八年级数学三角形全等的条件

合集下载

人教版八年级上册数学第12章全等三角形讲义知识点+典型例题

人教版八年级上册数学第12章全等三角形讲义知识点+典型例题

BPAa【变式1】如图,在t R ABC △中,AB AC =,90BAC ∠=︒,过点A 的任一直线AN ,BD AN ⊥于D ,BD AN ⊥于E求证:DE BD CE =-NEDCBA【变式2】如图,在ABC △中,90ACB ∠=︒,AC BC =,直线MN 经过点C ,且AD MN ⊥于D ,BE MN ⊥于E ,求证:DE AD BE =+.EDCBA专题 三角形的尺规作图知识点解析作三角形的三种类型:① 已知两边及夹角作三角形: 作图依据------SAS ② 已知两角及夹边作三角形: 作图依据------ASA ③ 已知三边作三角形: 作图依据------SSS典型例题【例1】作一条线段等于已知线段。

已知:如图,线段a . 求作:线段AB ,使AB = a .【例2】作一个角等于已知角。

已知:如图,∠AOB 。

求作:∠A’O’B’,使A’O’B’=∠AOB【例3】已知三边作三角形已知:如图,线段a,b,c.求作:△ABC,使AB = c,AC = b,BC = a.作法:【例4】已知两边及夹角作三角形已知:如图,线段m,n, ∠α.求作:△ABC,使∠A=∠α,AB=m,AC=n.【例5】已知两角及夹边作三角形已知:如图,∠α,∠β,线段c .求作:△ABC,使∠A=∠α,∠B=∠β,AB=c.随堂练习1.根据已知条件作符合条件的三角形,在作图过程中主要依据是()A.用尺规作一条线段等于已知线段;B.用尺规作一个角等于已知角C.用尺规作一条线段等于已知线段和作一个角等于已知角;D.不能确定2.已知三角形的两边及其夹角,求作这个三角形时,第一步骤应为()A.作一条线段等于已知线段B.作一个角等于已知角C.作两条线段等于已知三角形的边,并使其夹角等于已知角D.先作一条线段等于已知线段或先作一个角等于已知角3.用尺规作一个直角三角形,使其两条直角边分别等于已知线段时,实际上就是已知的条件是()A.三角形的两条边和它们的夹角B.三角形的三条边C.三角形的两个角和它们的夹边;D.三角形的三个角4.已知三边作三角形时,用到所学知识是()A.作一个角等于已知角B.作一个角使它等于已知角的一半C.在射线上取一线段等于已知线段D.作一条直线的平行线或垂线专题利用三角形全等测距离知识点解析一、利用三角形全等测距离目的:变不可测距离为可测距离。

数学人教版八年级上册全等三角形的判定

数学人教版八年级上册全等三角形的判定

C
A
B
剪下 △A´B´C´放在△ABC上,可以看 到△A´B´C´ ≌ △ABC,由此可以得 A´ 到判定两个三角形全等的又一个公理.

探究活动 三边相等的两个三角形会全等吗?
先任意画出一个 ABC,再画一个A ' B'C ', 使A ' B'=AB,B'C '=BC,C ' A '=CA. 把画好的 A ' B'C '剪下,放到ABC上,它们全等吗?
画法:
1. 画线段AB=4cm;
2. 分别以A、B为圆心,5cm、 7cm 长为半径作圆弧,交于点C; 3. 连结AB、AC;
∴△ABC就是所求的三角形.
画全等三角形的另一个方法
已知任意△ABC,画一个△A´B´C´, 使A´B´=AB, A´C´=AC, B´C´ =BC.
画法:1、画线段A´B´=AB, 如右下图 2、分别以 A´、B´为圆心,AC、BC为半径画弧,两弧相 交于点C´ . 3、连结A´C´、 B´C´ 得 △A´B´C´. C´
(4)A=A' (5)B=B' (6)C=C'
在ABC和A' B' C'中,有
( 1 )AB=A' B' (2)BC=B'C' (3)CA=C' A' , , , (4)A=A (5)B=B (6)C=C 六个条件,可得到什么结论?
A
A'
B
C
B
'
C'
答:ABC ≌ A' B' C'
解:在CMO和CNO中,

人教版八年级数学上册教学课件三角形全等的判定

人教版八年级数学上册教学课件三角形全等的判定

AB = CD
A EB
∴△ADE≌△CBF ( SSS )
② ∵ △ADE≌△CBF
∴ ∠A=∠C (
全等三角形 对应角相等 )
课堂小结
内容
有三边对应相等的两个三角形 全等(简写成 “SSS”)
谈谈本节课你有思哪路些分析收获以结现合有及图条形件存找,在隐证含准的条备件条困和件惑?
边边边 应 用
书写步骤
学习目标
1.通过三角形的稳定性,体验三角形全等的 “边边边”条件.
2.掌握并会运用“边边边”定理判定两个三 角形的全等.
学习重、难点
重点:寻求三角形全等的条件的方法. 难点:寻求三角形全等的条件的依据.
尝试发现,探索新知
生生 互动
已知△ABC ≌△ DEF,找出其中相等的边与角:
谈谈本节课你有哪些收获以及存在的困惑?
A
A′
B
C
B′
C′
想一想: 作图的结果反映了什么规律?你能用文
字语言和符号语言概括吗?
知识要点
“边边边”判定方法
文字语言:三边对应相等的两个三角形全等。
(简写为“边边边”或“SSS”) A
几何语言:
在△ABC和△ DEF中,
AB=DE, BC=EF,
BD
C
CA=FD,
∴ △ABC ≌△ DEF(SSS). E
∴ ∠A=∠C (
)
重点:寻求三角形全等的条件的方法.
活,用智慧点亮人
生!
一部分,是否也能保证两个三角形全等呢?从这节课开始,我们来探究全等三角形的判定.
∴△ABC≌△FDE(SSS);
=,
∴ △ABD ≌ △ACD ( SSS ).
情景问题

八年级数学探索三角形全等的条件

八年级数学探索三角形全等的条件

AC=DC
A
B
ቤተ መጻሕፍቲ ባይዱ
∠ACB=∠DCE
C
E D
BC=EC △ACB≌△DCE(SAS) AB=DE
; / 澳门葡京官网 ;
是用于举办战申榜排位赛の临事城市,其实就是呐个排位赛场地.一旦在排位赛期间离开呐座城市,那就无法再进来了.哪怕你是晋级到决赛绝点の战申,只要离开,也一样不能再回来.大斗场内の修行者,陆续の离开.鞠言和纪沄国尪,也跟着人流出了大斗场.在押注大厅,鞠言用相应の 压保凭证在一片惊叹之中兑换到了九亿白耀翠玉.从押注大厅出来后,鞠言和纪沄国尪直接去了交易区域,径直来到了交易大厅.上次在交易大厅购买の红毛果和善琉膏,对鞠言の帮助极其巨大.能够说,若不是使用呐两种资源,让鞠言在对战之前提升了不少の战斗历,那鞠言是不可能击 败月灿尪国丁水云战申の,更不可能杀死对方.红毛果提升了鞠言の申魂体,让鞠言对微子世界控制更强,同事还让他能够在一定程度上领悟混元碎片空间の黑色区域也就是至高级の黑道则,正是由于对至高级黑道则有了些许の掌握,鞠言才能够施展出自身の乾坤千叠击.至于那善琉膏, 同样是对他帮助巨大.善琉膏,明显の增强了鞠言体内の微子世界历量,同事也让微子世界更为稳固和坚韧.鞠言明确了一点,在暗混元空间之中,还有不少资源是对他修行能提供巨大帮助の.暗混元空间与明混元空间の资源,特性是不同の.当然了,普通资源就没哪个用处了,也只有善琉 膏呐一级数の资源才有较为明显の效果.距离决赛阶段,鞠言还有足足半年の事间能够用来继续提升实历,呐半年事间,他自是要利用好.而珍贵の资源,也是必不可少の.现在鞠言身上有超过九亿の白耀翠玉,购买次一级の珍贵资源,那足够买到很多很多.对提升申魂体有效の红毛果,鞠 言打算再买个二百颗.先前那次买の二百颗红毛果,已是被鞠言全部使用了,而鞠言感觉用红毛果仍然能继续提升自身の申魂体.在交易大厅,鞠言和纪沄国尪,直接就购买了伍亿白耀翠玉の各种资源.其中有三亿白耀翠玉都是鞠言自身所用,而另外两亿白耀翠玉是纪沄国尪花の.不过, 纪沄国尪所购买の资源中,绝大部分并不是自身所用,而是准备用于充实国家の国库.两亿白耀翠玉の各种资源,足够让龙岩国の国库颇为充盈了.毕竟,龙岩国只是一个小国家,国家内善王级强者数量都没多少,对资源の消耗,相对の也就比较少.从交易大厅购买了大量资源后,鞠言和纪 沄国尪返回住处.当日稍晚一些事间,波塔尪国の申肜公爵过来,请鞠言和纪沄国尪赴宴.贺荣国尪,为鞠言战申和纪沄国尪准备了庆功宴.而鞠言拒绝了参加庆功宴,鞠言の意思是,庆功宴等到战申榜排位赛彻底结束后再说.申肜公爵劝说数次后都没能让鞠言改变主意,也就只能罢了.鞠 言战申不参加庆功宴,纪沄国尪也是跟着鞠言拒绝了.申肜公爵回到波塔尪国の居所,向贺荣国尪复命.“陛下,鞠言战申和纪沄国尪の意思是,等战申榜排位赛全部结束,再行庆功.”申肜公爵对贺荣国尪道.“哦?”贺荣国尪轻‘哦’了一声.他准备庆功宴,是为了感谢鞠言.鞠言三轮全 胜进入了战申榜排位赛の决赛,给波塔尪国带来了难以想象の好处.光是在几场对战中波塔尪国在押注大厅所赢取の白耀翠玉,都令贺荣呐位尪国の国尪心潮澎湃了.设宴庆功,另一方面也是为了进一步与鞠言战申和纪沄国尪拉近关系.“陛下,鞠言战申和纪沄国尪都很坚持.”申肜公 爵又说道.“嗯,俺知道了.俺们,尊叠鞠言战申和纪沄国尪の意思.”贺荣国尪点点头道.“对了申肜公爵,俺们波塔尪国,通过鞠言战申呐一盘口,得到了多少积分?押注大厅那边,具体の信息应该出来了吧?”贺荣国尪转而问道.“信息已经出来了,鞠言战申呐个盘口得到の积分超过二 拾八亿之巨.”申肜公爵道.积分与盘口压保额直接相关!“啧啧……”贺荣国尪听到呐个数字,忍不住咋了咋舌.“哈哈,下一届战申榜排位赛,俺们波塔尪国获得の压保盘口,至少能比呐次多一倍.”贺荣国尪振奋の语气说道.“是の陛下,按照过往の例子看,仅仅鞠言战申呐一个盘口 获得の押注积分,就足以让俺们波塔尪国在下一届战申榜排位赛中得到至少伍个压保盘口了.而接下来,还有决赛阶段.鞠言战申在决赛中,应该也能获得一些押注积分.”申肜公爵道.“嗯,等战申榜排位赛结束后,俺一定要好好感谢鞠言战申和纪沄国尪.”贺荣国尪叠叠の点了点头.与 此同事,玄秦尪国人员の居所,廉心国尪和尪国の众人员都在一个房间中,房间内气氛异常の安静.似乎,已是有一段事间没有人开口说话了.玄秦尪国在呐一届战申榜排位赛中,损失惨叠.获得の押注积分,也比预料中の少很多.别の不说,单单一个丁水云战申の盘口,就损失了大量の押 注积分.(本章完)第三零零思章王国招揽丁水云战申の呐个盘口,本应该是能够帮助玄秦尪国必得大量押注积分の,可惜……从大斗场回到居所之后,廉心国尪の心仍然没能平复下来.她の心情,此事是极其の复杂,后悔、愤怒、忧虑等等情绪皆有.“怎么都不说话了?”“应哗公爵,你 の主意不是一直都很多の吗?怎么也不说话了?”廉心国尪环视房间内の众人,声音冰冷.应哗公爵,身体都在发抖.淘汰阶段第二轮对战中,他代表玄秦尪国压保伍千万白耀翠玉,赔了.第三轮对战中,他代表玄秦尪国压保两亿白耀翠玉,又血本无归.他应哗公爵,还能找哪个借口.“陛下, 现在不是追究某个人责任の事候.损失の白耀翠玉,就目前の局势,已算不上最无法想象,善王の申魂体还能有呐样幅度の提升!”“不错,真是不错.申魂体增强之后,俺对微子世界の控制更加精妙了.”“还有对黑道则の掌控!俺の申魂体所增强の部分,与在明混元空间不同,在呐里 所增强の那部分申魂体,与暗混元空间更加契合.呐也让俺,对暗混元黑道

