2;第二次循环,i=4,S=11,i=3;第三次循环,i=5,S=13,i=4;第四次循环,i=6,S=15,i=5;第五次循环,i=7,S=17,i=6;第六次循环,i=8,S=19,i=7;第七次循环,i=9,S=21,i=8.此时i=8,不满足i<8,故退出循环,输出S=21,结束.6.下面的程序运行后,输出的值是( )i =0DOi =i +1LOOP UNTIL 2^i >2 000 i =i -1PRINT i ENDA .8B .9C .10D .11解析:选C 由题意知,此程序为循环语句,当i =10时,210=1 024;当i =11时,211=2 048>2 000,输出结果为i =11-1=10.7.下列程序框图运行后,输出的结果最小是( )A .2 015B .2 014C .64D .63解析:选D 由题图知,若使n (n +1)2>2 015,n 最小为63. 8.(全国甲卷)中国古代有计算多项式值的秦九韶算法,如图是实现该算法的程序框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5,则输出的s =( )A .7B .12C .17D .34解析:选C 第一次运算:s =0×2+2=2,k =1;第二次运算:s =2×2+2=6,k =2;第三次运算:s =6×2+5=17,k =3>2,结束循环,s =17.9.执行如图所示的程序框图,输出的结果为( )A .55B .89C .144D .233解析:选B 初始值:x =1,y =1,第1次循环:z =2,x =1,y =2;第2次循环:z =3,x =2,y =3;第3次循环:z =5,x =3,y =5;第4次循环:z =8,x =5,y =8;第5次循环:z =13,x =8,y =13;第6次循环:z =21,x =13,y =21;第7次循环:z =34,x =21,y =34;第8次循环:z =55,x =34,y =55;第9次循环:z =89,x =55,y =89;第10次循环时z =144,循环结束,输出y ,故输出的结果为89.10.(四川高考)秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求某多项式值的一个实例.若输入n ,x 的值分别为3,2,则输出v 的值为( )A .9B .18C .20D .35解析:选B 由程序框图知,初始值:n =3,x =2,v =1,i =2, 第一次循环:v =4,i =1; 第二次循环:v =9,i =0; 第三次循环:v =18,i =-1.结束循环,输出当前v 的值18.故选B .二、填空题(本大题共4小题,每小题5分,共20分) 11.459与357的最大公约数是________.解析:459=357×1+102,357=102×3+51,102=51×2,所以459与357的最大公约数为51.答案:5112.对任意非零实数a ,b ,若a ⊗b 的运算原理如图所示,则log 28⊗⎝⎛⎭⎫12-2=________.解析:log 28<⎝⎛⎭⎫12-2,由题图,知log 28⊗⎝⎛⎭⎫12-2=3⊗4=4-13=1. 答案:113.(山东高考)执行如图所示的程序框图,若输入的a ,b 的值分别为0和9,则输出的i 的值为________.解析:第1次循环:a =0+1=1,b =9-1=8,a <b ,此时i =2; 第2次循环:a =1+2=3,b =8-2=6,a <b ,此时i =3; 第3次循环:a =3+3=6,b =6-3=3,a >b ,输出i =3. 答案:314.(天津高考改编)阅读如图所示的程序框图,运行相应的程序,则输出S 的值为________.解析:S =4不满足S ≥6,S =2S =2×4=8,n =1+1=2;n =2不满足n >3,S =8满足S ≥6,则S =8-6=2,n =2+1=3; n =3不满足n >3,S =2不满足S ≥6,则S =2S =2×2=4, n =3+1=4;n =4满足n >3,输出S =4. 答案:4三、解答题(本大题共4小题,共50分.解答时应写出文字说明、证明过程或运算步骤.) 15.(本小题满分12分)如图是求1+12+13+…+1100的算法的程序框图.(1)标号①②处应分别是什么?(2)根据框图用“当”型循环语句编写程序. 解:(1)①k <101?(k <=100?) ②S =S +1k .(2)程序如下:16.(本小题满分12分)以下是一个用基本算法语句编写的程序,根据程序画出其相应的程序框图.解:算法语句每一步骤对应于程序框图的步骤,其框图如下:解:程序框图如图所示:(x1,y1),(x2,y2),…,(x n,y n).(1)若程序运行中输出的一个数组是(9,t),求t的值;(2)程序结束时,共输出(x,y)的组数为多少?(3)写出程序框图的程序语句.解:(1)由程序框图知:当x=1时,y=0;当x=3时,y=-2;当x=9时,y=-4,所以t=-4;(2)当n=1时,输出一对,当n=3时,又输出一对,…,当n=2 015时,输出最后一对,共输出(x,y)的组数为1 007;(3)程序框图的程序语句如下:(B卷能力素养提升)(时间90分钟,满分120分)一、选择题(本大题共10小题,每小题5分,共50分)1.算法的每一步都应该是确定的,能有效执行的,并且得到确定的结果,这是指算法的()A.有穷性B.确定性C.普遍性D.不唯一性答案:B2.已知函数y =⎩⎨⎧x ,x ≥0,x +1,x <0,输入自变量x 的值,输出对应的函数值.设计程序框图时,需用到的基本逻辑结构是( )A .顺序结构B .条件结构C .顺序结构、条件结构D .顺序结构、循环结构 答案:C3.用“辗转相除法”求得360和504的最大公约数是( ) A .72 B .36 C .24D .2520解析:选A 504=360×1+144,360=72×5+0,故最大公约数是72. 4.若十进制数26等于k 进制数32,则k 等于( ) A .4 B .5 C .6D .8解析:选D 由题意知,26=3×k 1+2,解得k =8.5.阅读下图所示的程序框图,运行相应的程序,输出的结果是( )A .3B .11C .38D .123解析:选B 根据框图可知第一步的运算为:a =1<10,满足条件,可以得到a =12+2=3,又因为a =3<10,满足条件,所以有a =32+2=11,因为a =11>10,不满足条件,输出结果a =11.6.对于下列算法:如果在运行时,输入2,那么输出的结果是()A.2,5 B.2,4C.2,3 D.2,9解析:选A本题主要考查条件语句的应用.输入a的值2,首先判断是否大于5,显然2不大于5,然后判断2与3的大小,显然2小于3,所以结果是b=5,因此结果应当输出2,5.7.根据下面的算法,可知输出的结果S为()第一步,i=1;第二步,判断i<10是否成立,若成立,则i=i+2,S=2i+3,重复第二步,否则执行下一步;第三步,输出S.A.19 B.21C.25 D.27解析:选C该算法的运行过程是:i=1,i=1<10成立,i=1+2=3,S=2×3+3=9,i=3<10成立,i=3+2=5,S=2×5+3=13,i=5<10成立,i=5+2=7,S=2×7+3=17,i=7<10成立,i=7+2=9,S=2×9+3=21,i=9<10成立,i=9+2=11,S=2×11+3=25,i=11<10不成立,输出S=25.8.按下列程序运行的结果是()A.10.5 B.11.5C.16 D.25解析:选D A=4.5,第一个条件结构中的条件不满足,则B=6-3=3,B=3+2=5;而第二个条件结构中的条件满足,则B=5×5=25,所以运行结果为25.9.如图是求x1,x2,…,x10的乘积S的程序框图,图中空白框中应填入的内容为()A.S=S*(n+1)B.S=S*x n+1C.S=S*nD.S=S*x n解析:选D由题意知,由于求乘积,故空白框中应填入S=S*x n.10.(全国卷Ⅱ)下边程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”.执行该程序框图,若输入的a,b分别为14,18,则输出的a=()A.0 B.2C.4 D.14解析:选B a=14,b=18.第一次循环:14≠18且14<18,b=18-14=4;第二次循环:14≠4且14>4,a=14-4=10;第三次循环:10≠4且10>4,a=10-4=6;第四次循环:6≠4且6>4,a=6-4=2;第五次循环:2≠4且2<4,b=4-2=2;第六次循环:a=b=2,跳出循环,输出a=2,故选B.二、填空题(本大题共4小题,每小题5分,共20分)11.将二进制数110 101(2)化成十进制数,结果为________,再转为七进制数,结果为________.解析:110 101=1×25+1×24+0×23+1×22+0×21+1=32+16+0+4+0+1=53.110 101(2)=104(7). 答案:53 104(7)12.如图所示,程序框图(算法流程图)的输出结果是________.解析:第一次进入循环体有T =0+0,第二次有T =0+1,第三次有T =0+1+2,……,第n 次有T =0+1+2+…+n -1(n =1,2,3,…),令T =n (n -1)2>105,解得n>15,故n =16,k =15.答案:1513.输入8,下列程序执行后输出的结果是________.解析:∵输入的数据为8,t ≤4不成立, ∴c =0.2+0.1(8-3)=0.7. 答案:0.714.执行如图所示的程序框图,若输入n 的值为4,则输出s 的值为________.解析:第1次循环:s =1+(1-1)=1,i =1+1=2;第2次循环:s =1+(2-1)=2,i =2+1=3;第3次循环:s =2+(3-1)=4,i =3+1=4;第4次循环:s =4+(4-1)=7,i =4+1=5.循环终止,输出s 的值为7.答案:7三、解答题(本大题共4小题,共50分.解答时应写出必要的文字说明、证明过程或演算步骤)15.(本小题满分12分)阅读下列两个程序,回答问题. ①x =3 y =4 x =y PRINT x ,y END(1)上述两个程序的运行结果是:①________________;②_____________________________________________. (2)上述两个程序中的第三行有什么区别? 解:(1)两个程序的运行结果是①4 4;②3 3;(2)程序①中的x =y 是将y 的值4赋给x ,赋值后,x 的值变为4,程序②中的y =x 是将x 的值3赋给y ,赋值后y 的值变为3.16.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.解:f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789,②x=3 y =4 y =x PRINT x ,yENDv 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3+0=21 324, ∴f (3)=21 324.17.(本小题满分12分)在音乐唱片超市里,每张唱片售价25元,顾客购买5张(含5张)以上但不足10张唱片,则按九折收费,顾客购买10张以上(含10张)唱片,则按八五折收费,编写程序,输入顾客购买唱片的数量a ,输出顾客要缴纳的金额C .并画出程序框图.解:由题意得C =⎩⎪⎨⎪⎧25a ,a <5,22.5a ,5≤a <10,21.25a ,a ≥10.程序框图,如图所示:程序如下:18.(本小题满分14分)设计一个算法,求f(x)=x 6+x 5+x 4+x 3+x 2+x +1,当x =2时的函数值,要求画出程序框图,并写出程序.解:则程序框图为:程序为:S=0i=0WHILE i≤6S=S+2^ii=i+1WENDPRINT SEND。

2017-2018学年高中数学人教A版必修三课时作业:模块综合 测试卷

2017-2018学年高中数学人教A版必修三课时作业:模块综合 测试卷

A.A=x2-1=(x-1)(x+1)B.55=AC.A=A*A+A-3D.4=2×2-3=1答案:C解析:赋值语句的表达式“变量=表达式”,故C正确.2.用秦九韶算法求n次多项式f(x)=a n x n+a n-1x n-1+…+a1x+答案:D解析:由⎩⎪⎨⎪⎧ x +y =4,x 2+y 2=10,得⎩⎪⎨⎪⎧ x =3,y =1,或⎩⎪⎨⎪⎧x =1,y =3.所以这个样本为1,1,3,5.平均数为1+1+3+54=2.5, 标准差为解析:满足条件的点在半径为a 的18球内,所以所求概率为p =18×43πa 3a 3=π6,选D.9.阅读如图所示的程序框图,运行相应的程序,则输出i 的值为( )因为该程序框图执行4次后结束,所以输出的名学生,其中30名男生和问了该班五名男生和五名女生在某次数学测试中的成绩,五名男生成绩的方差为s21=15(16+16+4+4+0)=8,五名女生成绩的方差为s22=15(9+4+4+9+4)=6,显然,五名男生成绩的方差大于五名女生成绩的方差.D,由于五名男生和五名女生的成绩无代表性,不能确定该班男生和女生的平均成绩.13.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,先将800袋牛奶按000,001,…,799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号________.(下面摘取了随机数表第7行至第9行)84 42 17 53 3157 24 55 06 8877 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 5916 95 55 67 1998 10 50 71 7512 86 73 58 07.如下图所示的框图表示算法的功能是2+23+…+264天中每天加工零件的个数用茎叶图表示如中间一列的数字表示零件个数的十位数,甲的平均数为:23+21+20+35+31+3110乙的平均数为:19+17+11+21+24+22+24+30+32+3010=23.16.执行如图所示的程序框图,若P=0.8,则输出的n=________.三、解答题:本大题共6小题,共70分.解答应写出文字说明、为了对某课题进行研究,用分层抽样的方法从三所高的相关人员中,抽取若干人组成研究小组,有关数据如高校相关人数抽取人数A 18xB 36 2C 54y抽取的人中选2人作专题发言,18.(12分)某工厂甲、乙两个车间包装同一种产品,在自动包装传送带上每隔30分钟抽一包产品,称其重量是否合格,分析记录抽查数据如下:甲车间:102,101,99,98,103,98,99;乙车间:110,115,90,85,75,115,110.(1)这是什么抽样方法?(2)估计甲、乙两个车间的均值和方差,并说明哪个车间产品较稳定?有一容量为50的样本,数据的分组及各组的频数如5;[20,25),10;[25,30)[35,40),8;[40,45],3.(1)列出样本的频率分布表;(2)画出频率分布直方图和频率分布折线图;(3)估计总体在[20,35)之内的概率.解:(1)样本频率分布表:分组频数频率[10,15)44 50[15,20)51 10[20,25)101 5[25,30)1111 50[30,35)99 50[35,40)84 25[40,45]33 50频率分布直方图与折线图如下:则b =∑i =1n(x i -x )2=1020=0.5,a =y -b x =0.4.∴年推销金额y 关于工作年限x 的线性回归方程为y^=0.5x +0.4. (2)由(1)可知,当x =11时,y^=0.5x +0.4=0.5×11+0.4=5.9(万。

2017-2018学年高中数学三教材用书:模块综合检测(一)含答案

2017-2018学年高中数学三教材用书:模块综合检测(一)含答案

模块综合检测(一)(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题6分,共60分)1.算法的三种基本结构是( )A.顺序结构、模块结构、条件结构B.顺序结构、循环结构、模块结构C.顺序结构、条件结构、循环结构D.选择结构、条件结构、循环结构答案:C2.一个射手进行射击,记事件E1:“脱靶”,E2:“中靶”,E3:“中靶环数大于4",E4:“中靶环数不小于5",则在上述事件中,互斥而不对立的事件共有( )A.1对B.2对C.3对D.4对解析:选B E1与E3,E1与E4均为互斥而不对立的事件.3.在20袋牛奶中,有3袋已过了保质期,从中任取一袋,取到已过保质期的牛奶的概率为()A.错误!B.错误!C。

错误!D.错误!答案:C4。

在如图所示的“茎叶图”表示的数据中,众数和中位数分别为()A.23与26B.31与26C.24与30D.26与30答案:B5.(课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为()A。

错误!B.错误!C。

23D.错误!解析:选A 记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3",共9个.记事件A为“甲、乙两位同学参加同一个兴趣小组”,其中事件A有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P(A)=错误!=错误!.6.(陕西高考)对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图. 根据标准,产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品, 在区间[10,15)和[30,35]上为三等品. 用频率估计概率,现从该批产品中随机抽取1件,则其为二等品的概率是()A.0.09 B.0.20C.0。

