八年级下册数学《分式》分式方程知识点整理
八年级数学下册书本知识点归纳整理
八年级数学下册书本知识点归纳整理人教版八年级下册主要包括了分式、反比例函数、勾股定理、四边形、数据的分析五个章节的内容。
第十六章分式一、知识框架二、知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A 叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于0。
3.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A*C/B*C A/B=A÷C/B÷C(A,B,C为整式,且C≠0)。
5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式。
约分时,一般将一个分式化为最简分式。
6.分式的四则运算:(1)同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减,用字母表示为:a/c±b/c=a ±b/c。
(2)异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd。
(3)分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母。
用字母表示为:a b×c d=ac bd。
(4)分式的除法法则:①两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc。
②除以一个分式,等于乘以这个分式的倒数:a b÷c d=a b×d c。
7.分式方程的意义:分母中含有未知数的方程叫做分式方程。
8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根)。
八年级数学《分式方程》知识点
分式方程是中学数学的重要内容,它是求解方程的一类特殊方法。
因此,分式方程的知识点有以下几方面:
一、分式方程的概念
分式方程是指用一个分式的方式表示方程的一种方法,它是一种由分式组成的等式,它的左右两端都是分式,从而把求根的问题转换成分式的比较,并设法确定方程的根。
二、求解分式方程的步骤
1.将分式方程中的项相同的分式化简,并且把等式的左右两端分别化简成分数或最简分式。
2.将分式方程中间,求解未知数的方法就是将分式的左右两端乘以分母,使之成为整式,然后使整式等于0,再解出未知数。
3.有时会出现分式方程中的未知数不能解出的情况,此时可以将此分式方程化为一元一次不等式来求解。
三、分式方程的应用
分式方程在解决一些实际问题时有着重要作用,如求解收益、组成比例、比较等。
由此可见,掌握分式方程的方法对解决实际问题有着重要意义。
四、注意事项
1.求解分式方程时需要注意把等式的左右两端分别化简成分数或最简分式。
2.使用分式方程时,要注意看清题干的字眼,要分清求解的是方程还是不等式,然后采取不同的方法
3.求解分式方程时还要注意确保所求解的方程或不等式有解。
4.分式方程的解可以使用数学软件得出。
八年级分式方程数学知识点
八年级分式方程数学知识点一、基本概念分式方程是指未知量中包含分数表达式的方程,可用一组数值解求出未知量的值。
如:\frac{x+1}{2}=3,其中x为未知量。
二、分式方程的解法1. 化简分式,使其成为整式方程。
如:\frac{x+1}{2}=3化简为x+1=6。
2. 通分,消去分母。
如:\frac{3}{x-2}=\frac{1}{x+1}通分后为3(x+1)=x-2。
3. 变形化简后求解。
如:\frac{2}{2x+3}-\frac{3}{x-1}=\frac{4}{x^2-x-3}变形化简后得到x=-1或x=\frac{5}{2}。
三、分式方程的注意事项1. 化简前应检查分母是否有值为0的情况。
如:\frac{x}{x^2-4x+4}=1化简前需考虑x^2-4x+4=0的情况,即x=2。
2. 通分时应注意分母因式分解。
如:\frac{x}{2x-4}-\frac{2}{x+1}=\frac{3x}{x^2-3x+2}通分前需分解(x-1)(x-2)。
3. 将解代回原分式方程检验。
如:\frac{4}{x+3}-\frac{5}{x-1}=\frac{1}{x-2}解得x=5/2,代入原式验证是否成立。
四、分式方程的应用例题1. 甲、乙两地的距离为480km,两地之间有一辆车和一辆自行车相向而行,行至中途时,车停下了,自行车继续前进,最后到达乙地时,车和自行车的距离为40km。
已知车行驶的速度比自行车快20km/h,求车和自行车的速度各是多少。
设自行车的速度为x km/h,车的速度为x+20 km/h,时间为t,车行驶的距离为(x+20)×t,自行车行驶的距离为x×(t+2)。
由题意可得(x+20)t+x(t+2)=480及(x+20)t-x(t+2)=40,解得x=20,车速为40km/h,自行车速度为20km/h。
2. 一条河流的宽度为200m,在河岸的A、B两处浅滩的位置分别离河口12km、18km处。
分式与分式方程知识点总结
