哪条路径最短——评测练习

合集下载

初二数学最短路径练习题及答案

初二数学最短路径练习题及答案

初二数学最短路径练习题及答案导言:数学中的最短路径问题是指在网络图中寻找两个顶点之间路径长度最短的问题。

该问题在实际生活中应用广泛,比如在导航系统中为我们找到最短的路线。

对于初二学生而言,在学习最短路径问题时,题目练习是非常重要的。

本文将为初二数学学习者提供一些最短路径练习题及答案,帮助他们巩固知识和提高解题能力。

练习题一:某地有4个村庄A、B、C、D,它们之间的道路如下图所示。

要求从村庄A到村庄D,经过的道路距离最短,请你找出最短路径,并计算出最短路径的长度。

解答一:根据题目所给的道路图,我们可以使用最短路径算法来求解最短路径。

以下是求解过程:1. 首先,我们需要创建一个包含4个顶点的图,并初始化每条边的权值。

将A、B、C、D顶点分别标记为1、2、3、4。

村庄A到村庄B的距离为5,即A-5-B。

村庄A到村庄C的距离为3,即A-3-C。

村庄B到村庄C的距离为2,即B-2-C。

村庄B到村庄D的距离为6,即B-6-D。

村庄C到村庄D的距离为4,即C-4-D。

2. 接下来,我们使用迪杰斯特拉算法求解最短路径。

a) 首先,我们将起始顶点A的距离设置为0,其他顶点的距离设置为无穷大。

b) 然后,我们选择距离最短的顶点,并将其标记为已访问。

c) 然后,我们更新与该顶点相邻的顶点的距离。

如果经过当前顶点到达邻接顶点的距离比已记录的最短路径更短,就更新最短路径。

d) 重复上述步骤,直到找到最短路径为止。

3. 经过计算,最短路径为A-3-C-4-D,距离为7。

练习题二:某城市有6个地点,它们之间的交通图如下所示。

请你计算从地点A到地点F的最短路径,并给出最短路径的长度。

解答二:根据题目所给的交通图,我们可以使用最短路径算法来求解最短路径。

以下是求解过程:1. 首先,我们需要创建一个包含6个顶点的图,并初始化每条边的权值。

将地点A、B、C、D、E、F分别标记为1、2、3、4、5、6。

地点A到地点B的距离为4,即A-4-B。

初中数学八年级上册课题学习_最短路径问题练习题含答案

初中数学八年级上册课题学习_最短路径问题练习题含答案

初中数学八年级上册课题学习最短路径问题练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________1. 如图,已知Rt△ABC中,∠B=90∘,AB=3,BC=4,D,E,F分别是边AB,BC,AC上的动点,则DE+EF+FD的最小值为()A.4.8B.6C.10D.无法确定2. 如图,在矩形ABCD中,AB=6,AD=8,点P在矩形内部,且满足S PCD=1 4S长方形ABCD,则点P到A,B两点的距离之和PA+PB的最小值为( )A.8B.10C.14D.2√133. 如图,直线l表示石家庄的太平河,点P表示朱河村,点Q表示黄庄村,欲在太平河l 上修建一个水泵站(记为点M),分别向两村供水,现有如下四种修建水泵站供水管道的方案,图中实线表示修建的管道,则修建的管道最短的方案是()A. B. C. D.4. 如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B.C. D.5. 如图①,在边长为4cm的正方形ABCD中,点P从点A出发,沿AB→BC的路径匀速运动,当点C停止,过点P作PQ//BD,PQ与边AD(或边CD)交于点Q,PQ的长度y(cm)与点P的运动时间x(s)的函数关系图象如图②所示,当点P运动2.5s时,PQ的长是()cm.A.5√2B.√2C.4√2D.3√26. 如图,已知△ABC为等腰直角三角形,AC=BC=4,∠BCD=15∘,P为CD上的动点,则|PA−PB|的最大值是()A.4B.5C.6D.87. 如图,一个实心圆柱高8cm,底面周长为30cm,一只蚂蚁在圆柱表面爬行,从点A爬到点B的最短路程是())cm C.√161cm D.2√241cmA.17cmB.(8+30π8. 已知:如图,四边形ABCD中,∠ABC=60∘,AB=BC=2,对角线BD平分∠ABC,E是BC的中点,P是对角线BD上的一个动点,则PE+PC的最小值为()A.√3B.3C.2D.√229. 如图,在长方体中,AB=5,BC=4,CC1=3,动点从A1出发沿长方体的表面运动到达C点,则动点的最短距离是()A.√90B.√80C.√78D.√7410. 如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则△CDM周长的最小值为( )A.6B.8C.10D.1211. 一个圆桶儿,底面直径为16cm,高为18cm,有一只小虫从底部点A处爬到上底B 处,则小虫所爬的最短路径长是(π取3)________.AC,AB=8,E是AB上12. 如图,在Rt△ABC中,∠CAB=30∘,∠C=90∘.AD=14任意一点,F是AC上任意一点,则折线DEFB的最短长度为________.13. 小明在广场上散步,先向东走12m后,再向北又走了9m,现要以最短距离________m回到原地.14. 如图,菱形ABCD中,∠BAD=45∘,E,F,P分别是AB,BC,AC上的动点,PE+PF的最小值等于2,则AB=________.15. 对于平面直角坐标系中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“对称点”;当QM=QN=MN时,称点Q为线段MN的“完美对称点”.(1)如图1,点A坐标为(4,0),有点Q1(0,4),Q2(2,−4),Q3(1,√3),则线段OA的“对称点”是________.(填“Q1”"Q2"或 "Q3")(2)如图2,已知Q(2,2√3)为线段OA的“完美对称点”,D为线段OQ的中点,B为线段OA 的一个“对称点”,则BO+BD的最小值为________.16. 如图,在△ABC中,AB=3,AC=4,EF垂直平分BC,点P为直线EF上一动点,则△ABP周长的最小值是________.17. 圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程(π取3)是________.18. 如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF 交AC于点F,若D为BC边上的动点,M为线段EF上一动点,则BM+DM最小值为________.19. 如图,已知蚂蚁沿着长为2的正方体表面从点A出发,经过3个侧面爬到点B,如果它运动的路径是最短的,则此经过3个侧面的最短路径长为________.20. 如图,在平面直角坐标系xOy中,A(1,0),B(3,0),点P为y轴正半轴上的一个动点,以线段PA为边在PA的右上方作等边△APQ,连接QB,在点P运动的过程中,线段QB长度的最小值为________.21. 如图,若∠AOB=30∘,点P在∠AOB内,且OP=2cm,分别在OA、OB上找一点E,F使△PEF的周长最小,并求△PEF的周长最小值.22. 如图,有一个圆柱高为6cm,底面半径为2cm,圆柱下底面的A点有一只蚂蚁,它想吃到上底边与点A相对B处的食物,需要爬行的最短路程是多少(π取3)?23. 在直线m上找一点C,使CA+CB的值最小.24. 如图,一只小蚂蚁要从A点沿长方体木块表面爬到B点处吃蜜糖.已知长方体木块的长、宽、高分别为10cm、8cm、6cm,试计算小蚂蚁爬行的最短距离.25. 有一圆柱体高为8cm,底面圆的半径为2cm,如图所示,在AA1上的点Q处有一只蜘蛛,QA1=3cm,在BB1上的点P处有一只苍蝇,PB=2cm.(1)蜘蛛要从点Q处沿圆柱体表面去吃点P处的苍蝇,请在图中大致画出蜘蛛爬行的最短路径;(2)求蜘蛛爬行的最短路径长.(π取3)26. 如图,一正方形的棱长为2,一只蚂蚁在顶点A处,在顶点G处有一米粒.(1)问蚂蚁吃到这粒米需要爬行的最短距离是多少?(2)在蚂蚁刚要出发时,突然一阵大风将米粒吹到了GF的中点M处,问蚂蚁要吃到这粒米的最短距离又是多少?x2+1具有如下性质:该抛物线上任意一点到定点F(0, 2)的距离27. 已知抛物线y=14x2+1上一个与到x轴的距离始终相等,如图,点M的坐标为(√3,3),P是抛物线y=14动点.(1)若PF=5,求点P的坐标;(2)求△PMF周长的最小值.28. 同学们在灯管上缠绕5cm彩带.