【新课标-精品卷】2018年最新北师大版高中数学必修三模块过关测试卷及答案解析

【新课标-精品卷】2018年最新北师大版高中数学必修三模块过关测试卷及答案解析

2017-2018学年(新课标)北师大版高中数学必修三必修3模块过关测试卷(150分,120分钟)一、选择题(每题5分,共40分)1. 完成下列两项调查:①一项对“小彩旗春晚连转四小时”的调查中有10 000人认为这是成为优秀演员的必经之路,有9 000人认为太残酷,有1 000人认为无所谓.现要从中随机抽取200人做进一步调查.②从某中学的15名艺术特长生中选出3名调查学习负担情况,宜采用的抽样方法依次是()A.①简单随机抽样,②系统抽样B.①分层抽样,②简单随机抽样C.①系统抽样,②分层抽样D.①②都用分层抽样2.〈陕西期末考〉容量为100的样本数据,按从小到大的顺序分为8组,如下表:组号 1 2 3 4 5 6 7 8频数10 13 x 14 15 13 12 9第三组的频数和频率分别是( )A.14和0.14 B.0.14和14 C.114和0.14 D.13和114图1 图23.〈福建质量检查文科〉如图1,面积为4的矩形ABCD中有一个阴影部分,若往矩形ABCD中随机投掷1 000个点,落在矩形ABCD的非阴影部分中的点数为400个,试估计阴影部分的面积为()A.2.2 B.2.4 C.2.6 D.2.8 4.〈河南十所名校联考〉某学生在一门功课的22次考试中,所得分数如图2所示,则此学生该门功课考试分数的极差与中位数之和为( )A.117 B.118 C.118.5 D.119.55.〈福建模拟〉为了解一片速生林的生长情况,随机测量了其中100株树木的底部周长(单位:cm).根据所得数据画出样本的频率分布直方图如图3所示,那么在这100株树木中,底部周长大于110 cm的株数是()图3A.70 B.60 C.30 D.80 6.〈泰安一模〉某射手在一次训练中五次射击的成绩(单位:环)分别为9.4,9.4,9.4,9.6,9.7,则该射手成绩的方差是()A.0.127 B.0.016 C.0.08 D.0.2167.〈易错题,河南中原名校联考〉如图4所示,现有一迷失方向的小青蛙在3处,它每跳动一次可以等可能地进入相邻的任意一格(若它在5处,跳动一次,只能进入3处,若在3处,则跳动一次可以等机会进入1,2,4,5处),则它在第三次跳动后,首次进入5处的概率是()图4A.12B.14C.316D.168.〈福建普通高中质量检测〉某车间加工零件的数量x与加工时间y的统计数据如下表:零件数x(个)10 20 30加工时间y(分钟)21 31 39现已求得上表数据的线性回归方程y=bx+a中的b值为0.9,则据此回归模型可以预测,加工100个零件所需要的加工时间约为()A.84分钟B.94分钟C.102分钟D.112分钟二、填空题(每题5分,共30分)9.〈吉林一中月考〉在如图5所示的程序框图中,输入N=40,按程序运行后输出的结果是 .图510.〈江苏月考〉据如图6所示的伪代码,最后输出的i的值为 . T=1i=3DoT=T+ii=i+2Loop While T<10输出i图611.〈安徽屯溪一中质量检测〉为了了解“预防禽流感疫苗”的使用情况,某市卫生部门对本地区9月份至11月份注射疫苗的所有养鸡场进行了调查,根据如图7中的图表提供的信息,可以得出这三个月本地区每月注射了疫苗的鸡的数量平均为 万只.图712.〈江苏涟水中学期末考〉在随机抛掷一颗骰子一次的试验中,事件A 表示“出现不大于4的偶数点”,事件B 表示“出现小于4的点数”,则事件(A +B )发生的概率为 .13.〈山东期末考〉阅读如图8所示的程序框图,若输出y 的值为0,则输入x 的值为 .图814.〈齐齐哈尔二模〉已知函数f (x )=x 2+bx +c ,其中0≤b ≤4,0≤c ≤4,记月份 养鸡场(个数) 9 20 1050 11100事件A为“函数f(x)满足条件:()()21211ff≤-≤⎧⎪⎨⎪⎩,,”则事件A发生的概率为 .三、解答题(19、20题每题14分,其余每题13分,共80分)15.〈福建四地七校模拟〉某校从参加市联考的甲、乙两班数学成绩在110分以上的同学中各随机抽取8人,将这16人的数学成绩编成如图9所示的茎叶图.(1)茎叶图中有一个数据污损不清(用△表示),若甲班抽出来的同学平均成绩为122分,试推算这个污损的数据是多少?(2)现要从成绩在130分以上的5位同学中选2位做数学学习方法介绍,请将所有可能的结果列举出来,并求选出的两位同学不在同一个班的概率.图916.〈河南十所名校联考〉一河南旅游团到安徽旅游.看到安徽有很多特色食品,其中水果类较有名气的有:怀远石榴、砀山梨、徽州青枣等19种,点心类较有名气的有:一品玉带糕、徽墨酥、八公山大救驾等38种,小吃类较有名气的有:符离集烧鸡、无为熏鸭、合肥龙虾等57种.该旅游团的游客决定按分层抽样的方法从这些特产中买6种带给亲朋品尝.(1)求应从水果类、点心类、小吃类中分别买回的种数;(2)若某游客从买回的6种特产中随机抽取2种送给自己的父母,①列出所有可能的抽取结果;②求抽取的2种特产均为小吃的概率.17.〈南昌二中月考〉如图10所示的算法框图.图10根据框图分别利用For语句和Do Loop语句写出算法程序.18.〈牡丹江一中期末考〉已知某池塘养殖着鲤鱼和鲫鱼,为了估计这两种鱼的数量,养殖者从池塘中捕出两种鱼各1 000条,给每条鱼做上不影响其存活的标记,然后放回池塘,待完全混合后,再每次从池塘中随机地捕出1 000条鱼,记录下其中有记号的鱼的数目,立即放回池塘中.这样的记录做了10次,并将记录获取的数据做成茎叶图如图11所示.图11(1)根据茎叶图计算每次捕出的有记号的鲤鱼和鲫鱼数目的平均数,并估计池塘中的鲤鱼和鲫鱼的数量;(2)为了估计池塘中鱼的总质量,现从中按照(1)的比例对100条鱼进行称重,根据称重鱼的质量介于(0,4.5](单位:千克)之间,将测量结果按如下方式分成九组:第一组[0,0.5),第二组[0.5,1),…,第九组[4,4.5].如图12所示是按上述分组方法得到的频率分布直方图的一部分.图12①估计池塘中鱼的质量在3千克以上(含3千克)的条数;②若第二组、第三组、第四组鱼的条数依次成公差为7的等差数列,请将频率分布直方图补充完整;③在②的条件下估计池塘中鱼的质量的众数、中位数及估计池塘中鱼的总质量.19.〈黑龙江哈四中月考〉某连锁经营公司所属5个零售店某月的销售额和利润额资料如下表:商店名称A B C D E销售额x(千万3 5 6 7 9元)利润额y(百万2 3 3 4 5元)(1)画出散点图;(2)用最小二乘法计算利润额y对销售额x的线性回归方程;(3)当销售额为4(千万元)时,估计利润额的大小.20.如图13所示的茎叶图是青年歌手电视大奖赛中7位评委给参加最后决赛的两位选手甲、乙评定的成绩,程序框图(如图14)用来编写程序统计每位选手的成绩(各评委所给有效分数的平均值).图13试回答下列问题:(1)根据茎叶图,乙选手的成绩中,中位数和众数分别是多少?(2)在程序框图中,用k表示评委人数,用a表示选手的最后成绩(各评委所给有效分数的平均值),那么图14中①②处应填什么?(3)根据程序框图,甲、乙的最后成绩分别是多少?(4)从甲、乙的有效分数中各取一个分数分别记作x,y,若甲、乙的最后成绩分别是a,b,求“|x-a|≤1且|y-b|≤1”的概率.图14参考答案及点拨一、1. B 点拨:根据题意,由于①意见差异比较大,故选择分层抽样,对于②总体较少,则可知抽样方法为简单随机抽样,故答案为B.2. A 点拨:由频数和为总数,构建方程,求得x后再求解.根据表格可知,10+13+x+14+15+13+12+9=100,解得x=14,因此频率为0.14,故答案为A.3. B 点拨:向矩形ABCD内随机投掷1 000个点,相当于1 000个点均匀分布在矩形内,而有400个点落在非阴影部分,可知落入阴影部分的点数为600,所以,阴影部分的面积=600×4=2.4.故选B.1 0004. B 学科思想:由数形结合思想,从茎叶图中还原出数据后,利用相关定义求解.由茎叶图可知,最小值为56,最大值为98,故极差为42,又从小到大排列,排在第11,12位的数为76,76,所以中位数为76,所以极差和中位数之和为42+76=118.5.C 点拨:利用数形结合思想,由频率分布直方图得到周长大于110 cm 的频率后求解.底部周长小于或等于110 cm的频率是(0.04+0.02+0.01)×10=0.7,所以,底部周长大于110 cm的频率为1-0.7=0.3,故底部周长大于110 cm的株数是30,选C.×6. B 点拨:∵该射手在一次训练中五次射击的成绩的平均值x=15 (9.4+9.4+9.4+9.6+9.7)=9.5,∴该射手成绩的方差s2=1×[(9.4-9.5)2×53+(9.6-9.5)2+(9.7-9.5)2]=0.016.7. C 点拨:按规则,小青蛙跳动一次,可能的结果共有4种,跳动三次,可能的结果有16种,而三次跳动后首次跳到5的只有3种可能(3-1-3-5,3-2-3-5,3-4-3-5),所以,它在第三次跳动后,首次进入5处的概率是316,故选C.此题容易忽视“首次”,误认为可以3-5-3-5,得到答案B而致错.8. C二、9. 10510. 9 点拨:第一次循环时,T=1+3,i=5;第二次循环时,T=1+3+5,i=7,第三次循环时,T=1+3+5+7,i=9,结束循环,输出i的值为9.11. 90 点拨:9月份注射疫苗的鸡的数量是20×1=20(万只),10月份注射疫苗的鸡的数量是50×2=100(万只),11月份注射疫苗的鸡的数量是100×1.5=150(万只),这三个月本地区平均每月注射了疫苗的鸡的数量为201001503++=90(万只).12.23点拨:∵事件B表示“出现小于4的点数”,∴B的对立事件是“出现大于或等于4的点数”,∴表示的事件为出现点数为4,5,6,∵事件A表示“出现不大于4的偶数点”,它包含的事件是出现点数为2和4,故得到所求概率值为23.13.0或2 学科思想:本题利用了分类讨论思想,按x>1,x=1,x<1分类,建立方程,利用方程思想求解.当x<1时,若y=0,则x=0;当x>1时,若y=0,则x2-4x+4=0⇒x=2.故答案为:0或2.14. 13学科思想:利用数形结合思想,在平面直角坐标系中画出图形求解,由()2121)1(ff≤≤⎧⎪⎨⎪⎩,-得4212,11,b cb c++≤+≤⎧⎨⎩-再由0≤≤b≤4,0≤c≤4画出图形,如答图1,事件A发生的概率即答图1为图中阴影三角形面积与边长为4的正方形面积的比,P (A )=8124344⨯⨯⨯ =13. 三、15. 解析:(1)根据平均数概念,求出污损不清的数字;(2)列举出所有结果,套用古典概型概率公式求解.解:(1)设污损不清的数字为x ,由平均数的概念得11031203130222807138x ⨯+⨯+⨯++++++++=122,解得x =3.(2)依据题意,甲班130分以上的有2人,编号为A ,B ,乙班130分以上的有3人,编号为c 、d 、e ,从5位同学中任选2位,所有的情况列举如下:AB ,Ac ,Ad ,Ae ,Bc ,Bd ,Be ,cd ,ce ,de ,共10种结果,其中两位同学不在同一班的有Ac ,Ad ,Ae ,Bc ,Bd ,Be ,共6种,所以所求概率为610=35. 16. 解析:(1)利用分层抽样的规则,按比例抽取;(2)利用古典概型概率公式即可求得:①先用字母分别表示各种小吃和点心,水果,再依次列举,②先把包含的基本事件列出来,再利用公式求解即可.解:(1)因为19+38+57=114(种),所以从水果类、点心类、小吃类中分别抽取的种数为19114×6=1,38114×6=2,57114×6=3.所以应从水果类、点心类、小吃类中分别买回的种数为1,2,3.(2)①在买回的6种特产中,3种特色小吃分别记为A 1,A 2,A 3,2种点心分别记为a ,b ,水果记为甲,则抽取的2种特产的所有可能情况为(A 1,A 2),(A 1,A 3),(A 1,a ),(A 1,b ),(A 1,甲),(A 2,A 3),(A 2,a ),(A 2,b ),(A 2,甲),(A 3,a ),(A 3,b ),(A 3,甲),(a ,b ),(a ,甲),(b ,甲),共15种.②记从买回的6种特产中抽取2种均为小吃为事件B ,则事件B 的所有可能结果为(A 1,A 2),(A 1,A 3),(A 2,A 3),共3种,所以P (B )=315=15. 17.解:用For语句描述算法为:a=1S=0For i=1 To 2 010S=S+aa=2a+1Next输出S用Do Loop语句描述算法为:a=1S=0i=1DoS=S+aa=2a+1i=i+1Loop While i 2 010输出S18. 解:(1)根据茎叶图可知,每次捕出的有记号的鲤鱼与鲫鱼的平均数目为80条,20条,估计鲤鱼数目为16 000条,鲫鱼数目为4 000条.(2)①根据题意,结合直方图可知,估计池塘中鱼的重量在3千克以上(含3千克)的条数为2 400条.②将频率分布直方图补充完整如答图2.答图2③易得众数为2.25千克,中位数约为2.02千克,平均数约为2.02千克,所以估计鱼的总重量为2.02×20 000=40 400(千克). 19. 解:(1)略.(2)设线性回归方程是:y =bx +a ,易得y =3.4,x =6;∴b =121()()niii nii x x y y x x ==∑∑--(-)=()()()3 1.410.410.63 1.69119⨯+⨯+⨯+⨯+++----=1020=12,a =0.4,∴y 对x 的线性回归方程为:y =0.5x +0.4.(3)当销售额为4(千万元)时,利润额约为:y =0.5×4+0.4=2.4(百万元). 20. 解:(1)乙选手的成绩的中位数和众数分别是84,84. (2)①k >7;②a =15S . (3)x 甲=78+84+85+85+885=84, x 乙=84+84+84+86+875=85,所以甲、乙的最后成绩分别是84分, 85分.(4)记“|x-a|≤1且|y-b|≤1”为事件A.甲的有效分数为78,84,85,85,88,乙的有效分数是84,84,84,86,87,从中各取一个分数有5×5=25(种).方法,其中满足条件的有3×4=12(种),故P(A)=1225。

高中数学 模块综合测评1(含解析)新人教B版必修第三册-新人教B版高一必修第三册数学试题

高中数学 模块综合测评1(含解析)新人教B版必修第三册-新人教B版高一必修第三册数学试题

模块综合测评(一)(时间:120分钟 满分:150分)一、单项选择题(本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知角α的终边过点P (-4m,3m )(m ≠0),则2sin α+cos α的值是( ) A .1或-1 B .25或-25C .1或-25D .-1或25B [当m >0时,2sin α+cos α=2×35+⎝⎛⎭⎫-45=25; 当m <0时,2sin α+cos α=2×⎝⎛⎭⎫-35+45=-25.] 2.已知向量a =(cos 75°,sin 75°),b =(cos 15°,sin 15°),则|a -b |的值为( ) A .12B .1C .2D .3B [如图,将向量a ,b 的起点都移到原点,即a =OA →,b =OB →,则|a -b |=|BA →|且∠xOA =75°,∠xOB =15°,于是∠AOB =60°,又因|a |=|b |=1,则△AOB 为正三角形,从而|BA →|=|a -b |=1.]3.函数f (x )=sin(2x +φ)(0<φ<π)的图像如图所示,为了得到g (x )=sin 2x 的图像,可将f (x )的图像( )A .向右平移π6个单位B .向右平移π12个单位C .向左平移π12个单位D .向左平移π6个单位A [因为f (x )=sin(2x +φ)(0<φ<π),函数图像过点⎝⎛⎭⎫7π12,-1,所以-1=sin ⎝⎛⎭⎫7π6+φ⇒φ=π3, 因此函数f (x )=sin ⎝⎛⎭⎫2x +π3的图像向右平移π6个单位得到函数g (x )=sin 2x 的图像,故选A .] 4.已知函数f (x )=(1+cos 2x )sin 2x ,x ∈R ,则f (x )是( ) A .最小正周期为π的奇函数 B .最小正周期为π2 的奇函数C .最小正周期为π的偶函数D .最小正周期为π2的偶函数D [f (x )=(1+cos 2x )1-cos 2x 2=12(1-cos 22x )=12-12×1+cos 4x 2=14-14cos 4x ,所以T =2π4=π2,f (-x )=f (x ),故选D .]5.如图所示是曾经在召开的国际数学家大会的会标,它是由4个相同的直角三角形与中间的小正方形拼成的一大正方形,若直角三角形中较小的锐角为θ,大正方形的面积是1,小正方形的面积是125,则sin 2θ-cos 2θ的值等于( )A .1B .-2425C .725D .-725D [依题意可知拼图中的每个直角三角形的长直角边长cos θ,短直角边为sin θ,小正方形的边长为cos θ-sin θ,因小正方形的面积是125,即(cos θ-sin θ)2=125,得cos θ=45,sin θ=35.即sin 2θ-cos 2θ=-725.]6.已知|p |=22,|q |=3,p ,q 的夹角为π4,如图,若AB →=5p +2q ,AC →=p -3q ,D 为BC的中点,则|AD →|为( )A .152B .152C .7D .18A [因为AD →=12(AC →+AB →)=12(6p -q ),所以|AD →|=|AD →|2=12(6p -q )2=1236p 2-12p·q +q 2=1236×(22)2-12×22×3×cos π4+32=152.]7.已知函数f (x )=sin ⎝⎛⎭⎫ωx +π3(ω>0)的最小正周期为π,则该函数的图像( ) A .关于点⎝⎛⎭⎫π12,0对称 B .关于点⎝⎛⎭⎫π6,0对称 C .关于直线x =π12对称D .关于直线x =π3对称C [因为T =2πω=π,所以ω=2,于是f (x )=sin ⎝⎛⎭⎫2x +π3,因为f (x )在对称轴上取到最值, 所以f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3=1≠0,A 不对; f ⎝⎛⎭⎫π6=sin ⎝⎛⎭⎫2×π6+π3≠0,B 不对;又因为f ⎝⎛⎭⎫π12=sin ⎝⎛⎭⎫2×π12+π3=1,C 符合题意;f ⎝⎛⎭⎫π3=sin ⎝⎛⎭⎫2×π3+π3≠±1,D 不对.] 8.如图所示,半圆的直径AB =4,O 为圆心,C 是半圆上不同于A ,B 的任意一点,若P 为半径OC 上的动点,则(P A →+PB →)·PC →的最小值是( )A .2B .0C .-1D .-2D [由平行四边形法则得P A →+PB →=2PO →,故(P A →+PB →)·PC →=2PO →·PC →,又|PC →|=2-|PO →|,且PO →,PC →反向,设|PO →|=t (0≤t ≤2), 则(P A →+PB →)·PC →=2PO →·PC →=-2t (2-t )=2(t 2-2t )=2[(t -1)2-1]. 因为0≤t ≤2,所以当t =1时,(P A →+PB →)·PC →有最小值,最小值为-2.]二、多项选择题(本大题共4小题,每小题5分,共20分,在每小题给出的四个选项中,有多项是符合题目要求的.全部选对的得5分,选对但不全的得3分,有选错的得0分)9.已知|a |=1,|b |=2,a =λb ,λ∈R ,则|a -b |可以为( ) A .0 B .1 C .2D .3BD [由a =λb 可知:a ∥b ,即a 与b 夹角为0或π,|a -b |2=a 2+b 2-2|a |·|b |·cos 0=|a |2+|b |2-2|a |·|b |=1+4-4=1或|a -b |2=a 2+b 2-2|a |·|b |cos π=|a |2+|b |2+2|a |·|b |=1+4+4=9,所以|a -b |=1或3.]10.下列选项中,值为14的是( )A .cos 72°cos 36°B .sinπ12sin 5π12C .1sin 50°+3cos 50°D .13-23cos 215°AB [对于A ,cos 36°cos 72°=2sin 36°cos 36°cos 72°2sin 36°=2sin 72°cos 72°4sin 36°=sin 144°4sin 36°=14,故A 正确;对于B ,sinπ12sin 5π12=sin π12cos π12=12·2sin π12cos π12=12sin π6=14,故B 正确; 对于C ,原式=cos 50°+3sin 50°sin 50°cos 50°=2⎝⎛⎭⎫32sin 50°+12cos 50°12sin 100°=2sin 80°12sin 100°=2sin 80°12sin 80°=4,故C 错误;对于D ,13-23cos 215°=-13(2cos 215°-1)=-13cos 30°=-36,故D 错误.]11.△ABC 中,AB →=c ,BC →=a ,CA →=b ,在下列命题中,是真命题的有( ) A .若a ·b >0,则△ABC 为锐角三角形 B .若a ·b =0,则△ABC 为直角三角形 C .若a ·b =c ·b ,则△ABC 为等腰三角形 D .若c ·a +c 2=0,则△ABC 为直角三角形 BCD [如图所示△ABC 中,AB →=c ,BC →=a ,CA →=b ,①若a ·b >0,则∠BCA 是钝角,△ABC 是钝角三角形,A 错误; ②若a ·b =0,则BC →⊥CA →,△ABC 为直角三角形,B 正确; ③若a ·b =c ·b ,b ·(a -c )=0,CA →·(BC →-AB →)=0,CA →·(BC →+BA →)=0,取AC 中点D ,则CA →·2BD →=0,所以BA =BC ,即△ABC 为等腰三角形,C 正确;④因为c ·a +c 2=AB →·BC →+AB →2=AB →·(BC →+AB →)=0,所以AB →·AC →=0,所以AB →⊥AC →,即D 正确.故选BCD .]12.对于函数f (x )=12cos ⎝⎛⎭⎫2x -π2,给出下列结论,正确的是( ) A .函数f (x )的最小正周期为2πB .函数f (x )在⎣⎡⎦⎤π6,π2上的值域是⎣⎡⎦⎤34,12 C .函数f (x )在⎣⎡⎦⎤π4,3π4上是减函数 D .函数f (x )的图像关于点⎝⎛⎭⎫-π2,0对称 CD [由诱导公式可得:f (x )=12cos ⎝⎛⎭⎫2x -π2=12sin 2x ,所以T =2πω=2π2=π≠2π,A 错误;若x ∈⎣⎡⎦⎤π6,π2,则2x ∈⎣⎡⎦⎤π3,π,12sin 2x ∈⎣⎡⎦⎤0,12,故函数f (x )在⎣⎡⎦⎤π6,π2上的值域是⎣⎡⎦⎤0,12,B 错误;令π2+2k π≤2x ≤3π2+2k π(k ∈Z ),即π4+k π≤x ≤3π4+k π(k ∈Z ),函数f (x )在⎣⎡⎦⎤π4+k π,3π4+k π(k ∈Z )上单调递减,当k =0时,函数f (x )在⎣⎡⎦⎤π4,3π4上是减函数,所以C 正确;令2x =k π(k ∈Z ),则x =k π2(k ∈Z ),函数f (x )=12sin 2x 的对称中心为⎝⎛⎭⎫k π2,0(k ∈Z ),当k =-1时,函数f (x )的图像关于点⎝⎛⎭⎫-π2,0对称,故D 正确.] 三、填空题(本大题共4小题,每小题5分,共20分,把答案填在题中横线上)13.已知向量a =(1-sin θ,1),b =⎝⎛⎭⎫12,1+sin θ(θ为锐角),且a ∥b ,则tan θ=________. 1[因为a ∥b ,所以(1-sin θ)(1+sin θ)-12=0.所以cos 2θ=12,因为θ为锐角,所以cos θ=22,所以θ=π4, 所以tan θ=1.]14.已知A (1,2),B (3,4),C (-2,2),D (-3,5),则向量AB →在CD →上的投影的数量为________.2105[AB →=(2,2),CD →=(-1,3). 所以AB →在CD →上的投影的数量为|AB →|cos 〈AB →,CD →〉=AB →·CD →|CD →|=2×(-1)+2×3(-1)2+32=410=2105.] 15.函数y =cos 2x -4sin x 的最小值为________;最大值为________.(本题第一空2分,第二空3分)-4 4[y =cos 2x -4sin x =1-sin 2x -4sin x =-(sin x +2)2+5, 因为sin x ∈[-1,1],所以当sin x =-1时,y max =-1+5=4; 当sin x =1时,y min =-9+5=-4.]16.若函数f (x )=2sin(ωx +φ)⎝⎛⎭⎫0<ω<π2,|φ|<π2的部分图像如图所示,A (0,3),C (2,0),并且AB ∥x 轴,则cos ∠ACB 的值为________.5714[由已知f (0)=2sin φ=3,又|φ|<π2, 所以φ=π3,所以f (x )=2sin ⎝⎛⎭⎫ωx +π3, 由f (2)=0,即2sin ⎝⎛⎭⎫2ω+π3=0, 所以2ω+π3=2k π+π,k ∈Z ,解得ω=k π+π3,k ∈Z ,而0<ω<π2,所以ω=π3,所以f (x )=2sin ⎝⎛⎭⎫π3x +π3,令f (x )=3,得π3x +π3=2k π+π3或π3x +π3=2k π+2π3,k ∈Z ,所以x =6k 或x =6k +1,由题干图可知,B (1,3). 所以CA →=(-2,3),CB →=(-1,3), 所以|CA →|=7,|CB →|=2,所以cos ∠ACB =CA →·CB →|CA →||CB →|=527=5714.]四、解答题(本大题共6小题,共70分. 解答时应写出文字说明、证明过程或演算步骤) 17.(本小题满分10分)已知向量a =⎝⎛⎭⎫sin x ,32,b =(cos x ,-1). (1)当a ∥b 时,求2cos 2x -sin 2x 的值; (2)求f (x )=(a +b )·b 在⎣⎡⎦⎤-π2 ,0上的最大值. [解] (1)因为a ∥b ,所以32cos x +sin x =0,所以tan x =-32,2cos 2x -sin 2x =2cos 2x -2sin x cos x sin 2x +cos 2x =2-2tan x 1+tan 2x =2013.(2)f (x )=(a +b )·b =22sin ⎝⎛⎭⎫2x +π4. 因为-π2≤x ≤0,所以-3π4≤2x +π4≤π4,所以-1≤sin ⎝⎛⎭⎫2x +π4≤22, 所以-22≤f (x )≤12, 所以f (x )max =12.18.(本小题满分12分)设向量a =(4cos α,sin α),b =(sin β,4cos β),c =(cos β,-4sin β).(1)若a 与b -2c 垂直,求tan(α+β)的值; (2)求|b +c |的最大值;(3)若tan αtan β=16,求证:a ∥B . [解] (1)因为a 与b -2c 垂直,所以a ·(b -2c )=4cos αsin β-8cos αcos β+4sin αcos β+8sin αsin β=4sin(α+β)-8cos(α+β)=0,因此tan(α+β)=2.(2)由b +c =(sin β+cos β,4cos β-4sin β),得 |b +c |=(sin β+cos β)2+(4cos β-4sin β)2=17-15sin 2β≤4 2.又当β=-π4时,等号成立,所以|b +c |的最大值为4 2. (3)证明:由tan αtan β=16得4cos αsin β=sin α4cos β, 所以a ∥B .19.(本小题满分12分)已知向量a =(sin θ,-2)与b =(1,cos θ)互相垂直,其中θ∈⎝⎛⎭⎫0,π2. (1)求sin θ和cos θ的值;(2)若5cos(θ-φ)=35cos φ,0<φ<π2 ,求cos φ的值.[解] (1)因为a·b =0,所以a·b =sin θ-2cos θ=0, 即sin θ=2cos θ.又因为sin 2θ+cos 2θ=1, 所以4cos 2θ+cos 2θ=1, 即cos 2θ=15,所以sin 2θ=45.又θ∈⎝⎛⎭⎫0,π2,所以sin θ=255,cos θ=55.(2)因为5cos(θ-φ)=5(cos θcos φ+sin θsin φ)=5cos φ+25sin φ=35cos φ, 所以cos φ=sin φ.所以cos 2φ=sin 2φ=1-cos 2φ,即cos 2φ=12.又因为0<φ<π2,所以cos φ=22.20.(本小题满分12分)已知函数f (x )=sin(π-ωx )cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)将函数y =f (x )的图像上各点的横坐标缩短到原来的12 ,纵坐标不变,得到函数y =g (x )的图像,求函数g (x )在区间⎣⎡⎦⎤0,π16上的最小值. [解] (1)因为f (x )=sin(π-ωx )cos ωx +cos 2ωx ,所以f (x )=sin ωx cos ωx +1+cos 2ωx 2=12sin 2ωx +12cos 2ωx +12=22sin ⎝⎛⎭⎫2ωx +π4+12. 由于ω>0,依题意得2π2ω=π,所以ω=1.(2)由(1)知f (x )=22sin ⎝⎛⎭⎫2x +π4+12, 所以g (x )=f (2x )=22sin ⎝⎛⎭⎫4x +π4+12. 当0≤x ≤π16时,π4≤4x +π4≤π2,所以22≤sin ⎝⎛⎭⎫4x +π4≤1. 因此1≤g (x )≤1+22.故g (x )在区间⎣⎡⎦⎤0,π16上的最小值为1. 21.(本小题满分12分)已知函数f (x )=4cos 4x -2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x .(1)求f ⎝⎛⎭⎫-1112 π的值; (2)当x ∈⎣⎡⎭⎫0,π4时,求g (x )=12f (x )+sin 2x 的最大值和最小值. [解] (1)f (x )=(1+cos 2x )2-2cos 2x -1sin ⎝⎛⎭⎫π4+x sin ⎝⎛⎭⎫π4-x =cos 22x sin ⎝⎛⎭⎫π4+x cos ⎝⎛⎭⎫π4+x =2cos 22x sin ⎝⎛⎭⎫π2+2x =2cos 22x cos 2x=2cos 2x , 所以f ⎝⎛⎭⎫-11π12=2cos ⎝⎛⎭⎫-11π6=2cos π6= 3. (2)g (x )=cos 2x +sin 2x =2sin ⎝⎛⎭⎫2x +π4. 因为x ∈⎣⎡⎦⎤0,π4, 所以2x +π4∈⎣⎡⎭⎫π4,3π4. 所以当x =π8时,g (x )max =2,当x =0时,g (x )min =1. 22.(本小题满分12分)已知向量a =(cos α,sin α),b =(cos β,sin β),|a -b |=255 . (1)求cos(α-β)的值;(2)若0<α<π2 ,-π2<β<0,且sin β=-513,求sin α. [解] (1)因为|a |=1,|b |=1,|a -b |2=|a |2-2a·b +|b |2=|a |2+|b |2-2(cos αcos β+sin αsin β)=1+1-2cos(α-β), |a -b |2=⎝⎛⎭⎫2552=45, 所以2-2cos(α-β)=45,得cos(α-β)=35. (2)因为-π2<β<0<α<π2, 所以0<α-β<π. 由cos(α-β)=35得sin(α-β)=45,由sin β=-513得cos β=1213.所以sin α=sin[(α-β)+β]=sin(α-β)cos β+cos(α-β)sin β=45×1213+35×⎝⎛⎭⎫-513=3365.。

