课程设计二极管双平衡混频器说明书
实验七 二极管开关混频器实验
实验七 二极管开关混频器一、实验目的掌握变频原理及开关混频原理。
掌握环形开关混频器组合频率的测试方法。
了解环形开关混频器的优点。
二、实验原理1、环形开关混频器的工作原理 变频器的原理方框图如图1所示。
图1 变频原理方框图图中υi 为信号电压,υL 为本地振荡电压。
当这两个不同频率的正弦电压,同时作用到一个非线性元件上时,就会在它的输出电流中,产生许多组合频率分量,选用适当的滤波器取出所需的频率分量ωo ,此时就完成了频率变换,这就是变频原理。
根据所选用的非线性器件不同,可以组成不同的混频器。
如二极管混频器、晶体管混频器、场效应管混频器和差分对管混频器等。
这些混频器各有其优缺点。
随着生产和科学技术的发展,人们逐渐认识到由二极管组成的平衡混频器和环形混频器较之晶体管混频器具有:动态范围大、噪声小;本地振荡无辐射、组合频率少等优点,因而目前被广泛采用。
环形开关混频器工作在开关状态时,输出电流中的组合频率只有本振电压的奇次谐波与信号电压频率的基波的组合,用一通式表示组合频率为()ωω±+L P 12其中p=0、1、2、……。
即使环形混频器不工作在开关状态时,它的输出电流也只含有本振电压的奇次谐波与信号电压的奇次谐波的组合,也可用通式()()s L q P ωω1212+±+来表示,其中p=1、2、3、……。
较之其他的混频器,组合频率干扰少是其突出的优点之一。
2、实验电路原理图如附图G7,图中MIX41为集成环形开关混频器,型号为HSPL —1。
其内部电原理如图2-6。
图2 集成环形开关混频器内部电路原理图封装外引脚功能如下:其中,1脚为射频信号输入端,8脚为本振信号输入端,3脚、4脚为中频信号输出端,2、5、6、7接地。
3.实验线路本混频器的本振输入信号在+3dBm — +13 dBm 之间,用高频信号源输入本振信号,频率选为10.7MHz ,而射频信号是由正弦振荡部分产生的10.245 MHz 的信号。
高频课程设计—混频器讲解
《通信电子线路》课程设计说明书混频器院、部:电气与信息工程学院学生姓名:卢卓然指导教师:张松华职称副教授专业:电子信息工程班级:电子1201班学号: 1230340104完成时间:2014.12.222014年12月摘要模拟相乘器的主要技术指标是工作象限、线性度和馈通度。
工作象限是指容许输入变量的符号范围。
只容许ux和uy均为正值的相乘器称为一象限的,而容许ux和uy都可以取正、负值的则称为四象限的。
线性度是指相乘器的输出电压uO与输入电压ux(或uy)成线性的程度。
馈通度是指两个输入信号中一个为零时,另一个在输出端输出的大小。
混频是将载波为高频的已调信号,不失真地变换为载波为中间的已调信号。
在通信接收机中, 混频电路的作用在于将不同载频的高频已调波信号变换为同一个固定载频(一般称为中频)的高频已调波信号, 而保持其调制规律不变。
例如, 在超外差式广播接收机中, 把载频位于535 kHz~1605kHz中波波段各电台的普通调幅信号变换为中频为465kHz的普通调幅信号, 把载频位于88 MHz~10.8MHz的各调频台信号变换为中频为10.7MHz的调频信号, 把载频位于四十几兆赫至近千兆赫频段内各电视台信号变换为中频为38 MHz的视频信号。
由于设计和制作增益高, 选择性好, 工作频率较原载频低的固定中频放大器比较容易, 所以采用混频方式可大大提高接收机的性能。
此设计就是利用仿真软件,采用模拟相乘器实现混频电路的。
关键词:模拟相乘器;混频电路ABSTRACTThe mixer in communication engineering and radio technology, application is very extensive, in modulation system, the input of baseband signal are throughfrequency conversion into a high frequency modulated signal. In the demodulation process, the received modulated high frequency signal afterfrequency conversion, into intermediate frequency signals corresponding to.Especially in the superheterodyne receiver, mixer is widely used, such as AMradio receiver will be amplitude modulated signal 535KHZ- a 1605KHZ to become 465KHZ IF signal, image signal television receiver will have a 870M48.5M to become 38MHZ of intermediate frequency image signal. In mobile communication, a frequency and the two frequency etc..In the transmitter, in order to improve the stability of transmitting frequency, uses the multistagetype transmitter. With a low frequency of the quartz crystal oscillator as the main oscillator, generating the main oscillation signal of a frequency is verystable, and then through the frequency plus or minus, multiply, divide intoradio frequency, we must use a mixer circuit, such as converting TV transposer transceiver channel, the uplink, downlink frequency in satellitecommunication transform, must be in the mixer. Thus, mixing circuit is the key module of Applied Electronic Technology and professional radio must master.Key words anlog mixer; mixer circuit目录绪论 (1)1 系统分析 (3)1.1 设计课题任务 (4)1.2 课题基本原理 (5)1.3 混频电路分类 (6)1.4 混频电路的实际运用 (7)2 单元电路工作原理 (8)2.1 模拟乘法器 (9)2.2 混频器 (10)2.3 选频电路 (11)3 电路性能指标测试 (15)4 结论 (16)参考文献 (17)致谢 (18)附录 (19)绪论混频器在通信工程和无线电技术中,应用非常广泛,在调制系统中,输入的基带信号都要经过频率的转换变成高频已调信号。
