2016年高考+联考模拟数学(文)试题分项版解析 专题03三角与向量解析版 含解析
2016文科数学高考真题分类第三单元 三角函数
第三单元 三角函数C1 角的概念及任意角的三角函数C2 同角三角函数的基本关系式与诱导公式17.C2[2016·上海卷] 设a ∈R ,b ∈[0,2π).若对任意实数x 都有sin(3x -π3)=sin(ax+b ),则满足条件的有序实数对(a ,b )的对数为( )A .1B .2C .3D .417.B [解析] 由sin(3x -π3)=sin(3x -π3+2π)=sin(3x +5π3),得(a ,b )=(3,5π3).由sin(3x -π3)=sin[π-(3x -π3)]=sin(-3x +4π3),得(a ,b )=(-3,4π3).因为b ∈[0,2π),所以只有这两组满足条件.6.C2、C6[2016·全国卷Ⅲ] 若tan θ=-13,则cos 2θ=( )A .-45B .-15C.15D.456.D [解析] cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-191+19=45.11.C2[2016·四川卷] sin 750°=________. 11.12 [解析] sin 750°=sin(2×360°+30°)=sin 30°=12. 14.C2,C5[2016·全国卷Ⅰ] 已知θ是第四象限角,且sin θ+π4=35,则tan θ-π4=________.14.-43 [解析] 方法一:因为θ是第四象限角,且sin(θ+π4)=35>0,所以θ+π4为第一象限角,所以cos(θ+π4)=1-sin 2(θ+π4)=45,所以tan (θ-π4)=tan (θ+π4-π2)=-cot (θ+π4)=-4535=-43.方法二:由sin (θ+π4)=35,得sin θ+cos θ=352,两边分别平方得2sin θcos θ=-725,所以(sin θ-cos θ)2=1-2sin θcos θ=3225.因为θ是第四象限角,所以sin θ-cos θ=-452,所以tan (θ-π4)=tan θ-11+tan θ=sin θ-cos θsin θ+cos θ=-452352=-43.15.C2、C5、C8[2016·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin 2B =3b sin A . (1)求B ;(2)若cos A =13,求sin C 的值.15.解:(1)在△ABC 中,由a sin A =b sin B,可得a sin B =b sin A ,又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,所以cos B =32,得B =π6. (2)由cos A =13,可得sin A =223,则sin C =sin [π-(A +B )]=sin(A +B )=sin(A +π6)=32sin A +12cos A =26+16.C3 三角函数的图象与性质 4.B6,B7,C3[2016·北京卷] 下列函数中,在区间(-1,1)上为减函数的是( ) A .y =11-x B .y =cos xC .y =ln(x +1)D .y =2-x4.D [解析] 选项A 中函数y =11-x =-1x -1在区间(-1,1)上是增函数;选项B 中函数y =cos x 在区间(-1,0)上是增函数,在区间(0,1)上是减函数;选项C 中函数y =ln(x +1)在区间(-1,1)上是增函数;选项D 中函数y =2-x =(12)x 在区间(-1,1)上是减函数.4.C3[2016·四川卷] 为了得到函数y =sin(x +π3)的图像,只需把函数y =sin x 的图像上所有的点( )A .向左平行移动π3个单位长度B .向右平行移动π3个单位长度C .向上平行移动π3个单位长度D .向下平行移动π3个单位长度4.A [解析] 根据“左加右减”的原则,要得到y =sin ⎝⎛⎭⎫x +π3的图像,只需把y =sin x 的图像向左平移π3个单位长度.17.C3、C7[2016·山东卷] 设f (x )=23sin(π-x )sin x -(sin x -cos x )2. (1)求f (x )的单调递增区间;(2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π3个单位,得到函数y =g (x )的图像,求g (π6)的值.17.解:(1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos 2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin (2x -π3)+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是[k π-π12,k π+5π12](k ∈Z )或(k π-π12,k π+5π12)(k ∈Z ).(2)由(1)知f (x )=2sin (2x -π3)+3-1,把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin (x -π3)+3-1的图像,再把得到的图像向左平移π3个单位,得到y =2sin x +3-1的图像, 即g (x )=2sin x +3-1,所以g (π6)=2sin π6+3-1= 3.9.C3[2016·江苏卷] 定义在区间[0,3π]上的函数y =sin 2x 的图像与y =cos x 的图像的交点个数是________.9.7 [解析] 方法一:令sin 2x =cos x ,即2sin x cos x =cos x ,解得cos x =0或sin x =12, 即x =k π+π2或x =2k π+π6或x =2k π+56π(k ∈Z ),又x ∈[0,3π],故x =π2,3π2,5π2或x =π6,5π6,13π6,17π6,共7个解,故两个函数的图像有7个交点. 7个.16.C3,C5,C6[2016·北京卷] 已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )的单调递增区间.16.解:(1)因为f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2sin(2ωx +π4),所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin(2x +π4).函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ),由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),所以f (x )的单调递增区间为[k π-3π8,k π+π8](k ∈Z ).C4 函数sin()y A x ωϕ=+的图象与性质3.C4[2016·全国卷Ⅱ] 函数y =1-1所示,则( )图1-1A .y =2sin (2x -π6)B .y =2sin (2x -π3)C .y =2sin (x +π6)D .y =2sin (x +π3)3.A [解析] 由图知,A =2,最小正周期T =π,所以ω=2π=2,所以y =2sin(2x +φ).又因为图像过点(π3,2),所以2sin (2×π3+φ)=2,即2π3+φ=2k π+π2(k ∈Z ),当k =0时,得φ=-π6,所以y =2sin (2x -π6).6.C4[2016·全国卷Ⅰ] 将函数y =2sin(2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )A .y =2sin(2x +π4)B .y =2sin(2x +π3)C .y =2sin(2x -π4)D .y =2sin(2x -π3)6.D [解析] 函数y =2sin(2x +π6)的周期为2π2=π,将函数 y =2sin(2x +π6)的图像向右平移14个周期,即平移π4个单位,所得图像对应的函数为y =2sin[2(x -π4)+π6]=2sin(2x -π3).14.C4[2016·全国卷Ⅲ] 函数y =sin x -3cos x 的图像可由函数y =2sin x 的图像至少向右平移________个单位长度得到.14.π3 [解析] 函数y =sin x -3cos x =2sin (x -π3)的图像可由函数y =2sin x 的图像至少向右平移π3个单位长度得到.11.C4[2016·浙江卷] 已知2cos 2x +sin 2x =A sin(ωx +φ)+b (A >0),则A =________,b =________.11.2 1 [解析] 2cos 2x +sin 2x =sin 2x +cos 2x +1=2sin (2x +π4)+1,故A =2,b =1.5.C4[2016·上海卷] 若函数f (x )=4sin x +a cos x 的最大值为5,则常数a =________.5.±3 [解析] 根据题意得f (x )=16+a 2sin(x +φ),其中tan φ=a 4,故函数f (x )的最大值为16+a 2,则16+a 2=5,解得a =±3.12.C4,F3[2016·上海卷] 如图1-1,已知点O (0,0),A (1,0),B (0,-1),P 是曲线y =1-x 2上一个动点,则OP →·BA →的取值范围是________.图1-112.[-1,2] [解析] 由题意,设P (cos α,sin α),α∈[0,π],则OP →=(cos α,sin α).又BA →=(1,1),所以OP →·BA →=cos α+sin α=2sin(α+π4)∈[-1,2].C5 两角和与差的正弦、余弦、正切14.C2,C5[2016·全国卷Ⅰ] 已知θ是第四象限角,且sin θ+π4=35,则tan θ-π4=________.14.-43 [解析] 方法一:因为θ是第四象限角,且sin(θ+π4)=35>0,所以θ+π4为第一象限角,所以cos(θ+π4)=1-sin 2(θ+π4)=45,所以tan (θ-π4)=tan (θ+π4-π2)=-cot (θ+π4)=-4535=-43.方法二:由sin (θ+π4)=35,得sin θ+cos θ=352,两边分别平方得2sin θcos θ=-725,所以(sin θ-cos θ)2=1-2sin θcos θ=3225.因为θ是第四象限角,所以sin θ-cos θ=-452,所以tan (θ-π4)=tan θ-11+tan θ=sin θ-cos θsin θ+cos θ=-452352=-43.15.C2、C5、C8[2016·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin 2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值.15.解:(1)在△ABC 中,由a sin A =b sin B,可得a sin B =b sin A ,又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,所以cos B =32,得B =π6. (2)由cos A =13,可得sin A =223,则sin C =sin [π-(A +B )]=sin(A +B )=sin(A +π6)=32sin A +12cos A =26+16.15.C8、C5[2016·江苏卷] 在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos A -π6的值.15.解:(1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-452=35,由正弦定理知AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos(B +π4)=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A <π,所以sin A =1-cos 2A =7210,因此cos(A -π6)=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620.16.C3,C5,C6[2016·北京卷] 已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )的单调递增区间.16.解:(1)因为f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2sin(2ωx +π4),所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin(2x +π4).函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ),由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),所以f (x )的单调递增区间为[k π-3π8,k π+π8](k ∈Z ).C6 二倍角公式12.B12,C6,E3[2016·全国卷Ⅰ] 若函数f (x )=x -13sin 2x +a sin x 在(-∞,+∞)单调递增,则a 的取值范围是( )A .[-1,1]B .[-1,13]C .[-13,13 ]D .[-1,-13]12.C [解析] 方法一:对函数f (x )求导得f ′(x )=1-23cos 2x +a cos x =-43cos 2x +a cos x+53,因为函数f (x )在R 上单调递增,所以f ′(x )≥0,即-43cos 2x +a cos x +53≥0恒成立.设t =cos x ∈[-1,1],则g (t )=4t 2-3at -5≤0在[-1,1]上恒成立,所以有⎩⎪⎨⎪⎧g (-1)=4×(-1)2-3a ×(-1)-5≤0,g (1)=4×12-3a ×1-5≤0,解得-13≤a ≤13.方法二:取a =-1,则f (x )=x -13sin 2x -sin x ,f ′(x )=1-23cos 2x -cos x ,但f ′(0)=1-23-1=-23<0,不满足f (x )在(-∞,+∞)单调递增,排除A ,B ,D ,故选C. 6.C2、C6[2016·全国卷Ⅲ] 若tan θ=-13,则cos 2θ=( )A .-45B .-15C.15D.456.D [解析] cos 2θ=cos 2θ-sin 2θcos 2θ+sin 2θ=1-tan 2θ1+tan 2θ=1-191+19=45. 11.C6[2016·全国卷Ⅱ] 函数f (x )=cos 2x +6cos π2-x 的最大值为( )A .4B .5C .6D .711.B [解析] 由已知得f (x )=-2sin x -322+112,而sin x ∈[-1,1],所以当sin x =1时,f (x )取得最大值5.8.C6,C7[2016·上海卷] 方程3sin x =1+cos 2x 在区间[0,2π]上的解为________.8.π6或5π6[解析] 化简3sin x =1+cos 2x 得3sin x =2-2sin 2x ,所以2sin 2x +3sin x -2=0,解得sin x =12或sin x =-2(舍去),所以原方程在区间[0,2π]上的解为π6或5π6.16.C3,C5,C6[2016·北京卷] 已知函数f (x )=2sin ωx cos ωx +cos 2ωx (ω>0)的最小正周期为π.(1)求ω的值;(2)求f (x )的单调递增区间.16.解:(1)因为f (x )=2sin ωx cos ωx +cos 2ωx =sin 2ωx +cos 2ωx=2sin(2ωx +π4),所以f (x )的最小正周期T =2π2ω=πω.依题意,πω=π,解得ω=1.(2)由(1)知f (x )=2sin(2x +π4).函数y =sin x 的单调递增区间为[2k π-π2,2k π+π2](k ∈Z ),由2k π-π2≤2x +π4≤2k π+π2(k ∈Z ),得k π-3π8≤x ≤k π+π8(k ∈Z ),所以f (x )的单调递增区间为[k π-3π8,k π+π8](k ∈Z ).C7 三角函数的求值、化简与证明8.C6,C7[2016·上海卷] 方程3sin x =1+cos 2x 在区间[0,2π]上的解为________. 8.π6或5π6[解析] 化简3sin x =1+cos 2x 得3sin x =2-2sin 2x ,所以2sin 2x +3sin x -2=0,解得sin x =12或sin x =-2(舍去),所以原方程在区间[0,2π]上的解为π6或5π6.17.C3、C7[2016·山东卷] 设f (x )=23sin(π-x )sin x -(sin x -cos x )2.(1)求f (x )的单调递增区间;(2)把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图像向左平移π3个单位,得到函数y =g (x )的图像,求g (π6)的值.17.解:(1)f (x )=23sin(π-x )sin x -(sin x -cos x )2=23sin 2x -(1-2sin x cos x )=3(1-cos 2x )+sin 2x -1=sin 2x -3cos 2x +3-1=2sin (2x -π3)+3-1.由2k π-π2≤2x -π3≤2k π+π2(k ∈Z ),得k π-π12≤x ≤k π+5π12(k ∈Z ),所以f (x )的单调递增区间是[k π-π12,k π+5π12](k ∈Z )或(k π-π12,k π+5π12)(k ∈Z ).(2)由(1)知f (x )=2sin (2x -π3)+3-1,把y =f (x )的图像上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin (x -π3)+3-1的图像,再把得到的图像向左平移π3个单位,得到y =2sin x +3-1的图像, 即g (x )=2sin x +3-1,所以g (π6)=2sin π6+3-1= 3.C8 解三角形 8.C8[2016·山东卷] △ABC 中,角A ,B ,C 的对边分别是a ,b ,c .已知b =c ,a 2=2b 2(1-sin A ),则A =( )A.3π4B.π3C.π4D.π68.C [解析] ∵b =c ,a 2=2b 2(1-sin A ),∴2b 2sin A =b 2+c 2-a 2=2bc cos A =2b 2cos A ,∴tan A =1,即A =π4.4.C8[2016·全国卷Ⅰ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知a =5,c =2,cos A =23,则b =( )A. 2B. 3 C .2 D .34.D [解析] 由余弦定理得5=b 2+4-2×b ×2×23,解得b =3或b =-13(舍去),故选D.9.C8[2016·全国卷Ⅲ] 在△ABC 中,B =π4,BC 边上的高等于13BC ,则sin A =( )A.310B.1010C.55D.310109.D [解析] 作AD ⊥BC 交BC 于点D ,设BC =3,则有AD =BD =1,AB =2,由余弦定理得AC = 5.由正弦定理得5sin π4=3sin A ,解得sin A =3×225=31010.14.C8、E6[2016·江苏卷] 在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.14.8 [解析] 方法一:∵sin A =2sin B sin C ,sin A =sin(B +C )=sin B cos C +cos B sin C ,∴sin B cos C +cos B sin C =2sin B sin C ,两边同除以cos B cos C ,可得tan B +tan C =2tan B tan C ,tan A tan B tan C =-tan(B +C )tan B tan C =-tan B +tan C 1-tan B tan C ·tan B tan C =2(tan B tan C )2tan B tan C -1,由三角形为锐角三角形得tan B >0,tan C >0,tan A =tan B +tan Ctan B tan C -1>0,即tan B tan C -1>0.令tan B tan C -1=t (t >0),则tan A tan B tan C =2(t +1)2t =2t +1t+2≥8,当t =1,即tan B tan C =2时取等号.方法二:同方法一可得tan B +tan C =2tan B tan C , 又tan A +tan B +tan C =tan A +(1-tan B tan C )·tan(B +C )=tan A -tan A +tan A tan B tan C =tan A tan B tan C ,所以tan A tan B tan C =tan A +tan B +tan C =tan A +2tan B tan C ≥22tan A tan B tan C ⇒tan A tan B tan C ≥8,当且仅当tan A =2tan B tan C =4时取等号. 10.C8[2016·上海卷] 已知△ABC 的三边长分别为3,5,7,则该三角形的外接圆半径等于________.10.733 [解析] 利用余弦定理可求得最大边7所对角的余弦值为32+52-722×3×5=-12,所以此角的正弦值为32.设三角形外接圆的半径为R ,由正弦定理得2R =732,所以R =733. 15.C8[2016·全国卷Ⅱ] △ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若cos A =45,cos C=513,a =1,则b =________. 15.2113 [解析] 因为cos A =45,cos C =513,且A ,C 为三角形的内角,所以sin A =35,sin C =1213,sin B =sin(A +C )=sin A cos C +cos A sin C =6365.又因为a sin A =b sin B ,所以b =a sin Bsin A =2113.13.C8[2016·北京卷] 在△ABC 中,∠A =2π3,a =3c ,则bc=________.13.1 [解析] 由余弦定理a 2=b 2+c 2-2bc cos A 可得,3c 2=b 2+c 2-2bc cos 2π3,整理得(b c )2+b c -2=0,解得b c =1或bc=-2(舍去). 15.C2、C5、C8[2016·天津卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知a sin 2B =3b sin A .(1)求B ;(2)若cos A =13,求sin C 的值.15.解:(1)在△ABC 中,由a sin A =b sin B,可得a sin B =b sin A ,又由a sin 2B =3b sin A ,得2a sin B cos B =3b sin A =3a sin B ,所以cos B =32,得B =π6. (2)由cos A =13,可得sin A =223,则sin C =sin [π-(A +B )]=sin(A +B )=sin(A +π6)=32sin A +12cos A =26+16.16.E5[2016·天津卷] 某化肥厂生产甲、乙两种混合肥料,需要A ,B ,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙种肥料所需三种原料的吨数如下表所示:现有A 种原料200肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x ,y 表示计划生产甲、乙两种肥料的车皮数.(1)用x ,y 列出满足生产条件的数学关系式,并画出相应的平面区域.(2)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润. 16.C8[2016·浙江卷] 在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(1)证明:A =2B ;(2)若cos B =23,求cos C 的值.16.解:(1)证明:由正弦定理得sin B +sin C =2sin A cos B ,故2sin A cos B =sin B +sin(A +B )=sin B +sin A cos B +cos A sin B , 于是sin B =sin(A -B ).又A ,B ∈(0,π),故0<A -B <π, 所以B =π-(A -B )或B =A -B , 因此A =π(舍去)或A =2B , 所以A =2B .(2)由cos B =23得sin B =53,cos 2B =2cos 2B -1=-19,故cos A =-19,sin A =459,cos C =-cos(A +B )=-cos A cos B +sin A sin B =2227.15.C8、C5[2016·江苏卷] 在△ABC 中,AC =6,cos B =45,C =π4.(1)求AB 的长;(2)求cos A -π6的值.15.解:(1)因为cos B =45,0<B <π,所以sin B =1-cos 2B =1-452=35,由正弦定理知AC sin B =AB sin C ,所以AB =AC ·sin Csin B =6×2235=5 2.(2)在△ABC 中,A +B +C =π,所以A =π-(B +C ),于是cos A =-cos(B +C )=-cos(B +π4)=-cos B cos π4+sin B sin π4,又cos B =45,sin B =35,故cos A =-45×22+35×22=-210.因为0<A <π,所以sin A =1-cos 2A =7210,因此cos(A -π6)=cos A cos π6+sin A sin π6=-210×32+7210×12=72-620.14.C8、E6[2016·江苏卷] 在锐角三角形ABC 中,若sin A =2sin B sin C ,则tan A tan B tan C 的最小值是________.14.8 [解析] 方法一:∵sin A =2sin B sin C ,sin A =sin(B +C )=sin B cos C +cos B sin C ,∴sin B cos C +cos B sin C =2sin B sin C ,两边同除以cos B cos C ,可得tan B +tan C =2tan B tan C ,tan A tan B tan C =-tan(B +C )tan B tan C =-tan B +tan C 1-tan B tan C ·tan B tan C =2(tan B tan C )2tan B tan C -1,由三角形为锐角三角形得tan B >0,tan C >0,tan A =tan B +tan Ctan B tan C -1>0,即tan B tan C -1>0.令tan B tan C -1=t (t >0),则tan A tan B tan C =2(t +1)2t =2t +1t+2≥8,当t =1,即tan B tan C =2时取等号.方法二:同方法一可得tan B +tan C =2tan B tan C , 又tan A +tan B +tan C =tan A +(1-tan B tan C )·tan(B +C )=tan A -tan A +tan A tan B tan C =tan A tan B tan C ,所以tan A tan B tan C =tan A +tan B +tan C =tan A +2tan B tan C ≥22tan A tan B tan C ⇒tan A tan B tan C ≥8,当且仅当tan A =2tan B tan C =4时取等号. C9 单元综合8.C9[2016·天津卷] 已知函数f (x )=sin 2ωx 2+12sin ωx -12(ω>0),x ∈R .若f (x )在区间(π,2π)内没有零点,则ω的取值范围是( )A .(0,18]B .(0,14]∪[58,1)C .(0,58 ]D .(0,18]∪[14,58]8.D [解析] f (x )=sin 2ωx 2+12sin ωx -12=1-cos ωx 2+12sin ωx -12=12sin ωx -12cos ωx=22sin(ωx -π4). 因为函数f (x )在区间(π,2π)内没有零点,所以T 2>2π-π,即π>π,所以0<ω<1.当x ∈(π,2π)时,ωx -π4∈⎝⎛⎭⎫ωπ-π4,2ωπ-π4.若函数f (x )在区间(π,2π)内有零点,则ωπ-π4<k π<2ωπ-π4(k ∈Z ),即k 2+18<ω<k +14(k ∈Z ). 当k =0时,18<ω<14;当k =1时,58<ω<54.所以函数f (x )在区间(π,2π)内没有零点时,0<ω≤18或14≤ω≤58.18.C9[2016·四川卷] 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos A a +cos Bb =sin Cc.(1)证明:sin A sin B =sin C ;(2)若b 2+c 2-a 2=65bc ,求tan B .18.解:(1)证明:根据正弦定理,可设a sin A =b sin B =csin C =k (k >0),则a =k sin A ,b =k sin B ,c =k sin C , 代入cos A a +cos B b =sin C c 中,有cos A k sin A +cos B k sin B =sin C k sin C,变形可得 sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π-C )=sin C , 所以sin A sin B =sin C .(2)由已知,b 2+c 2-a 2=65bc ,根据余弦定理,有cos A =b 2+c 2-a 22bc =35,所以sin A =1-cos 2A =45.由(1)知,sin A sin B =sin A cos B +cos A sin B , 所以45sin B =45cos B +35sin B ,故tan B =sin B cos B =4.。
专题03 三角与向量-2016年高考+联考模拟理数试题
个单位长度,则平移后图象的对称 12
k (k Z ) 2 6 k (k Z ) (C) x 2 12
(A) x 【答案】B 【解析】
(B) x
k (k Z ) 2 6 k (k Z ) (D) x 2 12
个单位得 y 2sin 2( x ) 2sin(2 x ) , 12 12 6 k 则平移后函数的对称轴为 2 x k , k Z ,即 x , k Z ,故选 B. 6 2 6 2
第一部分 2016 高考试题汇编 三角函数与三角形
1. 【2016 高考新课标 1 卷】已知函数 f ( x) sin( x+ )( 0,
为 y f ( x) 图像的对称轴,且 f ( x) 在 (A)11 【答案】B ( B) 9 (C)7
), x 为 f ( x) 的零点, x 2 4 4
π 3
π 个单位长度 3 π (C)向左平行移动 个单位长度 6
(A)向左平行移动 【答案】D 【解析】
π 个单位长度 3 π (D)向右平行移动 个单位长度 6
(B)向右平行移动
试题分析:由题意,为了得到函数 y sin(2 x 点向右移
个单位,故选 D. 6
) sin[2( x )] ,只需把函数 y sin 2 x 的图像上所有 3 6
来的 3.【2016 高考新课标 3 理数】在 △ABC 中, B = (A) 【答案】C
3 10 10 π 1 , BC 边上的高等于 BC ,则 cos A = ( 4 3 10 10
)
(B)
10 10
(C) -
(D) -
专题06 立体几何-2016年高考+联考模拟数学(文)试题分项版解析(解析版) 含解析
1。
【2016高考新课标1文数】如图,某几何体的三视图是三个半径相等的圆及每个圆中两条相互垂直的半径.若该几何体的体积是错误!,则它的表面积是( )(A )17π (B )18π (C)20π (D )28π 【答案】A 【解析】考点:三视图及球的表面积与体积【名师点睛】由于三视图能有效的考查学生的空间想象能力,所以以三视图为载体的立体几何题基本上是高考每年必考内容,高考试题中三视图一般常与几何体的表面积与体积交汇。
由三视图还原出原几何体,是解决此类问题的关键。
2.【2016高考新课标1文数】平面α过正文体ABCD —A 1B 1C 1D 1的顶点A 11//CB D α平面,ABCD m α=平面,11ABB A n α=平面,则m ,n 所成角的正弦值为()(A)32(B)22(C)33(D)13【答案】A【解析】【名师点睛】求解本题的关键是作出异面直线所成角,求异面直线所成角的步骤是:平移定角、连线成形,解形求角、得钝求补。