高中数学必修三检测:模块综合检测Word版含答案

高中数学必修三检测:模块综合检测Word版含答案

模块综合检测(时间120分钟满分160分)、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的 )1 .某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取 1件进行检测,设“抽到一等品”的概率为0.65, “抽到二等品”的概率为 0.3,则“抽到不合格品”的概率为()A. 0.95B. 0.7C. 0.35D. 0.05解析:选D“抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65 + 0.3=0.95, “抽到不合格品”与“抽到一等品或二等品”是对立事件, 故其概率为 1 — 0.95=0.05.2 .某校对高三年级的学生进行体检, 现将高三男生的体重(单位:kg )数据进行整理后分为五组,并绘制频率分布直方图(如 图所示).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、 第五小组的纵坐标分别为 0.05,0.04,0.02,0.01 ,第二小组的频数为生总数和体重正常的频率分别为 ()A. 1 000,0.50B. 800,0.50C. 800,0.60D, 1 000,0.60解析:选D 第二小组的频率为 0.40,所以该校高三年级的男生总数为 黑=1 000(A );体重正常的频率为 0.40+ 0.20= 0.60.3 .执行如图所示的程序框图,输出的O 50 556 口 65 70 75 体市/3400,则该校高三年级的男4=像]A. 2 D. 16B. 4C. 8解析:选 C 执行程序 S= 1, k=0; S= 1, k=1; S=2, k=2; S=8, k= 3,输出 S (1)4现有甲、乙两颗骰子,从1点至6点出现的概率都是6,掷甲、乙两颗骰子,设分别出现的点数为 a, b 时,则满足av|b 2—ZaK 10的概率为()a1 A 18 1 C.9解析:选B •••试验发生包含的总的基本事件有 36种,满足条件的事件需要进行讨论.若 a= 1 时,b= 2 或 3;若 a = 2 时,b= 1; ,共有3种情况满足条件, ・•.概率为P = 方=936 125.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广 播操比赛,9位评委给高三(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一 个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清, 若记分员计算无误,则数字 x 应该是()评委给高三(1)班打出的分数8 9 8 792JC 3 421A.2B. 3C. 4D. 5解析:选A :由题意知记分员在去掉一个最高分 94和一个最低分87后,余下的7个 数字的平均数是91,即89 + 88+ 92 + 90+ x+ 93+ 92 + 91= 91. 635+x= 91X7= 637, x= 2. 6.为了在运行下面的程序之后输出16,键盘输入的x 应该是()=8.1 B.— 121D.6x= input( x= , if x<0y=(x+ 1 *(x+1); elsey=(x —1 *(x —1 , end print (%io(2 ) y j end A. 3或—3 B. — 5 C. 5 或—3D. 5 或—5解析:选D 该程序先对x 进行判断,当x<0时,执行y= (x+1)x (x+1)计算语句,要使输出值为16,则输入的x 为—5.当x>0时,执行y=(x —1)X(x —1)计算语句,要使输 出值为16,则输入的x 为5.7 .点P 在边长为1的正方形ABCD 内运动,则动点 P 到定点A 的距离|PA|v1的概率 为() 1 A.4D.兀解析:选C 如图所示,动点 P 在阴影部分满足|PA|V1,该阴影是半 径为1,圆心角为直角的扇形, 其面积为S =;,又正方形的面积是 S=1, 则动点P 到定点A 的距离|PA|<1的概率为 1 = ;.8 .甲、乙两名选手参加歌手大赛时, 5名评委打的分数用茎叶图表示(如右图).S 1, S 2分别表示甲、乙选手分数的标准差,则、与色的关系是( ) A. S1> s 2 B S I = s 2 C. S I < S 2解析:选C 由茎叶图可知:甲得分为78,81,84,85,92;乙得分为76,77,80,94,93.则x 甲78-84 2+ +(92-84)2]=>/22,同理 S2=V62,故 S I 〈S2,所以选C.9 .在一个袋子中装有分别标注数字 1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是()D.不确定8 7 6=84, x 乙=84,则 S I =1 5/ D.12解析:选A 随机取出2个小球得到的结果数有10种,取出的小球标注的数字之和为33或6的结果为{1, 2}, {1, 5}, {2, 4},共3种,故所求概率为10 .用系统抽样法从 160名学生中抽取容量为 20的样本,将160名学生随机地从1 160编号,按编号顺序平均分成 20组(1〜8,9〜16,…,153〜160),若第16组得到的号码 为126,则第1组中用抽签的方法确定的号码是 ( )A. 8B. 6C. 4D. 2解析:选B •.啜=8, ••・抽样间隔为8, ・•・第1组中号码为 126— 15X 8= 6.11 .对一位运动员的心脏跳动检测了8次,得到如下表所示的数据: 检测次数 12345678检测数据a i (次/分钟)39 40 42 42 43 45 46 47对上述数据的统计分析中, 一部分计算见如下图所示的程序框图 (其中a 是这8个数据的平均数),该程序框图输出的值是A. 6 D. 56解析:选B 该程序框图的功能是输出这 8个数据的方差,因为这8个数据的平均数 a3 A 10C. 8i-1*1=0j 输'人■用.工2,.* ”口■和值/B. 7=43,故其方差为 1X [(39 — 43)2+ (40 — 43)2+ (42 — 43)2 8+ (42—43)2+(43 —43)2+(45—43)2+(46 —43)2+(47 —43)2] =7,所以输出的 s 的值为 7.故选B.12 .某公司共有职工 8 000名,从中随机抽取了 100名,调查上、下班乘车所用时间, 得下表:公司规定,按照乘车所用时间每月发给职工路途补贴,补贴金额 (元)与乘车时间(分钟)的关系是y= 200+40 2t0 I,其中20展示不超过20的最大整数.以样本频率为概率,则 公司一名职工每月用于路途补贴不超过300元的概率为()A. 0.5B. 0.7C. 0.8D. 0.9解析:选D 由题意知y<300, 即20 & 2.5'解得0・长60,由表可知tQ0,60)的人数为90人, 故所求概率为190=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13 .将参加数学竞赛的 1 000名学生编号如下:0 001, 0 002,…,1 000,打算从中抽 取一个容量为50的样本,按系统抽样的方法分成 50个部分,从第一部分随机抽取一个号码为0 015,则第40个号码为.解析:根据系统抽样方法的定义,得第 40个号码对应15+39X20= 795,即彳导第40个 号码为0 795.答案:0 795.......................................................... 1 ,,,14.有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于 %米的8概率为.解析:如图,将细绳八等分, C, D 分别是第一个和最后一个等 1 . 一., 一,,, 分点,则在线段 CD 的任意位置剪断此绳得到的两截细绳长度都大于1米.由几何概型的概39+ 40+42+42+ 43+45+46+ 47即 200+40^0 L300,86率计算公式可得,两截的长度都大于1米的概率为P = : = 3.8 1 4答案:3415.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是(结果用最简分数表示).解析:从中任意取出两个的所有基本事件有(1,2), (1,3), (1,4),…,(2,3), (2,4),…,(6,(7)21 个.而这两个球编号之积为偶数的有(1,2), (1,4), (1,6), (2,3), (2,4), (2,5), (2,6),..................... 15 5 (6,(8)(3,4), (3,6), (4,5), (4,6), (4,7), (5,6), (6,7)共15 个.故所求的概率P=21 = 7.答案:516.某工厂对某产品的产量与成本的资料分析后有如下数据:由表中数据得到的线性回归方程y= bx+a中b= 1.1,预测当产量为9千件时,成本约万元.解析:由表中数据得x =4, y =9,代入回归直线方程得a=4.6,,当x=9时,y=1.1 x 9+ 4.6= 14.5.答案:14.5三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某校夏令营有3名男同学A, B, C和3名女同学X, Y, Z,其年级情况如下表:现从这6名同学中随机选出人参加知识竞赛(每人被选到的可能性相同(1)用表中字母列举出所有可能的结果;(2)设M为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M发生的概率.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A, B}, {A, C},{A, X}, {A, Y}, {A, Z}, {B, C}, {B, X}, {B, Y}, {B, Z}, {C, X}, {C, Y}, {C, Z}, {X, Y}, {X, Z}, {Y, Z},共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A, Y}, {A, Z}, {B, X}, {B, Z}, {C, X}, {C, Y},共6 种.............................. 6 2因此,事件M发生的概率P(M) = ~=~15 518.(本小题满分12分)某制造商3月生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:频率2015105C 39.35 39.9739.99 40.0140.01 宜轻八山n(1)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;(3)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).解:(1)频率分布表如下:[39.97,39.99)200.2010[39.99,40.01)500.5025[40.01,40.03]200.2010合计1001频率分布直方图如图.(2)误差不超过0.03 mm,即直径落在[39.97,40.03]范围内的概率为0.2+0.5+0.2= 0.9.39.96 X 0.10 + 39.98 X 0.20+40.00 X 0.50 +(3)整体数据的平均值约为40.02 X 0.20= 40.00(mm).19.(本小题满分12分)在如图所示的程序框图中,记所有的x的值组成的集合为A,由输出的数据y组成的集合为B.(1)分别写出集合A, B;(2)在集合A中任取一个元素a,在集合B中任取一个元素b,求所得的两数满足a>b 的概率.解:(1)由程序框图可知A= {6,8,10,12,14}, B= {5,7,9,11,13}.(2)基本事件的总数为5X 5=25,设“两数满足a>b”为事件E,当a = 6 时,b= 5;当a = 8 时,b=5,7;当a=10 时,b= 5,7,9;当a=12 时,b= 5,7,9,11;15 3当a=14时,b= 5,7,9,11,13,事件E包含的基本事件数为15,故P(E) = —=-.25 520.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.甲班乙班21S19 9 10170 3 6s 98 8 3 2162 5 88139(1)计算甲班的样本方差;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm的同学,求身高为176 cm的同学被抽中的概率.解:(1)甲班的平均身高为一1x =10(158+ 162+163+168+168+170+171+ 179+179+ 182)=170,甲班的样本方差为2 1 2 2 2 2 2s2=6[(158 — 170)2+ (162— 170)2+ (163- 170)2+ (168- 170)2+ (168 — 170)2+ (170 —170)2+ (171 — 170)2+ (179 — 170)2+ (179— 170),(182 — 170)2] = 57.2.(2)设“身高为176 cm的同学被抽中”的事件为A,用(x, y)表示从乙班10名同学中抽取两名身高不低于173 cm的同学的身高,则所有的基本事件有(181,173), (181,176), (181,178) , (181,179), (179,173), (179,176), (179,178), (178,173), (178,176), (176,173),共10 个基本事件,而事件A 含有(181,176), (179,176), (178,176), (176,173),共4 个基本事件,4 2故P(A)=G = &10 521.(本小题满分12分)某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:(1)在给定的坐标系中画出表中数据的散点图;(2)求出y关于x的线性回归方程;(3)试预测加工10个零件需要多少时间?n __ _____Zx i y i-n x y i=14 A A A △一注:b = ------------- , a = y — b x ..n 2 2“ Xi — n x i = 1解:(1)散点图如图所示.(2)由表中数据得:4 一Zx i yi=52.5, x=3.5,i=1一— -4 2y = 3.5, Zx i = 54.i 1A 52.5—4X3.52• b = 2" = 0.7,54—4X 3.5A. a = 3.5 — 0.7X 3.5= 1.05,A. y = 0.7x+ 1.05.(3)将x= 10代入回归直线方程,.J ,一,得丫= 0.7X 10+ 1.05= 8.05(小时).・•・预测加工10个零件需要8.05小时.22.(本小题满分12分)(全国卷H )某公司为了解用户对其产品的满意度,从A, B两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A地区用户满意度评分的频率分布直方图和B地区用户满意度评分的频数分布表.B 地区用户满意度评分的频数分布表满意度评 分分组 [50,60)[60,70)[70,80) [80,90) [90,100]频数2814106(1)在图②中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度 (不要求计算出具体值,给出结论即可 ).B 地区用户满意度评分的频率分布汽方图图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分 低于70分70分至IJ 89分 不彳什90分 满意度等级不满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解:(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出, B 地区用户满意度评分的平均颜率 演Q 040 0.035 0.030 0. 025 0. 020 0 015 0010 0.005A 地区用户涉强度评分的糠率分布再方图50 60 70 80 9。

2017年必修3模块综合测评试题(含答案)

2017年必修3模块综合测评试题(含答案)