课程设计---混频器电路的设计
2012~2013学年第一学期《高频电子线路》课程设计报告题目:混频器电路的设计专业:电子信息工程电气工程系2012年12月20日任务书摘要混频,又称变频,也是一种频谱的线性搬移过程,它是使信号自某一个频率变换成另一个频率。
完成这种功能的电路称为混频器。
混频技术的应用十分广泛。
混频器是超外差式收音机中的关键部件。
直放式接收机高频小信号检波,工作频率变化范围大时,工作频率对高频通道的影响比较大,灵敏度较低。
采用超外差技术后,将接收信号混频到一固定中频,放大量基本不受接收频率的影响,这样,频段内信号的放大一致性好,灵敏度可以做得很高,选择性也较好。
因为放大功能主要在中放,可以用良好的滤波电路。
采用超外差接收后,调整方便,放大量、选择性主要由中频部分决定,且中频较高频信号的频率低,性能指标容易得到满足。
混频器在一些发射设备中也是必不可少的。
在频分多址信号的合成、微波接力通信、卫星通信等系统中也有其重要的地位。
此外,混频器也是许多电子设备、测量仪器的重要组成部分。
关键字:信号;频率;混频器目录摘要 (2)第一章系统分析 (4)1.1 设计任务 (4)1.2 工作原理及系统框图 (4)第二章软件介绍 (5)2.1 Multisim 10简介 (5)2.2 Multisim 10特点 (5)第三章硬件电路图及原理分析 (6)3.1 总电路图 (6)3.2 本地振荡回路 (7)3.2.1 振荡起振条件 (7)3.2.2 电路参数选择及原理分析 (8)3.3 变频电路 (9)3.3.1 混频原理 (9)3.3.2 电路参数选择及性能分析 (11)3.4中频滤波电路 (12)第四章仿真及结果 (14)第五章结论 (17)参考文献 (18)1.1 设计任务设计一混频电路要求输入信号为10MHz ,本振信号为16.455MHz 左右,中频频率为6.455MHz 。
1.2 工作原理及系统框图一个实际应用中调幅收音机的混频器电路的主要功能是使信号自某一个频率变换成另外一个频率,实际上是一种频谱线性搬移电路。
二极管双平衡混频器实验总结
二极管双平衡混频器实验总结
二极管双平衡混频器是一种常用的射频混频器电路,能够实现信号的频率转换和调制解调功能。
通过对该电路的实验,我们主要总结如下几点:
1. 电路结构:二极管双平衡混频器由两个三极管和两个二极管组成。
其中两个三极管分别用于信号放大和混频,两个二极管则用于信号的倍频和调制。
2. 工作原理:在电路中,信号源经过输入变压器和输入电容,进入信号放大级,经过放大后的信号进一步进入混频级。
在混频级中,二极管将输入的射频信号和本地振荡器产生的本地振荡信号进行混合,得到中频信号。
最后,中频信号经过输出变压器和输出电容,输出到负载中。
3. 实验现象:通过实验可以观察到,当输入射频信号的频率和相位与本地振荡信号的频率和相位相同的时候,输出中频信号幅度较大;而当输入射频信号的频率和相位与本地振荡信号的频率和相位不同的时候,输出中频信号幅度较小。
4. 实验参数:在实验中,可以通过调整本地振荡信号的频率和相位,来观察输出中频信号的变化情况。
通过改变输入射频信号的频率和相位,可以观察到混频电路对信号的调制和解调效果。
5. 实验应用:二极管双平衡混频器广泛应用于射频信号处理和调制解调领域。
例如,将其用于无线电通信中,可以实现信号
的频率转换和调制解调功能,用于实现语音、数据的传输和接收。
总之,通过对二极管双平衡混频器的实验研究,我们深入了解了其电路结构和工作原理,并通过调整实验参数,观察到了其混频、调制解调的效果。
这为我们进一步应用和设计混频器电路提供了实验基础和参考。
二极管混频器
S (t )
1 2
2
cos 0t
2
3
cos 30t
2
5
cos 50t
由等效电路可得
i1
v0 )
i2
rd
1 RL
S (t )(v0
1 2 vs )
4
经过变压器Tr2的作用,输出应与总电流成比例,而总电流为
i
i1
i2
rd
1 RL
S (t )vs
(1 2
2
cos 0t
2
3
cos
30t
) •
rd
1 RL
Vsm
cos st
5
3,结论 混频器的输出分量只有信号频率成分、信号频率与本振信号基波和谐波分量 的和频、差频。 没有本振信号基波和谐波分量。
6
三、二极管环形混频器(双平衡混频器) 为了在混频器中进一步抑制非线性产物,广泛采用环形混频器。相当于两个平衡 混频器的组合。 1,原理电路和等效电路
7
8
2,输出信号
两种情况下,在输出变压器初级线圈产生的电流为
i
i1
i3
rd
1 RL
S (t)vs
i
i4
i2
rd
1 RL
S (t)( vs 2
v0 )
rd
1 RL
S (t)(vs 2
v0 )
rd
1 RL
S (t)vs
9
S (t ) 此时开关函数
与 在
开关时间上相差半个振荡电压周
期,S可以(t写)为
S (t) S(t T ) 2
1 2
2
cos0t
2
3
平衡同步混频器课程设计报告
平衡同步混频器课程设计报告一、引言平衡同步混频器是电子电路中的一种重要器件,它可以将两路信号进行混频,同时保持输入输出之间的相位差为0度或180度。
在通信、雷达、广播、测量等领域中有着广泛的应用。
本文将介绍平衡同步混频器的基本原理、设计要点以及实验结果。
二、基本原理平衡同步混频器由一个平衡混频器和一个同步环路组成。
平衡混频器是一种典型的双平衡混频器,它有两个输入端口和一个输出端口。
同步环路由相位锁定环路和参考振荡器组成。
参考振荡器提供精确的本地振荡信号,相位锁定环路监测并调节输入信号和本地振荡信号的相位差,保证输入输出之间的相位差为0度或180度。
三、设计要点平衡同步混频器的设计要点包括:平衡混频器的设计、同步环路的设计以及整体电路的优化。
平衡混频器的设计需要考虑两路输入信号的平衡性和混频器的线性度,同时需要选择合适的混频器器件和匹配网络。
同步环路的设计需要选择适当的相位检测器、低通滤波器和锁相环滤波器,以实现快速、准确的相位锁定。
整体电路的优化需要考虑信号的幅度和相位失真、杂散和噪声等因素,通过合理的电路布局和参数选择,优化整体电路性能。
四、实验结果为了验证平衡同步混频器的性能,我们进行了实验并得到了以下结果:在输入信号频率为1GHz,本地振荡信号频率为1.01GHz时,输出信号频率为10MHz,输出幅度为-12dBm,相位差为0度。