12-2三角形全等的判定(SAS)22-23学年人教版八年级数学上册

12-2三角形全等的判定(SAS)22-23学年人教版八年级数学上册
A.AB=CD B.AF=DE C.∠A=∠D D.∠AFB=∠DEC
课堂练习
2. 如图,已知∠BED=∠AEC,AE=CE,BE=DE. 求证:△ABE≌△CDE.
证明:∵∠BED=∠AEC, ∴∠BED﹣∠AED=∠AEC﹣∠AED 即∠BEA=∠DEC, 在△ABE和△CDE中,
∴△ABE≌△CDE(SAS)
解:由题可知∠A=∠A,AB=AC,
利用“SAS”判定,需要∠A的另一对
应边相等,即AD=AE.证明如下:
在△ADC和△AEB中,
A
AC=AB,
∠A=∠A,
AD=AE,
∴ △ADC≌△AEB(SAS).
C
E F
D
B
课堂练习
5.如图,已知△ABE≌△DCF,点B,E,F,C在一条直线上, 连接AC,BD.求证:△ACE≌△DBF.
文字语言:
两边和它们的夹角分别相等的两个三角形全等.
(简写成“边角边”或“SAS ”).
C
几何语言:
在△ABC 和△ DEF中, AB = DE, 必 须 是 两 边 ∠A =∠D, “ 夹 角 ” AC =AF ,
∴ △ABC ≌△ DEF(SAS).
A F
B
D
E
新知典例
SSA能否判定两个三角形全等?
∴△ABF≌△CDE(SAS)
新知典例
例2 如图,有一池塘.要测池塘两端A、B的距离,可先在平地上取一个可以 直接到达A和B的点C,连接AC并延长到D,使CD=CA.连接BC并延长到E, 使CE=CB.连接DE,那么量出DE的长,就是A、B的距离.请说明DE的长就 是A、B的距离的理由.
证明:在△ACB与△DCE中,
∴△ACB≌△DCE(SAS), ∴AB=DE, 即DE的长就是A、B的距离.

人教版八年级上册数学课件:两个直角三角形全等的判定条件

人教版八年级上册数学课件:两个直角三角形全等的判定条件

定理:如果两个直角三角形的斜边和一条直角边分别
对应相等,那么这两个直角三角形全等,简写成
“斜边、直角边”或“HL”表示。
B
几何语言
∵∠C=∠C ′=90°
A
C
B′
∴在RT∆ABC和RT∆A ′ B ′ C ′中
AB= A ′ B ′
AC= A ′ C ′
A′
C′
∴ RT∆ABC ≌ RT∆ A ′ B ′ C ′ (HL)
练习快速回答问题
1.两个锐角对应相等的两个直角三角形全等吗?
2.两条直角边对应相等的两个直角三角形全等吗?
3.有任意的两条边对应相等的两个直角三角形全等 吗? 4.有两边及一条边对应的三角形全等吗? 5.判定两个三角形全等,共有多少种方法?
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
DE=DF
∴Rt △DEB≌Rt △DFC
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
练习
2、如图,AC=AD,∠C=∠D=90° , 求证:BC=BD
C A

证明:∵∠C=∠D=90° ∴△ABC和△ABD是直角三角形 在Rt △ABC和Rt △ABD中 AB=AB
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
人教版八年级上册数学课件:两个直 角三角 形全等 的判定 条件
小结:
• 1、应用斜边直角边(HL)公理判定两个三 角形全等,要按照公理的条件,准确地 找出“对应相等”的边和角;
• 2、寻找使结论成立所需要的条件时,要注 意充分利用图形中的隐含条件,如“公 共边、公共角、对顶角等等”;

全等三角形全等的条件

全等三角形全等的条件

全等三角形全等的条件
全等三角形是指三角形的对应边和对应角相等。

全等三角形的
条件包括SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)
和AAS(角-角-边)四种情况。

1. SSS(边-边-边),如果两个三角形的三条边分别相等,则
这两个三角形全等。

2. SAS(边-角-边),如果两个三角形中,一个三角形的两边
和夹角分别等于另一个三角形的两边和夹角,则这两个三角形全等。

3. ASA(角-边-角),如果两个三角形的一个角和两边分别等
于另一个三角形的一个角和两边,则这两个三角形全等。

4. AAS(角-角-边),如果两个三角形的两个角和一边分别等
于另一个三角形的两个角和一边,则这两个三角形全等。

这些条件是用来判断两个三角形是否全等的依据,通过对应边
和对应角的相等性来确定三角形的全等关系。

这些条件在几何学中
有着重要的应用,可以帮助我们判断和证明三角形的全等关系。

八年级数学上册《关于三角形全等的条件》教案、教学设计

八年级数学上册《关于三角形全等的条件》教案、教学设计
(三)学生小组讨论,500字
1.分组讨论:将学生分成若干小组,针对全等三角形的判定条件,讨论以下问题:
a.这四个判定条件之间的联系和区别是什么?
b.在实际应用中,如何灵活运用这些判定条件?
2.汇报展示:每个小组选派一名代表,汇报本组的讨论成果,分享解题心得。
(四)课堂练习,500字
1.设计梯度性习题:针对全等三角形的判定条件,设计基础、提高、拓展三个层次的习题,让学生进行课堂练习。
4.在教学过程中,注重培养学生的团队合作精神,让他们学会相互尊重、相互帮助,形成良好的人际关系。
针对本章节《关于三角形全等的条件》,教学设计如下:
1.导入:通过复习全等形的的概念,引入三角形全等的定义,激发学生的学习兴趣。
2.新课:引导学生通过观察、实践,发现和总结三角形全等的判定条件,即SSS、SAS、ASA、AAS。
3.例题:讲解典型例题,让学生运用三角形全等的判定条件解决实际问题,巩固所学知识。
4.课堂练习:设计不同难度的习题,让学生在练习中巩固知识,提高解决问题的能力。
5.课堂小结:对本节课的知识点进行总结,强调三角形全等判定条件的应用。
6.课后作业:布置适量的课后作业,让学生在课后进一步巩固所学知识。
7.教学评价:通过课堂提问、课后作业、课堂表现等方面,全面评价学生的学习效果。
八年级数学上册《关于三角形全等的条件》教案、教学设计
一、教学目标
(一)知识与技能
1.让学生理解三角形全等的定义,掌握三角形全等的判定条件,即SSS、SAS、ASA、AAS。
2.能够运用三角形全等的判定条件,解决实际问题,提高学生的逻辑思维能力和解决问题的能力。
3.使学生能够运用尺规作图,绘制全等三角形,培养学生的动手操作能力和观察能力。

初二数学-三角形全等的判定

初二数学-三角形全等的判定

初二数学第2课时三角形全等的判定(1)四、总结反思拓展升华本节课我们探索得到了三角形全等的条件,•发现了证明三角形全等的一个规律SSS.并利用它可以证明简单的三角形全等问题.五、课堂作业P15 1 2教学理念/反思第3课时三角形全等的判定(2)教学目标1、会用尺规作一个角等于已知角,并了解它在尺规作图中的简单应用。

2、掌握作已知角的平分线的方法及步骤。

教学重点用尺规作一个角等于已知角,作已知角的平分线。

教学难点规范使用尺规,规范使用作图语言,规范的按照步骤作出图形。

教学互动设计设计意图一、创设情境导入新课前面我们用量角器画一个角等于已知角和画一个已知角∠AOB的平分线OC,怎样用尺规来作一个角等于已知角和作已知角的平分线呢?由具体的问题引入,激发学生的学生兴趣二、合作交流解读探究【问题1】作一个角等于已知角。

已知如图,∠AOB求作:∠A’O’B’,使∠A’O’B’=∠AOB教师在黑板上作图,同时写出作法:⏹作射线O’A’。

⏹以O点为圆心,以任意长为半径画弧,交OA于点C,交OB于点D。

⏹以O’为圆心,以OC长为半径画弧,交O’A’于点C。

⏹以C’为圆心,以CD长为半径画弧,交前面的弧于点D’。

⏹过点D’作射线O’B’,∠A’O’B’ 就是所求作的角。

学生探索作图方法通过示范,使学生明白如何利用尺规作一个角等于已知角。

只用无刻度的直尽和圆规作图的方法称为尺规作图。

问:你能验证你所作的角与已知角相等吗? 【问题2】作一个已知角∠AOB 的平分线OC 。

分析:假如∠AOB 的平分线OC 已经画出,在前面角的平分线的研究中,我们用折线的实验发现:如果有OE=OD ,那么CE=CD .这个实验也启发我们:如果有OE=OD ,CE=CD ,那么OC 平分∠AOB 吗? 用“SSS”公理易证△OEC ≌△ODC ,∠EOC=∠DOC ,即OC 平分∠AOB .于是容易看出,要作∠AOB 的平分线OC ,在于怎样才能找到起关键作用的点C ?怎样确定点C 呢?不难看出,为了确定C 点,必须先找点E 、D .以O 为圆心,任意长为半径作弧,分别交OA 、OB 于D 、E ,那么OD=OE 吗?再分别以D 、E 为圆心,适当的长度为半径作弧,设两弧交于点C ,那么CD=CE 吗?而D 、E 为圆心,“适当”的长度为半径作弧,两弧有一交点时,怎样的长度才“适当”呢?已知:∠AOB ,如图求作:射线OE ,使∠AOE=∠BOE .作法:(1)在OA 和OB 上,分别截取OC 、OD ,使OC=OD .(2)分别以C 、D 为圆心,大于1/2CD 的长为半径作弧,在∠AOB 内,两弧交于点E .(3)作射线OE . OE 就是所求的射线. 三、应用迁移 巩固提高【例1】已知∠AOB ,利用尺规作∠A ’O ’B ’,使∠A ’O ’B ’=2∠AOB 【例2】如图,已知AD=AE ,PD=PE ,能否判定∠DAP=∠PAE ?请写出证明过程。

人教版八年级数学上册12.2三角形全等的判定

人教版八年级数学上册12.2三角形全等的判定
AMC CNB 90, 在△AMC和△CNB中, 1 2,
BC AC,
∴△AMC≌△CNB(AAS),∴AM=CN,MC=NB. 又∵MN=CN+MC,∴MN=AM+BN.
灿若寒星
5.如图所示,已知AB∥CD,BE,CE分别为∠ABC,∠BCD的平分线,
点E在AD上.求证BC=AB+CD.
AB=AC,AD=AE,点C,D,E三点在同一直线上,连接BD.试猜想BD,CE 有何特殊位置关系,并证明.
〔解析〕BD,CE有何特殊位置关系,从图形上可看 出是垂直关系,可向这方面努力.要证BD⊥CE,需证
∠BDE=90°,需证∠ADB+∠ADE=90°,可由全等
三角形的性质提供.
解:BD,CE特殊位置关系为BD⊥CE.证明如下:
∠B=∠C.求证∠A=∠D.
证明:∵BE=CF, ∴BE+EF=CF+EF,即BF=CE.
在△ABF与△DCE中,
BF CE, B C, AB DC,
△ABF≌△DCE(SAS),∴∠A=∠D.
灿若寒星
全等三角形的判定和性质的综合应用
如图所例示4 ,在△ABC,△ADE中,∠BAC=∠DAE=90°,
证明:在△ABC和△ABD中,

BC AD, CBA DAB,
AB BA,
∴△ABC≌△BAD(SAS),∴AC=BD.
【解题归纳】 应用三角形全等的判定方法证明三角形全等时, 特别注意隐含条件的应用,如公共边、公共角、对顶角等条件.
灿若寒星
1.如图所示,点E,A,C在同一直线上,AB∥CD,AB=CE, AC=CD.求证BC=ED.
在△AEC和△BFD中,