2017年先锋高二学考第一次质量检测数学试题(时间100分钟,满分100分,命题人:邓树解)一、选择题(本大题共10小题,每小题4分,共40分,在每小题给出的四个选项中,只有一项是符合题目要求的)1.问题:①有1000个乒乓球分别装在3种箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会. 方法:Ⅰ.简单随机抽样法Ⅱ.系统抽样法Ⅲ.分层抽样法.其中问题与方法能配对的是( )A .①Ⅰ,②ⅡB .①Ⅲ,②ⅠC .①Ⅱ,②ⅢD .①Ⅲ,②Ⅱ2.从一批产品中取出三件产品,设A =“三件产品全不是次品”,B =“三件产品全是次品”,C =“三件产品至少有一件是次品”,则下列结论正确的是( ) A .任何两个均互斥 B . A 与C 互斥 C . B 与C 互斥 D . 任何两个均不互斥 3.在如图1所示的茎叶图中,若甲组数据的众数为16,则乙组数据的中位数为( ) 图1 A .11 B .10 C .16 D .12 4.把89化成五进制数的末位数字为( ) A 1 B 2 C 4 D 3 5.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下: (单位:cm) 甲:8.9, 9.6, 9.5, 8.5, 8.6, 8.9; 乙:9.0, 9.2, 9.0, 8.5, 9.1, 9.2; 据以上数据估计两人的技术的稳定性,结论是( ) A .两人没区别 B .无法判断 C .甲优于乙 D .乙优于甲 6.某中学号召学生在暑假期间至少参加一次社会公益活动(以下简称活动).该校文学社共有100名学生,他们参加活动的次数统计如图2所示,则从文学社中任意选1名学生,他参加活动次数为3的概率是( ) A. 710 B. 310 C. 610 D. 110 图2 7.当m =8,n =2时,执行如图3所示的程序框图,输出的S 值为( ) A .1 B .56 C .8 D .3368.有2个人从一座10层大楼的底层进入电梯,设他们中的每一个人自第二层开始在每一层离开是等可能的,则2个人在不同层离开的概率为( )A. 89B. 49C. 29D. 199.x 的取值是[1,4],任取一个x 的值,取得值大于2的概率为( )A .1/2B .3/4C .2/3D .1/310.已知某8个数据的平均数为5,方差为3,现又加入一个新数据5,此时这9个数的平均数为x ,方差为s 2,则( )A. x >5,s 2>3B.x =5,s 2>3C.x >5,s 2<3D. x =5,s 2<3 图3班级序号:16 姓名 考室 座位号一、选择题答案(4×10=40分)1. 2. 3. 4. 5. 6. 7. 8. 9. 10.二、填空题(本大题共5小题,每小题4分,共20分,把答案填在题中横线上).11.已知函数f(x)=x5+3x4-4x3+5x2-6x+1,利用秦九韶算法计算x=2时,V2 =12.长沙市环保总站发布2017年1月11日到1月20日的空气质量指数(AQI),数据如下:155,205,268,167,157,164,268,407,335,129,则这组数据的中位数是________.13.某学校举行课外综合知识比赛,随机抽取400名同学的成绩,成绩全部在50分至100分之间,将成绩按如下方式分成五组.第一组,成绩大于等于50分且小于60分;第二组,成绩大于等于60分且小于70分;……;第五组,成绩大于等于90分且小于等于100分,据此绘制了如左下图4所示的频率分布直方图.则400名同学中成绩优秀(大于等于80分)的学生有________名.图4 图514.228与3990的最大公约数为。

数学必修三模块综合测评(附答案)

数学必修三模块综合测评(附答案)

模块综合测评(时间:120分钟,总分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列赋值语句正确的是( )A.m+n=3B.l=mC.m=1,n=1D.m=m-1解析:判断是否为赋值语句,主要看它是否满足赋值语句的特点.注意,赋值语句中的等号与数学中等号意义的区别. 答案:D2.抛掷一枚骰子,观察骰子出现的点数,若“出现2点”这个事件发生,则下列事件一定发生的是( ) A.“出现奇数点” B.“出现偶数点”C.“点数大于3”D.“点数是3的倍数”解析:若事件A 发生,则事件B 发生,则事件A 和事件B 的关系是A B ,令事件A={出现2点},则事件B={出现偶数点}一定发生. 答案:B 3.高三(1)、(2)班在一次数学考试中,成绩平均分相同,但(1)班的成绩比(2)班整齐,若(1)、(2)班的成绩方差分别为s 12和s 22,则( )A.s 12>s 22B.s 12<s 22C.s 12=s 22D.s 1>s 2解析:方差的大小描述了数据的分散程度,因为(1)班成绩比(2)班成绩整齐,这说明(1)班的成绩分布比较集中,所以s 21<s 22. 答案:B4.某地招生办为了了解2007年高考文科数学主观题的阅卷质量,将2 050本试卷中封面保密号的尾数是11的全部抽出来,再次复查,这种抽样方法采用的是( )A.抽签法B.简单随机抽样C.系统抽样D.分层抽样 解析:由各抽样方法的使用条件可知,这种抽样为系统抽样. 答案:C5.若以连续抛掷两次骰子分别得到的点数m 、n 作为点P 的坐标,则点P 落在圆x 2+y 2=25内的概率是( ) A.21 B.3613C.94D.125 解析:设P 点坐标为(m,n),则P 点落在圆内,即满足m 2+n 2<25通过列举法可得满足条件的点(m,n)有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(4,1),(4,2)共13个,而(m,n)所有可能的点有36种,所以P 点落在圆内的概率为3613,本题也可从对立事件角度去考虑. 答案:B6.①学校为了解高一学情,从每班抽2人进行座谈;②一次数学竞赛中,某班有10人在110分以上,40人在90—110分,12人低于90分,现从中抽取12人了解有关情况;③运动会服务人员为参加400 m 决赛的6名同学安排跑道.就这三件事,合适的抽样方法为( )A.分层抽样、分层抽样、简单随机抽样B.系统抽样、系统抽样、简单随机抽样C.分层抽样、简单随机抽样、简单随机抽样D.系统抽样、分层抽样、简单随机抽样 解析:明确各种抽样方法的适用范围,进而选择合适的抽样方法. 答案:D7.在如下图所示的Rt △ABC 中,∠A=30°,过直角顶点C 在∠ACB 内任作一条射线交线段AB 于M ,则使AM >AC 的概率是( )A.61 B.65 C.232- D.21解析:它属于几何概型,令事件A={过直角顶点C 在∠ACB 内任作一条射线交线段AB 于M ,使AM>AC },事件A 发生的区域为∠BCM=15°(如图),构成事件总的区域为∠ACB=90°,由几何概型的概率公式得P(A)=61. 答案:A8.已知框图,则表示的算法是( )A.求和S=2+22+…+264B.求和S=1+2+22+…+263C.求和S=1+2+22+…+264D.以上均不对解析:关键是要读懂框图的含义.循环结构中是完成数据的累加,要实现所求算法,框图中第一次执行循环体时i 的值应为0,框图中最后一次执行循环体时i 的值应为64,结合条件不满足时执行循环体,当i >64时就会终止循环. 答案:C9.一人在打靶中,连续射击2次,事件“至少有一次中靶”的互斥事件是( ) A.至少有一次中靶 B.两次中靶 C.两次都不中靶 D.只有一次中靶 解析:若A 、B 为互斥事件则A∩B=∅. 答案:C10.现有语文、数学、英语、历史、政治和物理共六本书,从中任取一本,取出的是文科书的概率是( ) A.21 B.65 C.61 D.32解析:取到的书是文科书,即取到的书为语文、英语、历史、政治书,根据互斥事件的概率公式可求得P=3261616161=+++. 答案:D11.甲口袋内装有大小相等的8个红球和4个白球,乙口袋内装有大小相等的9个红球和3个白球,从两个口袋内各摸出1个球,那么125等于( )A.2个球都是白球的概率B.2个球中恰好有1个是白球的概率C.2个球都不是白球的概率D.2个球都不是红球的概率 解析:依次求出A 、B 、C 、D 四项中所求事件的概率,四个选项的概率依次是A :121121234=⨯⨯;B :12512129438=⨯⨯+⨯;C :21121298=⨯⨯;D :21121234=⨯⨯答案:B12.用辗转相除法求204与85的最大公约数时,需要做除法的次数是( )A.1次B.2次C.3次D.4次 解析:用辗转相除法可得:204÷85=2…34,85÷34=2…17,34÷17=2,到此时可以判断它们的最大公约数是17,使用了3次除法得出结果. 答案:C二、填空题(本大题共4小题,每小题4分,共16分.把正确答案填在题中的横线上)13.设集合P={x,1},Q={y,1,2},P ⊆Q,x,y ∈{1,2,3,…,9},且在直角坐标平面内,从所有满足这些条件的有序实数对(x,y )所表示的点中任取一个,其落在圆x 2+y 2=r 2内的概率恰为72,则r 2的一个可能的整数值是____________.(只需写出一个即可)解析:由于P ⊆Q,所以x=2或x=y.当x=2时,点(x,y )有(2,3)、(2,4)、(2,5)、(2,6)、(2,7)、(2,8)、(2,9)共7个;当x=y 时,点(x,y )有(3,3)、(4,4)、(5,5)、(6,6)、(7,7)、(8,8)、(9,9)共7个;所以满足条件的点(x,y )总共有7+7=14个.由于落在圆x 2+y 2=r 2内的概率恰为72,则共有72×14=4点落在圆x 2+y 2=r 2内.将满足条件的14个点(x,y )按横纵坐标的平方和从小到大的顺序排列:(2,3)、(3,3)、(2,4)、(2,5)、(4,4)、(2,6)、(5,5)、(2,7)、(2,8)、(6,6)、(2,9)、(7,7)、(8,8)、(9,9).则第4个点是A (2,5),第5个点是B (4,4),显然r 2只需满足|OA|2<r 2<|OB|,即22+52<r 2<42+42,所以有29<r 2<32,则r 2的一个可能的整数值是30或31,故填30(或31也行). 答案:30(或31).14.x=input(“请输入一个正的两位数x=”); if 9<x and x <100 then a=x/10;b=x mod 10; x=10*b+a ; print x elsedisp(“输入有误!”) end以上程序运行的含义是______________.解析:读懂程序的流程和程序的意图(或程序目的),可以代入数据试运行,这样一般可以得到准确的答案.答案:将一个数的十位数与个位对换 15.一个样本方差是S 2=151[(x 1-12)2+(x 2-12)2+…+(x 15-12)2],则这个样本的平均数是___________,样本容量是___________. 解析:在样本方差的公式S 2=n1[(x 1-x )2+(x 2-x )2+…+(x n -x )2]中我们可以知道样本的容量为n 及样本的平均数为x ,因此同学们应记清公式中各个量的含义.答案:12 1516.将一批数据分成4组,列出频率分布表,其中第1组的频率是0.27,第2组与第4组的频率之和为0.54,则第3组的频率是______________.解析:在直方图中频率之和为1,所以第3组的频率为1-0.27-0.54=0.19. 答案:0.19三、解答题(本大题共6小题,共74分.解答应写出必要的文字说明、证明过程或演算步骤) 17.(12分)根据下面程序,画出程序框图,并说出表示了什么样的算法. a=input(“a=”); b=input(“b=”); c=input(“c=”); if a >b and a >c then print(% io (2),a ); elseif b >c thenprint (% io (2),b ); elseprint (% io (2),c ); end end end分析:我们根据程序按顺序从上到下分析. 第一步:是输入a ,b ,c 三个数;第二步:是判断a 与b ,a 与c 的大小,如果a 同时大于b ,c ,则输出a ,否则执行第三步;第三步:判断b 与c 的大小,因为a 已小于b 与c ,则只需比较b 与c 的大小就能看出a ,b ,c 中谁是最大的了,如果b >c ,则输出b ,否则输出c.通过上面的分析,程序表示一个什么样的算法已经非常清楚了. 解:框图如图所示:以上程序表示了输出a ,b ,c 中三个数的最大数的一个算法.18.(12分)在一个边长为a ,b(a >b >0)的矩形内画一个梯形,梯形上、下底分别为a 31与a 21,高为b ,向该矩形内随机投一点,求所投的点落在梯形内部的概率.分析:投中矩形内每一点都是一个基本事件,基本事件有无限多个,并且每个基本事件发生的可能性相等,所以投中某一部分的概率只与这部分的几何度量(面积)有关,符合几何概型的条件. 解:记A={所投的点落在梯形内部},S 矩形=ab ,S 梯形=125)2131(21=+b a a ab ,P(A)=125125=ab ab, 即所投的点落在梯形内部的概率是125.19.(12分)一个小球从100 m 高处自由落下,每次着地后又跳回到原高度一半再落下,编写程序,求当它第10次着地时,(1)向下运动共经过多少米? (2)第10次着地后反弹多高? (3)全程共经过多少米?分析:搞清楚小球的运动的特点,通过循环来设计程序. 解:程序: i=100; sum=0; k=1;while k <=10 sum=sum+i i=i/2 k=k+1 endprint(% io (2),sum) print(% io (2),i)print(“全程共经过(单位:(m))”;2*sum -100) end20.(12分)某地区100位居民的人均月用水量(单位:t)的分组的频数如下: [0,0.5),4;[0.5,1),8;[1,1.5),15;[1.5,2),22;[2,2.5),25;[2.5,3),14;[3,3.5),6;[3.5,4),4;[4,4.5),2.(1)列出样本的频率分布表.(2)画出频率分布直方图,并根据直方图估计这组数据的众数.(3)当地政府制订了人均月用水量为3t 的标准,若超出标准加倍收费,当地政府解释说,85%以上的居民不超出这个标准,这个解释对吗?为什么?分析:众数即直方图中所有矩形中最高矩形的中点的横坐标. 解:(1)分组@频数@频率(2)众数约为2.25.(3)对,上面的图和表显示了样本数据落在各个小组的比例大小.从中我们可以看到,月用水量在区间[2,2.5]内的居民最多,在[1.5,2]的次之,大部分居民的月用水量都在[1,3]之间,其中月用水量在3t 以上的居民所占的比例为6%+4%+2%=12%,即大约占12%的居民月用水量在3t 以上,88%的居民月用水量在3t 以下.因此居民月用水量标准定为3t 是一个可以考虑的标准.即不超出这个标准的概率约为88%,在85%以上.21.(13分)A 、B 两个箱子中分别装有标号为0、1、2的三种卡片,每种卡片的张数如下表所示:(1)从A 、B 箱中各取1张卡片,用x 表示取出的2张卡片的数字之积,求x=2的概率.(2)从A 、B 箱中各取1张卡片,用y 表示取出的2张卡片的数字之和,求x=0且y=2的概率. 分析:本题属于古典概型,关键是列举出基本事件的个数. 解:(1)记事件A={从A 、B 箱中各取1张卡片,两卡片的数字之积等于2},由上图知总基本事件个数为6×5=30(个),事件A 包含基本事件个数为5个. 由古典概型的概率公式得:P(A)=61305 . 即x=2的概率为61. (2)记事件B={从A 、B 箱中各取1张卡片,其数字和为2且积为0},由图知事件B 包含基本事件个数为10个.所以由古典概型的概率公式得P(B)=313010=. 即x=0且y=2的概率为31. 22.(13分)(2007广东高考,理17)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量x(吨)与相应的生产能耗y(吨标准煤)的几组对照数据.x 3 4 5 6 y2.5344.5(1)请画出上表数据的散点图.(2)请根据上表提供的数据,用最小二乘法求出y 关于x 的线性回归方程=bx+a.(3)已知该厂技改前100吨甲产品的生产能耗为90吨标准煤.试根据(2)求出的线性回归方程预测生产100吨甲产品的生产能耗比技改前降低多少吨标准煤? (参考数值:3×2.5+4×3+5×4+6×4.5=66.5)分析:根据表中的数据在直角坐标系中把所给的数据点(x,y )描出,然后根据最小二乘法思想求出b 与a 的,代入回归直线方程,把所得到的回归直线方程用来估计总体. 解:(1)如下图.(2)∑=ni ii yx 1=3×2.5+4×3+5×4+6×4.5=66.5,46543+++=x =4.5,45.4435.2+++=y =3.5,∑=ni i x 12=32+42+52+62=86,b=8186635.665.44865.35.445.662--=⨯-⨯⨯-=0.7,a=y -b x =3.5-0.7×4.5=0.35. 故线性回归方程为yˆ=0.7x+0.35. (3)根据回归方程的预测,现在生产100吨产品消耗的标准煤的数量为0.7×100+0.35=70.35,故耗能减少了90-70.35=19.65(吨标准煤).。

2017-2018学年人教A版必修三单元质量评估试卷(一)含解析

2017-2018学年人教A版必修三单元质量评估试卷(一)含解析

单元质量评估(一)(第一章)(120分钟 150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下列赋值语句错误的是 ( )A.i=i-1B.m=m 2+1C.k=(-1)/kD.x*y=a【解析】选D.执行i=i-1后,i 的值比原来小1,则A 正确;执行m=m 2+1后,m 的值等于原来m 的平方再加1,则B 正确;执行k=后,k 的值是-1k原来的负倒数,则C 正确;赋值号的左边只能是一个变量,则D 错误.2.用二分法求方程x 2-2=0的近似根的算法中用到的算法结构是 ( )A.顺序结构B.条件结构C.循环结构D.以上都用 【解析】选D.顺序结构是必须的,要选择有解区间,需要条件结构,要重复进行二等分有解区间,需要循环结构.3.阅读如图所示的程序框图,运行相应的程序,输出的S 的值等于 ( )A.18B.20C.21D.40【解析】选B.程序运行如下:S=0,n=1;S=0+21+1=3,n=2,S<15;S=3+22+2=9,n=3,S<15;S=9+23+3=20,满足条件,输出S=20.4.(2016·晋江高一检测)三个数4557,1953,5115的最大公约数为 ( )A.93B.31C.651D.217【解析】选A.因为4557=1953×2+651,1953=651×3,所以4557,1953的最大公约数是651.又5115=4557×1+558,4557=558×8+93,558=93×6,所以4557,5115的最大公约数为93.由于651=93×7,所以三数的最大公约数为93.5.如图一段程序执行后的结果是 ( )A.6B.4C.8D.10【解析】选A.由a=2,第二步得a=2×2=4,第三步得a=4+2=6.故输出a=6.6.算式1010(2)+10(2)的值是 ( )A.1011(2)B.1100(2)C.1101(2)D.1000(2)【解析】选B.1010(2)+10(2)=1×23+0×22+1×21+0×20+1×21+0×20=12.因为所以12=1100(2),故1011(2)+10(2)=1100(2).7.用秦九韶算法计算多项式f(x)=5x6+4x5+2x4+6x3+6x2+8x+9,当x=3.3时的值时,需要做乘法和加法的次数分别是 ( )A.6,6B.5,6C.5,5D.6,5【解析】选A.由f(x)=5x6+4x5+2x4+6x3+6x2+8x+9=(((((5x+4)x+2)x+6)x+6)x+8)x+9.故需做6次乘法和6次加法运算.8.阅读如图所示的程序框图,则输出的S等于 ( )。

2017-2018学年高中数学三_模块综合评价含答案

2017-2018学年高中数学三_模块综合评价含答案

模块综合评价(时间:120分钟满分:150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品"的概率为( )A.0.95 B.0.7 C.0。

35 D.0.05解析:“抽到一等品”与“抽到二等品"是互斥事件,所以“抽到一等品或二等品"的概率为0。

65+0。

3=0。

95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0。

95=0。

05。

答案:D2.总体容量为203,若采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体( )A.4 B.5 C.6 D.7解析:由于203=7×29,即203在四个选项中只能被7整除,故间隔为7时不需剔除个体.答案:D3.用秦九韶算法求多项式f(x)=0。

5x5+4x4-3x2+x-1,当x=3的值时,先算的是()A.3×3=9 B.0.5×35=121。

5C.0.5×3+4=5.5 D.(0。

5×3+4)×3=16。

5解析:按递推方法,从里到外先算0.5x+4的值.答案:C4。

在如图所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )A.6 B.8C.10 D.14解析:由甲组数据的众数为14得x=y=4,乙组数据中间两个数分别为6和14,所以中位数是6+142=10.答案:C5.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()A。