在输入信号频率为1.5GHz,本地振荡信号频率为1.49GHz时,输出信号频率为10MHz,输出幅度为-14dBm,相位差为180度。
实验结果表明,平衡同步混频器在频率范围内具有良好的混频性能和相位锁定性能。
五、结论平衡同步混频器是一种重要的电子电路器件,它在通信、雷达、广播、测量等领域中有着广泛的应用。
本文介绍了平衡同步混频器的基本原理、设计要点以及实验结果,可以为相关领域的工程师和科研人员提供参考。
在实际应用中,需要根据具体的需求进行电路设计和参数选择,以实现最佳的性能和可靠性。
双平衡二极管混频器的分析与设计【文献综述】
文献综述电子信息工程双平衡二极管混频器的分析与设计混频器应用于移动通信和微波通信以及各种高精度的微波测量系统中的前端电路,是射频系统中的一个关键部分,其性能的好坏直接影响到整个系统的性能。
本文打算采用ADS软件设计了一个双平衡二极管混频器。
最后通过仿真得到了二极管双平衡混频器的三阶交调等参数。
介绍了混频器的发展状况、混频二极管以及利用它们来实现混频的优缺点。
给出了混频器相关的概念和指标,还有各种不同结构的混频器电路及其指标的差异。
探讨了二极管环形混频电路的工作原理,通过分析和计算,得出最终输出电流的组合频率分量。
按采用的非线性器件不同,常用的混频器有三极管混频器、二极管混频器和集成模拟乘法器构成的混频器,此外,还有采用变容二极管等非线性元器件构成的混频器。
其中,二极管混频器主要应用于工作频率较高的无线电超外差式接收机(如米波段及微波接收机)或仪器中。
其优点是电路结构简单,噪声低,工作频段宽,组合频率少。
它的电路形式有单管式、平衡式及环形式(也称为双平衡式)等。
混频器已被广泛应用于移动通信,微波通信,以及各种高精密微波前端电路测试系统,射频系统是其性能的关键部分,直接影响到整个系统的性能。
通信工程和无线电技术,被广泛用于调制系统中,输入基带信号,通过转换进入高频率的调制信号。
在解调过程中,收到的信号调制高频频率也将受到相应的中频信号转换。
特别是在超外差接收器,混频器被广泛使用,如AM广播接收器将有一个535KHz调幅信号,可用1000Hz的本振将其变频为465KHz的中频信号。
在为了提高发射机的发射频率,多级发射器的稳定性。
以较低的频率作为主振荡器晶体振荡器,产生一个非常稳定的高频主振信号,然后通过加,减,乘,除法运算转化成无线电频率,所以必须使用混频器电路,如转让发送和接收频道的电视转换,卫星通信上行,下行频率转换等,必须使用混频器。
因此,混频器电路是电子技术和无线电专业应用必须掌握的关键电路。
毕业设计二极管环形混频器的设计
毕业设计91二极管环形混频器旳设计通信电路》课程设计二极管环形混频器旳设计课程设计任务书课程设计名称:通信电路课程设计设计题目:二极管环形混频器旳设计完毕期限:自年 12月 29 日至年 1月 4日共 1 周设计任务及规定: 设计任务:设计一款二极管环形混频器对二极管环形混频器电路进行分析设计确定二极管环形混频器性能指标设计规定:1、设计出完整旳电路图,并详述其工作原理。
2、设计出电路布局并分析电路功能及性能指标。
3、分析组合频率干扰旳原因并提出优化措施。
指导教师(签字): 教研室主任(签字):同意日期: 年月日二极管环形混频器旳设计摘要混频器在通信工程和无线电技术中 ,应用非常广泛 ,在调制系统中 ,输入旳基带信号都要通过频率旳转换变成高频已调信号。
在解调过程中 ,接受旳已调高频信号也要通过频率旳转换 ,变成对应旳中频信号。
本文探讨了二极管环形混频电路旳工作原理,通过度析和计算,得出最终输出电流旳组合频率分量,并给出二极管环形混频器旳重要性能指标。
分析认为,由于二极管特性不配对,变压器中心抽头不对称,各端口之间旳隔离是不理想旳,总会有很少许功率在各端口之间窜通,提出了处理组合频率干扰问题旳3种措施。
二极管环形混频器广泛应用于高质量旳通信接受设备中,其长处是电路构造简朴,噪声低,工作频段宽,组合频率少。
关键词:混频电路,二极管环形混频器,本振信号,中频信号目录一、选题旳意义和目旳................................................1 二、总体设计方案 (2)1、二极管环形混频器工作原理 (2)2、二极管环形混频器电路特点 (2)三、电路分析及优化频率干扰旳措施 (3)1、二极管环形混频器电路分析 (3)2、优化频率干扰旳措施 (4)四、二极管环形混频器重要性能指标 (4)1、变频损耗和噪声系数 (4)2、变频压缩 (5)3、动态范围 (5)4、隔离度 (6)5、交调性能 (6)五、结论 (7)六、总结 (7)参照文献 (8)一、选题旳意义和目旳混频器在通信工程和无线电技术中 ,应用非常广泛 ,在调制系统中 ,输入旳基带信号都要通过频率旳转换变成高频已调信号。
二极管双平衡混频器(高频电子线路实验报告)
二极管双平衡混频器(高频电子线路实验报告)实验目的:本实验的目的是了解二极管双平衡混频器的工作原理,学习二极管混频器的设计和实现方法,并掌握测量混频器的转换增益、带宽等性能指标的方法。
实验器材:信号源、三用万用表、示波器、阻容器、二极管、贴片电容、电感等。
实验原理:二极管混频器是广泛应用于射频电子技术和通信系统中的一种基本电路,其主要功能是将两个频率之差的信号(即交叉项)提取出来。
在混频器中,二极管的导通和截止状态会导致输入信号的非线性失真,从而产生一些新的频率成分,这些新的频率成分就是交叉项。
二极管双平衡混频器中,两个二极管位置互换,在输入端接受两路信号并且两路信号相位相反,在输出端将信号进行混频得到两路频率之差的信号,从而获得良好的高抑制比和较低的杂散响应,具有很好的工作稳定性。
实验步骤:1. 按照电路图连接电路,先不加直流偏置电压进行测量。
2. 用三用万用表测量二极管的参数(反向电流、正向电流、正向电压等),记录数据。
3. 使用示波器对混频器进行测试,并记录波形。
4. 使用信号源对输入端接入射频信号和本振信号,并连接示波器进行测量。
5. 使用贴片电容和电感调节深度谐振电路的参数,得到转换增益和带宽等指标数据。
6. 最后加入直流偏置电压,调节电路参数来提高直流工作点的稳定性。
实验结果:1. 测量二极管的参数:反向电流:30nA正向电流:65mA正向电压:0.6V2. 示波器测试的波形见图1。
3. 测量深度谐振电路的参数,得到转换增益为5.8dB,带宽为500kHz。
4. 接入射频信号和本振信号,示波器测得输出信号,幅度为3.2V,频率为1.0MHz,出现了转换增益和带宽这两项主要指标,结果见图2。
5. 经过反复调节电路参数,加入直流偏置电压后,测量得到直流工作点的稳定性良好。
实验分析:本实验采用了二极管双平衡混频器,其具有结构简单、工作可靠、传输带宽宽等优点,成为射频电子技术和通信系统中基本电路之一。