人教版八年级数学上《三角形全等的判定》知识全解

人教版八年级数学上《三角形全等的判定》知识全解

《三角形全等的判定》知识全解课标要求1.探索几何的基本图形——三角形,探索全等三角形的基本性质、三角形全等的判定条件和其相互关系,及角平分线性质,进一步丰富对空间图形的认识和感受.2.在探索全等三角形的性质、与他人合作交流等活动过程中,发展合情合理,进一步学习有条理地思考与表达;在积累了三角形的性质的基础上,探索全等三角形的判定条件和角平分线性质及其逆运用.知识结构内容解析在一个三角形的三条边,三个角中任取三个元素,可以有下列组合;SAS、SSA、ASA、AAS、SSS、AAA,但其中SSA和AAA不能判定三角形全等。

◆如何选择三角形证全等(1)可以从求证出发,看求证的线段或角(用等量代换后的线段、角)在哪两个可能全等的三角形中,可以证这两个三角形全等。

(2)可以从已知条件出发,看已知条件确定哪两个三角形可证它们全等;(3)由条件和结论一起出发,看它们一同确定哪两个三角形全等,然后证它们全等;(4)如果以上方法都行不通,可采用添加辅助线的方法,构造三角形全等。

重点难点本节的重点是:掌握三角形全等的判定定理,并灵活运用。

本节的难点是:在较复杂的图形中,找出证明两个三角形全等的条件,恰当的选择判定定理,正确地书写演绎推理过程。

教法导引1.注重培养探索归纳能力经历探究三角形全等条件的过程:由全等三角形的定义可以知道,由三条边对应相等、三个角对应相等能判定三角形全等,那么减少条件能否判定三角形全等呢?于是,依次探究:满足一个条件、两个条件、三个条件、……能否判定三角形全等.通过探究得到:满足一个条件、两个条件不能判定三角形全等;满足三个条件不一定能判定三角形全等,即“边边边”、“边角边”、“角边角”、“角角边”能判定三角形全等,“边边角”、“角角角”不能判定三角形全等.将三角形全等的判定方法运用于直角三角形,可以判定直角三角形全等;但对于满足斜边和直角边对应相等的两个直角三角形,就无法运用三角形全等的判定方法来进行判断了,因此应探究“斜边、直角边”能否判定直角三角形全等.2.注重培养推理能力本章要求学生有理有据地推理论证,精炼准确地表达推理过程,这对于学生比较困难,因此我们在教学中应采取以下措施突破难点:(1)注意减缓坡度,循序渐进.精心选择全等三角形的证明问题,开始阶段的例题,证明方向明确、过程简单,容易规范书写格式,主要让学生体会证明思路及格式.然后逐步增加题目的复杂程度,每一步都为下一步做准备,下一步又要注意复习前一步训练过的内容.(2)在不同的阶段,安排不同的内容,突出一个重点.先安排证明两个三角形全等,进而安排通过证明三角形全等证明两条线段或两个角相等,重点使学生熟悉证明的步骤和方法.最后安排的问题涉及前面学过的内容,重点培养学生分析问题,选择推理途径的证明能力.(3)注重分析思路注重分析思路,让学生学会思考问题.(4)注重规范书写格式注重规范书写格式,让学生学会清楚地表达思考的过程.3.注重联系实际从实际例子引入全等形的概念,易于学生理解概念,易于调动学生学习的积极性.从分析平分角仪器的原理引入角平分线的画法,通过确定集贸市场位置的问题引出“角的内部到角的两边的距离相等的点在角的平分线上”的结论,使学生感受理论来源于实际的需要.运用全等三角形可以解决实际中许多测量边、角的问题.学法建议学生在初一学习过三角形的相关知识,会作一个三角形等于已知三角形,本节是使学生在原有知识的基础上探索怎样判定三角形全等的判定条件及恰当地选择判定定理来判别两个三角形全等,并能灵活运用全等三角形的判定方法解决线段或者角相等的问题。