3.【2016高考上海文科】如图,在正方体ABCD−A1B1C1D1中,E、F分别为BC、BB1的中点,则下列直线中与直线EF相交的是()(A)直线AA1 (B)直线A1B1(C )直线A 1D 1 (D)直线B 1C 1【答案】D 【解析】考点:1.正方体的几何特征;2。
直线与直线的位置关系.【名师点睛】本题以正方体为载体,研究直线与直线的位置关系,突出体现了高考试题的基础性,题目不难,能较好的考查考生分析问题解决问题的能力、空间想象能力等.4。
【2016高考浙江文数】已知互相垂直的平面αβ,交于直线l 。
若直线m ,n 满足m ∥α,n ⊥β,则( )A 。
m ∥lB 。
m ∥n C.n ⊥lD 。
m ⊥n【答案】C 【解析】试题分析:由题意知,l l αββ=∴⊂,,n n l β⊥∴⊥.故选C .考点:线面位置关系.【思路点睛】解决这类空间点、线、面的位置关系问题,一般是借助长方体(或正方体),能形象直观地看出空间点、线、面的位置关系.5.【2016高考天津文数】将一个长方形沿相邻三个面的对角线截去一个棱锥,得到的几何体的正视图与俯视图如图所示,则该几何体的侧(左)视图为( )【答案】B考点:三视图【名师点睛】1。
2016年高考+联考模拟数学(文)试题分项版解析 专题05解析几何解析版 含解析
1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )34 【答案】B 【解析】考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a ,c 的齐次方程,方程两边同时除以a 的最高次幂,转化为关于e 的方程,解方程求e .2.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )2【答案】D 【解析】试题分析:因为F 抛物线24y x 的焦点,所以(1,0)F ,又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k=,所以2k =,选D. 考点: 抛物线的性质,反比例函数的性质.【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =kx(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.3.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得ba或转化为关于e 的等式求解;[3)通过特殊值或特殊位置,求出e .4.【2016高考四川文科】抛物线24y x =的焦点坐标是[ ) [A)[0,2) [B) [0,1) [C) [2,0) [D) [1,0) 【答案】D 【解析】试题分析:由题意,24y x =的焦点坐标为(1,0),故选D. 考点:抛物线的定义.【名师点睛】本题考查抛物线的定义.解析几何是中学数学的一个重要分支,圆锥曲线是解析几何的重要内容,它们的定义、标准方程、简单的性质是我们重点要掌握的内容,一定要熟记掌握.5.【2016高考山东文数】已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是( ) (A )内切(B )相交(C )外切(D )相离 【答案】B 【解析】考点:1.直线与圆的位置关系;2.圆与圆的位置关系.【名师点睛】本题主要考查直线与圆的位置关系、圆与圆的位置关系问题,是高考常考知识内容.本题综合性较强,具有“无图考图”的显著特点,解答此类问题,注重“圆的特征直角三角形”是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 6.【2016高考北京文数】圆22(1)2x y ++=的圆心到直线3y x =+的距离为( )A.1B.2 【答案】C 【解析】试题分析:圆心坐标为(1,0)-,由点到直线的距离公式可知d ==,故选C.考点:直线与圆的位置关系【名师点睛】点),(00y x 到直线b kx y +=[即0=--b kx y )的距离公式2001||k b kx y d +--=记忆容易,对于知d 求k ,b 很方便.7、【2016高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.【答案】5【解析】试题分析:利用两平行线间距离公式得d ===考点:两平行线间距离公式.【名师点睛】确定两平行线间距离,关键是注意应用公式的条件,即,x y 的系数应该分别相同,本题较为容易,主要考查考生的基本运算能力.8.【2016高考北京文数】已知双曲线22221x y a b -= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.【答案】1,2a b ==.考点:双曲线的基本概念【名师点睛】在双曲线的几何性质中,渐近线是其独特的一种性质,也是考查的重点内容.对渐近线:[1)掌握方程;[2)掌握其倾斜角、斜率的求法;[3)会利用渐近线方程求双曲线方程的待定系数.求双曲线方程的方法以及双曲线定义和双曲线标准方程的应用都和与椭圆有关的问题相类似.因此,双曲线与椭圆的标准方程可统一为122=+By Ax 的形式,当0>A ,0>B ,B A ≠时为椭圆,当0<AB 时为双曲线.9.【2016高考四川文科】在平面直角坐标系中,当P [x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y-++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: 若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A.②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 . 【答案】②③ 【解析】考点:1.新定义问题;2.曲线与方程.【名师点睛】本题考查新定义问题,属于创新题,符合新高考的走向.它考查学生的阅读理解能力,接受新思维的能力,考查学生分析问题与解决问题的能力,新定义的概念实质上只是一个载体,解决新问题时,只要通过这个载体把问题转化为我们已经熟悉的知识即可.本题新概念“伴随”实质是一个变换,一个坐标变换,只要根据这个变换得出新的点的坐标,然后判断,问题就得以解决.10.[2016高考新课标Ⅲ文数]已知直线l :60x +=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________. 【答案】4 【解析】试题分析:由60x +=,得6x =-,代入圆的方程,并整理,得260y -+=,解得12y y ==,所以120,3x x ==-,所以||AB ==l 的倾斜角为30︒,由平面几何知识知在梯形ABDC 中,||||4cos30AB CD ==︒.考点:直线与圆的位置关系.【技巧点拨】解决直线与圆的综合问题时,一方面,要注意运用解析几何的基本思想方法[即几何问题代数化),把它转化为代数问题;另一方面,由于直线与圆和平面几何联系得非常紧密,因此,准确地作出图形,并充分挖掘几何图形中所隐含的条件,利用几何知识使问题较为简捷地得到解决.11.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.【答案】. 【解析】考点:双曲线的几何性质.【思路点睛】先由对称性可设点P 在右支上,进而可得1F P 和2F P ,再由12F F ∆P 为锐角三角形可得2221212F F F F P +P >,进而可得x 的不等式,解不等式可得12F F P +P 的取值范围.12.【2016高考浙江文数】已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______. 【答案】(2,4)--;5. 【解析】试题分析:由题意22a a =+,12a =-或,1a =-时方程为224850x y x y +++-=,即22(2)(4)25x y +++=,圆心为(2,4)--,半径为5,2a =时方程为224448100x y x y ++++=,2215()(1)24x y +++=-不表示圆.考点:圆的标准方程.【易错点睛】由方程222(2)4850a x a y x y a +++++=表示圆可得a 的方程,解得a 的值,一定要注意检验a 的值是否符合题意,否则很容易出现错误.13.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=,则圆C 的方程为__________. 【答案】22(2)9.x y -+=考点:直线与圆位置关系【名师点睛】求圆的方程有两种方法:[1)代数法:即用“待定系数法”求圆的方程.①若已知条件与圆的圆心和半径有关,则设圆的标准方程,列出关于a ,b ,r 的方程组求解.②若已知条件没有明确给出圆的圆心或半径,则选择圆的一般方程,列出关于D ,E ,F 的方程组求解.[2)几何法:通过研究圆的性质,直线和圆的关系等求出圆心、半径,进而写出圆的标准方程.14.【2016高考山东文数】已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 【答案】2 【解析】 试题分析:依题意,不妨设6,4AB AD ==,作出图象如下图所示则2124,2;2532,1,c c a DF DF a ===-=-==故离心率221c a == 考点:双曲线的几何性质【名师点睛】本题主要考查双曲线的几何性质.本题解答,利用特殊化思想,通过对特殊情况的讨论,转化得到一般结论,降低了解题的难度.本题能较好的考查考生转化与化归思想、一般与特殊思想及基本运算能力等.15. 【2016高考新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若错误!未找到引用源。
2016届浙江省高考数学模拟试卷(文科)(解析版)
2016年浙江省高考数学模拟试卷(文科)一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x∈N|x2﹣5x﹣6<0},N={x∈Z|2<x<23},则M∩N=()A.(2,6)B.{3,4,5} C.{2,3,4,5,6} D.[2,6]2.“某几何体的三视图完全相同”是“该几何体为球”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件3.下列函数中既是奇函数又是周期函数的是()A.y=x3 B.y=cos2x C.y=sin3x D.4.已知数列{a n}是正项等比数列,满足a n+2=2a n+1+3a n,且首项为方程x2+2x﹣3=0的一个根.则下列等式成立的是()A.a n+1=2S n+1 B.a n=2S n+1 C.a n+1=S n+1 D.a n=2S n﹣1﹣15.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()A.B.C. D.56.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈(0,π))的部分图象如图所示,则的值为()A.﹣2 B.﹣1 C.0 D.7.过双曲线=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是()A.(3,4)B.(2,3)C.D.8.已知函数f(x)=x2﹣2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],恒成立,则满足条件的实数t的取值范围是()A.[﹣2,8]B.[0,8]C.[0,+∞)D.[0,8)二、填空题(本大题共7小题,其中9-12题每小题两空,每题6分,13-15题每小题一空,每题4分,合计36分.请将答案填在答题纸上)9.已知等差数列{a n}的前n项和为,则首项a1=;该数列的首项a1与公差d满足的=.10.若实数x,y满足不等式组,则该不等式表示的平面区域的面积为;目标函数z=4x+3y的最大值为.11.已知函数,则=;该函数在区间上的最小值为.12.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为.13.三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,侧棱AA1与底边AB,AC所成的角均为60°.若顶点A1在下底面的投影恰在底边BC上,则该三棱柱的体积为.14.已知正数a,b满足a+2b=2,则的最小值为.15.如图所示,△ABC中,AB⊥AC,AB=6,AC=8.边AB,AC的中点分别为M,N.若O为线段MN上任一点,则的取值范围是.三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,AB=4,AC=6,∠BAC=60°.点A在边BC上的投影为点D.(1)试求线段AD的长度;(2)设点D在边AB上的投影为点E,在边AC上的投影为F,试求线段EF的长度.17.已知正项递增等比数列{a n}的首项为8,其前n项和记为S n,且S3﹣2S2=﹣2.(1)求数列{a n}的通项公式;(2)设数列{b n}满足,其前n项和为T n,试求数列的前n项和B n.18.四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M 分别为PA,BC的中点.(1)证明:直线QM∥平面PCD;(2)若二面角A﹣BD﹣Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.19.已知抛物线C:y2=4x.直线l:y=k(x﹣8)与抛物线C交于A,B(A在B的下方)两点,与x轴交于点P.(1)若点P恰为弦AB的三等分点,试求实数k的值.(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.20.设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|(Ⅰ)若f(0)≥1,求a的取值范围;(Ⅱ)求f(x)在[﹣2,2]上的最小值.2016年浙江省高考数学模拟试卷(文科)参考答案与试题解析一、选择题:本大题共8个小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合M={x∈N|x2﹣5x﹣6<0},N={x∈Z|2<x<23},则M∩N=()A.(2,6)B.{3,4,5} C.{2,3,4,5,6} D.[2,6]【考点】交集及其运算.【分析】分别求出M与N中不等式的解集,找出解集中的正整数解及整数解确定出M与N,求出两集合的交集即可.【解答】解:由M中不等式变形得:(x﹣6)(x+1)<0,解得:﹣1<x<6,x∈N,即M={0,1,2,3,4,5},由N中不等式变形得:2<x<23=8,x∈Z,即N={3,4,5,6,7},则M∩N={3,4,5},故选:B.2.“某几何体的三视图完全相同”是“该几何体为球”的()A.充分不必要条件B.必要不充分条件C.充要条件 D.既不充分也不必要条件【考点】必要条件、充分条件与充要条件的判断.【分析】“该几何体为球”⇒“某几何体的三视图完全相同”,反之不成立,例如取几何体正方体,即可判断出.【解答】解:“该几何体为球”⇒“某几何体的三视图完全相同”,反之不成立,例如取几何体正方体,∴“某几何体的三视图完全相同”是“该几何体为球”的必要不充分条件.故选:B.3.下列函数中既是奇函数又是周期函数的是()A.y=x3 B.y=cos2x C.y=sin3x D.【考点】函数的周期性;函数奇偶性的判断.【分析】根据基本初等函数奇偶性和周期性进行判断即可.【解答】解:A.函数y=x3为奇函数,不是周期函数;B.y=cos2x是偶函数,也是周期函数,但不是奇函数;C.y=sin3x是奇函数且是周期函数;D.是周期函数,既不是奇函数也不是偶函数,综上只有C符合题意,故选:C.4.已知数列{a n}是正项等比数列,满足a n+2=2a n+1+3a n,且首项为方程x2+2x﹣3=0的一个根.则下列等式成立的是()A.a n+1=2S n+1 B.a n=2S n+1 C.a n+1=S n+1 D.a n=2S n﹣1﹣1【考点】等比数列的通项公式.【分析】设正项等比数列数列{a n}的公比为q,0,满足a n+2=2a n+1+3a n,且首项为方程x2+2x ﹣3=0的一个根.可得q2=2q+3,a1=1.再利用等比数列的通项公式及其前n项和公式即可得出.【解答】解:设正项等比数列数列{a n}的公比为q,0,满足a n+2=2a n+1+3a n,且首项为方程x2+2x﹣3=0的一个根.∴q2=2q+3,a1=1.解得q=3.∴a n=3n﹣1,a n+1=3n,S n=,则2S n+1=3n=a n+1.故选:A.5.△ABC中,AB=5,BC=3,CA=7,若点D满足,则△ABD的面积为()A. B.C. D.5【考点】向量数乘的运算及其几何意义.【分析】先求出∠B的度数,从而求出sinB,根据三角形的面积公式求出△ABD的面积即可.【解答】解:如图示:,cosB==﹣,∴∠B=120°,∴sinB=,∴S△ABD=×5×2×=,故选:A.6.已知函数f(x)=Asin(ωx+φ)+B(A>0,ω>0,φ∈(0,π))的部分图象如图所示,则的值为()A.﹣2 B.﹣1 C.0 D.【考点】由y=Asin(ωx+φ)的部分图象确定其解析式.【分析】根据三角函数的图象和性质求出A,ω和φ的值进行求解即可.【解答】解:由图象知函数的最大值为1,最小值为﹣3,则,得A=2,B=﹣1,=﹣=,即T=π=,即ω=2,则f(x)=2sin(2x+φ)﹣1,∵f()=2sin(2×+φ)﹣1=1,∴sin(+φ)=1,即+φ=+2kπ,则φ=2kπ﹣,∵φ∈(0,π),∴当k=1时,φ=2π﹣=,∴f(x)=2sin(2x+)﹣1,则f()=2sin(2×+)﹣1=2sin(π+)﹣1=﹣2×﹣1=﹣1﹣1=﹣2,故选:A7.过双曲线=1(a,b>0)的右焦点F,且斜率为2的直线l与双曲线的相交于点A,B,若弦AB的中点横坐标取值范围为(2c,4c),则该双曲线的离心率的取值范围是()A.(3,4)B.(2,3)C.D.【考点】双曲线的简单性质.【分析】设右焦点F(c,0),直线l的方程为y=2(x﹣c),代入双曲线的方程可得(b2﹣4a2)x2+8ca2x﹣4a2c2﹣a2b2=0,运用韦达定理和中点坐标公式,再由条件可得2c<<4c,结合a,b,c的关系和离心率公式,计算即可得到所求范围.【解答】解:设右焦点F(c,0),直线l的方程为y=2(x﹣c),代入双曲线的方程可得(b2﹣4a2)x2+8ca2x﹣4a2c2﹣a2b2=0,设A(x1,y1),B(x2,y2),可得x1+x2=,即有AB的中点的横坐标为,由题意可得2c<<4c,化简可得2a2<b2<3a2,即有3a2<c2<4a2,即a<c<2a,可得e=∈(,2).故选:D.8.已知函数f(x)=x2﹣2ax+5(a>1),g(x)=log3x.若函数f(x)的定义域与值域均为[1,a],且对于任意的x1,x2∈[1,a+1],恒成立,则满足条件的实数t的取值范围是()A.[﹣2,8]B.[0,8]C.[0,+∞)D.[0,8)【考点】函数恒成立问题.【分析】根据二次函数的对称轴判断出函数单调性,得出a=f(1),求出a=2,进而求出只需4t+2t﹣2≥0,得出答案.【解答】解:函数f(x)=x2﹣2ax+5(a>1)的对称轴为x=a∈[1,a]∴函数f(x)=x2﹣2ax+5(a>1)在[1,a]上单调递减∵函数f(x)的定义域和值域均为[1,a]∴a=f(1)∴a=2∴f(x)=x2﹣4x+5,g(x)=log3x.∵对于任意的x1,x2∈[1,3],1≤f(x)≤2,0≤g(x)≤1,∴4t+2t﹣2≥0,∴t≥0.故选:C.二、填空题(本大题共7小题,其中9-12题每小题两空,每题6分,13-15题每小题一空,每题4分,合计36分.请将答案填在答题纸上)9.已知等差数列{a n}的前n项和为,则首项a1=﹣2;该数列的首项a1与公差d满足的=16.【考点】等差数列的前n项和.【分析】根据等差数列{a n}的前n项和求出a1,a2,a3;再根据等差中项的概念列出方程求出c的值,从而得出a1和公差d,即可得出的值.【解答】解:等差数列{a n}的前n项和为,∴a1=S1=2﹣4+c=c﹣2,a2=S2﹣S1=(8﹣8+c)﹣(c﹣2)=2,a3=S3﹣S2=(18﹣12+c)﹣c=6;又2a2=a1+a3,∴4=(c﹣2)+6,解得c=0;∴a1=﹣2,数列{a n}的公差为d=a3﹣a2=6﹣2=4,∴=(﹣2)4=16.故答案为:﹣2,16.10.若实数x,y满足不等式组,则该不等式表示的平面区域的面积为;目标函数z=4x+3y的最大值为6.【考点】简单线性规划.【分析】画出满足条件的平面区域,求出角点的坐标,得到三角形的面积,目标函数z=4x+3y可化为:y=﹣x+,显然直线过A时,求出z的最大值即可.【解答】解:画出满足条件的平面区域,如图示:,由,解得:A(1,),由,解得:B(1,﹣4),而C到AB的距离是2,∴S△ABC=|AB|•2=,目标函数z=4x+3y可化为:y=﹣x+,显然直线过A时,z最大,z的最大值是6,故答案为:,6.11.已知函数,则=+;该函数在区间上的最小值为﹣+.【考点】三角函数中的恒等变换应用;正弦函数的图象.【分析】利用三角函数的诱导公式将函数进行化简,结合三角函数的图象和性质进行求解即可.【解答】解:=sinxcosx+cos2x=sin2x+×(1+cos2x)=sin2x+cos2x+=sin(2x+)+,则=sin(2×+)+=sin(+)+=cos+=+,∵﹣≤x≤,∴﹣≤2x+≤,∴当2x+=﹣时,f(x)取得最小值,此时最小值为sin(﹣)+=﹣+,故答案为:+,﹣+.12.已知直线l过点P(2,1),Q(1,﹣1),则该直线的方程为2x﹣y﹣3=0;过点P与l垂直的直线m与圆x2+y2=R2(R>0)相交所得弦长为,则该圆的面积为5π.【考点】直线与圆的位置关系.【分析】由两点式写出直线方程,化为一般式得答案;求出圆心到直线的距离,结合垂径定理求得半径,则圆的面积可求.【解答】解:由直线方程的两点式得l:,化为一般式,2x﹣y﹣3=0;直线l的斜率为2,则过点P与l垂直的直线m的斜率为,直线m的方程为y﹣1=,整理得:x+2y﹣4=0.圆x2+y2=R2的圆心到m的距离d=,∴R2=.则圆的面积为πR2=5π.故答案为:2x﹣y﹣3=0;5π.13.三棱柱ABC﹣A1B1C1的底面是边长为2的正三角形,侧棱AA1与底边AB,AC所成的角均为60°.若顶点A1在下底面的投影恰在底边BC上,则该三棱柱的体积为3.【考点】棱柱、棱锥、棱台的体积.【分析】作出示意图,由AA1与AB,AC所成的角相等可知AA1在底面的射影为角BAC 的角平分线,利用勾股定理和余弦定理求出棱柱的高,代入体积公式计算.【解答】解:设A1在底面ABC的投影为D,连结AD,A1B,∵AA1与AB,AC所成的角均为60°,∴AD为∠BAC的平分线,∵△ABC是等边三角形,∴D为BC的中点.∴BD=1,AD==.设三棱柱的高A1D=h,则AA1==,A1B==.在△AA1B中,由余弦定理得cos60°=,即=1,解得h=.∴三棱柱的体积V==3.故答案为:3.14.已知正数a,b满足a+2b=2,则的最小值为.【考点】基本不等式.【分析】解法一:数a,b满足a+2b=2,可得a=2﹣2b>0,解得0<b<1.于是=+=f(b),利用导数研究函数的单调性极值与最值即可得出.解法二:由于(1+a)+(2+2b)=5,利用“乘1法”与基本不等式的性质即可得出.【解答】解法一:∵正数a,b满足a+2b=2,∴a=2﹣2b>0,解得0<b<1.则=+=f(b),f′(b)=﹣=,可知:当时,f′(b)<0,此时函数f(b)单调递减;当b∈时,f′(b)>0,此时函数f(b)单调递增.当b=,a=时,f(b)取得最小值,=+=+=,解法二:∵(1+a)+(2+2b)=5,∴=[(1+a)+(2+2b)]=≥=,当且仅当b=,a=时取等号.∴f(b)取得最小值.故答案为:.15.如图所示,△ABC中,AB⊥AC,AB=6,AC=8.边AB,AC的中点分别为M,N.若O为线段MN上任一点,则的取值范围是[].【考点】平面向量数量积的运算.【分析】分别以AC、AB所在直线为x、y轴建立平面直角坐标系,设O(m,n),由把O的坐标用λ表示,再把转化为关于λ的二次函数求解.【解答】解:如图,分别以AC、AB所在直线为x、y轴建立平面直角坐标系,∵AB=6,AC=8,边AB,AC的中点分别为M,N,∴A(0,0),B(0,6),C(8,0),M(0,3),N(4,0),设O(m,n),,则(m,n﹣3)=λ(4,﹣3)(0≤λ≤1),∴,则,∴O(4λ,3﹣3λ),则,,∴=4λ(8﹣4λ)+(3λ+3)(3λ﹣3)﹣4λ•4λ+(3λ+3)(3λ﹣3)﹣4λ(8﹣4λ)+(3λ﹣3)2=11λ2﹣18λ﹣9(0≤λ≤1).对称轴方程为,∴当时,有最小值为,当λ=0时,有最大值为﹣9.故答案为:[].三、解答题(本大题共5小题,共74分.解答应写出文字说明、证明过程或演算步骤.)16.在△ABC中,AB=4,AC=6,∠BAC=60°.点A在边BC上的投影为点D.(1)试求线段AD的长度;(2)设点D在边AB上的投影为点E,在边AC上的投影为F,试求线段EF的长度.【考点】解三角形.【分析】(1)根据余弦定理求出BC的长,再根据勾股定理求出AD的长;(2)根据三角形面积相等求出DE和DF的长,根据余弦定理求出EF的长即可.【解答】解:(1)在△ABC中,AB=4,AC=6,∠BAC=60°,∴BC2=16+36﹣2×4×6×=28,∴BC=2,S△ABC=AB•AC•sin∠BAC=BC•AD,∴AD=;(2)依题意,DE=,DF=,由∠EDF=180°﹣60°=120°,∴EF2=++××=,∴EF=.17.已知正项递增等比数列{a n}的首项为8,其前n项和记为S n,且S3﹣2S2=﹣2.(1)求数列{a n}的通项公式;(2)设数列{b n}满足,其前n项和为T n,试求数列的前n项和B n.【考点】数列的求和;等比数列的通项公式.【分析】(1)通过设a n=8q n﹣1(q>1),代入S3﹣2S2=﹣2计算可知公比q=,进而计算可得结论;(2)通过(1)可知b n=2n+1,利用等比数列、等差数列的求和公式计算可知T n=n(n+2),进而裂项可知=(﹣),并项相加即得结论.【解答】解:(1)依题意,a n=8q n﹣1(q>1),∵S3﹣2S2=﹣2,即(8+8q+8q2)﹣2(8+8q)=﹣2,∴4q2﹣4q﹣3=0,解得:q=或q=﹣(舍),故数列{a n}的通项公式a n=8•;(2)由(1)可知=2+1=2n+1,故数列{b n}的前n项和为T n=2•+n=n(n+2),∴==(﹣),∴B n=(1﹣+﹣+…+﹣)=(1+﹣﹣).18.四棱锥P﹣ABCD中,PA⊥平面ABCD,底面ABCD为菱形,且∠BAD=60°,Q,M 分别为PA,BC的中点.(1)证明:直线QM∥平面PCD;(2)若二面角A﹣BD﹣Q所成角正切值为2,求直线QC与平面PAD所成角的正切值.【考点】直线与平面所成的角;直线与平面平行的判定.【分析】(1)取AD的中点N,连结QN,MN.可通过证明平面QMN∥平面PCD得出QM∥平面PCD;(2)在平面ABCD内过C作CE⊥AD交延长线于E,连结QE,则CE⊥平面PAD,设菱形边长为1,利用勾股定理,二面角的大小,菱形的性质等计算AC,AE,AQ,得出CE,QE,于是tan∠CQE=.【解答】证明:(1)取AD的中点N,连结QN,MN.∵底面ABCD为菱形,M,N是BC,AD的中点,∴MN∥CD,∵Q,N是PA,AD的中点,∴QN∥PD,又QN⊂平面QMN,MN⊂平面QMN,QN∩MN=N,CD⊂平面PCD,PD⊂平面PCD,CD∩PD=D,∴平面QMN∥平面PCD,∵QM⊂平面QMN,∴QM∥平面PCD.(2)连结AC交BD于O,连结QO.∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AD,又AD=AB,QA为公共边,∴Rt△QAD≌Rt△QAB,∴QD=QB,∵O是BD的中点,∴AO⊥BD,QO⊥BD,∴∠AOQ为二面角A﹣BD﹣Q的平面角,∴tan∠AOQ=2.在平面ABCD内过C作CE⊥AD交延长线于E,连结QE.则CE⊥平面PAD,∴∠CQE为直线QC与平面PAD所成的角.设菱形ABCD的边长为1,∵∠DAB=60°,∴AO=,AC=,∴QA=2AO=,CE==,AE=CE=,∴QE==.∴tan∠CQE==.∴直线QC与平面PAD所成角的正切值为.19.已知抛物线C:y2=4x.直线l:y=k(x﹣8)与抛物线C交于A,B(A在B的下方)两点,与x轴交于点P.(1)若点P恰为弦AB的三等分点,试求实数k的值.(2)过点P与直线l垂直的直线m与抛物线C交于点M,N,试求四边形AMBN的面积的最小值.【考点】抛物线的简单性质.【分析】(1)设A(x1,y1),B(x2,y2),不妨设=2,求出A的坐标,利用斜率公式,求实数k的值.(2)直线l:y=k(x﹣8)与抛物线方程联立得:k2x2﹣(16k2+4)x+64k2=0,由弦长公式求出|AB|、|MN|,由四边形AMBN的面积S=|AB||MN|,利用基本不等式能求出四边形AMBN 面积最小值.【解答】解:(1)设A(x1,y1),B(x2,y2),不妨设=2,∵P(8,0),∴(8﹣x2,﹣y2)=2(x1﹣8,y1),∴8﹣x2=2x1﹣8,﹣y2=2y1,∴8﹣x2=2x1﹣8,x2=4x1,∴x1=,x2=4x1=∴A(,﹣),∴k==,根据对称性,k=﹣,满足题意;(2)直线l:y=k(x﹣8)与抛物线方程联立得:k2x2﹣(16k2+4)x+64k2=0,∴x1+x2=16+,x1x2=64,由弦长公式|AB|=,同理由弦长公式得|MN|=,所以四边形AMBN的面积S=|AB||MN|=8≥8=144,当k=±1时,取“=”.故四边形AMBN面积最小值为144.20.设a为实数,函数f(x)=2x2+(x﹣a)|x﹣a|(Ⅰ)若f(0)≥1,求a的取值范围;(Ⅱ)求f(x)在[﹣2,2]上的最小值.【考点】分段函数的应用;函数的值域.【分析】(Ⅰ)原不等式即为﹣a|a|≥1,考虑a<0,解二次不等式求交集即可;(Ⅱ)将函数f(x)改写为分段函数,讨论当a≥0时,①﹣a≤﹣2,②﹣a>﹣2,当a<0时,①≤﹣2,②>﹣2,运用二次函数的单调性,即可得到最小值.【解答】解:(Ⅰ)若f(0)≥1,则﹣a|a|≥1⇒⇒a≤﹣1,则a的取值范围是(﹣∞,﹣1];(Ⅱ)函数f(x)=2x2+(x﹣a)|x﹣a|=,当a≥0时,①﹣a≤﹣2即a≥2时,f(x)在[﹣2,2]上单调递增,所以f(x)min=f(﹣2)=4﹣4a﹣a2;②﹣a>﹣2即0≤a<2时,f(x)在[﹣2,﹣a]上单调递减,在[﹣a,2]上单调递增,所以f(x)min=f(﹣a)=﹣2a2;当a<0时,①≤﹣2即a≤﹣6时,f(x)在[﹣2,2]上单调递增,所以f(x)min=f(﹣2)=12+4a+a2;②>﹣2即﹣6<a<0时,f(x)在[﹣2,]上单调递减,在[,2]上单调递增,所以f(x)min=f()=,综上可得,f(x)min=2016年6月20日。
最新高考、联考模拟数学(文)试题分项版解析_专题03三角与向量_含解析
