多元统计分析期末复习

合集下载

多元统计分析期末复习试题

多元统计分析期末复习试题

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量:随机向量X 与Y 的协方差矩阵:当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。

随机向量X 与Y 的相关系数矩阵:2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X );E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立. (3).X 的协方差阵D(X)是对称非负定矩阵。

例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质(1).若 ,则E(X)= ,D(X)= . )',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=qp ij r Y X ⨯=)(),(ρ),(~∑μP N X μ∑p X X X ,,,21特别地,当 为对角阵时, 相互独立。

(2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布.(3).多元正态分布的边缘分布是正态分布,反之不成立.(4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计 (1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面.(2)多元分布样本的数字特征---常见多元统计量 样本均值向量 = 样本离差阵S= 样本协方差阵V= S ;样本相关阵R(3) ,V分别是 和 的最大似然估计;(4)估计的性质是 的无偏估计; ,V分别是 和 的有效和一致估计; ;S~ , 与S相互独立;第五章 聚类分析:一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

多元统计分析期末试题及标准答案

多元统计分析期末试题及标准答案

多元统计分析期末试题及答案————————————————————————————————作者:————————————————————————————————日期:22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末复习

多元统计分析期末复习

第一章、多元正态分布的参数估计二、判断题1.多元分布函数是单调不减函数,而且是右连续的。

(√ )()x F 2.设是维随机向量,则服从多元正态分布的充要条件是:它的任何组合X p X 都是一元正态分布。

(X )()p R X ∈'αα3.是一个P 维的均值向量,当A 、B 为常数矩阵时,具有如下性质:μ(1)E (AX )=AE (X ) (2)E (AXB )=AE (X )B (√ )4.若P 个随机变量X1,…XP 的联合分布等于各自边缘分布的乘积,则称X1,…XP 是相互独立的。

(√ )5.一般情况下,对任何随机向量,协差阵是对称阵,也()'=p X X X ,,1 ∑是正定阵。

(X )6.多元正态向量的任意线性变换仍然服从多元正态分布。

()'=p X X X ,,1 (√)7.多元正态分布的任何边缘分布为正态分布,反之一样。

( X )8.多元样本中,不同样品之间的观测值一定是相互独立的。

(√)9.多元正态总体参数均值的估计量具有无偏性、有效性和一致性。

(√)μX 10.是的无偏估计。

( X )S n 1∑11.Wishart 分布是分布在维正态情况下的推广。

(√)2χp 12.若,,且相互独立,则样本离差阵()()∑,~μαp N X n ,,1 =α。

(√)()()()()()∑-'--=∑=,1~1n W X X X X S n p ααα13.若,为奇异矩阵,则。

( X )()∑,~n W X p C ()c c n W C CX p '∑',~第二章 多元正态分布均值向量和协差阵的检验二、判断题1.设,,,则称统计量的分布为()∑,~μp N X ()∑,~n W S p p n ≥X S X n T 12-'=非中心分布,记为。

( X )2HotellingT ()μ,,~22n p T T 2.在协差阵未知的情况下对均值向量进行检验,需要用样本协差阵去代∑S n1替。

(完整版)多元统计复习题附答案

(完整版)多元统计复习题附答案

复习题原文:答案:4.2 试述判别分析的实质。

4.3 简述距离判别法的基本思想和方法。

4.4 简述贝叶斯判别法的基本思想和方法。

4.5 简述费希尔判别法的基本思想和方法。

4.6 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。

4.2 试述判别分析的实质。

答:判别分析就是希望利用已经测得的变量数据,找出一种判别函数,使得这一函数具有某种最优性质,能把属于不同类别的样本点尽可能地区别开来。

设R1,R2,…,Rk是p维空间R p的k个子集,如果它们互不相交,且它们的和集为R p,则称R1,R2⋯R p为R p的一个划分。

判别分析问题实质上就是在某种意义上,以最优的性质对p维空间R p构造一个“划分”,这个“划分”就构成了一个判别规则。

4.3 简述距离判别法的基本思想和方法。

答:距离判别问题分为①两个总体的距离判别问题和②多个总体的判别问题。

其基本思想都是分别计算样本与各个总体的距离(马氏距离),将距离近的判别为一类。

①两个总体的距离判别问题设有协方差矩阵∑相等的两个总体G1和G2,其均值分别是μ1和μ2,对于一个新的样品X,要判断它来自哪个总体。

计算新样品X到两个总体的马氏距离D2(X,G1)和D2(X,G2),则X∈G1,D2(X,G1)≤ D2(X,G2)X ∈G 2 ,D 2(X ,G 1)> D 2(X ,G 2, 具体分析,2212(,)(,)D G D G -X X111122111111111222*********()()()()2(2)2()-----------''=-----''''''=-+--+'''=-+-X μΣX μX μΣX μX ΣX X ΣμμΣμX ΣX X ΣμμΣμX ΣμμμΣμμΣμ11211212112122()()()2()22()2()---''=-++-'+⎛⎫=--- ⎪⎝⎭''=--=--X ΣμμμμΣμμμμX ΣμμX μααX μ 记()()W '=-X αX μ 则判别规则为X ∈G 1 ,W(X)≥0 X ∈G 2 ,W(X)<0②多个总体的判别问题。