全等三角形的判定-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)解析版

全等三角形的判定-2021-2022学年八年级数学上学期期中期末考试满分全攻略(人教版)解析版

第05讲 全等三角形的判定考点定位精讲讲练一.全等三角形的判定三角形全等判定方法1:文字:在两个三角形中,如果有两条边及它们的夹角对应相等,那么这两个三角形全等; 图形:符号:在ABC ∆与'''A B C ∆中,''''''(..)''AB A B A A ABC A B C S A S AC A C =⎧⎪∠=∠∴∆∆⎨⎪=⎩≌三角形全等判定方法2:文字:在两个三角形中,如果有两个角及它们的夹边对应相等,那么这两个三角形全等; 图形:C'B'A'C B A符号:在ABC ∆与'''A B C ∆中,''''''(..)'A A AB A B ABC A B C A S A B B ∠=∠⎧⎪=∴∆∆⎨⎪∠=∠⎩≌三角形全等判定方法3:文字:在两个三角形中,如果有两个角及其中一个角的对边对应相等,那么这两个三角形全等;图形:符号:在ABC ∆与'''A B C ∆中,'''''(..)''A A B B ABC A B C A A S BC B C ∠=∠⎧⎪∠=∠∴∆∆⎨⎪=⎩≌三角形全等判定方法4:文字:在两个三角形中,如果有三条边对应相等,那么这两个三角形全等.图形:符号:在ABC ∆与'''A B C ∆中,'''''''(..)''AB A B AC A C ABC A B C S S S BC B C =⎧⎪=∴∆∆⎨⎪=⎩≌ 直角三角形全等的判定: 图形 定理 符号C'B'A'C B A C'B'A'C B A C'B'A'C B A如果两个直角三角形的斜边和一条直角边对应相等,那么这两个直角三角形全等(简记:H.L)在'''Rt ABC Rt A B C ∆∆与中,'',''AC A C AB A B ==,'''(.)Rt ABC Rt A B C H L ∴∆∆≌ 二、证题的思路(难点)考点一:利用SAS 判断两个三角形全等典例1(2020惠州市期末)如图,点E 、F 分别是矩形ABCD 的边 AB 、CD 上的一点,且DF =BE .求证:AF=CE .【答案】证明见解析【分析】由SAS 证明△ADF ≌△CBE ,即可得出AF =CE .【详解】C'B'A'C B A证明:∵四边形ABCD 是矩形,∴∠D =∠B =90°,AD =BC ,在△ADF 和△CBE 中,AD BC D B DF BE ⎧⎪∠∠⎨⎪⎩===,∴△ADF ≌△CBE (SAS ),∴AF =CE .变式1-1(2018·丹江口市期末)如图,点E,F 在AB 上,,,AD BC A B AE BF =∠=∠=. 求证:ADF BCE ∆≅∆.【分析】先将转化为AF =BE ,再利用证明两个三角形全等.【详解】证明:因为AE =BF ,所以,AE +EF =BF +EF ,即AF =BE ,在△ADF 和△BCE 中,AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩所以,ADF BCE ∆≅∆变式1-2(2019·武汉市期中)已知:如图,点C 为AB 中点,CD=BE ,CD ∥BE.求证:△ACD ≌△CBE.【答案】证明见解析.【解析】证明:∵CD ∥BE ,∴∠ACD=∠ B..∵点C 为AB 中点,∴AC=CB.又∵CD=BE ,∴△ACD ≌△CBE (SAS )变式1-3(2019·兰州市期末)如图,△ABC 中,AB=AC ,点E ,F 在边BC 上,BE=CF ,点D 在AF 的延长线上,AD=AC ,(1)求证:△ABE ≌△ACF ;(2)若∠BAE=30°,则∠ADC= °.【答案】(1)证明见解析;(2)75.【分析】(1)根据等边对等角可得∠B=∠ACF ,然后利用SAS 证明△ABE ≌△ACF 即可;(2)根据△ABE ≌△ACF ,可得∠CAF=∠BAE=30°,再根据AD=AC ,利用等腰三角形的性质即可求得∠ADC 的度数.【详解】(1)∵AB=AC ,∴∠B=∠ACF ,在△ABE 和△ACF 中,AB AC B ACF BE CF =⎧⎪∠=∠⎨⎪=⎩,∴△ABE ≌△ACF (SAS );(2)∵△ABE ≌△ACF ,∠BAE=30°,∴∠CAF=∠BAE=30°,∵AD=AC ,∴∠ADC=∠ACD ,∴∠ADC=280013︒-︒=75°, 故答案为75.考点二 :利用ASA 判断两个三角形全等典例2(2019·玉林市期中)如图,∠A =∠B ,AE =BE ,点D 在 AC 边上,∠1=∠2,AE 和BD 相交于点O .求证:△AEC ≌△BED ;【分析】根据全等三角形的判定即可判断△AEC ≌△BED ;【详解】∵AE 和BD 相交于点O ,∴∠AOD=∠BOE .在△AOD 和△BOE 中,∠A=∠B ,∴∠BEO=∠2.又∵∠1=∠2,∴∠1=∠BEO ,∴∠AEC=∠BED .在△AEC 和△BED 中,A B AE BEAEC BED ∠∠⎧⎪⎨⎪∠∠⎩===∴△AEC ≌△BED (ASA ).变式2-1(2018·楚雄州期末)如图,完成下列推理过程:如图所示,点E 在△ABC 外部,点D 在BC 边上,DE 交AC 于F ,若∠1=∠3,∠E=∠C ,AE =AC ,求证:△ABC ≌△ADE.证明:∵∠E=∠C (已知),∠AFE=∠DFC(),∴∠2=∠3(),又∵∠1=∠3(),∴∠1=∠2(等量代换),∴__________+∠DAC=__________+∠DAC(), 即∠BAC=∠DAE,在△ABC和△ADE 中∵()()()E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩已知已知已证∴△ABC≌△ADE().【答案】对顶角相等;三角形内角和定理;已知;∠1;∠2;等式的性质;ASA 【详解】解:∵∠E=∠C (已知),∠AFE=∠DFC (对顶角相等),∴∠2=∠3(三角形内角和定理).又∵∠1=∠3(已知),∴∠1=∠2(等量代换),∴∠1+∠DAC=∠2+∠DAC (等式的性质),即∠BAC=∠DAE .在△ABC和△ADE 中,∵E CAE ACBAC DAE∠=∠⎧⎪=⎨⎪∠=∠⎩(已知)(已知)(已证),∴△ABC≌△ADE(ASA ).变式2-2(2019·德州市期末)如图,AB=AC,AB⊥AC,AD⊥AE,且∠ABD=∠ACE.求证:BD=CE.【答案】见解析.【分析】先求出∠CAE=∠BAD再利用ASA证明△ABD≌△ACE,即可解答【详解】∵AB⊥AC,AD⊥AE,∴∠BAE+∠CAE=90°,∠BAE+∠BAD=90°,∴∠CAE=∠BAD.又AB=AC,∠ABD=∠ACE,∴△ABD≌△ACE(ASA).∴BD=CE.考点三:利用AAS判断两个三角形全等典例3(2019·黄石市期中)如图,在ABCD中,经过A,C两点分别作AE⊥BD,CF⊥BD,E,F为垂足.(1)求证:△AED≌△CFB;(2)求证:四边形AFCE是平行四边形.【分析】(1)根据平行四边形的性质可得AD=BC,∠CBF=∠ADE,再根据垂线的性质可得∠CFB=∠AED=90°,再根据全等三角形的判定(角角边)来证明即可;(2)根据全等三角形的性质可得AE=CF,再由AE⊥BD,CF⊥BD可得AE∥CF,根据一组对边平行且相等的四边形为平行四边形即可证明.【详解】(1)证明:∵四边形ABCD是平行四边形,∴AD=BC,AD∥BC,∴∠CBF=∠ADE,∵AE⊥BD,CF⊥BD,∴∠CFB=∠AED=90°,∴△AED≌△CFB(AAS).(2)证明:∵△AED≌△CFB,∴AE=CF,∵AE⊥BD,CF⊥BD,∴AE∥CF,∴四边形AFCE是平行四边形.变式3-1(2019·兴义市期末)如图,已知在四边形ABCD中,点E在AD上,∠BCE=∠ACD=90°,∠BAC=∠D,BC=CE.(1)求证:AC=CD;(2)若AC=AE,求∠DEC的度数.【答案】(1)证明见解析;(2)112.5°.【分析】()1根据同角的余角相等可得到24=,可证∠=∠,再加上BC CE∠=∠,结合条件BAC D得结论;()2根据90D∠=∠=︒,根据等腰三角形的性质得到,,得到145∠=︒=ACD AC CDDEC∠=︒-∠=︒.∠=∠=︒,由平角的定义得到1805112.53567.5【详解】()1证明:90BCE ACD ∠=∠=︒, 2334,∴∠+∠=∠+∠ 24∴∠=∠, 在△ABC 和△DEC 中,24BAC D BC CE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△ABC ≌△DEC (AAS ),AC CD ∴=;(2)∵∠ACD =90°,AC =CD ,∴∠1=∠D =45°,∵AE =AC ,∴∠3=∠5=67.5°,∴∠DEC =180°-∠5=112.5°.变式3-2(2019·温州市期中)如图,已知A ,F ,E ,C 在同一直线上,//AB CD ,ABE CDF ∠=∠,AF CE =.试说明:ABE CDF ∆≅∆.【答案】见解析; 【分析】由AB ∥CD 可得∠BAC =∠DCA ,由AF =CE 可得AE =CF ,由AAS 可得△ABE ≌△CDF . 【详解】证明∵AB CD ∕∕,∴BAC ACD ∠=∠∵AF CE =,∴AF EF CE EF +=+,即AE FC =.在ABE ∆和CDF ∆中,BAC ACD ABE CDF AE CF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴ABE CDF ∆∆≌(AAS )考点四: 利用SSS 判断两个三角形全等典例4(2019·德州市期中)已知:如图,AB =AC ,BD =CD ,DE ⊥AB ,垂足为E ,DF ⊥AC ,垂足为F .求证:DE =DF .【分析】连接AD ,利用“边边边”证明△ABD 和△ACD 全等,再根据全等三角形对应边上的高相等证明.【详解】证明:如图,连接AD ,在△ABD 和△ACD 中,AB AC BD CD AD AD =⎧⎪=⎨⎪=⎩,∴△ABD ≌△ACD (SSS ),∵DE ⊥AB ,DF ⊥AC ,∴DE =DF (全等三角形对应边上的高相等).变式4-1(2019·阳泉市期末)如图,在△ABC 中,AB =AC ,点D 是BC 的中点,点E 在AD 上,求证:∠1=∠ 2.【答案】证明见详解【分析】由AB=AC,AD=AD,BD=CD,可证得△ABD ≌△ACD,得到∠BAE=∠CAE,再证明△ABE ≌△ACE,即可得到结论.【详解】证明:∵AB=AC,AD=AD,BD=CD,在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩∴△ABD ≌△ACD, ∠BAE=∠CAE,在△ABE 和△ACE 中, ,AB AC BAE CAE AE AE =⎧⎪∠=∠⎨⎪=⎩∴△ABE ≌△ACE∴∠1=∠ 2.变式4-2(2019·鄂州市期中)如图,点A 、D 、C 、F 在同一条直线上,AD=CF ,AB=DE ,BC=EF.(1)求证:ΔABC ≌△DEF ;(2)若∠A=55°,∠B=88°,求∠F 的度数.【答案】(1)证明见解析;(2)37° 【解析】(1)∵AC=AD+DC , DF=DC+CF ,且AD=CF∴AC=DF在△ABC 和△DEF 中,AB DE BC EF AC DF =⎧⎪=⎨⎪=⎩∴△ABC ≌△DEF (SSS )(2)由(1)可知,∠F=∠ACB∵∠A=55°,∠B=88°∴∠ACB=180°-(∠A+∠B )=180°-(55°+88°)=37°∴∠F=∠ACB=37°变式4-3(2020·石家庄市期末)如图,点B ,F ,C ,E 在直线l 上(F ,C 之间不能直接测量),点A ,D 在l 异侧,测得AB=DE ,AC=DF ,BF=EC .(1)求证:△ABC ≌△DEF ;(2)指出图中所有平行的线段,并说明理由.【答案】(1)详见解析;(2)∠ABC=∠DEF ,∠ACB=∠DFE,理由见解析. 【解析】(1)证明:∵BF=EC ,∴BF+CF=CF+CE ,∴BC="EF"∵AB=DE ,AC="DF"∴△ABC ≌△DEF (SSS )(2)AB ∥DE,AC ∥DF,理由如下,∵△ABC ≌△DEF ,∴∠ABC=∠DEF ,∠ACB=∠DFE,∴AB ∥DE,AC ∥DF.考点五 :利用HL 判断两个直角三角形全等典例5(2019·云龙县期中)已知:如图,AC=BD ,AD ⊥AC ,BC ⊥BD .求证:AD=BC【分析】连接CD ,利用HL 定理得出Rt △ADC ≌Rt △BCD 进而得出答案.【详解】证明:如图,连接CD ,∵AD ⊥AC ,BC ⊥BD ,∴∠A=∠B=90°,在Rt △ADC 和Rt △BCD 中CD CD AC BD =⎧⎨=⎩, ∴Rt △ADC ≌Rt △BCD (HL ),∴AD=BC .变式5-1(2019·开封市期中)已知:如图,AB =CD ,DE ⊥AC ,BF ⊥AC ,E ,F 是垂足,DE BF =. 求证:(1)AF CE =;(2)AB CD ∥.【分析】(1)根据垂直的定义得到∠DEC=∠BFA=90°,推出Rt △DCE ≌Rt △BFA (HL ),由全等三角形的性质即可得到结论.(2)根据全等三角形的性质得到∠C=∠A ,根据平行线的判定即可得到AB ∥CD.【详解】证明: ∵ DE ⊥ AC , BF ⊥ AC∴ ∠DEC=∠BFA=90°在Rt △ DEC 和Rt △ BFA 中AB=CD DE=BF∴ Rt △ DCE ≌Rt △ BFA (HL )∴ AF=CE∴ ∠C=∠A∴ AB ∥ CD变式5-2(2018·开封市期末)如图,D 、C 、F 、B 四点在一条直线上,AB DE =,AC BD ⊥,EF BD ⊥,垂足分别为点C 、点F ,CD BF =.求证:(1)ABC EDF ∆≅∆;(2)//AB DE .【分析】(1)由垂直的定义,结合题目已知条件可利用HL 证得结论;(2)由(1)中结论可得到∠D =∠B ,则可证得结论. 【详解】证明:(1)∵AC BD ⊥,EF BD ⊥,∴ABC ∆和EDF ∆为直角三角形,∵CD BF =,∴CF BF CF CD +=+,即BC DF =,在Rt ABC ∆和Rt EDF ∆中,AB DE BC DF=⎧⎨=⎩, ∴()Rt ABC Rt EDF HL ∆≅∆;(2)由(1)可知ABC EDF ∆≅∆,∴B D ∠∠=,∴//AB DE .考点六: 三角形全等判定的综合典例6(2019·保定市期末)下列各图中a、b、c为三角形的边长,则甲、乙、丙三个三角形和左侧△ABC全等的是()A.甲和乙B.乙和丙C.甲和丙D.只有丙【答案】B【解析】乙和△ABC全等;理由如下:在△ABC和图乙的三角形中,满足三角形全等的判定方法:SAS,所以乙和△ABC全等;在△ABC和图丙的三角形中,满足三角形全等的判定方法:AAS,所以丙和△ABC全等;不能判定甲与△ABC全等;故选B.变式6-1(2019·武汉市期中)如图,在△ABC和△DEC中,已知AB=DE,还需添加两个条件才能使△ABC≌△DEC,不能添加的一组条件是()A.BC=EC,∠B=∠E B.BC=EC,AC=DCC.BC=DC,∠A=∠D D.∠B=∠E,∠A=∠D【答案】C试题分析:根据全等三角形的判定方法分别进行判定:A、已知AB=DE,加上条件BC=EC,∠B=∠E可利用SAS证明△ABC≌△DEC,故此选项不合题意;B、已知AB=DE,加上条件BC=EC,AC=DC可利用SSS证明△ABC≌△DEC,故此选项不合题意;C、已知AB=DE,加上条件BC=DC,∠A=∠D不能证明△ABC≌△DEC,故此选项符合题意;D、已知AB=DE,加上条件∠B=∠E,∠A=∠D可利用ASA证明△ABC≌△DEC,故此选项不合题意.故选C.变式6-2(2020·杭州市期末)如图所示,在下列条件中,不能判断△ABD≌△BAC的条件是()A.∠D=∠C,∠BAD=∠ABC B.∠BAD=∠ABC,∠ABD=∠BACC.BD=AC,∠BAD=∠ABC D.AD=BC,BD=AC【答案】C【解析】解:A、符合AAS,能判断△ABD≌△BAC;B、符合ASA,能判断△ABD≌△BAC;C、符合SSA,不能判断△ABD≌△BAC;D、符合SSS,能判断△ABD≌△BAC.所以根据全等三角形的判定方C、满足SSA不能判断两个三角形全等.故选C.变式6-3(2018·虹桥区期中)如图,在下列条件中,不能证明△ABD≌△ACD的是().A.BD=DC,AB=AC B.∠ADB=∠ADC,BD=DCC.∠B=∠C,∠BAD=∠CAD D.∠B=∠C,BD=DC【答案】D【分析】两个三角形有公共边AD,可利用SSS,SAS,ASA,AAS的方法判断全等三角形.解答:【详解】分析:∵AD=AD,A 、当BD=DC ,AB=AC 时,利用SSS 证明△ABD ≌△ACD ,正确;B 、当∠ADB=∠ADC ,BD=DC 时,利用SAS 证明△ABD ≌△ACD ,正确;C 、当∠B=∠C ,∠BAD=∠CAD 时,利用AAS 证明△ABD ≌△ACD ,正确;D 、当∠B=∠C ,BD=DC 时,符合SSA 的位置关系,不能证明△ABD ≌△ACD ,错误. 故选D .一、单选题1.(2021·全国八年级课时练习)如图,点B 在AE 上,CAB DAB ∠=∠,要通过“ASA ”判定ABC ABD △≌△,可补充的一个条件是( )A .CBA DBA ∠=∠B .ACB ADB ∠=∠C .AC AD = D .BC BD =【答案】 A 【分析】根据“ASA ”的判定方法添加条件即可.【详解】解:在△ABC 与△ABD 中,CAB DAB AB ABCBA DBA ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∴△ABC ≌△ABD (ASA ),故选:A . 【点睛】本题考查了全等三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.2.(2021·全国八年级课时练习)下列一定能使△ABC ≌△DEF 成立的是( )A .两边对应相等B .面积相等C .三边对应相等D .周长相等【答案】 C 【分析】根据全等三角形的判定方法,分析、判断即可.【详解】解:A 、两边对应相等,不能使△ABC ≌△DEF 成立,该选项不符合题意;B 、面积相等,不能使△ABC ≌△DEF 成立,该选项不符合题意;C 、三边对应相等,根据SSS 即可证明△ABC ≌△DEF ,该选项符合题意;D 、周长相等,不能使△ABC ≌△DEF 成立,该选项不符合题意;故选:C .【点睛】本题考查了三角形全等的判定方法,判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .注意:AAA 、SSA 不能判定两个三角形全等.3.(2021·福建八年级期中)如图,D 、E 分别是AB 、AC 上的点,CD 、BE 相交于点O ,已知CD BE =.现在添加以下一个条件能判断ABE ACD △≌△的是( )A .AB AC =B .AE AD =C .B C ∠=∠D .BD CE =【答案】C 【分析】由已知条件CD BE =、∠A =∠A ,结合各选项条件分别依据“AAS 、ASA 、SSA 、SAS ”,逐一作出判断即可得,其中SSA 不能任意判定三角形全等.【详解】解:A .由CD =BE 、∠A =∠A 、AB =AC 不能判定△ABE ≌△ACD ,此选项不符合题意; B .由CD =BE 、∠A =∠A 、AE AD =不能判定△ABE ≌△ACD ,此选项不符合题意; C .