《椭圆的简单几何性质》教学设计

合集下载

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案教学目标:1. 理解椭圆的定义及其简单几何性质;2. 掌握椭圆的长轴、短轴、焦距等基本概念;3. 能够运用椭圆的性质解决相关问题。

教学重点:1. 椭圆的定义及简单几何性质;2. 椭圆的长轴、短轴、焦距等基本概念。

教学难点:1. 椭圆的性质在实际问题中的应用。

教学准备:1. 教学课件或黑板;2. 尺子、圆规等绘图工具。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的性质,复习圆的基本概念;2. 提问:圆有什么特殊的性质?它的形状是什么样的?二、新课导入(10分钟)1. 引入椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹;2. 讲解椭圆的基本性质:椭圆的长轴、短轴、焦距等;3. 示例:绘制一个椭圆,并标出其长轴、短轴、焦距等。

三、课堂练习(10分钟)1. 让学生自主绘制几个椭圆,并标出其长轴、短轴、焦距等;2. 互相交流,检查答案。

四、巩固知识(10分钟)1. 讲解椭圆的性质在实际问题中的应用;2. 示例:解决一些与椭圆相关的几何问题。

五、课堂小结(5分钟)2. 强调椭圆的长轴、短轴、焦距等基本概念。

教学反思:六、案例分析:椭圆在现实生活中的应用(10分钟)1. 展示椭圆在自然界中的实例,如行星的运动轨迹、鸟蛋的形状等;2. 分析椭圆在这些实例中的作用和意义;3. 提问:椭圆在现实生活中还有哪些应用?七、互动探究:探索椭圆的面积公式(10分钟)1. 引导学生回顾圆形面积公式;2. 提问:椭圆的面积公式是什么?能否从圆的面积公式入手,探索椭圆的面积公式?3. 分组讨论,让学生自主探索椭圆的面积公式。

八、课堂练习:解决椭圆面积问题(10分钟)1. 让学生自主解决一些与椭圆面积相关的问题;2. 互相交流,检查答案。

九、拓展延伸:椭圆的进一步研究(10分钟)1. 介绍椭圆的一些更深入的性质,如离心率、焦距等;2. 引导学生思考:这些性质有什么实际应用?十、课堂小结与作业布置(5分钟)2. 强调椭圆的面积公式及其应用;3. 布置作业:解决一些与椭圆相关的实际问题。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案教学目标:1. 理解椭圆的定义及基本几何性质;2. 掌握椭圆的长轴、短轴、焦距等基本参数的计算方法;3. 能够应用椭圆的性质解决实际问题。

教学重点:1. 椭圆的定义及基本几何性质;2. 椭圆的基本参数的计算方法。

教学难点:1. 椭圆的性质在实际问题中的应用。

教学准备:1. 教学课件或黑板;2. 椭圆模型或图片;3. 直尺、圆规等绘图工具。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的基本几何性质,如圆的半径、直径等;2. 提问:同学们知道吗,还有一种曲线也和圆有关系,叫做椭圆。

椭圆有哪些基本性质呢?二、新课讲解(15分钟)1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为常数的点的轨迹;2. 讲解椭圆的基本几何性质:椭圆的长轴、短轴、焦距等;3. 讲解椭圆的基本参数的计算方法:长轴长度、短轴长度、焦距等。

三、例题解析(10分钟)1. 给出例题,让学生独立解答,进行讲解;2. 通过例题,让学生加深对椭圆性质的理解。

四、课堂练习(10分钟)1. 让学生独立完成练习题,巩固所学知识;2. 对学生的练习进行点评,解答学生的疑问。

五、课堂小结(5分钟)2. 强调椭圆性质在实际问题中的应用。

教学反思:本节课通过讲解椭圆的定义、基本几何性质和计算方法,让学生掌握了椭圆的基本知识。

在课堂练习环节,学生能够独立完成练习题,对椭圆的知识有了更深入的理解。

但在实际问题中的应用方面,学生还需加强练习和思考。

在今后的教学中,应更多地提供实际问题,让学生运用椭圆的知识解决问题,提高学生的应用能力。

六、椭圆的标准方程(10分钟)1. 引入椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\)(a>b>0);2. 讲解椭圆标准方程的来源及意义;3. 讲解如何由椭圆的标准方程求解椭圆的参数。