多元统计分析期末试题与答案解析

多元统计分析期末试题与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题

多元统计分析期末试题

一、填空题(20分)1、若),2,1(),,(~)(n N X p =∑αμα 且相互独立,则样本均值向量X2、变量的类型按尺度划分有_间隔尺度_、_有序尺度_、名义尺度_。

3、判别分析是判别样品 所属类型 的一种统计方法,常用的判别方法有__距离判别法_、Fisher 判别法、Bayes 判别法、逐步判别法。

4、Q 型聚类是指对_样品_进行聚类,R 型聚类是指对_指标(变量)_进行聚类。

5、设样品),2,1(,),,('21n i X X X X ip i i i ==,总体),(~∑μp N X ,对样品进行分类常用的距离有:明氏距离,马氏距离2()ijd M =)()(1j i j i x x x x -∑'--,兰氏距离()ij d L=6、因子分析中因子载荷系数ij a 的统计意义是_第i 个变量与第j 个公因子的相关系数。

7、一元回归的数学模型是:εββ++=x y 10,多元回归的数学模型是:εββββ++++=p p x x x y 22110。

8、对应分析是将 R 型因子分析和Q 型因子分析结合起来进行的统计分析方法。

9、典型相关分析是研究两组变量之间相关关系的一种多元统计方法。

二、计算题(60分)1、设三维随机向量),(~3∑μN X ,其中⎪⎪⎪⎭⎫⎝⎛=∑200031014,问1X 与2X 是否独立?),(21'X X 和3X 是否独立?为什么?解: 因为1),cov(21=X X ,所以1X 与2X 不独立。

把协差矩阵写成分块矩阵⎪⎪⎭⎫⎝⎛∑∑∑∑=∑22211211,),(21'X X 的协差矩阵为11∑因为12321),),cov((∑='X X X ,而012=∑,所以),(21'X X 和3X 是不相关的,而正态分布不相关与相互独立是等价的,所以),(21'X X 和3X 是独立的。

2、设抽了五个样品,每个样品只测了一个指标,它们分别是1 ,2 ,4.5 ,6 ,8。

多元统计分析期末考试考点

多元统计分析期末考试考点

多元统计分析期末考试考点The following text is amended on 12 November 2020.二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。

它是由于随机而获得的非确定值,是概率中的一个基本概念。

即每个分量都是随机变量的向量为随机向量。

类似地,所有元素都是随机变量的矩阵称为随机矩阵。

4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。

把相似的样品或指标归为一类,把不相似的归为其他类。

直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

(1)主成分分析(2)因子分析(3)对应分析等2、分类与判别,对所考察的变量按相似程度进行分类。

多元统计分析期末复习

多元统计分析期末复习

多元统计分析期末复习第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。

随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。

例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。

(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d?即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S?,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

多元统计期末考试题及答案

多元统计期末考试题及答案

多元统计期末考试题及答案一、选择题(每题2分,共20分)1. 在多元线性回归中,如果一个变量的系数为0,这意味着什么?A. 该变量对因变量没有影响B. 该变量与因变量完全相关C. 该变量与因变量无关D. 该变量是多余的2. 主成分分析(PCA)的主要目的是什么?A. 减少数据的维度B. 增加数据的维度C. 找到数据的均值D. 找到数据的中位数3. 以下哪个不是聚类分析的优点?A. 可以揭示数据的内在结构B. 可以用于分类C. 可以减少数据的维度D. 可以找到数据的异常值4. 在因子分析中,如果一个因子的方差贡献率很低,这通常意味着什么?A. 该因子对数据的解释能力很强B. 该因子对数据的解释能力很弱C. 该因子是多余的D. 该因子是重要的5. 以下哪个是多元统计分析中常用的距离度量?A. 欧氏距离B. 曼哈顿距离C. 切比雪夫距离D. 所有以上选项二、简答题(每题10分,共30分)6. 解释什么是多元线性回归,并简述其在实际问题中的应用。

7. 描述主成分分析(PCA)的基本原理,并举例说明其在数据分析中的作用。

8. 简述聚类分析的过程,并讨论其在商业数据分析中的应用。

三、计算题(每题25分,共50分)9. 假设有以下数据集,包含两个变量X和Y,以及它们的观测值:| 观测 | X | Y |||||| 1 | 2 | 3 || 2 | 3 | 4 || 3 | 4 | 5 || 4 | 5 | 6 |请计算X和Y的协方差,并解释其意义。

10. 给定以下数据集,进行聚类分析,并解释聚类结果:| 观测 | 变量1 | 变量2 |||-|-|| 1 | 1.5 | 2.5 || 2 | 2.0 | 3.0 || 3 | 3.5 | 4.5 || 4 | 4.0 | 5.0 |多元统计期末考试题答案一、选择题1. A2. A3. C4. B5. D二、简答题6. 多元线性回归是一种统计方法,用于分析两个或两个以上的自变量(解释变量)与一个因变量之间的关系。