已知灯管长100cm,灯管截面圆的周长是15cm,彩带至少应剪多长?29. 如图所示,P、Q是△ABC中AB、AC边上的点,你能在BC边上确定一点R,使△PQR的周长最小吗?30. 如图,Q为马厩甲,AB为草地边缘(下方为草地),CD为一河流,放牧人欲从马厩甲牵马先去草地M处让马吃草,然后到河边N处饮水,最后回到马厩乙P.请你帮他确定一条最佳行走路线QM→MN→NP,使其所走路程最短.31. 判断说理:元旦联欢会上,八年级(1)班的同学们在礼堂四周摆了一圈长条桌子,其中北边条桌上摆满了苹果,东边条桌上摆满了香蕉,礼堂中间B处放了一把椅子,游戏规则是这样的:甲、乙二人从A处(如图)同时出发,先去拿苹果再去拿香蕉,然后回到B处,谁先坐到椅子上谁赢.张晓和李岚比赛,比赛一开始,只见张晓直奔东北两张条桌的交点处,左手抓苹果,右手拿香蕉,回头直奔B处,可是还未跑到B处,只见李岚已经手捧苹果和香蕉稳稳地坐在B处的椅子上了.如果李岚不比张晓跑得快,张晓若想获胜有没有其他的捷径?若有,请说明你的捷径,若没有,请说明理由.32. 如图,矩形ABCD,AB=6cm,AD=12cm,P是AB上的动点,Q是AD上的动点.P以1cm/s的速度从B到A,Q以2cm/s的速度从A到D,P到A(或Q到D)时停止运动.求PQ+QC最小值.33. 如图,A,B两村在一条小河的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹.34. 如图,在四边形ABCD中,P为BC的中点,试在CD边上找一点Q,使△APQ的周长最小.35.作图题:现要在形如△ABC的地面范围内建一中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.(要求:保留作图痕迹,并用适当的文字说明作图方法)36. 如图,有一只蚂蚁从一个圆柱体的A点沿着侧面绕圆柱至少一圈爬到B点,已知圆柱的底面半径为1.5cm,高为12cm,则蚂蚁所走过的最短路径是多少?(π取3)37. 在一条笔直公路上分布A,B,C,D,E五个工厂(各相邻工厂之间的距离均不相等),为方便这些工厂的员工,现要在公路上设一个汽车站,使各工厂到汽车站的距离之和最小.【简化分析】(1)假若由三个工厂A,B,C时,汽车站的位置有五种情形:①A厂门口,②AB之间,③B厂门口,④BC之间,⑤C厂门口.【分类讨论】①当车站设在A工厂门口时,则A厂到汽车站的距离为0,B厂到汽车站的距离为AB,C厂到汽车站的距离为AB+BC,所以各工厂到车站的距离之和为________②当车站设在A,B两工厂之间的P点时,则A厂到汽车站的距离为AP,B厂到汽车站的距离为BP,C厂到汽车站的距离为BP+BC,所以各工厂到车站的距离之和为_________③当车站设在B工厂门口,则各工厂到汽车站的距离之和为_________④当车站设在B,C两工厂之间的Q点时,则各工厂到汽车站的距离之和为_________⑤当车站设在C工厂门口,则各工厂到汽车站的距离之和为________【总结归纳】综上可知:汽车站设在________时,各工厂到汽车站的距离之和最小.【问题解决】 (2)当有A,B,C,D,E五个工厂时,汽车站设在哪里,才能使各工厂到汽车站的距离之和最小?请说明理由.38. 如图,A,B,C,D为四家超市,其中超市D距A,B,C三家超市的路程分别为25km,10km,5km.现计划在A,D之间的道路上建一个配货中心P,为避免交通拥堵,配货中心与超市之间的距离不少于2km.假设一辆货车每天从P出发为这四家超市送货各次,由于货车每次仅能给一家超市送货,因此每次送货后均要返回配货中心P,重新装货后再前往其他超市.设P到A的路程为xkm,这辆货车每天行驶的路程为ykm.(1)求y与x之间的函数关系式,并写出自变量x的取值范围;(2)直接写出配货中心P建在什么位置,这辆货车每天行驶的路程最短?最短路程是多少?39. 如图,一块砖宽AN=5cm,长ND=10cm,CD上的点B距地面的高BD=8cm,地面上A处的一只蚂蚁到B处吃食,要爬行的最短路线是多少?40. 下图,要在燃气管道L上修建一个泵站,分别向A、B两镇供气.泵站修在管道的什么地方,可使所用的输气管线最短?(不写做法,保留作图痕迹)参考答案与试题解析初中数学八年级上册课题学习最短路径问题练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】轴对称——最短路线问题【解析】此题暂无解析【解答】解:如图作F关于直线AB的对称点M,作F关于直线BC的对称点N,连接BM,BN,BF,EF,EN,DE,DM.∵∠MBA=∠FBA,∠CBN=∠CBF,∠ABF+∠CBF=90∘,∴∠MBF+∠FBN=180∘,∴M、B、N共线,∵DF+DE+EF=DM+DE+EN,∵DM+DE+EN≥MN,∴当D、E、M、N共线时,且BF⊥AC时,DE+EF+FD的值最小,最小值=2BF,∵BF⊥AC,∴12⋅AC⋅BF=12⋅AB⋅AC,∴BF=AB⋅BCAC =125=2.4,∴DE+EF+FD的最小值为4.8.故选A.2.【答案】B【考点】路径最短问题【解析】此题暂无解析【解答】解:∵S PCD=14S长方形ABCD,设△PCD的CD边上的高为ℎ∴12CD⋅ℎ=14CD⋅AD,又AD=8,∴ℎ=4,∴动点P在与CD平行且与CD的距离为4的直线l上,如图,作D关于直线l的对称点A,连接AC,则AC的长就是所求的最短距离.在Rt△ADC中,CD=AB=6,AD=8∴AC=√AD2+CD2解得AC=10.故选B.3.【答案】B【考点】轴对称——最短路线问题【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连结QP′交直线l于M,根据两点之间,线段最短,可知选项B修建的管道,则所需管道最短.故选B.4.【答案】D【考点】轴对称——最短路线问题【解析】利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连结QP′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,所需管道最短.故选D.5.【答案】A【考点】路径最短问题【解析】此题暂无解析【解答】此题暂无解答6.【答案】A【考点】轴对称——最短路线问题【解析】作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|PA−PB|的值最大的点,|PA−PB|=A′B,连接A′C,根据等腰直角三角形的性质得到∠CAB=∠ABC=45∘,∠ACB=90∘,根据三角形的内角和得到∠ACD=75∘,于是得到∠CAA′=15∘,根据轴对称的性质得到A′C=BC,∠CA′A=∠CAA′=15∘,推出△A′BC是腰三角形,根据等边三角形的性质即可得到结论.【解答】解:作A关于CD的对称点A′,连接A′B交CD于P,则点P就是使|PA−PB|的值最大的点,|PA−PB|=A′B,连接A′C,∵△ABC为等腰直角三角形,AC=BC=4,∴∠CAB=∠ABC=45∘,∠ACB=90∘,∵∠BCD=15∘,∴∠ACD=75∘,∴∠CAA′=15∘,∵AC=A′C,∴A′C=BC,∠CA′A=∠CAA′=15∘,∴∠ACA′=150∘,∵∠ACB=90∘,∴∠A′CB=60∘,∴△A′BC是等腰三角形,∴A′B=BC=4.故选A.7.【答案】A【考点】平面展开-最短路径问题【解析】沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程,求出AC和BC的长,根据勾股定理求出斜边AB即可.【解答】如图所示:沿过A点和过B点的母线剪开,展成平面,连接AB,则AB的长是蚂蚁在圆柱表面从A点爬到B点的最短路程.×30=15(cm),∠C=90∘,BC=8cm,在Rt△ABC中,∵AC=12∴AB=√AC2+BC2=17(cm).故选:A.8.【答案】A【考点】轴对称——最短路线问题【解析】根据菱形的判定,得出平行四边形ABCD为菱形,作出E关于BD的对称点E′,转化为线段长度的问题,再根据等边三角形的性质判断出△BCE′为直角三角形,利用勾股定理即可求出CE′的长.【解答】解:∵BA=BC=2,∴平行四边形ABCD为菱形.∴∠ABD=∠CBD,∴BD是∠ABC的平分线.作E关BD的对称点E′,连接CE′,PE,则PE=PE′,此时,PE+PC=PE′+PC=CE′,CE′即为PE+PC的最小值.