由CD =BE 、∠A =∠A 、B C ∠=∠可依据“AAS ”△ABE ≌△ACD ,此选项符合题意; D .由CD =BE 、∠A =∠A 、BD CE =不能判定△ABE ≌△ACD ,此选项不符合题意; 故选:C .【点睛】本题主要考查全等三角形的判定,解题的关键是掌握全等三角形的5种判定方法中,选用哪一种方法,取决于题目中的已知条件,若已知两边对应相等,则找它们的夹角或第三边;若已知两角对应相等,则必须再找一组对边对应相等,且要是两角的夹边,若已知一边一角,则找另一组角,或找这个角的另一组对应邻边.4.(2021·香河县第九中学八年级期中)如图,已知:12∠=∠,要证明ABC AED ≌△△,还需补充的条件是( )A .,AB AE BC DE ==B .,AB AE AC AD == C .,AC AE BC DE==D .以上都不对 【答案】B 【分析】首先证明∠BAC =∠1+∠DAC =∠ADC +∠2=∠EAD ,然后根据全等三角形的判定条件进行判断即可.【详解】解:∵∠1=∠2,∴∠BAC =∠1+∠DAC =∠ADC +∠2=∠EAD ,当AB =AE ,BC =DE 时,“SSA ”不能判定△ABC ≌△AED ,故A 选项不符合题意;当AB =AE ,AC =AD 时,可以用“SAS ”判定△ABC ≌△AED ,故B 选项符合题意;当AC =AE ,BC =DE 时,“SSA ”不能判定△ABC ≌△AED ,故C 选项不符合题意;故选B .【点睛】本题主要考查了全等三角形的判定,解题的关键在于能够熟练掌握全等三角形的判定条件.5.(2021·江苏苏州市·苏州草桥中学八年级开学考试)工人师傅常用角尺平分一个任意角.做法如下:如图所示,在AOB ∠的两边OA ,OB 上分别取OM ON =,移动角尺,使角尺两边相同的刻度分与M ,N 重合,过角尺顶点C 的射线OC 即是AOB ∠的平分线.画法中用到三角形全等的判定方法是( ).A .SSSB .SASC .ASAD .HL【答案】 A 【分析】由三边相等得COM CON ≅,即由SSS 判定三角全等.做题时要根据已知条件结合判定方法逐个验证.【详解】解:由图可知,CM CN =,又OM ON =,在MCO 和NCO 中,MO NO CO CO NC MC =⎧⎪=⎨⎪=⎩, ()COM CON SSS ∴≅,AOC BOC ∠=∠∴,即OC 是AOB ∠的平分线.故选 A.【点睛】本题考查了全等三角形的判定及性质.要熟练掌握确定三角形的判定方法,利用数学知识解决实际问题是一种重要的能力,要注意培养.6.(2021·龙口市教学研究室八年级期中)如图,经过平行四边形ABCD 的对角线AC 中点的直线分别交边CB ,AD 的延长线于E ,F ,则图中全等三角形的对数是( )A .3对B .4对C .5对D .6对【答案】 C 【分析】根据已知条件及全等三角形的判定方法进行分析,从而得到答案. 【详解】:四边形ABCD 为平行四边形,EF 经过AC 的中点,AB CD ∴=,AD BC =,AO CO =,AOE COF ∠=∠,F E ∠=∠,又AOF COE ∠=∠,AOE COF ∠=∠,BAF DCE ∠=∠,()∴∆≅∆AOH COG ASA ,()∆≅∆AOF COE ASA ,()FDG EBH ASA ∆≅∆,()ABC CDA SSS ∆≅∆,()∆≅∆AFH CEG ASA .故图中的全等三角形共有5对.故选:C【点睛】此题主要考查全等三角形的判定方法,常用的判定方法有AAS ,SAS ,SSS ,ASA 等.做题时要从已知条件开始结合图形利用全等的判定方法由易到难逐个寻找.7.(2021·兰州市第五十五中学八年级月考)如图,在△ABC 中,AB =AC ,AE 是经过点A 的一条直线,且B 、C 在AE 的两侧,BD ⊥AE 于D ,CE ⊥AE 于E ,AD =CE ,则∠BAC 的度数是 ( )A .45°B .60°C .90°D .120°【答案】C 【分析】首先证明△BAD ≌△CAE ,可得∠BAD =∠ACE ,由∠ACE +∠CAE =90°,可得∠BAD +∠CAE =90°即可解答.【详解】解:∵BD ⊥AE 于D ,CE ⊥AE 于E ,∴∠ADB =∠E =90,在Rt △BAD 和Rt △ACE 中,AB =AC 、 AD =EC∴△BAD ≌△CAE (HL ),∴∠BAD =∠ACE ,∵∠ACE +∠CAE =90°,∴∠BAC =∠BAD +∠CAE =90°.故选C .【点睛】本题主要考查了全等三角形的判定和性质,熟练掌握全等三角形的判定方法和性质是解答本题的关键. 二、填空题8.(2021·全国八年级课时练习)如图,已知AB CB =,要使ABD CBD ≌△△()SSS ,还需添加一个条件,你添加的条件是__________.【答案】AD CD =【分析】要利用SSS 判定ABD CBD ≌△△,已知AB CB =,公共边BD BD =,只需要再添加一组对边相等即可.【详解】解:∵AB CB =,BD BD =,∴要利用SSS 判定ABD CBD ≌△△,只需要在添加一组对边相等即可.∴AD CD =,故答案为:AD CD =.【点睛】本题考查用三边对应相等判定三角形全等,根据图形找到相关的条件是解题关键.9.(2021·全国八年级课时练习)如图,已知,,AF BE A B AC BD =∠=∠=,经分析__________≌__________,依据是__________.【答案】ADF BCE SAS【分析】利用SAS 得出全等三角形.【详解】证明:∵AC =BD ,∴AD =BC ,在△ADF 和△BCE 中∵AD BC A B AF BE =⎧⎪∠=∠⎨⎪=⎩, ∴△ADF ≌△BCE (SAS ).故答案为:①ADF ,②BCE ,③SAS . 【点睛】此题主要考查了全等三角形的判定,熟练掌握判定方法是解题的关键10.(2021·青岛大学附属中学八年级期中)数学课上,同学们探讨利用不同画图工具画角的平分线的方法.小旭说:我用两块含30的直角三角板就可以画角平分线.如图,取OM ON =,把直角三角板按如图所示的位置放置,两直角边交于点P ,则射线OP 是AOB ∠的平分线.小旭这样画的理论依据是______.【答案】HL【分析】由“HL ”可证Rt △OMP ≌Rt △ONP ,可得∠MOP =∠NOP ,可证OP 是∠AOB 的平分线.【详解】解:∵∠OMP =∠ONP =90°,且OM =ON ,OP =OP ,∴Rt △OMP ≌Rt △ONP (HL ),∴∠MOP =∠NOP ,∴OP 是∠AOB 的平分线.故答案为:HL .【点睛】本题主要考查了全等三角形的判定和性质,证明Rt △OMP ≌Rt △ONP 是本题的关键.11.(2021·全国八年级课时练习)已知线段a ,b ,c ,求作ABC ,使,,BC a AC b AB c ===. ①以点B 为圆心,c 的长为半径画弧;②连接,AB AC ;③作BC a =;④以点C为圆心,b的长为半径画弧,两弧交于点A.作法的合理顺序是__________.【答案】③①④②【分析】根据作三角形的步骤:第一步先作一条线段等于三角形的一边,第二步以已作的线段的两个端点为圆心,以对应的长为半径画弧确定交点位置,最后顺次连接即可,由此进行判断即可.=,再以点B为圆心,c的长为半径画弧;接着以点C为圆心,b的长【详解】解:先作BC aAB AC,则ABC即为所求.为半径画弧,两弧交于点A,然后连接,故答案为:③①④②.【点睛】本题主要考查了用尺规作图—作三角形的步骤,解题的关键在于能够熟练掌握相关知识进行求解.12.(2021·全国八年级课时练习)如图,AD=BC,若利用“SSS”来证明△ABD≌△CDB,则需要添加的一个条件是__________.=【答案】AB CD【分析】根据“SSS”判断△ABD≌△CDB时,可添加AB=CD.【详解】解:∵AD=BC,BD=DB,∴当添加AB=CD时,可根据“SSS”判断△ABD≌△CDB.故答案为:AB=CD.【点睛】本题考查了全等三角形的判定,关键是掌握判定两个三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.注意:AAA、SSA不能判定两个三角形全等,判定两个三角形全等时,必须有边的参与,若有两边一角对应相等时,角必须是两边的夹角.13.(2021·全国八年级课时练习)如图,AC=BD,AF=DE,BF=CE,∠E=30°,∠A=45°,则∠ACE=__________.【答案】75︒【分析】利用“SSS ”证明△ABF ≌△DCE ,即可求解.【详解】解:∵AC =BD ,∴AC −BC =BD −BC ,∴AB =DC ,又∵AF =DE ,BF =CE ,∴△ABF ≌△DCE (SSS ),∴∠D =∠A =45°,∴∠ACE =∠D +∠E =45°+30°=75°.故答案为:75°.【点睛】本题考查了全等三角形的判定和性质,关键是掌握判定两个三角形全等的一般方法有:SSS 、SAS 、ASA 、AAS 、HL .14.(2021·全国八年级课时练习)如图,已知CAB DAE ∠=∠,要使()ABD ACE SAS △≌△,需加的两个条件是__________.【答案】AB AC AD AE ==,【分析】根据CAB DAE ∠=∠得到CAE BAD ∠=∠,根据SAS 添加条件即可;【详解】∵CAB DAE ∠=∠,∴CAE BAD ∠=∠,当AB AC AD AE ==,时,得到()ABD ACE SAS △≌△;故答案是:AB AC AD AE ==,.【点睛】本题主要考查了探索全等三角形全等的条件,准确分析判断是解题的关键.15.(2021·全国八年级课时练习)两个大小不同的等腰直角三角板如图1所示放置,图2是由它抽象出的几何图形,B ,C ,E 在同一条直线上,连接DC .一只蜗牛在爬行速度不变的情况下,从C 爬到D 所用的最短时间与它爬行线段__________所用的时间相同.(不要使用图形中未标注的字母)【答案】BE【分析】根据全等三角形的判定及性质证明CD =BE 即可得到结论.【详解】∵ABC 和ADE 是等腰直角三角形,∴,,90AB AC AE AD BAC EAD ==∠=∠=︒,∴BAC EAC DAE EAC ∠+∠=∠+∠,∴BAE CAD ∠=∠,在ABE △和ACD △中,AB AC BAE CAD AE AD =⎧⎪∠=∠⎨⎪=⎩, ∴ABE △≌ACD △(SAS ),∴BE CD =.故答案为:BE .【点睛】本题考查了全等三角形的判定与性质,熟练掌握全等三角形的判定定理是解题的关键. 三、解答题16.(2021·全国八年级课时练习)如图,已知在ABC 中,,12AB AC =∠=∠求证:AD BC ⊥.【分析】利用SAS 证明ABD ACD △≌△,得到34∠=∠,即可求解.【详解】证明:在ABD △和ACD △中,,12,,AB AC AD AD =⎧⎪∠=∠⎨⎪=⎩∴()ABD ACD SAS △△≌.∴34∠=∠.又∵34180∠+∠=︒,即23180∠=︒,∴390∠=︒,∴AD BC ⊥.【点睛】此题考查了全等三角形的证明与性质,熟练掌握全等三角形的判定方法与性质是解题的关键.17.(2021·全国八年级课时练习)已知:如图,//AB CD ,E 是AB 的中点,,EC ED ECD EDC =∠=∠,求证:(1)AEC BED ∠=∠;(2)AC BD =.【分析】(1)根据∠ECD =∠EDC ,再利用平行线的性质进行证明即可;(2)根据SAS 证明△AEC 与△BED 全等,再利用全等三角形的性质证明即可.【详解】证明:(1)∵//AB CD ,∴,AEC ECD BED EDC ∠=∠∠=∠,∵ECD EDC ∠=∠,∴AEC BED ∠=∠;(2)∵E 是AB 的中点,∴AE BE =,在AEC 和BED 中,AE BE AEC BED EC ED =⎧⎪∠=∠⎨⎪=⎩∴()AEC BED SAS ≌,∴AC BD =.【点睛】本题主要考查了全等三角形的判定以及全等三角形的性质,平行线的性质等知识,解题的关键是灵活运用准确寻找全等三角形解决问题,属于中考常考题型.18.(2021·全国八年级课时练习)如图,在ABC 中,A ∠是锐角,AF AE =,BF CE 、是高,你能说明BF CE =吗?【分析】根据AAS 易证△AEC ≌△AFB ,再利用全等三角形的性质即可求证结论.【详解】解:∵BF 、CE 是高,∴90AFB AEC ∠=∠=︒,在AFB △和AEC 中,,,,A A AF AE AFB AEC ∠=∠⎧⎪=⎨⎪∠=∠⎩∴△AEC ≌△AFB (AAS ),∴BF CE =.【点睛】本题考查全等三角形的判定及其性质,解题的关键是熟练掌握全等三角形的判定方法“AAS ”证得△AEC ≌△AFB .19.(2021·全国八年级课时练习)如图,//,,//AC DF AD BE BC EF =.求证:ABC DEF △≌△.【分析】利用直线平行得出A EDF ∠=∠以及ABC E ∠=∠,再根据题意求得AD BE =,最后利用ASA 定理来证明即可.【详解】证明:∵//AC DF ,∴A EDF ∠=∠,∵//BC EF ,∴ABC E ∠=∠,∵AD BE =,∴AD BD BE BD +=+,即AB DE =,在ABC 和DEF 中,ABC E AB DE A EDF ∠=∠⎧⎪=⎨⎪∠=∠⎩,,, ∴()ABC DEF ASA ≌. 【点睛】本题考查了全等三角形的判定与性质,熟练掌握是解决问题的关键.20.(2021·全国八年级课时练习)如图,已知,,,CE AB DF AB AC BD CE DF ⊥⊥==.求证://AC BD .【分析】利用()HL Rt ACE Rt BDF ≌全等,来求得A B ∠=∠,利用内错角相等求得//AC BD .【详解】证明:∵,CE AB DF AB ⊥⊥,∴90CEA DFB ∠=∠=︒,又∵,AC BD CE DF ==,∴()HL Rt ACE Rt BDF ≌,∴A B ∠=∠,∴//AC BD .【点睛】本题考查了直角三角形全等的判定与应用,以及两直线平行的判定,熟练掌握是关键.21.(2021·河南省淮滨县第一中学八年级期末)如图1,已知ABC 中,90BAC ∠=,AB AC =,DE 是过A 的一条直线,且B ,C 在D ,E 的同侧,BD AE ⊥于D ,CE AE ⊥于()E BD CE <.(1)证明:ABD CAE ≅;(2)试说明:BD DE CE =-;(3)若直线DE 绕A 点旋转到图2位置(此时B ,C 在D ,E 的异侧)时,其余条件不变,问BD 与DE ,CE 的关系如何?请证明;(4)若直线DE 绕A 点旋转到图3位置(此时B ,C 在D ,E 的同侧)时()BD CE >其余条件不变,问BD 与DE ,CE 的关系如何?请直接写出结果,不需说明理由.【答案】(1)见解析;(2)见解析;(3) BD=DE+CE ;证明见解析;(4)BD=DE −CE【分析】(1)根据题意可得ABD EAC ∠=∠,结合BDA AEC ∠=∠,AB AC =直接用AAS 证明三角形全等即可;(2)根据(1)的结论ABD CAE ≌,进而可得BD DE CE =-;(3)方法同(1)证明ABD CAE ≌,进而可得BD DE CE =+(4)方法同(1)结论同(2)证明ABD CAE ≌,进而可得BD DE CE =-.【详解】(1)证明:∵90BAC ∠=,∴90BAD EAC ∠+∠=.又∵BD AE ⊥ ,CE AE ⊥,∴90BDA AEC ∠=∠=,90BAD ABD ∠+∠=,∴ABD EAC ∠=∠.又∵AB AC =,∴()ABD CAE AAS ≌.(2) 解:∵ABD CAE ≌,∴BD AE =,AD CE =.又∵ED AD AE =+,∴BD DE CE =-.(3) 解:∵90BAC ∠=,∴90BAD EAC ∠+∠=.又∵BD AE ⊥ ,CE AE ⊥,∴90BDA AEC ∠=∠=,90BAD ABD ∠+∠=,∴ABD EAC ∠=∠.又∵AB AC =,∴ABD CAE ≌.∴BD AE =,AD CE =,AE AD DE =+,∴BD DE CE =+.(4) 解:BD DE CE =-.理由如下:∵90BAC ∠=,∴90BAD EAC ∠+∠=.又∵BD AE ⊥ ,CE AE ⊥,∴90BDA AEC ∠=∠=,90BAD ABD ∠+∠=,∴ABD CAE ∠=∠.又∵AB AC =,∴ABD CAE ≌,∴BD AE =,AD CE =.又∵ED AD AE =+,∴BD DE CE =-.【点睛】本题考查了三角形全等的性质与判定,等腰直角三角形的性质,掌握三角形全等的性质与判定是解题的关键.22.(2021·四川省成都市七中育才学校)如图1,已知Rt ABC △中,90BAC ∠=︒,点D 是AB 上一点,且8AC =.45DCA ∠=︒,AE BC ⊥于点E ,交CD 于点F .(1)如图1,若2AB AC =,求AE 的长;(2)如图2,若30B ∠=︒,求CEF △的面积;(3)如图3,点P 是BA 延长线上一点,且AP BD =,连接PF ,求证:PF AF BC +=.【答案】(1)1655AE =;(2)8(23)ECF S ∆=-;(3)证明见解析部分 【分析】(1)利用勾股定理求出BC ,再利用面积法求出AE 即可.(2)如图2中,在CE 上取一点J ,使得FJ CJ =,连接FJ .设EF m =,想办法构建方程求出m 即可解决问题.(3)如图3中,过A 点作AM CD ⊥于点M ,与BC 交于点N ,连接DN ,证明()AMF DMN ASA ∆≅∆,推出AF DN CN ==,再证明()APF DBN SAS ∆≅∆,可得结论.【详解】(1)解:如图1中,2AB AC =,8AC =,16AB ∴=,90BAC ∠=︒,222281685BC AC AB ∴=+=+=,AE BC ⊥,1122ABC S BC AE AC AB ∆∴=⋅⋅=⋅⋅, 816165585AE ⨯∴==. (2)解:如图2中,在CE 上取一点J ,使得FJ CJ =,连接FJ .90BAC ∠=︒,30B ∠=︒,903060ACE ∴∠=︒-︒=︒,AE BC ⊥,8AC =,cos604CE AC ∴=⋅︒=,45DCA ∠=︒,15FCE ACE ACD ∴∠=∠-∠=︒,JF JC =,15JFC JCF ∴∠=∠=︒,30EJF JFC JCF ∴∠=∠+∠=︒,设EF m =,则2FJ JC m ==,3EJ m =, ∴324m m +=,4(23)m ∴=-,4(23)EF ∴=-,144(23)8(23)2ECF S ∆∴=⨯⨯-=-. (3)证明:如图3中,过A 点作AM CD ⊥于点M ,与BC 交于点N ,连接DN .90BAC ∠=︒,AC AD =,AM CD ∴⊥,AM DM CM ==,45DAM CAM ADM ACD ∠=∠=∠=∠=︒,DN CN ∴=,NDM NCM ∴∠=∠,AE BC ⊥,90ECF EFC MAF AFM ∴∠+∠=∠+∠=︒,AFM EFC ∠=∠,MAF ECF ∴∠=∠,MAF MDN∴∠=∠,∠=∠,AMF AMN∴∆≅∆,()AMF DMN ASA∴==,AF DN CN∠=︒,AC AD90BAC=,DAM CAM ADM ACD∴∠=∠=∠=∠=︒,45∴∠=∠=︒,NAP CDB135∠=∠,MAF MDN∴∠=∠,PAF BDN=,AP DB∴∆≅∆,()APF DBN SAS∴=,PF BN=,AF CN∴+=+,PF AF CN BN+=.即PF AF BC【点睛】本题属于三角形综合题,考查了全等三角形的判定和性质,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题,学会添加常用辅助线,构造全等三角形解决问题,属于中考压轴题.。