分式与分式方程知识点总结分式是一种特殊的代数表达式,有分子和分母组成,通常用斜杠“/”或者横线“-”表示分数线。
分式可以表示为a/b的形式,其中a为分子,b为分母。
分式的乘法和除法的法则:1.分式乘法法则:分式的乘法可以简化为分子相乘,分母相乘的运算。
即(a/b)*(c/d)=(a*c)/(b*d)。
2.分式除法法则:将除法转化为乘法后,取除数的倒数,然后按照分式乘法法则进行运算。
即(a/b)/(c/d)=(a*d)/(b*c)。
分式的加法和减法的法则:1.分式加法法则:要进行分式的加法,需要先找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行加法运算。
即a/b+c/d=(a*d+b*c)/(b*d)。
2.分式减法法则:和分式加法法则类似,需要找到两个分式的共同分母。
然后将分式的分子按照共同分母的比例进行减法运算。
即a/b-c/d=(a*d-b*c)/(b*d)。
分式的化简:将分式化简为最简形式的步骤如下:1. 如果分子和分母有相同的公因子,可以约分掉。
即a/b =(a/gcd(a,b)) / (b/gcd(a,b))。
2.如果分数的分子和分母都是整数,并且分子能整除分母,可以化简为整数。
即a/b=a/b,其中a能整除b。
3.如果分式的分子和分母都是多项式,并且可以进行因式分解,可以使用因式分解后的形式来化简分式。
分式方程是包含一个或多个分式的方程。
求解分式方程的一般步骤如下:1.将方程两边的分式通过相乘分母的方法,化简为有理式。
2.对于有理式的方程,可以通过解方程的方法求出x的值。
3.检验所求得的x的值是否满足原方程,如果满足,即为解;如果不满足,则该方程无解。
在求解分式方程时,需要注意以下几个问题:1.分母不能为0,需要排除分母为0的解。
2.对于含有分式的方程,需要注意去除分式的分母后方程是否成立,避免出现无意义的解。
3.可能出现分母为0的情况,需要排除该解,以免引起除法运算错误。
八年级下册数学《分式》分式方程 知识点整理
分式方程一、本节学习指导解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。
做适当练习即能掌握。
二、知识要点1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
(1)、分式方程的解法:解分式方程的基本思想方法是:分式方程转化去分母整式方程.解分式方程的一般方法和步骤:①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;②解这个整式方程;③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;②解分式方程必须要验根,千万不要忘了!(2)、解分式方程的步骤:能化简的先化简;方程两边同乘以最简公分母,化为整式方程;解整式方程;验根.(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为0,则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
(4)、含有字母的分式方程的解法:在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。
计算结果是用已知数表示未知数,不要混淆。
2、列分式方程解应用题(1)列分式方程解应用题的步骤:①审:审清题意;②找: 找出相等关系;③设:设未知数;④ 列:列出分式方程;⑤ 解:解这个分式方程;⑥ 验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;⑦ 答:写出答案。
(2)应用题有几种类型;基本公式是什么常见的有以下五种:①行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. ②数字问题:在数字问题中要掌握十进制数的表示法.③工程问题 基本公式:工作量=工时×工效.④顺水逆水问题 v v v v v v =+•=-顺水静水水逆水静水水3、科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.(1)、用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式,其中1≤︱a ︱<10,n 为原整数部分的位数减1;(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.三、经验之谈:这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。
八年级数学分式与分式方程
八年级数学分式与分式方程分式与分式方程学习资料。
一、分式的概念。
1. 定义。
- 一般地,如果A、B(B≠0)表示两个整式,且B中含有字母,那么式子(A)/(B)就叫做分式。
例如(1)/(x),(x + 1)/(x - 1)等都是分式,而(2)/(3)不是分式,因为分母是常数3,不含有字母。