多元统计期末复习题

多元统计期末复习题

多元数据分析练习题第二章多元正态的参数估计一. 判断题(1)若∑∑=),,(~),,,(21μp T p N X X X X 是对角矩阵,则p X X X ,,,21 相互独立。

( )(2)多元正态分布的任何边缘分布为正态分布,反之也成立。

( )(3)对任意的随机向量T p X X X X ),,,(21 =来说,其协方差矩阵∑是对称矩阵,并且总是半正定的。

( )(4)对标准化的随机向量来说,它的协方差矩阵与原来变量的相关系数阵相同。

( ) (5)若),,(~),,,(21∑=μp T p N X X X X S X ,分别为样本均值和样本协差阵,则S nX 1,分别为∑,μ的无偏估计。

( ) 二.计算题1. 假设随机向量TX X X X ),,(321=的协方差矩阵为⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡---=∑9232443416,试求相关系数矩阵R 。

⎥⎥⎥⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎢⎢⎢⎣⎡----=131413112141211R 2. 假设随机向量Tx x x ),(21=的协方差矩阵为⎥⎦⎤⎢⎣⎡=∑20119,令212211,2x x y x x y -=+=,试求T y y y ),(21=的协方差矩阵。

⎥⎦⎤⎢⎣⎡--=∑2733603.假设⎥⎦⎤⎢⎣⎡---=∑5.005.05.015.0),,(~3A N X μ,其中T)1,2,1(-=μ,⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡--=∑411121112,试求Ax y =的分布。

)2224,02(2⎪⎪⎭⎫ ⎝⎛--⎪⎪⎭⎫ ⎝⎛-N 三.证明题1.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,X 为样本均值。

试证明:μ=)(X E ,∑=nX D 1)(。

2.设)()2()1(,,,n X X X 是来自),(∑μp N 的随机样本,S n 11-为样本协差阵。

试证明:∑=-)11(S n E 。

3.证明:若p 维正态随机向量),,,(21'=p X X X X 的协差阵为对角矩阵,则X 的各分量是相互独立的随机变量。

《多元统计分析》期末复习题(201412)

《多元统计分析》期末复习题(201412)
1
(1) 试从 Σ 出发求 X 的第一主成分; (2) 试问当 取多大时才能使第一主成分的贡献率达 95%以上。
19. 设标准化变量 X 1 , X 2 , X 3 的协方差阵(即相关系数阵)为
1.00 0.63 0.45 R 0.63 1.00 0.35 0.45 0.35 1.00
c
i 1
n
i
1 令
n n Z ci Xi 。试证明: 1)Z 是 μ 的无偏估计量; 2) Z ~ N p μ, ci2 Σ i 1 i 1
16 -4 2 4. 设 X =(X 1 , X 2 , X 3 ) ~ N 3 (μ, Σ) , 其 中 μ = 1, 0, -2 ,Σ = -4 4 -1 , 试 判 断 2 -1 4 X X3 X1 2 X 2 与 2 是否相互独立。 X1
13. 设有两个正态总体 G1 和 G2 ,已知:
10 20 18 12 20 7 μ (1) , μ (2) , Σ1 , Σ2 15 25 12 32 7 5
试用距离判别法判断:样品: x
《多元统计分析》期末复习题
一、 简述题
1. 针对一个多元正态总体 N p (μ, Σ) 均值向量 μ 的检验 H 0 : μ μ 0 H1 : μ μ 0 而言,其 中 μ 0 是已知的向量。在协方差阵 Σ 已知和未知的两种情形下,如何分别构造的统计量? 2. 简述欧几里得距离与马氏距离的区别和联系。 3. 在进行系统聚类分析时,不同的类间距离计算方法有何区别?请举例说明。 4. 试述 K 均值法与系统聚类法的异同。 5. 试述有序聚类法的基本思想。 6. 试析距离判别法、贝叶斯判别法和费希尔判别法的异同。 7. 简述费希尔判别法的基本思想。 8. 试述主成分分析的基本思想 9. 主成分分析的作用体现在何处? 10. 试述根据协差阵进行主成分分析和根据相关阵进行主成分分析的区别。

多元统计分析期末考试考点完整版

多元统计分析期末考试考点完整版

多元统计分析期末考试考点标准化管理处编码[BBX968T-XBB8968-NNJ668-MM9N]多元统计分析题型一定义、名词解释题型二计算(协方差阵、模糊矩阵)题型三解答题一、定义二名词解释1、多元统计分析:多元统计分析是运用数理统计的方法来研究多变量(多指标)问题的理论和方法,是一元统计学的推广2、聚类分析:是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

将个体或对象分类,使得同一类中的对象之间的相似性比与其他类的对象的相似性更强。

使类内对象的同质性最大化和类间对象的异质性最大化3、随机变量:是指的值无法预先确定仅以一定的可能性(概率)取值的量。

它是由于随机而获得的非确定值,是概率中的一个基本概念。

即每个分量都是随机变量的向量为随机向量。

类似地,所有元素都是随机变量的矩阵称为随机矩阵。

4、统计量:多元统计研究的是多指标问题,为了了解总体的特征,通过对总体抽样得到代表总体的样本,但因为信息是分散在每个样本上的,就需要对样本进行加工,把样本的信息浓缩到不包含未知量的样本函数中,这个函数称为统计量三、计算题解:答:答:题型三解答题1、简述多元统计分析中协差阵检验的步骤答:第一,提出待检验的假设和H1;第二,给出检验的统计量及其服从的分布;第三,给定检验水平,查统计量的分布表,确定相应的临界值,从而得到否定域;第四,根据样本观测值计算出统计量的值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受)。