1.【2016高考新课标1文数】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =,2c =,2cos 3A =,则b=( )(A (B (C )2 (D )3 【答案】D 【解析】试题分析:由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D. 考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记! 2.【2016高考新课标1文数】若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) 【答案】D考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.3.【2016高考天津文数】已知函数)0(21sin 212sin )(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(【答案】D 【解析】试题分析:1cos sin 1()x )2224x x f x ωωπω-=+-=-,()0sin(x )04f x πω=⇒-=,所以4(,2),(k z)k x ππππω+=∉∈,因此115599115115(,)(,)(,)(,)(,)(0,][,]848484848848ωω∉=+∞⇒∈,选D.考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.4.[2016高考新课标Ⅲ文数]在ABC△中,π4B =,BC 边上的高等于13BC ,则sin A =( )(A )310 (B (C (D【答案】D考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解. 5.【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( ) (A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度【答案】A 【解析】试题分析:由题意,为得到函数sin()3y x π=+,只需把函数sin y x =的图像上所有点向左移3π个单位,故选A.考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,函数()y f x =的图象向右平移a 个单位得()y f x a =-的图象,而函数()y f x =的图象向上平移a 个单位得()y f x a =+的图象.左右平移涉及的是x 的变化,上下平移涉及的是函数值()f x 加减平移的单位.6.【2016高考上海文科】设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)=sin()3x ax b -+,则满足条件的有序实数对(a ,b )的对数为( )(A)1 (B)2 (C)3 (D)4 【答案】B考点:1.三角函数的诱导公式;2.三角函数的图象和性质.【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,利用分类讨论的方法,确定得到,a b 的可能取值.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等. 7. [2016高考新课标Ⅲ文数]若tan 13θ=,则cos2θ=( ) (A )45- (B )15-(C )15 (D )45【答案】D 【解析】试题分析:2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++. 考点:1、同角三角函数间的基本关系;2、二倍角.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.8.【2016高考山东文数】ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3(C )π4(D )π6【答案】C考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.8. 【2016高考新课标2文数】函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【答案】A 【解析】试题分析:由图知,2A =,周期2[()]36T πππ=--=,所以22πωπ==,所以2sin(2)y x ϕ=+, 因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2sin()13πϕ+=,所以22(Z)32k k ππϕπ+=+∈,令0k =得,6πϕ=-,所以2sin(2)6y x π=-,故选A.考点: 三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A ,h 的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值. 9.【2016高考新课标2文数】函数π()cos 26cos()2f x x x =+-的最大值为( ) (A )4 (B )5(C )6(D )7【答案】B考点: 正弦函数的性质、二次函数的性质. 【名师点睛】求解本题易出现的错误是认为当3sin 2x =时,函数23112(sin )22y x =--+取得最大值. 10.【2016高考四川文科】0750sin = . 【答案】12【解析】试题分析:由三角函数诱导公式1sin 750sin(72030)sin 302︒=︒+︒=︒=. 考点:三角函数诱导公式【名师点睛】本题也可以看作是一个来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解. 11. 【2016高考浙江文数】已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =______.;1. 【解析】试题分析:22cos sin 21cos2sin 2)14x x x x x π+=++=++,所以 1.A b =考点:三角恒等变换.【思路点睛】解答本题时先用降幂公式化简2cos x ,再用辅助角公式化简cos2sin 21x x ++,进而对照()sin x b ωϕA ++可得A 和b .12.[2016高考新课标Ⅲ文数]函数sin y x x =-的图像可由函数2sin y x =的图像至少向右平移_____________个单位长度得到. 【答案】3π 【解析】试题分析:因为sin cos 2sin()3y x x x π==-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.13. 【2016高考新课标1文数】已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= . 【答案】43-考点:三角变换【名师点睛】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换. 14.【2016高考上海文科】若函数()4sin cos f x x a x =+的最大值为5,则常数a =______. 【答案】3±【解析】试题分析:)sin(16)(2ϕ++=x a x f ,其中4tan a =ϕ,故函数)(x f 的最大值为216a +,由已知,5162=+a ,解得3±=a .考点:三角函数sin()y A x ωϕ=+ 的图象和性质.【名师点睛】三角函数性质研究问题,基本思路是通过化简 ,得到sin()y A x ωϕ=+,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.15.【2016高考上海文科】方程3sin 1cos2x x =+在区间[]π2,0上的解为___________ . 【答案】566ππ或 【解析】 试题分析:3sinx 1cos 2x =+,即23s i n x 22s i n x =-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或. 考点:1.二倍角公式;2.已知三角函数值求角.【名师点睛】已知三角函数值求角,基本思路是通过化简 ,得到角的某种三角函数值,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等.16.【2016高考上海文科】已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.17.【2016高考上海文科】如图,已知点O (0,0),A (1.0),B (0,−1),P 是曲线y =则OP BA×uu u r uu r的取值范围是 .【答案】[-【解析】试题分析:由题意,设(cos ,sin )P αα, [0,π]α∈,则(cos ,sin )OP αα=,又(1,1)BA =, 所以cos sin )[4OP BA αααπ⋅=+=+∈-.考点:1.平面向量的数量积;2.三角函数的图象和性质;3.数形结合的思想.【名师点睛】本题解答利用数形结合思想,将问题转化到单位圆中,从而转化成平面向量的坐标运算,利用三角函数的图象和性质,得到OP BA ×uu u r uu r的取值范围.本题主要考查考生的逻辑推理能力、基本运算求解能力、数形结合思想、转化与化归思想等.18.【2016高考新课标2文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 考点: 正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.19.【2016高考北京文数】在△ABC 中,23A π∠= ,a =,则b c =_________.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用. 20.【2016高考山东文数】(本小题满分12分)设2()π)sin (sin cos )f x x x x x =--- .(I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值. 【答案】(I )()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏【解析】所以,()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏)由(I )知()f x 2sin 21,3x π⎛⎫=-+ ⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin 13x π⎛⎫=-+ ⎪⎝⎭的图象,再把得到的图象向左平移3π个单位,得到y 2sin 1x =+的图象,即()2sin 1.g x x =所以 2sin 166g ππ⎛⎫=+=⎪⎝⎭考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换.【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等. 21.【2016高考四川文科】(本题满分12分) 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =; (II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4. 【解析】代入cos A a +cos B b =sin Cc 中,有 cos sin A k A +cos sin B k B =sin sin Ck C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C .考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论.22.【2016高考天津文数】(本小题满分13分)在ABC ∆中,内角C B A ,,所对应的边分别为a,b,c ,已知sin 2sin a B A =.(Ⅰ)求B ; (Ⅱ)若1cos A 3=,求sinC 的值.【答案】(Ⅰ)6π=B 【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:2sin sin cos A B B A =,再根据三角形内角范围化简得23cos =B ,6π=B (Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为π,将所求角化为两已知角的和)sin()](sin[sin B A B A C +=+-=π,再根据两角和的正弦公式求解考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.23.【2016高考北京文数】(本小题13分)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π. (1)求ω的值;(2)求)(x f 的单调递增区间. 【答案】(Ⅰ)1ω=(Ⅱ)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 【解析】试题分析:(Ⅰ)运用两角和的正弦公式对)(x f 化简整理,由周期公式求ω的值; (Ⅱ)根据函数x y sin =的单调递增区间对应求解即可. 试题解析:(I )因为()2sin cos cos2f x x x x ωωω=+sin 2cos2x x ωω=+24x πω⎛⎫=+⎪⎝⎭, 所以()f x 的最小正周期22ππωωT ==. 依题意,ππω=,解得1ω=.考点:两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.24.【2016高考浙江文数】(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B .(Ⅰ)证明:A =2B ; (Ⅱ)若cos B =23,求cos C 的值. 【答案】(I )证明见解析;(II )22cos 27C =. 【解析】试题分析:(I )先由正弦定理可得sin sinC 2sin cos B+=A B ,进而由两角和的正弦公式可得()sin sin B =A-B ,再判断A-B 的取值范围,进而可证2A =B ;(II )先用同角三角函数的基本关系可得sin B ,再用二倍角公式可得cos2B ,进而可得cos A 和sin A ,最后用两角和的余弦公式可得cosC . 试题解析:(I )由正弦定理得sin sin 2sin cos B C A B +=,故2sin cos sin sin()sin sin cos cos sin A B B A B B A B A B =++=++, 于是,sin sin()B A B =-,又,(0,)A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-, 因此,A π=(舍去)或2A B =,所以,2A B =.考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I )用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A ,B 的式子,根据角的范围可证2A =B ;(II )先用同角三角函数的基本关系及二倍角公式可得cos2B ,进而可得cos A 和sin A ,再用两角和的余弦公式可得cosC .平面向量1.[2016高考新课标Ⅲ文数]已知向量1(2BA =uu v,1),2BC =uu u v 则ABC ∠=( ) (A)300(B) 450(C) 600(D)1200【答案】A 【解析】试题分析:由题意,得112222cos 112||||BA BC ABC BA BC ⨯⋅∠===⨯,所以30ABC ∠=︒,故选A . 考点:向量夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·,·cos a b a bθ=,·0a b a b ⇔⊥=,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.2.【2016高考天津文数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE 并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( ) (A )85- (B )81 (C )41 (D )811【答案】B考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.3.【2016高考四川文科】已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r,则2BM uuu r 的最大值是( )(A)443 (B) 449(C) 43637+ (D) 433237+【答案】B 【解析】试题分析:甴已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为x 轴建立平面直角坐标系,则()((2,0,1,,1,.A B C ---设(),,P x y 由已知1AP =,得()2221xy -+=,又131,,,,,22x y x PM MC M BM ⎛⎫⎛-++=∴∴=⎪ ⎝⎭⎝⎭()(22214x y BM -++∴=,它表示圆()2221x y-+=上点().x y 与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭,故选B. 考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2D A D B D C ===,因此我们采用解析法,即建立直角坐标系,写出,,,A B C D 坐标,同时动点P 的轨迹是圆,()()2221334x y BM +++=,因此可用圆的性质得出最值.因此本题又考查了数形结合的数学思想.4.【2016高考新课标2文数】已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6- 【解析】试题分析:因为a ∥b ,所以2430m --⨯=,解得6m =-. 考点:平面向量的坐标运算 ,平行向量.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. 5.【2016高考北京文数】已知向量=(1,3),(3,1)=a b ,则a 与b 夹角的大小为_________. 【答案】30考点:平面向量数量积【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅(θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法. 6.【2016高考新课标1文数】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = . 【答案】23- 【解析】试题分析:由题意, 20,2(1)0,.3x x x ⋅=++=∴=-a b 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .7.【2016高考浙江文数】已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是______. 7考点:平面向量的数量积和模.【思路点睛】先设a ,b 和e 的坐标,再将a e b e ⋅+⋅转化为三角函数,进而用辅助角公式将三角函数进行化简,最后用三角函数的性质可得三角函数的最大值,进而可得a e b e ⋅+⋅的最大值.8.【2016高考山东文数】已知向量1,-()()16,-4a b ==,.若()a tab ⊥+,则实数t 的值为________.【答案】5- 【解析】 试题分析:()()()()6,4,6,41,12100ta b t t ta b a t t t +=+--+⋅=+--⋅-=+=,解得5t =-考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()a tab ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.第二部分 2016优质模拟题1.【2016江西赣中南五校一联】如图所示,点P 是函数2sin()(,0)y x x R ωϕω=+∈>图象的最高点,M 、N 是图象与x 轴的交点,若0PM PN ⋅=,则ω等于( ) A . 8 B .8π C . 4π D .2π【答案】B【解析】由题意可得:2=OP ,PN PM ⊥,所以2==ON OM ;所以函数的周期为16,即8πω=故选B .2.【2016云南第一次统测】为得到cos 26y x π⎛⎫=-⎪⎝⎭的图象,只需要将sin 2y x =的图象( ) A .向右平移3π个单位 B .向右平移6π个单位 C .向左平移3π个单位 D .向左平移6π个单位【答案】D3.【2016湖北省优质高中联考】已知向量()()()3,1,1,3,,2a b c k ===-,若()//a c b -,则向量a 与向量c 的夹角的余弦值是( )A .5B .15C .5-.15-【答案】A【解析】()3,3k c a -=-,因为()//a c b -,所以()133-3⨯=⨯k ,解得2=k ,当2=k 时,5522104,cos =⨯=⋅>=<c a c a c a,故选A .4.【2016江西赣中南五校一联】ABC ∆外接圆圆心O ,半径为1,2AO AB AC =+且OA AB =,则向量BA在向量BC 方向的投影为( ) A .21 B .23 C .21- D .23- 【答案】A【解析】因为-+-=⇒+=22所以-=,所以C B O ,,三点共线即AC AB ⊥1==,所以2=BC ,所以()1BA BC BA AC AB ⋅=⋅-=故向量BA 在向量上的投影为21选A .5.【2016河南中原名校一联】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a -=2,,且//.(1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值.6.【2016河北石家庄质检二】ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos +2bc C c a =.(1)求角B 的大小;(2)若BD 为AC 边上的中线,1cos 7A =,BD =ABC ∆的面积.【解析】(1)a c C b 2cos 2=+,由正弦定理,得A C C B sin 2sin cos sin 2=+, ∵A B C π++=,∴sin sin()sin cos cos sin A B C B C B C =+=+,∴2sin cos sin 2(sin cos cos sin )B C C B C B C +=+,∴C B C sin cos 2sin = ∵π<<C 0,∴以0sin ≠C ,∴21cos =B . 又∵π<<B 0,∴3B π=.。
2016年高考+联考模拟数学(文)试题分项版解析 专题08算法、复数与选讲原卷版
1. 【2016高考新课标1文数】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a=( )A.-3B.-2C.2D.32.【2016高考新课标2文数】设复数z 满足i 3i z +=-,则z =( )A.12i -+B.12i -C.32i +D.32i -3. [2016高考新课标Ⅲ文数]若43i z =+,则||z z =( ) A.1 B.1- C.43i 55+ D.43i 55- 4.【2016高考四川文科】设i 为虚数单位,则复数2(1)i +=( )A. 0B.2C.2iD.2+2i5.【2016高考北京文数】复数122i i+=-( ) A.i B.1i + C.i - D.1i - 6.【2016高考山东文数】若复数21i z =-,其中i 为虚数单位,则z =( ) A.1+i B.1−i C.−1+i D.−1−i7.【2016高考新课标2文数】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.8.【2016高考山东文数】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯; 2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯; 2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯; 2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯; ……照此规律,2222π2π3π2π(sin )(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 9.【2016高考天津文数】i 是虚数单位,复数z 满足(1)2i z +=,则z 的实部为_______.算法1.【2016高考新课标2文数】中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s =( )(A )7 (B )12 (C )17 (D )342. 【2016高考新课标1文数】执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足( )(A )2y x =(B )3y x =(C )4y x =(D )5y x =n=n+1结束输出x,yx 2+y 2≥36?x =x+n-12,y=ny 输入x,y,n开始3. [2016高考新课标Ⅲ文数]执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )64.【2016高考天津文数】阅读右边的程序框图,运行相应的程序,则输出S 的值为_______.5.【2016高考北京文数】执行如图所示的程序框图,输出的s值为()A.8B.9C.27D.366.【2016高考四川文科】秦九韶是我国南宋时期的数学家,普州(现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为( )(A)35 (B) 20 (C)18 (D)97.【2016高考山东文数】执行右边的程序框图,若输入n的值为3,则输出的S的值为_______.选讲部分1.【2016高考天津文数】如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.2.【2016高考新课标1文数】(本小题满分10分)选修4-1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆. (I)证明:直线AB 与e O 相切; (II)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .O DCB A3.【2016高考新课标1文数】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t=⎧⎨=+⎩(t 为参数,a >0).在以坐标原点为极点,x 轴正半轴为极轴的极坐标系中,曲线C 2:ρ=4cos θ.(I )说明C 1是哪一种曲线,并将C 1的方程化为极坐标方程;(II )直线C 3的极坐标方程为0θα=,其中0α满足tan 0α=2,若曲线C 1与C 2的公共点都在C 3上,求a .4.【2016高考新课标1文数】(本小题满分10分),选修4—5:不等式选讲已知函数()123f x x x =+--.(I )在答题卡第(24)题图中画出()y f x =的图像;(II )求不等式()1f x >的解集.5.【2016高考新课标2文数】如图,在正方形ABCD 中,,E G 分别在边,DA DC 上(不与端点重合),且DE DG =,过D 点作DF CE ⊥,垂足为F .(Ⅰ) 证明:,,,B C G F 四点共圆;(Ⅱ)若1AB =,E 为DA 的中点,求四边形BCGF 的面积.6.【2016高考新课标2文数】在直角坐标系xOy 中,圆C 的方程为22(6)25x y ++=. (Ⅰ)以坐标原点为极点,x 轴正半轴为极轴建立极坐标系,求C 的极坐标方程; (Ⅱ)直线l 的参数方程是cos sin x t y t αα=⎧⎨=⎩(t 为参数), l 与C 交于,A B 两点,||10AB =,求l 的斜率.7.【2016高考新课标2文数】已知函数11()||||22f x x x =-++,M 为不等式()2f x <的解集.(Ⅰ)求M ;(Ⅱ)证明:当,a b M ∈时,|||1|a b ab +<+. 8.[2016高考新课标Ⅲ文数]如图,O e 中»AB 的中点为P ,弦PC PD ,分别交AB 于E F ,两点.(I )若2PFB PCD ∠=∠,求PCD ∠的大小;(II )若EC 的垂直平分线与FD 的垂直平分线交于点G ,证明OG CD ⊥.9.[2016高考新课标Ⅲ文数]在直角坐标系xOy 中,曲线1C 的参数方程为3cos ()sin x y ααα⎧=⎪⎨=⎪⎩为参数,以坐标原点为极点,以x 轴的正半轴为极轴,,建立极坐标系,曲线2C 的极坐标方程为sin()224ρθπ+=. (I )写出1C 的普通方程和2C 的直角坐标方程;(II )设点P 在1C 上,点Q 在2C 上,求PQ 的最小值及此时P 的直角坐标.10.[2016高考新课标Ⅲ文数]已知函数()|2|f x x a a =-+.(I )当2a =时,求不等式()6f x ≤的解集;(II )设函数()|21|g x x =-.当x ∈R 时,()()3f x g x +≥,求a 的取值范围.第二部分 2016模拟试题1.【2106东北三省三校一模】若m = 6,n = 4,按照如图所示的程序框图运行后,输出的结果是( )A .1100B .100C .10D .12.【2016河北省衡水中学一调】执行所示框图,若输入6,4n m ==,则输出的p 等于( )A .120B .240C .360D .7203.【2016安徽合肥市第二次质检】若i 是虚数单位,复数2i z i =+的虚部为( ) A .15- B .25- C .15 D .254.【2016吉林长春质量监测(二)】复数1z ,2z 在复平面内对应的点关于直线y x =对称,且132z i =+,则2z =()A. 32i -B. 23i -C. 32i --D. 23i +5.【2016辽宁省沈阳质量监测(一)】复数21z i=-(i 为虚数单位)在复平面内对应的点位于( )A .第一象限B .第二象限C .第三象限D .第四象限6.【2016河北唐山二模】如图,四边形ABCD 内接于圆O ,AC 与BD 相交于点F ,AE 与圆O 相切于点A ,与CD 的延长线相交于点E ,∠ADE =∠BDC .(Ⅰ)证明:A 、E 、D 、F 四点共圆;(Ⅱ)证明:AB ∥EF .B O FDC A7.【2016广西桂林市、北海市、崇左市3月联合调研】已知曲线C 的极坐标方程是4cos ρθ=.以极点为平面直角坐标系的原点,极轴为x 轴的正半轴,建立平面直角坐标系,直线l 的参数方程是1cos sin x t y t αα=+⎧⎨=⎩(t 为参数).(1)将曲线C 的极坐标方程化为直角坐标方程;(2)若直线l 与曲线C 相交于A 、B 两点,且AB =求直线的倾斜角α的值.8.【2016吉林长春质量监测(二),理24】设函数()|+2|||()f x x x a a =+-∈R . (1)若不等式()0f x a +≥恒成立,求实数a 的取值范围;(2) 若不等式3()2f x x …恒成立,求实数a 的取值范围.。
2016年高考+联考模拟数学(文)试题分项版解析 专题01 集合与函数原卷版