∵∠ABC=60∘,又∵BE′=BE,∴△E′BE为正三角形,EE′=1,∠ABE=60∘,故EE′=EC,∠EE′C=∠ECE′=30∘,∴∠BE′C=60∘+30∘=90∘,在Rt△BCE′中,CE′=√22−12=√3.故选:A.9.【答案】D【考点】平面展开-最短路径问题【解析】连接AC1,求出AC1的长即可,分为三种情况:画出图形,根据勾股定理求出每种情况时AC1的长,再找出最短的即可.【解答】解:展开成平面后,连接AC1,则AC1的长就是绳子最短时的长度,分为三种情况:如图1,AB=5,BC=4,CC1=BB1=3,在Rt△ABC′中,由勾股定理得:AC1=√AB2+(BB1+B1C1)2=√25+49=√74;如图2,AC=5+4=9,CC1=3,在Rt△ACC1中,由勾股定理得:AC1=√AC2+CC12=√81+9=√90>√74,如图3,同法可求AC1=√(3+5)2+42=√80>√74,即绳子最短时的长度是√74,故选D.10.【答案】C【考点】轴对称——最短路线问题【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF 的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC⋅AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∴点C关于直线EF的对称点为点A,∴AD的长为CM+MD的最小值,∴△CDM的周长最短=(CM+MD)+CD=AD+1BC=8+1×4=8+2=10.故选C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】30cm【考点】平面展开-最短路径问题【解析】先将圆柱的侧面展开为一矩形,而矩形的长就是地面周长的一半,高就是圆柱的高,再根据勾股定理就可以求出其值.【解答】解:展开圆柱的侧面如图,根据两点之间线段最短就可以得知AB最短.由题意,得AC =3×16÷2=24,在Rt △ABC 中,由勾股定理,得AB =√AC 2+BC 2=√242+182=30cm .故答案为:30cm .12.【答案】 √67【考点】轴对称——最短路线问题【解析】利用轴对称求最短路径的方法,重新构造直角三角形,进而利用勾股定理求出即可.【解答】解:作D 点关于AB 的对称点D′,B 点关于AC 的对称点B′,连接D′B′分别交AB 于点E ,AC 于点F ,作B′R ⊥AB ,过点D′作D′W ⊥B′R 于点W ,∵ ∠CAB =30∘,∠C =90∘.AD =14AC ,AB =8, ∴ BC =4,AC =4√3,则AD =√3,BB′=8,B′R =4√3,∴ DT =12AD =√32,AT =√AD 2−DT 2=32,BR =4, ∴ RW =√32,D′W =8−32−4=52, ∴ B′W =9√32,B′D′=√D′W 2+B′W 2=(52)(9√32)=√67.故答案为:√67.13.【答案】15【考点】勾股定理路径最短问题【解析】此题暂无解析【解答】解:设小明散步原地为O,则先向东走12m到达A点后,再向北又走了9m到达B点,则要回到原地,最短行走距离为OB的距离,根据勾股定理可得OB=√122+92=15m.故答案为:15.14.【答案】2√2【考点】轴对称——最短路线问题【解析】先找出点E关于AC的对称点E′,过点E′作E′F⊥BC于F,交AC于P,根据轴对称确定最短路线问题以及垂线段最短可知E′F为PE+PF的最小值的最小值,过点B作BG⊥AD 于G,解直角三角形求出AB即可.【解答】解:如图,点E关于AC的对称点E′,过点E′作E′F⊥BC于F,交AC于P,即E′F为PE+PF的最小值.过点B作BG⊥AD于G,易知BG=FE′=2,在Rt△ABG中,∠BAG=45∘,∴AB=BG÷sin45∘=2√2.故答案为:2√2.15.【答案】Q22.【考点】图形间的距离定义新图形路径最短问题坐标与图形性质【解析】(1)找到OA的垂直平分线即可找到对应的点.(2)利用“完美对称点”的特征,作出图象,从而确定最小值.【解答】解:(1)当点Q满足QO=QA时,Q为OA的“对称点”,∴ Q在线段OA的垂直平分线上,∵ A(4,0),∴ 线段OA的垂直平分线是直线x=2,∵Q2(2,−4),∴ 线段OA的“对称点”是Q2.故答案为:Q2.∵ Q(2,2√3)为线段OA的“完美对称点”,∴ QO=OA=QA,∴ △QOA是等边三角形,过点Q作QH⊥OA于H,则直线QH为线段AO的垂直平分线,如图:∵ B为线段OA的一个“对称点”,∴ BO=BA,∴ B是直线QH上的一点,显然,当Q、B重合时,BQ+BD有最小值,此时BQ+BD=BD,∵ Q(2,2√3),∴ OQ=√22+(2√3)2=4,∵ D为线段OQ的中点,∴ DQ=12OQ=12×4=2,∴ BD=2,∴ BQ+BD的最小值为2. 故答案为:2.16.【答案】7【考点】轴对称——最短路线问题根据题意知点B关于直线EF的对称点为点C,故当点P与点D重合时,AP+BP的最小值,求出AC长度即可得到结论.【解答】解:∵EF垂直平分BC,∴B,C关于EF对称.设AC交EF于点D,∴当P和D重合时,AP+BP的值最小,最小值等于AC的长,∴△ABP周长的最小值是4+3=7.故答案为:7.17.【答案】【考点】路径最短问题【解析】此题暂无解析【解答】此题暂无解答18.【答案】6cm【考点】轴对称——最短路线问题【解析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.【解答】解:连接AD,∵△ABC是等腰三角形,点D是BC边的中点,∴AD⊥BC,∴S△ABC=12BC⋅AD=12×4×AD=12,解得AD=6cm,∵EF是线段AB的垂直平分线,∴点B关于直线EF的对称点为点A,∴AD的长为BM+MD的最小值,∴BM+DM最小值为6cm.故答案为:6cm.19.2√17【考点】平面展开-最短路径问题【解析】将正方体展开,根据两点之间线段最短,构造出直角三角形,进而求出最短路径的长.【解答】解:将正方体展开,右边与后面的正方形与前面正方形放在一个面上,展开图如图所示,此时AB最短,AB=√82+22=2√17,故答案为:2√17.20.【答案】2【考点】勾股定理路径最短问题【解析】【解答】解:当PQ//x轴时QB长度最小,设Q(m,n),P(0,n),△APQ为等边三角形,∴1+n2=(m−1)2+n2,解得m=2或m=0(舍),∴PQ=PA=m=2,∴1+n2=4,解得n=√3,故BQ=√3+1=2.故答案为:2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小.从图上可看出△PEF的周长就是P1P2的长,∵∠AOB=30∘,∴∠P1OP2=60∘.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2cm.∴△PEF周长的最小值是2cm.【考点】轴对称——最短路线问题【解析】作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小,然后根据∠AOB=30∘,点P在∠AOB内,点E、F分别在边OA、OB上移动,如果OP=2cm,可求出值.【解答】解:作点P关于OA对称的点P1,作点P关于OB对称的点P2,连接P1P2,与OA交于点E,与OB交于点F,此时△PEF的周长最小.从图上可看出△PEF的周长就是P1P2的长,∵∠AOB=30∘,∴∠P1OP2=60∘.∵OP1=OP2,∴△OP1P2是等边三角形.∴P1P2=OP1=OP=2cm.∴△PEF周长的最小值是2cm.22.【答案】需要爬行的最短路程是6√2cm.【考点】平面展开-最短路径问题【解析】要想求得最短路程,首先利用BC长等于底面圆的一半,即可求出BC的长.根据两点之间,线段最短求出蚂蚁爬行的最短路程.【解答】解:利用展开图,根据题意可得:BC=2π≈6cm,AC=6cm,AB=√BC2+AC2=6√2(cm),23.【答案】解:如图,点C即为所求.【考点】轴对称——最短路线问题【解析】作点A关于直线m的对称点A′,连接A′B交直线m于点C,则CA+CB的值最小.【解答】解:如图,点C即为所求.24.【答案】解:展开后有三种不同的情况如图,如图1,AB=√(10+8)2+62=√360,如图2,AB=√102+(6+8)2=√296,如图3,AB=√82+(10+6)2=√320,∵√296<√320<√360,∴小蚂蚁爬行的最短路线为√296cm.