2、简述一下聚类分析的思想答:聚类分析的基本思想,是根据一批样品的多个观测指标,具体地找出一些能够度量样品或指标之间相似程度的统计量,然后利用统计量将样品或指标进行归类。

把相似的样品或指标归为一类,把不相似的归为其他类。

直到把所有的样品(或指标)聚合完毕.3、多元统计分析的内容和方法答:1、简化数据结构,将具有错综复杂关系的多个变量综合成数量较少且互不相关的变量,使研究问题得到简化但损失的信息又不太多。

多元统计分析期末测验考试考点

多元统计分析期末测验考试考点

多元统计分析题型一定义、名词解释题型二计算(协方差阵、模糊矩阵)题型三解答题一、定义二名词解释1、多元统计分析:多元统计分析是运用数理统计地方法来研究多变量(多指标)问题地理论和方法,是一元统计学地推广b5E2R。

2、聚类分析:是根据“物以类聚”地道理,对样品或指标进行分类地一种多元统计分析方法.将个体或对象分类,使得同一类中地对象之间地相似性比与其他类地对象地相似性更强.使类内对象地同质性最大化和类间对象地异质性最大化p1Ean。

3、随机变量:是指变量地值无法预先确定仅以一定地可能性(概率)取值地量.它是由于随机而获得地非确定值,是概率中地一个基本概念.即每个分量都是随机变量地向量为随机向量.类似地,所有元素都是随机变量地矩阵称为随机矩阵.DXDiT。

4、统计量:多元统计研究地是多指标问题,为了了解总体地特征,通过对总体抽样得到代表总体地样本,但因为信息是分散在每个样本上地,就需要对样本进行加工,把样本地信息浓缩到不包含未知量地样本函数中,这个函数称为统计量RTCrp。

三、计算题解:2、答:答:题型三解答题1、简述多元统计分析中协差阵检验地步骤答:第一,提出待检验地假设和H1;第二,给出检验地统计量及其服从地分布;第三,给定检验水平,查统计量地分布表,确定相应地临界值,从而得到否定域;第四,根据样本观测值计算出统计量地值,看是否落入否定域中,以便对待判假设做出决策(拒绝或接受).2、简述一下聚类分析地思想答:聚类分析地基本思想,是根据一批样品地多个观测指标,具体地找出一些能够度量样品或指标之间相似程度地统计量,然后利用统计量将样品或指标进行归类.把相似地样品或指标归为一类,把不相似地归为其他类.直到把所有地样品(或指标)聚合完毕.5PCzV。

3、多元统计分析地内容和方法答:1、简化数据结构,将具有错综复杂关系地多个变量综合成数量较少且互不相关地变量,使研究问题得到简化但损失地信息又不太多.(1)主成分分析(2)因子分析(3)对应分析等jLBHr。

多元统计分析期末复习

多元统计分析期末复习

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系)(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X均值向量:随机向量X与Y的协方差矩阵:当X=Y时Cov(X,Y) =D(X);当Cov( X,Y)=0,称X,Y不相关。

随机向量X与Y的相关系数矩阵:2、均值向量协方差矩阵的性质(1) .设X,Y为随机向量,A,B为常数矩阵E ( AX)二AE( X);E ( AXB =AE (X)B;D(AX)=AD(X)A ';Cov(AX,B Y)二ACov(X, Y)EX ' ( EX^EX?, , EX p) ( 2,…,P )'cov( X ,Y ) E ( X EX )( YEY )' (2) .若X,Y独立,则Cov(X,Y) =0,反之不成立.(X,Y) (r j)pq(3) .X的协方差阵D(X)是对称非负定矩阵。

例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质特别地,当为对角阵时,相互独立。

(2) .若,、为sxp阶常数矩阵,d为s阶向量,AX+ d〜即正态分布的线性函数仍是正态分布.(3) .多元正态分布的边缘分布是正态分布,反之不成立.(4) .多元正态分布的不相关与独立■等价.,X pX ~ N p(,) '例3 .见黑板.N s( A d , A A )三、多元正态分布的参数估计⑴“为来自p兀总体X的(简单)样本”的理解---独立同截面.X(1),,X(n)(2)多兀分布样本的数字特征- —常见多兀统计量X n(X i,X2,,X p)' 1(X (i)X )( X (i) X )' —样本均值向量i 1X样本离差阵S = 样本协方差阵V = S ;样本相X X X ~ N p(,-)关阵R W p(n1,)X n(3) , V分别是和的最大似然估计;⑷估计的性质是的无偏估计;,V分别是和的有效和一致估计;S〜,与S相互独立;第五章聚类分析:一、什么是聚类分析:聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

