高中数学第一章三角函数1.4.3正切函数的性质与图象课件新人教A版必修4(4)
高中数学 1.4.3正切函数的性质与图像课件 新人教A版必修4
自学导引 1.正切函数
y=tan
x
的定义域是__x|_x_∈__R_,___x≠ ___π2_+__k_π_,__k_∈__Z.
值域是____R_____.
2.就奇偶性而言,正切函数是_奇___函数.
3.就单调性而言,正切函数在每个开区间_________________
__-__π_2_+__k_π_,__π2_+__k_π__,__k_∈__Z__都是_增___函数.
第二页,共23页。
自主探究 函数 f(x)=Atan(ωx+φ)(Aω≠0)是否为周期函数?如果是,它 的最小正周期是多少? 解 : 由 诱 导 公 式 可 知 , Atan(ωx + φ + π) = Atan(ωx + φ) , 即 Atanωx+ωπ +φ=Atan(ωx+φ),也就是 fx+ωπ =f(x). 可见函数 f(x)=Atan(ωx+φ)(Aω≠0)是周期函数,它的最小正 周期为 T=|ωπ |.
第十一页,共23页。
知识点 2 正切函数性质的应用 【例 2】 (1)利用正切函数的单调性比较 tan-75π与 tan-127π的大小; (2)已知 f(x)=asin x+b tan x+1 满足 fπ5=7,求 f995π的值. 思路点拨: (1)将两个函数值转化到同一个单调区间内比较; (2)代入函数解析式,再变形求解.
第二十三页,共23页。
第十七页,共23页。
方法点评: 求解正切函数不等式,关键是要熟知正切函数的图象,切不可 只注意-π2,π2这一支图象,而忘记考虑其周期性.
第十八页,共23页。
3.求满足- 3<tan x≤1 的 x 的集合. 解:根据正切函数的图象可知,在-π2,π2上,- 3<tan x≤1 的 x 的范围是-π3<x≤π4,而正切函数的周期是 π,故满足- 3< tan x≤1 的 x 的集合是x|kπ-π3<x≤kπ+4π,k∈Z.
高中数学 第一章 三角函数 1.4.3 正切函数的性质与图象讲义3 新人教A版必修4
知识点2 正切函数的图象 观察图形,回答下列问题:
问题1:画正切曲线的关键点和关键线分别是什么? 问题2:正切曲线是轴对称图形吗?是中心对称图形吗?
【总结提升】
1.正切函数图象的两种作法
(1)几何法:利用单位圆中的正切线作图,该方法较为精确,但画图时
较烦琐. (2)三点两线法:“三点”是指(-
lo g 1 x lo g 1 4,
2
2
tanx 1,
所以0<x< 或3 ≤x≤4.
所以所求定2 义域4 为(0, )∪[ 3, 4].
2
4
2在【.解[(变析0,换】π条由]件ta上、n的改x≠图变0象问,.法x∈),[将0本,题π]函,数解改得为x“≠0y , st且ainnxxx≠”试且 画x≠出π此. 函数
4
2
,xk∈kZ,
28
所以所求直线方程为x= k , k∈Z.
28
2.(变换条件)将本例函数改为“ y
么?
t a n x 1,
tan tan (x
x 1
”,其定义域又是什
)
6
【解析】根据题意,得
ta
n
(
x
) 6
0,
4
解得 x
2
(3)解形如tan x>a的不等式的步骤
【变式训练】函数 y 2log1x tanx 的定义域是______.
2
【解析】x应满足 2 lo g 1 x 0,
2
ta n x 0,
所以 0kxx4, k所2(以k0Z<), x<
高中数学 第1部分 第一章 1.4 1.4.3 正切函数的性质与图像课件 新人教A版必修4
[例 1] 求函数 y= tan x+1+lg(1-tan x)的定义域.
[思路点拨] 构建关于tan x的不等式组求解.
[精解详析] 由题意得t1a-n txa+n 1x≥>00,, 即-1≤tan x<1. 在(-π2 ,π2 )内,满足上述不等式的 x 的取值范围是[-π4 ,π4 ). 又 y=tan x 的周期为π , 所以所求 x 的范围是 [kπ -π4 ,kπ +π4 ),k∈Z. 即为此函数的定义域.
[一点通] 求有关正切函数的定义域时,要首先考虑正切函数 本身的定义域,然后根据函数的特点确定出满足条件的三角不等式 或不等式组.另外,解不等式时要充分利用三角函数的图像或三角 函数线.
1.函数 y=tan(π4 -x)的定义域是
4
[一点通] 求 y=Atan(ωx+φ)的单调区间,可先用诱导
π
π
公式把 ω 化为正值,由 kπ- 2 <ωx+φ<kπ+ 2 求得 x 的
范围即可.比较两个同名函数的大小,应保证两个角在同一
单调区间内.
4.比较tan 2 011°和tan 2 012°的大小. 解:tan 2 011°=tan(5×360°+211°)=tan 211° =tan(180°+31°)=tan 31°, tan 2 012°=tan 32°, ∵y=tan x在0°<x<90°时是单调增函数, ∴tan 31°<tan 32°.故tan 2 011°<tan 2 012°.
(2)∵tan 2=tan(2-π ),tan 3=tan(3-π ), 又∵π2 <2<π ,∴-π2 <2-π <0. ∵π2 <3<π ,∴-π2 <3-π <0, 显然-π2 <2-π <3-π <1<π2 , 且 y=tan x 在(-π2 ,π2 )内是增函数, ∴tan(2-π )<tan(3-π )<tan 1, 即 tan 2<tan 3<tan 1.