【考点】平面展开-最短路径问题【解析】根据题意画出不同数值的三种情况,根据勾股定理求出每种情况的AB,再比较即可.【解答】解:展开后有三种不同的情况如图,如图1,AB=√(10+8)2+62=√360,如图2,AB=√102+(6+8)2=√296,如图3,AB=√82+(10+6)2=√320,∵√296<√320<√360,∴小蚂蚁爬行的最短路线为√296cm.25.【答案】蜘蛛爬行的最短路径长是3√5cm.【考点】平面展开-最短路径问题【解析】(1)划出符合条件的QP即可;(2)展开后构造直角三角形,根据勾股定理求出线段QP的长即可.【解答】解:(1)如图:(2)如图,沿AA1剪开,过Q作QM⊥BB1于M,连接QP,则PM=8−3−2=3(cm),QM=A1B1=1×2×π×2=6(cm),2在Rt△QMP中,由勾股定理得:PQ=√QM2+PM2=√32+62=3√5(cm),答:蜘蛛爬行的最短路径长是3√5cm.26.【答案】解:(1)如图所示:∵正方形的棱长为2,∴AC=2AB=4,CG=2,AG=√AC2+CG2=√16+4=√20=2√5,∴蚂蚁吃到这粒米需要爬行的最短距离是2√5;(2)如图所示:由题意可知:AN=AB+BN=3,MN=2,∴AM=√AN2+MN2=√32+22=√13,∴蚂蚁要吃到这粒米的最短距离是√13.【考点】平面展开-最短路径问题【解析】(1)根据图形是立方体得出最短路径只有一种情况,利用勾股定理求出即可.(2)把此正方体的点M所在的面展开,然后在平面内,利用勾股定理求点A和点M间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于2长,另一条直角边长等于3,利用勾股定理可求得.【解答】解:(1)如图所示:∵正方形的棱长为2,∴AC=2AB=4,CG=2,AG=√AC2+CG2=√16+4=√20=2√5,∴蚂蚁吃到这粒米需要爬行的最短距离是2√5;(2)如图所示:由题意可知:AN=AB+BN=3,MN=2,∴AM=√AN2+MN2=√32+22=√13,∴蚂蚁要吃到这粒米的最短距离是√13.27.【答案】解:(1)由题意可知,当PF=5时,P到x轴的距离为5,∴P(x,5),将P(x,5)代入y=14x2+1,得5=14x2+1,解得,x=±4,∴点P的坐标为(4,5)或(−4,5).(2)过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示:∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,MF=√(√3−0)2+(3−2)2=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.【考点】路径最短问题二次函数的性质二次函数图象上点的坐标特征点到直线的距离垂线段最短【解析】过点M作ME⊥x轴于点E,ME与抛物线交于点P′,由点P′在抛物线上可得出P′F=P′E,结合点到直线之间垂线段最短及MF为定值,即可得出当点P运动到点P′时,△PMF周长取最小值,【解答】解:(1)由题意可知,当PF=5时,P到x轴的距离为5,∴P(x,5),将P(x,5)代入y=14x2+1,得5=14x2+1,解得,x=±4,∴点P的坐标为(4,5)或(−4,5).(2)过点M作ME⊥x轴于点E,ME与抛物线交于点P′,如图所示:∵点P′在抛物线上,∴P′F=P′E.又∵点到直线之间垂线段最短,MF=√(√3−0)2+(3−2)2=2,∴当点P运动到点P′时,△PMF周长取最小值,最小值为ME+MF=3+2=5.28.【答案】彩带至少应剪125cm.【考点】平面展开-最短路径问题【解析】将灯管上缠的彩带展开,得到直角三角形,用勾股定理解答即可.【解答】解:如图,展开后可得AB=15×5=75cm,BC=100cm,AC=√AB2+BC2=√752+1002=125cm.29.【答案】解:如图所示:作P点关于BC的对称点P′,连接P′Q,与BC交于点R,R点即为所求.【考点】轴对称——最短路线问题【解析】作P点关于BC的对称点P′,连接P′Q,与BC交于点R,由两点之间线段最短可知△PQR 周长最小即为所求点.【解答】解:如图所示:作P点关于BC的对称点P′,连接P′Q,与BC交于点R,R点即为所求.30.【答案】解:使其所走路程最短的最佳行走路线QM→MN→NP如图:【考点】路径最短问题【解析】此题暂无解析【解答】解:使其所走路程最短的最佳行走路线QM→MN→NP如图:31.【答案】解:如图,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点A′,B′,连接A′B′,交两长条桌于C,D两点,则折线ACDB就是捷径.【考点】轴对称——最短路线问题【解析】利用轴对称得出找到A,B的对称点A′,B′,连接A′B′,交两长条桌于C,D两点,则折线ACDB就是捷径.【解答】解:如图,假设北边和东边条桌各为一个平面镜,光线经过两次反射到达B点.因此,分别以北条桌和东条桌为对称轴,找到A,B的对称点A′,B′,连接A′B′,交两长条桌于C,D两点,则折线ACDB就是捷径.32.【答案】解:设t秒后PQ+QC最小,取点P关于AD的对称点P′,连接CP′与AD相交,由轴对称确定最短路线问题,交点即为所求的使PQ+QC最小的点Q的位置,∵AB=6cm,AD=12cm,∴AP=AP′=6−t,AQ=2t,QD=12−2t,∵AB // CD,∴△AP′Q∽△DCQ,∴AP′CD =AQQD,即6−t6=2t12−2t,整理得,t2−18t+36=0,解得t1=9−3√5,t2=9+3√5(舍去),所以,BP′=AB+AP′=6+(6−9+3√5)=3+3√5,所以,P′C=√BP′2+BC2=√(3+3√5)2+122=3√22+2√5,即PQ+QC最小值是3√22+2√5.【考点】轴对称——最短路线问题【解析】设t秒后PQ+QC最小,取点P关于AD的对称点P′,连接CP′与AD相交,根据轴对称确定最短路线问题,交点即为所求的使PQ+QC最小的点Q的位置,表示AP′、AQ、QD,然后根据△AP′Q和△DCQ相似,利用相似三角形对应边成比例列式求出t,再表示出BP′,然后利用勾股定理列式计算即可得解.【解答】解:设t秒后PQ+QC最小,取点P关于AD的对称点P′,连接CP′与AD相交,由轴对称确定最短路线问题,交点即为所求的使PQ+QC最小的点Q的位置,∵AB=6cm,AD=12cm,∴AP=AP′=6−t,AQ=2t,QD=12−2t,∵AB // CD,∴△AP′Q∽△DCQ,∴AP′CD =AQQD,即6−t6=2t12−2t,整理得,t2−18t+36=0,解得t1=9−3√5,t2=9+3√5(舍去),所以,BP′=AB+AP′=6+(6−9+3√5)=3+3√5,所以,P′C=√BP′2+BC2=√(3+3√5)2+122=3√22+2√5,即PQ+QC最小值是3√22+2√5.33.【答案】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,作出AB的中垂线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+ BP是最小的.路径最短问题作图—应用与设计作图线段垂直平分线的性质【解析】根据中垂线和轴对称及三角形的三边关系求解.【解答】解:(1)根据中垂线的性质:中垂线上的点到线段两个端点的距离相等,作出AB的中垂线与河岸交于点P,则点P满足到AB的距离相等.(2)作出点A关于河岸的对称点C,连接CB,交于河岸于点P,连接AP,则点P能满足AP+PB最小,理由:AP=PC,三角形的任意两边之和大于第三边,当点P在CB的连线上时,CP+ BP是最小的.34.【答案】解:如图所示,点Q即为所求点.【考点】轴对称——最短路线问题作PH⊥CD于点H,延长PH到点P′,使P′H=PH,连接AP′交CD于点Q,连接PQ,则D点Q就是△APQ的周长最小的点.【解答】解:如图所示,点Q即为所求点.35.【答案】【考点】路径最短问题【解析】此题暂无解析【解答】此题暂无解答36.【答案】解:如图所示,∵圆柱的底面半径为1.5cm,高为12cm,∴AC=2π×1.5≈9cm,∴AB=√AC2+BC2=√92+122=15(cm).答:蚂蚁所走过的最短路径是15cm.【考点】平面展开-最短路径问题【解析】根据题意画出圆柱的侧面展开图,再利用勾股定理求解即可.【解答】解:如图所示,。