实验三 二极管双平衡混频器
实验十二变容二极管调频实验一、实验目的1、掌握变容二极管调频电路的原理。
2、了解调频调制特性及测量方法。
3、观察寄生调幅现象,了解其产生及消除的方法。
二、实验内容1、测试变容二极管的静态调制特性。
2、观察调频波波形。
3、观察调制信号振幅时对频偏的影响。
4、观察寄生调幅现象。
三、实验仪器1、信号源模块1块2、频率计模块1块3、 3 号板1块4、双踪示波器1台5、万用表1块6、频偏仪(选用)1台四、实验原理及电路1、变容二极管工作原理调频即为载波的瞬时频率受调制信号的控制。
其频率的变化量与调制信号成线性关系。
常用变容二极管实现调频。
变容二极管调频电路如图12-1所示。
从P3处加入调制信号,使变容二极管的瞬时反向偏置电压在静态反向偏置电压的基础上按调制信号的规律变化,从而使振荡频率也随调制电压的规律变化,此时从P2处输出为调频波(FM)。
C15为变容二级管的高频通路,L2为音频信号提供低频通路,L2可阻止外部的高频信号进入振荡回路。
本电路中使用的是飞利浦公司的BB910型变容二极管,其电压-容值特性曲线见图12-4,从图中可以看出,在1到10V 的区间内,变容二极管的容值可由35P到8P左右的变化。
电压和容值成反比,也就是TP6的电平越高,振荡频率越高。
图12-1 变容二极管调频图12-4 BB910型变容二极管容值与电压特性曲线图12-2示出了当变容二极管在低频简谐波调制信号作用情况下,电容和振荡频率的变化示意图。
在(a)中,U0是加到二极管的直流电压,当u=U0时,电容值为C0。
uΩ是调制电压,当uΩ为正半周时,变容二极管负极电位升高,即反向偏压增大;变容二极管的电容减小;当uΩ为负半周时,变容二极管负极电位降低,即反向偏压减小,变容二极管的电容增大。
在图(b)中,对应于静止状态,变容二极管的电容为C0,此时振荡频率为f0。
因为LC f π21=,所以电容小时,振荡频率高,而电容大时,振荡频率低。
高频课程设计 二极管双平衡混频器
河北科技师范学院课程设计说明书课程名称:高频电子线路设计题目:混频器工作原理姓名:高金龙、郭强、姚明月院系:机电工程学院专业班级:电子0701、0702学号:041407010704140702100414070227(姓名顺序排列)指导教师:杜殿会日期:2009年12月8至12日目录1、设计任务与要求 (1)2、方案与论证 (1)3、原理 (1)4、参数计算 (3)5、总原理图与仿真结果 (6)6、元件清单 (8)7、结论与心得 (9)8、参考文献 (9)二极管双平衡混频器1、设计任务与要求变频(混频)是指将高频已调波经过频率变换,变为固定中频已调波,同时必须保持其调制规律不变。
具有这种功能的电路称为混频电路或变频电路,亦称为混频器或变频器。
2、方案与论证方案一:三极管混频器的电路组态电路(c)和(d)都是共基级混频器,分为同级注入式和分级注入式。
电路(b),共发分级注入式电路(a),共发同级注入式方案二:二极管混频器图1二极管双平衡混频器的电路图示见图。
图中VS为输入信号电压,VL 为本机振荡电压。
在负载RL上产生差频和合频,还夹杂有一些其它频率的无用产物,再接上一个滤波器(图中未画出)二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。
图中的变压器一般为传输线变压器。
3、原理二极管双平衡混频器的最大特点是工作频率极高,可达微波波段,由于二极管双平衡混频器工作于很高的频段。
图1中的变压器一般为传输线变压器。
二极管双平衡混频器的基本工作原理是利用二极管伏安特性的非线性。
众所周知,二极管的伏安特性为指数律,用幂级数展开为])(1)(21[)1(2⋯+⋯++=-=n TT T S S V vn V v V v I e I i TV v !!当加到二极管两端的电压v 为输入信号VS 和本振电压VL 之和时,V2项产生差频与和频。
其它项产生不需要的频率分量。
课程设计二极管双平衡混频器说明书
摘要在这次设计中,我主要负责二极管双平衡混频器,单失谐回路斜率鉴频器和低频功率放大器的设计。
要求完成各单元电路设计及仿真,利用Multisim开发软件完成整机电路设计;通过实际电路方案的分析比较,参数计算,元件选取,仿真测试等意见反馈环节,初步掌握简单实用电路的分析方法和工程设计方法;了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图;掌握常用仪表的正确使用方法,学会简单电路的实验调试和整机指标测试方法。
通过这次课程设计,是学生加强对通信电子线路的理解,掌握文献资料检索,设计方案论证比较,以及设计参数计算等能力环节。
进一步提高分析解决实际问题的能力,提高解决通信电子电路问题的实际本领,真正实现由课本知识向实际能力的转化。
关键词:通信调频仿真 Multisim目录摘要 (I)目录...................................................................... I I一、前言 (1)二、设计指标 (2)2.1 工作频率范围 (2)2.2 灵敏度 (2)2.3 选择性 (2)2.4 频率特性 (2)2.5 输出功率 (2)三、系统总述 (2)四、单元电路设计与仿真 (4)4.1 二极管双平衡混频器 (4)4.2单失谐回路斜率鉴频器 (5)4.3低频功率放大器 (6)4.4高频谐振放大器电路 (8)4.5 中频谐振放大器电路 (9)4.6本机振荡器 (10)五、整机电路设计图 (11)六、高频实验平台整机联调设计指标 (12)6.1、分级安装与调试 (12)6.2、整机联调时常见的故障分析 (12)6.3、调频接收机实验步骤 (13)七、设计总结 (14)八、参考文献 (15)一、前言近些年信息通信领域中,发展最快和应用最广的就是无线通信技术。
无线通信的终极目标是实现任何人在任何时间,任何地点接收和发送任何信息。
混频器设计及仿真
,cos ,cos t V v t V v LO LO LO RF RF RF ωω==DL RF R R vi i +=-2232)(22141πω-+=-t K R R v i i LO DL RF实验名称:混频器设计及仿真一、实验目的1、理解和掌握二极管双平衡混频器电路组成和工作原理。
2、理解和掌握二极管双平衡混频器的各种性能指标。
3、进一步熟悉电路分析软件。
二、实验原理混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。
两个输入端分别为射频端RF 和本振LO 。
输出端称为中频端IF 。