三角形全等的条件及其性质

三角形全等的条件及其性质

A
B
∴ ABD ≌ CDB (SSS) ∴ ∠A= ∠C ( 全等三角形的对应角相等 )
小结
1.知道三角形三条边的长度怎样画三角形。
2. 三边对应相等的两个三角形全等(边边边 或SSS);
3、体验分类讨论的数学思想
4、初步学会理解证明的思路
作业
A.作业本1-4题及画一个三角形,是它的三边 分别为3cm,4cm,3cm和习题精选P88 6题 B.作业本1-4题及画一个三角形,是它的三边分 别为3cm,4cm,3cm和习题精选P88 8题
证明的书写步骤:
①准备条件:证全等时要用的间接 条件要先证好; ②三角形全等书写三步骤:
写出在哪两个三角形中 摆出三个条件用大括号括起来 写出全等结论
拓展与提高:如图,在四边形ABCD中 D
AB=CD,AD=BC,则∠A= ∠C 请说明理由。
C
解:在 ABD和 CDB中
AB=CD AD=BC BD=DB (已知) (已知) (公共边)
D
; http://www.uuuu.vip/ 有书网小说下载
orz47msr
炕桌摆放在车前一米多远的地方,又将放有各种祭品的方木盘放在桌子上,耿大业夫妇俩拉着小铁蛋儿来到桌子前面。一家人满面悲 伤地望着车里的灵柩。片刻之后,耿大业拱手深深作揖,全家三口恭恭敬敬地跪在了桌子前。然后,夫妇俩一起动手焚烧纸钱;全部 焚烧完后,全家一起磕了三个头。耿大业表情悲切地说:“大叔哇,一路走好嘞!”耿大嫂红着眼圈儿说:“大叔,我们一家人永远 想念您!”小铁蛋儿也尖着小嗓门儿大声说:“爷爷,小铁蛋儿想念您!我和爹娘以后还会去给您上坟的!”耿正注意到,旁边有几 个形迹可疑的人相互看看,摇摇头快步往东走了。走不多远,还隐约听到其中的一个说:“这个没用的大疤,自己不敢出手,倒让我 们日赶夜赶的白白浪费了两天时间,到头来却是狗逮猪尿泡„„”到此,耿正已经断定,他们和那个左侧额头上有一道大疤痕的家伙 是一伙儿的,他们是劫贼!耿大业一家人此次悲壮的祭“灵车”之举真正地帮助他们躲过了一次大劫难!看到那些劫贼失望地走远了, 耿正向耿英点点头。俩人一起过来扶起耿大业和耿大嫂,耿直抱起小铁蛋儿,亲亲他的小脸蛋儿。耿正说:“多谢大哥、大嫂、小铁 蛋儿!”耿大业说:“你们顺着这条大路一直往前走,饶过群山再往北走就会见到鄱阳湖。渡过湖去,再顺着长江走不了几天,就到 武昌镇了。”耿大嫂也说:“只要到了鄱阳湖,以后的路你们走过的。”耿正一语双关地拱手说:“大哥大嫂放心,这往后的路应该 都是坦途了!也请大哥大嫂保重!”耿正和耿英也都抱抱小铁蛋儿,亲亲他可爱的小脸蛋儿。大家说话之间,两个伙计已经把小炕桌、 方木盘和其余祭品什么的都拾掇回去了。于是,大家恋恋不舍地道别。耿大嫂说:“英妹子你先上车!”耿大业也说:“你们都上车 吧!趁早赶路,一路顺风!”耿正再次连连拱手说:“大哥大嫂保重!各位保重!都请回去吧!但愿咱们后会有期!”“一路保重! 后会有期!”耿正从伙计手里接过大白骡的缰绳。兄妹三人各自上车坐好,朝着送行的人们连连招手。耿正扬起长鞭:“驾—”大白 骡驾起骡车,载着兄妹三人一路奔西疾行而去了。大骡车已经走出很远了。耿正几次回头观望,确信再没有贼人跟随了,这才转头对 坐在车棚里边的妹妹说:“英子,你知道耿大哥在大店的院子里为什么不让你说下去吗?你也真是的,平日里挺聪明的一个人,怎么 一时间就给糊涂了呢!”耿英红着脸不好意思地说:“耿大哥拦住了不让我继续说下去的时候,我就知道自己错了„„”耿直说: “我感觉耿大哥一家人今天怎么怪怪的?”耿正说:“你忘了耿大哥昨儿个说过的那句话了吗?他说‘这一带有的时候还真得不很太 平呢’。唉,这耿大哥真正让人敬佩啊!他不但非常仁义善良,而且还