中考专题复习——最短路径问题

中考专题复习——最短路径问题

word专业资料-可复制编辑-欢迎下载A B C DABABL A BCDDO CP中考专题复习——路径最短问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。

(构建“对称模型”实现转化)三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。

②如右图是一个长方体木块,已知AB=3,BC=4,CD=2,假设一只蚂蚁在点A处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

例2、①如图,要在河边修建一个水泵站,分别向张村、李庄送水,水泵站修在河边什么地方可使所用的水管最短。

②如图,直线L同侧有两点A、B,已知A、B到直线L的垂直距离分别为1和3,两点的水平距离为3,要在直线L上找一个点P,使PA+PB的和最小。

请在图中找出点P的位置,并计算PA+PB的最小值。

③要在河边修建一个水泵站,向张村、李庄铺设管道送水,若张村、李庄到河边的垂直距离分别为1Km和3Km,张村与李庄的水平距离为3Km,则所用水管最短长度为。

四、练习题(巩固提高)(一)1、如图是一个长方体木块,已知AB=5,BC=3,CD=4,假设一只蚂蚁在点A 处,它要沿着木块侧面爬到点D处,则蚂蚁爬行的最短路径是。

2、现要在如图所示的圆柱体侧面A点与B点之间缠一条金丝带(金丝带的宽度忽略不计),圆柱体高为6cm,底面圆周长为16cm,则所缠金丝带长度的最小值为。

3、如图是一个圆柱体木块,一只蚂蚁要沿圆柱体的表面从A点爬到点B处吃到食物,知圆柱体的高为5 cm,底面圆的周长为24cm,则蚂蚁爬行的最短路径为。

4、正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上的一动点,DN第2题张村李庄张村李庄AABB第1题第3题图(2)EBDACP+MN 的最小值为 。

第4题 第5题 第6题 第7题 5、在菱形ABCD 中,AB=2, ∠BAD=60°,点E 是AB 的中点,P 是对角线AC 上的一个动点,则PE+PB 的最小值为 。

最短路径问题练习题

最短路径问题练习题

13.4最短路径问题练习题班别:姓名:一、单选题.1.已知点A,B是两个居民区的位置,现在准备在墙l边上建立一个垃圾站点P,如图是4位设计师给出的规划图,其中PA+PB距离最短的是( )2.直线l是一条河,P,Q是两个村庄.欲在L上的某处修建一个水泵站,向P,Q两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )3.A、B是直线l上的两点,P是直线l上的任意一点,要使PA+PB的值最小,那么点P的位置应在( )A.线段AB上B.线段AB的延长线上C.线段AB的反向延长线上D.直线l上4.在如图所示的4×4的正方形网格中,有A、B两点,在直线a上求一点P,使PA+PB最小,则点P应选在( )A.C点B.D点C.E点D.F点5.在△ABC中,AB=AC=5,BC=6,AD⊥BC于D点,且AD=4,若P点在边AC上移动,则BP的最小值是( )A.4.5B.4.6C.4.7D.4.8二、填空题6.如图,在△ABC中,AB=AC,AD,CE是△ABC的两条中线,P是AD上一个动点,则BP+EP的最小值等于线段的长度.7.如图,∠BAC=30°,AB=4,点P是射线AC上的一动点,则线段BP的最小值是______.8.如图,OA、OB分别是线段MC、MD的垂直平分线,MD=5cm,MC=7cm,CD=10cm,一只小蚂蚁从点M出发爬到OA边上任意一点E,再爬到OB边上任意一点F,然后爬回M点处,则小蚂蚁爬行的路径最短为.第13题图第13题图9.如图,CD⊥AB,垂足是D,AC=7,BC=5,CD=4,点E是线段AB上的一个动点(包括端点),连接CE,那么CE的范围是.三、作图题10.八年级(1)班同学做游戏,在活动区域边OP放了一些球(如图),则小明按怎样的路线跑,去捡哪个位置的球,才能最快拿到球跑到目的地A?四、解答题11.如图,直线m是△ABC中BC边的垂直平分线,点P是直线m上的一动点,若AB=6,AC=4,BC=7,(1)求PA+PB的最小值,并说明理由;(2)求△APC周长的最小值.参考答案1.D.2.D.3.A.4.A.5.D.6.答案为:CE.7.答案为:2.8.答案为:10cm.9.答案为:4≤CE≤7.10.解:如图所示:11.解:(1)PA+PB=AB=6;原因:两点之间,线段最短;(2)∵m是BC的垂直平分线,点P在m上,∴点C关于直线m的对称点是点B,则PB=PC,∵C△ABC=AP+PC+AC,∵AC=4,要使△APC周长最小,即AP+PC最小,当点P是m与AB的交点时,PA+PB最小,即PA+PB=AB,此时C△APC=AB+AC=6+4=10.理由:在OA,OB上取不同于E,F的点E′,F′,连接CE′、E′P′,∵C和P关于直线OA对称,∴PE=CE,CE′=PE′,PF=DF,PF′=DF′,由(2)得知MN+ME+EF+MF<ME′+E′F′+F′D.。

最短路径练习题

最短路径练习题

最短路径练习题最短路径练习题在计算机科学中,最短路径是一种常见的问题,它涉及在图中找到两个节点之间最短的路径。

这个问题在许多领域都有应用,比如物流、电信网络以及社交网络等。

为了解决这个问题,人们发展了许多算法,其中最著名的是迪杰斯特拉算法和弗洛伊德算法。

迪杰斯特拉算法是一种用于解决单源最短路径问题的算法。

它的基本思想是通过不断更新节点的距离值来逐步找到最短路径。

具体来说,算法从起始节点开始,将其距离值设为0,并将其加入一个待处理的节点集合中。

然后,算法从这个集合中选取距离值最小的节点,并更新与其相邻节点的距离值。

这个过程会一直进行,直到所有节点的距离值都被更新为最短路径。

弗洛伊德算法是一种用于解决全源最短路径问题的算法。

它的基本思想是通过动态规划的方式逐步计算任意两个节点之间的最短路径。

具体来说,算法使用一个二维数组来保存每对节点之间的最短路径长度。

然后,算法通过不断更新这个数组中的值,逐步得到最终的最短路径。

为了更好地理解这两个算法,让我们来看一个实际的练习题。

假设有一个城市的地图,其中包含了一些地点和道路。

我们的目标是找到从起始地点到目的地的最短路径。

为了简化问题,我们假设地图是一个无向图,并且每条道路的长度都是正整数。

首先,我们需要将地图表示为一个图。

可以使用邻接矩阵或邻接表来实现这个图。

邻接矩阵是一个二维数组,其中每个元素表示两个节点之间是否存在一条边。

邻接表是一个由链表组成的数组,其中每个链表表示一个节点的邻居节点。

然后,我们可以使用迪杰斯特拉算法来找到最短路径。

首先,我们初始化一个距离数组,其中起始节点的距离值为0,其他节点的距离值为无穷大。

然后,我们遍历所有节点,并更新它们的距离值。

具体来说,我们从距离值最小的节点开始,计算它与其邻居节点的距离,并更新邻居节点的距离值。

这个过程会一直进行,直到所有节点的距离值都被更新为最短路径。

如果我们需要找到起始节点到所有其他节点的最短路径,我们可以使用弗洛伊德算法。

最短路径问题专项练习题

最短路径问题专项练习题

AB最短路径问题专项练习共13页,全面复习与联系最短路径问题一、具体内容包括:蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题;线段(之和)最短问题;二、原理:两点之间,线段最短;垂线段最短。