2. 分式有意义的条件。
- 分式(A)/(B)有意义的条件是B≠0。
例如,对于分式(1)/(x - 2),当x - 2≠0,即x≠2时,这个分式有意义。
3. 分式值为零的条件。
- 分式(A)/(B)的值为零的条件是A = 0且B≠0。
例如,对于分式(x)/(x+1),当x = 0且x+1≠0(即x≠ - 1)时,分式的值为0。
二、分式的基本性质。
1. 性质内容。
- 分式的分子与分母同乘(或除以)一个不等于0的整式,分式的值不变。
用式子表示为(A)/(B)=(A× C)/(B× C),(A)/(B)=(A÷ C)/(B÷ C)(C≠0)。
2. 约分。
- 定义:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分。
- 例如,对于分式(6x^2y)/(8xy^2),分子分母的公因式是2xy,约分后得到(3x)/(4y)。
3. 通分。
- 定义:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
- 例如,将(1)/(x)和(1)/(x + 1)通分,先找最简公分母为x(x + 1),则(1)/(x)=(x +1)/(x(x + 1)),(1)/(x+1)=(x)/(x(x + 1))。
三、分式的运算。
1. 分式的乘除法。
- 分式乘分式,用分子的积做积的分子,分母的积做积的分母,即(A)/(B)·(C)/(D)=(A· C)/(B· D)。
例如(2)/(3x)·(6x)/(4)=(2×6x)/(3x×4)= 1。
最新八年级下册数学知识点总结归纳
最新八年级下册数学知识点总结归纳第1章分式一.知识框架二.知识概念1.分式:形如A/B,A、B是整式,B中含有未知数且B不等于0的整式叫做分式(fraction)。
其中A叫做分式的分子,B叫做分式的分母。
2.分式有意义的条件:分母不等于03.约分:把一个分式的分子和分母的公因式(不为1的数)约去,这种变形称为约分。
4.通分:异分母的分式可以化成同分母的分式,这一过程叫做通分。
分式的基本性质:分式的分子和分母同时乘以(或除以)同一个不为0的整式,分式的值不变。
用式子表示为:A/B=A_/B_ A/B=A÷C/B÷C(A,B,C为整式,且C≠0)5.最简分式:一个分式的分子和分母没有公因式时,这个分式称为最简分式.约分时,一般将一个分式化为最简分式.6.分式的四则运算:1.同分母分式加减法则:同分母的分式相加减,分母不变,把分子相加减.用字母表示为:a/c±b/c=a±b/c2.异分母分式加减法则:异分母的分式相加减,先通分,化为同分母的分式,然后再按同分母分式的加减法法则进行计算.用字母表示为:a/b±c/d=ad±cb/bd3.分式的乘法法则:两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.用字母表示为:a/b _c/d=ac/bd4.分式的除法法则:(1).两个分式相除,把除式的分子和分母颠倒位置后再与被除式相乘.a/b÷c/d=ad/bc(2).除以一个分式,等于乘以这个分式的倒数:a/b÷c/d=a/b_/c7.分式方程的意义:分母中含有未知数的方程叫做分式方程.8.分式方程的解法:①去分母(方程两边同时乘以最简公分母,将分式方程化为整式方程);②按解整式方程的步骤求出未知数的值;③验根(求出未知数的值后必须验根,因为在把分式方程化为整式方程的过程中,扩大了未知数的取值范围,可能产生增根).分式和分数有着许多相似点。
北师大版八年级下册数学 第五章 分式与分式方程(知识点)
第五章分式与分式方程知识点1:分式的概念1、分式的定义:一般地,用A,B表示两个正式,A÷B可以表示成AB的形式。
如果B中含有字母,那么称AB为分式,其中A称为分式的分子,B称为分式的分母。
分式需要满足的三个条件:(1)是形如AB的式子;(2)A,B都整式;(3)分母B中必须含有字母。
分式有意义的条件:分母不能为0.分式无意义的条件:分母等于0.分式的值为0的条件:分子等于0且分母不等于0.知识点2:分式的性质2、分式的基本性质分式的基本性质:分式的分子与分母都乘(或除以)同一个不等于零的整式,分式的值不变。
字母表示:AB =A·CB·C,AB=A÷CB÷C(C≠0,其中A,B,C均是整式)运用条件:(1)分子和分母要同时做“乘法(或除法)”运算;(2)“乘(或除以)”的对象必须是同一个不等于0的整式。
3、分式的符号法则法则内容:分式的分子、分母与分式本身的符号同时改变其中两个,分式的值不变。
字母表示:AB =−A−B=−−AB=−A−B知识点3:分式的约分与通分4、分式的约分约分:根据分式的基本性质,把一个分式的分子与分母的公因式约去,叫做分式的约分,即A·CB·C =AB(C为整式且C≠0).约分的方法:如果分式的分子、分母都是单项式,那么直接约去分子、分母的公因式;如果分式的分子、分母中至少有一个多项式,那么先分解因式,再约去分子、分母的公因式。
最简分式:分子与分母没有公因式的分式,叫做最简分式。
5、分式的通分通分:根据分式的基本性质,把几个异分母的分式分别化成与原来的分式相等的同分母的分式,叫做分式的通分。