高中数学第一章三角函数1.4.3正切函数的性质与图象课件新人教A版必修4 (1)
-2������ 的单调区间;
(2)比较 tan 1,tan 2,tan 3 的大小. π 分析:解(1)可先用诱导公式将 x 的系数化为正数,再把 2x- 看作 整体,代入相应的区间,解出 x 的范围;解(2)可先把角化到一个单调区 间中,再利用单调性比较大小.
4
探究一
探究二
探究三
思维辨析
π 4 3π π
(2)函数 y=tan ������4 3π
4 π 3
,������∈Z 的递增区间为
π 2 π 4
.
解析:(1)由 -x≠kπ+ ,得 x≠-kπ- , 即 x≠kπ+ (k∈Z). (2)由 kπ- <x- <kπ+ ,即 kπ- <x<kπ+ π,得递增区间为 ������π- ,������π +
π
π
即定义域是 ������ - + ������π ≤ ������ < + ������π,������∈Z . 答案: ������ - + ������π ≤ ������ < + ������π,������∈Z
6 2 π π 2
探究一
探究二
探究三
思维辨析
探究二正切函数的单调性及应用 【例 2】 (1)求函数 y=3tan
(2)性质:如下表所示.
函数 性质 定义域 值域 周期 奇偶性 单 调 性 对 称 性 R π 奇函数 增区间 减区间 对称中心 对称轴 - + ������π, + ������π (k∈Z)
2 2 π π
y=tan x ������ x x ≠ + k������,k∈Z 2
高中数学 正切函数的图象及性质课件 新人教A版必修4
生动的图象能吸引学生的注意力,激发他们的兴趣,提高学 习效率,这是我选择多媒体的原因。
3、重点介绍简单画法:“三点两线法”。让学生更容易记
忆。
4、教学引入时用类比的思想,而教学的始终都贯穿数形结合
的思想。
教学程序
知识回顾:
问题1:我们是怎样作出正弦函数y=sinx,x∈R的图象的?
教学目的: 根据教学大纲的要求和本节课程形象的特点,我把本节课
的教学目的确定为:
1)会用单位圆中的正切线画出正切函数的图象;
2)掌握正切函数图象的形状特征和性质,渗透数形结合的思想;
教学内容和教学重点、难点、关键
主要内容:通过正切函数的图象观察性质
(包括定义域、值域、周期性、奇偶性、单调性).
重点:正切函数的图象形状及其主要性质.
难点:利用正切线得到正切函数 的图象.
直线
为函数图象的渐近线.
对选择
作为基本图象段的理解 。
用形象的语言对渐进线的概念加以描述,渐近线各点由 对应着函数在此处无定义,值域无最大值、最小值.
关键:准确地记忆正切函数图象并正确分析得出图象性质
学法指导
1、采用探求讨论式教学法
让学生自己动手画出图象并得出性质,通过设置疑问让 每个学生积极思考,主动参与,尽可能的自己解决问题。
,k 2
Z
R
函 数
k ,k
2
2
k,0
x k
2
kZ
kZ
kZ
书面作业:金榜的相应练习
思考题:试用图象法求满足tanx≦2的x的 取值范围。(要求学有余力的学生思考完 成)
4
由x
是z
z z
2
高中数学 1.4.3 正切函数的性质与图象备课资料 新人教A版必修4
高中数学 1.4.3 正切函数的性质与图象备课资料 新人教A 版必修4一、函数f(x)±g(x)最小正周期的求法若f(x)和g(x)是三角函数,求f(x)±g(x)的最小正周期没有统一的方法,往往因题而异,现介绍几种方法:(一)定义法例1 求函数y=|sinx|+|cosx|的最小正周期.解:∵y=|sinx|+|cosx|=|-sinx|+|cosx|=|cos(x+2π)|+|sin(x+2π)| =|sin(x+2π)|+|cos(x+2π)|, 对定义域内的每一个x,当x 增加到x+2π时,函数值重复出现,因此函数的最小正周期是2π. (二)公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正、余弦函数求最小正周期的公式为T=||2ωπ,正、余切函数T=||ωπ. 例2 求函数y=xtan 1-tanx 的最小正周期. 解:y=x tan 1-tanx=xx tan 2tan 12-=2x x x 2tan 2tan 2tan 12=-,∴T=2π. (三)最小公倍数法设f(x)与g(x)是定义在公共集合上的两个三角周期函数,T 1、T 2分别是它们的周期,且T 1≠T 2,则f(x)±g(x)的最小正周期是T 1、T 2的最小公倍数,分数的最小公倍数=.分母的最大公约数分子的最小公倍数 例3 求函数y=sin3x+cos5x 的最小正周期. 解:设sin3x 、cos5x 的最小正周期分别为T 1、T 2,则T 1=32π,T 2=52π,所以y=sin3x+cos5x 的最小正周期T=12π=2π. 例4 求y=sin3x+tan 52x 的最小正周期. 解:∵sin3x 与tan 52x 的最小正周期是32π与25π,其最小公倍数是110π=10π, ∴y=sin3x+tan 52x 的最小正周期是10π. (四)图象法例5 求y=|cosx|的最小正周期.解:由y=|cosx|的图象,可知y=|cosx|的周期T=π.(设计者:张云全)。
数学(人教A版)必修4课件:1-4-3 正切函数的性质与图象
3π 7π 解得2kπ+ 4 ≤x≤2kπ+ 4 ,k∈Z, 5π π ∴当k=-1时,- 4 ≤x≤-4.
3π π 3π π ∴原函数在区间- 4 ,4上的单调减区间为- 4 ,-4.
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
新课引入
∴当cosx=-1时,即x=2kπ+π(k∈Z)时,函数取得最大 值.
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
π 3π π y=sinx-4在- 4 ,4上的单调递减区间.