(构建“对称模型”实现转化)1.最短路径问题(1)求直线异侧的两点与直线上一点所连线段的和最小的问题,只要连接这两点,与直线的交点即为所求.如图所示,点A,B分别是直线l异侧的两个点,在l上找一个点C,使CA+CB最短,这时点C是直线l与AB的交点.(2)求直线同侧的两点与直线上一点所连线段的和最小的问题,只要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求.如图所示,点A,B分别是直线l同侧的两个点,在l上找一个点C,使CA+CB最短,这时先作点B关于直线l的对称点B′,则点C是直线l与AB′的交点.为了证明点C的位置即为所求,我们不妨在直线上另外任取一点C′,连接AC′,BC′,B′C′,证明AC+CB<AC′+C′B.如下:证明:由作图可知,点B和B′关于直线l对称,所以直线l是线段BB′的垂直平分线.因为点C与C′在直线l上,所以BC=B′C,BC′=B′C′.在△AB′C′中,AB′<AC′+B′C′,所以AC+B′C<AC′+B′C′,所以AC+BC<AC′+C′B.【例1】在图中直线l上找到一点M,使它到A,B两点的距离和最小.分析:先确定其中一个点关于直线l的对称点,然后连接对称点和另一个点,与直线l的交点M即为所求的点.解:如图所示:(1)作点B关于直线l的对称点B′;(2)连接AB′交直线l于点M.(3)则点M即为所求的点.点拨:运用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题.2.运用轴对称解决距离最短问题运用轴对称及两点之间线段最短的性质,将所求线段之和转化为一条线段的长,是解决距离之和最小问题的基本思路,不论题目如何变化,运用时要抓住直线同旁有两点,这两点到直线上某点的距离和最小这个核心,所有作法都相同.警误区 利用轴对称解决最值问题应注意题目要求 根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种方法.解决这类最值问题时,要认真审题,不要只注意图形而忽略题意要求,审题不清导致答非所问.3.利用平移确定最短路径选址选址问题的关键是把各条线段转化到一条线段上.如果两点在一条直线的同侧时,过两点的直线与原直线的交点处构成线段的差最大,如果两点在一条直线的异侧时,过两点的直线与原直线的交点处构成的线段的和最小,都可以用三角形三边关系来推理说明,通常根据最大值或最小值的情况取其中一个点的对称点来解决.解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题.在解决最短路径问题时,我们通常利用轴对称、平移等变换把不在一条直线上的两条线段转化到一条直线上,从而作出最短路径的方法来解决问题.【例2】 如图,小河边有两个村庄A ,B ,要在河边建一自来水厂向A 村与B 村供水.(1)若要使厂部到A ,B 村的距离相等,则应选择在哪建厂? (2)若要使厂部到A ,B 两村的水管最短,应建在什么地方?分析:(1)到A ,B 两点距离相等,可联想到“线段垂直平分线上的点到线段两端点的距离相等”,又要在河边,所以作AB 的垂直平分线,与EF 的交点即为符合条件的点.(2)要使厂部到A 村、B 村的距离之和最短,可联想到“两点之间线段最短”,作A (或B )点关于EF 的对称点,连接对称点与B 点,与EF 的交点即为所求.解:(1)如图1,取线段AB 的中点G ,过中点G 画AB 的垂线,交EF 于P ,则P 到A ,B 的距离相等.也可分别以A 、B 为圆心,以大于12AB 为半径画弧,两弧交于两点,过这两点作直线,与EF 的交点P 即为所求.(2)如图2,画出点A 关于河岸EF 的对称点A ′,连接A ′B 交EF 于P ,则P 到A ,B 的距离和最短.【例3】 如图,从A 地到B 地经过一条小河(河岸平行),今欲在河上建一座与两岸垂直的桥,应如何选择桥的位置才能使从A 地到B 地的路程最短?思路导引:从A 到B 要走的路线是A →M →N →B ,如图所示,而MN 是定值,于是要使路程最短,只要AM +BN 最短即可.此时两线段应在同一平行方向上,平移MN 到AC ,从C 到B 应是余下的路程,连接BC的线段即为最短的,此时不难说明点N即为建桥位置,MN即为所建的桥.解:(1)如图2,过点A作AC垂直于河岸,且使AC等于河宽.(2)连接BC与河岸的一边交于点N.(3)过点N作河岸的垂线交另一条河岸于点M.则MN为所建的桥的位置.4.生活中的距离最短问题由两点之间线段最短(或三角形两边之和大于第三边)可知,求距离之和最小问题,就是运用等量代换的方式,把几条线段的和想办法转化在一条线段上,从而解决这个问题,运用轴对称性质,能将两条线段通过类似于镜面反射的方式转化成一条线段,如图,AO+BO=AC的长.所以作已知点关于某直线的对称点是解决这类问题的基本方法.【例4】(实际应用题)茅坪民族中学八(2)班举行文艺晚会,桌子摆成如图a所示两直排(图中的AO,BO),AO桌面上摆满了橘子,OB桌面上摆满了糖果,站在C处的学生小明先拿橘子再拿糖果,然后到D处座位上,请你帮助他设计一条行走路线,使其所走的总路程最短?图a 图b解:如图b.(1)作C点关于OA的对称点C1,作D点关于OB的对称点D1,(2)连接C1D1,分别交OA,OB于P,Q,那么小明沿C→P→Q→D的路线行走,所走的总路程最短.5.运用轴对称解决距离之差最大问题利用轴对称和三角形的三边关系是解决几何中的最大值问题的关键.先做出其中一点关于对称轴的对称点,然后连接对称点和另一个点,所得直线与对称轴的交点,即为所求.根据垂直平分线的性质和三角形中两边之差小于第三边易证明这就是最大值.破疑点解决距离的最值问题的关键运用轴对称变换及三角形三边关系是解决一些距离的最值问题的有效方法.【例5】如图所示,A,B两点在直线l的两侧,在l上找一点C,使点C到点A、B的距离之差最大.分析:此题的突破点是作点A(或B)关于直线l的对称点A′(或B′),作直线A′B(AB′)与直线l交于点C,把问题转化为三角形任意两边之差小于第三边来解决.解:如图所示,以直线l为对称轴,作点A关于直线l的对称点A′,A′B的连线交l于点C,则点C即为所求.理由:在直线l上任找一点C′(异于点C),连接CA,C′A,C′A′,C′B.因为点A,A′关于直线l对称,所以l为线段AA′的垂直平分线,则有CA=CA′,所以CA-CB=CA′-CB=A′B.又因为点C′在l上,所以C′A=C′A′.在△A′BC′中,C′A-C′B =C′A′-C′B<A′B,所以C′A′-C′B<CA-C B.点拨:根据轴对称的性质、利用三角形的三边关系,通过比较来说明最值问题是常用的一种BC ABLCD方法.三、例题:例1、①如右图是一个棱长为4的正方体木块,一只蚂蚁要从木块的点A沿木块侧面爬到点B处,则它爬行的最短路径是。

最短路径问题专项练习题

最短路径问题专项练习题

最短路径问题专项练习题最短路径问题专项练,包括蚂蚁沿正方体、长方体、圆柱、圆锥外侧面吃食问题以及线段最短问题。

原理是两点之间,线段最短;垂线段最短,可以通过构建“对称模型”实现转化。

最短路径问题指的是在给定的图中,找到从一个起点到达一个终点的最短路径。

其中,线段最短问题可以分为同侧和异侧两种情况。

对于异侧的情况,只需要连接这两点,与直线的交点即为所求;对于同侧的情况,需要找到其中一个点关于这条直线的对称点,连接对称点与另一个点,则与该直线的交点即为所求。

证明时可以利用轴对称变换及性质将不在一条直线上的两条线段转化到一条直线上,然后用“两点之间线段最短”解决问题。

解决最值问题时,利用轴对称的性质和三角形的三边关系是常用的方法。

但在应用中,要注意审题,不要只关注图形,而忽略题意要求,以免答非所问。

选址问题的关键是将各条线段转化为一条线段。

根据三角形的三边关系,如果两点在一条直线的同侧,则过两点的直线与原直线的交点处构成线段的差最大;如果两点在一条直线的异侧,则过两点的直线与原直线的交点处构成的线段的和最小。

根据最大值或最小值的情况,可以选择其中一个点的对称点来解决问题。

解决连接河两岸的两个点的最短路径问题时,可以通过平移河岸的方法使河的宽度变为零,转化为求直线异侧的两点到直线上一点所连线段的和最小的问题。

因此,在解决最短路径问题时,可以利用轴对称、平移等变换将不在一条直线上的两条线段转化为一条直线上,从而解决问题。

例2中,要使厂部到A、B两点距离相等,可以作AB的垂直平分线与EF的交点。

要使厂部到A、B两村的水管最短,可以作A(或B)点关于EF的对称点,连接对称点与B点,与EF的交点即为所求。

例3中,要使从A到B的路程最短,只要AM+BN最短。

因此,可以将MN平移至AC,使两线段在同一平行方向上,连接BC的线段即为最短的,此时点N即为建桥位置,XXX即为所建的桥。

精品资料整理范文范例研究参考1.桥的建造如图2所示,建造一座桥,过点A作AC垂直于河岸,使AC等于河宽。

中学数学 平面几何最短路径 练习题(含答案)

中学数学  平面几何最短路径  练习题(含答案)