1.【2016高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =剟,则A B =I ( )(A ){1,3} (B ){3,5} (C ){5, 7} (D ){1,7} 2. 【2016高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =I ( ) (A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},3.[2016高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( ) (A ){48}, (B ){026},, (C ){02610},,,(D ){0246810},,,,, 4.【2016高考天津文数】已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B I =( ) (A )}3,1{ (B )}2,1{ (C )}3,2{ (D )}3,2,1{5.【2016高考四川文科】设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( )(A)充分不必要条件 (B)必要不充分条件(C) 充要条件 (D) 既不充分也不必要条件6.【2016高考四川文科】设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)37.【2016高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U PQ U ()ð=( ) A.{1}B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5}8.【2016高考天津文数】已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满 )2()2(|1|->-f f a ,则a 的取值范围是( )(A ))21,(-∞ (B )),23()21,(+∞-∞Y (C ))23,21( (D )),23(+∞ 9.【2016高考天津文数】设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件 (B )充分而不必要条件(C )必要而不充分条件 (D )既不充分也不必要条件10.【2016高考上海文科】设R a ∈,则“1>a ”是“12>a ”的( )(A )充分非必要条件 (B )必要非充分条件(C )充要条件 (D )既非充分也非必要条件11.【2016高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =I ( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x >12.【2016高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B U ð=( )(A ){2,6}(B ){3,6} (C ){1,3,4,5} (D ){1,2,4,6}函数1. 【2016高考新课标1文数】若0a b >>,01c <<,则( )(A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b2.【2016高考新课标1文数】函数22x y x e =-在[]2,2-的图像大致为( ) (A )(B )(C )(D )3. 【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D )y x = 4. 【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mii x =∑( ) (A)0 (B)m (C) 2m (D) 4m5. [2016高考新课标Ⅲ文数]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c << (C) b c a << (D) c a b << 6.【2016高考浙江文数】函数y =sin x 2的图象是( )7.【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( )A.(1)(1)0a b --<B. (1)()0a a b -->C. (1)()0b b a --<D. (1)()0b b a -->8.【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件9.【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,x f x x ≥∈R .( )A.若()f a b ≤,则a b ≤B.若()2bf a ≤,则a b ≤C.若()f a b ≥,则a b ≥D.若()2b f a ≥,则a b ≥10.【2016高考北京文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.811.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( )A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 12.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题 学科.网13.【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4x f x =,则5()(1)2f f -+= .14.【2016高考上海文科】已知点(3,9)在函数x a x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.15.【2016高考浙江文数】设函数f (x )=x 3+3x 2+1.已知a≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______.16.【2016高考山东文数】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________.17.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( )(A )sin y x = (B )ln y x = (C )e x y = (D )3y x =18.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1(C )0 (D )219.【2016高考四川文科】某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( )(参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网(A)2018年 (B) 2019年 (C)2020年 (D)2021年20.【2016高考北京文数】函数()(2)1x f x x x =≥-的最大值为_________. 21.【2016高考天津文数】已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23x f x =-恰有两个不相等的实数解,则a 的取值范围是_________. 22.【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.已知a ∈R ,函数()f x =21log ()a x +.(1)当 1a =时,解不等式()f x >1; (2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.第二部分 2016年优质模拟题1.【2016河北石家庄质检二】设集合{}1,1M =-,{}2|6N x x x =-<,则下列结论正确的是( )A. N M ⊆B. N M =∅IC.M N ⊆D. M N R =U2.【2016安徽江南十校联考】已知集合{}22530A x x x =--≤,{}2B x Z x =∈≤,则A B ⋂中的元素个数为(A)2 (B)3 (C)4 (D)53.【2016辽宁大连双基】已知函数()f x 定义域为R ,则命题p :“函数()f x 为偶函数”是命题q :“000,()()x R f x f x ∃∈=-”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D)既不充分也不必要条件4.【2016广东广州一模】已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥;2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-;3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是( )A .1B .2C .3D .45.【2016湖北七校联考】已知)(x f 是奇函数并且是R 上的单调函数,若函数)()12(2x f x f y -++=λ只有一个零点,则实数λ的值是( )A .41B .81C .87-D .83- 6.【2016江西四校联考】已知函数()22x x a f x =-,其在区间[]0,1上单调递增,则a 的取值范围为( )A .[]0,1B .[]1,0-C .[]1,1-D .11,22⎡⎤-⎢⎥⎣⎦7.【2016河北衡水二调】定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数()1y f x =-的图象关于(1,0)成中心对称,若,s t 满足不等式()()2222f s s f t t-≤--,则当14s ≤≤时,2t s s t -+的取值范围是( ) A .13,2⎡⎫--⎪⎢⎣⎭ B .13,2⎡⎤--⎢⎥⎣⎦ C .15,2⎡⎫--⎪⎢⎣⎭ D .15,2⎡⎤--⎢⎥⎣⎦8.【2016广东广州一模】已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩, 则函数()()22x g x f x =-的零点个数为 个.。
2016年高考+联考模拟数学(文)试题分项版解析 专题01集合与函数解析版 Word版含解析
1.【2016高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =剟,则A B =( )(A ){1,3} (B ){3,5} (C ){5,7} (D ){1,7} 【答案】B 【解析】试题分析:集合A 与集合B 公共元素有3,5,}5,3{=B A ,故选B. 考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题.解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算.2. 【2016高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则A B =( )(A ){210123}--,,,,, (B ){21012}--,,,, (C ){123},, (D ){12},【答案】D 【解析】考点: 一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理.3.[2016高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则A B ð=( )(A ){48}, (B ){026},, (C ){02610},,, (D ){0246810},,,,,【答案】C 【解析】试题分析:由补集的概念,得C {0,2,6,10}A B =,故选C . 考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化. 4.【2016高考天津文数】已知集合}3,2,1{=A ,},12|{A x x y y B ∈-==,则A B =( ) (A )}3,1{ (B )}2,1{(C )}3,2{(D )}3,2,1{【答案】A 【解析】试题分析:{1,3,5},{1,3}B A B ==,选A.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小.一要注意培养良好的答题习惯,避免出现粗心错误,二是明确集合交集的考查立足于元素互异性,做到不重不漏.5.【2016高考四川文科】设p:实数x ,y 满足1x >且1y >,q: 实数x ,y 满足2x y +>,则p 是q 的( )(A)充分不必要条件 (B)必要不充分条件 (C) 充要条件 (D) 既不充分也不必要条件 【答案】A考点:充分必要条件.【名师点睛】本题考查充分性与必要性的判断问题,首先是分清条件和结论,然后考察条件推结论,结论推条件是否成立.这类问题往往与函数、三角、不等式等数学知识结合起来考.有许多情况下可利用充分性、必要性和集合的包含关系得出结论.6.【2016高考四川文科】设集合{|15}A x x =≤≤,Z 为整数集,则集合A ∩Z 中元素的个数是( )(A)6 (B) 5 (C)4 (D)3 【答案】B 【解析】试题分析:由题意,{1,2,3,4,5}AZ =,故其中的元素个数为5,选B.考点:集合中交集的运算.【名师点睛】集合的概念及运算一直是高考的热点,几乎是每年必考内容,属于容易题.一般是结合不等式,函数的定义域值域考查,解题的关键是结合韦恩图或数轴解答.7.【2016高考浙江文数】已知全集U ={1,2,3,4,5,6},集合P ={1,3,5},Q ={1,2,4},则U P Q ()ð=( ) A.{1} B.{3,5}C.{1,2,4,6}D.{1,2,3,4,5} 【答案】C考点:补集的运算.【易错点睛】解本题时要看清楚是求“”还是求“”,否则很容易出现错误;一定要注意集合中元素的互异性,防止出现错误.8.【2016高考天津文数】已知)(x f 是定义在R 上的偶函数,且在区间)0,(-∞上单调递增,若实数a 满)2()2(|1|->-f f a ,则a 的取值范围是( )(A ))21,(-∞ (B )),23()21,(+∞-∞ (C ))23,21( (D )),23(+∞【答案】C 【解析】试题分析:由题意得1|1||1||1|2113(2)(222|1|222a a a f f a a ---->⇒-><⇒-<⇒<<,故选C 考点:利用函数性质解不等式【名师点睛】不等式中的数形结合问题,在解题时既要想形又要以形助数,常见的“以形助数”的方法有:(1)借助数轴,运用数轴的有关概念,解决与绝对值有关的问题,解决数集的交、并、补运算非常有效.(2)借助函数图象性质,利用函数图象分析问题和解决问题是数形结合的基本方法,需注意的问题是准确把握代数式的几何意义实现“数”向“形”的转化.9.【2016高考天津文数】设0>x ,R y ∈,则“y x >”是“||y x >”的( )(A )充要条件(B )充分而不必要条件(C )必要而不充分条件(D )既不充分也不必要条件【答案】C 【解析】试题分析:34,3|4|>-<-,所以充分性不成立;||x y y x y >≥⇒>,必要性成立,故选C 考点:充要关系【名师点睛】充分、必要条件的三种判断方法.1.定义法:直接判断“若p 则q ”、“若q 则p ”的真假.并注意和图示相结合,例如“p ⇒q ”为真,则p 是q 的充分条件.2.等价法:利用p ⇒q 与非q ⇒非p ,q ⇒p 与非p ⇒非q ,p ⇔q 与非q ⇔非p 的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3. 集合法:若A ⊆B ,则A 是B 的充分条件或B 是A 的必要条件;若A =B ,则A 是B 的充要条件.10.【2016高考上海文科】设R a ∈,则“1>a ”是“12>a ”的( ) (A )充分非必要条件 (B )必要非充分条件 (C )充要条件 (D )既非充分也非必要条件 【答案】A考点:充要条件【名师点睛】充要条件的判定问题,是高考常考题目之一,其综合性较强,易于和任何知识点结合.本题涉及不等关系,突出体现了高考试题的基础性,能较好的考查考生分析问题解决问题的能力、逻辑推理能力等.11.【2016高考北京文数】已知集合={|24}A x x <<,{|3B x x =<或5}x >,则A B =( )A.{|25}x x <<B.{|4x x <或5}x >C.{|23}x x <<D.{|2x x <或5}x >【答案】C 【解析】试题分析:由题意得,(2,3)A B =,故选C.考点: 集合交集【名师点睛】1. 首先要弄清构成集合的元素是什么(即元素的意义),是数集还是点集,如集合)}(|{x f y x =,)}(|{x f y y =,)}(|),{(x f y y x =三者是不同的.2.集合中的元素具有三性——确定性、互异性、无序性,特别是互异性,在判断集合中元素的个数时,以及在含参的集合运算中,常因忽视互异性,疏于检验而出错.3.数形结合常使集合间的运算更简捷、直观.对离散的数集间的运算或抽象集合间的运算,可借助Venn 图实施,对连续的数集间的运算,常利用数轴进行,对点集间的运算,则通过坐标平面内的图形求解,这在本质上是数形结合思想的体现和运用.4.空集是不含任何元素的集合,在未明确说明一个集合非空的情况下,要考虑集合为空集的可能.另外,不可忽视空集是任何元素的子集.12.【2016高考山东文数】设集合{1,2,3,4,5,6},{1,3,5},{3,4,5}U A B ===,则()U A B ð=( ) (A ){2,6} (B ){3,6}(C ){1,3,4,5}(D ){1,2,4,6}【答案】A 【解析】试题分析:由已知,{13,5}{3,4,5}{1,3,4,5}A B ⋃=⋃=,,所以(){1,3,4,5}{2,6}U U C A B C ⋃==,选A.考点:集合的运算【名师点睛】本题主要考查集合的并集、补集,是一道基础题目.从历年高考题目看,集合的基本运算,是必考考点,也是考生必定得分的题目之一.函数1. 【2016高考新课标1文数】若0a b >>,01c <<,则( ) (A )log a c <log b c (B )log c a <log c b (C )a c <b c (D )c a >c b 【答案】B考点:指数函数与对数函数的性质【名师点睛】比较幂或对数值的大小,若幂的底数相同或对数的底数相同,通常利用指数函数或对数单调性进行比较,若底数不同,可考虑利用中间量进行比较.2.【2016高考新课标1文数】函数22xy x e =-在[]2,2-的图像大致为( )(A )(B )(C )(D )【答案】D考点:函数图像与性质【名师点睛】函数中的识图题多次出现在高考试题中,也可以说是高考的热点问题,这类题目一般比较灵活,对解题能力要求较高,故也是高考中的难点,解决这类问题的方法一般是利用间接法,即由函数性质排除不符合条件的选项.3. 【2016高考新课标2文数】下列函数中,其定义域和值域分别与函数y=10lg x 的定义域和值域相同的是( )(A )y =x (B )y =lg x (C )y =2x (D )y=【答案】D 【解析】 试题分析:lg 10xy x ==,定义域与值域均为()0,+∞,只有D 满足,故选D .考点: 函数的定义域、值域,对数的计算.【名师点睛】基本初等函数的定义域、值域问题,应熟记图象,运用数形结合思想求解. 4. 【2016高考新课标2文数】已知函数f (x )(x ∈R )满足f (x )=f (2-x ),若函数y =|x 2-2x -3| 与y =f (x ) 图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑( )(A)0 (B)m (C) 2m (D) 4m 【答案】B 【解析】试题分析:因为2(),y |23|y f x x x ==--都关于1x =对称,所以它们交点也关于1x =对称,当m 为偶数时,其和为22m m ⨯=,当m 为奇数时,其和为1212m m -⨯+=,因此选B. 考点: 函数的奇偶性,对称性.【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数的图象有对称中心.5. [2016高考新课标Ⅲ文数]已知4213332,3,25a b c ===,则( )(A) b a c << (B)a b c <<(C) b c a <<(D) c a b <<【答案】A考点:幂函数的单调性.【技巧点拨】比较指数的大小常常根据三个数的结构联系相关的指数函数与对数函数、幂函数的单调性来判断,如果两个数指数相同,底数不同,则考虑幂函数的单调性;如果指数不同,底数相同,则考虑指数函数的单调性;如果涉及到对数,则联系对数的单调性来解决. 6.【2016高考浙江文数】函数y =sin x 2的图象是( )【答案】D 【解析】试题分析:因为2sin =y x 为偶函数,所以它的图象关于y 轴对称,排除A 、C 选项;当22x π=,即x =时,1max y =,排除B 选项,故选D. 考点:三角函数图象.【方法点睛】给定函数的解析式识别图象,一般从五个方面排除、筛选错误或正确的选项:(1)从函数的定义域,判断图象左右的位置,从函数的值域,判断图象的上下位置;(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的周期性,判断函数的循环往复;(5)从特殊点出发,排除不符合要求的选项. 7.【2016高考浙江文数】已知a ,b >0,且a ≠1,b ≠1,若log >1a b ,则( ) A.(1)(1)0a b --< B. (1)()0a a b --> C. (1)()0b b a --<D. (1)()0b b a -->【答案】D考点:对数函数的性质.【易错点睛】在解不等式log 1a b >时,一定要注意对a 分为1a >和01a <<两种情况进行讨论,否则很容易出现错误.8.【2016高考浙江文数】已知函数f (x )=x 2+bx ,则“b <0”是“f (f (x ))的最小值与f (x )的最小值相等”的( ) A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件【答案】A 【解析】试题分析:由题意知222()()24=+=+-b b f x x bx x ,最小值为24-b .令2=+t x bx ,则2222(())()(),244==+=+-≥-b b b f f x f t t bt t t , 当0<b 时,(())f f x 的最小值为24-b ,所以“0<b ”能推出“(())f f x 的最小值与()f x 的最小值相等”;当0=b 时,4(())=f f x x 的最小值为0,()f x 的最小值也为0,所以“(())f f x 的最小值与()f x 的最小值相等”不能推出“0<b ”.故选A . 考点:充分必要条件.【方法点睛】解题时一定要注意p q ⇒时,p 是q 的充分条件,q 是p 的必要条件,否则很容易出现错误.充分、必要条件的判断即判断命题的真假,在解题中可以根据原命题与其逆否命题进行等价转化.9.【2016高考浙江文数】已知函数()f x 满足:()f x x ≥且()2,xf x x ≥∈R .( ) A.若()f a b ≤,则a b ≤ B.若()2bf a ≤,则a b ≤ C.若()f a b ≥,则a b ≥ D.若()2b f a ≥,则a b ≥ 【答案】B考点:函数的奇偶性.【思路点睛】先由已知条件可得()f x 的解析式,再由()f x 的解析式判断()f x 的奇偶性,进而对选项逐个进行排除.10.【2016高考北京文数】已知(2,5)A ,(4,1)B ,若点(,)P x y 在线段AB 上,则2x y -的最大值为( )A.−1B.3C.7D.8 【答案】C 【解析】试题分析:由题意得,AB :511(4)2924y x y x --=-⇒=-+-, ∴22(29)494497x y x x x -=--+=-≤⋅-=,当4x =时等号成立,即2x y -的最大值为7,故选C. 考点: 函数最值【名师点睛】求函数值域的常用方法:①单调性法,如(5);②配方法,如(2);③分离常数法,如(1);④数形结合法;⑤换元法(包括代数换元与三角换元),如(2),(3);⑥判别式法,如(4);⑦不等式法,如(4),(5);⑧导数法,主要是针对在某区间内连续可导的函数;⑨图象法,求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(6);对于二元函数的值域问题,如(5),其解法要针对具体题目的条件而定,有些题目可以将二元函数化为一元函数求值域,有些题目也可用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.11.【2016高考北京文数】下列函数中,在区间(1,1)- 上为减函数的是( ) A.11y x=- B.cos y x = C.ln(1)y x =+ D.2x y -= 【答案】D 【解析】试题分析:由12()2x x y -==在R 上单调递减可知D 符合题意,故选D. 考点:函数单调性【名师点睛】函数单调性的判断:(1)常用的方法有:定义法、导数法、图象法及复合函数法.(2)两个增(减)函数的和仍为增(减)函数;一个增(减)函数与一个减(增)函数的差是增(减)函数; (3)奇函数在关于原点对称的两个区间上有相同的单调性,偶函数在关于原点对称的两个区间上有相反的单调性.12.【2016高考上海文科】设()f x 、()g x 、()h x 是定义域为R 的三个函数,对于命题:①若()()f x g x +、()()f x h x +、()()g x h x +均为增函数,则()f x 、()g x 、()h x 中至少有一个增函数;②若()()f x g x +、()()f x h x +、()()g x h x +均是以T 为周期的函数,则()f x 、()g x 、()h x 均是以T 为周期的函数,下列判断正确的是( )A 、①和②均为真命题B 、①和②均为假命题C 、①为真命题,②为假命题D 、①为假命题,②为真命题 学科.网【答案】D 【解析】考点:1.抽象函数;2.函数的单调性;3.函数的周期性.【名师点睛】本题主要考查抽象函数下函数的单调性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于灵活选择方法,如结合选项应用“排除法”,通过举反例应用“排除法”等.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.13.【2016高考四川文科】已知函数()f x 是定义在R 上的周期为2的奇函数,当0<x <1时,()4xf x =,则5()(1)2f f -+= . 【答案】-2【解析】试题分析:因为函数()f x 是定义在R 上周期为2的奇函数,所以(1)(1)0,(1)(12)(1)0f f f f f -=-=-=-+==,所以(1)(1)f f -=,即(1)0f =,125111()(2)()()422222f f f f -=--=-=-=-=-,所以5()(1)22f f -+=-.考点:1.函数的奇偶性;2.函数的周期性.【名师点睛】本题考查函数的奇偶性与周期性.属于基础题,在涉及函数求值问题中,可利用周期性()()f x f x T =+,化函数值的自变量到已知区间或相邻区间,如果是相邻区间再利用奇偶性转化到已知区间上,再由函数式求值即可.14.【2016高考上海文科】已知点(3,9)在函数xa x f +=1)(的图像上,则________)()(1=-x f x f 的反函数.【答案】2log (x 1)- 【解析】考点:1.反函数的概念;2.指数函数的图象和性质.【名师点睛】指数函数与对数函数互为反函数,求反函数的基本步骤是:一解、二换、三注..本题较为容易.15.【2016高考浙江文数】设函数f (x )=x 3+3x 2+1.已知a≠0,且f (x )–f (a )=(x –b )(x –a )2,x ∈R ,则实数a =_____,b =______. 【答案】-2;1.考点:函数解析式.【思路点睛】先计算()()f x f a -,再将()()2x b x a --展开,进而对照系数可得含有a ,b 的方程组,解方程组可得a 和b 的值.16.【2016高考山东文数】已知函数2||,()24,x x m f x x mx m x m ≤⎧=⎨-+>⎩其中0m >,若存在实数b ,使得关于x 的方程f (x )=b 有三个不同的根,则m 的取值范围是________________. 【答案】()3,+∞ 【解析】 试题分析:画出函数图象如下图所示:由图所示,要()f x b =有三个不同的根,需要红色部分图像在深蓝色图像的下方,即2224,30m m m m m m m >-⋅+->,解得3m >考点:1.函数的图象与性质;2.函数与方程;3.分段函数【名师点睛】本题主要考查二次函数函数的图象与性质、函数与方程、分段函数的概念.解答本题,关键在于能利用数形结合思想,通过对函数图象的分析,转化得到代数不等式.本题能较好的考查考生数形结合思想、转化与化归思想、基本运算求解能力等.17.【2016高考山东文数】若函数()y f x =的图象上存在两点,使得函数的图象在这两点处的切线互相垂直,则称()y f x =具有T 性质.下列函数中具有T 性质的是( ) (A )sin y x =(B )ln y x =(C )e x y =(D )3y x =【答案】A考点:1.导数的计算;2.导数的几何意义.【名师点睛】本题主要考查导数的计算、导数的几何意义及两直线的位置关系,本题给出常见的三角函数、指数函数、对数函数、幂函数,突出了高考命题注重基础的原则.解答本题,关键在于将直线的位置关系与直线的斜率、切点处的导数值相联系,使问题加以转化,利用特殊化思想解题,降低难度.本题能较好的考查考生分析问题解决问题的能力、基本计算能力及转化与化归思想的应用等.18.【2016高考山东文数】已知函数f(x )的定义域为R.当x <0时,f(x )=x 3-1;当-1≤x ≤1时,f(-x )= —f(x );当x >12时,f(x +12)=f(x —12).则f(6)= ( ) (A )-2 (B )-1 (C )0 (D )2 【答案】D 【解析】 试题分析: 当12x >时,11()()22f x f x +=-,所以当12x >时,函数()f x 是周期为1的周期函数,所以(6)(1)f f =,又因为当11x -≤≤时,()()f x f x -=-,所以()3(1)(1)112f f ⎡⎤=--=---=⎣⎦,故选D.考点:1.函数的奇偶性与周期性;2.分段函数.【名师点睛】本题主要考查分段函数的概念、函数的奇偶性与周期性,是高考常考知识内容.本题具备一定难度.解答此类问题,关键在于利用分段函数的概念,发现周期函数特征,进行函数值的转化.本题能较好的考查考生分析问题解决问题的能力、基本计算能力等. 19.【2016高考四川文科】某公司为激励创新,计划逐年加大研发奖金投入.若该公司2015年全年投入研发资金130万元,在此基础上,每年投入的研发资金比上一年增长12%,则该公司全年投入的研发资金开始超过200万元的年份是( ) (参考数据:lg1.12=0.05,lg1.3=0.11,lg2=0.30) 学科&网 (A)2018年 (B) 2019年 (C)2020年 (D)2021年 【答案】B 【解析】考点:1.增长率问题;2.常用对数的应用.【名师点睛】本题考查等比数列的实际应用.在实际问题中平均增长率问题可以看作是等比数列的应用,解题时要注意把哪个作为数列的首项,然后根据等比数列的通项公式写出通项,列出不等式或方程就可解得结论. 20.【2016高考北京文数】函数()(2)1xf x x x =≥-的最大值为_________. 【答案】2 【解析】试题分析:1()11121f x x =+≤+=-,即最大值为2. 考点:函数最值,数形结合【名师点睛】求函数值域的常用方法:①单调性法,如(5);②配方法,如(2);③分离常数法,如(1);④数形结合法;⑤换元法(包括代数换元与三角换元),如(2),(3);⑥判别式法,如(4);⑦不等式法,如(4),(5);⑧导数法,主要是针对在某区间内连续可导的函数;⑨图象法,求分段函数的值域通常先作出函数的图象,然后由函数的图象写出函数的值域,如(6);对于二元函数的值域问题,如(5),其解法要针对具体题目的条件而定,有些题目可以将二元函数化为一元函数求值域,有些题目也可用不等式法求值域.求函数的值域是个较复杂的问题,它比求函数的定义域难度要大,而单调性法,即根据函数在定义域内的单调性求函数的值域是较为简单且常用的方法,应重点掌握.21.【2016高考天津文数】已知函数2(43)3,0()(01)log (1)1,0a x a x a x f x a a x x ⎧+-+<⎪=>≠⎨++≥⎪⎩且在R 上单调递减,且关于x 的方程|()|23xf x =-恰有两个不相等的实数解,则a 的取值范围是_________. 【答案】12[,)33考点:函数综合【名师点睛】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围; (2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.22.【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分. 已知a ∈R ,函数()f x =21log ()a x+. (1)当 1a =时,解不等式()f x >1;(2)若关于x 的方程()f x +22log ()x =0的解集中恰有一个元素,求a 的值;(3)设a >0,若对任意t ∈1[,1]2,函数()f x 在区间[,1]t t +上的最大值与最小值的差不超过1,求a 的取值范围.【答案】(1){}|01x x <<.(2)0a =或14-.(3)2,3⎡⎫+∞⎪⎢⎣⎭. 【解析】(3)当120x x <<时,1211a a x x +>+,221211log log a a x x ⎛⎫⎛⎫+>+ ⎪ ⎪⎝⎭⎝⎭, 所以()f x 在()0,+∞上单调递减.函数()f x 在区间[],1t t +上的最大值与最小值分别为()f t ,()1f t +.()()22111log log 11f t f t a a t t ⎛⎫⎛⎫-+=+-+≤ ⎪ ⎪+⎝⎭⎝⎭即()2110at a t ++-≥,对任意1,12t ⎡⎤∈⎢⎥⎣⎦成立.因为0a >,所以函数()211y at a t =++-在区间1,12⎡⎤⎢⎥⎣⎦上单调递增,所以12t =时,y 有最小值3142a -,由31042a -≥,得23a ≥. 故a 的取值范围为2,3⎡⎫+∞⎪⎢⎣⎭.考点:1.对数函数的性质;2.函数与方程;3.二次函数的性质.【名师点睛】本题对考生计算能力要求较高,是一道难题.解答本题关键是利用转化与化归思想、应用函数的性质,将问题转化成二次函数问题,应用确定函数最值的方法---如二次函数的性质、基本不等式、导数等求解.本题易错点是复杂式子的变形能力不足,导致错漏百出..本题能较好的考查考生的逻辑思维能力、运算求解能力、分析问题解决问题的能力等.第二部分 2016年优质模拟题1.【2016河北石家庄质检二】设集合{}1,1M =-,{}2|6N x x x =-<,则下列结论正确的是( )A. N M ⊆B. N M =∅C.M N ⊆D. M N R =【答案】C【解析】{}23x x N =-<<,所以M ⊆N ,NM =M ,M N =N ,故选C.2.【2016安徽江南十校联考】已知集合{}22530A x x x =--≤,{}2B x Z x =∈≤,则A B ⋂中的元素个数为 (A)2 (B)3(C)4 (D)5【答案】B 【解析】132A x x ⎧⎫=-≤≤⎨⎬⎩⎭,所以{}0,1,2A B ⋂=,所以A B ⋂中有3个元素,故选B. 3.【2016辽宁大连双基】已知函数()f x 定义域为R ,则命题p :“函数()f x 为偶函数”是命题q :“000,()()x R f x f x ∃∈=-”的( )(A )充分不必要条件 (B )必要不充分条件 (C )充要条件 (D)既不充分也不必要条件 【答案】A4.【2016广东广州一模】已知下列四个命题:1p :若直线l 和平面α内的无数条直线垂直,则l α⊥; 2p :若()22x x f x -=-,则x ∀∈R ,()()f x f x -=-;3p :若()11f x x x =++,则()00,x ∃∈+∞,()01f x =; 4p :在△ABC 中,若A B >,则sin sin A B >.其中真命题的个数是( )A .1B .2C .3D .4 【答案】B5.【2016湖北七校联考】已知)(x f 是奇函数并且是R 上的单调函数,若函数)()12(2x f x f y -++=λ只有一个零点,则实数λ的值是( ) A .41 B .81 C .87- D .83-【答案】C【解析】令0)()12(2=-++=x f x f y λ,且)(x f 是奇函数,则)()()12(2λλ-=--=+x f x f x f ,又因为)(x f 是R 上的单调函数,所以λ-=+x x 122只有一个零点,即0122=-+-λx x 只有一个零点,则0)1(81=--=∆λ,解得87-=λ,故选C .6.【2016江西四校联考】已知函数()22xxaf x =-,其在区间[]0,1上单调递增,则a 的取值范围为( )A .[]0,1B .[]1,0-C .[]1,1-D .11,22⎡⎤-⎢⎥⎣⎦【答案】C【解析】令xt 2=,则]2,1[∈t ,x xax f 22)(-=在区间[]0,1上单调递增,转化为t a t t f -=)(在]2,1[上单调递增,又⎪⎩⎪⎨⎧≥-≤-=-=)()(22)(t a t ta t a t a t t a t t f ,当2t a ≤时,01)(2≥+='tat f 在]2,1[恒成立,必有2t a -≥,可求得11-≤≤a ;当2t a ≥时,0-1-)(2≥='ta t f 在]2,1[恒成立,必有2t a -≤,与2t a ≥矛盾,所以此时a 不存在.故选C.7.【2016河北衡水二调】定义在R 上的函数()f x 对任意()1212,x x x x ≠都有()()12120f x f x x x -<-,且函数()1y f x =-的图象关于(1,0)成中心对称,若,s t 满足不等式()()2222f s s f t t -≤--,则当14s ≤≤时,2t ss t-+的取值范围是( ) A .13,2⎡⎫--⎪⎢⎣⎭ B .13,2⎡⎤--⎢⎥⎣⎦ C .15,2⎡⎫--⎪⎢⎣⎭ D .15,2⎡⎤--⎢⎥⎣⎦【答案】D8.【2016广东广州一模】已知函数()211,1,42,1x x f x x x x ⎧-+<⎪=⎨-+≥⎪⎩,则函数()()22xg x f x =-的零点个数为 个.【答案】2【解析】()()22x g x f x =-的零点个数,即是方程()22x f x =的根的个数,也就是()y f x =与22x y =的图象的交点个数,分别作出()y f x =与22x y =的图象,如图所示,由图象知()y f x =与22x y =的图象有两个交点,所以函数()g x 有2个零点.。