4.求函数
[解析]
π π 3π 由2kπ+ ≤x- ≤2kπ+ ,k∈Z, 2 4 2
kπ [拓展](1)正切函数图象的对称中心是 2 ,0 (k∈Z),不存
在对称轴. π (2)直线x= +kπ(k∈Z)称为正切曲线的渐近线,正切曲线 2 无限接近渐近线. π (3)函数y=Atan(ωx+φ)+b的周期是T=|ω|.
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
课前自主预习
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
温故知新 1.下列函数在区间[0,π]上是单调函数的是( A.y=sinx C.y=sin2x B.y=cos2x D.y=cosx )
[答案]
D
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
[解析] 递减函数.
结合函数 y=cosx 的图象可知其在[0,π]上为单调
第一章
1.4
高中新课程 · 学习指导 · 人教A版 · 数学 · 必修4
高一数学人教A版必修4课件:1.4.3 正切函数的性质与图象
§1.4 三角函数的图象与性质
内容 索引
01 明目标
知重点
填要点 记疑点
02
03
探要点 究所然
当堂测 查疑缺
04
明目标、知重点
明目标、知重点
1.了解正切函数图象的画法,理解掌握正切函数的性 质. 2.能利用正切函数的图象及性质解决有关问题.
明目标、知重点
填要点·记疑点
函数y=tan x的性质与图象
③是奇函数的是( C )
A.y=tan x
B.y=cos x
C.y=tan
x 2
D.y=-tan x
明目标、知重点
1234
4.方程 tan2x+π3= 3在区间[0,2π)上的解的个数是( B )
A.5
B.4
C.3
D.2
解析 由 tan2x+π3= 3解得 2x+π3=π3+kπ(k∈Z),∴x=k2π (k∈Z),又 x∈[0,2π),∴x=0,π2,π,32π.故选 B.
明目标、知重点
例3 利用正切函数的单调性比较下列两个函数值的大小. (1)tan-65π与 tan-173π; 解 ∵tan-65π=tan-π-π5=tan-π5, tan-173π=tan-2π+π7=tan π7, 又函数 y=tan x 在-π2,π2上是增函数,
明目标、知重点
(2)把单位圆中的右半圆平均分成8份,并作出相应终边的正切线. (3)在 x 轴上,把-π2,π2这一段分成 8 等份,依次确定单位圆上 7 个分点的位置. (4)把角x的正切线向右平移,使它的起点与x轴上的点x重合.
明目标、知重点
(5)用光滑的曲线把正切线的终点连接起来,就得到y=tan x,x∈ -π2,π2 的图象,如图所示.
2019-2020年高中数学 1.4.3 正切函数的性质与图象备课资料 新人教A版必修4
2019-2020年高中数学 1.4.3 正切函数的性质与图象备课资料新人教A版必修4一、函数f(x)±g(x)最小正周期的求法若f(x)和g(x)是三角函数,求f(x)±g(x)的最小正周期没有统一的方法,往往因题而异,现介绍几种方法:(一)定义法例1 求函数y=|sinx|+|cosx|的最小正周期.解:∵y=|sinx|+|cosx|=|-sinx|+|cosx|=|cos(x+)|+|sin(x+)|=|sin(x+)|+|cos(x+)|,对定义域内的每一个x,当x增加到x+时,函数值重复出现,因此函数的最小正周期是. (二)公式法这类题目是通过三角函数的恒等变形,转化为一个角的一种函数的形式,用公式去求,其中正、余弦函数求最小正周期的公式为T=,正、余切函数T=.例2 求函数y=-tanx的最小正周期.解:y=-tanx==2,∴T=.(三)最小公倍数法设f(x)与g(x)是定义在公共集合上的两个三角周期函数,T1、T2分别是它们的周期,且T1≠T2,则f(x)±g(x)的最小正周期是T1、T2的最小公倍数,分数的最小公倍数=例3 求函数y=sin3x+cos5x的最小正周期.解:设sin3x、cos5x的最小正周期分别为T1、T2,则T1=,T2=,所以y=sin3x+cos5x的最小正周期T==2π.例4 求y=sin3x+tanx的最小正周期.解:∵sin3x与tanx的最小正周期是与,其最小公倍数是=10π,∴y=sin3x+tanx的最小正周期是10π.(四)图象法例5 求y=|cosx|的最小正周期.解:由y=|cosx|的图象,可知y=|cosx|的周期T=π.(设计者:张云全)2019-2020年高中数学 1.4.3 正切函数的性质与图象教案新人教A版必修4教学分析本节课的背景是:这之前我们已经用了三节课的时间学习了正弦函数和余弦函数的性质.函数的研究具有其本身固有的特征和特有的研究方式.一般来说,对函数性质的研究总是先作图象,通过观察图象获得对函数性质的直观认识,然后再从代数的角度对性质作出严格表述.但对正切函数,教科书换了一个新的角度,采取了先根据已有的知识(如正切函数的定义、诱导公式、正切线等)研究性质,然后再根据性质研究正切函数的图象.这样处理,主要是为了给学生提供研究数学问题更多的视角,在性质的指导下可以更加有效地作图、研究图象,加强了理性思考的成分,并使数形结合的思想体现得更加全面.