错误!=1.23x+0.08 B。

错误!=1。

23x+5C.错误!=1。

23x+4 D。

错误!=0.08x+1.23解析:设回归直线方程为错误!=错误!x+错误!,则错误!=1.23,因为回归直线必过样本点的中心,代入点(4,5)得a^=0。

2017-2018学年高中数学(人教B版3)模块综合测评含解析

2017-2018学年高中数学(人教B版3)模块综合测评含解析

模块综合测评(教师用书独具)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分。

在每小题给出的四个选项中,只有一项是符合题目要求的)1.问题:①有1000个乒乓球分别装在3种箱子内,其中红色箱子内有500个,蓝色箱子内有200个,黄色箱子内有300个,现从中抽取一个容量为100的样本;②从20名学生中选出3名参加座谈会.方法:Ⅰ。

随机抽样法Ⅱ。

系统抽样法Ⅲ.分层抽样法。

其中问题与方法能配对的是()A。

①Ⅰ,②Ⅱ B。

①Ⅲ,②ⅠC。

①Ⅱ,②Ⅲ D。

①Ⅲ,②Ⅱ【解析】本题考查三种抽样方法的定义及特点.【答案】B2.从装有2个红球和2个白球的红袋内任取两个球,那么下列事件中,互斥事件的个数是()①至少有一个白球;都是白球.②至少有一个白球;至少有一个红球.③恰好有一个白球;恰好有2个白球。

④至少有1个白球;都是红球.A。

0 B。

1 C.2 D。

3【解析】由互斥事件的定义知,选项③④是互斥事件。

故选C.【答案】C3。

在如图1所示的茎叶图中,若甲组数据的众数为14,则乙组数据的中位数为( )图1A。

6 B.8 C.10 D。

14【解析】由甲组数据的众数为14,得x=y=4,乙组数据中间两个数分别为6和14,所以中位数是错误!=10,故选C。

【答案】C4.用秦九韶算法求f(x)=12+3x-8x2+79x3+6x4+5x5+3x6在x=-4时的值时,v1的值为( )A。

3 B.-7 C.-34 D.-57【解析】根据秦九韶算法知:v1=v0x+a n-1,其中v0=a n=3(最高次项的系数),a n-1=5,∴v1=3×(-4)+5=-7.【答案】B5.从甲、乙两人手工制作的圆形产品中随机抽取6件,测得其直径如下:(单位:cm)甲:9.0,9.2,9.0,8。

5,9。

1,9.2;乙:8。

9,9。

6,9。

5,8。

5,8.6,8.9。

据以上数据估计两人的技术的稳定性,结论是()A。

2017-2018学年高中数学必修三(人教B版)练习:综合学业质量标准检测 Word版含解析

2017-2018学年高中数学必修三(人教B版)练习:综合学业质量标准检测 Word版含解析

综合学业质量标准检测本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.满分150分.考试时间120分钟.第Ⅰ卷(选择题共60分)一、选择题(本大题共12个小题,每小题5分,共60分,在每小题给出的四个选项中只有一个是符合题目要求的)1.我校在检查学生作业时,抽出每班学号尾数为5的学生作业进行检查,这里运用的是导学号95064916(D)A.分层抽样B.抽签抽样C.随机抽样D.系统抽样[解析]号码顺序以一定的间隔抽取,这样的抽样是系统抽样.2.下列赋值语句正确的是导学号95064917(A)A.S=a+1B.a+1=SC.S-1=a D.S-a=1[解析]赋值语句只能给某个变量赋值,不能给一个表达式赋值,故选A.3.(2015·湖北理,2)我国古代数学名著《数书九章》有“米谷粒分”题:粮仓开仓收粮,有人送来米1 534石,验得米内夹谷,抽样取米一把,数得254粒内夹谷28粒,则这批米内夹谷约为导学号95064918(B)A.134石B.169石C.338石D.1 365石[解析]设这批米内夹谷约为x石,则依题意有x1 534=28254,解得x≈169. 故本题正确答案为B.4.200辆汽车通过某一段公路时,时速的频率分布直方图如图所示,则时速在[50,70)的汽车大约有导学号95064919(D)A.60辆B.80辆C.70辆D.140辆[解析] 时速在[50,70)的汽车大约有200×10×(0.03+0.04)=140辆. 5.有一个容量为66的样本,数据的分组及各组的频数如下: [11.5,15.5) 2 [15.5,19.5) 4 [19.5,23.5) 9 [23.5,27.5) 18 [27.5,31.5) 11 [31.5,35.5) 12 [35.5,39.5) 7 [39.5,43.5) 3根据样本的频率分布估计,数据落在[31.5,43.5)的概率约是导学号 95064920( B ) A .16B .13C .12D .23[解析] 由条件可知,落在[31.5,43.5)内的数据有12+7+3=22(个),故所求的概率为2266=13. 6.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是导学号 95064921( C )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件[解析] 甲、乙不能同时得到红色,因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.7.下列说法中,正确的是导学号 95064922( B ) A .数据5,4,4,3,5,2的众数是4B .一组数据的标准差的平方是这组数据的方差C .数据2,3,4,5的方差是数据4,6,8,10的方差的一半D .频率分布直方图中各小矩形的面积等于相应各组的频数[解析] A 中的众数是4和5;C 中,2,3,4,5的方差为1.25,而数据4,6,8,10的方差为5;D 中,频率分布直方图中各小矩形的面积等于相应各组的频率.8.168,54,264的最大公约数是导学号 95064923( B ) A .4 B .6 C .8D .9[解析](168,54)→(114,54)→(60,54)→(6,54)→(6,48)→(6,42)→(6,36)→(6,30)→(6,24)→(6,18)→(6,12)→(6,6)故168和54的最大公约数为6,又264=44×6,∴6为264与6的最大公约数,也是这三个数的最大公约数.9.(2017·山东理,6)执行两次如图所示的程序框图,若第一次输入x的值为7,第二次输入x的值为9,则第一次、第二次输出的a的值分别为导学号95064924(D)A.0,0 B.1,1C.0,1 D.1,0[解析]当x=7时,∵b=2,∴b2=4<7=x.又7不能被2整除,∴b=2+1=3.此时b2=9>7=x,∴退出循环,a=1,∴输出a=1.当x=9时,∵b=2,∴b2=4<9=x.又9不能被2整除,∴b=2+1=3.此时b2=9=x,又9能被3整除,∴退出循环,a=0.∴输出a=0.10.某校在“创新素质实践行”活动中,组织学生进行社会调查,并对学生的调查报告进行了评比,如图是将某年级60篇学生调查报告的成绩进行整理,分成5组画出的频率分布条形图.已知从左往右4个小组的频率分别是0.05,0.15,0.35,0.30,那么在这次评比中被评为优秀的调查报告有(分数大于等于80分为优秀,且分数为整数)导学号 95064925( D )A .18篇B .24篇C .25篇D .27篇[解析] 由频率分布条形图知从左往右第5个小组的频率为0.15故优秀数为60×(0.3+0.15)=27.11.如图是某次拉丁舞比赛七位评委为甲、乙两名选手打出的分数的茎叶图(其中m 为数字0~9中的一个),去掉一个最高分和一个最低分后,甲、乙两名选手得分的平均数分别为a 1、a 2,则a 1、a 2的大小关系是导学号 95064926( B )A .a 1>a 2B .a 2>a 1C .a 1=a 2D .无法确定[解析] 去掉一个最高分和一个最低分后,甲、乙都有5组数据,此时甲、乙得分的平均数分别为a 1=1+4+5×35+80=84,a 2=6+7+4×35+80=85,所以a 2>a 1.12.将一枚质地均匀的骰子先后抛掷两次,若第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,则函数y =ax 2-2bx +1在(-∞,12]上为减函数的概率是导学号 95064927( D )A .14B .34C .16D .56[解析] 由题意,函数y =ax 2-2bx +1在(-∞,12]上为减函数满足条件⎩⎪⎨⎪⎧a >0b a ≥12.∵第一次朝上一面的点数为a ,第二次朝上一面的点数为b ,∴a 取1,2时,b 可取1,2,3,4,5,6;a 取3,4时,b 可取2,3,4,5,6;a 取5,6时,b 可取3,4,5,6,共30种.∵将一枚质地均匀的骰子先后抛掷两次,共有6×6=36种等可能发生的结果, ∴所求概率为3036=56.故选D .第Ⅱ卷(非选择题 共90分)二、填空题(本大题共4小题,每小题5分,共20分.把答案填写在题中的横线上.) 13.某学校高一、高二、高三年级的学生人数之比为3∶3∶4,现用分层抽样的方法从该校高中三个年极的学生中抽取容量为50的样本,则应从高二年级抽取__15__名学生.导学号 95064928[解析] 由已知,高二人数占总人数的310,所以抽取人数为310×50=15.14.下列程序运行的结果是__1_890__.导学号 95064929S =1;i =1;while i<10 S =S*i ; i =i +2;endprint (%io (2),2*s );[解析] 程序是计算2S 的值,而S =1×3×5×7×9=945,∴2S =1 890.15.某篮球队6名主力队员在最近三场比赛中投进的三分球个数如下表所示:导学号 95064930如上图是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,则图中判断框应填__i ≤6__,输出的s =__a 1+a 2+…+a 6__.(注:框图中的赋值符号“=”也可以写成“←”或“:=”) [解析] 考查读表识图能力和程序框图.因为是统计该6名队员在最近三场比赛中投进的三分球总数的程序框图,所以图中判断框应填i ≤6,输出的s =a 1+a 2+…+a 6.16.下表是某厂1~4月份用水量(单位:百吨)的一组数据:导学号 95064931由其散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归方程是y ^=-0.7x +a ^,则a ^=__5.25__.[解析] x -=1+2+3+44=52,y -=4.5+4+3+2.54=72.由线性回归方程知a ^=y --(-0.7)·x -=72+710·52=5.25.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤.) 17.(本题满分10分)某中学高中三年级男子体育训练小组2017年5月测试的50 m 跑的成绩(单位:s)如下:6.4、6.5、7.0、6.8、7.1、7.3、6.9、7.4、7.5,设计一个算法,从这些成绩中搜索出小于6.8 s 的成绩,并画出程序框图.导学号 95064932[解析] 算法步骤如下: S1 i =1;S2 输入一个数据a ;S3 如果a <6.8,则输出a ,否则,执行S4; S4 i =i +1;S5 如果i >9,则结束算法,否则执行S2. 程序框图如右图:18.(本题满分12分)海关对同时从A 、B 、C 三个不同地区进口的某种商品进行抽样检测,从各地区进口此种商品的数量(单位:件)如下表所示,工作人员用分层抽样的方法从这些商品中共抽取6件样品进行检测.导学号 95064933(1)求这6件样品中来自(2)若在这6件样品中随机抽取2件送往甲机构进一步检测,求这2件商品来自相同地区的概率.[解析] (1)因为工作人员是按分层抽样抽取样品,所以各地区抽取样品的比例为:A ∶B ∶C =50∶150∶100=1∶3∶2各地区抽取的商品数分别别为A :6×16=1;B :6×36=3;C :6×26=2.(2)设各地商品分别为A 、B 1、B 2、B 3、C 1、C 2所以所含基本事件共有(A ,B 1),(A ,B 2),(A ,B 3),(A ,C 1),(A ,C 2),(B 1,B 2),(B 1,B 3),(B 1,C 1),(B 1,C 2),(B 2,B 3),(B 2,C 1),(B 2,C 2),(B 3,C 1),(B 3,C 2),(C 1,C 2)15种不同情况,样本事件包括(B 1,B 2),(B 1,B 3),(B 2,B 3),(C 1,C 2)4种情况.所以,这两件商品来自同一地区的概率为P =415.19.(本题满分12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:导学号 95064934(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高;(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.[解析] (1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为20.08=25. 分数在[80,90)之间的频数为25-2-7-10-2=4,频率为425=0.16,所以频率分布直方图中[80,90)间的矩形的高为0.1610=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A ,将[80,90)之间的4人编号为1、2、3、4,[90,100]之间的2人编号为5、6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P (A )=915=35.20.(本题满分12分)某高中在校学生2 000人,高一年级与高二年级人数相同并且都比高三年级多1人.为了响应市教育局“阳光体育”号召,该校开展了跑步和跳绳两项比赛,要求每人都参加而且只参加其中一项,各年级参与项目人数情况如下表:导学号 95064935其中a ∶b ∶c =2∶3∶5,全校参与跳绳的人数占总人数的25.为了了解学生对本次活动的满意度,采用分层抽样从中抽取一个200人的样本进行调查,则高二年级中参与跑步的同学应抽取多少人?[解析] 全校参与跳绳的人数占总人数的25,则跳绳的人数为25×2 000=800,所以跑步的人数为35×2 000=1 200.又a ∶b ∶c =2∶3∶5,所以a =210×1 200=240,b =310×1 200=360,c =510×1 200=600.抽取样本为200人,即抽样比例为2002 000=110,则在抽取的样本中,应抽取的跑步的人数为110×1 200=120,则跑步的抽取率为1201 200=110, 所以高二年级中参与跑步的同学应抽取360×110=36(人).21.(本题满分12分)某地最近十年粮食需求量逐年上升,下表是部分统计数据:导学号 95064936(1)利用所给数据求年需求量与年份之间的回归方程y =b x +a ; (2)利用(1)中所求出的直线方程预测该地2018年的粮食需求量.[解析] (1)由所给数据看出,年需求量与年份之间具有线性相关关系,下面来求回归方程.为此对数据预处理如下:x =0,y =3.2,b ^=(-4)×(-21)+(-2)×(-11)+2×19+4×2942+22+22+42=26040=6.5.a ^=y -b ^x =3.2.由上述计算结果,知所求回归方程为 y ^-257=b ^(x -2010)+a ^=6.5(x -2010)+3.2, 即y ^=6.5(x -2010)+260.2. ①(2)利用直线方程①,可预测该地2018年的粮食需求量为y ^=6.5×(2018-2010)+260.2=6.5×8+260.2=312.2(万吨)≈312(万吨).22.(本题满分12分)(2017·全国卷Ⅲ文,18)某超市计划按月订购一种酸奶,每天进货量相同,进货成本每瓶4元,售价每瓶6元,未售出的酸奶降价处理,以每瓶2元的价格当天全部处理完.根据往年销售经验,每天需求量与当天最高气温(单位:℃)有关.如果最高气温不低于25,需求量为500瓶;如果最高气温位于区间[20,25),需求量为300瓶;如果最高气温低于20,需求量为200瓶.为了确定六月份的订购计划,统计了前三年六月份各天的最高气温数据,得下面的频数分布表:导学号 95064937(1)估计六月份这种酸奶一天的需求量不超过300瓶的概率;(2)设六月份一天销售这种酸奶的利润为Y (单位:元).当六月份这种酸奶一天的进货量为450瓶时,写出Y 的所有可能值,并估计Y 大于零的概率.[解析] (1)这种酸奶一天的需求量不超300瓶,当且仅当最高气温低于25,由表格数据知,最高气温低于25的频率为2+16+3690=0.6,所以这种酸奶一天的需求量不超过300瓶的概率的估计值为0.6.(2)当这种酸奶一天的进货量为450瓶时,若最高气温不低于25,则Y =6×450-4×450=900;若最高气温位于区间[20,25),则Y =6×300+2(450-300)-4×450=300; 若最高气温低于20,则Y =6×200+2(450-200)-4×450=-100,所以,Y的所有可能值为900,300,-100.Y大于零当且仅当最高气温不低于20,由表格数据知,最高气温不低于20的频率为36+25+7+490=0.8,因此Y大于零的概率的估计值为0.8.。

2017-2018学年高中数学综合检测新人教A版必修3

2017-2018学年高中数学综合检测新人教A版必修3

综合检测时间:120分钟 满分:150分一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知函数y =⎩⎪⎨⎪⎧lg x ,x >0,2x,x ≤0,输入自变量x 的值,输出对应函数值的算法中所用到的基本逻辑结构是( ) A .顺序结构B .顺序结构、条件结构C .条件结构D .顺序结构、条件结构、循环结构解析:因求函数值必须先判断x 须有条件结构,整个算法中离不开顺序结构,故选B. 答案:B2.要从已编号(1~50)的50枚最新研制的某型导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( ) A .5,10,15,20,25 B .3,13,23,33,43 C .1,2,3,4,5D .2,4,8,16,32解析:在用系统抽样时,应分成五组,每组10枚,按一定规则每组中抽取1枚,只有B 满足. 答案:B3.给出以下命题:(1)将一枚硬币抛掷两次,记事件A 为“两次都出现正面”,事件B 为“两次都出现反面”,则事件A 与事件B 是对立事件; (2)(1)中的事件A 与事件B 是互斥事件;(3)若10件产品中有3件是次品,从中任取3件,记事件A 为“所取的3件产品中最多有2件是次品”,事件B 为“所取的3件产品中至少有2件是次品”,则事件A 与事件B 是互斥事件.其中正确命题的个数是( ) A .0 B .1 C .2D .3解析:对于(1)(2),因为抛掷两次硬币,除事件A ,B 外,还有“第一次出现正面,第二次出现反面”和“第一次出现反面,第二次出现正面”两种事件,所以事件A 和事件B 不是对立事件,但它们不会同时发生,所以是互斥事件;对于(3),若所取的3件产品中恰有2件是次品,则事件A 和事件B 同时发生,所以事件A 和事件B 不是互斥事件.答案:B4.在区间[-2,1]上随机取一个数x ,则x ∈[0,1]的概率为( ) A.13 B.14 C.12D.23解析:由几何概型的概率计算公式可知x ∈[0,1]的概率P =1-01--=13.故选A. 答案:A5.如图是一算法的程序框图,若输出结果为S =720,则在判断框中应填入的条件是( )A .k ≤6B .k ≤7C .k ≤8D .k ≤9解析:第一次执行循环,得到S =10,k =9;第二次执行循环,得到S =90,k =8;第三次执行循环,得到S =720,k =7,此时满足条件. 答案:B6.两人的各科成绩如茎叶图所示,则下列说法不正确的是( )A .甲、乙两人的各科平均分相同B .甲的中位数是83,乙的中位数是85C .甲各科成绩比乙各科成绩稳定D .甲的众数是89,乙的众数为87解析:甲的众数应为83,乙的众数应是98,D 项错. 答案:D7.在一次实验中测得(x ,y )的四组值分别为A (1,2),B (2,3),C (3,4),D (4,5),则y 与x之间的回归直线方程为( )A.y ^=x +1 B.y ^=x +2C.y ^=2x +1 D.y ^=x -1 解析:由x =1+2+3+44=52,y =2+3+4+54=72, 又回归直线过点(x ,y ),检验可得A 正确. 答案:A8.阅读下列程序:如果输入x =-2,则输出结果y 为( ) A .0 B .-1 C .-2D .9解析:此程序是分段函数y =⎩⎪⎨⎪⎧2x +3, x <0,0, x =0-2x +5 x >0的求值问题.所以当x =-2时,y=2×(-2)+3=-1. 答案:B9.某学校高一、高二、高三三个年级共有学生3 500人,其中高三学生数是高一学生数的两倍,高二学生数比高一学生数多300人,现在按1100的抽样比用分层抽样的方法抽取样本,则应抽取高一学生数为( ) A .8B .11。