用字母表示:将AB 和CD通分,AB=A·DB·D,CD=B·CB·D(分母都为B·D)。
通分的步骤:(1)将所有分式的分母化为乘积的形式,当分母为多项式时,应进行因式分解;(2)确定最简公分母,即各分母的所有因式的最高次幂的积;(3)将分子、分母同乘一个因式,使分母变为最简公分母。
(完整版)分式和分式方程知识点总结大全
分式和分式方程知识点总结1、分式一般地,我们把形如A的代数式叫做分式,其中A, B都是整式,且BB含有字母。
A叫做分式的分子,B叫做分式的分母。
分式的分母必须含有字母。
分式也可以看做两个整式相除(除式中含有字母)的商在分数中,分母不能等于0.同样,在分式中,分母也不能等于0,即当分式的分母等于0时,分式没有意义。
分数的分子和分母同乘(或除以)一个不等于0的数,其值不变。
分式的基本性质分式的分子和分母同乘(或除以)一个不等于0的整式,分式的值不其中,M是不等于0的整式利用分式的基本性质可以对分式进行化简把分式中分子和分母的公因式约去,叫做分式的约分。
分子和分母没有公因式的分式叫做最简分式。
2、分式的乘除分式的乘法法则分式与分式相乘,用分子的积作为积的分子,分母的积作为积的分母。
AM A?CB ' D B?D分式的除法法则分式除以分式,把除式的分子与分母颠倒位置后,与被除式相乘。
A C AD A?D__ __ ______ Q ____ ________B D B 'C B?C3、分式的加减同分母的分式加减法法则同分母的两个分式相加(减),分母不变,把分子相加(减)。
A C A CB B B把几个异分母分式分别化为与它们相等的同分母分式,叫做分式的通分,这个相同的分母叫做这几个分式的公分母。
几个分式的公分母不止一个,通分时一般选取最简公分母异分母的分式加减法法则异分母的两个分式相加(减),先通分,化为同分母的分式,再相加(减)。
A C AD BC AD BCB D BD BD BD分式的混合运算,与数的混合运算类似。
先算乘除,再算加减;如果有括号,要先算括号里面的。
4、分式方程分母中含有未知数的方程叫做分式方程。
使得分式方程等号两端相等的未知数的值叫做分式方程的解(也叫做分式方程的根)。
在解分式方程时,首先是通过去分母将分式方程转化为整式方程,并解这个整式方程,然后要将整式方程的根代入分式方程(或公分母)中检验。
初中数学:分式方程知识整理及实际应用
初中数学:分式方程知识整理及实际应用今天给大家带来了初中四大方程中最特别的一个:“分式方程”,赶快来一起看看吧。
知识整理 1.分式的定义形如(A、B是整式,且B中含有字母,B≠0)的式子,叫做分式。
其中A叫做分式的分子,B叫做分式的分母。
整式和分式统称为有理式,即有理式包括整式和分式。
分析:判断分式的依据是看分母中是否含有字母,如果代数式含有字母则是分式,如果不含有字母则不是分式.因此,我们很容易看出来C选项是分式.2.分式的基本性质分式的基本性质与分数类似,我们可以对比分数的基本性质复习。
(1)分式的分子分母同乘(除)一个不为0的整式,分式的值不变;(2)分式的变号:分式的分子、分母同时变号则分式的值不变;(3)分式的约分、通分:①约分:约去分式分子分母的公因式.即寻找分子分母系数的最大公约数,再找相同字母的最低次幂,二者的乘积就是公因式,然后约去公因式;②通分:把几个异分母分式转化为与原分式相等的同分母分式的过程叫做通分,找出最简公分母是通分的关键。
①对分母进行因式分解(若分母为单项式,不用进行因式分解);②找出各分母系数的最小公倍数;③找各分母所含所有因式的最高次幂;④所得到的系数和各因式的最高次幂的乘积即为最简公分母。
(4)分式的运算:和分数的运算性质相同。
a.分式的乘除:分子乘分子,分母乘分母,然后再分别用它们的乘积作为分子和分母,并且对得到的结果要通过约分进行化简。
在进行分式除法时,把除式的分子、分母颠倒位置后,与被除式相乘。
b.分式的加减:同分母分式:分母不变,分子相加减;异分母分式:先通分,变为同分母分式,然后再加减。
c.分式的乘方:d.整数指数幂:3.分式方程方程中含有分式,且分母中含有未知数的方程叫做分式方程。
4.解分式方程解分式方程的基本思路在于“转化”,将分式方程转化为整式方程。
具体作法就是“去分母”,即方程两边同时乘以最简公分母。
要注意的是,在去分母后得到的方程的解有可能使原方程分母为0,因此需要进行检验:将转化后的整式方程的解带入最简公分母,若最简公分母的值不为0,则整式方程的解是原方程的解;否则,不是原方程的解。
分式与分式方程知识点
分式与分式方程知识点分式是数学中的一个重要概念,它是由两个整数的比构成的表达式。
在分数中,分子表示被分割的数量,分母表示将整体划分的份数。
掌握好分式的相关知识,对于解决各种实际问题以及在后续数学学习中起到至关重要的作用。
1. 分式的基本运算在进行分式的基本运算时,需要掌握分式的相加、相减、相乘和相除四种基本运算法则。
首先,当分式的分母相同的时候,可以直接将分子相加或相减。
例如,分式 1/4 + 2/4 = 3/4;分式 5/7 - 3/7 = 2/7。
其次,当分式的分母不同但可以化为相同分母的时候,可以通过找到最小公倍数,将分数化为相同的分母之后再进行运算。