教师要在学生探究活动过程中引导学生体会这种解决问题的方法.通过多媒体教学,让学生通过对图象的动态观察,对知识点的理解更加直观、形象.以提高学生的学习兴趣,提高课题教学质量.从学生的实际情况为教学出发点,通过各种数学思想的渗透,合理运用各种教学课件,逐步培养学生养成学会通过对图象的观察来整理相应的知识点的能力,学会运用数学思想解决实际问题的能力.这样既加强了类比这一重要数学思想的培养,也有利于学生综合运用能力的提高,有利于学生把新旧知识前后联系,融会贯通,提高教学效果.由于学生已经有了研究正弦函数、余弦函数的图象与性质的经验,这种经验完全可以迁移到对正切函数性质的研究中,因此,我们可以通过“探究”提出,引导学生根据前面的经验研究正切函数的性质,让学生深刻领悟这种迁移与类比的学习方法.三维目标1.通过对正切函数的性质的研究,注重培养学生类比思想的养成,以及培养学生综合运用新旧知识的能力.学会通过对图象的观察来整理相应的知识点,学会运用数学思想解决实际问题的能力.2.在学习了正弦函数、余弦函数的图象与性质的基础上,运用类比的方法,学习正切函数的图象与性质,从而培养学生的类比思维能力.3.通过正切函数图象的教学,培养学生欣赏(中心)对称美的能力,激发学生热爱科学、努力学好数学的信心.重点难点教学重点:正切函数的性质与图象的简单应用.教学难点:正切函数性质的深刻理解及其简单应用.课时安排1课时教学过程导入新课思路1.(直接导入)常见的三角函数还有正切函数,前面我们研究了正、余弦函数的图象和性质,你能否根据研究正弦函数、余弦函数的图象与性质的经验,以同样的方法研究正切函数的图象与性质?由此展开新课.思路2.先由图象开始,让学生先画正切线,然后类比正弦、余弦函数的几何作图法来画出正切函数的图象.这也是一种不错的选择,这是传统的导入法.推进新课新知探究提出问题①我们通过画正弦、余弦函数图象探究了正弦、余弦函数的性质.正切函数是我们高中要学习的最后一个基本初等函数.你能运用类比的方法先探究出正切函数的性质吗?都研究函数的哪几个方面的性质?②我们学习了正弦线、余弦线、正切线.你能画出四个象限的正切线吗?③我们知道作周期函数的图象一般是先作出长度为一个周期的区间上的图象,然后向左、右扩展,这样就可以得到它在整个定义域上的图象.那么我们先选哪一个区间来研究正切函数呢?为什么?④我们用“五点法”能简捷地画出正弦、余弦函数的简图,你能画出正切函数的简图吗?你能类比“五点法”也用几个字总结出作正切简图的方法吗?活动:问题①,教师先引导学生回忆:正弦、余弦函数的性质是从定义域、值域、奇偶性、单调性、周期性这几个方面来研究的,有了这些知识准备,然后点拨学生也从这几个方面来探究正切函数的性质.由于还没有作出正切函数图象,教师指导学生充分利用正切线的直观性.(1)周期性由诱导公式tan(x+π)=tanx,x∈R,x≠+kπ,k∈Z可知,正切函数是周期函数,周期是π.这里可通过多媒体课件演示,让学生观察由角的变化引起正切线的变化的周期性,直观理解正切函数的周期性,后面的正切函数图象作出以后,还可从图象上观察正切函数的这一周期性.(2)奇偶性由诱导公式tan(-x)=-tanx,x∈R,x≠+kπ,k∈Z可知,正切函数是奇函数,所以它的图象关于原点对称.教师可进一步引导学生通过图象还能发现对称点吗?与正余弦函数相对照,学生会发现正切函数也是中心对称函数,它的对称中心是(,0)k∈Z.(3)单调性通过多媒体课件演示,由正切线的变化规律可以得出,正切函数在(,)内是增函数,又由正切函数的周期性可知,正切函数在开区间(+kπ,+kπ),k∈Z内都是增函数.(4)定义域根据正切函数的定义tanα=,显然,当角α的终边落在y轴上任意一点时,都有x=0,这时正切函数是没有意义的;又因为终边落在y轴上的所有角可表示为kπ+,k∈Z,所以正切函数的定义域是{α|α≠kπ+,k∈Z},而不是{α≠+2kπ,k∈Z},这个问题不少初学者很不理解,在解题时又很容易出错,教师应提醒学生注意这点,深刻明了其内涵本质.(5)值域由多媒体课件演示正切线的变化规律,从正切线知,当x大于且无限接近时,正切线AT 向Oy轴的负方向无限延伸;当x小于且无限接近时,正切线AT向Oy轴的正方向无限延伸.因此,tanx在(,)内可以取任意实数,但没有最大值、最小值.因此,正切函数的值域是实数集R.问题②,教师引导学生作出正切线,并观察它的变化规律,如图1.图1问题③,正切函数图象选用哪个区间作为代表区间更加自然呢?教师引导学生在课堂上展开充分讨论,这也体现了“教师为主导,学生为主体”的新课改理念.有的学生可能选取了[0,π]作为正切函数的周期选取,这正是学生作图的真实性的体现.此时,教师应调整计划,把课件中先作出[-,]内的图象,改为先作出[0,π]内的图象,再进行图象的平移,得到整个定义域内函数的图象,让学生观察思考.最后由学生来判断究竟选用哪个区间段内的函数图象既简单又能完全体现正切函数的性质,让学生通过分析得到先作区间(-,)的图象为好.这时条件成熟,教师引导学生来作正切函数的图象,如图2.根据正切函数的周期性,把图2向左、右扩展,得到正切函数y=tanx,x∈R,且x≠+kπ(k∈Z)的图象,我们称正切曲线,如图3.图2 图3问题④,教师引导学生观察正切曲线,点拨学生讨论思考,只需确定哪些点或线就能画出函数y=tanx,x∈(,)的简图.