2016年高考+联考模拟数学(文)试题分项版解析 专题03三角与向量原卷版 缺答案
1.【2016高考新课标1文数】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=( )(A (B (C )2 (D )32.【2016高考新课标1文数】若将函数y =2sin [2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )(A )y =2sin[2x +π4) (B )y =2sin[2x +π3) (C )y =2sin[2x –π4) (D )y =2sin[2x –π3)3.【2016高考天津文数】已知函数)0(21sin 212sin)(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(4.[2016高考新课标Ⅲ文数]在ABC △中,π4B =,BC 边上的高等于13BC ,则sin A =( )(A )310(B (C (D 5.【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点[ )[A)向左平行移动3π个单位长度 [B) 向右平行移动3π个单位长度 [C) 向上平行移动3π个单位长度 [D) 向下平行移动3π个单位长度6.【2016高考上海文科】设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)=sin()3x ax b -+,则满足条件的有序实数对[a ,b )的对数为( ) [A)1 [B)2 [C)3 [D)4 7. [2016高考新课标Ⅲ文数]若tan 13θ=,则cos 2θ=( )(A )45-(B )15-(C )15 (D )458.【2016高考山东文数】ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B ) π3 (C )π4 (D )π68. 【2016高考新课标2文数】函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=9.【2016高考新课标2文数】函数π()cos 26cos()2f x x x =+-的最大值为( ) (A )4 (B )5(C )6(D )710.【2016高考四川文科】0750sin = .11. 【2016高考浙江文数】已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =______.12.[2016高考新课标Ⅲ文数]函数sin y x x =错误!未找到引用源。
专题05 解析几何-2016年高考+联考模拟数学(文)试题分项版解析(解析版) 含答案
1。
【2016高考新课标1文数】直线l经过椭圆的一个顶点和一个焦点,若椭圆中心到l的距离为其短轴长的错误!,则该椭圆的离心率为()(A)错误!(B)错误!(C)错误!(D)错误!【答案】B【解析】考点:椭圆的几何性质【名师点睛】求椭圆或双曲线离心率是高考常考问题,求解此类问题的一般步骤是先列出等式,再转化为关于a,c的齐次方程,方程两边同时除以a的最高次幂,转化为关于e的方程,解方程求e .2。
【2016高考新课标2文数】设F为抛物线C:y2=4x的焦点,曲线y=kx(k>0)与C交于点P,PF⊥x轴,则k=()(A)12(B)1 (C)32(D)2【答案】D 【解析】试题分析:因为F 抛物线24y x =的焦点,所以(1,0)F ,又因为曲线(0)k y k x =>与C 交于点P ,PF x ⊥轴,所以21k =,所以2k =,选D 。
考点: 抛物线的性质,反比例函数的性质。
【名师点睛】抛物线方程有四种形式,注意焦点的位置. 对函数y =k x(0)k ≠,当0k >时,在(,0)-∞,(0,)+∞上是减函数,当0k <时,在(,0)-∞,(0,)+∞上是增函数.3。
[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点。
P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E 。
若直线BM 经过OE 的中点,则C 的离心率为( ) (A)13(B)12(C )23(D)34【答案】A考点:椭圆方程与几何性质.【思路点拨】求解椭圆的离心率问题主要有三种方法:(1)直接求得,a c 的值,进而求得e 的值;(2)建立,,a b c 的齐次等式,求得b a 或转化为关于e 的等式求解;(3)通过特殊值或特殊位置,求出e .4.【2016高考四川文科】抛物线24y x=的焦点坐标是( ) (A)(0,2)(B)(0,1)(C)(2,0)(D)(1,0)【答案】D【解析】试题分析:由题意,24y x=的焦点坐标为(1,0),故选D。
2016年高考+联考模拟数学(文)试题分项版解析 专题02导数原卷版
1.【2016高考新课标1文数】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦2.【2016高考四川文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A) (0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞)3.【2016高考四川文科】已知a 函数3()12f x x x =-的极小值点,则a =( ) (A)-4 (B) -2 (C)4 (D)24. [2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x ex --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________.5.【2016高考新课标1文数】(本小题满分12分)已知函数()()()22e 1x f x x a x =-+-. (I)讨论()f x 的单调性;(II)若()f x 有两个零点,求a 的取值范围.6.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 7.[2016高考新课标Ⅲ文数]设函数()ln 1f x x x =-+.(I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.8.【2016高考北京文数】(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件. 9.【2016高考山东文数】(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围. 10.【2016高考天津文数】((本小题满分14分)设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41. 11.【2016高考浙江文数】(本题满分15分)设函数()f x =311x x++,[0,1]x ∈.证明: (I )()f x 21x x ≥-+; (II )34<()f x 32≤. 12.【2016高考四川文科】(本小题满分14分)设函数2()ln f x ax a x =--, 1()x eg x x e =-,其中q R ∈,e=2.718…为自然对数的底数.(Ⅰ)讨论f(x)的单调性; (Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立.第二部分 2016优质模拟题汇编1.【2016河北衡水四调】设过曲线()x f x e x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a的取值范围为( )A .[]1,2-B .()1,2-C .[]2,1-D .()2,1- 2.【2016江西五校联考】已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+> (其中()f x '是函数()f x 的导函数),则下列不等式成立的是A()()34f ππ-<-()()34f ππ< C.(0)2()3f f π>D.(0)()4f π>3.【2016云南统测一】已知实数,a b 都是常数,若函数2112x a x y be x --=++的图象在切点10,2⎛⎫ ⎪⎝⎭处的切线方程为2113420,2x a x x y y be x --+-==++与()31y k x =-的图象有三个公共点,则实数k 的取值范围是 .4.【2016河北衡水四调】已知函数()32f x x x b =-++,()ln g x a x =. (1)若()f x 在1,12x ⎡⎫∈-⎪⎢⎣⎭上的最大值为38,求实数b 的值;(2)若对任意[]1,x e ∈,都有()()22g x x a x ≥-++恒成立,求实数a 的取值范围; (3)在(1)的条件下,设()()(),1F ,1f x x xg x x <⎧⎪=⎨≥⎪⎩,对任意给定的正实数a ,曲线()F y x =上是否存在两点P 、Q ,使得Q ∆PO 是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?请说明理由.。
2016年高考+联考模拟数学(文)试题分项版解析 专题04数列与不等式解析版 Word版含解析
1.【2016高考山东文数】若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是()(A)4(B)9(C)10(D)12【答案】C【解析】考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.2.【2016高考浙江文数】若平面区域30,230,230x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()A.35B.2C.32D.5【答案】B【解析】考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据可行域的特点确定取得最值的最优解,代入计算.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.3.【2016高考新课标2文数】若x,y满足约束条件103030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y=-的最小值为__________ 【答案】5-【解析】试题分析:由1030x yx y-+=⎧⎨+-=⎩得12xy=⎧⎨=⎩,点()1,2A,由1030x yx-+=⎧⎨-=⎩得34xy=⎧⎨=⎩,点()3,4B,由3030xx y-=⎧⎨+-=⎩得3xy=⎧⎨=⎩,点()C3,0,分别将A,B,C代入2z x y=-得:1223z A =-⨯=-,3245z B =-⨯=-,C 3203z =-⨯=,所以2z x y =-的最小值为5-.考点: 简单的线性规划.【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解; (4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.[2016高考新课标Ⅲ文数]若,x y 满足约束条件210,210,1,x y x y x -+≥⎧⎪--≤⎨⎪≤⎩则235z x y =+-的最大值为_____________. 【答案】10- 【解析】考点:简单的线性规划问题.【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果. 5.【2016高考新课标1文数】某高科技企业生产产品A 和产品B 需要甲、乙两种新型材料.生产一件产品A 需要甲材料1.5kg,乙材料1kg,用5个工时;生产一件产品B 需要甲材料0.5kg,乙材料0.3kg,用3个工时,生产一件产品A 的利润为2100元,生产一件产品B 的利润为900元.该企业现有甲材料150kg,乙材料90kg,则在不超过600个工时的条件下,生产产品A 、产品B的利润之和的最大值为元.【答案】216000【解析】考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.6.【2016高考上海文科】若,x y满足0,0,1,xyy x≥⎧⎪≥⎨⎪≥+⎩则2x y-的最大值为_______.【答案】2-考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.7.【2016高考上海文科】设x∈R,则不等式31x-<的解集为_______.【答案】(2,4)【解析】试题分析:由题意得:131x-<-<,即24x<<,故解集为(2,4)考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法.本题较为容易.8.【2016高考天津文数】(本小题满分13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A种原料200吨,B种原料360吨,C种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y表示生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【答案】(Ⅰ)详见解析(Ⅱ)生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元【解析】(1)3x+10y=3004x+5y=2008x+5y=3601010yxO(2)考点:线性规划【名师点睛】解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.而求线性规划最值问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法.数列1.【2016高考浙江文数】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列【答案】A 【解析】考点:新定义题、三角形面积公式.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.2.【2016高考上海文科】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 【解析】试题分析:当1n =时,12a =或13a =;当2n 时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k 时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =. 考点:数列的求和.【名师点睛】从研究n S 与n a 的关系入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.3.【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和. 【答案】(I )31n a n =-(II )131.223n --⨯ 【解析】(II )由(I )和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则111()313.122313nn n S --==-⨯- 考点:等差数列与等比数列【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.4.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 的最大整数,如[0.9]=0,[2.6]=2. 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】考点:等差数列的性质 ,数列的求和. 【名师点睛】求解本题会出现以下错误:①对“[]x 表示不超过x 的最大整数”理解出错;5.[2016高考新课标Ⅲ文数]已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式. 【答案】(Ⅰ)41,2132==a a ;(Ⅱ)121-=n n a . 【解析】考点:1、数列的递推公式;2、等比数列的通项公式.【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明1n na q a +=(常数);(2)中项法,即证明212n n n a a a ++=.根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解.6.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.【答案】(1)21n a n =-(1n =,2,3,⋅⋅⋅);(2)2312-+n n【解析】试题分析:(Ⅰ)求出等比数列{}n b 的公比,求出11b a =,414b a =的值,根据等差数列的通项公式求解;(Ⅱ)根据等差数列和等比数列的前n 项和公式求数列}{n c 的前n 项和. 试题解析:(I )等比数列{}n b 的公比32933b q b ===, 所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d .因为111a b==,14427a b==,所以11327d+=,即2d=.所以21na n=-(1n=,2,3,⋅⋅⋅).考点:等差、等比数列的通项公式和前n项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n项和公式都可以看作项数n的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n可视为数列{S n}的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q或1≠q)等.7.【2016高考山东文数】(本小题满分12分)已知数列{}n a的前n项和238nS n n=+,{}n b是等差数列,且1n n na b b+=+.(I)求数列{}n b的通项公式;(II)令1(1)(2)nnn nnacb++=+.求数列{}n c的前n项和n T.【答案】(Ⅰ)13+=nbn;(Ⅱ)223+⋅=nnnT【解析】试题分析:(Ⅰ)依题意建立db,1的方程组,即得.考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”. 【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等.8.【2016高考天津文数】(本小题满分13分)已知{}n a 是等比数列,前n 项和为()n S n N ∈*,且6123112,63S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,b n n N ∈*是2log n a 和21log n a +的等差中项,求数列(){}21nn b -的前2n 项和.【答案】(Ⅰ)12-=n n a (Ⅱ)22n【解析】考点:等差数列、等比数列及其前n 项和 【名师点睛】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.9..【2016高考浙江文数】(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.【答案】(I )1*3,n n a n N -=∈;(II )2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.【解析】考点:等差、等比数列的基础知识.【方法点睛】数列求和的常用方法:(1)错位相减法:形如数列{}n n a b 的求和,其中{}n a 是等差数列,{}n b 是等比数列;(2)裂项法:形如数列()()1f n g n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭或()()f n g n ⎧⎫⎨±⎪⎩的求和,其中()f n ,()g n 是关于n 的一次函数;(3)分组法:数列的通项公式可分解为几个容易求和的部分.10.【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B =,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由; (2)若n a =2n 且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式. 【答案】(1){}n a 与{}n b 不是无穷互补数列;(2)180;(3)24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩. 【解析】考点: 1.等差数列的通项公式;2.数列的求和;3.反证法.【名师点睛】本题对考生逻辑推理能力要求较高,是一道难题.解答此类题目,熟练掌握等差数列、等比数列及反证法是基础,灵活应用已知条件进行推理是关键.本题易错有以下原因,一是不得法,二是复杂式子的变形能力不足,三是对“新定义”不理解,导致错漏百出..本题能较好的考查考生的逻辑思维及推理能力、运算求解能力、分析问题解决问题的能力、阅读理解能力等.11.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.【答案】(Ⅰ)1=n n a q ;(Ⅱ)1(31)2n n +-.【解析】22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2n n n n n e e e q q q n qqnq n,考点:数列的通项公式、双曲线的离心率、等比数列的求和公式【名师点睛】本题考查数列的通项公式、双曲线的离心率、等比数列的求和公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.在第(Ⅰ)问中,已知的是n S 的递推式,在与n S 的关系式中,经常用1n -代换n (2n ≥),然后两式相减,可得n a 的递推式,利用这种方法解题时要注意1a ;在第(Ⅱ)问中,按题意步步为营,认真计算.不需要多少解题技巧,符合文科生的特点.第二部分 2016优质模拟试题1.【2016辽宁大连高三双基测试卷】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为()(A)54钱(B)43钱(C)32钱(D)53钱【答案】B【解析】设所成等差数列的首项为1a,公差为d,则依题意,有11111154552234a da a d a d a d a d⨯⎧+=⎪⎨⎪++=+++++⎩,解得141,36a d==-,故选B.2.【2016河北衡水中学高三一调】已知nS和nT分别为数列{}n a与数列{}n b的前n项和,且41a e=,51n nS eS e+=-,n bna e=,()n N+∈,则当nT取得最大值时,n的值为()A.4 B.5 C.4或5 D.5或6【答案】C3. 【2016广西桂林调研考试】已知m、n为正实数,向量()(),1,1,1m n==-a b,若ba⊥,则12m n+的最小值为______.【答案】322+【解析】由ba⊥,得1m n+=,则12m n+=()122233232 2.n m n mm nm n m n m n⎛⎫++=++≥+⋅=+⎪⎝⎭(当且仅当⎪⎩⎪⎨⎧=+=12nmnmmn,即⎪⎩⎪⎨⎧-=-=2212nm,取等号),即12m n+的最小值为322+4. 【2016河南六市一模】实数,x y 满足01xy x y ≥⎧⎨+≤⎩,使z ax y =+取得最大值的最优解有两个,则1z ax y =++的最小值为( )A .0B .-2C .1D .-1【答案】A.5. 【2016甘肃兰州高三实战考试】【解析】(Ⅰ)设设等差数列的公差为d ,则由已知得:。
2016年高考+联考模拟数学(文)试题分项版解析 专题04数列与不等式解析版 Word版含解析
1.【2016高考山东文数】若变量x,y满足2,239,0,x yx yx+≤⎧⎪-≤⎨⎪≥⎩则x2+y2的最大值是()(A)4(B)9(C)10(D)12【答案】C【解析】考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力.2.【2016高考浙江文数】若平面区域30,230,230x yx yx y+-≥⎧⎪--≤⎨⎪-+≥⎩夹在两条斜率为1的平行直线之间,则这两条平行直线间的距离的最小值是()【答案】B 【解析】考点:线性规划.【思路点睛】先根据不等式组画出可行域,再根据可行域的特点确定取得最值的最优解,代入计算.画不等式组所表示的平面区域时要注意通过特殊点验证,防止出现错误.3.【2016高考新课标2文数】若x,y满足约束条件103030x yx yx-+≥⎧⎪+-≥⎨⎪-≤⎩,则2z x y=-的最小值为__________ 【答案】5-【解析】试题分析:由1030x yx y-+=⎧⎨+-=⎩得12xy=⎧⎨=⎩,点()1,2A,由1030x yx-+=⎧⎨-=⎩得34xy=⎧⎨=⎩,点()3,4B,由3030xx y-=⎧⎨+-=⎩得3xy=⎧⎨=⎩,点()C3,0,分别将A,B,C代入2z x y=-得:1223z A =-⨯=-,3245zB=-⨯=-,C3203z=-⨯=,所以2z x y=-的最小值为5-.考点:简单的线性规划.【名师点睛】利用线性规划求最值,一般用图解法求解,其步骤是:(1)在平面直角坐标系内作出可行域;(2)考虑目标函数的几何意义,将目标函数进行变形;(3)确定最优解:在可行域内平行移动目标函数变形后的直线,从而确定最优解;(4)求最值:将最优解代入目标函数即可求出最大值或最小值.4.[2016高考新课标Ⅲ文数]若,x y满足约束条件210,210,1,x yx yx-+≥⎧⎪--≤⎨⎪≤⎩则235z x y=+-的最大值为_____________.【答案】10-【解析】考点:简单的线性规划问题.【技巧点拨】利用图解法解决线性规划问题的一般步骤:(1)作出可行域.将约束条件中的每一个不等式当作等式,作出相应的直线,并确定原不等式的区域,然后求出所有区域的交集;(2)作出目标函数的等值线(等值线是指目标函数过原点的直线);(3)求出最终结果.5. 元.【答案】216000【解析】考点:线性规划的应用【名师点睛】线性规划也是高考中常考的知识点,一般以客观题形式出现,基本题型是给出约束条件求目标函数的最值,常见的结合方式有:纵截距、斜率、两点间的距离、点到直线的距离,解决此类问题常利用数形结合.本题运算量较大,失分的一个主要原因是运算失误.6.【2016高考上海文科】若,x y 满足0,0,1,x y y x ≥⎧⎪≥⎨⎪≥+⎩则2x y -的最大值为_______.【答案】2-考点:简单线性规划【名师点睛】本题主要考查简单线性规划的应用,是一道基础题目.从历年高考题目看,简单线性规划问题,是不等式中的基本问题,往往围绕目标函数最值的确定,涉及直线的斜率、两点间距离等,考查考生的绘图、用图能力,以及应用数学解决实际问题的能力. 7.【2016高考上海文科】设x ∈R ,则不等式31x -<的解集为_______. 【答案】(2,4) 【解析】试题分析:由题意得:131x -<-<,即24x <<,故解集为(2,4) 考点:绝对值不等式的基本解法.【名师点睛】解绝对值不等式,关键是去掉绝对值符号,进一步求解,本题也可利用两边平方的方法 .本题较为容易.8.【2016高考天津文数】(本小题满分13分)某化肥厂生产甲、乙两种混合肥料,需要A,B,C 三种主要原料.生产1车皮甲种肥料和生产1车皮乙中肥料所需三种原料的吨数如下表所示:现有A 种原料200吨,B 种原料360吨,C 种原料300吨,在此基础上生产甲乙两种肥料.已知生产1车皮甲种肥料,产生的利润为2万元;生产1车皮乙种肥料,产生的利润为3万元.分别用x,y 表示生产甲、乙两种肥料的车皮数.(Ⅰ)用x,y 列出满足生产条件的数学关系式,并画出相应的平面区域;(Ⅱ)问分别生产甲、乙两种肥料各多少车皮,能够产生最大的利润?并求出此最大利润.【答案】(Ⅰ)详见解析(Ⅱ)生产甲种肥料20车皮,乙种肥料24车皮时利润最大,且最大利润为112万元 【解析】 考点:线性规划【名师点睛】解线性规划应用问题的一般步骤是:(1)分析题意,设出未知量;(2)列出线性约束条件和目标函数;(3)作出可行域并利用数形结合求解;(4)作答.而求线性规划最值问题,首先明确可行域对应的是封闭区域还是开放区域、分界线是实线还是虚线,其次确定目标函数的几何意义,是求直线的截距、两点间距离的平方、直线的斜率、还是点到直线的距离等等,最后结合图形确定目标函数最值取法.数列1.【2016高考浙江文数】如图,点列{}{},n n A B 分别在某锐角的两边上,且*1122,,n n n n n n A A A A A A n ++++=≠∈N ,*1122,,n n n n n n B B B B B B n ++++=≠∈N .(P ≠Q 表示点P 与Q 不重合)若n n n d A B =,n S 为1n n n A B B +△的面积,则( )A.{}n S 是等差数列B.{}2n S 是等差数列 C.{}n d 是等差数列 D.{}2n d 是等差数列【答案】A 【解析】考点:新定义题、三角形面积公式.【思路点睛】先求出1n n n +∆A B B 的高,再求出1n n n +∆A B B 和112n n n +++∆A B B 的面积n S 和1n S +,进而根据等差数列的定义可得1n n S S +-为定值,即可得{}n S 是等差数列.2.【2016高考上海文科】无穷数列{}n a 由k 个不同的数组成,n S 为{}n a 的前n 项和.若对任意*∈N n ,{}3,2∈n S ,则k 的最大值为________. 【答案】4 【解析】试题分析:当1n =时,12a =或13a =;当2n 时,若2n S =,则12n S -=,于是0n a =,若3n S =,则13n S -=,于是0n a =.从而存在N k *∈,当n k 时,0k a =.其中数列{}n a :2,1,1,0,0,0,-⋅⋅⋅满足条件,所以max 4k =. 考点:数列的求和.【名师点睛】从研究n S 与n a 的关系入手,推断数列的构成特点,解题时应特别注意“数列{}n a 由k 个不同的数组成”的不同和“k 的最大值”.本题主要考查考生的逻辑推理能力、基本运算求解能力等.3.