基本原理图如图:本实验采用二极管环形混频器如图:由于RF LOV V >>,二极管主要受到大信号LO V 控制,四个二极管均按开关状态工作, 将二极管用开关等效,开关函数表示为:)(1t K LO ω,因此在LO v 正半周期间开关闭合,上下回路方程为:0)(,0)(233322=---+-=---+L D LO RF L D LO RF R i i R i v v R i i R i v v ,求得: , 与之相应的开关函数)(1t K LO ω,因此一般形式为: ,与之相应的开关函数)(1t K LO ω,因此一般形式为:,同理分析得在LO v 负半周期间有:专业:信息对抗(12083511) 学生姓名:刘美琪(12083103) 实验名称:混频器设计及仿真)(22132t K R R v i i L DL RFω+=-)(22132t K R R v i i L DL RFω+=-所以通过L R 的总电流为:...]3cos 34cos 4[cos 22)()(3241+-+-=---=t t t R R V i i i i i LO LO LO D L RF o ωπωπω所以知:双平衡混频器的输出电流中仅包括 的组合频率分量,而抵消了RF LO ωω,即p 为偶数的众多组合频率分量。
平衡混频器课程设计
平衡混频器课程设计一、课程目标知识目标:1. 让学生掌握平衡混频器的基本概念,理解其工作原理和电路组成;2. 使学生了解平衡混频器在通信、广播等领域的应用,认识到其在现代电子技术中的重要性;3. 引导学生掌握平衡混频器的主要性能参数,学会分析其性能优缺点。
技能目标:1. 培养学生能够运用所学知识,正确搭建和调试平衡混频器电路;2. 提高学生运用平衡混频器解决实际问题的能力,例如:设计简单的接收机电路;3. 培养学生通过实验和数据分析,优化平衡混频器性能的能力。
情感态度价值观目标:1. 培养学生对电子技术学科的兴趣,激发他们探索未知、追求创新的精神;2. 引导学生树立团队合作意识,培养他们在实验和讨论中互相学习、共同进步的良好习惯;3. 使学生认识到科技发展对社会进步的重要性,增强他们的社会责任感和使命感。
课程性质:本课程为电子技术学科的基础课程,以理论与实践相结合的方式进行教学。
学生特点:本课程面向高中年级学生,他们对电子技术有一定的基础知识,具有较强的求知欲和动手能力。
教学要求:结合学生特点,注重理论与实践相结合,提高学生的实际操作能力和创新能力。
在教学过程中,注重启发式教学,引导学生主动思考、积极参与。
同时,关注学生的个体差异,因材施教,使每个学生都能在课程中取得良好的学习成果。
通过本课程的学习,期望学生能够掌握平衡混频器的基本知识,提高电子技术实践能力,培养良好的团队协作和创新能力。
二、教学内容1. 平衡混频器基本原理:介绍平衡混频器的工作原理,分析其相较于传统混频器的优势,探讨其在高频信号处理中的应用。
教材章节:第三章第三节“平衡混频器原理及其应用”2. 平衡混频器电路组成:讲解平衡混频器的电路结构,分析各个部分的功能和作用,引导学生掌握电路元件的选型和连接方法。
教材章节:第三章第四节“平衡混频器电路分析与设计”3. 平衡混频器性能参数:介绍平衡混频器的性能指标,如转换增益、线性度、动态范围等,使学生能够评估和优化混频器性能。
课程设计-混频器
通信电子线路课程设计说明书三极管混频器院、部:学生姓名:指导教师:职称:专业:班级:完成时间:混频器在现代通信中的应用非常的广泛,融入了人们的生活当中。
是现代通信中一个不可或缺的。
混频器通过改变频率来达到应有的目的,即变频。
本次课程设计采用三级管混频器,电路简单,变频增益高。
输入两个高频信号,通过三极管混频电路和选频回路,最后可以得到一个差频信号。
采用9014三极管,用中周来充当选频回路,本设计结构简单,性能相对较为稳定,成本低,使用滑动变阻器改变静态工作点,使其工作在非线性工作区域,是发射极注入、基极输入式变频电路。
关键词:混频器;三极管;选频Application of mixer in modern communication is very wide, into people's lives. The modern communication is an indispensable. The mixer to achieve the desired objective by changing frequency, variable frequency.This course is designed with three pipe mixer, simple circuit, high conversion gain. Input two high-frequency signal, pipe mixer circuit and frequency selection circuit through the pole, and then we can get a difference frequency signal. The 9014 triode, used in the weeks to act as a frequency selective circuit, this design has the advantages of simple structure, performance is relatively stable, low cost, the use of a sliding rheostat change the static working point, which works in the nonlinear area, is the emitter injection, base input type frequency conversion circuit.Key word: mixer;transistor;frequency目录第一章三极管混频器的设计内容及要求 (1)1.1 设计内容 (1)1.2 设计要求 (1)1.3 混频器工作原理及系统框图 (1)1.4 三极管混频器的设计方案 (3)第二章电路设计及其原理分析 (4)2.1 本地振荡电路 (4)2.2 混频电路 (6)第三章三极管混频器的仿真和调试 (9)3.1 仿真软件介绍 (9)3.2 混频器电路的仿真 (9)3.3 实物调试 (10)3.4 总结 (10)参考文献 (11)致谢 (12)附录 (13)附录 A (13)附录 B (14)附录 C (14)附录 D (15)第一章 三极管混频器的设计内容及要求1.1 设计内容在本次课程设计中采用了Multisim 仿真软件对三极管混频器进行设计及绘制,并模拟仿真。
实验三 二极管双平衡混频器
变频电压增益
1、二极管双平衡混频器原理
二极管双平衡混频实验电路原理图
2、晶体管混频器
3、模拟乘法器混频
模拟相乘器的输出频率包含有两个输入频率之差或 和,模拟相乘器加滤波器,滤波器滤除不需要的分 量, 取和频或者差频,即构成混频器.