学生可看出有三个点很关键:(,-1),(0,0),(,1),还有两条竖线.因此,画正切函数简图的方法就是:先描三点(,-1),(0,0),(,1),再画两条平行线x=,x=,然后连线.教师要让学生动手画一画,这对今后解题很有帮助.讨论结果:①略.②正切线是AT.③略.④能,“三点两线”法.提出问题①请同学们认真观察正切函数的图象特征,由数及形从正切函数的图象讨论它的性质.②设问:每个区间都是增函数,我们可以说正切函数在整个定义域内是增函数吗?请举一个例子.活动:问题①,从图中可以看出,正切曲线是被相互平行的直线x=+kπ,k∈Z所隔开的无穷多支曲线组成的.教师引导学生进一步思考,这点反应了它的哪一性质——定义域;并且函数图象在每个区间都无限靠近这些直线,我们可以将这些直线称之为正切函数的什么线——渐近线;从y轴方向看,上下无限延伸,得到它的哪一性质——值域为R;每隔π个单位,对应的函数值相等,得到它的哪一性质——周期π;在每个区间图象都是上升趋势,得到它的哪一性质——单调性,单调增区间是(+kπ,+kπ),k∈Z,没有减区间.它的图象是关于原点对称的,得到是哪一性质——奇函数.通过图象我们还能发现是中心对称,对称中心是(,0),k∈Z.问题②,正切函数在每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.如在区间(0,π)上就没有单调性.讨论结果:①略.②略.应用示例例1 比较大小.(1)tan138°与tan143°;(2)tan()与tan().活动:利用三角函数的单调性比较两个同名三角函数值的大小,可以先利用诱导公式将已知角化为同一单调区间内的角,然后再比较大小.教师可放手让学生自己去探究完成,由学生类比正弦、余弦函数值的大小比较,学生不难解决,主要是训练学生巩固本节所学的基础知识,加强类比思想的运用.解:(1)∵y=tanx在90°<x<180°上为增函数,∴由138°<143°,得tan138°<tan143°.(2)∵tan()=-tan=-tan(3π+)=-tan,tan()=-tan=-tan(3π+)=-tan.又0<<<,而y=tanx在(0, )上是增函数,∴tan<tan.∴-tan>-tan,即tan()>tan().点评:不要求学生强记正切函数的性质,只要记住正切函数的图象或正切线即可.例2 用图象求函数y=的定义域.活动:如图4,本例的目的是让学生熟悉运用正切曲线来解题.不足之处在于本例可以通过三角函数线来解决,教师在引导学生探究活动中,也应以两种方法提出解决方案,但要有侧重点,应体现函数图象应用的重要性.图4 图5解:由tanx-≥0,得tanx≥,利用图4知,所求定义域为[kπ+,kπ+)(k∈Z).点评:先在一个周期内得出x的取值范围,然后再加周期即可,亦可利用单位圆求解,如图5.本节的重点是正切线,但在今后解题时,学生哪种熟练就用哪种.变式训练根据正切函数的图象,写出使下列不等式成立的x的集合.(1)1+tanx≥0;(2)tanx+3<0.解:(1)tanx≥-1,∴x∈[kπ-,kπ+),k∈Z;(2)x∈[kπ-,kπ-),k∈Z.例3 求函数y=tan(x+)的定义域、周期和单调区间.活动:类比正弦、余弦函数,本例应用的是换元法,由于在研究正弦、余弦函数的类似问题时已经用过换元法,所以这里也就不用再介绍换元法,可以直接将x+作为一个整体.教师可让学生自己类比地探究,只是提醒学生注意定义域.解:函数的自变量x应满足x+≠kπ+,k∈Z,即x≠2k+,k∈Z.所以函数的定义域是{x|x≠2k+,k∈Z}.由于f(x)=tan(x+)=tan(x++π)=tan[(x+2)+ ]=f(x+2),因此,函数的周期为2.由-+kπ<x+<+kπ,k∈Z,解得+2k<x<+2k,k∈Z.因此,函数的单调递增区间是(+2k,+2k),k∈Z.点评:同y=Asin(ωx+φ)(ω>0)的周期性的研究一样,这里可引导学生探究y=Atan(ωx+φ)(ω>0)的周期T=.变式训练求函数y=tan(x+)的定义域,值域,单调区间,周期性.解:由x+≠kπ+,k∈Z可知,定义域为{x|x∈R且x≠kπ+,k∈Z}.值域为R.由x+∈(kπ-,kπ+),k∈Z可得,在x∈(kπ-,kπ+)上是增函数.周期是π,也可看作由y=tanx的图象向左平移个单位得到,其周期仍然是π.例4 把tan1,tan2,tan3,tan4按照由小到大的顺序排列,并说明理由.活动:引导学生利用函数y=tanx的单调性探究解题方法.也可利用单位圆中的正切线探究解题方法.但要提醒学生注意本节中活动的结论:正切函数在定义域内的每个区间上都是增函数,但我们不可以说正切函数在整个定义域内是增函数.学生可能的错解有: 错解1:∵函数y=tanx是增函数,又1<2<3<4,∴tan1<tan2<ta n3<tan4.错解2:∵2和3的终边在第二象限,∴tan2,tan3都是负数.∵1和4的终边分别在第一和第三象限,∴tan1,tan4都是正数.又∵函数y=tanx是增函数,且2<3,1<4,∴tan2<tan3<tan1<tan4.教师可放手让学生自己探究问题的解法.发现错解后不要直接纠正,立即给出正确解法,可再让学生讨论分析找出错的原因.图6解法一:∵函数y=tanx在区间(,)上是单调递增函数,且tan1=tan(π+1),又<2<3<4<π+1<,∴tan2<tan3<tan4<tan1.