【2016高考新课标1文数】(本题满分12分)已知{}n a 是公差为3的等差数列,数列{}n b 满足12111==3n n n n b b a b b nb +++=1,,,. (I )求{}n a 的通项公式; (II )求{}n b 的前n 项和. 【答案】(I )31n a n =-(II )131.223n --⨯ 【解析】(II )由(I )和11n n n n a b b nb +++= ,得13n n b b +=,因此{}n b 是首项为1,公比为13的等比数列.记{}n b 的前n 项和为n S ,则 考点:等差数列与等比数列【名师点睛】等差、等比数列各有五个基本量,两组基本公式,而这两组公式可看作多元方程,利用这些方程可将等差、等比数列中的运算问题转化解关于基本量的方程(组),因此可以说数列中的绝大部分运算题可看作方程应用题,所以用方程思想解决数列问题是一种行之有效的方法.4.【2016高考新课标2文数】等差数列{n a }中,34574,6a a a a +=+=.(Ⅰ)求{n a }的通项公式;(Ⅱ) 设[]n n b a =,求数列{}n b 的前10项和,其中[]x 表示不超过x 【答案】(Ⅰ)235n n a +=;(Ⅱ)24. 【解析】考点:等差数列的性质 ,数列的求和. 【名师点睛】求解本题会出现以下错误:①对“[]x 表示不超过x 的最大整数”理解出错;5.[2016高考新课标Ⅲ文数]已知各项都为正数的数列{}n a 满足11a =,211(21)20n n n n a a a a ++---=.(I )求23,a a ;(II )求{}n a 的通项公式. 【答案】(Ⅰ)41,2132==a a ;(Ⅱ)121-=n n a . 【解析】考点:1、数列的递推公式;2、等比数列的通项公式.【方法总结】等比数列的证明通常有两种方法:(1)定义法,即证明1n na q a +=(常数);(2)中项法,即证明212n n n a a a ++=.根据数列的递推关系求通项常常要将递推关系变形,转化为等比数列或等差数列来求解.6.【2016高考北京文数】(本小题13分)已知}{n a 是等差数列,}{n b 是等差数列,且32=b ,93=b ,11b a =,414b a =. (1)求}{n a 的通项公式;(2)设n n n b a c +=,求数列}{n c 的前n 项和.【答案】(1)21n a n =-(1n =,2,3,⋅⋅⋅);(2)2312-+n n【解析】试题分析:(Ⅰ)求出等比数列{}n b 的公比,求出11b a =,414b a =的值,根据等差数列的通项公式求解;(Ⅱ)根据等差数列和等比数列的前n 项和公式求数列}{n c 的前n 项和. 试题解析:(I )等比数列{}n b 的公比32933b q b ===, 所以211b b q==,4327b b q ==. 设等差数列{}n a 的公差为d .因为111a b ==,14427a b ==, 所以11327d +=,即2d =.所以21n a n =-(1n =,2,3,⋅⋅⋅).考点:等差、等比数列的通项公式和前n 项和公式,考查运算能力.【名师点睛】1.数列的通项公式及前n 项和公式都可以看作项数n 的函数,是函数思想在数列中的应用.数列以通项为纲,数列的问题,最终归结为对数列通项的研究,而数列的前n 项和S n 可视为数列{S n }的通项.通项及求和是数列中最基本也是最重要的问题之一;2.数列的综合问题涉及到的数学思想:函数与方程思想(如:求最值或基本量)、转化与化归思想(如:求和或应用)、特殊到一般思想(如:求通项公式)、分类讨论思想(如:等比数列求和,1=q 或1≠q )等.7.【2016高考山东文数】(本小题满分12分)已知数列{}n a 的前n 项和238n S n n =+,{}n b 是等差数列,且1n n n a b b +=+.(I )求数列{}n b 的通项公式;(II )令1(1)(2)n n n nn a c b ++=+.求数列{}n c 的前n 项和n T . 【答案】(Ⅰ)13+=n b n ;(Ⅱ)223+⋅=n n n T 【解析】试题分析:(Ⅰ)依题意建立d b ,1的方程组,即得.考点:1.等差数列的通项公式;2.等差数列、等比数列的求和;3.“错位相减法”. 【名师点睛】本题主要考查等差数列的通项公式及求和公式、等比数列的求和、数列求和的“错位相减法”.此类题目是数列问题中的常见题型.本题覆盖面广,对考生计算能力要求较高.解答本题,布列方程组,确定通项公式是基础,准确计算求和是关键,易错点是在“错位”之后求和时,弄错等比数列的项数.本题能较好的考查考生的逻辑思维能力及基本计算能力等.8.【2016高考天津文数】(本小题满分13分)已知{}n a 是等比数列,前n 项和为()n S n N ∈*,且6123112,63S a a a -==. (Ⅰ)求{}n a 的通项公式;(Ⅱ)若对任意的,b n n N ∈*是2log n a 和21log n a +的等差中项,求数列(){}21nn b -的前2n 项和.【答案】(Ⅰ)12-=n n a (Ⅱ)22n【解析】考点:等差数列、等比数列及其前n 项和 【名师点睛】分组转化法求和的常见类型(1)若a n =b n ±c n ,且{b n },{c n }为等差或等比数列,可采用分组求和法求{a n }的前n 项和.(2)通项公式为a n =⎩⎪⎨⎪⎧b n ,n 为奇数,c n ,n 为偶数的数列,其中数列{b n },{c n }是等比数列或等差数列,可采用分组求和法求和.9..【2016高考浙江文数】(本题满分15分)设数列{n a }的前n 项和为n S .已知2S =4,1n a +=2n S +1,*N n ∈.(I )求通项公式n a ;(II )求数列{2n a n --}的前n 项和.【答案】(I )1*3,n n a n N -=∈;(II )2*2,13511,2,2n n n T n n n n N =⎧⎪=⎨--+≥∈⎪⎩.【解析】考点:等差、等比数列的基础知识.【方法点睛】数列求和的常用方法:(1)错位相减法:形如数列{}n n a b 的求和,其中{}n a 是等差数列,{}n b 是等比数列;(2)裂项法:形如数列()()1f n g n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭或()()f n g n ⎧⎫⎨±⎪⎩的求和,其中()f n ,()g n 是关于n 的一次函数;(3)分组法:数列的通项公式可分解为几个容易求和的部分.10.【2016高考上海文科】(本题满分16分)本题共有3个小题,第1小题满分4分,第2小题满分6分,第3小题满分6分.对于无穷数列{n a }与{n b },记A ={x |x =a ,*N n ∈},B ={x |x =n b ,*N n ∈},若同时满足条件:①{n a },{n b }均单调递增;②A B ⋂=∅且*N A B =,则称{n a }与{n b }是无穷互补数列.(1)若n a =21n -,n b =42n -,判断{n a }与{n b }是否为无穷互补数列,并说明理由; (2)若n a =2n 且{n a }与{n b }是无穷互补数列,求数列{n b }的前16项的和;(3)若{n a }与{n b }是无穷互补数列,{n a }为等差数列且16a =36,求{n a }与{n b }得通项公式. 【答案】(1){}n a 与{}n b 不是无穷互补数列;(2)180;(3)24n a n =+,,525,5n n n b n n ≤⎧=⎨->⎩. 【解析】考点: 1.等差数列的通项公式;2.数列的求和;3.反证法.【名师点睛】本题对考生逻辑推理能力要求较高,是一道难题.解答此类题目,熟练掌握等差数列、等比数列及反证法是基础,灵活应用已知条件进行推理是关键.本题易错有以下原因,一是不得法,二是复杂式子的变形能力不足,三是对“新定义”不理解,导致错漏百出..本题能较好的考查考生的逻辑思维及推理能力、运算求解能力、分析问题解决问题的能力、阅读理解能力等.11.【2016高考四川文科】(本小题满分12分)已知数列{n a }的首项为1,n S 为数列{}n a 的前n 项和,11n n S qS +=+ ,其中q >0,*n N ∈ .(Ⅰ)若2323,,a a a a + 成等差数列,求{}n a 的通项公式;(Ⅱ)设双曲线2221n y x a -= 的离心率为n e ,且22e = ,求22212n e e e ++⋅⋅⋅+.【答案】(Ⅰ)1=n n a q ;(Ⅱ)1(31)2n n +-.【解析】22222(1)12222(1)2(11)(1+)[1]1[1]11(31).2n n n n n e e e q q q n qqnq n,考点:数列的通项公式、双曲线的离心率、等比数列的求和公式【名师点睛】本题考查数列的通项公式、双曲线的离心率、等比数列的求和公式等基础知识,考查学生的分析问题解决问题的能力、计算能力.在第(Ⅰ)问中,已知的是n S 的递推式,在与n S 的关系式中,经常用1n -代换n (2n ≥),然后两式相减,可得n a 的递推式,利用这种方法解题时要注意1a ;在第(Ⅱ)问中,按题意步步为营,认真计算.不需要多少解题技巧,符合文科生的特点.第二部分 2016优质模拟试题1.【2016辽宁大连高三双基测试卷】《九章算术》是我国古代的数学名著,书中有如下问题:“今有五人分五钱,令上二人所得与下三人等.问各得几何.”其意思为“已知甲、乙、丙、丁、戊五人分5钱,甲、乙两人所得与丙、丁、戊三人所得相同,且甲、乙、丙、丁、戊所得依次成等差数列.问五人各得多少钱?”(“钱”是古代的一种重量单位).这个问题中,甲所得为( ) (A )54钱 (B )43钱 (C )32钱 (D )53钱 【答案】B【解析】设所成等差数列的首项为1a ,公差为d ,则依题意,有11111154552234a d a a d a d a d a d⨯⎧+=⎪⎨⎪++=+++++⎩,解得141,36a d ==-,故选B . 2. 【2016河北衡水中学高三一调】已知n S 和n T 分别为数列{}n a 与数列{}n b 的前n 项和,且41a e =,51n n S eS e +=-,n bn a e =,()n N +∈,则当n T 取得最大值时,n 的值为( )A .4B .5C .4或5D .5或6 【答案】C3. 【2016广西桂林调研考试】已知m 、n 为正实数,向量()(),1,1,1m n ==-a b ,若b a ⊥,则12m n+的最小值为______. 【答案】322+【解析】由b a ⊥,得1m n +=,则12m n +=()122233232 2.n m n m m n m n m n m n ⎛⎫++=++≥+⋅=+ ⎪⎝⎭(当且仅当⎪⎩⎪⎨⎧=+=12n m n m m n ,即⎪⎩⎪⎨⎧-=-=2212n m ,取等号),即12m n +的最小值为322+4. 【2016河南六市一模】实数,x y 满足01xy x y ≥⎧⎨+≤⎩,使z ax y =+取得最大值的最优解有两个,则1z ax y =++的最小值为( ) A .0 B .-2 C .1 D .-1 【答案】A.5. 【2016甘肃兰州高三实战考试】【解析】(Ⅰ)设设等差数列的公差为d ,则由已知得:。
2016届山西省高考数学三模试卷(文科)解析版
2016年山西省高考数学三模试卷(文科)一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•山西三模)若集合A={x|1<x2≤5x},B={x|﹣2<x<2},则A∪B=()A.(1,2)B.(﹣2,2)C.(﹣1,5)D.(﹣2,5)2.(5分)(2016•山西三模)复数+的共轭复数为()A.5+i B.﹣5+i C.5﹣i D.﹣5﹣i3.(5分)(2016•山西三模)如图是某班50位学生期中考试化学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[70,90)内的频数为()A.27 B.30 C.32 D.364.(5分)(2016•山西三模)P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则()A.x2=2x1+1 B.x2=2x1C.y2=2y1+1 D.y2=2y15.(5分)(2016•山西三模)执行如图所示的程序框图,则输出的S等于()A.B.C.D.6.(5分)(2016•山西三模)将函数y=cos(3x+)的图象向左平移个单位后,得到的图象可能为()A. B.C.D.7.(5分)(2016•山西三模)函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1]B.C.D.[0,e﹣1]8.(5分)(2016•山西三模)已知S n为等差数列{a n}的前n项和,给出下列两个命题:命题p:若S3,S9都大于9,则S6大于11命题q:若S6不小于12,则S3,S9中至少有1个不小于9.那么,下列命题为真命题的是()A.¬p B.(¬p)∧(¬q)C.p∧q D.p∧(¬q)9.(5分)(2016•山西三模)在矩形ABCD中,|AB|=3,|AC|=5,=,=,若=x+y,则x+y的值为()A.2 B.4 C.5 D.710.(5分)(2016•山西三模)设a>0,且x,y满足约束条件,若z=x+y的最大值为7,则的最大值为()A.B.C.D.11.(5分)(2016•山西三模)某几何体是组合体,其三视图如图所示,则该几何体的体积为()A.+8πB.+8πC.16+8πD.+16π12.(5分)(2016•山西三模)记min{a,b}表示a,b中较小的数,比如min{3,﹣1}=﹣1.设函数f(x)=|min{x2,log x}|(x>0),若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则x1x2x3的取值范围为()A .B .C. D.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)(2016•山西三模)一个蜂巢有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第5天所有的蜜蜂都归巢后,蜂巢中一共有只蜜蜂.14.(5分)(2016•山西三模)已知函数f(x)=为奇函数,则g(﹣2)=.15.(5分)(2016•山西三模)若双曲线mx2+y2=1(m<﹣1)的离心率恰好是实轴长与虚轴长的等比中项,则m=.16.(5分)(2016•山西三模)长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E 为AB的中点,CE=3,cos∠ACE=,且四边形ABB1A1为正方形,则球O的直径为.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2016•山西三模)在△ABC中,角A,B,C的对边分别是a,b ,c,C=60°,c=b.(1)求角A,B的大小;(2)若D为边AC上一点,且a=4,△BCD的面积为,求BD的长.18.(12分)(2016•山西三模)已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:XA B C人数YA 14 40 10B a 36 bC 28 8 34若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+10=64人,数学成绩为B等级且地理成绩为C等级的有8人.已知x与y均为A等级的概率是0.07.(1)设在该样本中,数学成绩优秀率是30%,求a,b的值;(2)已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.19.(12分)(2016•山西三模)如图,在四棱柱ABCD﹣A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E 为线段AD上的任意一点(不包括A、D两点),平面CEC1与平面BB1D交于FG.(1)证明:AC⊥BD;(2)证明:FG ∥平面AA1B1B.20.(12分)(2016•山西三模)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C与圆M:x2+(y﹣3)2=4的公共弦长为4(1)求椭圆C的方程;(2)已知O为坐标原点,过椭圆C的右顶点A作直线l与圆x2+y2=相切并交椭圆C于另一点,求•的值.21.(12分)(2016•山西三模)已知函数f(x)=(ax2﹣lnx)(x﹣lnx)(a∈R).(1)当a=6时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)>0恒成立,求实数a的取值范围.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)(2016•山西三模)如图,在⊙O的直径AB的延长线上取点P,作⊙O的切线PN,N为切点,在AB上找一点M,使PN=PM,连接NM并延长交⊙O于点C.(1)求证:OC⊥AB;(2)若⊙O的半径为,OM=MP,求MN的长.[选修4-4:坐标系与参数方程]23.(2016•山西三模)以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+).(1)写出曲线C的参数方程;(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.[选修4-5:不等式选讲]24.(2016•山西三模)已知不等式<|1+|﹣|1﹣|<对x∈(0,+∞)恒成立.(1)求实数a的取值范围;(2)不等式|x﹣1|+|x+1|≤a的解集为A,不等式4≤2x≤8的解集为B,试判断A∩B是否一定为空集?请证明你的结论.2016年山西省高考数学三模试卷(文科)参考答案与试题解析一、选择题:本大题共12个小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.(5分)(2016•山西三模)若集合A={x|1<x2≤5x},B={x|﹣2<x<2},则A∪B=()A.(1,2)B.(﹣2,2)C.(﹣1,5)D.(﹣2,5)【分析】化简集合A,求出A∪B即可.【解答】解:集合A={x|1<x2≤5x}={x|1<x≤5},B={x|﹣2<x<2},∴A∪B={x|﹣2<x≤5}=(﹣2,5].故选:D.【点评】本题考查了集合的化简与运算问题,是基础题目.2.(5分)(2016•山西三模)复数+的共轭复数为()A.5+i B.﹣5+i C.5﹣i D.﹣5﹣i【分析】利用复数的运算法则、共轭复数的定义即可得出.【解答】解:+=+=2+2i+3﹣i=5+i的共轭复数为5﹣i.故选:C.【点评】本题考查了复数的运算法则、共轭复数的定义,考查了推理能力与计算能力,属于基础题.3.(5分)(2016•山西三模)如图是某班50位学生期中考试化学成绩的频率分布直方图,其中成绩分组区间是[40,50),[50,60),[60,70),[70,80),[80,90),[90,100],则成绩在[70,90)内的频数为()A.27 B.30 C.32 D.36【分析】由频率分布直方图先求出成绩在[70,90)内的频率,由此能求出成绩在[70,90)内的频数.【解答】解:由频率分布直方图得成绩在[70,90)内的频率为:1﹣(0.006+0.006+0.01+0.006)×10=0.72,∴成绩在[70,90)内的频数为:50×0.72=36.故选:D.【点评】本题考查频数的求法,是基础题,解题时要认真审题,注意频率分布直方图的性质的合理运用.4.(5分)(2016•山西三模)P(x1,y1)、Q(x2,y2)分别为抛物线y2=4x上不同的两点,F为焦点,若|QF|=2|PF|,则()A.x2=2x1+1 B.x2=2x1C.y2=2y1+1 D.y2=2y1【分析】根据抛物线的性质将|PF|,|QF|转化为到准线的距离,得出答案.【解答】解:抛物线的准线方程为x=﹣1,∴|PF|=x1+1,|QF|=x2+1.∵|QF|=2|PF|,∴x2+1=2(x1+1),即x2=2x1+1.故选:A.【点评】本题考查了抛物线的性质,属于基础题题.5.(5分)(2016•山西三模)执行如图所示的程序框图,则输出的S等于()A.B.C.D.【分析】根据程序框图的流程,依次写出每次循环得到的S,i的值,当S=时,满足条件S<1,退出循环,输出S的值为.【解答】解:模拟执行程序,可得S=600,i=1执行循环体,S=600,i=2不满足条件S<1,执行循环体,S=300,i=3不满足条件S<1,执行循环体,S=100,i=4不满足条件S<1,执行循环体,S=25,i=5不满足条件S<1,执行循环体,S=5,i=6不满足条件S<1,执行循环体,S=,i=7满足条件S<1,退出循环,输出S的值为.故选:C.【点评】本题主要考查了直到型循环结构,循环结构有两种形式:当型循环结构和直到型循环结构,当型循环是先判断后循环,直到型循环是先循环后判断,属于基础题.6.(5分)(2016•山西三模)将函数y=cos(3x+)的图象向左平移个单位后,得到的图象可能为()A. B.C.D.【分析】由函数y=Asin(ωx+φ)的图象变换可得向左平移个单位后,得到的函数解析式为:y=﹣sin3x,利用正弦函数的图象和性质即可得解.【解答】解:将函数y=cos(3x+)的图象向左平移个单位后,得到的函数解析式为:y=cos[3(x+)+]=﹣sin3x,此函数过原点,为奇函数,排除C,D;原点在此函数的单调递减区间上,故排除B.故选:A.【点评】本题主要考查了函数y=Asin(ωx+φ)的图象变换规律,考查了正弦函数的图象和性质,诱导公式的应用,属于基本知识的考查.7.(5分)(2016•山西三模)函数f(x)=e x﹣x在区间[﹣1,1]上的值域为()A.[1,e﹣1]B.C.D.[0,e﹣1]【分析】求函数的导数,判断函数的单调性和极值,最值,结合函数的最值即可求出函数的值域.【解答】解:函数的导数f′(x)=e x﹣1,由f′(x)>0得e x﹣1>0,即e x>1,得0<x≤1,此时函数递增,由f′(x)<0得e x﹣1<0,即e x<1,得﹣1≤x<0,此时函数递减,即当x=0时,函数取得极小值同时也是最小值f(0)=1,∵f(1)=e﹣1,f(﹣1)=+1<e﹣1,∴函数的最大值为f(1)=e﹣1,即函数的值域为[1,e﹣1],故选:A.【点评】本题主要考查函数值域的求解,求函数的导数,利用导数研究函数的极值和最值即可.8.(5分)(2016•山西三模)已知S n为等差数列{a n}的前n项和,给出下列两个命题:命题p:若S3,S9都大于9,则S6大于11命题q:若S6不小于12,则S3,S9中至少有1个不小于9.那么,下列命题为真命题的是()A.¬p B.(¬p)∧(¬q)C.p∧q D.p∧(¬q)【分析】由等差数列的前n项和的性质可得:S3,S6﹣S3,S9﹣S6成等差数列,即可判断出命题p,q的真假.【解答】解:对于命题p:由等差数列的前n项和的性质可得:S3,S6﹣S3,S9﹣S6成等差数列,∴2(S6﹣S3)=S3+S9﹣S6,∴3S6=3S3+S9≥3×9+9,∴S6≥12,因此命题p正确;命题q:由上面可知:3S3+S9=3S6≥3×12=36,因此S3,S9中至少有1个不小于9,是真命题.那么,下列命题为真命题的是p∧q.故选:C.【点评】本题考查了等差数列的前n项和的性质、复合命题真假的判定方法、不等式的性质,考查了推理能力与计算能力,属于中档题.9.(5分)(2016•山西三模)在矩形ABCD中,|AB|=3,|AC|=5,=,=,若=x+y,则x+y的值为()A.2 B.4 C.5 D.7【分析】由已知利用勾股定理可得|AD|,从而可得=3,==4,由向量的加法可得=+=3+4,利用平面向量的基本定理及其意义即可得解x,y的值,进而得解.【解答】解:∵在矩形ABCD中,|AB|=3,|AC|=5,∴利用勾股定理可得:|AD|=4,∵=,=,∴=3,==4,∴=+=3+4,∴x=3,y=4,可得:x+y=7.故选:D.【点评】本题主要考查了勾股定理,向量的加法,平面向量的基本定理及其意义的应用,考查了转化思想,属于基础题.10.(5分)(2016•山西三模)设a>0,且x,y满足约束条件,若z=x+y的最大值为7,则的最大值为()A.B.C.D.【分析】作出题中不等式组表示的平面区域,利用z=x+y的最大值为7,推出直线x+y=7与x+4y﹣16=0的交点A必在可行域的边缘顶点,得到a,利用所求的表达式的几何意义,可得的最大值.【解答】解:作出不等式组约束条件表示的平面区域,直线x+y=7与x+4y﹣16=0的交点A必在可行域的边缘顶点.解得,即A(4,3)在3ax﹣y﹣9=0上,可得12a﹣3﹣9=0,解得a=1.的几何意义是可行域的点与(﹣3,0)连线的斜率,由可行域可知(﹣3,0)与B连线的斜率最大,由可得B(﹣1,),的最大值为:=.故选:D.【点评】本题给出二元一次不等式组,求在已知目标函数的最大值为1的情况下求的最大值,着重考查了二元一次不等式组表示的平面区域和简单的线性规划等知识,属于中档题.考查分析问题解决问题的能力.11.(5分)(2016•山西三模)某几何体是组合体,其三视图如图所示,则该几何体的体积为()A.+8πB.+8πC.16+8πD.+16π【分析】由三视图知该几何体是一个组合体:下面是半个圆柱、上面两个四棱锥,由三视图求出几何元素的长度、并判断出位置关系,由柱体、锥体的体积公式求出几何体的体积.【解答】解:根据三视图可知几何体是一个组合体:下面是半个圆柱、上面两个四棱锥,且两个四棱锥的定点相对、底面是俯视图中两个矩形两条边分别是2、4,其中一条侧棱与底面垂直,高都是2,圆柱的底面圆半径是2、母线长是4,∴几何体的体积V=2×+=,故选:B.【点评】本题考查三视图求几何体的体积,由三视图正确复原几何体是解题的关键,考查空间想象能力.12.(5分)(2016•山西三模)记min{a,b}表示a,b中较小的数,比如min{3,﹣1}=﹣1.设函数f(x)=|min{x2,log x}|(x>0),若f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),则x1x2x3的取值范围为()A. B.C. D.【分析】由f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),不妨设x1<x2<x3,则0<x1<,=﹣,由此,即可求出x1x2x3的取值范围.【解答】解:作出y=x2及y=||的图象,f(x1)=f(x2)=f(x3)(x1,x2,x3互不相等),不妨设x1<x2<x3,则0<x1<,=﹣,∴x2x3=1,∴0<x1x2x3<,故选:A.【点评】本题考查了分段函数的应用及数形结合的思想应用,属于中档题.二、填空题(每题5分,满分20分,将答案填在答题纸上)13.(5分)(2016•山西三模)一个蜂巢有1只蜜蜂,第1天,它飞出去找回了5个伙伴;第2天,6只蜜蜂飞出去,各自找回了5个伙伴…如果这个找伙伴的过程继续下去,第5天所有的蜜蜂都归巢后,蜂巢中一共有7776只蜜蜂.【分析】根据题意,第n天蜂巢中的蜜蜂数量为a n,则数列{a n}成等比数列.根据等比数列的通项公式,可以算出第5天所有的蜜蜂都归巢后,蜂巢中一共的蜜蜂.【解答】解:设第n天蜂巢中的蜜蜂数量为a n,根据题意得数列{a n}成等比数列,它的首项为6,公比q=6,所以{a n}的通项公式:a n=6•6n﹣1到第5天,所有的蜜蜂都归巢后,蜂巢中一共有a5=65=7776只蜜蜂.故答案为:7776.【点评】本题以蜜蜂归巢为例,考查了等比数列的通项公式,属于基础题.深刻理解等比数列模型,准确运用它的通项公式,是解决本题的关键所在.14.(5分)(2016•山西三模)已知函数f(x)=为奇函数,则g(﹣2)=6﹣log35.【分析】由题意,g(﹣2)=f(﹣2)+6,利用函数是奇函数,即可得出结论.【解答】解:由题意,g(﹣2)=f(﹣2)+6=﹣f(2)+6=6﹣log35故答案为:6﹣log35.【点评】本题考查代数值的计算,考查函数的奇偶性,比较基础.15.(5分)(2016•山西三模)若双曲线mx2+y2=1(m<﹣1)的离心率恰好是实轴长与虚轴长的等比中项,则m=﹣7﹣4.【分析】求出双曲线的标准方程,求出a,b,结合离心率恰好是实轴长与虚轴长的等比中项,建立方程关系进行转化求解即可.【解答】解:双曲线的标准方程为y2﹣=1(m<﹣1),则焦点在y轴上,且a=1,b2=﹣,∵离心率恰好是实轴长与虚轴长的等比中项,∴e2=2a•2b=4ab,即=4ab,则c2=4b,即1+b2=4b,平方得1+2b2+b4=16b2,即b4﹣14b2+1=0,则++1=0,则1+14m+m2=0即m===﹣7±4,∵m<﹣1,∴m=﹣7﹣4,故答案为:;【点评】本题主要考查双曲线性质的应用,根据条件求出双曲线的标准方程结合等比中项的性质建立方程是解决本题的关键.考查学生的计算能力.16.(5分)(2016•山西三模)长方体ABCD﹣A1B1C1D1的8个顶点都在球O的表面上,E为AB的中点,CE=3,cos∠ACE=,且四边形ABB1A1为正方形,则球O的直径为4或.【分析】设AB=2x,则AE=x,BC=,由余弦定理可得x2=9+3x2+9﹣2×3××,求出x,即可求出球O的直径.【解答】解:设AB=2x,则AE=x,BC=,∴AC=由余弦定理可得x2=9+3x2+9﹣2×3××,∴x=1或,∴AB=2,BC=2,球O的直径为=4,或AB=2,BC=,球O的直径为=.故答案为:4或.【点评】本题考查球O的直径,考查余弦定理,考查学生的计算能力,正确求出AB是关键.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤.)17.(12分)(2016•山西三模)在△ABC中,角A,B,C的对边分别是a,b,c,C=60°,c=b.(1)求角A,B的大小;(2)若D为边AC上一点,且a=4,△BCD的面积为,求BD的长.【分析】(1)由C=60°,可得sinC,由c=b,可得:,又由正弦定理可得:,解得sinB,结合b<c,可得B为锐角,利用三角形内角和定理可求B,A的值.(2)利用三角形面积公式及已知可求CD,由余弦定理即可解得BD的值.【解答】(本题满分为12分)解:(1)∵C=60°,可得:sinC=,由c=b,可得:,又∵由正弦定理,可得:,解得:sinB=,∵由已知可得b<c,可得B为锐角,∴可得:B=45°,A=π﹣B﹣C=75°.(2)∵△BCD 的面积为,即:a•CD•sinC==,解得:CD=1,∴由余弦定理可得:BD===.【点评】本题主要考查了三角形面积公式,正弦定理,余弦定理,三角形内角和定理,考查了数形结合思想的应用和计算能力,属于中档题.18.(12分)(2016•山西三模)已知某中学高三文科班学生的数学与地理的水平测试成绩抽样统计如下表:XA B C人数YA 14 40 10B a 36 bC 28 8 34若抽取学生n人,成绩分为A(优秀)、B(良好)、C(及格)三个等级,设x,y分别表示数学成绩与地理成绩,例如:表中地理成绩为A等级的共有14+40+10=64人,数学成绩为B等级且地理成绩为C等级的有8人.已知x与y均为A等级的概率是0.07.(1)设在该样本中,数学成绩优秀率是30%,求a,b的值;(2)已知a≥8,b≥6,求数学成绩为A等级的人数比C等级的人数多的概率.【分析】(1)由频率=,能求出a,b的值.(2)由14+a+28>10+b+34,得a>b+2.由此利用列举法能求出所求概率.【解答】解:(1)由频率=,得到,∴,故a=18,而14+a+28+40+36+8+10+b+34=200,∴b=12.…(6分)(2)∵a+b=30且a≥8,b≥6,∴由14+a+28>10+b+34,得a>b+2.(a,b)的所有结果为(8,22),(9,21),(10,20),(11,19),…(24,6)共17组,其中a>b +2的共8 组,故所求概率为:.…(12分)【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.19.(12分)(2016•山西三模)如图,在四棱柱ABCD﹣A1B1C1D1中,AC⊥B1D,BB1⊥底面ABCD,E 为线段AD上的任意一点(不包括A、D两点),平面CEC1与平面BB1D交于FG.(1)证明:AC⊥BD;(2)证明:FG∥平面AA1B1B.【分析】(1)先证出BB1⊥AC,AC⊥B1D,即可证明AC⊥平面BB1D,从而证出AC⊥BD;(2)先证明CC1∥平面BB1D,得出CC1∥FG,从而得出FG∥BB1,再证出FG∥平面AA1B1B.【解答】解:(1)证明:四棱柱ABCD﹣A1B1C1D1中,∵BB1⊥底面ABCD,AC⊂平面ABCD,∴BB1⊥AC;又AC⊥B1D,BB1∩B1D=B1,∴BB1⊂平面BB1D,B1D⊂平面BB1D,∴AC⊥平面BB1D;又BD⊂平面BB1D,∴AC⊥BD;(2)四棱柱ABCD﹣A1B1C1D1中,CC1∥BB1,CC1⊄平面BB1D,BB1⊂平面BB1D,∴CC1∥平面BB1D;又平面CEC1∩平面BB1D=FG,∴CC1∥FG,∴FG∥BB1;又FG⊄平面ABB1A1,BB1⊂平面ABB1A1,∴FG∥平面AA1B1B.【点评】本题主要考查了空间中的直线与平面垂直、直线与平面平行的判定和性质的应用问题,也考查了空间想象能力和推理论证能力,是中档题.20.