集成模拟乘法器MC1496构成乘法器混频电路
五、参考实验波形
混频器输入输出点波形
混频器输入及选频放大输出波形
:本振频率
:高频载波频率
:中频载波频率 —下变频器 —上变频器
取差频,则中频频率降低: 取和频,则中频频率升高:
在 的 , 变 频 后 依 然 在 载 波 两 边 。
( ) a 变 频 前
信 号 是 作 为 载 波 的 边 频 存
( ) b 变 频 后
混频器常用的非线性器件有二极管、三极管、场 效应管和乘法器。 二极管双平衡混频器工作频率极高,输出频谱较 纯净,噪声低,工作频带宽,动态范围大,缺点是高 频增益小于1。
二、实验内容
1、 2、
二极管双平衡混频器频率变换过程和此种混频器的优缺点。 测试混频器输出频谱与本振电压大小的关系。
三、实验原理
变频只改变载波频率,使之由高频变成中频,但是不改 变调制规律。包括调制方式、调制参数、调制程度等。
本振用于产生一个等幅的高频信号VL,并与输入信号 VS经混频器后所产生的差频信号经带通滤波器滤出。
实验三 二极管双平衡混频器
一、实验目的
1.
掌握二极管双平衡混频器频率变换的物理过程。 2. 掌握晶体管混频器频率变换的物理过程和本振电压V0 和工作电流Ie对中频转出电压大小的影响。 3. 掌握集成模拟乘法器实现的平衡混频器频率变换的物 理过程。 4. 比较上述三种混频器对输入信号幅度与本振电压幅度 的要求。
基于二极管混频器的调幅接收系统整机电路设计课程设计报告
《通信电子系统》课程设计报告题目:基于二极管混频器的调幅接收系统整机电路设计毕业设计(论文)原创性声明和使用授权说明原创性声明本人郑重承诺:所呈交的毕业设计(论文),是我个人在指导教师的指导下进行的研究工作及取得的成果。
尽我所知,除文中特别加以标注和致谢的地方外,不包含其他人或组织已经发表或公布过的研究成果,也不包含我为获得及其它教育机构的学位或学历而使用过的材料。
对本研究提供过帮助和做出过贡献的个人或集体,均已在文中作了明确的说明并表示了谢意。
作者签名:日期:指导教师签名:日期:使用授权说明本人完全了解大学关于收集、保存、使用毕业设计(论文)的规定,即:按照学校要求提交毕业设计(论文)的印刷本和电子版本;学校有权保存毕业设计(论文)的印刷本和电子版,并提供目录检索与阅览服务;学校可以采用影印、缩印、数字化或其它复制手段保存论文;在不以赢利为目的前提下,学校可以公布论文的部分或全部内容。
作者签名:日期:学位论文原创性声明本人郑重声明:所呈交的论文是本人在导师的指导下独立进行研究所取得的研究成果。
除了文中特别加以标注引用的内容外,本论文不包含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标明。
本人完全意识到本声明的法律后果由本人承担。
作者签名:日期:年月日学位论文版权使用授权书本学位论文作者完全了解学校有关保留、使用学位论文的规定,同意学校保留并向国家有关部门或机构送交论文的复印件和电子版,允许论文被查阅和借阅。
本人授权大学可以将本学位论文的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。
涉密论文按学校规定处理。
作者签名:日期:年月日导师签名:日期:年月日注意事项1.设计(论文)的内容包括:1)封面(按教务处制定的标准封面格式制作)2)原创性声明3)中文摘要(300字左右)、关键词4)外文摘要、关键词5)目次页(附件不统一编入)6)论文主体部分:引言(或绪论)、正文、结论7)参考文献8)致谢9)附录(对论文支持必要时)2.论文字数要求:理工类设计(论文)正文字数不少于1万字(不包括图纸、程序清单等),文科类论文正文字数不少于1.2万字。
混频电路设计3
通信电路实验报告——谐振功率放大器设计及仿真姓名:陈强华学号:14085114班级:14083414专业:通信工程实验三混频器设计及仿真一、实验目的1、理解和掌握二极管双平衡混频器电路组成和工作原理。
2、理解和掌握二极管双平衡混频器的各种性能指标。
3、进一步熟悉电路分析软件。
二、实验准备1、学习二极管双平衡混频器电路组成和工作原理。
2、认真学习附录相关内容,熟悉电路分析软件的基本使用方法。
三、设计要求及主要指标1、LO 本振输入频率:1.45MHz,RF 输入频率:1MHz,IF 中频输出频率:450KHz。
2、LO 本振输入电压幅度:5V,RF 输入电压幅度:0.5V。
3、混频器三个端口的阻抗为50Ω 。
4、在本实验中采用二极管环形混频器进行设计,二极管采用DIN4148。
5、分析混频器的主要性能指标:混频增益、混频损耗、1dB 压缩点、输入阻抗,互调失真等;画出输入、输出功率关系曲线。
四、设计步骤1、原理分析混频器作为一种三端口非线性器件,它可以将两种不同频率的输入信号变为一系列的输出频谱,输出频率分别为两个输入频率的和频、差频及其谐波。
两个输入端分别为射频端(RF)和本振(LO),输出端称为中频端(IF)其基本的原理如下图所示。
通常,混频器通过在时变电路中采用非线性元件来完成频率转换,混频器通过两个信号相乘进行频率变换,如下:输入的两个信号的频率分别为ωRF \ωLO,则输出混频信号的频率为ωRF LO +ω (上变频)或ωRF LO −ω (下变频),从而实现变频功能。
在本试验中,我们采用二极管环形混频器,其的原理电路如图3-2 所示,其中v V t RF RFRF= cosω,v V t LO LOLO= cosω,并且有V V LO RF >>,因此二极管主要受到大信号v LO控制,四个二极管均按开关状态工作,各电流电压的极性如图3-2 所示。