七、椭圆的焦点与焦距(10分钟)1. 讲解椭圆的焦点定义及性质;2. 讲解焦距的概念及计算方法;3. 引导学生掌握焦点与焦距的关系。

椭圆的简单几何性质 精品教案

椭圆的简单几何性质 精品教案

椭圆的简单几何性质第四课时(一)教学目标1.能推导并掌握椭圆的焦半径公式,能利用焦半径公式解决有关与焦点距离有关的问题.2.能利用椭圆的有关知识解决实际应用问题.3.能综合利用椭圆的有关知识,解决最值问题及参数的取值范围问题. (二)教学过程 【复习引入】1.利用投影仪显示椭圆的定义,标准方程及其几何性质(见第二课时). 2.求椭圆上到焦点距离的最大值与最小值. 【探索研究】为研究上述问题,可先解决例1,教师出示问题.例 1 求证:椭圆12222=+by a x ()0>>b a 上任一点()00y x P ,与焦点所连两条线段的长分别为0ex a ±.分析:由距离公式和椭圆定义可以有两种证法,先由一位学生演板,教师最后予以补充.证法一:设椭圆的左、右焦点分别为()01,c F -.()02,c F ,则 ()()2222202201a x a b c x y c x PF -⋅++=++= 2020222a cx x ac ++= 0x ac a += ∵a x a ≤≤-0, ∴00>-≥+c a x aca . ∴01ex a PF +=. 又a PF PF 221=+,∴()0022ex a ex a a PF -=+-= 故得证.证法二:设P 到左右准线的距离分别为1d ,2d ,由椭圆的第二定义有e d PF =11,又c a x c a x d 20201+=⎪⎪⎭⎫ ⎝⎛--=,∴02011ex a c a x a c ed PF +=⎪⎪⎭⎫⎝⎛+==. 又a PF PF 221=+,∴022ex a PF -=. 故得证.说明:1PF 、2PF 叫做椭圆的焦半径.利用焦半径公式在椭圆的有关计算、证明中,能大大简化相应的计算.至此可解决开始提出的问题.∵01ex a PF +=,a x a ≤≤-0, ∴c a a a c a PF +=⋅+≤1,()c a a aca PF -=-+≥1. ∴c a PF c a +≤≤-1.即椭圆上焦点的距离最大值为c a +,最小值为c a -,最大值与最小值点即是椭圆长轴上的顶点.例2 如图,我国发射的第一颗人造地球卫星的运行轨道是以地心(地球中心)2F 为一个焦点的椭圆.已知它们近地点A (离地面最近的点)距地面439km ,远地点B (离地面最)距地面2384km ,并且2F 、A 、B 在同一条直线上,地球半径约6371km ,求卫星运行的轨道方程(精确到1km ).分析:这是一个介绍椭圆在航天领域应用的例子,关键是理解近地点和远地点与椭圆的关系.由于数字大,计算较繁,可教师讲解.解:如图,建立直角坐标系,使点A 、B 、2F 在x 轴上,2F 为椭圆的右焦点(记1F 为左焦点).因为椭圆的焦点在x 轴上,所以设它的方程为12222=+by a x ()0>>b a则6810439637122=+==-=-A F OF OA c a87552384637122=+==-=+B F OF OB c a解得5.7782=a 5.972=c ∴()()77228755681022≈⨯=-+=-=c a ca c ab .因此,卫星的轨道方程是1772277832222=+y x . 点评:由例1可知椭圆上到焦点的距离的最大和最小的点,恰是椭圆长轴的两个端点,因而可知所有卫星的近地点、远地点、及轨道的焦点都在同一直线上.例3 已知点P 在圆()1422=-+y x C :上移动,点Q 在椭圆1422=+y x 上移动,求PQ 的最大值.分析:要求PQ 的最大值,只要考虑圆心到椭圆上的点的距离,而椭圆上的点是有范围的.可在教师指导下学生完成,解答如下:设椭圆上一点()y x Q ,,又()40,C ,于是 ()()()222224144-+-=-+=y y y x QC20832++-=y y3763432+⎪⎭⎫ ⎝⎛+-=y .而11≤≤-y∴当1-=y 时,QC 有最大值5. 故PQ 的最大值为6.点评:椭圆中的最值问题常转化为二次函数在闭区间上的最值问题.例4 已知椭圆12222=+by a x ()0>>b a 与x 轴的正半轴交于点A ,O 是原点.若椭圆上存在一点M ,使MO MA ⊥,求椭圆离心率e 的取值范围.分析:依题意M 点的横坐标a x <<0,找到x 与a 、b 的关系式.教师讲解为好.解:设M 的坐标为()y x ,,由OM AM ⊥,有22222⎪⎭⎫ ⎝⎛=+⎪⎭⎫ ⎝⎛-a y a x于是下面方程组的解为M 的坐标⎪⎩⎪⎨⎧=+=+-.022222222b a y a x b y ax x 消去y 整理得()0223222=+-+b a x a x b a.解得a x = 或 22c ab x =.a x =即为椭圆的右顶点∴ a cab <<220 即22c b <.即22>e ,而1<e , 故122<<e . (三)随堂练习1.如图在AFB ∆中,150=∠AFB ,32-=∆AFB S ,则以F 为焦点,A 、B 分别是长、短轴端点的椭圆方程是______________.2.设椭圆12922=+y x 上动点()y x P ,到定点()0,a A ()30<<a 的距离AP 最小值为1,求a 的值.答案:1.12822=+y x 2.2=a (四)总结提炼椭圆的焦半径是椭圆的基础问题,在解题中有其独特的作用,椭圆的范围在解决椭圆的元素的范围及与其有关的最大值(最小值)问题时是很有效的方法.(五)布置作业1.椭圆短半轴的长为1,离心率的最大值是23,则长半轴长的取值范围是___________. 2.若椭圆两焦点为()041,-F ,()042,F ,P 在椭圆上,且21F PF ∆的最大面积是12,则椭圆方程是_______________.3.已知F 是椭圆222222ba y a xb =+()0>>b a 的一个焦点,PQ 是过其中心的一条弦,记22b a c -=,则PQF ∆面积的最大值是( )A .ab 21B .abC .acD .bc 4.已知()00y x M ,是椭圆1162522=+y x 上的任意一点,以过M 的一条焦半径为直径作圆1O ,以椭圆长轴为直径作圆2O ,则圆1O 与圆2O 的位置关系是( )A .内切B .内含C .相交D .相离5.设P 是椭圆12222=+by a x ()0>>b a 上的任一点,求P 点到椭圆两焦点1F 、2F 距离之积的最大值与最大值,并求取得最大值与最小值时P 点的坐标.6.设椭圆的中心是坐标原点,长轴在x 轴上,离心率23=e ,已知点⎪⎭⎫⎝⎛230,P 到这个椭圆上的点的最远距离是7,求这个椭圆方程,并求椭圆上到点P 的距离等于7的点的坐标.答案:1.(]21,2.192522=+y x 3.D 4.A 5.设()00y x P ,则01ex a PF +=,02ex a PF -=()()20220021x e a ex a ex a PF PF -=-+=⋅ ∵a x a ≤≤-0 ∴2200a x ≤≤当00=x 即()b P ,0或()b -,0时,21PF PF ⋅最大,最大值为2a .当220a x =即()0,a P 或()0,a -时,21PF PF ⋅最小,最小值为222b c a =-.6.设所求椭圆方程是12222=+by a x ()0>>b a依题意可得342132322222++⎪⎭⎫ ⎝⎛+-=⎪⎭⎫ ⎝⎛-+=b y y x d ,其中b y b ≤≤-如果210<<b ,则当b y -=时,2d 有最大值,即()22237⎪⎭⎫ ⎝⎛+=b .由此得21237>-=b ,与21<b 矛盾.因此必有21≥b 成立,于是当21-=y 时,2d 有最大值,即()34722+=b.由此得1=b ,2=a ,故所求椭圆方程为1422=+y x . 由21-=y 代入椭圆方程得点⎪⎭⎫ ⎝⎛--213,和⎪⎭⎫ ⎝⎛-213,到点P 的距离都是7.注:本题也可设椭圆的参数方程是⎩⎨⎧==θθsin cos b y a x ,其中0>>b a ,πθ20<≤,利用三角函数求解.。

《椭圆的简单几何性质》教学设计

《椭圆的简单几何性质》教学设计

《椭圆的简单几何性质》教学设计教学目标:1.了解什么是椭圆,掌握椭圆的定义及性质;2.能够绘制椭圆的图形,正确标注焦点、顶点等重要点;3.学会在实际问题中应用椭圆的性质进行解题。

教学内容:1.椭圆的定义及相关性质;2.绘制椭圆的图形;3.解决实际问题。

教学准备:1.教师准备:(1)椭圆的定义及性质的教材;(2)绘制椭圆的工具:铅笔、直尺、圆规等;(3)相关的教学课件和习题;(4)实际问题的案例。

2.学生准备:(1)铅笔、橡皮等绘图工具;(2)课前预习椭圆的定义及性质。

教学步骤:Step 1 引入新知(15分钟)1.教师通过图示引入椭圆的概念,与学生一起探讨椭圆的特点。

2.教师解释椭圆的定义和背后的数学性质,如焦点、两个顶点之间的距离和椭圆长轴和短轴的关系。

3.学生可以举例子说明在生活中的椭圆形状的物体,如椭圆球、橄榄等。

Step 2 探索椭圆的性质(30分钟)1.教师组织学生成小组,提供椭圆的绘图工具,要求学生用椭圆的定义绘制椭圆的图形,包括两个焦点和顶点。

2.教师引导学生观察椭圆的性质,如焦点到任意一点距离之和等于椭圆长轴的长度。

3.学生通过測量焦点到点的距离来验证椭圆的这一性质。

Step 3 练习巩固(30分钟)1.教师出示几道练习题,要求学生利用椭圆的性质进行解题。

2.学生在小组内共同讨论解题思路,并进行答题。

3.教师选几位学生上台讲解解题思路和答案,并与全班讨论。

4.教师提供反馈,对学生答题中常见的错误进行讲解和指导。

Step 4 实践应用(30分钟)1.教师提供一些实际问题的案例,如光学、天文学等领域中的问题,要求学生分组解决。

2.学生通过应用椭圆的性质解决实际问题,并给出解决方案。

3.教师选择一些小组发表他们的解决方案,并与全班进行讨论。

Step 5 总结与归纳(15分钟)1.教师带领学生总结椭圆的定义及性质,并进行归纳。

2.学生通过小组合作的方式将所学的性质和定义整理成口诀、表格,便于记忆。

《椭圆的简单几何性质》教学设计

《椭圆的简单几何性质》教学设计

椭圆的简单几何性质(1)教学设计杨华燕大附中2.2.2椭圆的简单几何性质(1)教学设计一、教学任务及对象1、教学内容分析《椭圆的简单几何性质》是选修2-1第二章第二节的内容,本节内容是在学生已经学过曲线与方程和椭圆的概念及其标准方程基础上引入的,是利用椭圆的标准方程研究椭圆的几何性质,它是由方程研究曲线的性质的一个应用,也是为后面学习利用双曲线、抛物线的标准方程研究其几何性质做铺垫,因此本节课起到承前启后的作用。