初二数学上册:三角形全等的判定知识点

初二数学上册:三角形全等的判定知识点

初二数学上册:三角形全等的判定知识点01三角形全等的判定1.三组对应边分别相等的两个三角形全等(SSS)。

2.有两边及其夹角对应相等的两个三角形全等(SAS)。

3.有两角及其夹边对应相等的两个三角形全等(ASA)。

4.有两角及一角的对边对应相等的两个三角形全等(AAS)。

5.直角三角形全等条件有:斜边及一直角边对应相等的两个直角三角形全等(HL)。

02全等三角形的性质①全等三角形的对应边相等;全等三角形的对应角相等。

②全等三角形的周长、面积相等。

③全等三角形的对应边上的高对应相等。

④全等三角形的对应角的角平分线相等。

⑤全等三角形的对应边上的中线相等。

03找全等三角形的方法(1)可以从结论出发,看要证明相等的两条线段(或角)分别在哪两个可能全等的三角形中;(2)可以从已知条件出发,看已知条件可以确定哪两个三角形相等;(3)从条件和结论综合考虑,看它们能一同确定哪两个三角形全等;(4)若上述方法均不行,可考虑添加辅助线,构造全等三角形。

三角形全等的证明中包含两个要素:边和角。

缺个角的条件:缺条边的条件:04构造辅助线的常用方法1.关于角平分线的辅助线当题目的条件中出现角平分线时,要想到根据角平分线的性质构造辅助线。

角平分线具有两条性质:①角平分线具有对称性;②角平分线上的点到角两边的距离相等。

关于角平分线常用的辅助线方法:(1)截取构全等如下左图所示,OC是∠AOB的角平分线,D为OC上一点,F为OB上一点,若在OA上取一点E,使得OE=OF,并连接DE,则有△OED≌△OFD,从而为我们证明线段、角相等创造了条件。

例:如上右图所示,AB//CD,BE平分∠ABC,CE平分∠BCD,点E在AD上,求证:BC=AB+CD。

提示:在BC上取一点F使得BF=BA,连结EF。

(2)角分线上点向角两边作垂线构全等利用角平分线上的点到两边距离相等的性质来证明问题。

如下左图所示,过∠AOB的平分线OC上一点D向角两边OA、OB作垂线,垂足为E、F,连接DE、DF。

人教版八年级数学-全等三角形-“边角边”判定三角形全等

人教版八年级数学-全等三角形-“边角边”判定三角形全等
学生先独立思考,然后讨论交流,用规范的书写完成 证明过程.
五、小结与作业 1.师生小结: (1)“边角边”判定两个三角形全等的方法. (2)在判定两个三角形全等时,要注意使用公共边和公共 角. 2.布置作业:教材习题12.2第3,4题.
本节课的重点是让学生认识掌握运用“边角边”判定两个 三角形全等的方法,让学生自己动手操作,合作交流,通 过学生之间的质疑讨论,发现此定理中角必为夹角,从而 得出“边角边”的判定方法.不仅学习了知识,也训练了 思维能力,对三角形全等的判定(SAS)掌握的也好,但要强 调书写的格式的规范,同时让学生感受到在证明角形全等来解决.
解:(1)AC⊥CE.理由:由SAS证△ABC≌△CDE,∴∠ACB=∠E, ∵ED⊥CD,∴∠ECD+∠E=90°,∴∠ACB+∠ECD=90°, ∴∠ACE=90°,即AC⊥CE
(2)成立.以图②为例,理由如下:由SAS证△ABC1≌C2DE, ∴∠AC1B=∠E,∵ED⊥BD,∴∠EC2D+∠E=90°,∴∠EC2D+ ∠AC1B=90°,∴∠C2MC1=90°,即AC1⊥C2E
易误与“SSA”混淆导致出错.
AB=AD,
∴△BAC≌△DAE(SAS),∴BC=DE
10.在△ABC和△A′B′C′中:①AB=A′B′;②BC=B′C′;③AC=A′C′;
④∠A=∠A′;⑤∠B=∠B′.则下列条件中,不能保证△ABC≌△A′B′C′的是
()
D
A.①②③ B.①②⑤ C.①③④ D.①③⑤
11.如图,AD⊥BC,垂足为D,且BD=DC,延长BA至点E,若∠B= 48°,则∠CAE=__9_6_°.
∴DM=DN
15.如图,A,F,C,D四点在同一直线上,AF=DC,AB∥DE,且 AB=DE,求证:(1)△ABC≌△DEF;(2)∠CBF=∠FEC.

人教初中八年级上册数学三角形全等的条件3

人教初中八年级上册数学三角形全等的条件3
13.2 三角形全等的条件
49中 孙玉梅
一、说教材:
1、教材所处的地位和作用:
全等三角形的研究,实际是平面几何中对封闭的两个图形关系 研究的第一步。全等是两三角形间最简单、最常见的关系。本节既 是前面所学知识的延伸与拓展,又是后继学习相似形的条件的基础, 是证明线段相等、角相等的重要方法。因此本节课占有相当重要的 地位和作用。
总结:有三个角对应相等的两个三角

.
三、例题教学,发挥示范功能
例 如图,D在AB上,E在AC上, AB=AC, ∠B=∠C.求证AD=AE.
A
D B
E C
应用拓展: 1、基础训练
课本102页练习1、2
2、如图,
X
S
W 7cm 50
这两个三60角 形全等吗?50为 什么?
Y
7cm
Z
(1)
70 T
A
D
B
C
E
F
C
证明: ∵∠A=∠D, ∠B=∠E, ∴∠A+∠B= + ∴180°-____=180°-____, 即∠____=∠_____。 ∵在△ABC和△DEF中,
∠____=∠_____, ____=_____,
∠____=∠_____, ∴△ABC≌△DEF(ASA)。
总结: 两角和
二、教法学法:
在课堂教学中将尽量为学生提供 “做中学”的时间和空间,让学生在合 作、体验中探究学习,在“做”的过程 中潜移默化地渗透分类讨论的数学思想。 遵循“教是为了不教”的原则,让学生 自得知识、自寻方法、自觅规律、自悟 原理。
三、教学环节: (一)创设情境,激发求知欲望 (二)实践探究,揭示知识生成 (三)例题教学,发挥示范功能 (四)感悟点滴,小结知识技能

初二数学 三角形全等的判定

初二数学 三角形全等的判定

三角形全等的判定---“边边边”学习目标1.三角形全等的“边边边”的条件. 2.了解三角形的稳定性.3.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程. 学习重点三角形全等的条件. 学习难点寻求三角形全等的条件.学习方法:自主学习与小组合作探究 学习过程:一.回顾思考: 1.(1)三角形中已知三个元素,包括哪几种情况? 三个角、三个边、两边一角、两角一边.(2)到目前为止,可以作为判别两三角形全等的方法有几种?各是什么?三种:①定义__________________________________________________; ②“SAS ”公理__________________________________________________ ③“ASA ”定理__________________________________________________ 二、新课1. 回忆前面研究过的全等三角形.已知△ABC ≌△A ′B ′C ′,找出其中相等的边与角. 图中相等的边是:AB=A ′B 、BC=B ′C ′、AC=A ′C . 相等的角是:∠A=∠A ′、∠B=∠B ′、∠C=∠C ′.2.已知三角形△ABC 你能画一个三角形与它全等吗?怎样画? 阅读教材归纳:三边对应相等的两个三角形全等,简写为“边边边”或“SSS ”.书写格式: 在△ABC 和△A 1B 1C 1中C 11ABA 1∴ △ABC ≌△A 1B 1C 1(SSS )3. 小组合作学习C 'B 'A 'CBA(1)如图,△ABC 是一个钢架,AB=AC ,AD 是连结点A 与BC 中点D 的支架.求证:△ABD ≌△ACD . 证明:∵D 是BC 的中点∴__________________________ 在△ABD 和△ACD 中 (AB ACBD CD AD AD =⎧⎪=⎨⎪=⎩公共边)∴△ ≌△ ( ).(2)如图,已知AC=FE 、BC=DE ,点A 、D 、B 、F 在一条直线上,AD=FB .要用“边边边”证明△ABC ≌△FDE ,除了已知中的AC=FE ,BC=DE 以外,还应该有一个条件:______________________,怎样才能得到这个条件?∵__________________________ ∴__________________________ ∴__________________________(3)如图,AB=AC, AD 是BC 边上的中线P 是AD 的一点,求证:PB=PC4.三角形的稳定性: 生活实践的有关知识:用三根木条钉成三角形框架,它的大小和形状是固定不变的,•而用四根木条钉成的框架,它的形状是可以改变的.三角形的这个性质叫做三角形的稳定性.所以日常生活中常利用三角形做支架.就是利用三角形的稳定性.•例如屋顶的人字梁、大桥钢架、索道支架等.(阅读P98)三、阅读教材例题: 四.自学检测五.评价反思 概括总结1. 本节课我们探索得到了三角形全等的条件,又•发现了证明三角形全等的一个规律SSS .并利用它可以证明简单的三角形全等问题.2.到目前为止,可以作为判别两三角形全等的方法有几种?各是什么? ①定义__________________________________________________;②“SAS ”定理__________________________________________________ ③“ASA ”定理_________________________________________________ ④“SSS ”定理_________________________________________________FDC BEA“边角边”学习目标1.三角形全等的“边角边”的条件.2.经历探索三角形全等条件的过程,体会利用操作、•归纳获得数学结论的过程.3.掌握三角形全等的“SAS”条件.4.能运用“SAS”证明简单的三角形全等问题.学习重点:三角形全等的条件.学习难点:寻求三角形全等的条件.学习方法:自主学习与小组合作探究学习过程:一、:温故知新1.怎样的两个三角形是全等三角形? 2.全等三角形的性质?二、读一读,想一想,画一画,议一议1.只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形一定全等吗?2.给出两个条件画三角形时,有几种可能的情况,每种情况下作出的三角形一定全等吗?阅读:课本总结:通过我们画图可以发现只给一个条件(一组对应边相等或一组对应角相等),•画出的两个三角形不一定全等;给出两个条件画出的两个三角形也不一定全等,按这些条件画出的三角形都不能保证一定全等.给出三个条件画三角形,你能说出有几种可能的情况吗?归纳:有四种可能.即:三内角、三条边、两边一内角、两内有一边.在刚才的探索过程中,我们已经发现三内角不能保证三角形全等.下面我们就来逐一探索其余的三种情况.3、如图2,AC、BD相交于O,AO、BO、CO、DO的长度如图所标,△ABO和△CDO 是否能完全重合呢?不难看出,这两个三角形有三对元素是相等的:AO=CO,∠AOB=∠COD,BO=DO.如果把△OAB绕着O点顺时针方向旋转,因为OA=OC,所以可以使OA与OC重合;又因为∠AOB =∠COD, OB=OD,所以点B与点D重合.这样△ABO与△CDO就完全重合.由此,我们得到启发:判定两个三角形全等,不需要三条边对应相等和三个角对应相等.而且,从上面的例子可以引起我们猜想:如果两个三角形有两边和它们的夹角对应相等,那么这两个三角形全等.4.上述猜想是否正确呢?不妨按上述条件画图并作如下的实验:(1)读句画图:①画∠DAE=45°,②在AD、AE上分别取 B、C,使 AB=3.1cm, AC=2.8cm.③连结BC,得△ABC.④按上述画法再画一个△A'B'C'.(2)如果把△A'B'C'剪下来放到△ABC上,想一想△A'B'C'与△ABC是否能够完全重合?5.“边角边”公理.有两边和它们的夹角对应相等的两个三角形全等(简称“边角边”或“SAS”)书写格式:在△ABC和△A1B1C1中C1B1CABA1∴△ABC≌△A1B1C1(SAS)用上面的规律可以判断两个三角形全等.判断两个三角形全等的推理过程,叫做证明三角形全等.所以“SAS”是证明三角形全等的一个依据..三、小组合作学习(1)如图3,已知AD∥BC,AD=CB,要用边角边公理证明△ABC≌△CDA,需要三个条件,这三个条件中,已具有两个条件,一是AD=CB(已知),二是___________;还需要一个条件_____________(这个条件可以证得吗?).(2)如图4,已知AB=AC,AD=AE,∠1=∠2,要用边角边公理证明△ABD≌ACE,需要满足的三个条件中,已具有两个条件:_________________________还需要一个条件_____________(这个条件可以证得吗?).四、阅读例题:五、评价反思概括总结:1.根据边角边公理判定两个三角形全等,要找出两边及夹角对应相等的三个条件.2.找使结论成立所需条件,要充分利用已知条件(包括给出图形中的隐含条件,如公共边、公共角等),并要善于运用学过的定义、公理、定理.“角边角”“角角边”学习目标1.探索三角形全等的“角边角”和“角角边”的条件2.应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等.学习重点:应用“角边角”和“角角边”证明两个三角形全等,进而证明线段或角相等. 学习难点:理解,掌握三角形全等的条件:“ASA”“AAS”学习过程一、学习准备1.复习尺规作图(1)作线段AB等于已知线段a,a(2)作∠ABC,等于已知∠αα2.我们已经知道的判定三角形全等的方法有哪些?二、合作探究探究4:先任意画出一个△ABC,再画一个△A'B'C',使A'B'=AB,∠A'=∠A,∠B'=∠B(即使两角和它们的夹边对应相等).把画好的△A'B'C'剪下,放到△ABC上,它们全等吗?结论:两角和分别相等的两个三角形全等(可以简写成“角边角”或“”).例题讲解:例3 如图,D 在AB 上,E 在AC 上,AB=AC ,∠B=∠C .求证:AD=AE .例4 在△ABC 和△DEF 中,∠A =∠D ,∠B =∠E ,BC =EF ,△ABC 与△DEF 全等吗?能利用角边角条件证明你的结论吗?ABC D EF结论:两角和 分别相等的两个三角形全等(可以简写成“角角边”或“ ”).再次探究:三角对应相等的两个三角形全等吗?结论:三个角对应相等的两个三角形 全等.现在为止,判定两个三角形全等我们已有了哪些方法? 结论:三、巩固练习 教材练习D C AB E四、课堂小结我们有五种判定三角形全等的方法:1.全等三角形的定义2.判定定理:边边边(SSS)边角边(SAS)角边角(ASA)角角边(AAS)五、当堂清1.满足下列用哪种条件时,能够判定ΔABC≌ΔDEF()(A)AB=DE,BC=EF, ∠A=∠E (B)AB=DE,BC=EF ∠A=∠D(C) ∠A=∠E,AB=DF, ∠B=∠D (D) ∠A=∠D,AB=DE, ∠B=∠E2.如图,某同学把一块三角形的玻璃打碎成了三块,现在要到玻璃店去配一块完全一样的玻璃,那么最省事的办法是()(A)带①去(B)带②去(C)带③去(D)带①和②去3.下列说法中:①如果两个三角形可以依据“AAS”来判定全等,那么一定也可以依据“ASA”来判定它们全等;②如果两个三角形都和第三个三角形不全等,那么这两个三角形也一定不全等;③要判断两个三角形全等,给出的条件中至少要有一对边对应相等.正确的是()A.①和②B.②和③C.①和③D.①②③4. 图中全等的三角形是()A.Ⅰ和ⅡB.Ⅱ和ⅣC.Ⅱ和ⅢD.Ⅰ和Ⅲ5.已知:如图 , AC⊥BC于C , DE⊥AC于E ,AD⊥AB于A , BC=AE.若AB=5 , 则AD=___________.6、.如图,AB⊥BC, AD⊥DC, ∠1=∠2.求证:AB=AD参考答案:1.D 2.C 3.C 4.C 5.56.提示:利用角角边或角边角证明△ADC≌△ABC.“斜边、直角边”学习目标:掌握三角形全等的判定HL 学习方法:自我学习,小组合作学习 一、自主学习 (一)复习小测1、如图,在□ABCD 中,BD 是对角线,AE⊥BD于E,CF⊥BD于F ,求证BE=DF.(二)阅读书本,并思考下列几个问题.1、如图,已知Rt △ABC ,∠C=90°,求作Rt △C B A ''',使∠C '=90°, AB C B ='',AB B A ='',那么C B A Rt ABC Rt '''△与△全等吗?得出判定直角三角形全等的方法: 的两个直角三角形全等.2、如图,已知AC ⊥BC,BD ⊥AD,AC=BD.求证BC=AD.二、研学释疑1、如图,BE,CD 是△ABC 的高,要证明△BCD ≌△CBE,还需增加一个条件 ,理由是 ,或增加一个条件 ,理由是 .2、要将图中的∠MON 平分,小明设计了如下方案:在射线OM,ON 上分别取OA=OB,过点A 作DACBABACD EM⊥OM 交ON 于D,过点B 作EB ⊥ON 交OM 于E,AD,EB 交于C,过点O,C 作射线OC,即为∠MON 的平分线,试说明这样做的理由.三、实践探究1、在C B A Rt ABC Rt '''△与△中,∠C=∠C '=90°,下列条件中能判定两三角形全等的有( ) ①C A AC ''=,∠A=∠A '; ②C A AC ''=,B A AB ''=; ③C A AC''=,C B BC ''= ; ④B A AB ''=,∠A=∠A '.A. 1个B. 2个C. 3个D. 4个2、如图,AD 是△ABC 的高,E 为AC 上一点,BE 交AD 于F ,且有BF=AC,FD=CD. 求证:(1)△BFD ≌△ACD ;(2)BE ⊥AC.四、拓展延伸如图,在△ABC中,已知D 是BC 的中点,DE⊥AC,DF⊥AB ,垂足非别是E ,F ,DE=DF ,求证AB=AC.五、小结:F E DCBA。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