解法二:如图6,1,2,3,4的正切函数线分别是AT1,AT2,AT3,AT4,∴tan2<tan3<tan4<tan1.点评:本例重在让学生澄清正切函数单调性问题,这属于学生易错点.把正切函数y=tanx的单调性简单地说成“在定义域内是增函数”是不对的.知能训练课本本节练习1—5.解答:1.在x轴上任取一点O1,以O1为圆心,单位长为半径作圆,作垂直于x轴的直径,将⊙O1分成左右两个半圆,过右半圆与x轴的交点作⊙O1的切线,然后从圆心O1引7条射线把右半圆分成8等份,并与切线相交,得到对应于,,,0,,,等角的正切线.相应地,再把x轴上从到这一段分成8等份.把角x的正切线向右平行移动,使它的起点与x轴上的点x重合,再把这些正切线的终点用光滑的曲线连结起来,就得到函数y=tanx,x∈(,)的图象.点评:可类比正弦函数图象的作法.2.(1){x|kπ<x<+kπ,k∈Z};(2){x|x=kπ,k∈Z};(3){x|+kπ<x<kπ,k∈Z}.点评:只需根据正切曲线写出结果,并不要求解三角方程或三角不等式.3.x≠+,k∈Z.点评:可用换元法.4.(1) ;(2)2π.点评:可根据函数图象得解,也可直接由函数y=Atan(ωx+φ),x∈R的周期T=得解.5.(1)不是.例如0<π,但tan0=tanπ=0.(2)不会.因为对于任何区间A来说,如果A不含有+kπ(k∈Z)这样的数,那么函数y=tanx,x∈A是增函数;如果A至少含有一个+kπ(k∈Z)这样的数,那么在直线x=+kπ两侧的图象都是上升的(随自变量由小到大).点评:理解正切函数的单调性.课堂小结1.先由学生回顾本节都学到了哪些知识方法,有哪些启发、收获.本节课我们是在研究完正、余弦函数的图象与性质之后,研究的又一个具体的三角函数,与研究正弦、余弦函数的图象和性质有什么不同?研究正、余弦函数,是由图象得性质,而这节课我们从正切函数的定义出发得出一些性质,并在此基础上得到图象,最后用图象又验证了函数的性质.2.(教师点拨)本节研究的过程是由数及形,又由形及数相结合,也是我们研究函数的基本方法,特别是又运用了类比的方法、数形结合的方法、化归的方法.请同学们课后思考总结:这种多角度观察、探究问题的方法对我们今后学习有什么指导意义?作业课本习题1.4 A组6、8、9.设计感想1.本教案的设计背景刚刚学完正弦函数、余弦函数的图象与性质.因此教案的设计主线是始终抓住类比思想这条主线,让学生在巩固原有知识的基础上,通过类比,由学生自己来对新知识进行分析、探究、猜想、证明,使新旧知识点有机地结合在一起,学生对新知识也较易接受.2.本教案设计的学习程序是:温故(相关知识准备)→新的学习对象与旧知识的联系→类比探究→解决问题→应用成果→归纳总结→进一步的发散思考→探索提高.。
高中数学人教A版必修4第一章1.4.3正切函数的性质与图像课件
目标: 1.了解正切函数图像的几何画法; 2.掌握正切函数的性质; 3.能对应正切函数的图像和性质解决问题.
重难点:正切函数的图像及性质
探究1:正切函数的性质
思考1:正切函数的定义域是什么?
思考2:根据相关诱导公式,你能判断正切函数是周期函数吗?
探究2:正切函数的图像
目标: 1.了解正切函数图像的几何画法; 2.掌握正切函数的性质; 3.能对应正切函数的图像和性质解决问题.
重、难点:正切函数的图像及性质
正切函数的性质:
1.定义域: 2.值域: 3.单调性: 4.奇偶性:奇函数 5.周期性: 6.对称性:
1
思考:如何画出正切函数在其他区间上的图像?
可以利用正切函数的周期性
探究3:正切函数的图像与性质
观察正切函数的图像,得到正切函数的以下性质:
1.定义域: 2.值域: 3.单调性:
思考:正切函数在整个定义域上是增函数吗?为什么?
观察正切函数的图像,得到正切 函数的以下性质:
1.定义域: 2.值域: 3.单调性: 4.奇偶性:奇函数 5.周期性: 6.对称性:
高中数学:正切函数的性质和图象课件新课标人教A版必修4.ppt
图象,具体应如何操作?
22
y
O
x
2
2
思考2:右图中,直线
x= 和x= 2
2
与正切函
数的图象的位置关系
如何?图象的凸向有
2
什么特点?
y
O
x
2
思考3:结合正切函数的周期性, 如何画
出正切函数在整个定义域内的图象?
y
2
2
O
x
2
2
思考4:正切函数y=tanx,x∈R,x≠ +kπ的图象 叫做正切曲线.因为正切函数是奇函数2 ,所以正切
2
要素,作图时一般先找出这些点和线,再画正切曲 线.
3.研究正切函数问题时,一般先考察(
2
,
2
的)
情形, 再拓展到整个定义域.
作业 P45 练习 T2,3,4,6.
作法如下: ①作直角坐标系,并在 y 轴左侧作单位圆; ②把单位圆右半圆分成8等份,分别在单位圆
中作出正切线; ③把 x 轴上 到 这一段分成8等份。分别作出:
tan(x ) tan x, x k , k Z
2
∴正切函数是周期函数,周期是π.
思地,考函3数:函y数 tyan(tanx(2x )(8
)的周期T=__2 ,一 般 0)的周期T=____.
思考4:根据相关诱导公式,你能判断正 切函数具有奇偶性吗?
由诱导公式
tan(x) tan x, x R, x k,k Z
1.4.3 正切函数的图象与性质
问题提出
1.正、余弦函数的图象是通过什么方法 作出的?