2、教学对象分析本节课授课的对象是高二年级的学生,他们已掌握了椭圆的标准方程,虽然具备一定的分析和解决问题的能力,逻辑思维也初步形成,但缺乏冷静、深刻,思维具有片面性、不严谨的特点,对问题解决的一般性思维过程认识比较模糊。

二、教学目标依据课程标准,结合学生的认知发展水平和心理特征,确定本节课的教学目标如下:1、知识与技能:使学生掌握椭圆的几何性质,初步学会运用椭圆的几何性质解决问题,进一步体会数形结合的思想。

2、过程与方法:通过数和形两条线研究椭圆的几何性质,启动观察、分析、抽象概括等思维活动,培养学生的思维能力,体会数形结合的思想方法;对椭圆的几何性质的归纳、总结时培养学生抽象概括能力;进一步强化数形结合思想。

3、情感、态度与价值观:通过本节课的学习,养成积极主动思考,勇于探索,不断创新的学习习惯和品质。

三、重、难点分析重点:椭圆的简单几何性质难点:培养数形结合思想四、教学策略为了突出重点、突破难点,在教学中采取了以下策略:1.教法分析为了充分调动学生学习的积极性,采用“生本课堂”模式,培养学生的创新精神,使学生在解决问题的同时,形成了方法.另外恰当的利用多媒体课件进行辅助教学,借助信息技术创设情境激发学生的学习兴趣.2.学法分析本节课通过探究椭圆的几何性质,让学生体会数形结合思想,加深对解析几何的理解;让学生从问题中质疑、尝试、归纳、总结、运用,培养学生发现问题、分析问题和解决问题的能力.五、教学过程本节课中应把更多的时间、机会留给学生,让学生充分的交流、探究,积极引导学生动手操作、动脑思考。

椭圆的简单几何性质(教案)

椭圆的简单几何性质(教案)

椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本性质。

2. 掌握椭圆的长轴、短轴、焦距等几何参数的计算方法。

3. 能够运用椭圆的性质解决相关几何问题。

教学重点:1. 椭圆的定义及其基本性质。

2. 椭圆几何参数的计算方法。

教学难点:1. 椭圆性质的应用。

教学准备:1. 教学课件或黑板。

2. 尺子、圆规等绘图工具。

教学过程:一、导入1. 引导学生回顾圆的性质,提出问题:“如果将圆的半径缩小,圆的形状会发生什么变化?”2. 学生讨论并得出结论:圆的形状会变成椭圆。

二、新课讲解1. 引入椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

2. 讲解椭圆的基本性质:a) 椭圆的两个焦点对称,且位于椭圆的长轴上。

b) 椭圆的长轴是连接两个焦点的线段,短轴是垂直于长轴的线段。

c) 椭圆的半长轴a和半短轴b是椭圆的几何参数,焦距2c与a、b之间的关系为c^2=a^2-b^2。

3. 演示如何用尺子和圆规绘制椭圆,并引导学生动手实践。

三、案例分析1. 给出一个椭圆,让学生计算其长轴、短轴和焦距。

2. 学生分组讨论并解答,教师巡回指导。

四、课堂练习1. 布置课堂练习题,让学生运用椭圆的性质解决问题。

2. 学生独立完成练习题,教师批改并给予反馈。

五、总结与拓展1. 总结本节课所学的椭圆的基本性质和几何参数的计算方法。

2. 提出拓展问题:“椭圆在实际应用中有什么意义?”,引导学生思考和探索。

教学反思:本节课通过导入、新课讲解、案例分析、课堂练习和总结与拓展等环节,使学生掌握了椭圆的基本性质和几何参数的计算方法。

在教学过程中,注意引导学生主动参与、动手实践,提高学生的学习兴趣和积极性。

通过课堂练习和拓展问题,培养学生的思维能力和解决问题的能力。

但在教学过程中,也要注意对学生的个别辅导,确保每个学生都能跟上教学进度。

六、椭圆的离心率1. 引入离心率的定义:椭圆的离心率e是焦距c与半长轴a之比,即e=c/a。

椭圆的简单几何性质(教案)

椭圆的简单几何性质(教案)

椭圆的简单几何性质教学目标:1. 理解椭圆的定义及其基本几何性质。

2. 学会运用椭圆的性质解决相关问题。

3. 培养学生的观察能力、推理能力和解决问题的能力。

教学内容:1. 椭圆的定义2. 椭圆的焦点3. 椭圆的长轴和短轴4. 椭圆的离心率5. 椭圆的面积教学准备:1. 教学课件或黑板2. 椭圆模型或图片3. 直尺、圆规等绘图工具教学过程:一、导入(5分钟)1. 引入椭圆的概念,展示椭圆模型或图片,让学生观察并描述椭圆的特点。

2. 引导学生思考:椭圆与其他几何图形(如圆、矩形等)有什么不同?二、椭圆的定义(10分钟)1. 给出椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和等于常数的点的集合。

2. 解释椭圆的焦点概念,说明焦点的作用。

3. 引导学生通过实际操作,绘制一个椭圆,并标记出焦点。

三、椭圆的焦点(10分钟)1. 介绍椭圆的焦点与椭圆的离心率的关系。

2. 引导学生通过实际操作,观察焦点的位置与椭圆的形状之间的关系。

3. 解释椭圆的离心率的定义及其几何意义。

四、椭圆的长轴和短轴(10分钟)1. 介绍椭圆的长轴和短轴的概念。

2. 引导学生通过实际操作,测量和记录椭圆的长轴和短轴的长度。

3. 解释长轴和短轴与椭圆的形状之间的关系。

五、椭圆的面积(10分钟)1. 介绍椭圆的面积的计算公式。

2. 引导学生通过实际操作,计算一个给定椭圆的面积。

3. 解释椭圆面积与长轴和短轴之间的关系。

教学评价:1. 通过课堂讲解和实际操作,学生能够理解椭圆的定义及其基本几何性质。

2. 通过解决问题和完成作业,学生能够运用椭圆的性质解决相关问题。

3. 通过课堂讨论和提问,学生能够展示对椭圆的理解和应用能力。

六、椭圆的离心率(10分钟)1. 回顾椭圆的离心率的定义和计算方法。

2. 引导学生通过实际操作,观察离心率与椭圆的形状之间的关系。

3. 解释离心率在几何中的应用,如椭圆的焦点和直线的交点等。

七、椭圆的参数方程(10分钟)1. 介绍椭圆的参数方程及其意义。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质(一)教学目标:1. 知识与技能(1) 理解并掌握椭圆的范围、对称性、顶点坐标和离心率这四个简单几何性质;(2) 掌握椭圆标准方程中b a ,以及e c ,的几何意义,以及e c b a ,,,之间的相互关系。