(12分)(2016•山西三模)已知椭圆C:+=1(a>b>0)的离心率为,且椭圆C与圆M:x2+(y﹣3)2=4的公共弦长为4(1)求椭圆C的方程;(2)已知O为坐标原点,过椭圆C的右顶点A作直线l与圆x2+y2=相切并交椭圆C于另一点,求•的值.【分析】(1)运用椭圆的离心率公式和对称性可得椭圆经过点(±2,3),代入椭圆方程,解得a,b,进而得到椭圆方程;(2)设过右顶点A(4,0)的直线l为y=k(x﹣4),由直线和圆相切的条件:d=r,可得k,再由直线方程代入椭圆方程,运用韦达定理,可得B的横坐标,结合向量的数量积的坐标表示,即可得到所求值.【解答】解:(1)由题意可得e==,a2﹣b2=c2,椭圆C与圆M:x2+(y﹣3)2=4的公共弦长为4,可得椭圆经过点(±2,3),即有+=1,解得a=4,b=2,即有椭圆的方程为+=1;(2)设过右顶点A(4,0)的直线l为y=k(x﹣4),由直线与圆x2+y2=相切,可得=,解得k=±,将直线y=±(x﹣4),代入椭圆+=1,消去y,可得31x2﹣32x﹣368=0,设B(x0,y0),可得4x0=﹣,则•=(4,0)•(x0,y0)=4x0=﹣.【点评】本题考查椭圆的方程的求法,注意运用离心率公式和点满足椭圆方程,考查向量的数量积的坐标表示,同时考查直线和圆相切的条件:d=r,直线方程和椭圆方程联立,考查运算能力,属于中档题.21.(12分)(2016•山西三模)已知函数f(x)=(ax2﹣lnx)(x﹣lnx)(a∈R).(1)当a=6时,求曲线y=f(x)在点(1,f(1))处的切线方程;(2)若f(x)>0恒成立,求实数a的取值范围.【分析】(1)求出函数的导数,计算f(1),f′(1),求出切线方程即可;(2)设g(x)=x﹣lnx,(x>0),求出函数的导数,得到若f(x)>0恒成立,则ax2﹣lnx>0恒成立,问题转化为,设,根据函数的单调性求出a的范围即可.【解答】解:(1)当a=6时,,∴f'(1)=11,f(1)=6,∴曲线y=f(x)在点(1,f(1))处的切线方程为y﹣6=11(x﹣1),即y=11x﹣5.(2)设g(x)=x﹣lnx,(x>0),则,当0<x<1时,g'(x)<0,函数g(x)递减,当x>1时,g'(x)>0,函数g(x)递增,所以当x>0时,g(x)≥g(1)=1>0.若f(x)>0恒成立,则ax2﹣lnx>0恒成立,∴.设,则,当时,h'(x)>0,函数h(x)递增,当时,h'(x)<0,函数g(x)递减,所以当x>0时,,∴..【点评】本题考查了切线方程问题,考查函数的单调性、最值问题,考查导数的应用以及函数恒成立,是一道中档题.请考生在22、23、24三题中任选一题作答,如果多做,则按所做的第一题记分.[选修4-1:几何证明选讲]22.(10分)(2016•山西三模)如图,在⊙O的直径AB的延长线上取点P,作⊙O的切线PN,N为切点,在AB上找一点M,使PN=PM,连接NM并延长交⊙O于点C.(1)求证:OC⊥AB;(2)若⊙O的半径为,OM=MP,求MN的长.【分析】(1)连接ON,运用圆的切线的性质和等腰三角形的性质,由垂直的判定即可得证;(2)运用直角三角形的勾股定理和圆的相交弦定理,计算即可得到所求值.【解答】解:(1)证明:连接ON,则ON⊥PN,且△OCN为等腰三角形,则∠OCN=∠ONC,∵PN=PM,∴∠PMN=∠PNM,∵∠OCM+∠OMC=∠ONC+∠PNM=90°,∴∠COM=90°,∴OC⊥AB.(2)在Rt△ONP中,由于OM=MP,∴OP2=PN2+ON2,∴,∴4PN2=PN2+12,∴PN=2,从而,∴,由相交弦定理可得MN•CM=BM•AM,又,∴.【点评】本题主要考查圆的切线性质和圆的相交弦定理,及勾股定理的运用,考查推理和运算能力,属于中档题.[选修4-4:坐标系与参数方程]23.(2016•山西三模)以坐标原点O为极点,O轴的正半轴为极轴建立极坐标系,已知曲线C的极坐标方程为ρ=2(sinθ+cosθ+).(1)写出曲线C的参数方程;(2)在曲线C上任取一点P,过点P作x轴,y轴的垂线,垂足分别为A,B,求矩形OAPB的面积的最大值.【分析】(1)由极坐标化为标准方程,再写出参数方程即可,(2)可设点P的坐标为(1+2cosθ,1+2sinθ),表示出矩形OAPB的面积为S,再设t=sinθ+cosθ,根据二次函数的性质即可求出答案.【解答】解:(1)由得ρ2=2(ρsinθ+ρcosθ+1),所以x2+y2=2x+2y+2,即(x ﹣1)2+(y﹣1)2=4.故曲线C的参数方程(θ为参数).(2)由(1)可设点P的坐标为(1+2cosθ,1+2sinθ),θ∈[0,2π),则矩形OAPB的面积为S=|(1+2cosθ)(1+2sinθ)|=|1+2sinθ+2cosθ+4sinθcosθ)|令,t2=1+2sinθcosθ,,故当时,.【点评】本题考查了极坐标方程转化为直角坐标方程、参数方程,以及三角函数和二次函数的性质,考查了推理能力与计算能力,属于中档题.[选修4-5:不等式选讲]24.(2016•山西三模)已知不等式<|1+|﹣|1﹣|<对x∈(0,+∞)恒成立.(1)求实数a的取值范围;(2)不等式|x﹣1|+|x+1|≤a的解集为A,不等式4≤2x≤8的解集为B,试判断A∩B是否一定为空集?请证明你的结论.【分析】(1)根据x的范围,得到关于a的不等式组,解出即可;(2)分别求出集合A,B,结合a的范围,判断A,B的交集是否是空集即可.【解答】解:(1)∵x>0,∴1+>0,不等式<|1+|﹣|1﹣|<对x∈(0,+∞)恒成立,即不等式<1+﹣|1﹣|<对x∈(0,+∞)恒成立.即对x∈(0,+∞)恒成立.即,∴,解得:1<a<8;(2)∵x>0,∴x+1>0,令f(x)=|x﹣1|+|x+1|,∴f(x)=|x﹣1|+x+1=,由(1)a=8时,得:2x<8,解得:x<4,故集合A的最大范围是(0,4),由4≤2x≤8,解得:2≤x≤3,故集合B=[2,3],故A∩B不一定是空集.【点评】本题考查了解绝对值不等式问题,考查集合的关系以及分类讨论思想,是一道中档题.。
2016年高考+联考模拟数学(文)试题分项版解析 专题08算法、复数与选讲原卷版 缺答案
1. 【2016高考新课标1文数】设()()12i i a ++的实部与虚部相等,其中a 为实数,则a=( )A.-3B.-2C.2D.32.【2016高考新课标2文数】设复数z 满足i 3i z +=-,则z =( )A.12i -+B.12i -C.32i +D.32i -3. [2016高考新课标Ⅲ文数]若43i z =+,则||z z =( ) A.1 B.1- C.43i 55+ D.43i 55- 4.【2016高考四川文科】设i 为虚数单位,则复数2(1)i +=[ )A. 0B.2C.2iD.2+2i5.【2016高考北京文数】复数122i i+=-( ) A.i B.1i + C.i - D.1i - 6.【2016高考山东文数】若复数21i z =-,其中i 为虚数单位,则z =( ) A.1+i B.1−i C.−1+i D.−1−i7.【2016高考新课标2文数】有三张卡片,分别写有1和2,1和3,2和3. 甲,乙,丙三人各取走一张卡片,甲看了乙的卡片后说:“我与乙的卡片上相同的数字不是2”,乙看了丙的卡片后说:“我与丙的卡片上相同的数字不是1”,丙说:“我的卡片上的数字之和不是5”,则甲的卡片上的数字是________________.8.【2016高考山东文数】观察下列等式:22π2π4(sin )(sin )12333--+=⨯⨯; 2222π2π3π4π4(sin )(sin )(sin )(sin )2355553----+++=⨯⨯; 2222π2π3π6π4(sin )(sin )(sin )(sin )3477773----+++⋅⋅⋅+=⨯⨯; 2222π2π3π8π4(sin )(sin )(sin )(sin )4599993----+++⋅⋅⋅+=⨯⨯; ……照此规律,2222π2π3π2π(sin )(sin )(sin )(sin )21212121n n n n n ----+++⋅⋅⋅+=++++_________. 9.【2016高考天津文数】i 是虚数单位,复数z 满足(1)2i z +=,则z 的实部为_______.算法1.【2016高考新课标2文数】中国古代有计算多项式值得秦九韶算法,右图是实现该算法的程序框图.执行该程序框图,若输入的a 为2,2,5,则输出的s =( )(A )7 (B )12 (C )17 (D )342. 【2016高考新课标1文数】执行右面的程序框图,如果输入的0,1,x y ==n =1,则输出,x y 的值满足( )(A )2y x =(B )3y x =(C )4y x =(D )5y x =3. [2016高考新课标Ⅲ文数]执行下图的程序框图,如果输入的46a b ==,,那么输出的n =( )(A )3 (B )4 (C )5 (D )64.【2016高考天津文数】阅读右边的程序框图,运行相应的程序,则输出S 的值为_______.5.【2016高考北京文数】执行如图所示的程序框图,输出的s值为()A.8B.9C.27D.366.【2016高考四川文科】秦九韶是我国南宋时期的数学家,普州[现四川省安岳县)人,他在所著的《数书九章》中提出的多项式求值的秦九韶算法,至今仍是比较先进的算法.如图所示的程序框图给出了利用秦九韶算法求多项式值的一个实例,若输入n,x的值分别为3,2,则输出v的值为[ )[A)35 [B) 20 [C)18 [D)97.【2016高考山东文数】执行右边的程序框图,若输入n的值为3,则输出的S的值为_______.选讲部分1.【2016高考天津文数】如图,AB是圆的直径,弦CD与AB相交于点E,BE=2AE=2,BD=ED,则线段CE的长为__________.2.【2016高考新课标1文数】(本小题满分10分)选修4-1:几何证明选讲如图,△OAB 是等腰三角形,∠AOB =120°.以O 为圆心,12OA 为半径作圆. [I)证明:直线AB 与 O 相切; [II)点C ,D 在⊙O 上,且A ,B ,C ,D 四点共圆,证明:AB ∥CD .O DCB A3.【2016高考新课标1文数】(本小题满分10分)选修4—4:坐标系与参数方程 在直角坐标系x O y 中,曲线C 1的参数方程为cos 1sin x a t y a t=⎧⎨=+⎩错误!未找到引用源。
专题01 集合与函数-2016年高考+联考模拟数学(文)试题分项版解析(解析版) 含解析
1.【2016高考新课标1文数】设集合{}1,3,5,7A =,{}25B x x =,则AB =( )(A ){1,3} (B ){3,5} (C ){5,7} (D){1,7} 【答案】B 【解析】试题分析:集合A 与集合B 公共元素有3,5,}5,3{=B A ,故选B 。
考点:集合的交集运算【名师点睛】集合是每年高考中的必考题,一般以基础题形式出现,属得分题。
解决此类问题一般要把参与运算的集合化为最简形式再进行运算,如果是不等式解集、函数定义域及值域有关数集之间的运算,常借助数轴进行运算。
2。
【2016高考新课标2文数】已知集合{123}A =,,,2{|9}B x x =<,则AB =( )(A ){210123}--,,,,, (B ){21012}--,,,, (C){123},, (D){12},【答案】D 【解析】考点:一元二次不等式的解法,集合的运算.【名师点睛】集合的交、并、补运算问题,应先把集合化简在计算,常常借助数轴或韦恩图处理。
3.[2016高考新课标Ⅲ文数]设集合{0,2,4,6,8,10},{4,8}A B ==,则AB=( )(A){48},(B){026},,(C){02610},,,,,,,,(D){0246810}【答案】C【解析】试题分析:由补集的概念,得C{0,2,6,10}B=,故选C.A考点:集合的补集运算.【技巧点拨】研究集合的关系,处理集合的交、并、补的运算问题,常用韦恩图、数轴等几何工具辅助解题.一般地,对离散的数集、抽象的集合间的关系及运算,可借助韦恩图,而对连续的集合间的运算及关系,可借助数轴的直观性,进行合理转化.4.【2016高考天津文数】已知集合}3,2,1{=A,}yB∈=,则=-yx,1|2x{AA B=( )(A)}3,1{(B)}2,1{(C)}3,2{(D)}3,2,1{【答案】A【解析】试题分析:{1,3,5},{1,3}B A B==,选A.考点:集合运算【名师点睛】本题重点考查集合的运算,容易出错的地方是审错题意,误求并集,属于基本题,难点系数较小。
2016年高考+联考模拟数学(文)试题分项版解析 专题05解析几何原卷版 Word版缺答案
1.【2016高考新课标1文数】直线l 经过椭圆的一个顶点和一个焦点,若椭圆中心到l 的距离为其短轴长的14,则该椭圆的离心率为( ) (A )13 (B )12 (C )23 (D )342.【2016高考新课标2文数】设F 为抛物线C :y 2=4x 的焦点,曲线y =kx(k >0)与C 交于点P ,PF ⊥x 轴,则k =( )(A )12 (B )1 (C )32(D )23.[2016高考新课标Ⅲ文数]已知O 为坐标原点,F 是椭圆C :22221(0)x y a b a b+=>>的左焦点,,A B 分别为C 的左,右顶点.P 为C 上一点,且PF x ⊥轴.过点A 的直线l 与线段PF 交于点M ,与y 轴交于点E .若直线BM 经过OE 的中点,则C 的离心率为( ) (A )13(B )12(C )23(D )344.【2016高考四川文科】抛物线24y x =的焦点坐标是( ) (A)(0,2) (B) (0,1) (C) (2,0) (D) (1,0)5.【2016高考山东文数】已知圆M :2220(0)x y ay a +-=>截直线0x y +=所得线段的长度是M 与圆N :22(1)1x y +-=(-1)的位置关系是( ) (A )内切(B )相交(C )外切(D )相离1212r r r r -<MN <+,所以圆M 与圆N 相交,故选B .6.【2016高考北京文数】圆22(1)2x y ++=的圆心到直线3y x =+的距离为( )A.1B.2 7、【2016高考上海文科】已知平行直线012:,012:21=++=-+y x l y x l ,则21,l l 的距离_______________.8.【2016高考北京文数】已知双曲线221a b -= (0a >,0b >)的一条渐近线为20x y +=,一个焦点为,则a =_______;b =_____________.9.【2016高考四川文科】在平面直角坐标系中,当P (x ,y )不是原点时,定义P 的“伴随点”为'2222(,)y xP x y x y-++;当P 是原点时,定义P 的“伴随点”为它自身,现有下列命题: ①若点A 的“伴随点”是点'A ,则点'A 的“伴随点”是点A. ②单元圆上的“伴随点”还在单位圆上.③若两点关于x 轴对称,则他们的“伴随点”关于y 轴对称 ④若三点在同一条直线上,则他们的“伴随点”一定共线. 其中的真命题是 .10.[2016高考新课标Ⅲ文数]已知直线l :60x -+=与圆2212x y +=交于,A B 两点,过,A B 分别作l 的垂线与x 轴交于,C D 两点,则||CD =_____________.11.【2016高考浙江文数】设双曲线x 2–23y =1的左、右焦点分别为F 1,F 2.若点P 在双曲线上,且△F 1PF 2为锐角三角形,则|PF 1|+|PF 2|的取值范围是_______.12.【2016高考浙江文数】已知a ∈R ,方程222(2)4850a x a y x y a +++++=表示圆,则圆心坐标是_____,半径是______.13.【2016高考天津文数】已知圆C 的圆心在x 轴的正半轴上,点M 在圆C 上,且圆心到直线20x y -=,则圆C 的方程为__________. 14.【2016高考山东文数】已知双曲线E :22x a–22y b =1(a >0,b >0).矩形ABCD 的四个顶点在E 上,AB ,CD 的中点为E 的两个焦点,且2|AB |=3|BC |,则E 的离心率是_______. 15. 【2016高考新课标1文数】设直线y=x +2a 与圆C :x 2+y 2-2ay -2=0相交于A ,B 两点,若,则圆C 的面积为 .【名师点睛】注意在求圆心坐标、半径、弦长时常用圆的几何性质,如圆的半径r 、弦长l 、圆心到弦的距离d 之间的关系:222r d =+ ⎪⎝⎭在求圆的方程时常常用到.16.【2016高考天津文数】已知双曲线)0,0(12222>>=-b a by a x 的焦距为52,且双曲线的一条渐近线与直线02=+y x 垂直,则双曲线的方程为( )(A )1422=-y x(B )1422=-y x (C )15320322=-y x (D )12035322=-y x17.【2016高考新课标2文数】圆x 2+y 2−2x −8y +13=0的圆心到直线ax +y −1=0的距离为1,则a =( )(A )−43 (B )−34(C(D )218.【2016高考新课标1文数】(本小题满分12分)在直角坐标系xOy 中,直线l :y =t (t ≠0)交y 轴于点M ,交抛物线C :22(0)y px p =>于点P ,M 关于点P 的对称点为N ,连结ON 并延长交C 于点H . (I )求OH ON;(II )除H 以外,直线MH 与C 是否有其它公共点?说明理由.19.【2016高考新课标2文数】已知A 是椭圆E :22143x y +=的左顶点,斜率为()0k k >的直线交E 与A ,M 两点,点N 在E 上,MA NA ⊥.(Ⅰ)当AM AN =时,求AMN ∆的面积; (Ⅱ)当AM AN =2k <<.20.[2016高考新课标Ⅲ文数]已知抛物线C :22y x =的焦点为F ,平行于x 轴的两条直线12,l l 分别交C 于,A B 两点,交C 的准线于P Q ,两点.(I )若F 在线段AB 上,R 是PQ 的中点,证明ARFQ ;(II )若PQF ∆的面积是ABF ∆的面积的两倍,求AB 中点的轨迹方程.21.【2016高考北京文数】(本小题14分)已知椭圆C :22221x y a b+=过点A (2,0),B (0,1)两点.(I )求椭圆C 的方程及离心率;(Ⅱ)设P 为第三象限内一点且在椭圆C 上,直线PA 与y 轴交于点M ,直线PB 与x 轴交于点N ,求证:四边形ABNM 的面积为定值. 22.【2016高考山东文数】(本小题满分14分) 已知椭圆C :(a >b >0)的长轴长为4,焦距为2.(I )求椭圆C 的方程;(Ⅱ)过动点M (0,m )(m >0)的直线交x 轴与点N ,交C 于点A ,P (P 在第一象限),且M 是线段PN 的中点.过点P 作x 轴的垂线交C 于另一点Q ,延长线QM 交C 于点B . (i)设直线PM 、QM 的斜率分别为k 、k',证明为定值. (ii)求直线AB 的斜率的最小值.23.【2016高考天津文数】(设椭圆13222=+y a x (3>a )的右焦点为F ,右顶点为A ,已知||3||1||1FA eOA OF =+,其中O 为原点,e 为椭圆的离心率.(Ⅰ)求椭圆的方程;(Ⅱ)设过点A 的直线l 与椭圆交于点B (B 不在x 轴上),垂直于l 的直线与l 交于点M ,与y 轴交于点H ,若HF BF ⊥,且MAO MOA ∠=∠,求直线的l 斜率.24.【2016高考浙江文数】(本题满分15分)如图,设抛物线22(0)y px p =>的焦点为F ,抛物线上的点A 到y 轴的距离等于|AF |-1. (I )求p 的值;(II )若直线AF 交抛物线于另一点B ,过B 与x 轴平行的直线和过F 与AB 垂直的直线交于点N ,AN 与x轴交于点M .求M 的横坐标的取值范围.25.【2016高考上海文科】(本题满分14分)有一块正方形菜地EFGH ,EH 所在直线是一条小河,收货的蔬菜可送到F 点或河边运走。
2016年高考+联考模拟数学(文)试题分项解析 专题02导数解析 含解析
1.【2016高考新课标1文数】若函数1()sin 2sin 3f x x -x a x =+在(),-∞+∞单调递增,则a 的取值范围是( )(A )[]1,1-(B )11,3⎡⎤-⎢⎥⎣⎦(C )11,33⎡⎤-⎢⎥⎣⎦(D )11,3⎡⎤--⎢⎥⎣⎦【答案】C 【解析】考点:三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,要注意弦函数的有界性.2.【2016高考四川文科】设直线l 1,l 2分别是函数f (x )= ln ,01,ln ,1,x x x x -<<⎧⎨>⎩图象上点P 1,P 2处的切线,l 1与l 2垂直相交于点P ,且l 1,l 2分别与y 轴相交于点A ,B ,则△PAB 的面积的取值范围是( )(A)(0,1) (B) (0,2) (C) (0,+∞) (D) (1,+ ∞) 【答案】A 【解析】试题分析:设()()111222,ln ,,ln P x x P x x -(不妨设121,01x x ><<),则由导数的几何意义易得切线12,l l 的斜率分别为121211,.k k x x ==-由已知得12122111,1,.k k x x x x =-∴=∴=∴切线1l 的方程分别为()1111ln y x x x x -=-,切线2l 的方程为()2221ln y x x x x +=--,即1111ln y x x x x ⎛⎫-=-- ⎪⎝⎭.分别令0x =得()()110,1ln ,0,1ln .A xB x -++又1l 与2l 的交点为221111112222111121121,ln .1,1,0111211PABA B P PAB x x x x P x x S y y x S x x x x ∆∆⎛⎫-++>∴=-⋅=<=∴<< ⎪++++⎝⎭,故选A.考点:1.导数的几何意义;2.两直线垂直关系;3.直线方程的应用;4.三角形面积取值范围. 【名师点睛】本题首先考查导数的几何意义,其次考查最值问题,解题时可设出切点坐标,利用切线垂直求出这两点的关系,同时得出切线方程,从而得点,A B 坐标,由两直线相交得出P 点坐标,从而求得面积,题中把面积用1x 表示后,可得它的取值范围.解决本题可以是根据题意按部就班一步一步解得结论.这也是我们解决问题的一种基本方法,朴实而基础,简单而实用.3.【2016高考四川文科】已知a 函数3()12f x x x =-的极小值点,则a =( ) (A)-4 (B) -2 (C)4 (D)2 【答案】D考点:函数导数与极值.【名师点睛】本题考查函数的极值.在可导函数中函数的极值点0x 是方程'()0f x =的解,但0x 是极大值点还是极小值点,需要通过这点两边的导数的正负性来判断,在0x 附近,如果0x x <时,'()0f x <,0x x >时'()0f x >,则0x 是极小值点,如果0x x <时,'()0f x >,0x x >时,'()0f x <,则0x 是极大值点,4. [2016高考新课标Ⅲ文数]已知()f x 为偶函数,当0x ≤ 时,1()x f x ex --=-,则曲线()y f x =在(1,2)处的切线方程式_____________________________. 【答案】2y x = 【解析】试题分析:当0x >时,0x -<,则1()x f x ex --=+.又因为()f x 为偶函数,所以1()()x f x f x e x -=-=+,所以1()1x f x e -'=+,则切线斜率为(1)2f '=,所以切线方程为22(1)y x -=-,即2y x =.考点:1、函数的奇偶性;2、解析式;3、导数的几何意义.【知识拓展】本题题型可归纳为“已知当0x >时,函数()y f x =,则当0x <时,求函数的解析式”.有如下结论:若函数()f x 为偶函数,则当0x <时,函数的解析式为()y f x =-;若()f x 为奇函数,则函数的解析式为()y f x =--.5.【2016高考新课标1文数】(本小题满分12分)已知函数()()()22e 1x f x x a x =-+-. (I)讨论()f x 的单调性;(II)若()f x 有两个零点,求a 的取值范围. 【答案】见解析(II) ()0,+∞【解析】③若2ea <-,则()21ln a ->,故当()()(),1l n2,x a ∈-∞-+∞时,()'0f x >,当()()1,ln 2x a ∈-时,()'0f x <,所以()f x 在()()(),1,ln 2,a -∞-+∞单调递增,在()()1,ln 2a -单调递减.(II)(i)设0a >,则由(I)知,()f x 在(),1-∞单调递减,在()1,+∞单调递增. 又()()12f e f a =-=,,取b 满足b <0且ln 22b a<, 则()()()23321022a f b b a b a b b ⎛⎫>-+-=->⎪⎝⎭,所以()f x 有两个零点. (ii)设a =0,则()()2xf x x e =-所以()f x 有一个零点.(iii)设a <0,若2ea ≥-,则由(I)知,()f x 在()1,+∞单调递增. 又当1x ≤时,()f x <0,故()f x 不存在两个零点;若2ea <-,则由(I)知,()f x 在()()1,ln 2a -单调递减,在()()ln 2,a -+∞单调递增.又当1x ≤时()f x <0,故()f x 不存在两个零点. 综上,a 的取值范围为()0,+∞. 考点:函数单调性,导数应用【名师点睛】本题第一问是用导数研究函数单调性,对含有参数的函数单调性的确定,通常要根据参数进行分类讨论,要注意分类讨论的原则:互斥、无漏、最简;第二问是求参数取值范围,由于这类问题常涉及到导数、函数、不等式等知识,越来越受到高考命题者的青睐,解决此类问题的思路是构造适当的函数,利用导数研究函数的单调性或极值破解. 6.【2016高考新课标2文数】已知函数()(1)ln (1)f x x x a x =+--.(I )当4a =时,求曲线()y f x =在()1,(1)f 处的切线方程; (Ⅱ)若当()1,x ∈+∞时,()0f x >,求a 的取值范围. 【答案】(Ⅰ)220x y +-=;(Ⅱ)(],2.-∞ 【解析】(II )当(1,)∈+∞x 时,()0>f x 等价于(1)ln 0.1-->+a x x x考点: 导数的几何意义,函数的单调性. 【名师点睛】求函数的单调区间的方法: (1)确定函数y =f (x )的定义域; (2)求导数y ′=f ′(x );(3)解不等式f ′(x )>0,解集在定义域内的部分为单调递增区间; (4)解不等式f ′(x )<0,解集在定义域内的部分为单调递减区间. 7.[2016高考新课标Ⅲ文数]设函数()ln 1f x x x =-+.(I )讨论()f x 的单调性; (II )证明当(1,)x ∈+∞时,11ln x x x-<<; (III )设1c >,证明当(0,1)x ∈时,1(1)xc x c +->.【答案】(Ⅰ)当01x <<时,()f x 单调递增;当1x >时,()f x 单调递减;(Ⅱ)见解析;(Ⅲ)见解析. 【解析】试题分析:(Ⅰ)首先求出导函数()f x ',然后通过解不等式()0f x '>或()0f x '<可确定函数()f x 的单调性(Ⅱ)左端不等式可利用(Ⅰ)的结论证明,右端将左端的x 换为1x即可证明;(Ⅲ)变形所证不等式,构造新函数,然后通过利用导数研究函数的单调性来处理. 试题解析:(Ⅰ)由题设,()f x 的定义域为(0,)+∞,'1()1f x x=-,令'()0f x =,解得1x =.当01x <<时,'()0f x >,()f x 单调递增;当1x >时,'()0f x <,()f x 单调递减. ………4分考点:1、利用导数研究函数的单调性;2、不等式的证明与解法.【思路点拨】求解导数中的不等式证明问题可考虑:(1)首先通过利用研究函数的单调性,再利用单调性进行证明;(2)根据不等式结构构造新函数,通过求导研究新函数的单调性或最值来证明.8.【2016高考北京文数】(本小题13分) 设函数()32.f x x ax bx c =+++(I )求曲线().y f x =在点()()0,0f 处的切线方程;(II )设4a b ==,若函数()f x 有三个不同零点,求c 的取值范围; (III )求证:230a b ->是().f x 有三个不同零点的必要而不充分条件. 【答案】(Ⅰ)y bx c =+;(Ⅱ)320,27c ⎛⎫∈ ⎪⎝⎭;(III )见解析. 【解析】试题分析:(Ⅰ)求函数f(x)的导数,根据()0f c =,()0f b '=求切线方程;(Ⅱ)根据导函数判断函数f(x)的单调性,由函数()f x 有三个不同零点,求c 的取值范围;(III )从两方面必要性和不充分性证明,根据函数的单调性判断零点个数. 试题解析:(I )由()32f x x ax bx c =+++,得()232f x x ax b '=++.因为()0f c =,()0f b '=,所以曲线()y f x =在点()()0,0f 处的切线方程为y bx c =+. (II )当4a b ==时,()3244f x x x x c =+++,所以()2384f x x x '=++.令()0f x '=,得23840x x ++=,解得2x =-或23x =-. ()f x 与()f x '在区间(),-∞+∞上的情况如下:所以,当0c >且32027c -<时,存在()14,2x ∈--,222,3x ⎛⎫∈-- ⎪⎝⎭,32,03x ⎛⎫∈- ⎪⎝⎭,使得()()()1230f x f x f x ===.由()f x 的单调性知,当且仅当320,27c ⎛⎫∈ ⎪⎝⎭时,函数()3244f x x x x c =+++有三个不同零点.当4a b ==,0c =时,230a b ->,()()232442f x x x x x x =++=+只有两个不同 零点, 所以230a b ->不是()f x 有三个不同零点的充分条件. 因此230a b ->是()f x 有三个不同零点的必要而不充分条件. 考点:利用导数研究曲线的切线;函数的零点 【名师点睛】1.证明不等式问题可通过作差或作商构造函数,然后用导数证明. 2.求参数范围问题的常用方法:(1)分离变量;(2)运用最值.3.方程根的问题:可化为研究相应函数的图象,而图象又归结为极值点和单调区间的讨论. 4.高考中一些不等式的证明需要通过构造函数,转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键.9.【2016高考山东文数】(本小题满分13分) 设f (x )=x ln x –ax 2+(2a –1)x ,a ∈R . (Ⅰ)令g (x )=f'(x ),求g (x )的单调区间;(Ⅱ)已知f (x )在x =1处取得极大值.求实数a 的取值范围.【答案】(Ⅰ)当0a ≤时,函数()g x 单调递增区间为()0,+∞;当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭. (Ⅱ)12a >.【解析】可得()()ln 22,0,g x x ax a x =-+∈+∞, 则()112'2axg x a x x-=-=, 当0a ≤时,()0,x ∈+∞时,()'0g x >,函数()g x 单调递增; 当0a >时,10,2x a ⎛⎫∈ ⎪⎝⎭时,()'0g x >,函数()g x 单调递增, 1,2x a ⎛⎫∈+∞⎪⎝⎭时,()'0g x <,函数()g x 单调递减. 所以当0a ≤时,函数()g x 单调递增区间为()0,+∞; 当0a >时,函数()g x 单调递增区间为10,2a ⎛⎫ ⎪⎝⎭,单调递减区间为1,2a ⎛⎫+∞ ⎪⎝⎭.当()1,x ∈+∞时,()'0f x <,()f x 单调递减, 所以()f x 在1x =处取得极大值,合题意. 综上可知,实数a 的取值范围为12a >. 考点:1.应用导数研究函数的单调性、极值;2.分类讨论思想.【名师点睛】本题主要考查导数的计算、应用导数研究函数的单调性与极值、分类讨论思想.本题覆盖面广,对考生计算能力要求较高,是一道难题.解答本题,准确求导数是基础,恰当分类讨论是关键,易错点是分类讨论不全面、不彻底、不恰当.本题能较好的考查考生的逻辑思维能力、基本计算能力、分类讨论思想等.10.【2016高考天津文数】((本小题满分14分)设函数b ax x x f --=3)(,R x ∈,其中R b a ∈, (Ⅰ)求)(x f 的单调区间;(Ⅱ)若)(x f 存在极值点0x ,且)()(01x f x f =,其中01x x ≠,求证:0201=+x x ; (Ⅲ)设0>a ,函数|)(|)(x f x g =,求证:)(x g 在区间]1,1[-上的最大值不小于...41.【答案】(Ⅰ)递减区间为(,递增区间为(,-∞,()+∞.(Ⅱ)详见解析(Ⅲ)详见解析 【解析】试题解析:(1)解:由3()f x x ax b =--,可得2()3f x x a '=-,下面分两种情况讨论: ①当0a ≤时,有2()30f x x a '=-≥恒成立,所以()f x 的单调增区间为(,)-∞∞.②当0a >时,令()0f x '=,解得x =x =当x 变化时,()f x '、()f x 的变化情况如下表:所以()f x 的单调递减区间为(,单调递增区间为(,)-∞,()+∞.1,0,1,0,a b b a b b --≥⎧=⎨--<⎩ 所以1||2M a b =-+≥.②当334a ≤<时,11≤-<<<≤考点:导数的运算,利用导数研究函数的性质、证明不等式【名师点睛】1.