2.正、余弦函数的基本性质包括哪些内 容?这些性质是怎样得到的?
知识探究(一):正切函数的性质
高中数学第一章三角函数143正切函数的性质与图象课件新人教A版必修
其中k∈Z;两线为直线x=kπ+
π 2
和直线x=kπ-
π2 ,其中k∈
Z(两线也称为正切曲线的渐近线,即无限接近但不相交).
(2)作简图时,只需先作出一个周期中的两条渐近线,
然后描出三个点,用光滑的曲线连接得到一条曲线,最后平
行移动至各个周期内.
2.下列说法正确的是( ) A.y=tan x是增函数 B.y=tan x在第一象限是增函数 C.y=tan x在某一区间上是减函数 D.y=tan x在区间 kπ-π2,kπ+π2 (k∈Z)上是增函 数 解析:由正切函数的图象可知D正确. 答案:D
3.函数y=tan
x2+π3的单调递增区间是(
定义域 值域 周期
xx∈R,且x≠π2+kπ,k∈Z R π
奇偶性
奇
单调性 在区间-π2+kπ,π2+kπ(k∈Z) 上都是增函数
温馨提示 函数y=tan x的对称中心的坐标是k2π,0, (k∈Z),不是(kπ,0)(k∈Z).
[思考尝试·夯基] 1.思考判断(正确的打“√”,错误的打“×”) (1)正切函数在整个定义域内是增函数.( ) (2)存在某个区间,使正切函数为减函数.( ) (3)正切函数图象相邻两个对称中心的距离为周期 π.( ) (4)函数y=tan x为奇函数,故对任意x∈R都有tan(-x) =-tan x. ( )
②由题意,得tan x≠1,且x≠kπ+π2,k∈Z,
所以函数f(x)的定义域为{x|x≠kπ+
π 2
,且x≠kπ+
π4,k∈Z},其不关于原点对称.
所以函数f(x)既不是奇函数,也不是偶函数.
归纳升华 1.一般地,函数y=Atan(ωx+φ)的最小正周期为T =|ωπ |,常常利用此公式来求周期. 2.判断函数的奇偶性要先求函数的定义域,判断 其是否关于原点对称.若不对称,则该函数无奇偶性; 若对称,再判断f(-x)与f(x)的关系.
高中数学 1.4.3正切函数的性质与图象课件 新人教A版必修4
【解析】1.因为sin x∈[-1,1],所以y=tan(sin x)的定义
域为R,值域为[tan(-1),tan 1].
答案(dá àn):R [tan(-1),tan 1]
2.y=(tan x-1)2+2,由于tan x∈R,所以当tan x=1时,函数
取最小值2.
答案(dá àn):2
x 5由,于φ k 5 .
φ 0,
2 故当k=1时,得
φ
由 3x k 得,k
18
26
2
故3Z函,,数(所hxá以ns函kh数ù)(解5há析,n式skhf为ùZx),的 定tan(3x
3
).
义域为
3 {x
|
x
2 R且x
k值域5为,Rk.由3Z于}正. 18切函数(hánshù)
y=tan x在区间
心.( )
x k ,k Z.
2
(3)正切曲线(qūxiàn)有无数条对称轴,其对称轴是
()
第五页,共44页。
提示:(1)错误. 正切函数的定义域为 值域为R.
(k , k ),k Z.
2
2
(2)正确(zhè(nkgq, 0u)è(k).点Z)
是其对称中心.
2
(3)错误.正切曲线没有对称轴.
把 4转化到 2 2 上再比较大小.
【解析】选A.
f
1
tan (1
) 4
tan (1
34又),
1 3 1 ,
2
44 4
所以f(0)>f(-1)>f(1).
第二十五页,共44页。
类型 三 正切函数的奇偶性与周期(zhōuqī)
高中数学 第一章 三角函数 1.4 三角函数的图象与性质 1.4.3 正切函数的性质与图像习题课件 新人教A版必修4
(2)y=|tanx|=t-antxa,nx,x∈x[∈kπ(,kπkπ-+π2π,2 )kπ(]k(∈kZ∈)Z.).
可作出其图像(如图),由图像知函数 y=|tanx|的单调递减区 π
间 为 (k π - 2 , k π ](k∈Z) , 单 调 递 增 区 间 为 [k π , k π + π 2 )(k∈Z).
π 是[0,+∞);单调递增区间是[kπ,kπ+ 2 )(k∈Z);周期 T=
π.
课后巩固
1.函数
y=ta1nx(-π4
π <x< 4
)的值域是(
)
A.[-1,1]
B.(-∞,-1)∪(1,+∞)
C.(-∞,1]
D.[-1,+∞)
答案 B
2.函数 y=tanx+sinx-|tanx-sinx|在区间(π2 ,3π2 )内的图 像大致是( )
π
⇒kπ-
x≠kπ+ 2 (k∈Z)
2
<x<kπ+
3
,
π
π
∴定义域为(kπ- 2 ,kπ+ 3 )(k∈Z),值域为 R.
题型二 正切函数的奇偶性 例 2 判断下列函数的奇偶性: (1)y=tanx(-π4 ≤x<π4 ); (2)y=xtan2x+x4; (3)y=sinx+tanx.
【思路分析】 先分别求出各个函数的定义域,看是否关于原点
思考题 4 作出函数 y=tanx+|tanx|的图像,并求其定义 域、值域、单调区间及最小正周期.
【解析】 y=tanx+|tanx|= 2tanx,tanx≥0,且x≠kπ+π2 ,k∈Z. 0,tanx<0,且x≠kπ+π2 ,k∈Z.