(3) 会根据椭圆的几何性质,解决简单的实际问题2. 过程与方法(1) 通过对椭圆性质的研究,经历对椭圆几何性质的探索过程(2) 通过椭圆图形的观察,经历有图形归纳出相应性质的过程3. 情感、态度与价值观(1) 由图形归纳性质的过程中,培养学生用代数的方法研究曲线的几何性质的思想。

(2) 感受椭圆在刻画现实世界和解决实际问题中的作用(二)教学重点和难点:1、教学重点:椭圆的四个简单几何性质;2、教学难点:椭圆性质在实际问题中的应用,数形结合的思想、方程的思想的运用。

(三)教学过程:【复习引入】问题: 椭圆的定义是怎样的? 椭圆的标准方程是怎样的?【新课讲授】根据曲线的方程研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一.根据曲线的条件列出方程.如果说是解析几何的手段,1. 椭圆的几何性质:(ⅰ)如图:椭圆的标准方程为:192522=+y x通过观察该椭圆的图形,可以看出这个椭圆的的大小范围是什么?具有怎样的对称性?以及它跟两条坐标轴的交点一般地,如果椭圆的标准方程为:)0(12222>>=+b a by a x ,下面研究其几何性质: (1)范围:椭圆在直线 和直线 ,围成的矩形里(2)对称性:椭圆关于x 轴、y 轴轴对称,是轴对称图形;也关心原点中心对称,是中心对称图形。

椭圆的对称中心叫椭圆的中心。

(3)顶点:椭圆与两条坐标轴的四个交点 )0,(1a A ,)0,(2a A -,)0,(1b B )0,(2b B -叫椭圆的顶点。

椭圆的长轴:线段21A A ;长轴长:2a ;长半轴长:a椭圆的短轴:线段21B B ;短轴长:2b ; 短半轴长:b(ⅱ)求下列各椭圆的长轴和短轴的长、顶点坐标(1)192522=+y x (2 ) 1817222=+y x (3)400251622=+y x (4)81922=+y x通过观察上述椭圆的图形,它们有什么区别?(4)离心率:椭圆的焦距与长轴长的比a c e =叫椭圆的离心率()10<<e 离心率的大小对椭圆形状的影响:① 当 趋近于1时, 趋近于 ,从而越小,因此椭圆越扁平:② 当 趋近于0时, 趋近于0,从而 趋近于 ,因此椭圆越接近于圆 ③ 当且仅当b a =时,0=c ,两焦点重合,图形变为圆,它的方程变为: 222a y x =+思考:若椭圆的标准方程为)0(12222>>=+b a bx a y ,其范围,对称性,顶点坐标和离心率又是怎样?2. 例题讲练:1. 比较下列两个椭圆的形状,哪个更圆,哪个更扁?为什么?36922=+y x 与1121622=+y x 题组一:求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,53,3==e c (2)经过点)0,3(-P ,)2,0(-Q 题组二:求适合下列条件的椭圆的标准方程:(1)长轴长等于20,离心率等于53 (2)经过点(3,0),离心率53=e 4. 小结:椭圆的四个简单的几何性质。

3.1.3 椭圆的简单几何性质(教学设计)(水涛)-高中数学新教材选择性必修第一册小单元教学+专家指

3.1.3 椭圆的简单几何性质(教学设计)(水涛)-高中数学新教材选择性必修第一册小单元教学+专家指

3.1.3 椭圆的简单几何性质(教学设计)(水涛)-高中数学新教材选择性必修第一册小单元教学+专家指导(视频+教案)教学目标:1. 理解椭圆在平面直角坐标系中的定义;2. 掌握椭圆的标准方程与一般方程的相互转化;3. 理解椭圆的离心率与几何性质;4. 能够应用椭圆的几何性质解决初步问题。

教学重点:1. 理解椭圆的定义和性质;2. 掌握椭圆的标准方程和一般方程的相互转化。

教学难点:1. 掌握椭圆参数(长轴、短轴、离心率等)之间的关系;2. 理解椭圆的离心率对椭圆形状的影响。

教学方法:1. 讲授法:介绍椭圆定义、标准方程和一般方程的推导过程;2. 演示法:通过图示演示椭圆的参数关系,解决问题;3. 经验法:引导学生通过多次的实例反复演练,掌握椭圆的相关特性。

教学过程:Step 1 导入(5分钟)1. 引入椭圆的概念,询问学生对椭圆的认识;2. 介绍椭圆的历史背景和应用。

Step 2 讲解(35分钟)1. 推导椭圆的标准方程;2. 解释椭圆参数之间的关系;3. 推导椭圆的一般方程;4. 介绍椭圆的离心率与椭圆形状的关系。

Step 3 演示(20分钟)1. 在平面直角坐标系中演示椭圆的图形,让学生观察椭圆的特性;2. 基于图示解决椭圆相关问题;3. 演示离心率对椭圆形状的影响。

Step 4 练习(30分钟)1. 将学生分成小组,让小组内的学生互相讨论探究椭圆的各项特性;2. 布置练习题,让学生个人或团队完成。

Step 5 总结(10分钟)1. 总结本节课的重点和难点,询问学生对本节课的掌握情况;2. 强调椭圆相关特性,并指出椭圆在实际应用中的重要性。

教学资源:1. PowerPoint讲义;2. 图表等实物物品;3. 椭圆的模拟练习题。

教学评价:采用多元化的教学方法,重视学生实践操作能力的培养,通过多次的实际操作演练,可以提高学生对椭圆的理解和应用,发扬人民教师的创新精神,提高学生的学习兴趣。

如果有必要,可以邀请相关领域的专家来给予指导和点评,提高教育质量。

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案一、教学目标1. 知识与技能:使学生掌握椭圆的定义,理解椭圆的基本几何性质,如焦点、半长轴、半短轴等概念;2. 过程与方法:通过观察、分析、归纳等方法,让学生发现并证明椭圆的几何性质;3. 情感态度与价值观:培养学生对数学的兴趣,提高学生分析问题、解决问题的能力。

二、教学内容1. 椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。

2. 椭圆的基本几何性质:a. 焦点:椭圆的焦点距离为2c,其中c为半焦距,c^2=a^2-b^2;b. 半长轴:椭圆的半长轴为a,表示椭圆的长轴的一半;c. 半短轴:椭圆的半短轴为b,表示椭圆的短轴的一半;d. 椭圆的面积:S=πab。

三、教学重点与难点1. 教学重点:椭圆的定义及其基本几何性质;2. 教学难点:椭圆的焦点、半长轴、半短轴等概念的理解与应用。

四、教学方法1. 采用问题驱动法,引导学生通过观察、分析、归纳等方法发现椭圆的几何性质;2. 利用数形结合法,让学生直观地理解椭圆的定义及其几何性质;3. 运用实例讲解法,让学生掌握椭圆在实际问题中的应用。