平面图形上的最短路径问题知识点:1.两点之间,线段最短2.垂线段最短3.线段垂直平分线是的点到线段两端点的距离相等4.三角形任意两边之差小于第三边总思路:找点关于线的对称点实现“折”转“直”常考题型题:将军饮马、造桥选址、费马点(一)根据两点之间,线段最短题型一两点在直线同侧(将军饮马)题型二相交直线之间一点或两点题型四费马点(二)根据垂线段最短题型五和最小(三)根据线段垂直平分线上点到线段两端点距离相等题型六差最小(四)根据三角形任意两边之差小于第三边题型七差最大题型一两点在直线同侧例题1:如图,在锐角△ABC中,AB=6,∠BAC=60°,∠BAC的平分线交BC于点D,M、N分别是AD和AB上的动点,则BM+MN的最小值是()A.3B.6解:在AC上取一点E,使得AE=AB,过E作EN⊥AB于N′,交AD于M,连接BM,BE,BE交AD于O,则BM+MN’最小(根据两点之间线段最短;点到直线垂直距离最短),∵AD平分∠CAB,AE=AB,∴EO=OB,AD⊥BE,∴AD是BE的垂直平分线(三线合一),∴E和B关于直线AD对称,∴EM=BM,即BM+MN′=EM+MN′=EN′,∵EN’⊥AB,∴∠EN’A=90°,∵∠CAB=60°,∴∠AEN′=30°,∵AE=AB=6,∴AN’=3,在△AEN’中,由勾股定理得:EN’即BM+MN B.巩固练习:如图,在平面直角坐标系中,R t△OAB的顶点A在x轴的正半轴上.顶点B的坐标为(3,点C的坐标为(1,0),且∠AOB=30°点P为斜边OB上的一个动点,则P A+PC的最小值为____ _____.解:作A关于OB的对称点D,连接CD交OB于P,连接AP,过D作DN⊥OA于N,则此时P A+PC的值最小.∵DP=P A,∴P A+PC=PD+PC=CD.∵B(3,∴AB OA=3,∠B=60°.由勾股定理得:OB OA×AB OB×AM,∴AM AD.∵∠AMB=90°,∠B=60°,∴∠BAM=30°.∵∠BAO=90°,∴∠OAM=60°.∵DN⊥OA,∴∠NDA=30°.∴AN由勾股定理得:DN C(1,0),∴CN=3-1在R t△DNC中,由勾股定理得:DC∴P A+PC题型二相交直线之间一或两点例题2:如图,∠AOB=30°,∠AOB内有一定点P,且OP=10.在OA上有一点Q,OB上有一点R .若△PQR 周长最小,则最小周长是( )A .10B .15C .20D .30 解:设∠POA =θ,则∠POB =30°﹣θ,作PM ⊥OA 与OA 相交于M ,并将PM 延长一倍到E ,即ME =PM . 作PN ⊥OB 与OB 相交于N ,并将PN 延长一倍到F ,即NF =PN . 连接EF 与OA 相交于Q ,与OB 相交于R ,再连接PQ ,PR , 则△PQR 即为周长最短的三角形.∵OA 是PE 的垂直平分线, ∴EQ =QP ;同理,OB 是PF 的垂直平分线, ∴FR =RP , ∴△PQR 的周长=EF . ∵OE =OF =OP =10,且∠EOF =∠EOP +∠POF =2θ+2(30°﹣θ)=60°, ∴△EOF 是正三角形,∴EF =10,即在保持OP =10的条件下△PQR 的最小周长为10,故选A .巩固练习:如图,∠AOB =30°,点M 、N 分别在边OA 、OB 上,且OM =5,ON =12,点P 、Q 分别在边OB 、OA 上,则MP +PQ +QN 的最小值是 .解:作M 关于OB 的对称点M ′,作N 关于OA 的对称点N ′,连接M’N’,即为MP +PQ +QN 的最小值.根据轴对称的定义可知:∠N ′OQ =∠M ′OB =30°,∠ONN ′=60°,OM’=OM =5,ON’=ON =12, ∴△ONN ′为等边三角形,△OMM ′为等边三角形, ∴∠N′OM′=90°,∴在Rt M ON ''中,''13M N = 故答案为:13.题型三 造桥选址例题3:荆州护城河在CC'处直角转弯,河宽相等,从A处到达B处,需经过两座桥DD'、EE',护城河及两桥都是东西、南北方向,桥与河岸垂直.如何确定两座桥的位置,可使A 到B点路径最短?解:作AF⊥CD,且AF=河宽,作B G⊥CE,且BG=河宽,连接GF,与河岸相交于E’、D’,作DD’、EE’即为桥证明:由做法可知,AF∥DD’,AF=DD’,则四边形AFDD’为平行四边形于是AD=FD’同理,BE=G E’由两点之间线段最短可知,GF最小即当桥建于如图所示位置时,ADD’E’EB最短巩固练习:如图,工厂A和工厂B被一条河隔开,它们到河的距离都是2km,两个工厂水平距离是3km,河宽1km,现在要架一座垂直于河岸的桥,使工厂A到工厂B的距离最短(河岸是平行的)①请画出架桥的位置(不写画法)②求从工厂A经过桥到工厂B的最短路程.解:①如图所示,AA’=1km,则MN为架桥位置A B===②过点B作BE⊥AA’,交其延长线于点E。