2017-2018学年高中数学必修3:模块综合检测 含解析 精

2017-2018学年高中数学必修3:模块综合检测 含解析 精

模块综合检测(时间120分钟 满分160分)一、填空题(本大题共14小题,每小题5分,共70分,请把答案填写在题中横线上) 1.从一箱产品中随机抽取一件,设事件A ={抽到一等品},事件B ={抽到二等品},事件C ={抽到三等品},且已知P (A )=0.65,P (B )=0.2,P (C )=0.1.则事件“抽到的不是一等品”的概率为________.解析:设事件“抽到的不是一等品”为D ,则A 与D 对立, ∴P (D )=1-P (A )=0.35. 答案:0.352.甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙前面值班的概率是________.解析:甲、乙、丙三人在3天中值班的情况为:甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13. 答案:133.根据下列算法语句,当输入x 为60时,输出y 的值为________. Read xIf x ≤50 Then y ←0.5 x Else y ←25+0.6×(x -50)End If Print y解析:由题意知,该算法语句的功能是求分段函数y =⎩⎪⎨⎪⎧0.5x ,x ≤50,25+0.6(x -50),x >50的值,所以当x =60时,输出y 的值为25+0.6×(60-50)=31.答案:314.从1,2,3,6这4个数中一次随机地取2个数,则所取2个数的乘积为6的概率是________.解析:取两个数的所有情况有:(1,2),(1,3),(1,6),(2,3),(2,6),(3,6),共6种情况.乘积为6的有:(1,6),(2,3)共2种情况.所求事件概率为26=13.答案:135.执行如图所示的程序框图,则输出S的值为________.解析:由程序框图与循环结束的条件“k>4”可知,最后输出的S=log255=1 2.答案:1 26.(福建高考)某校高一年级有900名学生,其中女生400名,按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________.解析:设男生抽取x人,则有45900=x900-400,解得x=25.答案:257.(湖北高考)某电子商务公司对10 000名网络购物者2014年度的消费情况进行统计,发现消费金额(单位:万元)都在区间[0.3,0.9]内,其频率分布直方图如图所示.(1)直方图中的a=________;(2)在这些购物者中,消费金额在区间[0.5,0.9]内的购物者的人数为________.解析:(1)由(1.5+2.5+a+2.0+0.8+0.2)×0.1=1,解得a=3.(2)区间[0.3,0.5]内频率为0.1×(1.5+2.5)=0.4,故[0.5,0.9]内的频率为1-0.4=0.6.因此,消费金额在区间[0.5,0.9]内的购物者的人数为0.6×10 000=6 000.答案:(1)3(2)6 0008.(陕西高考)某公司10位员工的月工资(单位:元)为x1,x2,…,x10,其均值和方差分别为x和s2,若从下月起每位员工的月工资增加100元,则这10位员工下月工资的均值和方差分别为________.解析:对平均数和方差的意义深入理解可巧解.因为每个数据都加上了100,故平均数也增加100,而离散程度应保持不变.答案:100+x s 29.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{1,2,3,4},若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,得出他们“心有灵犀”的概率为________.解析:甲、乙所猜数字的基本事件有:(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4)共16个,其中满足|a -b |≤1的基本事件有(1,1),(1,2),(2,1),(2,2),(2,3),(3,2),(3,3),(3,4),(4,3),(4,4)共10个,故所求概率为1016=58.答案:5810.正方形ABCD 面积为S ,在正方形内任取一点M ,△AMB 面积大于或等于13S 的概率为________.解析:如图,设正方形ABCD 的边长为a ,则S =a 2,△ABM 的高为h ,由题知,12h ·a ≥13S =13a 2,∴h ≥23a ,∴P =13.答案:1311.如下图是CBA 篮球联赛中,甲、乙两名运动员某赛季一些场次得分的茎叶图,则平均得分高的运动员是________.解析:x 甲=44+30+100+3010=20.4,x 乙=63+50+8010=19.3, ∴x 甲>x 乙.答案:甲12.如图,A 是圆O 上固定的一点,在圆上其他位置任取一点A ′,连接AA ′,它是一条弦,它的长度小于或等于半径长度的概率为________.解析:如图,当AA ′的长度等于半径长度时,∠AOA ′=60°,由圆的对称性及几何概型得P =120360=13. 答案:1313.为了考察某校各班参加课外书法小组的人数,从全校随机抽取5个班级,把每个班级参加该小组的人数作为样本数据.已知样本平均数为7,样本方差为4,且样本数据互不相同,则样本数据中的最大值为________.解析:设5个班级的数据分别为0<a <b <c <d <e .由平均数及方差的公式得a +b +c +d +e 5=7,(a -7)2+(b -7)2+(c -7)2+(d -7)2+(e -7)25=4.设a -7,b -7,c -7,d -7,e -7分别为p ,q ,r ,s ,t ,则p ,q ,r ,s ,t 均为整数,则⎩⎪⎨⎪⎧p +q +r +s +t =0,p 2+q 2+r 2+s 2+t 2=20.设f (x )=(x -p )2+(x -q )2+(x -r )2+(x -s )2=4x 2-2(p +q +r +s )x +(p 2+q 2+r 2+s 2)=4x 2+2tx +20-t 2,由(x -p )2,(x -q )2,(x -r )2,(x -s )2不能完全相同知f (x )>0,则判别式Δ<0,解得-4<t <4,所以-3≤t ≤3,所以最大值为10. 答案:1014.设集合A ={1,2},B ={1,2,3},分别从集合A 和B 中随机取一个数a 和b ,确定平面上的一个点P (a ,b ),记“点P (a ,b )落在直线x +y =n 上”为事件C n (2≤n ≤5,n ∈N),若事件C n 的概率最大,则n 的所有可能值为________.解析:事件C n 的总事件数为6.只要求出当n =2,3,4,5时的基本事件个数即可. 当n =2时,落在直线x +y =2上的点为(1,1); 当n =3时,落在直线x +y =3上的点为(1,2),(2,1); 当n =4时,落在直线x +y =4上的点为(1,3),(2,2); 当n =5时,落在直线x +y =5上的点为(2,3); 显然当n =3或4时,事件C n 的概率最大为13.答案:3或4二、解答题(本大题共6小题,共90分,解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分14分)以下茎叶图记录了甲、乙两组各四名同学的植树棵数.乙组记录中有一个数据模糊,无法确认,在图中以X 表示.(1)如果X =8,求乙组同学植树棵数的平均数和方差;(2)如果X =9,分别从甲、乙两组中随机选取一名同学,求这两名同学的植树总棵数为19的概率.(注:方差s 2=1n [(x 1-x )2+(x 2-x )2+…+(x n -x )2],其中x 为x 1,x 2,…,x n 的平均数)解:(1)当X =8时,由茎叶图可知,乙组同学的植树棵数是:8,8,9,10, 所以平均数为:x =8+8+9+104=354; 方差为:s 2=14×⎝⎛⎭⎫8-3542+⎝⎛⎭⎫8-3542+⎝⎛⎭⎫9-3542+⎝⎛⎭⎫10-3542=1116. (2)记甲组四名同学为A 1,A 2,A 3,A 4,他们植树的棵数依次为9,9,11,11;乙组四名同学为B 1,B 2,B 3,B 4,他们植树的棵数依次为9,8,9,10.分别从甲、乙两组中随机选取一名同学,所有可能的结果有16个:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 1,B 4), (A 2,B 1),(A 2,B 2),(A 2,B 3),(A 2,B 4), (A 3,B 1),(A 3,B 2),(A 3,B 3),(A 3,B 4), (A 4,B 1),(A 4,B 2),(A 4,B 3),(A 4,B 4),用C 表示“选出的两名同学的植树总棵数为19”这一事件,则C 中的结果有4个,它们是:(A 1,B 4),(A 2,B 4),(A 3,B 2),(A 4,B 2).故所求概率为P (C )=416=14.16.(本小题满分14分)(广东高考)从一批苹果中,随机抽取50个,其重量(单位:克)的频数分布表如下:(1)根据频数分布表计算苹果的重量在[90,95)的频率;(2)用分层抽样的方法从重量在[80,85)和[95,100)的苹果中共抽取4个,其中重量在[80,85)的有几个?(3)在(2)中抽出的4个苹果中,任取2个,求重量在[80,85)和[95,100)中各有1个的概率.解:(1)由题意知苹果的样本总数n=50,在[90,95)的频数是20,∴苹果的重量在[90,95)频率是2050=0.4.(2)设从重量在[80,85)的苹果中抽取x个,则从重量在[95,100)的苹果中抽取(4-x)个.∵表格中[80,85),[95,100)的频数分别是5,15,∴5∶15=x∶(4-x),解得x=1.即重量在[80,85)的有1个.(3)在(2)中抽出的4个苹果中,重量在[80,85)的有1个,记为a,重量在[95,100)的有3个,记为b1,b2,b3,任取2个,有ab1,ab2,ab3,b1b2,b1b3,b2b3共6种不同方法.记基本事件总数为n,则n=6,其中重量在[80,85)和[95,100)中各有1个的事件记为A,事件A包含的基本事件为ab1,ab2,ab3,共3个,由古典概型的概率计算公式得P(A)=36=12.17.(本小题满分14分)为庆祝国庆,某中学团委组织了“歌颂祖国,爱我中华”知识竞赛,从参加考试的学生中抽出60名学生,将其成绩(成绩均为整数)分成六段[40,50),[50,60),…,[90,100]后画出如图的部分频率分布直方图,观察图形的信息,回答下列问题:(1)求第四小组的频率,并补全这个频率分布直方图;(2)估计这次考试的及格率(60分及以上为及格)和平均分.解:(1)设第i组的频率为f i(i=1,2,3,4,5,6),因为各组的频率和等于1,故第四组的频率:f4=1-(0.025+0.015×2+0.01+0.005)×10=0.3.频率分布直方图如图所示.(2)由题意知,及格以上的分数所在的第三、四、五、六组的频率之和为(0.015+0.03+0.025+0.005)×10=0.75,抽样学生成绩的合格率是75%.故估计这次考试的及格率为75%.利用组中值估算抽样学生的平均分:45·f 1+55·f 2+65·f 3+75·f 4+85·f 5+95·f 6=45×0.1+55×0.15+65×0.15+75×0.3+85×0.25+95×0.05=71.从而估计这次考试的平均分是71分.18.(本小题满分16分)某公司有一批专业技术人员,对他们进行年龄状况和接受教育程度(学历)的调查,其结果(人数分布)如下表:(1)5的样本,将该样本看成一个总体,从中任取2人,求至少有1人的学历为研究生的概率;(2)在这个公司的专业技术人员中按年龄状况用分层抽样的方法抽取N 个人,其中35岁以下48人,50岁以上10人,再从这N 个人中随机抽取出1人,此人的年龄为50岁以上的概率为539,求x ,y 的值.解:(1)用分层抽样的方法在35~50岁的人中抽取一个容量为5的样本,设抽取学历为本科的人数为m ,∴3050=m5,解得m =3. ∴抽取了学历为研究生的有2人,学历为本科的有3人,分别记作S 1,S 2;B 1,B 2,B 3.从中任取2人的所有基本事件共10个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2),(B 1,B 2),(B 2,B 3),(B 1,B 3).其中至少有1人的学历为研究生的基本事件有7个:(S 1,B 1),(S 1,B 2),(S 1,B 3),(S 2,B 1),(S 2,B 2),(S 2,B 3),(S 1,S 2).∴从中任取2人,至少有1人的学历为研究生的概率为710. (2)依题意,得10N =539,解得N =78.∴35~50岁中被抽取的人数为78-48-10=20. ∴4880+x =2050=1020+y.解得x =40,y =5. ∴x =40,y =5.19.(本小题满分16分)某商场为吸引顾客消费推出一项优惠活动.活动规则如下:消费每满100元可以转动如图所示的圆盘一次,其中O 为圆心,且标有20元、10元、0元的三部分区域面积相等.指针停在任一位置都是等可能的.当指针停在某区域时,返相应金额的优惠券(例如:某顾客消费了218元,第一次转动获得了20元,第二次获得了10元,则其共获得了30元优惠券).顾客甲和乙都到该商场进行了消费,并按照规则参与了活动.(1)若顾客甲消费了128元,求他获得优惠券金额大于0元的概率; (2)若顾客乙消费了280元,求他总共获得优惠券金额不低于20元的概率.解:(1)设“甲获得优惠券”为事件A .因为指针停在任一位置都是等可能的,而题中所给的三部分的面积相等,所以指针停在20元、10元、0元区域内的概率都是13.顾客甲获得优惠券,是指指针停在20元或10元区域,且由题意知顾客甲只能转动一次圆盘.根据互斥事件的概率公式,有P (A )=13+13=23,所以顾客甲获得优惠券金额大于0元的概率是23.(2)设“乙获得优惠券金额不低于20元”为事件B ,因为顾客乙转动了圆盘两次,设乙第一次转动圆盘获得优惠券金额为x 元,第二次获得优惠券金额为y 元,用(x ,y )表示乙两次转动圆盘获得优惠券金额的情况,则有(20,20),(20,10),(20,0),(10,20),(10,10),(10,0),(0,20),(0,10),(0,0),共9个基本事件.而乙获得优惠券金额不低于20元,是指x +y ≥20,所以事件B 中包含的基本事件有6个,所以乙获得优惠券金额不低于20元的概率为P (B )=69=23. 20.(本小题满分16分)某算法的流程图如图所示,其中输入的变量x 在1,2,3,…,24这24个整数中等可能随机产生.(1)分别求出按流程图正确编程运行时输出y 的值为i 的概率P i (i =1,2,3);(2)甲、乙两同学依据自己对流程图的理解,各自编写程序重复运行n 次后,统计记录了输出y 的值为i (i =1,2,3)的频数.以下是甲、乙所作频数统计表的部分数据.甲的频数统计表(部分)乙的频数统计表(部分)当n =2 100时,根据表中的数据,分别写出甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率(用分数表示),并判断两位同学中哪一位所编程序符合算法要求的可能性较大.解:(1)变量x 是在1,2,3,…,24这24个整数中随机产生的一个数,共有24种可能. 当x 从1,3,5,7,9,11,13,15,17,19,21,23这12个数中产生时,输出y 的值为1,故P 1=12;当x 从2,4,8,10,14,16,20,22这8个数中产生时,输出y 的值为2,故P 2=13;当x 从6,12,18,24这4个数中产生时,输出y 的值为3,故P 3=16.所以,输出y 的值为1的概率为12,输出y 的值为2的概率为13,输出y 的值为3的概率为16. (2)当n =2 100时,甲、乙所编程序各自输出y 的值为i (i =1,2,3)的频率如下:比较频率趋势与概率,可得乙同学所编程序符合算法要求的可能性较大.。