五、教学过程1. 导入新课:通过介绍椭圆的起源和发展,激发学生的学习兴趣;2. 讲解椭圆的定义:结合图形,解释椭圆的定义,让学生理解椭圆的概念;3. 探索椭圆的基本几何性质:引导学生观察椭圆的图形,发现焦点、半长轴、半短轴等性质;4. 证明椭圆的几何性质:引导学生运用数学方法证明椭圆的基本几何性质;5. 应用实例:让学生运用椭圆的性质解决实际问题,巩固所学知识。

本教案为椭圆的简单几何性质教学教案的第一部分,后续章节将陆续呈现。

希望能对您的教学有所帮助!六、教学练习1. 基本概念练习:a. 定义椭圆的焦点;b. 解释椭圆的半长轴和半短轴;c. 计算椭圆的面积。

2. 应用题练习:a. 已知椭圆的半长轴为5cm,半短轴为3cm,求椭圆的焦点距离;b. 已知椭圆的面积为36πcm²,半长轴为6cm,求椭圆的半短轴;c. 一个椭圆的焦点在x轴上,半长轴为4cm,半短轴为3cm,求椭圆的标准方程。

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际例子让学生感受椭圆的形状。

讲解椭圆的定义:椭圆是平面上到两个固定点(焦点)距离之和为常数的点的轨迹。

1.2 椭圆的标准方程推导椭圆的标准方程:\(\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1\),其中\(a\)是椭圆的半长轴,\(b\)是半短轴。

解释\(a\)和\(b\)与椭圆的形状和大小之间的关系。

第二章:椭圆的焦点与离心率2.1 椭圆的焦点讲解椭圆的焦点定义:椭圆上到两个焦点距离之和为常数的点。

推导椭圆焦点的坐标公式:\((\pm c, 0)\),其中\(c\)是焦距,满足\(c^2 = a^2 b^2\)。

2.2 椭圆的离心率定义椭圆的离心率:\(e = \frac{c}{a}\),表示椭圆的扁率。

解释离心率与椭圆的形状之间的关系:离心率越接近1,椭圆越扁;离心率越接近0,椭圆越接近圆。

第三章:椭圆的面积与周长3.1 椭圆的面积推导椭圆的面积公式:\(A = \pi ab\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。

解释椭圆面积与半长轴和半短轴之间的关系。

3.2 椭圆的周长推导椭圆的周长公式:\(C = \pi(a + b)\),其中\(a\)和\(b\)分别是椭圆的半长轴和半短轴。

解释椭圆周长与半长轴和半短轴之间的关系。

第四章:椭圆的直线段性质4.1 椭圆的半通径定义椭圆的半通径:连接椭圆上一点与焦点的线段中点的距离。

推导半通径的公式:\(r = \frac{a}{2}\)。

4.2 椭圆的半焦距定义椭圆的半焦距:椭圆上到焦点距离之和的一半。

推导半焦距的公式:\(f = \frac{c}{2}\)。

第五章:椭圆的参数方程与极坐标方程5.1 椭圆的参数方程引入椭圆的参数方程:\(x = a \cos t\),\(y = b \sin t\),其中\(t\)是参数。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案教学目标:1. 理解椭圆的定义及基本性质;2. 掌握椭圆的长轴、短轴、焦距等基本概念;3. 学会运用椭圆的性质解决实际问题。

教学重点:1. 椭圆的定义及基本性质;2. 椭圆的长轴、短轴、焦距等基本概念。

教学难点:1. 椭圆性质的应用。

教学准备:1. 教师准备PPT、黑板、粉笔等教学工具;2. 学生准备笔记本、文具等学习用品。

教学过程:一、导入(5分钟)1. 引导学生回顾圆的性质,复习相关概念;2. 提问:圆的性质在椭圆上是否适用?引出椭圆的定义及性质。

二、新课讲解(15分钟)1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹;2. 介绍椭圆的基本性质:椭圆的长轴、短轴、焦距等;3. 举例说明椭圆性质的应用,如:椭圆的离心率、焦距与半长轴、半短轴的关系等。

三、课堂练习(10分钟)1. 布置练习题,让学生运用椭圆性质解决问题;2. 引导学生互相讨论,共同解答;3. 教师巡回指导,解答学生疑问。

四、课堂小结(5分钟)1. 回顾本节课所学内容,总结椭圆的定义及基本性质;2. 强调椭圆性质在实际问题中的应用。

五、作业布置(5分钟)1. 布置课后作业,巩固所学知识;2. 提醒学生做好作业,为下一节课做好准备。

教学反思:本节课通过讲解椭圆的定义及基本性质,让学生掌握椭圆的长轴、短轴、焦距等概念,并学会运用椭圆性质解决实际问题。

在教学过程中,注意引导学生回顾旧知识,为新知识的学习打下基础;通过课堂练习,让学生巩固所学知识,提高解题能力。

六、案例分析:椭圆在现实世界中的应用(15分钟)1. 教师通过展示实际案例,如行星运动、卫星轨道等,让学生了解椭圆在现实世界中的应用;2. 引导学生分析案例中椭圆的性质,如离心率、长轴、短轴等;3. 让学生探讨椭圆在这些案例中的作用和意义。

七、拓展知识:椭圆的衍生形状(15分钟)1. 介绍椭圆的衍生形状,如双曲线、抛物线等;2. 分析这些形状与椭圆的关系,让学生了解它们之间的联系和区别;3. 举例说明这些形状在实际问题中的应用。

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计一、引言椭圆是几何中重要的曲线之一,具有多种性质和应用。

通过对椭圆的简单几何性质的教学,可以帮助学生深入理解和掌握椭圆的特点和应用,并培养他们的几何思维和问题解决能力。

本教学设计旨在通过生动的教学方法,让学生对椭圆的性质有深入的了解。

二、教学目标1. 了解椭圆的定义及其与圆的区别;2. 掌握椭圆的几何性质,如焦点、长轴、短轴等;3. 学会应用椭圆的性质解决几何问题;4. 培养学生的观察力、分析能力和解决问题的能力。

三、教学内容和步骤1. 椭圆的定义a. 通过讲解椭圆的定义来引出椭圆的性质;b. 展示椭圆的示意图,让学生形象地理解椭圆的形状。

2. 椭圆的焦点和离心率a. 引导学生观察和思考,通过讨论椭圆的两个焦点的性质;b. 解释椭圆的离心率及其与焦点位置的关系;c. 带领学生实践,使用绳子和两个钉子构造椭圆,加深对焦点和离心率的理解。

3. 椭圆的长轴和短轴a. 讲解椭圆的长轴和短轴的定义和性质;b. 教学示范,通过展示多个椭圆的长轴和短轴的关系加深学生的理解。

4. 椭圆的对称性质a. 引导学生思考和发现椭圆的对称性质;b. 讲解椭圆的关于长轴和短轴的对称轴;c. 结合实例,帮助学生理解对称性质对椭圆的影响。

5. 椭圆的应用a. 介绍椭圆在科学、工程等领域的应用;b. 设计一些实际问题,让学生运用所学椭圆性质解决问题。

四、教学评估1. 在课堂上设计一些小练习,检查学生对椭圆性质的理解程度;2. 分组进行小组活动,让学生运用椭圆的性质解决问题;3. 结合实际情况,布置作业让学生独立完成,检查他们对椭圆性质的掌握和应用能力。