例如,分式 1/2 + 1/3 可以通过最小公倍数为6,将分式转化为 3/6 + 2/6 = 5/6。
另外,分式的相乘和相除运算需要分别将分子与分母相乘或相除。
例如,分式 2/3 * 4/5 = 8/15;分式 3/7 ÷ 1/4 = 12/7。
2. 分式方程的解分式方程是由分式构成的方程,它的未知数通常出现在分数的分子或分母中。
解分式方程的关键在于消除分母,使方程转化为一般方程,从而求解未知数。
解分式方程的基本步骤如下:(1) 消去分母。
通过将方程两边同乘以分母的最小公倍数,可以将方程中的分母消除,形成原方程的等效方程。
例如,对于分式方程 1/x + 1/(x+1) = 1/2,可以将方程两边同乘以2x(x+1),得到 2(x+1) + 2x = x(x+1)。
(2) 解一元方程。
将经过一次化简后的方程转化为一般的方程形式,并进行进一步的求解。
对于上述的等效方程,按照一般方程的解法进行处理,得到 x = 2。
(3) 验证解的可行性。
将得到的解代入原方程进行验证,确保解的可行性。
对于分式方程 1/x + 1/(x+1) = 1/2,将 x = 2 代入方程左侧得到 1/2 +1/3 = 1/2,等式成立。
因此, x = 2 是原方程的解。
分式知识点总结与分式方程的应用
分式知识点总结与分式方程的应用一、分式的定义和基本性质分式是指两个整数的比的形式,分子和分母都可以是整数。
分式的一般形式为a/b,其中a为分子,b为分母。
分式也可以是带有字母的表达式。
1.分式的定义:分式表示两个数的比。
分子表示比的被除数,分母表示比的除数。
2.分式的基本性质:①分式的值是确定的:分式的值只与分子和分母有关,而与分子和分母的选取方法无关。
②分式的约定:分式的分母不能为0,即b≠0。
③分式的约分:分式a/b可以约分为最简分式的条件是a和b都有因数c,这样a和b都可以被c整除。
④分式的最简形式:分式a/b的最简形式是分子分母互为质数⑤分式的倒数:若分式a/b不等于0,则它的倒数为b/a。
⑥分式的乘法:若a/c和b/d是两个非零分式,则a/c与b/d的乘积为(a·b)/(c·d)。
⑦分式的除法:分式a/b除以c/d可真分式以d/c乘,得(a·d)/(b·c)。
⑧分式的加法:根据通分的定义,可得a/c+b/d=(a·d+b·c)/(c·d)⑨分式的减法:根据通分的定义,可得a/c-b/d=(a·d-b·c)/(c·d)分式方程的一般形式为:分子中含有未知数的为分式方程。
例如:2/x=3/41.解分式方程的基本步骤:(1)去分母:将分式方程中的每个分式的分母去掉,得到一个整式方程。
(2)解整式方程:使用解整式方程的方法解方程。
(3)检验解:将求得的解代入原分式方程,检验是否满足。
2.分式方程的常见类型:(1)一次分式方程:分子和分母的最高次幂都是1(2)整式方程:分式方程中的分子和分母都是整式。
(3)二次分式方程:分子和分母的最高次幂都是2(4)退化分式方程:当方程中出现0/0的情况,方程可能退化为整式方程或无解。
3.分式方程的注意事项:(1)除法的解答有条件:可能有解,也可能无解。
(2)变量的取值范围:要满足约束条件。
分式与分式方程知识点
分式与分式方程知识点一、分式的定义1. 分式(Fraction):形如 A/B 的代数表达式,其中 A 是分子,B 是分母,B ≠ 0。
2. 有理表达式(Rational Expression):包含分式的代数表达式。
二、分式的基本性质1. 等值变换:分式可以通过乘以或除以相同的非零表达式进行等值变换。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/152. 分式的加减法:只有当分母相同时,才能直接进行加减运算。
例如:(2/5) + (3/5) = (2+3)/5 = 5/5 = 13. 分式的乘除法:分子乘分子,分母乘分母。
例如:(2/3) * (4/5) = (2*4)/(3*5) = 8/154. 分式的化简:通过约分,将分子和分母中的公因数相除,得到最简分式。
例如:(12/16) -> (12÷4)/(16÷4) = 3/4三、分式方程1. 分式方程(Fractional Equation):含有分式的方程。
2. 解分式方程的基本原则:将分式方程转化为整式方程进行求解。
3. 去分母:通过将方程两边同时乘以所有分母的最简公分母,消除分母。
例如:(2/x) + (3/y) = 5 => 2y + 3x = 5xy (假设 x, y > 0) 4. 检验解:将求得的整式解代入最简公分母中,确保不会得到零。
四、特殊类型的分式方程1. 一元一次分式方程:只含有一个未知数,且未知数的最高次数为一的分式方程。
2. 二元一次分式方程:含有两个未知数,且每个未知数的最高次数为一的分式方程。
3. 高次分式方程:含有未知数的最高次数大于一的分式方程。
五、解分式方程的步骤1. 确定最简公分母。
2. 去分母,将分式方程转化为整式方程。
3. 解整式方程,求得未知数的值。
4. 检验解的有效性。
5. 写出最终解。
六、应用题1. 理解题意,找出等量关系。