2017_2018学年高中数学模块质量评估(含解析)新人教A版必修3

2017_2018学年高中数学模块质量评估(含解析)新人教A版必修3

模块质量评估(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.一个年级有20个班,每班都是50人,每个班的学生的学号都是1~50.学校为了了解这个年级的作业量,把每个班中学号为5,15,25,35,45的学生的作业留下,这里运用的是( )A.系统抽样B.分层抽样C.简单随机抽样D.随机数表法抽样【解析】选A.本题考查抽样方法的应用.根据系统抽样的概念,可以得到答案.2.(2016·杭州高一检测)如图是计算+++…+的值的一个程序框图,其中在判断框中应填入的条件是( )A.i<10?B.i>10?C.i<20?D.i>20?【解析】选B.最后一次执行循环体时i的值为10,又条件不满足时执行循环体,所以i=11>10时跳出循环.3.(2015·湖北高考)已知变量x和y满足关系y=-0.1x+1,变量y与z正相关,下列结论中正确的是( )A.x与y正相关,x与z负相关B.x与y正相关,x与z正相关C.x与y负相关,x与z负相关D.x与y负相关,x与z正相关【解析】选C.因为变量x和y满足关系y=-0.1x+1,其中-0.1<0,所以x与y成负相关;又因为变量y与z正相关,不妨设z=ky+b(k>0),则将y=-0.1x+1代入即可得到:z=k(-0.1x+1)+b=-0.1kx+(k+b),所以-0.1k<0,所以x与z负相关.【补偿训练】(2016·郑州高一检测)根据一组数据(24,25),(26,25),(26,26),(26,27),(28,27),用最小二乘法建立的回归直线方程为=kx+13,k= ( )A.2B.4C.D.【解题指南】求解的关键是回归直线方程必过点(,).【解析】选C.根据最小二乘法可知点(,)一定在回归直线上,所以==26,==26,将(26,26)代入回归直线方程为26=26k+13可得k=.4.一个射手进行射击,记事件E1:“脱靶”,E2:“中靶”,E3:“中靶环数大于4”,E4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( )A.1对B.2对C.3对D.4对【解析】选B.E1与E3,E1与E4均为互斥而不对立的事件.5.用秦九韶算法求多项式f(x)=0.5x5+4x4-3x2+x-1当x=3的值时,先算的是( )A.3×3=9B.0.5×35=121.5C.0.5×3+4=5.5D.(0.5×3+4)×3=16.5【解析】选C.按递推方法,从里到外先算0.5x+4的值.6.如图所示是一样本的频率分布直方图,则由图形中的数据,可以估计众数与中位数分别是( )A.12.5 12.5B.12.5 13C.13 12.5D.13 13【解析】选B.根据频率分布直方图特点可知,众数是最高矩形的中点,由图可知为12.5,中位数是10+=13.【补偿训练】为了了解某校高三学生的视力情况,随机抽查了该校100名高三学生的视力情况,得到频率分布直方图如图,由于不慎将部分数据丢失,但知道后5组频数和为62,设视力在4.6到4.8之间的学生数为a,最大频率为0.32,则a的值为( )A.64B.54C.48D.27【解析】选B.前两组中的频数为100×(0.05+0.11)=16.因为后五组频数和为62,所以前三组为38.所以第三组为22.又最大频率为0.32的最大频数为0.32×100=32,所以a=22+32=54.7.已知直线y=x+b,b∈[-2,3],则直线在y轴上的截距大于1的概率为( )A. B. C. D.【解析】选B.根据几何概型的概率公式,P==.8.一袋中装有大小相同的四个球,编号分别为1,2,3,4,现从中有放回地每次取一个球,共取2次,记“取得两个球的编号和大于或等于6”为事件A,则P(A)等于( )A. B. C. D.【解析】选C.基本事件有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(2,4),(3,1),(3,2),(3,3),(3,4),(4,1),(4,2),(4,3),(4,4),共16个,事件A包括(2,4),(3,3),(3,4),(4,2),(4,3),(4,4)这6个基本事件,所以P(A)==.9.(2015·重庆高考)重庆市2013年各月的平均气温(℃)数据的茎叶图如图:则这组数据的中位数是( )A.19B.20C.21.5D.23【解析】选B.由中位数的概念可知,该组数据按从小到大顺序排列的第6和第7个数据的平均数即为要求的中位数,为20.10.如果数据x1,x2,…,x n的平均数为,方差为s2,则5x1+2,5x2+2,…,5x n+2的平均数和方差分别为( )A.,s2B.5+2,s2C.5+2,25s2D.,25s2【解题指南】本题考查平均数与方差的计算公式,注意平均数满足线性关系而方差不满足. 【解析】选C.由平均数与方差的计算公式分析可得5x1+2,5x2+2,…,5x n+2的平均数为5+2,方差为25s2.【误区警示】本题易把平均数满足的线性关系运用到方差中,而导致出错.11.(2016·洛阳高一检测)在所有两位数(10~99)中任取一个数,则这个数能被2或3整除的概率是( )A. B. C. D.【解析】选C.两位数共90个,设被2整除的数为2x,则10≤2x≤99,所以5≤x≤49,因为x∈N,所以共有45个,能被3整除的数为3y,则10≤3y≤99,所以4≤y≤33,所以共有30个,能被6整除的同理可得有15个,所以能被2或3整除的数有:45+30-15=60个,概率为P==.12.小莉与小明一起用A,B两枚均匀的小立方体(立方体的每个面上分别标有数字1,2,3,4,5,6)玩游戏,以小莉掷的A立方体朝上的数字为x,小明掷的B立方体朝上的数字为y,来确定点P(x,y),那么他们各掷一次所确定的点P(x,y)落在已知抛物线y=-x2+4x上的概率为( )A. B. C. D.【解析】选 C.根据题意,两人各掷骰子一次,每人都有六种可能性,则(x,y)的情况有6×6=36(种),即P点有36种可能,而y=-x2+4x=-(x-2)2+4,即(x-2)2+y=4,易得在抛物线上的点有(2,4),(1,3),(3,3)共3个,因此满足条件的概率为=.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上)13.(2015·福建高考)某校高一年级有900名学生,其中女生400名.按男女比例用分层抽样的方法,从该年级学生中抽取一个容量为45的样本,则应抽取的男生人数为________. 【解析】由题意知,男生人数=900-400=500,所以抽取比例为男生∶女生=500∶400=5∶4,样本容量为45,所以抽取的男生人数为45×=25.答案:25【补偿训练】某中学高中部有三个年级,其中高一年级有学生400人,采用分层抽样法抽取一个容量为45的样本,高二年级抽取15人,高三年级抽取10人,那么高中部的学生数为________.【解析】设高二年级有学生x人,高三年级有学生y人,则==,得x=300,y=200,故高中部的学生数为900.答案:90014.由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2.在Ω1中随机取一点,则该点恰好在Ω2内的概率为________.【解析】由题意作图,如图所示,Ω1的面积为×2×2=2,图中阴影部分的面积为2-××=,则所求的概率P==.答案:15.某工厂对一批产品进行了抽样检测.如图是根据抽样检测后的产品净重(单位:克)数据绘制的频率分布直方图,其中产品净重的范围是[96,106],样本数据分组为[96,98),[98,100),[100,102),[102,104),[104,106],已知样本中产品净重小于100克的个数是36,则样本中净重大于或等于98克并且小于104克的产品的个数是________.【解题指南】本题首先由产品净重小于100克的个数和频率求出样本容量,然后再求出净重大于或等于98克并且小于104克的产品的频率从而求出其个数.【解析】设样本容量是n,产品净重小于100克的频率为(0.050+0.100)×2=0.300,已知样本中产品净重小于100克的个数是36,则=0.300,所以n=120.净重大于或等于98克并且小于104克的产品的频率为(0.100+0.150+0.125)×2=0.75.所以样本中净重大于或等于98克并且小于104克的产品的个数是120×0.75=90.答案:9016.执行如图的程序框图,若输入x=9,则输出y=________.【解析】输入x=9,则y=+2=5,而|y-x|=4不小于1,故进入循环;此时x=5,y=+2=,而|y-x|=不小于1,再次进入循环;此时x=,y=+2=,而|y-x|=<1,从而输出y=.答案:三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)某初级中学共有学生2000名,各年级男生、女生人数如表:已知在全校学生中随机抽取1名,抽到的是初二年级女生的概率是0.19.(1)求x的值.(2)现用分层抽样法在全校抽取48名学生,问应在初三年级学生中抽取多少名?(3)已知y≥245,z≥245,求初三年级女生比男生多的概率.【解析】(1)由=0.19,得x=380.(2)初三年级人数为y+z=2000-(373+377+380+370)=500,现用分层抽样法在全校抽取48名学生,应在初三年级学生中抽取的人数为×500=12,即抽取初三年级学生12名.(3)记“初三年级女生比男生多”为事件A,由(2)知y+z=500,又已知y≥245,z≥245,则所有的基本事件(前一个数表示女生人数,后一个数表示男生人数)有(245,255),(246,254),(247,253),…,(255,245),共11个.其中事件A包含的基本事件有(251,249),(252,248),(253,247),(254,246),(255,245),共5个,则P(A)=.18.(12分)一个盒子里装有三张卡片,分别标记有数字1,2,3,这三张卡片除标记的数字外完全相同.随机有放回地抽取3次,每次抽取1张,将抽取的卡片上的数字依次记为a,b,c. (1)求“抽取的卡片上的数字满足a+b=c”的概率.(2)求“抽取的卡片上的数字a,b,c不完全相同”的概率.【解析】(1)由题意,(a,b,c)所有的可能为(1,1,1),(1,1,2),(1,1,3),(1,2,1),(1,2,2),(1,2,3),(1,3,1),(1,3,2),(1,3,3),(2,1,1),(2,1,2),(2,1,3),(2,2,1),(2,2,2) ,(2,2,3),(2,3,1),(2,3,2),(2,3,3),(3,1,1),(3,1,2),(3,1,3),(3,2,1),(3,2,2),(3,2,3 ),(3,3,1),(3,3,2),(3,3,3),共27种.设“抽取的卡片上的数字满足a+b=c”为事件A,则事件A包括(1,1,2),(1,2,3),(2,1,3),共3种.所以P(A)==.(2)设“抽取的卡片上的数字a,b,c不完全相同”为事件B,则事件包括(1,1,1),(2,2,2),(3,3,3),共3种,所以P(B)=1- P()=1-=.因此,“抽取的卡片上的数字a,b,c不完全相同”的概率为.19.(12分)高一(1)班参加校生物竞赛学生的成绩的茎叶图和频率分布直方图都受到不同程度的破坏,但可见部分如下,据此解答如下问题:(1)求高一(1)班参加校生物竞赛的人数及分数在[80,90)之间的频数,并计算频率分布直方图中[80,90)间的矩形的高.(2)若要从分数在[80,100]之间的学生中任选2人进行某项研究,求至少有1人分数在[90,100]之间的概率.【解析】(1)因为分数在[50,60)之间的频数为2,频率为0.008×10=0.08,所以高一(1)班参加校生物竞赛的人数为=25.分数在[80,90)之间的频数为25-2-7-10-2=4,频率为=0.16,所以频率分布直方图中[80,90)间的矩形的高为=0.016.(2)设“至少有1人分数在[90,100]之间”为事件A,将[80,90)之间的4人编号为1,2,3,4,[90,100]之间的2人编号为5,6.在[80,100]之间任取2人的基本事件有:(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6),共15个.其中,至少有1人分数在[90,100]之间的基本事件有9个,根据古典概型概率的计算公式,得P(A)==.【误区警示】计算时,要注意理解小矩形的高的意义.对于古典概型的概率的求解很重要的一步是列举基本事件,此时,要注意避免重复与遗漏.【延伸探究】若将本题(2)改为“把分数在[80,100]的6人编号为01,02,03,04,05,06,若在此6人中任意抽取一人”,其他条件不变,求此人编号出现在下列随机数表第一行的概率(随机数表的读取方法为从第一行的第五列数字开始由左向右一次选取两个数字)”7816 6572 0802 6314 0712 4369 9728 01983201 9231 4935 8200 3623 4869 6938 7481【解析】在6人中任意抽取一人,共有6种可能结果01,02,03,04,05,06,而在随机数表第一行出现的只有02,01两种可能结果,故概率为P==.20.(12分)甲、乙两艘货轮都要在某个泊位停靠6小时,假定它们在一昼夜的时间段中随机到达,试求两船中有一艘在停泊位时,另一艘船必须等待的概率.【解析】设甲、乙两船到达泊位的时刻分别为x,y.则作出如图所示的区域.本题中,大正方形的面积S1=242,阴影部分的面积S2=242-182.所以P==.即两船中有一艘在停泊位时另一船必须等待的概率为.21.(12分)(2016·枣庄高一检测)A,B,C,D,E五位学生的数学成绩x与物理成绩y(单位:分)如表:(1)请根据上表提供的数据,用最小二乘法求出y关于x的回归方程=x+;(参考数值:80×70+75×66+70×68+65×64+60×62=23190,802+752+702+652+602=24750)(2)若学生F的数学成绩为90分,试根据(1)求出的回归方程,预测其物理成绩(结果保留整数).【解析】(1)因为==70,==66,x i y i=80×70+75×66+70×68+65×64+60×62=23190,=802+752+702+652+602=24750,所以===0.36,=-=66-0.36×70=40.8.故所求线性回归方程为=0.36x+40.8.(2)由(1),当x=90时,=0.36×90+40.8=73.2≈73,答:预测学生F的物理成绩为73分.22.(12分)在人群流量较大的街道,有一中年人吆喝“送钱”,只见他手拿一黑色小布袋,小布袋中有3个黄色球和3个白色球(其体积、质地完全相同),旁边立着一块小黑板,写道:“摸球方法:从小布袋中随机摸出3个球,若摸得同一颜色的3个球,摊主送给摸球者5元钱;若摸得非同一颜色的3个球,摸球者付给摊主1元钱.”(1)摸出的3个球为白球的概率是多少?(2)摸出的3个球为2个黄球和1个白球的概率是多少?(3)假定一天有100人次摸奖,试从概率的角度估算一下这个摊主一个月(按30天计)能赚多少钱?【解析】把3个黄色的球记为A,B,C,3个白色球的球记为1,2,3.从6个球中随机摸出3个的基本事件为:ABC,AB1,AB2,AB3,AC1,AC2,AC3,A12,A13,A23,BC1,BC2,BC3,B12,B13,B23,C12,C13,C23,123,共20个.(1)设事件E={摸出的3个球为白球},事件E包含的基本事件有1个,即摸出123号3个球,P(E)==0.05.(2)设事件F={摸出的3个球为2个黄球和1个白球},事件F包含的基本事件有9个,P(F)==0.45.(3)设事件G={摸出的3个球为同一颜色}={摸出的3个球为白球或摸出的3个球为黄球},P(G)==0.1,假定一天有100人摸球,由摸出的3个球为同一颜色的概率可估计事件G发生10次,不发生90次,则一天可赚90×1-10×5=40(元),每月可赚1200元.11。

2017-2018学年高中数学人教B版 必修3章末综合测评1 含

2017-2018学年高中数学人教B版 必修3章末综合测评1 含

章末综合测评(一)(时间120分钟,满分150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.下面对程序框图中的图形符号的说法错误的是( ) A .起、止框是任何流程不可少的,表明程序开始和结束 B .输入、输出可用在算法中任何需要输入、输出的位置 C .算法中间要处理数据或计算,可分别写在不同的注释框内D .当算法要求对两个不同的结果进行判断时,判断条件要写在判断框内 【解析】 算法中间要处理数据或计算,可分别写在不同的处理框内. 【答案】 C2.阅读如图1的程序框图:若输出结果为0,则①处的执行框内应填的是( )图1A .x =-1B .b =0C .x =1D .a =32【解析】 先确定执行框内是给x 赋值然后倒着推,b =0时,2a -3=0,解得a =32,a =32时,2x +1=32,解得x =-1.【答案】 A3.如图2是一个算法的程序框图,该算法所输出的结果是( )图2A.12B.23C.34D.45【解析】 运行第一次的结果为n =0+11×2=12;第二次n =12+12×3=23;第三次n =23+13×4=34.此时i =4,程序终止,即输出n =34.【答案】 C4.用更相减损术之求得420和84的最大公约数为( ) 【导学号:00732036】A .84B .12C .168D .252【解析】 (420,84)→(336,84)→(252,84)→(168,84)→(84,84),所以420和84的最大公约数为84.【答案】 A5.下面的程序语句输出的结果S 为( )A .17B .19C .21D .23【解析】 当i 为7的时候i <8,执行循环体后i =9,S =21. 【答案】 C6.中国古代有计算多项式值的秦九韶算法,如图3是实现该算法的程序框图.执行该程序框图,若输入的x=2,n=2,依次输入的a为2,2,5,则输出的s=()图3A.7 B.12 C.17 D.34【解析】因为输入的x=2,n=2,所以k=3时循环终止,输出s.根据程序框图可得循环体中a,s,k的值依次为2,2,1(第一次循环);2,6,2(第二次循环);5,17,3(第三次循环).所以输出的s=17.【答案】 C7.阅读如图4所示的程序框图,则循环体执行的次数为()图4A.50 B.49 C.100 D.99【解析】∵i=i+2,∴当2+2n≥100时循环结束,此时n≥49,故选B.【答案】 B8.下面的程序运行后,输出的结果是()【导学号:00732037】A.1,3 B.4,1 C.0,0 D.6,0【解析】该程序运行过程中a,b的值变化如下:a=1;b=3;a=4,b =4-3=1,故选B.【答案】 B9.阅读如图5所示的程序框图,运行相应的程序.若输入x的值为1,则输出S的值为()图5A.64 B.73 C.512 D.585【解析】第1次运行:S=0+13=1<50,第2次运行:x=2,S=1+23=9<50,第3次运行:x=4,S=9+43=73>50,∴输出S=73,选B.【答案】 B10.运行如下的程序,输出的结果为()(提示:1+3+5+…+(2n-1)=n2)A.32 B.33 C.61 D.63【解析】本程序实现的是:求满足1+3+5+…+n>1 000的最小的整数n.当n=31时,1+3+…+61=312=961<1 000,当n=32时,1+3+…+63=322=1 024>1 000,此时i=63+2=65,结束循环,i=65-2=63.【答案】 D11.阅读下边的程序框图,若输出s的值为-7,则判断框内可填写()图6A.i<3 B.i<4 C.i<5 D.i<6【解析】i=1,s=2,s=2-1=1,i=1+2=3;s=1-3=-2,i=3+2=5;s=-2-5=-7,i=5+2=7. 因输出s的值为-7,循环终止,故判断框内应填“i<6”.【答案】 D12.以下给出了一个程序框图,其作用是输入x的值,输出相应的y的值,若要使输入的x的值与输出的y的值相等,则这样的x的值有()图7A .1个B .2个C .3个D .4个 【解析】 程序框图所表示的算法是求分段函数y =⎩⎪⎨⎪⎧x 2,x ≤2,2x -3,2<x ≤5,1x ,x >5的函数值.当x ≤2时,令x 2=x ,得x =0或1;当2<x ≤5时,令2x -3=x ,得x =3;当x >5时,令1x =x ,得x =±1(舍去),故只有3个值符合题意,选C.【答案】 C二、填空题(本大题共4小题,每小题5分,共20分.将答案填在题中的横线上)13.读如图8所示的程序框图,运行相应的程序,输出的结果s =________.图8【解析】 按算法框图循环到n =3时输出结果.当n =1时,s =1,a =3;当n =2时,s =1+3=4,a =5;当n =3时,s =4+5=9,a =7,所以输出s =9. 【答案】 9 14.给出一个算法:根据以上算法,可求得f (-1)+f (2)=________. 【解析】 f (x )=⎩⎨⎧ 4x ,2x,x ≤0,x >0,∴f (-1)+f (2)=-4+22=0.【答案】 015.如图9是求12+22+32+…+1002的值的程序框图,则正整数n =________.图9【解析】 因为第一次判断执行后,s =12,i =2,第二次判断执行后,s =12+22,i =3,而题目要求计算12+22+32+…+1002,故n =100.【答案】 10016.执行如图10所示的程序框图,若输入x =4,则输出y 的值为________.【导学号:00732038】图10【解析】当输入x=4时,计算y=12x-1,得y=1.不满足|y-x|<1,于是得x=1,此时y=12-1=-12,不满足|y-x|<1,此时x=-12,得y=-54.这样|y-x|=⎪⎪⎪⎪⎪⎪-54+12=34<1,执行“是”,所以输出的是-5 4.【答案】-5 4三、解答题(本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤)17.(本小题满分10分)用更相减损之术求282与470的最大公约数.【解】∵(470,282)→(188,282)→(188,94)→(94,94),∴470与282的最大公约数为94.18.(本小题满分12分)某公司为激励广大员工的积极性,规定:若推销产品价值在10 000元之内的年终提成5%;若推销产品价值在10 000元以上(包括10 000元),则年终提成10%,设计一个求公司员工年终提成f(x)的算法的程序框图.【解】程序框图如下图所示:19.(本小题满分12分)用秦九韶算法求多项式f (x )=7x 7+6x 6+5x 5+4x 4+3x 3+2x 2+x ,当x =3时的值.【解】 f (x )=((((((7x +6)x +5)x +4)x +3)x +2)x +1)x , v 0=7,v 1=7×3+6=27, v 2=27×3+5=86, v 3=86×3+4=262, v 4=262×3+3=789, v 5=789×3+2=2 369, v 6=2 369×3+1=7 108, v 7=7 108×3=21 324, ∴f (3)=21 324.20.(本小题满分12分)画出求函数y =⎩⎪⎨⎪⎧12x +5(x >0),0(x =0),x 2-3(x <0)的值的程序框图,并写出程序.【解】 程序框图为程序为21.(本小题满分12分)下列是某个问题的算法程序,将其改为程序语言,并画出框图.算法:S1 令i =1,S =0.S2 若i ≤999成立,则执行S3. 否则,输出S ,结束算法. S3 S =S +1i . S4 i =i +2,返回S2. 【解】 程序和框图如下:22.(本小题满分12分)如果我国工业年产值每年以9%的增长率增长,那么几年后我国工业年产值翻一番?画出程序框图,并写出算法程序.【解】程序框图如图所示:程序如下所示:。