总结: 总结: 两角和它们的 对应相等的两个三角 形全等,简写成“角边角” 形全等,简写成“角边角”或“ASA”. . 应用格式: 应用格式: ∵在△ABC和△DEF中 ABC和 DEF中 ∠A=∠D AB=DE AB= ∠B= ∠B=∠E ∴△ABC≌△DEF(ASA) ABC≌△DEF(ASA)
13.2 三角形全等的条件
49中 49中 孙玉梅
一、说教材: 说教材: 1、教材所处的地位和作用: 教材所处的地位和作用: 全等三角形的研究, 全等三角形的研究,实际是平面几何中对封闭 的两个图形关系研究的第一步。 的两个图形关系研究的第一步。全等是两三角形间 最简单、最常见的关系。本节既是前面所学知识的 最简单、最常见的关系。 延伸与拓展,又是后继学习相似形的条件的基础, 延伸与拓展,又是后继学习相似形的条件的基础, 是证明线段相等、角相等的重要方法。 是证明线段相等、角相等的重要方法。因此本节课 占有相当重要的地位和作用。 占有相当重要的地位和作用。
总结: 两角和 总结: 对应相等的 两个三角形全等. 简写成“ 角角边” 两个三角形全等 . 简写成 “ 角角边 ” 或 “AAS”. .
A
应用格式: ABC和 DEF中 应用格式: ∵在△ABC和△DEF中 ∠A=∠D
B C D
∠B= ∠B=∠E BC=EF ∴△ABC≌△DEF(AAS) ABC≌△DEF(AAS)
E F
A
B
C
D
探究二: 探究二: A=∠ 1 、 在 △ ABC 和 △ DEF 中 , ∠ A=∠D, ∠B=∠E, BC=EF, △ABC和△ DEF全等吗? B=∠ ABC 和 DEF全等吗? 全等吗 能利用“角边角”证明你的结论吗? 能利用“角边角”证明你的结论吗?
A D
B
C
E
F
证明: 证明: B=∠ ∵∠A=∠D, ∠B=∠E, A=∠ ∴∠A+∠ ∴∠A+∠B= + A+ ∴180°-____=180°-____, 180° ____=180° ____, 180 即∠____=∠_____。 ____=∠_____。 ∵在△ABC和△DEF中, ABC和 DEF中 ∠____=∠_____, ____=∠_____, ____=_____, ____=_____, ∠____=∠_____, ____=∠_____, ∴△ABC≌△DEF(ASA)。 ≌ ( )。
(二)实践探究,揭示知识生成 : 实践探究, 探究一: 探究一: 任意画一个△ABC. 1、 任意画一个△ABC. AB= 2 、 再 画 △ DEF, 使 AB=DE , ∠ A=∠D, ∠B=∠E. ∠B=∠E. 把画好的△DEF剪下来 放在△ABC上 剪下来, 3 、 把画好的 △ DEF 剪下来 , 放在 △ ABC 上 , 这两个三角形能够完全 ,所以它 们 .
E
F
探究三: 探究三: 两个等边三角形是否全等? 1、 两个等边三角形是否全等? ABC和 ADE中 BC∥DE,这两个三角 2、 在△ABC和△ADE中, BC∥DE,这两个三角 形是否全等? 形是否全等? 3、 两个等腰直角三角形是否全等? 两个等腰直角三角形是否全等? 总结:有三个角对应相等的两个三角 形 .
3、重点,难点以及确定的依据: 重点,难点以及确定的依据: 本节课的重点是掌握三角形全等的条 AAS”与 ASA”, 件“AAS 与“ASA ,并能应用它们来判定 两个三角形是否全等。探索“AAS”与 ASA” 两个三角形是否全等。探索“AAS 与“ASA 及应用是难点。我将采用让学生动手操作、 及应用是难点。我将采用让学生动手操作、 合作探究、 合作探究、媒体演示的方式以及渗透分类 讨论的数学思想方法教学来突出重点、 讨论的数学思想方法教学来突出重点、突 破难点。 破难点。
三、教学环节: 教学环节: (一)创设情境,激发求知欲望 创设情境, (二)实践探究,揭示知识生成 实践探究, (三)例题教学,发挥示范功能 例题教学, (四)感悟点滴,小结知识技能 感悟点滴,
(一)创设情境,激发求知欲望 : 创设情境,
小明把一块三角形的玻璃摔成了如 图所示的两块, 图所示的两块 , 现在要到玻璃店去配一 块完全一样的玻璃, 块完全一样的玻璃 , 你能为小明选择合 适的一块吗? 适的一块吗?
三、例题教学,发挥示范功能 例题教学, 如图, 在 上 例 如图,D在AB上,E在AC上, 在 上 AB=AC, ∠B=∠C.求证 ∠B=∠C.求证 求证AD=AE.
A
D
E
B
C
应用拓展: 应用拓展:
1、基础训练 、
课本102页练习1 课本102页练习1、2 102页练习
2、如图, 如图,
X
S 7cm 50° W
4、教学具准备 、 教具:相关多媒体课件; 教具:相关多媒体课件; 学具:剪刀、纸片、直尺。 学具:剪刀、纸片、直尺。 画有相关图片的作业纸。 画有相关图片的作业纸。
二、教法学法: 教法学法: 在课堂教学中将尽量为学生提供 “做中学”的时间和空间,让学生在合 做中学”的时间和空间, 体验中探究学习, 作、体验中探究学习,在“做”的过程 中潜移默化地渗透分类讨论的数学思想。 中潜移默化地渗透分类讨论的数学思想。 遵循“教是为了不教”的原则, 遵循“教是为了不教”的原则,让学生 自得知识、自寻方法、自觅规律、 自得知识、自寻方法、自觅规律、自悟 原理。 原理。
60° Y 7cm
(1)
50° Z
(2)
70° T
这两个三角形全等吗?为什么? 这两个三角形全等吗?为什么?
3 、 如图, AB 、 CD 相交于点 O , △ AOD 与 △ BOC 全等吗? 如图 , 全等吗 ? 为什么?若不全等,请增加条件,使得△ 为什么?若不全等,请增加条件,使得△AOD与△BOC 全等,并说明理由. 全等,并说: (1)知识目标: 经历用两角一边进行画图和验证三角形 知识目标: 是否全等的过程中,探索出全等三角形的条件“角边角” 是否全等的过程中,探索出全等三角形的条件“角边角” 角角边” 并能应用它们来判定两个三角形是否全等。 和“角角边”,并能应用它们来判定两个三角形是否全等。 (2)能力目标:在探索三角形全等条件的过程中,让学 能力目标:在探索三角形全等条件的过程中, 生学会有条理地思考、分析、解决问题的能力, 生学会有条理地思考、分析、解决问题的能力,培养学生 推理意识和能力。 推理意识和能力。 (3)情感目标:培养学生敢于实践,勇于发现,大胆探 情感目标:培养学生敢于实践,勇于发现, 合作创新的精神;体会数学在生活中的作用, 索,合作创新的精神;体会数学在生活中的作用,增强学 习数学的兴趣,树立学好数学的信心。 习数学的兴趣,树立学好数学的信心。
D
B
O A C
四、感悟点滴,小结知识技能 : 感悟点滴, 学生自己感悟总结本节课的 点滴收获
相关文档
最新文档