五、教学资源1. 椭圆的示意图和图片;2. 教学展示板或投影仪;3. 绳子、钉子等辅助教学工具。

六、教学反思椭圆的简单几何性质是几何学中的重要内容。

通过本教学设计,学生通过观察、实践和思考,逐渐掌握了椭圆的定义、焦点、离心率、长轴、短轴和对称性质等基本知识,并能应用于实际问题中。

椭圆的简单几何性质 精品教案

椭圆的简单几何性质 精品教案

椭圆的简单几何性质【教学目标】1.了解椭圆的参数方程,了解参数方程中系数b a ,的含义。

2.通过学习椭圆的参数方程,进一步完善对椭圆的认识,理解参数方程与普通方程的相互联系。

并能相互转化。

提高综合运用能力。

【教学重难点】教学重点:进一步巩固和掌握由曲线求方程及由方程研究曲线的方法及椭圆参数方程的推导。

教学难点:深入理解推导方程的过程。

灵活运用方程求解问题。

【课时安排】1课时【教学过程】一、复习引入1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定点间的距离)的动点的轨迹。

2.标准方程:2222 1 x y a b +=,2222 1 y x a b += (0>>b a )3.椭圆的性质:由椭圆方程2222 1 x y a b+=(0>>b a )(1)范围:a x a ≤≤-,b y b ≤≤-,椭圆落在b y a x ±=±=,组成的矩形中。

(2)对称性:图像关于y 轴对称。

图像关于x 轴对称。

图像关于原点对称原点叫椭圆的对称中心,简称中心。

x 轴、y 轴叫椭圆的对称轴。

从椭圆的方程中直接可以看出它的范围,对称的截距。

(3)顶点:椭圆和对称轴的交点叫做椭圆的顶点。

椭圆共有四个顶点:)0,(),0,(2a A a A -,),0(),,0(2b B b B -加两焦点)0,(),0,(21c F c F -共有六个特殊点。

21A A 叫椭圆的长轴,21B B 叫椭圆的短轴。

长分别为b a 2,2,b a ,分别为椭圆的长半轴长和短半轴长。

椭圆的顶点即为椭圆与对称轴的交点。

(4)离心率: c e a =⇒e =,10<<e 。

椭圆形状与e 的关系:0,0→→c e ,椭圆变圆,直至成为极限位置圆,此时也可认为圆为椭圆在0=e 时的特例。

,,1a c e →→椭圆变扁,直至成为极限位置线段21F F ,此时也可认为圆为椭圆在1=e 时的特例。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

椭圆的简单几何性质教案(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、文案策划、工作计划、讲话致辞、合同模板、教案大全、作文大全、心得体会、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!And, this store provides various types of practical materials for everyone, such as work summaries, work reports, copywriting plans, work plans, speeches, contract templates, lesson plans, essays, experiences, and other materials. If you want to learn about different data formats and writing methods, please pay attention!椭圆的简单几何性质教案椭圆的简单几何性质教案主要包括以下内容:一、教学目标:1.熟悉椭圆的几何性质,如对称性、范围、顶点、离心率等。

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案

椭圆的简单几何性质教学教案第一章:椭圆的定义与标准方程1.1 椭圆的定义引入椭圆的概念,通过实际物体(如地球、月球绕太阳的运动)来让学生理解椭圆的形状。

解释椭圆是由一个固定点(焦点)和到该点距离之和等于常数的点的集合所形成的图形。

1.2 椭圆的标准方程推导椭圆的标准方程,即x^2/a^2 + y^2/b^2 = 1,其中a和b分别是椭圆的半长轴和半短轴。

解释方程中a和b的含义,以及它们与椭圆的性质之间的关系。

第二章:椭圆的长轴、短轴和焦距2.1 椭圆的长轴定义椭圆的长轴,即通过椭圆中心并且平行于x轴的轴。

解释长轴的长度是2a,与椭圆的半长轴a的关系。

2.2 椭圆的短轴定义椭圆的短轴,即通过椭圆中心并且垂直于x轴的轴。

解释短轴的长度是2b,与椭圆的半短轴b的关系。

2.3 椭圆的焦距定义椭圆的焦距,即焦点之间的距离。

解释焦距与椭圆的长轴和短轴的关系,即焦距等于2c,其中c是焦点到椭圆中心的距离。

第三章:椭圆的面积3.1 椭圆的面积公式推导椭圆的面积公式,即A = πab,其中a和b分别是椭圆的半长轴和半短轴。

解释面积公式中π的作用和意义。

3.2 椭圆的面积性质解释椭圆的面积与长轴和短轴的关系,即面积与长轴和短轴的乘积成正比。

举例说明椭圆面积的计算方法,并进行实际计算练习。

第四章:椭圆的离心率4.1 椭圆的离心率定义定义椭圆的离心率e,即焦距与长轴之间的比值,e = c/a。

解释离心率的作用和意义,以及它与椭圆的形状之间的关系。

4.2 椭圆的离心率性质解释离心率与椭圆的长轴和短轴的关系,即离心率越小,椭圆越接近于圆形。

举例说明椭圆离心率的计算方法,并进行实际计算练习。

第五章:椭圆的焦点和直线的交点5.1 椭圆的焦点定义椭圆的焦点,即椭圆上到焦点距离之和等于常数的点。

解释焦点的性质,以及它们与椭圆的中心和长轴之间的关系。

5.2 椭圆与直线的交点解释椭圆与直线的位置关系,以及交点的性质。

举例说明椭圆与直线交点的计算方法,并进行实际计算练习。

椭圆的简单几何性质教案

椭圆的简单几何性质教案

一、教案基本信息椭圆的简单几何性质教案课时安排:1课时教学目标:1. 让学生掌握椭圆的定义及基本性质。

2. 培养学生运用几何知识分析问题、解决问题的能力。

3. 引导学生发现椭圆在实际生活中的应用,培养学生的学习兴趣。

教学内容:1. 椭圆的定义2. 椭圆的基本性质3. 椭圆的标准方程4. 椭圆的焦点与离心率5. 椭圆的参数方程二、教学过程1. 导入:利用多媒体展示一些生活中的椭圆形状的物体,如地球、月球、鸡蛋等,引导学生发现椭圆在生活中的广泛存在。