多元统计--期末复习题.docx

多元统计--期末复习题.docx

1、 设X 与Y 是从协差阵为X 的总体G 中抽取的样品,则X 与Y 之间的马氏距 离的具体表现形式是什么?它与欧氏距离有什么区别?2、 判别分析的实质问题是什么?3、 常用的判别分析方法有哪些?请简述它们的思想。

4、 在什么情况下距离判别是Bayes 判别的特例?5、 对样品和变量进行聚类分析时,所构造的统计量分别是什么?简单说明为什 么要这样构造?6、 简述判别分析的步骤。

7、 简述主成分分析的思想。

8、 试述主成分分析的几何意义。

9、 分别说明由协差阵和相关阵出发求解主成分的适用情形。

一般的,两种情形 下得到的主成分相同吗?为什么?10、 简述主成分分析和因子分析的联系和区别。

11、 因子载荷阵是唯一的吗?证明之。

并说明因子载荷的统计意义。

13、 列举聚类分析中常用的方法,并简述每种方法的主要思想。

14、 为什么要进行因子旋转?因子旋转的方法有哪些? 15、 什么是相应分析? 16、 相应分析的基本思想。

17>简述相应分析的步骤。

18、距离判别是Bayes 判别的一种特例吗?为什么? 19>设有两个正态总体G 和已知:20、下面是5个样品两两间的距离矩阵0 10 0 5 8 0试用最长距离法作系统聚类,并画出谱系聚类图。

h12、设因子载荷矩阵为A,称第,行元素的平方和,即,mf =工4; i = l,2,・・・,p为变量X 「的共同度。

说明变量共同度时的统计意义。

试用距离判别法判断:样品: 12、 32丿20 X =20<20 -7,应归属于哪一类?0 4 6 1 6 0 9 7 3 201 <18 25严 _[1221、金融分析员需要有两项重要指标来衡量,设总体G1为“金融分析员满足要求”;总体G2为“金融分析员不满足要求”(两个总体均服从正态分布), 今测得两个总体的若干数据,并由这些数据得到对某一金融分析员进行判别是否能满足这项工作。

进行测量得到两个指标为X=(5,4);且当两组先验概率分别为如=0・269与的=0・731,损失相同。

山东财经大学《多元统计分析》期末复习题参考

山东财经大学《多元统计分析》期末复习题参考

多元统计分析期末复习题参考1、设其中,设,求 3(,)X N μ∑:2 1 1 13, 1 3 21 1 2 2μ⎛⎫⎛⎫ ⎪ ⎪=-∑= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭(-1 2 3)a =1);(')(')E a X D a X 及2) 求。

123123(|,)(|,)E X X X D X X X 及2、已知,为来自X 的两个样品观测得其观21 1 0.9,10.9 1X N ⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭:12,X X 测值为:,求12,x x 的马氏距离。

1221,12x x ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭3、设抽了5个样品,每个样品只测了一个指标,它们分别是1, 2, 4.5, 6, 8, 若样品间距离用欧氏距离来度量,试用最短距离法对其进行聚类,要求画出聚类图。

4、设抽了5个有序样品,每个样品只测了一个指标,它们分别是1, 2, 3.5, 6, 8, 试用最优分割法对该5个样品分为3类。

5、设有两个总体的分布分别为:12, G G 221018 122020 -7,, ,,1512 3225-7 5N N ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭试问样品分别按以下两种准则各应判归哪一类? (1)(2)2015,2020X X ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭1)按距离判别准则;2)按贝叶斯判别准则(取)。

121=,(2|1)10,(1|2)752q q C C ===先验概率误判损失为6、在某中学随机抽取某年级30名学生,测量其身高(X1),体重(X2),胸围(X3)和坐高(X4)四个指标,这四个变量的相关系数矩阵的特征根及单位特征向量分别为:113.541, (0.497, 0.5146, 0.4809, 0.5069)u λ'==220.3133, (0.5432, 0.2102, 0.7246, 0.3683)u λ'==--330.0794, (0.4496, 0.4623, 0.1752, 0.7439)u λ'==--440.0661, (0.5057, 0.6908, 0.4615, 0.2323)u λ'==--1) 写出四个主成分的表达式;2) 计算每个主成分的方差贡献率,并结合碎石图适当选取主成分个数;3) 主成分分析有哪些应用?7、对纽约股票市场上的五种股票的周回升率X1,X2,X3,X4,X5进行了因子分析,其中X1,X2,X3分别表示三个化学工业公司的股票回升率,X4,X5表示两个石油公司的股票回升率,试这5个变量的相关系数矩阵的前两个特征根和对应的单位特征向量为112.857, (0.464,0.457,0.47,0.421,0.421)u λ'==221.024, (0.24,0.509,0.26,0.526,0.582)u λ'==--1) 取公共因子个数为2,求因子载荷阵A ;2) 用F1,F2表示选取的公共因子,表示特殊因子,写出因子模型;12,εε3) 说明因子载荷矩阵中元素的统计意义。

多元统计分析期末试题及答案

多元统计分析期末试题及答案

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?(),123设X=xx x 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R ⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪ ⎪⎝⎭11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计分析期末试题与答案解析