2. 列出分式方程。
分式方程知识点总结
分式方程知识点总结一.分式方程、无理方程的相关概念:1.分式方程:分母中含有未知数的方程叫做分式方程。
2.无理方程:根号内含有未知数的方程。
(无理方程又叫根式方程 )3.有理方程:整式方程与分式方程的统称。
二.分式方程与无理方程的解法:1.去分母法:用去分母法解分式方程的一般步骤是:①在方程的两边都乘以最简公分母,约去分母,化成整式方程;②解这个整式方程;③把整式方程的根代入最简公分母,看结果是不是零,使最简公分母不为零的根是原方程的根,使最简公分母为零的根是增根,必须舍去。
在上述步骤中,去分母是关键,验根只需代入最简公分母。
2.换元法:用换元法解分式方程的一般步骤是:②换元:换元的目的就是把分式方程转化成整式方程,要注意整体代换的思想;③三解:解这个分式方程,将得出来的解代入换的元中再求解;④四验:把求出来的解代入各分式的最简公分母检验,若结果是零,则是原方程的增根,必须舍去;若使最简公分母不为零,则是原方程的根。
解无理方程也大多利用换元法,换元的目的是将无理方程转化成有理方程。
三.增根问题:1.增根的产生:分式方程本身隐含着分母不为 0 的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为 0,那么就会出现不适合原方程的增根。
2.验根:因为解分式方程可能出现增根,所以解分式方程必须验根。
3.增根的特点:增根是原分式方程转化为整式方程的根,增根必定使各分式的最简公分母为 0 。
解分式方程的思想就是转化,即把分式方程整式方程。
常见考法( 1 ) 考查分式方程的概念、分式方程解和增根的机会比较少,通常与其他知识综合起来命题,题型以选择、填空为主;( 2) 分式方程的解法,是段考、中考考查的重点。
误区提醒( 1 ) 去分母时漏乘整数项;( 2) 去分母时弄错符号;( 3) 换元出错;( 4) 忘记验根。
分式知识点总结初二
分式知识点总结初二1. 分式的定义分式是用分数形式表示的代数式,它是一个分子和一个分母组成的表达式。
分数的分母不能为0。
2. 分式的简化对于分式进行简化是分式运算中的一项基本操作。
分式简化就是使分子和分母的公约数尽可能地消去,使分子和分母没有公因数。
分式简化的方法,就是找到分子与分母的最大公约数,并将分子与分母同时除以最大公约数。
3. 分式的乘法分式的乘法是指将一个分式乘以另一个分式的运算。
对于分式的乘法,它的运算规则是将两个分式的分子相乘,分母相乘,然后进行约分。
即(a/b)×(c/d)=(a×c)/(b×d)4. 分式的除法分式的除法是指将一个分式除以另一个分式的运算。
对于分式的除法,它的运算规则是将两个分式的乘数作为除数,然后再将第一个分式的分子与第二个分式的分母相乘,分母与分子相乘,得到的新分式即为所求结果。
即(a/b)÷(c/d) = (a×d)/(b×c)5. 分式的加法和减法分式的加法和减法是分式运算中的两个基本操作。
分式的加法和减法需要先将两个分式的分母化为相同数,然后再将分子相加或相减,得到新的分式。
这两种运算较为复杂,需要学生灵活掌握。
6. 分式的运算法则a. 分式乘除法的规则是:分式的乘法就是把分子相乘作为新分子,分母相乘作为新分母;分式的除法就是把除数倒过来,再进行乘法运算。
b. 分式的加减法的规则是:分式的加减法要先把两个分式化为公分母的分式,然后再将分子相加或相减作为新的分子。
7. 分式的乘方与除方分式的乘方与除方是分式运算的两种特殊形式。
对于分式的乘方,即是将分子和分母分别进行乘方运算;对于分式的除方,即是将分子和分母分别进行除法运算。
8. 分式的应用分式在代数中有广泛的应用,特别是在方程式的求解、数学建模等方面的应用比较多。
在日常生活中,也有很多实际问题都可以用分式来进行表达和解决,比如分配问题、比值问题等。
分式与分式方程知识总结
第五章分式与分式方程知识总结【知识网络】【要点梳理】要点一、分式的有关概念及性质1.分式一般地,如果A、B表示两个整式,并且B中含有字母,那么式子叫做分式.其中A叫做分子,B叫做分母.要点诠释:分式中的分母表示除数,由于除数不能为0,所以分式的分母不能为0,即当B≠0时,分式才有意义.2.分式的基本性质(M为不等于0的整式).3.最简分式分子与分母没有公因式的分式叫做最简分式.如果分子、分母中含有公因式,要进行约分化简.要点二、分式的运算1.约分利用分式的基本性质,把一个分式的分子和分母中的公因式约去,不改变分式的值,这样的分式变形叫做分式的约分.2.通分利用分式的基本性质,使分子和分母同乘以适当的整式,不改变分式的值,把异分母的分式化为同分母的分式,这样的分式变形叫做分式的通分.3.基本运算法则分式的运算法则与分数的运算法则类似,具体运算法则如下:(1)加减运算;同分母的分式相加减,分母不变,把分子相加减.;异分母的分式相加减,先通分,变为同分母的分式,再加减.(2)乘法运算,其中是整式,.两个分式相乘,把分子相乘的积作为积的分子,把分母相乘的积作为积的分母.(3)除法运算,其中是整式,.两个分式相除,把除式的分子和分母颠倒位置后,与被除式相乘.(4)乘方运算分式的乘方,把分子、分母分别乘方.4.