2. 知识讲解:1. 讲解椭圆的定义:椭圆是平面上到两个定点(焦点)距离之和为定值的点的轨迹。

2. 讲解椭圆的基本性质:(1)椭圆的两个焦点在椭圆的长轴上,且长轴长度为2a。

(2)椭圆的短轴长度为2b。

(3)椭圆的离心率e=c/a,其中c为焦距,a为半长轴,b为半短轴。

(4)椭圆的面积S=πab。

3. 讲解椭圆的标准方程:椭圆的标准方程为x^2/a^2 + y^2/b^2 = 1。

4. 讲解椭圆的参数方程:椭圆的参数方程为x=acosθ,y=bsinθ。

3. 案例分析:给出一个实际问题,如求解椭圆上一点到两焦点的距离之和。

引导学生运用椭圆的性质解决问题。

4. 课堂练习:布置一些有关椭圆性质的练习题,让学生课后巩固所学知识。

5. 总结:对本节课的内容进行总结,强调椭圆的基本性质及应用。

三、课后作业1. 复习椭圆的定义及基本性质。

2. 练习椭圆的标准方程和参数方程的转化。

3. 寻找生活中的椭圆形状物体,了解椭圆在实际中的应用。

四、教学反思本节课结束后,教师应认真反思教学效果,针对学生的掌握情况,调整教学策略,以提高学生对椭圆知识的理解和运用能力。

五、教学评价通过课堂讲解、练习和课后作业,评价学生对椭圆定义、基本性质、标准方程和参数方程的掌握程度,以及运用椭圆知识解决实际问题的能力。

六、教学活动设计1. 互动提问:在上一节课中,我们学习了椭圆的定义及基本性质,谁能简要回顾一下椭圆的定义是什么?2. 小组讨论:请同学们分成小组,讨论如何运用椭圆的性质解决实际问题。

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计导语:椭圆是几何学中一个重要的概念,理解椭圆的性质对于数学学科的学习具有重要意义。

因此,本文将设计一个针对椭圆的简单几何性质的教学内容,旨在帮助学生更好地理解和掌握椭圆的基本特点。

一、引入在教学开始之前,可以通过引入椭圆的概念来激发学生对该主题的兴趣。

可以让学生观察并描述一些椭圆的实例,例如椭圆形的轮胎、篮球等,进而引出椭圆的定义和性质。

二、椭圆的定义在引入概念之后,需要给出椭圆的严格定义。

椭圆可以定义为平面上到两个定点之和等于一定值的点的集合。

这个定义可以通过几何图形的展示和实例的校验来让学生更好地理解。

三、椭圆的性质1. 椭圆的焦点性质:椭圆的焦点是与椭圆的定义密切相关的内容。

可以通过推导和演示来给出焦点的定义和特点,包括焦点在椭圆的几何中心线上、到椭圆边界上任意一点的距离之和等于定值等。

2. 椭圆的长轴和短轴:椭圆还有两条重要的中垂线,分别为长轴和短轴。

可以通过给出椭圆的参数方程,并引导学生通过参数方程来推导出椭圆的长轴和短轴的关系。

3. 椭圆的离心率:椭圆的离心率是衡量椭圆形状的重要参数,可以通过定义和计算公式来介绍离心率的概念,并让学生通过计算椭圆形状不同的例子的离心率来理解其意义和特点。

4. 椭圆的切线性质:椭圆切线是垂直于椭圆边界的直线。

可以通过直角三角形的性质以及切线与半径的关系来推导出椭圆的切线性质,并通过具体的几何图形和实例来应用这一性质。

5. 椭圆的对称性:椭圆具有许多对称轴,其中包括两条主轴和许多副轴。

可以通过示意图和实例来介绍和验证椭圆的对称性,以及对称轴的特点。

四、椭圆的应用在学习了椭圆的基本性质之后,可以引导学生思考椭圆在实际问题中的应用。

例如,椭圆的形状适用于人造卫星轨道、搭桥拱形等各种实际问题。

可以通过展示实际案例、进行讨论和解决具体问题的方式,让学生将椭圆的性质与实际应用相联系。

五、教学扩展对于那些对椭圆性质有较好掌握的学生,可以引导他们进行更深入的探究和研究。

教学设计4:2.2.2 椭圆的简单几何性质

教学设计4:2.2.2 椭圆的简单几何性质

2.2.2 椭圆的简单几何性质x 2≤a 2且y 2≤b 2,则有|x |≤a,|y |≤b, 所以-a ≤x ≤a,-b ≤y ≤b 。

2.对称性的发现与证明师:椭圆的图形给人们以视觉上的美感(课件展示椭圆),如果我们沿焦点所在的直线上下对折,沿两焦点连线的垂直平分线左右对折,大家猜想椭圆可能有什么性质?(学生动手折纸,课前教师要求学生把上节学习椭圆定义时画的椭圆拿来。

) 学生们基本上能发现椭圆的轴对称性。

师:除了轴对称性外,还可能有什么对称性呢?稍作提示容易发现中心对称性。

师:这仅仅是由观察、猜想得到的结果,怎样用方程证明它的对称性?师生讨论后,需要建立坐标系,确定椭圆的标准方程。

不妨建立焦点在x 轴上的椭圆的标准坐标系,它的方程就是22a x +22by =1。

师:这节课就以焦点在x 轴上的椭圆的标准方程为例来研究椭圆的性质。

这样建立的坐标系对称轴恰好重合于坐标轴,我们先证椭圆关于y 轴对称。

为了证明对称性,先作如下铺垫:(一起回顾)师:在第一册学过,曲线关于y 轴对称是指什么呢?生:曲线上的每一点关于y 轴的对称点仍在曲线上。

师:要证曲线上每一点关于y 轴的对称点仍在曲线上,只要证明-----生:曲线上任意一点关于y 轴的对称点仍在曲线上。

在学生尝试进行问题解决的过程中,当他们难以把握问题解决的思维方向,难以建立起新旧知识的联系时,这就需要教师适时进行启发点拨。

师:同学们阅读教材中椭圆对称性的证明过程,仔细体会并思考“为什么把x 换成-x 时,方程不变,则椭圆关于y 轴对称”。

请一位学生讲解椭圆对称性的证明过程,以此来训练学生表述的逻辑性、完整性和推理的严谨性。

教师对学生的证明进行评价。

师:用类似的方法可以证明椭圆关于x 轴对称,关于原点对称。

课件展示对称性并总结:方程22a x +22by =1表示的椭圆,坐标轴是其对称轴,原点是其对称中心.从而椭圆有两条互相垂直的对称轴,有一个对称中心(简称中心).教师引导学生对这一环节进行反思,即通过建立坐标系,用椭圆的方程研究椭圆的性质,这种方法我们今后经常用到。

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计

椭圆的简单几何性质教学设计《椭圆的简单几何性质》教学设计一、教材分析教材的地位和作用地位:本节课是在椭圆的概念的基础上,介绍椭圆简单几何性质及简单应用 . 本节课内容的掌握程度直接影响学习双曲线和抛物线几何性质。

作用:提高学生的数学素质,培养学生的数形结合思想,及分析问题和解决问题的能力。

因此,内容在解析几何中占有非常重要的地位。

二、教学目标(一)、知识目标.熟悉椭圆的几何性质(对称性、范围、顶点、离心率)。

(二)、能力目标1,了解掌握椭圆的几何性质(对称性、范围、顶点、离心率)。

2.能说明离心率的大小对椭圆形状的影响.。

3. 运用数形结合思想,研究曲线方程几何性质。

三、教学重点、难点教学重点:椭圆的几何性质教学难点:如何贯彻数形结合思想,运用曲线方程研究几何性质四、教法:自主合作探究五、学法:根据学生情况我应用“观察——归纳--讨论——练习”的学习方法。