2017_2018学年高中数学模块综合检测(三)(含解析)新人教A版必修3

2017_2018学年高中数学模块综合检测(三)(含解析)新人教A版必修3

模块综合检测(三)(时间120分钟,满分150分)一、选择题(本题共10小题,每小题6分,共60分)1.对一个容量为N 的总体抽取容量为n 的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率分别为p 1、p 2、p 3,则( )A .p 1=p 2<p 3B .p 2=p 3<p 1C .p 1=p 3<p 2D .p 1=p 2=p 3解析:选D 根据抽样方法的概念可知,简单随机抽样、系统抽样和分层抽样三种抽样方法,每个个体被抽到的概率都是n N,故p 1=p 2=p 3,故选D.2.奥林匹克会旗中央有5个互相套连的圆环,颜色自左至右,上方依次为蓝、黑、红,下方依次为黄、绿,象征着五大洲.在手工课上,老师将这5个环分发给甲、乙、丙、丁、戊五位同学制作,每人分得1个,则事件“甲分得红色”与“乙分得红色”是( )A .对立事件B .不可能事件C .互斥但不对立事件D .不是互斥事件解析:选C 甲、乙不能同时得到红色, 因而这两个事件是互斥事件;又甲、乙可能都得不到红色,即“甲或乙分得红色”的事件不是必然事件,故这两个事件不是对立事件.3.某校高中部开设了丰富多彩的校本课程,从甲、乙两班各随机抽取了5名学生,用茎叶图表示其学分如图所示.若s 1,s 2分别表示甲、乙两班5名学生学分的标准差,则( )A .s 1>s 2B .s 1<s 2C .s 1=s 2D .s 1,s 2大小不能确定解析:选B 从茎叶图上看甲班5名学生的学分较为集中,标准差偏小;而乙班5名学生的学分较为分散,标准差较大,即s 1<s 2.4.某程序框图如图所示,该程序运行后输出的k 的值是( )A .2B .3C .4D .5解析:选C 当k =1时,S =1,进入第一次循环;S =1+21=3,k =2,进入第二次循环;S =3+23=11,k =3,进行第三次循环;S =11+211=2 059,k =4,2 059>100,所以输出k =4.5.某工厂甲、乙、丙三个车间生产了同一种产品,数量分别为120件,80件,60件.为了解它们的产品质量是否存在显著差异,用分层抽样方法抽取了一个容量为n 的样本进行调查,其中从丙车间的产品中抽取了3件,则n =( )A .9B .10C . 12D .13解析:选D 由分层抽样可得,360=n260,解得n =13.6.先后抛掷三枚均匀的壹角、伍角、壹元硬币,则出现两枚正面,一枚反面的概率是( ) A.38 B .58 C.12 D .13解析:选A 先后抛掷三枚均匀硬币共有8种情况,其中两正一反共有3种情况,故所求概率为38.故选A.7.如图,在半径为1的半圆内,放置一个边长为12的正方形ABCD ,向半圆内任投一点,该点落在正方形内的概率是( )A .πB .1πC.12πD .2π解析:选C 设点落在正方形内的事件为A .P (A )=正方形ABCD 的面积半圆的面积=⎝ ⎛⎭⎪⎫12212π×12=12π.8.某校从参加高二年级学业水平测试的学生中抽出80名学生,其数学成绩(均为整数)的频率分布直方图如下图所示.估计这次测试中数学成绩的平均分为( )A .50B .60C .72D .80解析:选C 利用组中值估算学生的平均分:45f 1+55f 2+65f 3+75f 4+85f 5+95f 6=45×0.05+55×0.15+65×0.2+75×0.3+85×0.25+95×0.05=72.9.甲、乙、丙三人在3天节日中值班,每人值班1天,则甲紧接着排在乙的前面值班的概率是( )A.16 B .14 C.13D .12解析:选C 甲、乙、丙三人在3天中值班的情况为甲、乙、丙;甲、丙、乙;丙、甲、乙;丙、乙、甲;乙、甲、丙;乙、丙、甲共6种,其中符合题意的有2种,故所求概率为13.10.如图是把二进制数11 111(2)转化为十进制数的一个程序框图,判断框内应填入的条件是( )A .i >4?B .i ≤4?C .i >5?D .i ≤5?解析:选A 11 111(2)=1+2+22+23+24,由于程序框图中S =1+2S ,则i =1时,S =1+2×1=1+2,i =2时,S =1+2×(1+2)=1+2+22,i =3时,S =1+2+22+23,i =4时,S =1+2+22+23+24,故i >4时跳出循环,故选A.二、填空题(本题共4小题,每小题5分,共20分)11.假设关于某设备的使用年限x 和所支出的维修费用y (万元)有如下的统计资料:________. 解析:由题意可知x =2+3+4+5+65=4,y =2.2+3.8+5.5+6.5+7.05=5.即样本中心为(4,5),因为b ^=1.23,所以a ^=y --b ^x -=5-1.23×4=0.08. 所以回归直线方程为y ^=1.23x +0.08. 答案:y ^=1.23x +0.0812.在平面直角坐标系内,射线OT 落在60°角的终边上,任作一条射线OA ,则射线OA 落在∠xOT 内的概率为________.解析:记B ={射线OA 落在∠xOT 内},则事件B 构成的区域是∠xOT ,全部试验结果区域是周角.∵∠xOT =60°, ∴P (B )=60360=16.答案:1613.在正方形ABCD 内任取一点P ,则使∠APB <90°的概率是________. 解析:以边AB 为直径画圆,P =8-π8=1-π8.答案:1-π814.下图1是某市有关部门根据对当地干部的月收入情况调查后画出的样本频率分布直方图,在样本中记月收入在[1 000,1 500),[1 500,2 000),[2 000,2 500),[2 500,3 000),[3 000,3 500),[3 500,4 000](元)的人数依次为A 1,A 2,…,A 6.图2是统计图1中月收入在一定范围内的人数的算法流程图.已知图1中第一组的频数为4 000,则样本的容量n =________,图2输出的S =________.解析:∵月收入在[1 000,1 500)元的频率为0.000 8×500=0.4,且有4 000人, ∴样本容量N =4 0000.4=10 000.由图2知输出的S =A 2+A 3+A 4+A 5+A 6=10 000-4 000=6 000. 答案:10 000 6 000三、解答题(本题共6小题,共70分.解答时应写出文字说明、证明过程或演算步骤) 15.(本小题满分10分)(福建高考)为了保护学生的视力,教室内的日光灯在使用一段时间后必须更换.已知某校使用的100只日光灯在必须换掉前的使用天数如下表:(1)试估计这种日光灯的平均使用寿命;(2)若定期更换,可选择多长时间统一更换合适?解:(1)各组的组中值分别为165,195,225,255,285,315,345,375,由此可算得这种日光灯的平均使用寿命约为165×1%+195×11%+225×18%+255×20%+285×25%+315×16%+345×7%+375×2%=267.9≈268(天).(2)1100×[1×(165-268)2+11×(195-268)2+18×(225-268)2+20×(255-268)2+25×(285-268)2+16×(315-268)2+7×(345-268)2+2×(375-268)2]=2 128.60.故标准差为 2 128.60≈46.估计这种日光灯的平均使用寿命约为268天,标准差约为46天,故在222天到314天之间统一更换较合适.16.(本小题满分12分)某商场举行购物抽奖促销活动,规定每位顾客从装有编号为0,1,2,3四个相同小球的抽奖箱中,每次取出一球,记下编号后放回,连续取两次,若取出的两个小球号码相加之和等于6,则中一等奖,等于5中二等奖,等于4或3中三等奖.(1)求中三等奖的概率; (2)求中奖的概率.解:设“中三等奖”为事件A ,“中奖”为事件B ,从四个小球中有放回地取两个有(0,0),(0,1),(0,2),(0,3),(1,0),(1,1),(1,2),(1,3),(2,0),(2,1),(2,2),(2,3),(3,0),(3,1),(3,2),(3,3),共16种不同的结果.(1)取出的两个小球号码相加之和等于4或3的取法有:(1,3),(2,2),(3,1),(0,3),(1,2),(2,1),(3,0),共7种结果,则中三等奖的概率为P (A )=716. (2)由(1)知两个小球号码相加之和等于3或4的取法有7种; 两个小球号码相加之和等于5的取法有2种:(2,3),(3,2). 两个小球号码相加之和等于6的取法有1种:(3,3). 则中奖概率为P (B )=7+2+116=58.17.(本小题满分12分)设x ∈(0,4),y ∈(0,4).(1)若x ∈N *,y ∈N *,以x ,y 作为矩形的边长,记矩形的面积为S ,求S <4的概率; (2)若x ∈R ,y ∈R ,求这两数之差不大于2的概率. 解:(1)∵x ∈(0,4),y ∈(0,4),且x ∈N *,y ∈N *, ∴x ∈{1,2,3},y ∈{1,2,3},故基本事件有(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3)共9种,设“S <4”为事件A ,则事件A 包括(1,1),(1,2),(1,3),(2,1),(3,1)共5个基本事件,故P (A )=59.(2)“设两数之差不大于2”为事件B , 则x -y ≤2,y -x ≤2,0<x <4,0<y <4, 事件的全部结果构成边长为4的正方形如图.则P (B )=16-2×12×2×24×4=1216=34.18.(本小题满分12分)某园林基地培育了一种新观赏植物,经过一年的生长发育,技术人员从中抽取了部分植株的高度(单位:厘米)作为样本(样本容量为n )进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,并作出样本高度的茎叶图(图中仅列出了高度在[50,60),[90,100]的数据).(1)求样本容量n 和频率分布直方图中的x ,y 的值;(2)在选取的样本中,从高度在80厘米以上(含80厘米)的植株中随机抽取2株,求所抽取的2株中至少有一株高度在[90,100]内的概率.解:(1)由题意可知,样本容量n =80.016×10=50,y =250×10=0.004, x =0.100-0.004-0.010-0.016-0.040=0.030.(2)由题意可知,高度在[80,90)内的株数为5,记这5株分别为a 1,a 2,a 3,a 4,a 5,高度在[90,100]内的株数为2,记这2株分别为b 1,b 2.抽取2株的所有情况有21种,分别为:(a 1,a 2),(a 1,a 3),(a 1,a 4),(a 1,a 5),(a 1,b 1),(a 1,b 2),(a 2,a 3),(a 2,a 4),(a 2,a 5),(a 2,b 1),(a 2,b 2),(a 3,a 4),(a 3,a 5),(a 3,b 1),(a 3,b 2),(a 4,a 5),(a 4,b 1),(a 4,b 2),(a 5,b 1),(a 5,b 2),(b 1,b 2).其中2株的高度都不在[90,100]内的情况有10种,分别为:a 5),(a 4,a 5).∴所抽取的2株中至少有一株高度在[90,100]内的概率P =1-1021=1121.19.(本小题满分12分)甲、乙两所学校高二年级分别有1 200人,1 000人,为了了解两所学校全体高二年级学生在该地四校联考的数学成绩情况,采用分层抽样方法从两所学校一共抽取了110名学生的数学成绩,并作出了频数分布统计表如下:甲校:(2)若规定考试成绩在[120,150]内为优秀,请分别估计两所学校数学成绩的优秀率; (3)若规定考试成绩在[140,150]内为特优.甲、乙两所学校从抽取的5张特优试卷中随机抽取两张进行张贴表扬,求这两张试卷来自不同学校的概率.解:(1)甲校抽取110×1 2002 200=60人,乙校抽取110×1 0002 200=50人,故x =10,y =7.(2)甲校优秀率为1560=25%,乙校优秀率为2050=40%.(3)设甲校的2张特优试卷为A 1,A 2;乙校3张特优试卷为B 1,B 2,B 3,则从5张特优试卷中随机抽取两张共10种可能.如下:B 3),(B 2,B 3).两张试卷来自不同学校有6种可能:(A 1,B 1),(A 1,B 2),(A 1,B 3),(A 2,B 1),(A 2,B 2),(A 2,B 3), 所以这两张试卷来自不同学校的概率为610=35.20.(本小题满分12分)某移动公司对[25,55]岁的人群随机抽取n 人进行了一次是否愿意使用4G 网络的社会调查,若愿意使用的称为“4G 族”,否则称为“非4G 族”,得如下统计表和各年龄段人数频率分布直方图:(1)补全频率分布直方图并求n 、a 的值;(2)从年龄段在[40,50)的“4G 族”中采用分层抽样法抽取6人参加4G 络体验活动,求年龄段分别在[40,45)、[45,50)中抽取的人数.解:(1)第二组的频率为1-(0.04+0.04+0.03+0.02+0.01)×5=0.3,所以高为0.35=0.06.频率直方图如下:第一组的频率为0.04×5=0.2,所以n =2000.2=1 000.第五组的频率为0.02×5=0.1,所以a =1 000×0.1=100.(2)因为[40,45)岁年龄段的“4G 族”人数为150×0.4=60,[45,50)岁年龄段的“4G 族”人数为100×0.3=30,二者比例为60∶30=2∶1,所以采用分层抽样法抽取6人,[40,45)岁中抽取4人,[45,50)岁中抽取2人.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

模块综合检测(一)(时间120分钟,满分150分)一、选择题(本大题共10小题,每小题6分,共60分) 1.算法的三种基本结构是( ) A .顺序结构、模块结构、条件结构 B .顺序结构、循环结构、模块结构 C .顺序结构、条件结构、循环结构 D .选择结构、条件结构、循环结构 答案:C2.一个射手进行射击,记事件E 1:“脱靶”,E 2:“中靶”,E 3:“中靶环数大于4”,E 4:“中靶环数不小于5”,则在上述事件中,互斥而不对立的事件共有( )A .1对B .2对C .3对D .4对解析:选B E 1与E 3,E 1与E 4均为互斥而不对立的事件.3.在20袋牛奶中,有3袋已过了保质期,从中任取一袋,取到已过保质期的牛奶的概率为( )A.1720 B .310 C.320 D .710答案:C4.在如图所示的“茎叶图”表示的数据中,众数和中位数分别为( )A .23与26B .31与26C .24与30D .26与30 答案:B5.(课标全国卷)有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为( )A.13 B .12C.23D .34解析:选A 记三个兴趣小组分别为1、2、3,甲参加1组记为“甲1”,则基本事件为“甲1,乙1;甲1,乙2;甲1,乙3;甲2,乙1;甲2,乙2;甲2,乙3;甲3,乙1;甲3,乙2;甲3,乙3”,共9个.记事件A 为“甲、乙两位同学参加同一个兴趣小组”,其中事件A 有“甲1,乙1;甲2,乙2;甲3,乙3”,共3个.因此P (A )=39=13.6.(陕西高考)对一批产品的长度(单位:毫米)进行抽样检测,如图为检测结果的频率分布直方图. 根据标准, 产品长度在区间[20,25)上为一等品,在区间[15,20)和[25,30)上为二等品, 在区间[10,15)和[30,35]上为三等品. 用频率估计概率,现从该批产品中随机抽取1件, 则其为二等品的概率是( )A .0.09B .0.20C .0.25D .0.45解析:选D 由频率分布直方图的性质可知,样本数据在区间[25,30)上的频率为1-5×(0.02+0.04+0.06+0.03)=0.25,则二等品的频率为0.25+0.04×5=0.45,故任取1件为二等品的概率为0.45.7.下表是某厂1~4月份用水量(单位:百吨)的一组数据:由散点图可知,用水量y 与月份x 之间有较好的线性相关关系,其线性回归直线方程是y ^=-0.7x +a ,则a =( )A .10.5B .5.15C .5.2D .5.25解析:选D 由于回归直线必经过点(x -,y -), 而x -=52,y -=72,所以72=-0.7×52+a ,∴a =5.25.8.某研究机构对儿童记忆能力x 和识图能力y 进行统计分析,得到如下数据:由表中数据,求得线性回归方程为y =45x +a ,若某儿童的记忆能力为12,则他的识图能力为( )A .7B .9.5C .10D .12 解析:选B 由表中数据得x =4+6+8+104=7,y =3+5+6+84=112,由(x ,y )在直线y ^=45x +a ^上,得a ^=-110,即线性回归方程为y ^=45x -110.当x =12时,y ^=45×12-110=9.5,即他的识图能力为9.5.9.在棱长为2的正方体ABCD -A 1B 1C 1D 1中,点O 为底面ABCD 的中心,在正方体ABCD -A 1B 1C 1D 1内随机取一点P ,则点P 到点O 的距离大于1的概率为( )A.π12 B .1-π12C.π6D .1-π6解析:选B 正方体的体积为2×2×2=8, 以O 为球心,1为半径且在正方体内部的半球的体积为12×43πr 3=12×43π×13=2π3.则点P 到点O 的距离大于1的概率为1-23π8=1-π12.10.执行如图所示的程序框图,则输出的S 值是( )A .4B .32C.23D .-1解析:选D 第一次循环后,S =-1,i =2;第二次循环后,S =23,i =3;第三次循环后,S =32,i =4;第四次循环后S =4,i =5;第五次循环后S =-1,i =6,这时跳出循环,输出S=-1.二、填空题(本大题共4小题,每小题5分,共20分)11.(湖北高考)一支田径运动队有男运动员56人,女运动员42人.现用分层抽样的方法抽取若干人,若抽取的男运动员有8人,则抽取的女运动员有________人.解析:分层抽样的特点是按照各层占总体的比抽取样本,设抽取的女运动员有x 人,则x8=4256,解得x =6. 答案:612.若输入38,运行下面的程序后,得到的结果是________.解析:数学符号“\”表示取商,“MOD ”表示取余数,故运算后a =3,b =8,x =83. 答案:8313.某中学期中考试后,对成绩进行分析,求出了外语成绩x 对总成绩y 的回归直线方程是y ^=7.3x -96.9,如果该校李明的外语成绩是95分,那么他的总成绩可能是________分.(精确到整数)解析:当x =95时,y ^=7.3×95-96.9≈597 答案:59714.在由1,2,3,4,5组成可重复数字的二位数中任取一个数,如21,22等表示的数中只有一个偶数“2”,我们称这样的数只有一个偶数数字,则组成的二位数中只有一个偶数数字的概率为________.解析:由1,2,3,4,5可组成的二位数有5×5=25个,其中只有一个偶数数字的有14个,故只有一个偶数数字的概率为1425. 答案:1425三、解答题(本大题共6小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤.)15.(本小题满分10分)有一杯2升的水,其中含有一个细菌,用一小杯从这杯水中取出0.1升水,求小杯水中含有这个细菌的概率.解:判断这个细菌所在的位置看成一次试验,设小水杯中含有这个细菌为事件A , 则事件A 构成的区域体积是0.1升,全部试验结果构成的区域体积是2升,所以P (A )=0.12=0.05.16.(本小题满分12分)某公务员去开会,他乘火车、轮船、汽车、飞机去的概率分别为0.3,0.2,0.1,0.4.(1)求他乘火车或乘飞机去的概率; (2)求他不乘轮船去的概率;(3)如果他乘某种交通工具的概率为0.5,请问他有可能乘哪种交通工具?解:(1)记“他乘火车”为事件A ,“他乘轮船”为事件B ,“他乘汽车”为事件C ,“他乘飞机”为事件D .这四个事件两两不可能同时发生,故它们彼此互斥,所以P (A ∪D )=P (A )+P (D )=0.3+0.4=0.7. 即他乘火车或乘飞机去的概率为0.7. (2)设他不乘轮船去的概率为P ,则 P =1-P (B )=1-0.2=0.8, 所以他不乘轮船去的概率为0.8. (3)由于P (A )+P (B )=0.3+0.2=0.5, P (C )+P (D )=0.1+0.4=0.5,故他可能乘火车或乘轮船去,也有可能乘汽车或乘飞机去.17.三个臭皮匠顶上一个诸葛亮,能顶得上吗?在一次有关“三国演义”的知识竞赛中,三个臭皮匠A 、B 、C 能答对题目的概率P (A )=13,P (B )=14,P (C )=15,诸葛亮D 能答对题目的概率P (D )=23,如果将三个臭皮匠A 、B 、C 组成一组与诸葛亮D 比赛,答对题目多者为胜方,问哪方胜?解:若三个臭皮匠A 、B 、C 能答对的题目彼此互斥(他们能答对的题目不重复), 则P (A ∪B ∪C )=P (A )+P (B )+P (C ) =4760>P (D )=23, 故三个臭皮匠方为胜方,即三个臭皮匠顶上一个诸葛亮;如果三个臭皮匠A 、B 、C 能答对的题目不互斥,则三个臭皮匠未必能顶上一个诸葛亮.18.(本小题满分12分)某车间为了规定工时定额,需要确定加工零件所花费的时间,为此做了四次试验,得到的数据如下表所示:(1)(2)求出y 关于x 的线性回归方程y ^=b ^x +a ^,并在坐标系中画出回归直线;(3)试预测加工10个零件需要多少时间? 解:(1)散点图如图.(2)由表中数据得:∑i =14x i y i =52.5,x -=3.5,y -=3.5,∑i =14x 2i =54.代入公式得b ^=0.7,a ^=1.05 ∴y ^=0.7x +1.05. 回归直线如图中所示.(3)将x =10代入回归直线方程, 得y ^=0.7×10+1.05=8.05(h). ∴预测加工10个零件需要8.05 h.19.(本小题满分12分)某市地铁全线共有四个车站,甲、乙两人同时在地铁第一号车站(首发站)乘车.假设每人自第2号车站开始,在每个车站下车是等可能的.约定用有序实数对(x ,y )表示“甲在x 号车站下车,乙在y 号车站下车”.(1)用有序实数对把甲、乙两人下车的所有可能的结果列举出来; (2)求甲、乙两人同在第3号车站下车的概率; (3)求甲、乙两人在不同的车站下车的概率. 解:(1)甲、乙两人下车的所有可能的结果为(2,2),(2,3),(2,4),(3,2),(3,3),(3,4),(4,2),(4,3),(4,4). (2)设甲、乙两人同在第3号车站下车的事件为A ,则P (A )=19.(3)设甲、乙两人在不同的车站下车的事件为B , 则P (B )=1-3×19=23.20.(本小题满分12分)某高校在2012年的自主招生考试成绩中随机抽取100名中学生的笔试成绩,按成绩分组,得到的频率分布表如下所示.(1)(2)为了能选拔出最优秀的学生,高校决定在笔试成绩高的第3、4、5组中用分层抽样抽取6名学生进入第二轮面试,求第3、4、5组每组各抽取多少名学生进入第二轮面试;(3)在(2)的前提下,学校决定在6名学生中随机抽取2名学生接受A 考官进行面试,求:第4组至少有一名学生被考官A 面试的概率.解:(1)①由题可知,第2组的频数为0.35×100=35人,②第3组的频率为30100=0.300,频率分布直方图如图所示,(2)因为第3、4、5组共有60名学生,所以利用分层抽样在60名学生中抽取6名学生进入第二轮面试,每组抽取的人数分别为:第3组:3060×6=3(人),第4组:2060×6=2(人),第5组:1060×6=1(人),所以第3、4、5组分别抽取3人、2人、1人进入第二轮面试.(3)设第3组的3位同学为A 1,A 2,A 3,第4组的2位同学为B 1,B 2,第5组的1位同学为C 1,则从这六位同学中抽取两位同学有(A 1,A 2),(A 1,A 3),(A 1,B 1),(A 1,B 2),(A 1,C 1),(A 2,A 3),(A 2,B 1),(A 2,B 2),(A 2,C 1),(A 3,B 1),(A 3,B 2),(A 3,C 1),(B 1,B 2),(B 1,C 1),(B 2,C 1),共15种,其中第4组的2位同学B 1,B 2中至少有一位同学入选的有:(A 1,B 1),(A 1,B 2),(A 2,B 1),(A 2,B 2),(A 3,B 1),(A 3,B 2),(B 1,B 2),(B 1,C 1),(B 2,C 1),共有9种,所以第4组至少有一名学生被考官A 面试的概率为915=35.。

相关文档
最新文档