分式的混合运算顺序先算乘方,再算乘除,最后加减,有括号先算括号里面的.要点三、分式方程1.分式方程的概念分母中含有未知数的方程叫做分式方程.2.分式方程的解法解分式方程的关键是去分母,即方程两边都乘以最简公分母将分式方程转化为整式方程.3.分式方程的增根问题增根的产生:分式方程本身隐含着分母不为0的条件,当把分式方程转化为整式方程后,方程中未知数允许取值的范围扩大了,如果转化后的整式方程的根恰好使原方程中分母的值为0,那么就会出现不适合原方程的根---增根.要点诠释:因为解分式方程可能出现增根,所以解分式方程必须验根.验根的方法是将所得的根带入到最简公分母中,看它是否为0,如果为0,即为增根,不为0,就是原方程的解.要点四、分式方程的应用列分式方程解应用题与列一元一次方程解应用题类似,但要稍复杂一些.解题时应抓住“找等量关系、恰当设未知数、确定主要等量关系、用含未知数的分式或整式表示未知量”等关键环节,从而正确列出方程,并进行求解.。
分式知识点总结与分式方程的应用
知识点1、分式概念重点:掌握分式的概念和分式有意义的条件难点:分式有意义、分式值为0的条件 分式的概念:形如B A ,其中分母B 中含有字母,分数是整式而不是分式. (1)分式无意义时,分母中的字母的取值使分母为零,即当B=0时分式无意义.(2)求分式的值为零时,必须在分式有意义的前提下进行,分式的值为零要同时满足分母的值不为零及分子的值为零,这两个条件缺一不可.(3)分式有意义,就是分式里的分母的值不为零.易错易混点(1) 对分式的定义理解不准确;(2)不注意分式的值为零的条件;知识点2、分式的基本性质重点:正确理解分式的基本性质.难点:运用分式的基本性质,将分式约分、通分分式的基本性质:分式的分子与分母都乘以(或除以)同一个不等于零的整式,分式的值不变,用式子表示是:AB=MB M A ⨯⨯,AB=M B M A ÷÷.(其中M 是不等于零的整式)分式中的A ,B ,M 三个字母都表示整式,其中B 必须含有字母,除A 可等于零外,B ,M 都不能等于零.因为若B=0,分式无意义;若M=0,那么不论乘或除以分式的分母,都将使分式无意义.分式的约分和通分(1)约分的概念:把一个分式的分子与分母的公因式约去,叫做分式的约分.(2)分式约分的依据:分式的基本性质.(3)分式约分的方法:把分式的分子与分母分解因式,然后约去分子与分母的公因式.(4)最简分式的概念:一个分式的分子与分母没有公因式时,叫做最简分式.求几个分式的最简公分母的步骤:1.取各分式的分母中系数最小公倍数;2.各分式的分母中所有字母或因式都要取到;3.相同字母(或因式)的幂取指数最大的;4.所得的系数的最小公倍数与各字母(或因式)的最高次幂的积(其中系数都取正数)即为最简公分母。
各个分式的分母都是多项式,并且可以分解因式。
这时,可先把各分式的分母中的多项式分解因式,再确定各分式的最简公分母,最后通分。
易错易混点分式的分子、分母都是几个因式的积的形式,所以约去分子、分母中相同因式的最低次幂,注意系数也要约分。
分式方程知识点归纳
分式方程知识点归纳1. 分式的定义:如果A 、B 表示两个整式,并且B 中含有字母,那么式子BA 叫做分式。
1) 分式与整式最本质的区别:分式的字母必须含有字母,即未知数;分子可含字母可不含字母。
2) 分式有意义的条件:分母不为零,即分母中的代数式的值不能为零。
3) 分式的值为零的条件:分子为零且分母不为零2. 分式的基本性质:分式的分子与分母同乘或除以一个不等于0的整式,分式的值不变。
用式子表示 其中A 、B 、C 为整式(0≠C )注:(1)利用分式的基本性质进行分时变形是恒等变形,不改变分式值的大小,只改变形式。
(2)应用基本性质时,要注意C ≠0,以及隐含的B ≠0。
(3)注意“都”,分子分母要同时乘以或除以,避免只乘或只除以分子或分母的部分项,或避免出现分子、分母乘除的不是同一个整式的错误。
3. 分式的通分和约分:关键先是分解因式1) 分式的约分定义:利用分式的基本性质,约去分式的分子与分母的公因式,不改变分式的值。
2) 最简分式:分子与分母没有公因式的分式3) 分式的通分的定义:利用分式的基本性质,使分子和分母同乘适当的整式,不改变分式的值,把几个异分母的分式化成分母相同的分式。
4) 最简公分母:取“各个分母”的“所有因式”的最高次幂的积做公分母,它叫做最简公分母。
4. 分式的符号法则分式的分子、分母与分式本身的符号,改变其中任何两个分式的值不变。
用式子表示为注:分子与分母变号时,是指整个分子或分母同时变号,而不是指改变分子或分母中的部分项的符号。
5. 条件分式求值1) 整体代换法:指在解决某些问题时,把一些组合式子视作一个“整体”,并把这个“整体”直接代入另一个式子,从而可避免局部运算的麻烦和困难。
例:已知 ,则求 2)参数法:当出现连比式或连等式时,常用参数法。
例:若 ,则求6. 分式的运算:1)分式乘法法则:分式乘分式,用分子的积作为积的分子,分母的积作为分母。
2)分式除法法则:分式除以分式,把除式的分子、分母颠倒位置后,与被除式相乘。
分式和分式方程知识点总结大全