六、学生情况:本节课将在高二年级2、3班中进行,两班学生基础知识掌握较差,运算能力比较差。

七、教学过程及设计说明:(一)、复习1.椭圆定义:在平面内,到两定点距离之和等于定长(定长大于两定间的距离)的动点的轨迹2.椭圆的标准方程是:当焦点在X轴上时当焦点在y轴上时3.椭圆中 ,b,c的关系是:(二)学生自学课本,合作学习性质根据曲线的方程,研究曲线的几何性质,并正确地画出它的图形,是解析几何的基本问题之一,由椭圆方程 ( ) 研究椭圆的性质.(1)对称性(2)椭圆的顶点(3)范围:(4) 离心率先分析椭圆的离心率e的取值范围:∵ac0, 0<e<1.再结合图形分析离心率的大小对椭圆形状的影响:(2)当e接近0时,c越接近0,从而b越接近a,因此椭圆接近圆;(3)当e=0时,c=0,a=b两焦点重合,椭圆的标准方程成为x2+y2=a2,图形就是圆了.(三)学生合作探究焦点在Y轴上的性质(四) 例题讲解,巩固练习通过练习对理解、达到巩固、消化新知识的目的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《椭圆的简单几何性质》教学
一.教材分析
1. 教材的地位和作用
本节课是普通高中课程标准实验教科书数学选修1-1第二章2.1.2第1课时:椭圆的简单几何性质。

在此之前,学生已经掌握了椭圆的定义及其标准方程,这只是单纯地通过曲线建立方程的探究。

而这节课是结合椭圆图形发现几何性质,再利用椭圆的方程探讨椭圆的几何性质,是数与形的完美结合,让学生在了解如何用曲线的方程研究曲线的性质的基础上,充分认识到“由数到形,由形到数”
的转化,体会了数与形的辨证统一,也从中体验了学数学的乐趣,受到了数学文化熏陶,为后继研究解析几何中其它曲线的几何性质奠定了重要基础。

2. 教材的内容安排和处理
本课为“椭圆的简单几何性质”这部分内容的第一课时,主要介绍椭圆的简单几何性质及其初步运用,在解析几何中,利用曲线的方程讨论曲线的几何性质对学生来说是第一次,因此可根据学生实际情况及认知特点,改变了教材中原有研究顺序,引导学生先从观察课前预习所作的具体图形入手,按照通过图形先发现性质,在利用方程去说明性质的研究思路,循序渐近进行探究。

在教学中不仅要注重对椭圆几何性质的理解和运用,而且更应重视对学生进行这种研究方法的思想渗透,通过教师合理的情境创设,师生的共同讨论研究,学生的亲身实践体验,使学生真正意义上理解在解析几何中,怎样用代数方法研究曲线的性质,巩固数形结合思想的应用,达到切实地用数学分析解决问题的能力。

3. 重点、难点:
教学重点:掌握椭圆的简单几何性质,并能初步运用其探索方法研究问题,体会数形结合思想方法在数学中的应用
教学难点;利用曲线方程研究曲线几何性质的基本方法和离心率定义的给出过程。

二.学生的学情心理分析
我的任教班是普班,大多数学生的数学基础较为薄弱, 独立分析问题,解决问题的能力不是很强, 但是他们的思维活跃,参与意识强烈,又具备了高一学习阶段的知识基础,因此依据以上特点,在教学设计方面,我打算借助多媒体手段,创设问题情境,结合图形启发引导,组织学生合作探究等形式,都符合我班学生的认知特点,为他们创设了一个自然和谐的课堂氛围。

三.教学目标
本着新课程标准的贯彻原则,结合我的学生的实际情况,我制定本节课的教学目标如下:
知识与技能:
掌握椭圆的简单几何性质,并能初步运用其探索方法研究问题。

过程与方法:
通过学生亲身的实践体验,利用椭圆的方程讨论椭圆的几何性质,经历由形到数,由数到形,的思想跨越,感知用代数的方法探究几何性质的过程,感受“数缺形时少直观,形缺数时难入微。


的数学真谛,进一步体会“数形结合”思想在数学中的重要地位。

情感、态度与价值观:
在自然和谐的教学氛围中,通过师生间的、生生间的平等交流,塑造学生团结协作,钻研探究的品质和态度,培养学生研究问题的技能;通过对椭圆几何性质的发现,学生得到美的感受,体验到探求之后的成功与喜悦。

四.教学方法与手段
课堂教学应有利于学生的数学素质的形成与发展,使学生扎实地学会学习,真正的学以置用,为此我制定了本节课的教学方法和手段如下:
教学方法:
我采用的教学方法主要是情境激趣法、引导发现法、合作探究法等等。

(一)情境激趣法:注重数学知识与实际的联系,同时也发展学生的应用意识,
开阔他们的视野。

(二)引导发现法:符合教学原则,充分调动学生的主动性与积极性。

(三)合作探究法:1 .体验数学发现和创造的过程,发展他们的创新意识;
2.使学生体验到团结协作的力量以及探索发现的成就,符合学生的
认知规律。

教学手段:
新课标要求,立体几何的教学要直观感知,操作确认。

对于本节内容,我也采用了这样的思路。

本节借助多媒体辅助手段及实物投影,创设问题情境,并通过图形引导学生形象直观地体验由数到形的过渡,便于学生观察、认知、探求、发现、归纳。

五.学法指导
根据本节课的教学难点,教师应注意指导学生进行研究式学习和体验式学习(兴趣是前提)。

例如导入,通过“神六”号这样一个人们关注的话题引入,有利于激发学生的兴趣。

再如,这节课是学生第一次利用曲线方程研究曲线性质,为了解决这一难点,在课前设计中改变了教材中原有研究顺序,让学生从观察一个具体椭圆图形入手,从观察到对称性这一宏观特征开始研究,符合学生的认知特点,调动了学生主动参与教学的积极性,使他们进行自主探究与合作交流,亲身体验几何性质的形成与论证过程,
变静态数学为动态数学。

教学中也突出多媒体辅助知识产生、发展和突破重、难点的优势,从而强化学生对知识的过程与方法的掌握,有利于学生对知识的理解和应用。

六.教学过程
这是本节课教学过程的流程图,我将本节课的教学过程设计为五大环节,特点是以知识与技能为载体,
过程与方法为主线,情感、态度与价值观为目标的设计原则,突出多媒体这一教学手段在本节课辅助知识产生,发展和突破重难点的优势。

七、教学评价的分析
1、这节课安排了创设情境,导入新课、尝试探求、类比探究,总结和作业等几个教学环节。

它是在教师引导下,通过学生积极思考,自主探求,合作探究,从而实现教学目的的要求,完成教学任务的一种教学方法。

2、着重培养学生掌握数学的基本思想和提高学生探究问题的能力是设计这堂课的出发点。

教学中注意应用建构主义的数学学习理论,引导认知主体积极参与到探索、发现、讨论、交流的学习活动中去,使课堂教学成为学生亲自参与的充满丰富生动的数学思维活动的场所。

在整个教学过程的设计中,采用启导法,合作探讨法等教学方法实施教学,注重引导学生,通过探索,有利于培养学生的创新能力,体现教育改革的时代精神。

3﹑教学中采用多媒体的手段,利用幻灯片、几何画板软件制作课件,增强学生对知识的直观感受,有利于完善认知结构。

4﹑时间大致安排:创设情境引入课题约3分钟,尝试探求归纳新知约20分钟,类比探究约7分钟,知识巩固与提高约10分钟,小结作业5分钟。

当然,依据上课的具体情况可进行适当的调整。

相关文档
最新文档