求可导函数单调区间的一般步骤(1)确定函数f(x)的定义域(定义域优先);(2)求导函数f′(x);(3)在函数f(x)的定义域内求不等式f′(x)>0或f′(x)<0的解集.(4)由f′(x)>0(f′(x)<0)的解集确定函数f(x)的单调增(减)区间.若遇不等式中带有参数时,可分类讨论求得单调区间.2.由函数f(x)在(a,b)上的单调性,求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,要注意“=”是否可以取到.11.【2016高考浙江文数】(本题满分15分)设函数()f x =311x x++,[0,1]x ∈.证明: (I )()f x 21x x ≥-+; (II )34<()f x 32≤. 【答案】(Ⅰ)证明见解析;(Ⅱ)证明见解析. 【解析】考点:函数的单调性与最值、分段函数.【思路点睛】(I )先用等比数列前n 项和公式计算231x x x -+-,再用放缩法可得23111x x x x-≤-++,进而可证()21f x x x ≥-+;(II )由(I )的结论及放缩法可证()3342f x <≤. 12.【2016高考四川文科】(本小题满分14分) 设函数2()ln f x ax a x =--,1()x eg x x e=-,其中q R ∈,e=2.718…为自然对数的底数. (Ⅰ)讨论f(x)的单调性; (Ⅱ)证明:当x >1时,g(x)>0;(Ⅲ)确定a 的所有可能取值,使得()()f x g x >在区间(1,+∞)内恒成立.【答案】(1)当x ∈(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增;(2)证明详见解析;(3)a ∈1+)2∞[,.【解析】当x ∈(时,'()f x <0,()f x 单调递减;当x ∈+)∞时,'()f x >0,()f x 单调递增.考点:导数的计算、利用导数求函数的单调性,最值、解决恒成立问题.【名师点睛】本题考查导数的计算、利用导数求函数的单调性,最值、解决恒成立问题,考查学生的分析问题解决问题的能力和计算能力.求函数的单调性,基本方法是求'()f x ,解方程'()0f x =,再通过'()f x 的正负确定()f x 的单调性;要证明函数不等式()()f x g x >,一般证明()()f x g x -的最小值大于0,为此要研究函数()()()h x f x g x =-的单调性.本题中注意由于函数()h x 有极小值没法确定,因此要利用已经求得的结论缩小参数取值范围.比较新颖,学生不易想到.有一定的难度.第二部分 2016优质模拟题汇编1.【2016河北衡水四调】设过曲线()x f x e x =--(e 为自然对数的底数)上任意一点处的切线为1l ,总存在过曲线()2cos g x ax x =+上一点处的切线2l ,使得12l l ⊥,则实数a 的取值范围为( )A .[]1,2-B .()1,2-C .[]2,1-D .()2,1- 【答案】A2. 【2016江西五校联考】已知函数()y f x =对任意的(,)22x ππ∈-满足()cos ()sin 0f x x f x x '+> (其中()f x '是函数()f x 的导函数),则下列不等式成立的是A ()()34f ππ-<- ()()34f ππ< C.(0)2()3f f π>D.(0)()4f π>【答案】A3.【2016云南统测一】已知实数,a b 都是常数,若函数2112x a x y be x --=++的图象在切点10,2⎛⎫ ⎪⎝⎭处的切线方程为2113420,2x a x x y y be x --+-==++与()31y k x =-的图象有三个公共点,则实数k 的取值范围是 .【答案】),0()41,(+∞--∞ 【解析】当1<x 时,12122)1(2|1|--++-=++-=x x be x x a be x x a y ,则122'2)2(3)(-++-=x be x a x f , 因为函数2112x a x y be x --=++的图象在切点10,2⎛⎫⎪⎝⎭处的切线方程为0243=-+y x , 所以⎪⎪⎩⎪⎪⎨⎧-==43)(21)0('x f f ,即⎪⎪⎩⎪⎪⎨⎧-=+-=+43243212e b a e b a ,解得⎩⎨⎧==01b a ,即2|1|+-=x x y ;3)1(2|1|-=+-x k x x ,得当1=x 时,方程成立,4.【2016河北衡水四调】已知函数()32f x x x b =-++,()ln g x a x =. (1)若()f x 在1,12x ⎡⎫∈-⎪⎢⎣⎭上的最大值为38,求实数b 的值;(2)若对任意[]1,x e ∈,都有()()22g x x a x ≥-++恒成立,求实数a 的取值范围;(3)在(1)的条件下,设()()(),1F ,1f x x xg x x <⎧⎪=⎨≥⎪⎩,对任意给定的正实数a ,曲线()F y x =上是否存在两点P 、Q ,使得Q ∆PO 是以O (O 为坐标原点)为直角顶点的直角三角形,且此三角形斜边中点在y 轴上?请说明理由.【解】(1)由()32f x x x b =-++,得()()23232f x x x x x '=-+=--,令()0f x '=,得0x =或23x =. 函数()f x ',()f x 在1,12x ⎡⎫∈-⎪⎢⎣⎭上的变化情况如下表:1328f b ⎛⎫-=+ ⎪⎝⎭,24327f b ⎛⎫=+ ⎪⎝⎭,∴1223f f ⎛⎫⎛⎫-> ⎪ ⎪⎝⎭⎝⎭. 即最大值为133288f b ⎛⎫-=+= ⎪⎝⎭,∴0b =.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.【2016高考新课标1文数】△ABC 的内角A 、B 、C 的对边分别为a 、b 、c.已知a =2c =,2cos 3A =,则b=( )(A (B (C )2 (D )3【答案】D 【解析】试题分析:由余弦定理得3222452⨯⨯⨯-+=b b ,解得3=b (31-=b 舍去),故选D. 考点:余弦定理【名师点睛】本题属于基础题,考查内容单一,根据余弦定理整理出关于b 的一元二次方程,再通过解方程求b .运算失误是基础题失分的主要原因,请考生切记!2.【2016高考新课标1文数】若将函数y =2sin (2x +π6)的图像向右平移14个周期后,所得图像对应的函数为( )(A )y =2sin(2x +π4) (B )y =2sin(2x +π3) (C )y =2sin(2x –π4) (D )y =2sin(2x –π3) 【答案】D考点:三角函数图像的平移【名师点睛】函数图像的平移问题易错点有两个,一是平移方向,注意“左加右减“,二是平移多少个单位是对x 而言的,不用忘记乘以系数.3.【2016高考天津文数】已知函数)0(21sin 212sin)(2>-+=ωωωx xx f ,R x ∈.若)(x f 在区间)2,(ππ内没有零点,则ω的取值范围是( )(A )]81,0( (B ))1,85[]41,0( (C )]85,0( (D )]85,41[]81,0(【答案】D 【解析】试题分析:1cos sin 1()x )2224x x f x ωωπω-=+-=-,()0sin(x )04f x πω=⇒-=,所以4(,2),(k z)k x ππππω+=∉∈,因此115599115115(,)(,)(,)(,)(,)(0,][,]848484848848ωω∉=+∞⇒∈,选D. 考点:解简单三角方程【名师点睛】对于三角函数来说,常常是先化为y =Asin(ωx +φ)+k 的形式,再利用三角函数的性质求解.三角恒等变换要坚持结构同化原则,即尽可能地化为同角函数、同名函数、同次函数等,其中切化弦也是同化思想的体现;降次是一种三角变换的常用技巧,要灵活运用降次公式.4.[2016高考新课标Ⅲ文数]在ABC △中,π4B =,BC 边上的高等于13BC ,则sin A =( ) (A )310(B )10 (C )5 (D )310【答案】D考点:正弦定理.【方法点拨】在平面几何图形中求相关的几何量时,需寻找各个三角形之间的联系,交叉使用公共条件,常常将所涉及到已知几何量与所求几何集中到某一个三角形,然后选用正弦定理与余弦定理求解.5.【2016高考四川文科】为了得到函数sin()3y x π=+的图象,只需把函数y=sinx 的图象上所有的点( )(A)向左平行移动3π个单位长度 (B) 向右平行移动3π个单位长度 (C) 向上平行移动3π个单位长度 (D) 向下平行移动3π个单位长度【答案】A 【解析】试题分析:由题意,为得到函数sin()3y x π=+,只需把函数sin y x =的图像上所有点向左移3π个单位,故选A. 考点:三角函数图像的平移.【名师点睛】本题考查三角函数的图象平移,函数()y f x =的图象向右平移a 个单位得()y f x a =-的图象,而函数()y f x =的图象向上平移a 个单位得()y f x a =+的图象.左右平移涉及的是x 的变化,上下平移涉及的是函数值()f x 加减平移的单位. 6.【2016高考上海文科】设a ÎR ,[0,2π]b Î.若对任意实数x 都有πsin(3)=sin()3x ax b -+,则满足条件的有序实数对(a ,b )的对数为( ) (A)1 (B)2 (C)3 (D)4 【答案】B考点:1.三角函数的诱导公式;2.三角函数的图象和性质.【名师点睛】本题根据三角函数的图象和性质及三角函数的诱导公式,利用分类讨论的方法,确定得到,a b 的可能取值.本题主要考查考生的逻辑思维能力、基本运算求解能力、数形结合思想、分类讨论思想等.7. [2016高考新课标Ⅲ文数]若tan 13θ=,则cos 2θ=( ) (A )45-(B )15-(C )15 (D )45【答案】D 【解析】试题分析:2222222211()cos sin 1tan 43cos 21cos sin 1tan 51()3θθθθθθθ---====+++. 考点:1、同角三角函数间的基本关系;2、二倍角.【方法点拨】三角函数求值:①“给角求值”将非特殊角向特殊角转化,通过相消或相约消去非特殊角,进而求出三角函数值;②“给值求值”关键是目标明确,建立已知和所求之间的联系.8.【2016高考山东文数】ABC △中,角A ,B ,C 的对边分别是a ,b ,c ,已知22,2(1sin )b c a b A ==-,则A =( )(A )3π4(B )π3(C )π4(D )π6【答案】C考点:余弦定理【名师点睛】本题主要考查余弦定理的应用、三角函数的同角公式及诱导公式,是高考常考知识内容.本题难度较小,解答此类问题,注重边角的相互转换是关键,本题能较好的考查考生分析问题解决问题的能力、基本计算能力等.8. 【2016高考新课标2文数】函数=sin()y A x ωϕ+的部分图像如图所示,则( )(A )2sin(2)6y x π=- (B )2sin(2)3y x π=-(C )2sin(2+)6y x π= (D )2sin(2+)3y x π=【答案】A 【解析】试题分析:由图知,2A =,周期2[()]36T πππ=--=,所以22πωπ==,所以2s i n (2)y x ϕ=+,因为图象过点(,2)3π,所以22sin(2)3πϕ=⨯+,所以2s i n ()13πϕ+=,所以22(Z)32k k ππϕπ+=+∈, 令0k =得,6πϕ=-,所以2sin(2)6y x π=-,故选A.考点: 三角函数图像的性质【名师点睛】根据图像求解析式问题的一般方法是:先根据函数图像的最高点、最低点确定A ,h 的值,函数的周期确定ω的值,再根据函数图像上的一个特殊点确定φ值.9.【2016高考新课标2文数】函数π()cos 26cos()2f x x x =+-的最大值为( ) (A )4 (B )5(C )6(D )7【答案】B考点: 正弦函数的性质、二次函数的性质. 【名师点睛】求解本题易出现的错误是认为当3sin 2x =时,函数23112(sin )22y x =--+取得最大值.10.【2016高考四川文科】0750sin = . 【答案】12【解析】试题分析:由三角函数诱导公式1sin 750sin(72030)sin 302︒=︒+︒=︒=. 考点:三角函数诱导公式【名师点睛】本题也可以看作是一个来自于课本的题,直接利用课本公式解题,这告诉我们一定要立足于课本.有许多三角函数的求值问题一般都是通过三角函数的公式把函数化为特殊角的三角函数值而求解.11. 【2016高考浙江文数】已知22cos sin 2sin()(0)x x A x b A ωϕ+=++>,则A =______,b =______.1. 【解析】试题分析:22cos sin21cos2sin2)14x x x x x π+=++++,所以 1.A b ==考点:三角恒等变换.【思路点睛】解答本题时先用降幂公式化简2c o s x ,再用辅助角公式化简c o s 2s i n 2x x ++,进而对照()sin x b ωϕA ++可得A 和b .12.[2016高考新课标Ⅲ文数]函数sin y x x =错误!未找到引用源。
的图像可由函数2sin y x =错误!未找到引用源。
的图像至少向右平移_____________个单位长度得到.【答案】3π 【解析】试题分析:因为sin 2sin()3y x x x π==-,所以函数sin y x x =的的图像可由函数2sin y x =的图像至少向右平移3π个单位长度得到. 考点:1、三角函数图象的平移变换;2、两角差的正弦函数.【误区警示】在进行三角函数图象变换时,提倡“先平移,后伸缩”,但“先伸缩,后平移”也经常出现在题目中,所以也必须熟练掌握,无论是哪种变形,切记每一个变换总是对字母x 而言,即图象变换要看“变量”起多大变化,而不是“角”变化多少.13. 【2016高考新课标1文数】已知θ是第四象限角,且sin(θ+π4)=35,则tan(θ–π4)= . 【答案】43-考点:三角变换【名师点睛】三角函数求值,若涉及到开方运算,要注意根式前正负号的取舍,同时要注意角的灵活变换.14.【2016高考上海文科】若函数()4sin cos f x x a x =+的最大值为5,则常数a =______. 【答案】3±【解析】试题分析:)sin(16)(2ϕ++=x a x f ,其中4tan a=ϕ,故函数)(x f 的最大值为216a +,由已知,5162=+a ,解得3±=a .考点:三角函数sin()y A x ωϕ=+ 的图象和性质.【名师点睛】三角函数性质研究问题,基本思路是通过化简 ,得到sin()y A x ωϕ=+,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等. 15.【2016高考上海文科】方程3sin 1cos 2x x =+在区间[]π2,0上的解为___________ .【答案】566ππ或 【解析】 试题分析:3sinx 1cos 2x =+,即23s i n x 22s i n x=-,所以22sin x 3sinx 20+-=,解得1sinx 2=或sinx 2=-(舍去),所以在区间[]π2,0上的解为566ππ或. 考点:1.二倍角公式;2.已知三角函数值求角.【名师点睛】已知三角函数值求角,基本思路是通过化简 ,得到角的某种三角函数值,结合角的范围求解.. 本题难度不大,能较好地考查考生的逻辑推理能力、基本计算能力等. 16.【2016高考上海文科】已知ABC ∆的三边长分别为3,5,7,则该三角形的外接圆半径等于_________.考点:1.正弦定理;2.余弦定理.【名师点睛】此类题目是解三角形问题中的典型题目.解答本题,往往要利用三角公式化简三角恒等式,利用正弦定理实现边角转化,达到解题目的;三角形中的求角问题,往往要利用余弦定理用边表示角的函数.本题较易,主要考查考生的基本运算求解能力等.17.【2016高考上海文科】如图,已知点O (0,0),A (1.0),B (0,−1),P 是曲线y =个动点,则OP BA ×uu u r uu r的取值范围是 .【答案】[1-【解析】试题分析:由题意,设(cos ,sin )P αα, [0,π]α∈,则(cos ,sin )OP αα=,又(1,1)BA =, 所以cos sin )[4OP BA αααπ⋅=+=+∈-.考点:1.平面向量的数量积;2.三角函数的图象和性质;3.数形结合的思想.【名师点睛】本题解答利用数形结合思想,将问题转化到单位圆中,从而转化成平面向量的坐标运算,利用三角函数的图象和性质,得到OP BA ×uu u r uu r的取值范围.本题主要考查考生的逻辑推理能力、基本运算求解能力、数形结合思想、转化与化归思想等.18.【2016高考新课标2文数】△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若4cos 5A =,5cos 13C =,a =1,则b =____________. 【答案】2113【解析】试题分析:因为45cos ,cos 513A C ==,且,A C 为三角形内角,所以312sin ,sin 513A C ==,13sin sin[()]sin()sin cos cos sin 65B AC A B A C A C π=-+=+=+=,又因为sin sin a b A B =,所以sin 21sin 13a Bb A ==. 考点: 正弦定理,三角函数和差公式.【名师点睛】在解有关三角形的题目时,要有意识地考虑用哪个定理更适合,或是两个定理都要用,要抓住能够利用某个定理的信息.一般地,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理;以上特征都不明显时,则要考虑两个定理都有可能用到.19.【2016高考北京文数】在△ABC 中,23A π∠= ,a =,则b c =_________.【答案】1考点:解三角形【名师点睛】①根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.②熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.20.【2016高考山东文数】(本小题满分12分)设2()π)sin (sin cos )f x x x x x =--- . (I )求()f x 得单调递增区间;(II )把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把得到的图象向左平移π3个单位,得到函数()y g x =的图象,求π()6g 的值. 【答案】(I )()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏ 【解析】所以,()f x 的单调递增区间是()5,,1212k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦(或()5(,)1212k k k Z ππππ-+∈)(∏)由(I )知()f x 2sin 21,3x π⎛⎫=-⎪⎝⎭把()y f x =的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =2sin 13x π⎛⎫=-⎪⎝⎭的图象,再把得到的图象向左平移3π个单位,得到y 2sin 1x =的图象,即()2sin 1.g x x =所以 2sin 166g ππ⎛⎫==⎪⎝⎭考点:1.和差倍半的三角函数;2.三角函数的图象和性质;3.三角函数图象的变换. 【名师点睛】本题主要考查和差倍半的三角函数、三角函数的图象和性质、三角函数图象的变换.此类题目是三角函数问题中的典型题目,可谓相当经典.解答本题,关键在于能利用三角公式化简函数、进一步讨论函数的性质,利用“左加右减、上加下减”变换原则,得出新的函数解析式并求值.本题较易,能较好的考查考生的基本运算求解能力及复杂式子的变形能力等.21.【2016高考四川文科】(本题满分12分) 在△ABC 中,角A ,B ,C 所对的边分别是a ,b ,c ,且cos cos sin A B Ca b c+=. (I )证明:sin sin sin A B C =;(II )若22265b c a bc +-=,求tan B . 【答案】(Ⅰ)证明详见解析;(Ⅱ)4. 【解析】代入cos A a +cos B b =sin Cc 中,有 cos sin A k A +cos sin B k B =sin sin Ck C,变形可得sin A sin B =sin A cos B +cos A sin B =sin(A +B ).在△ABC 中,由A +B +C =π,有sin(A +B )=sin(π–C )=sin C , 所以sin A sin B =sin C .考点:正弦定理、余弦定理、商数关系、平方关系.【名师点睛】本题考查正弦定理、余弦定理、商数关系等基础知识,考查学生的分析问题的能力和计算能力.在解三角形的应用中,凡是遇到等式中有边又有角时,可用正弦定理进行边角互化,一种是化为三角函数问题,一般是化为代数式变形问题.在角的变化过程中注意三角形的内角和为180︒这个结论,否则难以得出结论. 22.【2016高考天津文数】(本小题满分13分)在ABC ∆中,内角C B A ,,所对应的边分别为a,b,c ,已知sin 2sin a B A . (Ⅰ)求B ; (Ⅱ)若1cos A 3=,求sinC 的值.【答案】(Ⅰ)6π=B 【解析】试题分析:(Ⅰ)利用正弦定理,将边化为角:2sin sin cos A B B A ,再根据三角形内角范围化简得23cos =B ,6π=B (Ⅱ)问题为“已知两角,求第三角”,先利用三角形内角和为π,将所求角化为两已知角的和)sin()](sin[sin B A B A C +=+-=π,再根据两角和的正弦公式求解考点:同角三角函数的基本关系、二倍角的正弦公式、两角和的正弦公式以及正弦定理 【名师点睛】三角函数是以角为自变量的函数,因此解三角函数题,首先从角进行分析,善于用已知角表示所求角,即注重角的变换.角的变换涉及诱导公式、同角三角函数关系、两角和与差公式、二倍角公式、配角公式等,选用恰当的公式,是解决三角问题的关键,明确角的范围,对开方时正负取舍是解题正确的保证.23.【2016高考北京文数】(本小题13分)已知函数)0(2cos cos sin 2)(>+=ωωωωx x x x f 的最小正周期为π. (1)求ω的值;(2)求)(x f 的单调递增区间. 【答案】(Ⅰ)1ω=(Ⅱ)3,88k k ππππ⎡⎤-+⎢⎥⎣⎦(k ∈Z ). 【解析】试题分析:(Ⅰ)运用两角和的正弦公式对)(x f 化简整理,由周期公式求ω的值; (Ⅱ)根据函数x y sin =的单调递增区间对应求解即可. 试题解析:(I )因为()2sin cos cos2f x x x x ωωω=+sin 2cos 2x x ωω=+24x πω⎛⎫=+ ⎪⎝⎭,所以()f x 的最小正周期22ππωωT ==. 依题意,ππω=,解得1ω=.考点:两角和的正弦公式、周期公式、三角函数的单调性.【名师点睛】三角函数的单调性:1.三角函数单调区间的确定,一般先将函数式化为基本三角函数标准式,然后通过同解变形或利用数形结合方法求解.关于复合函数的单调性的求法;2利用三角函数的单调性比较两个同名三角函数值的大小,必须先看两角是否同属于这一函数的同一单调区间内,不属于的,可先化至同一单调区间内.若不是同名三角函数,则应考虑化为同名三角函数或用差值法(例如与0比较,与1比较等)求解.24.【2016高考浙江文数】(本题满分14分)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c .已知b +c =2a cos B . (Ⅰ)证明:A =2B ; (Ⅱ)若cos B =23,求cos C 的值. 【答案】(I )证明见解析;(II )22cos 27C =. 【解析】试题分析:(I )先由正弦定理可得sin sin C 2sin cos B +=A B ,进而由两角和的正弦公式可得()sin sin B =A-B ,再判断A -B 的取值范围,进而可证2A =B ;(II )先用同角三角函数的基本关系可得sin B ,再用二倍角公式可得cos 2B ,进而可得cos A 和sin A ,最后用两角和的余弦公式可得cos C .试题解析:(I )由正弦定理得sin sin 2sin cos B C A B +=,故2sin cos sin sin()sin sin cos cos sin A B B A B B A B A B =++=++, 于是,sin sin()B A B =-,又,(0,)A B π∈,故0A B π<-<,所以()B A B π=--或B A B =-, 因此,A π=(舍去)或2A B =,所以,2A B =.考点:三角函数及其变换、正弦和余弦定理.【思路点睛】(I )用正弦定理将边转化为角,进而用两角和的正弦公式转化为含有A ,B 的式子,根据角的范围可证2A =B ;(II )先用同角三角函数的基本关系及二倍角公式可得cos 2B ,进而可得cos A 和sin A ,再用两角和的余弦公式可得cos C .平面向量1.[2016高考新课标Ⅲ文数]已知向量1(2BA =uu v,1),2BC =uu u v 则ABC ∠=( )(A)300(B) 450(C) 600(D)1200【答案】A 【解析】试题分析:由题意,得112222cos 11||||BA BC ABC BA BC ⨯+⋅∠===⨯,所以30ABC ∠=︒,故选A .考点:向量夹角公式.【思维拓展】(1)平面向量a 与b 的数量积为·cos a b a b θ=,其中θ是a 与b 的夹角,要注意夹角的定义和它的取值范围:0180θ︒≤≤︒;(2)由向量的数量积的性质有||=a a a ·,·cos a b a bθ=,·0a b a b ⇔⊥=,因此,利用平面向量的数量积可以解决与长度、角度、垂直等有关的问题.2.【2016高考天津文数】已知△ABC 是边长为1的等边三角形,点E D ,分别是边BC AB ,的中点,连接DE并延长到点F ,使得EF DE 2=,则BC AF ⋅的值为( )(A )85- (B )81 (C )41 (D )811【答案】B考点:向量数量积【名师点睛】研究向量数量积,一般有两个思路,一是建立直角坐标系,利用坐标研究向量数量积;二是利用一组基底表示所有向量,两种实质相同,坐标法更易理解和化简. 平面向量的坐标运算的引入为向量提供了新的语言——“坐标语言”,实质是“形”化为“数”.向量的坐标运算,使得向量的线性运算都可用坐标来进行,实现了向量运算完全代数化,将数与形紧密结合起来.3.【2016高考四川文科】已知正三角形ABC 的边长为32,平面ABC 内的动点P ,M 满足1AP =uu u r ,PM MC =uuu r uuu r ,则2BM uuu r 的最大值是( )(A)443 (B) 449 (C) 43637+ (D) 433237+【答案】B 【解析】试题分析:甴已知易得1220,DA ADC ADB D D BDC B C ∠=∠====∠=︒.以D 为原点,直线DA 为x 轴建立平面直角坐标系,则()((2,0,1,,1,.A B C --设(),,P x y 由已知1AP =,得()2221x y -+=,又1333,,,,,22x y y PMM C M M ⎛⎫⎫-++=∴∴⎪⎪⎝⎭⎝⎭()(22214x y BM -++∴=,它表示圆()2221x y -+=上点().x y与点(1,--距离平方的14,()22max149144BM⎫∴==⎪⎭,故选B.考点:1.向量的数量积运算;2.向量的夹角;3.解析几何中与圆有关的最值问题.【名师点睛】本题考查平面向量的数量积与向量的模,由于结论是要求向量模的平方的最大值,因此我们要把它用一个参数表示出来,解题时首先对条件进行化简变形,本题中得出120ADC ADB BDC ∠=∠=∠=︒,且2DA DB DC ===,因此我们采用解析法,即建立直角坐标系,写出,,,A B C D 坐标,同时动点P 的轨迹是圆,()(222134x y BM +++=,因此可用圆的性质得出最值.因此本题又考查了数形结合的数学思想.4.【2016高考新课标2文数】已知向量a =(m ,4),b =(3,-2),且a ∥b ,则m =___________. 【答案】6- 【解析】试题分析:因为a ∥b ,所以2430m --⨯=,解得6m =-. 考点:平面向量的坐标运算 ,平行向量.【名师点睛】如果a =(x 1,y 1),b =(x 2,y 2)(b ≠0),则a ∥b 的充要条件是x 1y 2-x 2y 1=0. 5.【2016高考北京文数】已知向量=a b,则a 与b 夹角的大小为_________. 【答案】30考点:平面向量数量积【名师点睛】由向量数量积的定义θcos ||||⋅⋅=⋅b a b a (θ为,的夹角)可知,数量积的值、模的乘积、夹角知二可求一,再考虑到数量积还可以用坐标表示,因此又可以借助坐标进行运算.当然,无论怎样变化,其本质都是对数量积定义的考查.求解夹角与模的题目在近年高考中出现的频率很高,应熟练掌握其解法.6.【2016高考新课标1文数】设向量a =(x ,x +1),b =(1,2),且a ⊥b ,则x = .【答案】23- 【解析】试题分析:由题意, 20,2(1)0,.3x x x ⋅=++=∴=-a b 考点:向量的数量积及坐标运算【名师点睛】全国卷中向量大多以客观题形式出现,属于基础题.解决此类问题既要准确记忆公式,又要注意运算的准确性.本题所用到的主要公式是:若()()1122,,,x y x y ==a b ,则1122x y x y ⋅=+a b .7.【2016高考浙江文数】已知平面向量a ,b ,|a |=1,|b |=2,a ·b =1.若e 为平面单位向量,则|a ·e |+|b ·e |的最大值是______.考点:平面向量的数量积和模.【思路点睛】先设a ,b 和e 的坐标,再将a e b e ⋅+⋅转化为三角函数,进而用辅助角公式将三角函数进行化简,最后用三角函数的性质可得三角函数的最大值,进而可得a eb e ⋅+⋅的最大值.8.【2016高考山东文数】已知向量1,-()()16,-4a b ==,.若()a tab ⊥+,则实数t 的值为________.【答案】5- 【解析】 试题分析:()()()()6,4,6,41,12100ta b t t ta b a t t t +=+--+⋅=+--⋅-=+=,解得5t =-考点:平面向量的数量积【名师点睛】本题主要考查平面向量的数量积、平面向量的坐标运算.解答本题,关键在于能从()a tab ⊥+出发,转化成为平面向量的数量积的计算.本题能较好的考查考生转化与化归思想、基本运算能力等.第二部分 2016优质模拟题1.【2016江西赣中南五校一联】如图所示,点P 是函数2sin()(,0)y x x R ωϕω=+∈>图象的最高点,M 、N 是图象与x 轴的交点,若0PM PN ⋅=,则ω等于( ) A . 8 B .8π C . 4π D .2π【答案】B【解析】由题意可得:2=OP ,PN PM ⊥,所以2==ON OM ;所以函数的周期为16,即8πω=故选B .2.【2016云南第一次统测】为得到cos 26y x π⎛⎫=- ⎪⎝⎭的图象,只需要将sin 2y x =的图象( )A .向右平移3π个单位B .向右平移6π个单位 C .向左平移3π个单位 D .向左平移6π个单位【答案】D3.【2016湖北省优质高中联考】已知向量()()()3,1,1,3,,2a b c k ===-,若()//a c b -,则向量a 与向量c 的夹角的余弦值是( )A .5 B .15 C .5-.15-【答案】A【解析】()3,3k c a -=-,因为()//a c b -,所以()133-3⨯=⨯k ,解得2=k ,当2=k 时,5522104,cos =⨯=⋅>=<c a c a c a,故选A . 4.【2016江西赣中南五校一联】ABC ∆外接圆圆心O ,半径为1,2AO AB AC =+且OA AB =,则向量BA 在向量BC 方向的投影为( )A .21 B .23 C .21- D .23-【答案】A【解析】因为-+-=⇒+=22所以-=,所以C B O ,,三点共线即AC AB ⊥;又因为1==,所以2=BC ,所以()1BA BC BA AC AB ⋅=⋅-=故向量BA 在向量上的投影为21选A .5.【2016河南中原名校一联】在ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量()B A m cos ,cos =,()b c a n -=2,,且//. (1)求角A 的大小;(2)若4=a ,求ABC ∆面积的最大值.6.【2016河北石家庄质检二】ABC ∆中,角A ,B ,C 的对边分别为a ,b ,c ,且2cos +2bc C c a =.(1)求角B 的大小;(2)若BD 为AC 边上的中线,1cos 7A =,BD =,求ABC ∆的面积. 【解析】(1)a c C b 2cos 2=+,由正弦定理,得A C C B sin 2sin cos sin 2=+, ∵A B C π++=,∴sin sin()sin cos cos sin A B C B C B C =+=+,∴2sin cos sin 2(sin cos cos sin )B C C B C B C +=+,∴C B C sin cos 2sin = ∵π<<C 0,∴以0sin ≠C ,∴21cos =B . 又∵π<<B 0,∴3B π=.。