多元统计分析期末试题与答案解析

22121212121~(,),(,),(,),,1X N X x x x x x x ρμμμμσρ⎛⎫∑==∑=⎪⎝⎭+-1、设其中则Cov(,)=____.10312~(,),1,,10,()()_________i i i i X N i W X X μμμ='∑=--∑L 、设则=服从。

()1234433,492,3216___________________X x x x R -⎛⎫ ⎪'==-- ⎪⎪-⎝⎭=∑、设随机向量且协方差矩阵则它的相关矩阵4、__________, __________,________________。

215,1,,16(,),(,)15[4()][4()]~___________i p p X i N X A N T X A X μμμμ-=∑∑'=--L 、设是来自多元正态总体和分别为正态总体的样本均值和样本离差矩阵,则。

(),123设X=x xx 的相关系数矩阵通过因子分析分解为211X h =的共性方差111X σ=的方差21X g =1公因子f 对的贡献121330.93400.1280.9340.4170.8351100.4170.8940.02700.8940.44730.8350.4470.1032013R⎛⎫- ⎪⎛⎫⎛⎫⎪-⎛⎫ ⎪ ⎪⎪=-=-+ ⎪ ⎪ ⎪ ⎪⎝⎭ ⎪ ⎪ ⎪⎝⎭⎝⎭ ⎪⎪⎝⎭12332313116421(,,)~(,),(1,0,2),441,2142X x x x N x x x x x μμ-⎛⎫⎪'=∑=-∑=-- ⎪ ⎪-⎝⎭-⎛⎫+ ⎪⎝⎭、设其中试判断与是否独立?11262(90,58,16),82.0 4.310714.62108.946460.2,(5)( 115.6924)14.6210 3.17237.14.5X S μ--'=-⎛⎫ ⎪==-- ⎪ ⎪⎝⎭0、对某地区农村的名周岁男婴的身高、胸围、上半臂围进行测量,得相关数据如下,根据以往资料,该地区城市2周岁男婴的这三个指标的均值现欲在多元正态性的假定下检验该地区农村男婴是否与城市男婴有相同的均值。

多元统计期末试题及答案

多元统计期末试题及答案

多元统计期末试题及答案一、选择题1. 在多元统计中,什么是协方差矩阵?A. 描述两个变量之间的线性关系的矩阵B. 描述两个变量之间的非线性关系的矩阵C. 描述多个变量之间的线性关系的矩阵D. 描述多个变量之间的非线性关系的矩阵答案:C2. 多元方差分析适用于以下哪种情况?A. 只有一个自变量和一个因变量B. 有一个自变量和多个因变量C. 有多个自变量和一个因变量D. 有多个自变量和多个因变量答案:C3. 多元线性回归分析中的残差是指什么?A. 因变量的观测值与估计值之间的差异B. 自变量的观测值与估计值之间的差异C. 因变量的观测值与真实值之间的差异D. 自变量的观测值与真实值之间的差异答案:A4. 主成分分析的目标是什么?A. 减少变量的数量B. 识别主要影响因素C. 降低模型复杂度D. 提高预测准确率答案:A5. 判别分析的目标是什么?A. 最小化类内方差B. 最大化类间方差C. 最小化类间方差D. 最大化类内方差答案:B二、填空题1. 多元正态分布的概率密度函数用符号____表示。

答案:f(x)2. 多元统计分析中的数据通常以矩阵的形式表示,其中每行代表____,每列代表____。

答案:样本,变量三、计算题假设有一组学生数据,包括他们的数学成绩(变量X1)、英语成绩(变量X2)和科学成绩(变量X3)。

1. 计算变量X1和X2之间的协方差。

答案:可使用协方差公式计算:Cov(X1,X2) = Σ[(X1-μ1)(X2-μ2)] / (n-1)其中,Σ表示求和符号,μ1和μ2分别为X1和X2的均值,n为样本数量。

2. 假设已经进行了主成分分析,计算数据的前两个主成分和对应的方差解释比例。

答案:主成分分析会得到一组主成分,可以通过对应的特征值来计算方差解释比例。

假设前两个特征值为λ1和λ2,总特征值和为Σλi。

则前两个主成分的方差解释比例为:(λ1 + λ2) / Σλi四、简答题1. 解释多元统计分析中的共线性问题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章:多元统计分析研究的内容(5点)1、简化数据结构(主成分分析)2、分类与判别(聚类分析、判别分析)3、变量间的相互关系(典型相关分析、多元回归分析)4、多维数据的统计推断5、多元统计分析的理论基础第二三章:二、多维随机变量的数字特征1、随机向量的数字特征随机向量X 均值向量: 随机向量X 与Y 的协方差矩阵: 当X=Y 时Cov (X ,Y )=D (X );当Cov (X ,Y )=0 ,称X ,Y 不相关。