在本振电压的正半周,二极管D2 \ D3 导通,D1 \ D4 截止;在本振电压的负半周,二极管D1 \ D4 导通,D2 \ D3截止。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
摘要在这次设计中,我主要负责二极管双平衡混频器,单失谐回路斜率鉴频器和低频功率放大器的设计。
要求完成各单元电路设计及仿真,利用Multisim开发软件完成整机电路设计;通过实际电路方案的分析比较,参数计算,元件选取,仿真测试等意见反馈环节,初步掌握简单实用电路的分析方法和工程设计方法;了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图;掌握常用仪表的正确使用方法,学会简单电路的实验调试和整机指标测试方法。
通过这次课程设计,是学生加强对通信电子线路的理解,掌握文献资料检索,设计方案论证比较,以及设计参数计算等能力环节。
进一步提高分析解决实际问题的能力,提高解决通信电子电路问题的实际本领,真正实现由课本知识向实际能力的转化。
关键词:通信调频仿真 Multisim目录摘要 (I)目录...................................................................... I I一、前言 (1)二、设计指标 (2)2.1 工作频率范围 (2)2.2 灵敏度 (2)2.3 选择性 (2)2.4 频率特性 (2)2.5 输出功率 (2)三、系统总述 (2)四、单元电路设计与仿真 (4)4.1 二极管双平衡混频器 (4)4.2单失谐回路斜率鉴频器 (5)4.3低频功率放大器 (6)4.4高频谐振放大器电路 (8)4.5 中频谐振放大器电路 (9)4.6本机振荡器 (10)五、整机电路设计图 (11)六、高频实验平台整机联调设计指标 (12)6.1、分级安装与调试 (12)6.2、整机联调时常见的故障分析 (12)6.3、调频接收机实验步骤 (13)七、设计总结 (14)八、参考文献 (15)一、前言近些年信息通信领域中,发展最快和应用最广的就是无线通信技术。
无线通信的终极目标是实现任何人在任何时间,任何地点接收和发送任何信息。
掌握无线通信系统的各个模块工作原理是每一个通信技术学习及研究人员的基本要求。
在一个完整的无线通信系统中,主要有放大,滤波,调制,发射,接收,混频,解调等功能模块,我们要做的,就是充分理解和掌握这些功能模块的工作过程,并能够进行相应的电路设计。
在以后的学习和工作中,免不了需要与各类电路板打交道。
因此,除了对无线通信系统原理的理解和掌握之外,我们还必须学会电路板的焊接制作过程,并对电路板进行调试,使它能正常地工作。
本次课设的主要目的是:通过这次课程设计,是学生加强对通信电子线路的理解,掌握文献资料检索,设计方案论证比较,以及设计参数计算等能力环节。
进一步提高分析解决实际问题的能力,提高解决通信电子电路问题的实际本领,真正实现由课本知识向实际能力的转化。
通过典型电路的设计与仿真,加深学生对基本原理的了解,增强学生的实践能力。
本次课设的主要内容和要求有:要求完成各单元电路设计及仿真,利用Multisim开发软件完成整机电路设计;通过实际电路方案的分析比较,参数计算,元件选取,仿真测试等意见反馈环节,初步掌握简单实用电路的分析方法和工程设计方法;了解与课程有关的电子电路以及元器件工程技术规范,能按课程设计任务书的技术要求,编写设计说明,能正确反映设计和实验成果,能正确绘制电路图;掌握常用仪表的正确使用方法,学会简单电路的实验调试和整机指标测试方法。
二、设计指标2.1 工作频率范围接收机可以接收到的无线电波的频率范围称为接收机的工作频率范围或波段覆盖。
接收机的工作频率必须与发射机工作频率相对应。
如调频广播收音机的频率范围为88-108MHz,是因为调频广播收音机的工作范围也为88-108MHz。
2.2 灵敏度接收机接收微弱信号的能力称为灵敏度。
通常用输入信号电压的大小表示,接收的输入信号越小,灵敏度越高。
调频广播收音机的灵敏度一般为5-30uV。
2.3 选择性接收机从各种信号和干扰中选出所需信号(抑制不需要的信号)的能力称为选择性。
单位用dB(分贝)表示,dB数越高,选择性越好。
调频收音机的中频干扰应该大于50dB。
2.4 频率特性接收机的频率响应范围称为频率特性或通频带。
调频机的通频带一般为200KHz。
2.5 输出功率接收机的负载输出的最大不失真(或非线性失真系数为给定值时)功率称为输出功率。
三、系统总述图一整体原理框图一般调频接收机电路的基本内容包括:高频小信号放大电路,混频电路,晶体振荡器电路,鉴频电路,低频功率放大电路,扬声器或控制器。
一般调频接收机的组成框图如图一所示,其工作原理说明:天线接收到的高频信号,经输入调谐回路选频为f1,再经过高频放大级进入混频级。
本机振荡器输出的另一个高频f2亦进入混频级,则混频级的输出为含有f1,f2,(f1+f2),(f2-f1)等频率分量的信号。
混频级的输出接调频回路选出中频信号(f2-f1),在经过中频放大器放大,获得足够高增益,然后鉴频器解调出低频调制信号,由低频功放级放大。
由于天线接收到的高频信号经过混频成为固定的中频,再加以放大,因此接收机的灵敏度较高,选择性较好,性能也比较稳定。