分式和分式方程知识点总结大全分式:分式是指含有变量的有理数表达式,通常以a/b的形式表示,其中a和b是整数,而b不等于0。
基本概念:1.分子和分母:分数中的a称为分子,b称为分母。
2.真分数和假分数:如果分子小于分母,则分式称为真分数;如果分子大于或等于分母,则分式称为假分数。
3.约分:对于一个分式a/b,如果a和b有公约数,则可以将a和b同时除以它们的最大公约数,得到分式的最简形式。
4.相等分式:两个分子和分母比值相等的分式称为相等分式。
例如,2/3和4/6是相等的分式。
分式的运算:1.加法和减法:对于两个分式a/b和c/d来说,只有当b和d相等时,才能进行加法和减法运算。
运算结果的分母保持不变,并将分子相加或相减。
2.乘法:两个分式a/b和c/d相乘,将分子相乘得到新的分子,分母相乘得到新的分母。
结果要简化。
3.除法:两个分式a/b和c/d相除,将第一个分式的分子乘以第二个分式的分母,第一个分式的分母乘以第二个分式的分子。
结果要简化。
分式方程:分式方程是指含有分式的方程。
解分式方程的步骤:1.清除分母:将分式方程的两边同乘以分母的最小公倍数,从而消除分母。
2.化简方程:将方程中的分式进行化简,得到方程的最简形式。
3.解方程:根据方程的形式,进行求解。
常见的方法包括合并同类项、配方、移项等等。
常见的分式方程类型:1.一次分式方程:方程中只含有一次分式的方程。
例如,(x+1)/2=32.二次分式方程:方程中含有二次分式的方程。
例如,(x^2+1)/(x+2)=43.多次分式方程:方程中含有多次分式的方程。
例如,(x^3+1)/(x^2+2)=5应用场景:分式和分式方程在数学中的应用非常广泛,尤其在代数、几何、经济学等领域中有着重要的应用。
例如,在解决实际问题中,经常会用到比例关系,而分式可以很好地描述比例关系。
在几何学中,分式用于解决一些面积、体积等问题。
在经济学中,分式用于解决利润、成本等相关问题。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
八年级下册数学《分式》分式方程知识点
整理
-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
15.3分式方程
一、本节学习指导
解分式方程和我们前面学习的解方程有很多相似之处,期间会运用到很多分式的计算方式,就这一节来说并不难。
做适当练习即能掌握。
二、知识要点
1、分式方程:含分式,并且分母中含未知数的方程叫做分式方程。
(1)、分式方程的解法:
解分式方程的基本思想方法是:分式方程
转化
去分母
整式方程.
解分式方程的一般方法和步骤:
①去分母:即在方程的两边都同时乘以最简公分母,把分式方程化为整式方程,依据是等式的基本性质;
②解这个整式方程;
③检验:把整式方程的解代入最简公分母,使最简公分母不等于0的解是原方程的解,使最简公分母等于0的解不是原方程的解,即说明原分式方程无解。
注意:①去分母时,方程两边的每一项都乘以最简公分母,不要漏乘不含分母的项;
②解分式方程必须要验根,千万不要忘了!
(2)、解分式方程的步骤:
(1)能化简的先化简;
(2)方程两边同乘以最简公分母,化为整式方程;
(3)解整式方程;
(4) 验根.
(3)、分式方程检验方法:将整式方程的解带入最简公分母,如果最简公分母的值不为
0,
则整式方程的解是原分式方程的解;否则,这个解不是原分式方程的解。
(4)、含有字母的分式方程的解法:
在数学式子的字母不仅可以表示未知数,也可以表示已知数,含有字母已知数的分式方程的解法,也是去分母,解整式方程,检验这三个步骤,需要注意的是要找准哪个字母表示未知数,哪个字母表示未知数,还要注意题目的限制条件。
计算结果是用已知数表示未知数,不要混淆。
2、列分式方程解应用题
(1)列分式方程解应用题的步骤:
① 审:审清题意;
② 找: 找出相等关系;
③ 设:设未知数;
④ 列:列出分式方程;
⑤ 解:解这个分式方程;
⑥ 验:既要检验根是否是所列分式方程的解,又要检验根是否符合题意;
⑦ 答:写出答案。
(2)应用题有几种类型;基本公式是什么?
常见的有以下五种:
①行程问题 基本公式:路程=速度×时间 而行程问题中又分相遇问题、追及问题. ②数字问题:在数字问题中要掌握十进制数的表示法.
③工程问题 基本公式:工作量=工时×工效.
④顺水逆水问题 v v v v v v =+•=-顺水静水水逆水静水水
3、科学记数法:把一个数表示成的形式10n a ⨯(其中101<≤a ,n 是整数)的记数方法叫做科学记数法.
(1)、用科学记数法表示绝对值大于1的数时,应当表示为10n a ⨯的形式,其中1≤︱a ︱<10,n 为原整数部分的位数减1;
(2)、用科学记数法表示绝对值小于1的数时,则可表示为10n a -⨯的形式,其中n 为原数第1个不为0的数字前面所有0的个数(包括小数点前面的那个0),1≤︱a ︱<10.
三、经验之谈:
这一节考点比较多的应该是分式方程的应用题和科学计数法,但应用题基本不会单独命题,步骤虽繁琐,但是难度并不大。
科学计数法有两种情况,不要混淆了,填空题中还是比较容易被考到的,并且这一点在物理中用得也比较多,希望同学们掌握好。