随机向量X 与Y 的相关系数矩阵: 2、均值向量协方差矩阵的性质(1).设X ,Y 为随机向量,A ,B 为常数矩阵E (AX )=AE (X );E (AXB )=AE (X )B;D(AX)=AD(X)A ’;Cov(AX,BY)=ACov(X,Y)B ’;)',...,,(),,,(2121P p EX EX EX EX μμμ='= )')((),cov(EY Y EX X E Y X --=q p ij r Y X ⨯=)(),(ρ(2).若X ,Y 独立,则Cov(X,Y)=0,反之不成立.(3).X 的协方差阵D(X)是对称非负定矩阵。

例2.见黑板三、多元正态分布的参数估计2、多元正态分布的性质(1).若 ,则E(X)= ,D(X)= .特别地,当 为对角阵时, 相互独立。

(2).若 ,A为sxp 阶常数矩阵,d 为s 阶向量,AX+d ~ . 即正态分布的线性函数仍是正态分布. (3).多元正态分布的边缘分布是正态分布,反之不成立.(4).多元正态分布的不相关与独立等价.例3.见黑板.三、多元正态分布的参数估计(1)“ 为来自p 元总体X 的(简单)样本”的理解---独立同截面.(2)多元分布样本的数字特征---常见多元统计量样本均值向量 =样本离差阵S= 样本协方差阵V= S ;样本相关阵R(3) ,V分别是 和 的最大似然估计; (4)估计的性质 是 的无偏估计; ,V分别是 和 的有效和一致估计; ; S~ , 与S相互独立; 第五章 聚类分析:一、什么是聚类分析 :聚类分析是根据“物以类聚”的道理,对样品或指标进行分类的一种多元统计分析方法。

用于对事物类别不清楚,甚至事物总共可能有几类都不能确定的情况下进行事物分类的场合。

聚类方法:系统聚类法(直观易懂)、动态聚类法(快)、有序聚类法(保序)......Q-型聚类分析(样品)R-型聚类分析(变量)变量按照测量它们的尺度不同,可以分为三类:间隔尺度、有序尺度、名义尺度。

二、常用数据的变换方法:中心化变换、标准化变换、极差正规化变换、对数变换(优缺点)1、中心化变换(平移变换):中心化变换是一种坐标轴平移处理方法,它是先求出每个变量的样本平均值,再从原始数据中减去该变量的均值,就得到中心化变换后的数据。

不改变样本间的相互位置,也不改变变量间的相关性。

2、标准化变换:首先对每个变量进行中心化变换,然后用该变量的标准差进行标准化。

经过标准化变换处理后,每个变量即数据矩阵中每列数据的平均值为0,方差为1,且也不再具有量纲,同样也便于不同变量之间的比较。

3、极差正规化变换(规格化变换):规格化变换是从数据矩阵的每一个变量中找出其最大值和最小值,这两者之差称为极差,然后从每个变量的每个原始数据中减去该变量中的最小值,再除以极差。

经过规格化变换后,数据矩阵中每列即每个变量的最大数值为1,最小数值为0,其余数据取值均在0-1之间;且变换后的数据都不再具有量纲,便于不同的变量之间的比较。

4、对数变换:对数变换是将各个原始数据取对数,将原始数据的对数值作为变换后的新值。

它将具有指数特征的数据结构变换为线性数据结构。

三、样品间相近性的度量研究样品或变量的亲疏程度的数量指标有两种:距离,它是将每一个样品看作p 维空间的一个点,并用某种度量测量点与点之间的距离,距离较近的归为一类,距离较远的点应属),(~∑μP N X μ∑μp X X X ,,,21 ),(~∑μP N X ),('A A d A N s ∑+μ)()1(,,n X X X )',,,(21p X X X )')(()()(1X X X X i i n i --∑=n 1Xμ∑μX )1,(~∑n N X P μ),1(∑-n W p X X于不同的类;相似系数,性质越接近的变量或样品,它们的相似系数越接近于1或一l ,而彼此无关的变量或样品它们的相似系数则越接近于0,相似的为一类,不相似的为不同类。

样品之间的聚类即Q 型聚类分析,则常用距离(统计量)来测度样品之间的亲疏程度;而变量之间的聚类即R 型聚类分析,常用相似系数(统计量)来测度变量之间的亲疏程度。

1、距离的算法:明氏距离 兰氏距离 斜交空间距离 马氏距离2、相似系数的算法:夹角余弦 相似系数3、样品分类和指标分类:对样品分类常用距离,对指标分类常用相似系数4、明氏(Minkowski )距离的两个缺点:①明氏距离的值与各指标的量纲有关,而各指标计量单位的选择有一定的人为性和随意性,各变量计量单位的不同不仅使此距离的实际意义难以说清,而且,任何一个变量计量单位的改变都会使此距离的数值改变从而使该距离的数值依赖于各变量计量单位的选择。

②明氏距离的定义没有考虑各个变量之间的相关性和重要性。

实际上,明考夫斯基距离是把各个变量都同等看待,将两个样品在各个变量上的离差简单地进行了综合.5、相似系数:通常所说相关系数,一般指变量间的相关系数,作为刻划样品间的相似关系也可类似给出定义,即第i 个样品与第j 个样品之间的相似系数定义为:实际上,就是两个向量中心化后的夹角余弦6、距离和相似系数选择的原则:(1)所选择的亲疏测度指标在实际应用中应有明确的意义。