其图像如图所示,
π
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
三角函数
1.4.3
正切函数的性质与图象
第一章
三角函数
1.能借助单位圆中的正切线画出 y=tan x 的图象. 2. 掌握正切函数的性质. 3.能利用正切函数的图象与性质解决 问题.
函数 y=tan x 的图象与性质 解析式 y=tan x
图象
定义域 值域
π xx≠ +kπ,k∈Z 2
探究点二 (1)求
正切函数的单调性及其应用
1 π y=tan2x+4的单调区间.
13 6 (2)比较 tan π 与 tan- 7 π的大小. 5
[解 ]
π 1 π π 3π 1 (1)由题意, kπ- < x+ <kπ+ , k∈Z, 即 kπ- < x<kπ 2 2 4 2 4 2
B.(kπ,(k+1)π),k∈Z
π 3π D.kπ-4,kπ+ 4 ,k∈Z
答案:C
4.函数 y=2tan
π x,x∈0,4 的值域是________.
答案:[0,2]
5. 函数
π π f(x)=tanx+ 6的定义域是________, f6=________.
1 1 π π 解:y=tan-2x+4 =-tan2x- 4 ,
π 1 π π 由 kπ- < x- <kπ+ ,k∈Z, 2 2 4 2 π 3 得 2kπ- <x<2kπ+ π,k∈Z, 2 2
1 π π 3 所以函数 y=tan-2x+4 的单调递减区间是2kπ-2,2kπ+2π,
π C.x|x≠kπ+ 2,k∈Z kπ D.x|x≠ 2 ,k∈Z
)
(2)求函数 y= tan x+1+lg(1-tan x)的定义域.
1 解:(1)选 D.函数 y= 有意义时,tan x≠0, tan x 所以函数的定义域为
π kπ x|x≠kπ+ ,且x≠kπ,k∈Z=x|x≠ ,k∈Z. 2 2
π , 7
π π π π 因为- < < < , 2 7 5 2 y=tan x
π π 在- 2,2 上单调递增,
π π 所以 tan <tan , 7 5
13 6 即 tan π>tan- 7 π. 5
本例(1)函数变为 区间.
1 π y=tan-2x+4+1≥0, (2)由题意得 1-tan x>0,
即-1≤tan x<1.
π π 在- 2,2内,满足上述不等式的
x
π π 的取值范围是- 4,4 .
又 y=tan x 的周期为 π,
π π 所以所求函数的定义域是kπ-4,kπ+4 (k∈Z).
所以函数的定义域为
π π x|x∈R且x≠kπ- ,x≠kπ+ ,k∈Z. 4 2
(2)因为 3-tan x>0,所以 tan x< 3. π 又因为 tan x= 3时,x= +kπ(k∈Z), 3 π π 根据正切函数图象,得 kπ- <x<kπ+ (k∈Z), 2 3 所以函数的定义域是
R
最小正 周期 奇偶性
π ___________
奇函数
π π - +kπ, +kπ(k∈Z) 在开区间_____________________ 上都是增函 2 2
单调性
数 对称性
kπ ,0(k∈Z) 2
对称中心_______________
1.判断(正确的打“√”,错误的打“×”) (1)正切函数的定义域和值域都是 R.( (2)正切函数在整个定义域上是增函数.( (3)正切函数在定义域内无最大值和最小值.( (4)存在某个区间,使正切函数为减函数.(
π + ,k∈Z, 4 3π π 所以 2kπ- <x<2kπ+ ,k∈Z, 2 2
3π π 故单调增区间为2kπ- 2 ,2kπ+2 (k∈Z).
π 6 π (2)tan π=tan π+5 =tan , 5 5 13 tan- 7 π=-tan π =-tan-7 =tan π 13 π=-tan2π-7 7
答案:(1)× (2)× (3)√ (4)×
) ) ) )
2.函数 y=tan π A. 2
答案:A
π 2x+4的最小正周期为(
) D.3π
B.π
C.2π
3.函数
π f(x)=tanx+4 的单调递增区间为(
)
π π A.kπ-2,kπ+2 ,k∈Z 3π π C.kπ- 4 ,kπ+4 ,k∈Z
π π x|kπ- <x<kπ+ ,k∈Z. 2 3
求正切函数定义域的方法 求与正切函数有关的函数的定义域时,除了求函数定义域的一 π 般要求外,还要保证正切函数 y=tan x 有意义即 x≠ +kπ,k 2 ∈Z.而对于构建的三角不等式,常利用三角函数的图象求解.
1 1.(1)函数 y= 的定义域为( tan x A.{x|x≠0} B.{x|x≠kπ,k∈Z}
π 答案:x|x≠kπ+3,k∈Z
3
探究点一
求函数的定义域
求下列函数的定义域: 1 (1)y= ; 1+tan x (2)y=lg( 3-tan x).
[解 ] 1 (1)要使函数 y= 有意义, 1+tan x
1+tan x≠0, 需使 π x≠kπ+ (k∈Z), 2
k∈Z.
(1)运用正切函数单调性比较大小的方法 ①运用函数的周期性或诱导公式将角化到同一单调区间内. ②运用单调性比较大小关系. (2)求函数 y=Atan(ωx+φ)(A,ω,φ 都是常数)的单调区间的方 法
①若 ω>0,由于 y=tan x 在每一个单调区间上都是增函数,故 π π 可用“整体代换”的思想,令 kπ- <ωx+φ<kπ+ ,k∈Z, 2 2 解得 x 的范围即可. ②若 ω<0,可利用诱导公式先把 y=Atan(ωx+φ)转化为 y= Atan[-(-ωx-φ)]=-Atan(-ωx-φ),即把 x 的系数化为正 值,再利用“整体代换”的思想,求得 x 的范围即可.