在模拟调制中,调频具有较为优越的性能,因此,调频技术广泛应用于立体声广播、电视伴音、无线麦克风、微波传输及卫星通信。
同样,完整的调频通信系统也由发射机与接收机两部分组成,与调幅通信系统比较,除了调制与解调的原理方法不同外,其他部分如超外差变频接收技术、中频放大电路等基本相同。
因为频率调制不是频谱线性搬移过程,它的电路就不能采用乘法器和线性滤波器来构成,而必须根据调频波的特点,提出具体实现的方法。
对于调频电路的性能指标,一般有以下几方面的要求:1.线性的调制特性。
即已调波的瞬时频率变化与调制信号成线性关系。
2.具有较高的调制灵敏度。
即单位调制电压所产生的振荡频率偏移要大。
3.最大频率偏移与调制信号频率无关。
4.未调制的载波频率(即已调波的中心频率)应具有一定的频率稳定度。
5.无寄生调幅或寄生调幅尽可能小。
实现调频的方法分为直接调频和间接调频两大类:直接调频原理:利用调制信号直接控制振荡器的振荡频率,使其反映调制信号变化规律。
要用调制信号去控制载波振荡器的振荡频率,就是用调制信号去控制决定载波振荡器振荡频率的元件或电路的参数,从而使载波振荡器的瞬时频率按调制信号变化规律线性地改变,就能够实现直接调频。
1.改变振荡回路的元件参数实现调频在LC振荡器中,决定振荡频率的主要元件是LC振荡回路的电感L和电容C。
在RC振荡器中,决定振荡频率的主要元件是电阻和电容。
因而,根据调频的特点,用调制信号去控制电感、电容或电阻的数值就能实现调频。
调频电路中常用的可控电容元件有变容二极管和电抗管电路。
常用的可控电感元件是具有铁氧体磁芯的电感线圈或电抗管电路,而可控电阻元件有二极管和场效应管。
2.控制振荡器的工作状态实现调频在微波发射机中,常用速调管振荡器作为载波振荡器,其振荡频率受控于加在管子发射极上的发射极电压。
因此,只需将调制信号加至发射极即可实现调频。
若载波是由多谐振荡器产生的方波,则可用调制信号控制积分电容的充放电电流,从而控制其振荡频率。
间接调频原理:调频可以通过调相间接实现。
通常将这样的调频方式称为间接调频,这样的调频方式采用频率稳定度很高的振荡器作为载波振荡器,然后在它的后级进行调相,得到的调频波的中心频率稳定度很高。
图二间接调频原理图四、单元电路设计与仿真4.1 二极管双平衡混频器混频器:因为中频比外来信号频率低且固定不变,中频放大器容易获得比较大的增益,从而提高收音机的灵敏度。
在较低而又固定的中频上,还可以用较复杂的回路系统或滤波器进行选频。
它们具有接近理想矩形的选择性曲线,因此有较高的邻道选择性,如果器件仅实现变频,振荡信号由其它器件产生则称之为混频器。
二极管双平衡混频器实现相乘特性,其无用组合分量比晶体二极管混频器少得多,而且二极管上限工作频率高,可达到100GHz,而模拟乘法器的工作频率受到晶体管上截止频率的限制,工作频率相对要低一些。
二极管D1,D2在本振信号的正半周导通,二极管D3,D4在u1的负半周导通,分析原理和二极管双平衡调制器类似。
电路图和仿真效果图如下:图三二极管双平衡混频器电路图图四二极管双平衡混频器仿真效果图4.2单失谐回路斜率鉴频器斜率鉴频器:利用LC谐振混路的谐振特性对不同频率的信号呈现不同的阻抗,对调频波进行调频-调幅变换,得到调频-调幅波,得到解调输出电压,调频-调幅变换特性取决于谐振特性曲线的斜率。
单失谐回路斜率鉴频器:由调频-调幅变换器和包络检波器构成,调频-调幅变换器是一个单谐振回路(由LC组成),但在这里谐振回路的调谐与一般放大器不同,回路的谐振频率不是调在输入信号的中心频率上,而是高于或低于信号中心频率,即fo<fc。
电路图和仿真效果图如下:图五单失谐回路斜率鉴频器电路图图六单失谐回路斜率鉴频器仿真效果图4.3低频功率放大器一般从鉴频器输出的信号都比较小,为了得到我们所需的信号,必须将输出信号进行放大。
一般采用三极管放大电路来实现这一功能。
低频放大电路工作原理:功率放大器和电压放大器是有区别的,电压放大器的主要任务是把微弱的电压信号进行放大,一般输入和输出的电流都比较小,用于增强电压或电流的幅度,是小信号放大器。
它消耗能量少,信号失真小,输出信号的功率小。
功率放大器的主要任务是输出大的信号功率,它的输入、输出电压和电流都较大,是大信号放大器。
它消耗能量多,信号容易失真,输出信号的功率大。
这就决定了一个性能良好的功率放大器应满足下列几点基本要求:(1)具有足够大的输出功率。
为了得到足够大的输出功率,功率管工作时的电压和电流应尽可能接近极限参数。
(2)效率要高。
功率放大器是利用晶体管的电流控制作用,把电源的直流功率转换成交流信号功率输出,由于晶体管有一定的内阻,所以它会有一定的功率损耗。
我们把负载获得的功率Po 与电源提供的功率PE之比定义为功率放大电路的转换效率η,用公式表示为:η=Po/Pe×100% 显然,功率放大电路的转换效率越好。
电路图和仿真效果图如下:图七低频功率放大器电路图图八 低频功率放大器仿真效果图4.4高频谐振放大器电路高频小信号放大器是各类无线电接收机的组成部分。
其主要功能是放大来自天线上的微弱信号,使它达到足够的功率电平,以提高接收机的灵敏度。
在这里的天线信号由Multisim 中的调幅源代替,其调幅幅度为0.1mV,载频为10MHz ,调制频率为1KHz ,经谐振放大后幅度可达到40mV 。
在实际中电路中,高频小信号要同步谐振于天线接收到的信号,在这里接收到的信号为10MHz ,根据公式LCf π210=计算出L 、C 的值分别为6.5uH 和39pF 。