(2)亲疏测度指标的选择要综合考虑已对样本观测数据实施了的变换方法和将要采用的聚类分析方法。

(3)适当地考虑计算工作量的大小。

练习:1.聚类分析是建立一种分类方法,它将一批样品或变量按照它们在性质上的___进行科学的分类.2.Q 型聚类法是按___进行聚类,R 型聚类法是按 ___进行聚类。

3.Q 型聚类统计量是___,而R 型聚类统计量通常 采用___。

4.在聚类分析中需要对原始数据进行无量纲化处理,以消除不同量纲或数量级的影响,达到数据间可同度量的目的。

常用的无量纲化方法有以下几种:___、____、___。

5.Q 型聚类方法有___、___、___、___等。

第六章 判别分析:1.四种判别方法:距离判别法、费歇判别法、贝叶斯判别法、逐步判别法。

2.贝叶斯Bayes 判别法:距离判别方法简单实用,但没有考虑到每个总体出现的机会大小,即先验概率,没有考虑到错判的损失;Fisher 判别法随着总体个数的增加,建立的判别式也增加,计算量加大,如果考虑各总体的重要性,问题会突出而简单许多。

既要考虑到各个总体出现的先验概率,又要考虑到错判造成的损失,Bayes 判别就具有这些优点,其判别效果更加理想,应用也更广泛。

基本思想:总是假定对所研究的对象已有一定的认识,常用先验分布来认识它,然后,基于抽取的样本对先验概率作修正,得到后验概率,最后采用相应的判别准则(如误判率最小准则,后验概率最大准则等)进行判别。

Bayes 判别法,对各类(总体)的分布有特定的要求,即已知先验概率和分布密度函数。

3.4.各判别法之间的联系:在正态等协方差阵及先验概率相等的条件下贝叶斯判别与距离判别等价;不加权的Fisher判别法等价于距离判别法∑∑∑===----=p k p k j jk i ik p k j jk i ik ij x x x x x x x x 11221])(][)([))((γ练习:1.判别分析是要解决在研究对象已________的情况下,确定新的观测数据属于已知类别中哪一类的多元统计方法。

2.用判别分析方法处理问题时,通常以_______作为衡量新样本点与各已知组别接近程度的指标。

3.进行判别分析时,通常指定一种判别规则,用来判定新样本的归属,常见的判别准则有_______、_________。

4.在p 维空间Rp 中,点与点之间的接近和疏远尺度用_______来衡量,最简单的就是________或__________。

5.类内样本点接近,类间样本点疏远的性质,可以通过_________与______的大小差异表现出来,而两者的比值能把不同的类区别开来。

这个比值越大,说明类与类间的差异越___,分类效果越___。

6.Fisher 判别法是找一个由p 个变量组成的______,使得各自组内点的____尽可能接近,而不同组间点的尽可能疏远。

简答题:1.判别分析的分类:距离判别法、费歇判别法、贝叶斯判别法、逐步判别法。

2.判别的基本思想:是根据已掌握的、历史上若干样本的p 个指标数据及所属类别的信息,总结出该事物分类的规律性,建立判别公式和判别准则。

根据总结出来的判别公式和判别准则,判别未知类别的样本点所属的类别。

3.简述两个总体的判别及判别准则:基本思路:(1)统计模型:设G1,G2是两个不同的P 维已知总体,x=(x1,…,xp )T 是一个待判样品;(2)距离判别准则: (3)判别函数: 4.简述Fisher 判别法及具体判别步骤:Fisher 判别的思想是投影,将k 组p 维数投影到某一个方向,使得他们的投影组与组之间尽可能的分开。

5.简述逐步判别基本原理: 逐步引入变量,每次把一个判别能力最强的变量引入,每引入一个新的变量,对老变量又逐个进行检验,如其判别能力因新变量的引入而变得不显著,应把它从判别式中剔除,最终建立的判别函数中仅保留判别能力显著的变量。

6.简述BAYES 判别分析与其它判别方法的优劣:(1)与距离判别的优劣比较:距离判别优于两个总体情况下的判别,对两个总体几乎没有任何要求,简捷,实用,易懂;距离判别法在多个总体时,没有考虑各总体出现的概率,对各个变量的重要性一视同仁,难免产生误判。

Bayes 判别法对的理论与方法严密而完善,对研究对象的信息利用充分,误判率大大降低,但计算较复杂。

(2)与Bayes判别法的比较:Bayes判别与Fisher判别的比较:对总体的分布要求不同;多个总体下,Fisher判别的计算量大,但均值向量共线性程度较好时,可以考虑用Fisher判别;各总体出现的重要性不同时应使用是Bayes判别。

第七章、主成分分析1.主成分分析就是设法将原来变量重新组合成一组新的相互无关的综合变量来代替原来的变量,并尽可能多地反映原来变量的信息。

数学表现为:Var (Yj )最大;cov(Yi ,Yj)=0;2.主成分就是以协方差阵的特征向量为系数的线性组合,它们互不相关,其方差的特征根。

相关文档
最新文档