初中数学最短路径问题专练习题附答案

初中数学最短路径问题专练习题附答案

最短路径问题专练学校:___________姓名:___________班级:___________考号:___________一、单选题1.如图,点A ,B 的坐标分别为(2,0),(0,2)A B ,点C 为坐标平面内一点,1BC =,点M 为线段AC 的中点,连接OM ,则OM 的最大值为( )A1B 12C .1D .12【答案】B【解析】【分析】 如图所示,取AB 的中点N ,连接ON ,MN ,根据三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,再根据等腰直角三角形的性质以及三角形的中位线即可解答.【详解】解:如图所示,取AB 的中点N ,连接ON ,MN ,三角形的三边关系可知OM <ON+MN ,则当ON 与MN 共线时,OM= ON+MN 最大,∵(2,0),(0,2)A B ,则∵ABO 为等腰直角三角形,N 为AB 的中点,∵ON=12AB = 又∵M 为AC 的中点,∵MN 为∵ABC 的中位线,BC=1,则MN=1212BC =,12,∵OM 12【点睛】本题考查了等腰直角三角形的性质以及三角形中位线的性质,解题的关键是确定当ON与MN共线时,OM= ON+MN最大.2.如图,在∵ABC中,AB=2,∵ABC=60°,∵ACB=45°,D是BC的中点,直线l经过点D,AE∵l,BF∵l,垂足分别为E,F,则AE+BF的最大值为()B.C.D.A【答案】A【解析】【分析】把要求的最大值的两条线段经过平移后形成一条线段,然后再根据垂线段最短来进行计算即可.【详解】解:如图,过点C作CK∵l于点K,过点A作AH∵BC于点H,在Rt∵AHB中,∵BH =1,AH在Rt∵AHC 中,∵ACB =45°,∵AC=∵点D 为BC 中点,∵BD =CD ,在∵BFD 与∵CKD 中,90BFD CKD BDF CDK BD CD ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩,∵∵BFD∵∵CKD (AAS ),∵BF =CK ,延长AE ,过点C 作CN∵AE 于点N ,可得AE+BF =AE+CK =AE+EN =AN ,在Rt∵ACN 中,AN <AC ,当直线l∵AC,综上所述,AE+BF.故选:A .【点睛】本题主要考查了全等三角形的判定定理和性质定理及平移的性质,构建全等三角形是解答此题的关键.3.如图,在ABC 中,AB AC =,边AC 的垂直平分线MN 分别交AB ,AC 于点M ,N ,点D 是边BC 的中点,点P 是MN 上任意一点,连接PD ,PC ,若A α∠=,CPD β∠=,PCD 周长最小时,α,β之间的关系是( )A .αβ>B .αβ<C .αβ=D .90αβ=︒-【答案】C连接AP ,根据线段垂直垂直平分线的性质可知P A =PC ,PAC PCA ∠=∠.由PCD L DP PC CD =++,即得出PCD LDP PA CD =++,由此可知当A 、P 、D 在同一直线上时,PCD L 最小.再根据等腰三角形“三线合一”的性质可知AD 为BAC ∠的平分线,即1122PAC A α∠=∠=.最后根据三角形外角性质即得出PAC PCA β=∠+∠,由此即可判断αβ=.【详解】如图,连接AP ,∵直线MN 是线段AC 的垂直平分线,且P 在线段MN 上,∵P A =PC ,PAC PCA ∠=∠.∵PCD LDP PC CD =++, ∵PCDL DP PA CD =++. 由图可知CD 为定值,当A 、P 、D 在同一直线上时,DP PA +最小,即为AD 的长, ∵此时PCD L 最小.∵D 是边BC 的中点,AB =AC ,∵AD 为BAC ∠的平分线, ∵1122PAC A α∠=∠=. ∵CPD PAC PCA ∠=∠+∠,即PAC PCA β=∠+∠,∵αβ=.本题考查线段垂直垂直平分线的性质,等腰三角形的性质,角平分线的定义以及三角形外角性质.根据题意理解当A 、P 、D 在同一直线上时PCD L 最小是解题关键. 4.如图,在ABC 中,3AB =,4AC =,AB AC ⊥,EF 垂直平分BC ,点P 为直线EF 上一动点,则ABP △周长的最小值是( )A .6B .7C .8D .128【答案】B【解析】【分析】 根据题意知点B 关于直线EF 的对称点为点C ,故当点P 与点E 重合时,AP BP +的最小值,求出AC 长度即可得到结论.【详解】解:设AC 交EF 于点E ,连接CP ,EF 垂直平分BC ,B ∴、C 关于EF 对称,∵CP BP =,∵CP AP AC +≥∵BP AP AC +≥,∴当P 和E 重合时,AP BP +的值最小,最小值等于AC 的长,ABP ∴∆周长的最小值是437AC AB +=+=.故选:B .【点睛】题的关键是找出P的位置.5.如图,透明的圆柱形容器(容器厚度忽略不计)的高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时一只蚂蚁正好在容器外壁,且离容器上沿3cm的点A处,则蚂蚁吃到饭粒需爬行的最短路径是()cmA B.13cm C.D.【答案】B【解析】【分析】将容器侧面展开,作A点关于EF的对称点A′,根据两点之间线段最短即可知A′B的长度即为最短距离.利用勾股定理求出A′B即可.【详解】如图:将容器侧面展开,作A关于EF的对称点A′,连接A′B,则A′B即为最短距离,∵高为12cm,底面周长为10cm,在容器内壁离容器底部3cm的点B处有一饭粒,此时蚂蚁正好在容器外壁,离容器上沿3cm与饭粒相对的点A处,∵A′D=5cm,A′E=AE=3,BD=12﹣3+A′E=12cm,∵A′B13cm.故选:B.【点睛】和勾股定理进行求解是解题的关键.6.如图,等腰三角形ABC的底边BC长为4,面积是16,腰AC的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则MC+MD的最小值为()A.6B.8C.10D.12【答案】B【解析】【分析】连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD∵BC,再根据三角形的面积公式求出AD的长,再再根据EF是线段AC的垂直平分线可知,点C关于直线EF的对称点为点A,故AD的长为CM+MD的最小值,由此即可得出结论.【详解】解:连接AD,∵∵ABC是等腰三角形,点D是BC边的中点,∵AD∵BC,∵S△ABC=12BC•AD=12×4×AD=16,解得AD=8,∵EF是线段AC的垂直平分线,∵点C关于直线EF的对称点为点A,∵AD的长为CM+MD的最小值,∵MC+MD的最小值为8.故选:B.【点睛】7.如图,在ABC 中,10AB AC BC ==,,60ABC S =△,AD BC ⊥于点D ,EF 垂直平分AB ,在EF 上确定一点P ,使PB PD +最小( )A .10B .11C .12D .13【答案】C【解析】【分析】 根据三角形的面积公式得到6AD =,由EF 垂直平分AB ,得到点A ,B 关于直线EF 对称,于是得到AD 的长度PB PD =+的最小值,即可得到结论.【详解】解:∵AB AC =,10BC =,60ABC S =△,AD BC ⊥, ∵1=602BC AD ⨯, ∵12AD =,∵EF 垂直平分AB ,∵点A ,B 关于直线EF 对称,∵EF 与AD 的交点即为P 的,此时PA PB =,AD 的长度PB PD =+的最小值, 即PB PD +的最小值为12,故选:C .【点睛】本题考查了轴对称﹣最短路线问题,线段的垂直平分线的性质,等腰三角形的性质,知道AD 的长度PB PD =+的最小值是解题的关键.分别交AC,AB边于E,F点,若点D为BC边的中点,点M为线段EF上一动点,则∵CDM周长的最小值为()A.6B.8C.10D.12【答案】C【解析】【分析】根据题意,点A,点C关于EF对称,连接AD,交EF于点M,则△CDM周长的最小值AD+DC,利用三角形面积公式计算AD即可.【详解】∵AC的垂直平分线EF分别交AC,AB边于E,F点,∵点A,点C关于EF对称,连接AD,交EF于点M,则△CDM周长的最小值是AD+DC,∵AB=AC,BC=4,△ABC的面积是16,点D为BC边的中点,∵AD∵BC,DC=2,11416 22BC AD AD=⨯⨯=,解得AD=8,∵△CDM周长的最小值为:AD+DC=8+2=10,故选C.【点睛】本题考查了线段的垂直平分线,等腰三角形的性质,将军饮马河原理,三角形的面积公式,熟练掌握等腰三角形的性质,将军饮马河原理是解题的关键.9.如图,菱形ABCD的边长为9,面积为P、E分别为线段BD、BC上的动点,则PE+PC的最小值为___.【答案】【解析】【分析】如图,连接AP,过点A作AH∵BC于H.说明P A=PC,再根据垂线段最短,解决问题即可.【详解】解:如图,连接AP,过点A作AH∵BC于H.∵四边形ABCD是菱形,∵A、C关于BD对称,∵P A=PC,∵PE+PC=AP+PE,∵AP+PE≥AH,∵S菱形ABCD=BC•AH,∵AH ,∵PE+PC∵PE+PC的最小值为故答案为:.垂线段最短解决最值问题,属于中考常考题型.三、解答题10.在平面直角坐标系xOy 中,点A 、B 分别在y 轴和x 轴上,已知点A (0,4).以AB 为直角边在AB 左侧作等腰直角△ABC ,∵CAB =90°.(1)当点B 在x 轴正半轴上,且AB =8时∵求AB 解析式;∵求C 点坐标;(2)当点B 在x 轴上运动时,连接OC ,求AC +OC 的最小值及此时B 点坐标.【答案】(1)∵4y =+;∵C (4,4--(2)(2,0)B【解析】【分析】(1)∵根据(0,4)A ,8AB =,推出OB B ,0),设直线AB 的解析式为4y kx =+,将A 、B 坐标代入即可求出AB 解析式;∵过点A 作x 轴的平行线,分别过点C 、B 作y 轴的平行线,交于G 、H .则AHB CGA ∆∆,所以4AG HB ==,CG AH ==C (4,4--; (2)由AGC BHA ∆≅∆可知4AG =,点C 在直线4x =-上运动,作点O 关于直线4x =-的对称点O ',所以AC OC AC O C '+=+,AC OC +的最小值为AO '的长度,此时2OB AH CG ===,即可求出B 坐标.(1)解:∵(0,4)A ,8AB =,OB ∴B ∴0),设直线AB 的解析式为4y kx =+,04∴=+,k =AB ∴解析式:4y x =+; ∵过点A 作x 轴的平行线,与分别过点C 、B 作y 轴的平行线交于G 、H .则AHB CGA ∆∆()AAS4AG HB ∴==,CG AH ==C ∴(4,4--;(2)由AGC BHA ∆≅∆可知4AG =,(B 在x 轴负半轴同理可说明)点C 在直线4x =-上运动,作点O 关于直线4x =-的对称点O ',4OC O C '∴==,448OO '=+=,AC OC AC O C '∴+=+.AC OC +的最小值为AO '=此时2OB AH CG ===,(2,0)B ∴.【点睛】 本题主要考查等腰直角三角形的性质、利用轴对称求最短线路.这里构造三角形全等找到点C的运动轨迹是关键.。

专题训练 蚂蚁爬行的最短路径(含答案)

专题训练 蚂蚁爬行的最短路径(含答案)

蚂蚁爬行的最短路径1.一只蚂蚁从原点0出发来回爬行,爬行的各段路程依次为:+5,-3,+10,-8,-9,+12,-10.回答下列问题:(1)蚂蚁最后是否回到出发点0;(2)在爬行过程中,如果每爬一个单位长度奖励2粒芝麻,则蚂蚁一共得到多少粒芝麻. 解:(1)否,0+5-3+10-8-9+12-10=-3,故没有回到0; (2)(|+5|+|-3|+|+10|+|-8|+|-9|+|+12|+|-10|)×2=114粒2.如图,边长为1的正方体中,一只蚂蚁从顶点A 出发沿着正方体的外表面爬到顶点B 的最短距离是.解:如图将正方体展开,根据“两点之间,线段最短”知,线段AB 即为最短路线. AB =51222=+.3.(2006?茂名)如图,点A 、B 分别是棱长为2的正方体左、右两侧面的中心,一蚂蚁从点A 沿其表面爬到点B 的最短路程是cm.解:由题意得,从点A 沿其表面爬到点B 的最短路程是两个棱长的长,即2+2=4.4.如图,一只蚂蚁从正方体的底面A 点处沿着表面爬行到点上面的B 点处,它爬行的最短路线是()A .A ?P ?BB .A ?Q ?BC .A ?R ?BD .A ?S ?B 解:根据两点之间线段最短可知选A . 故选A .5.如图,点A 的正方体左侧面的中心,点B 是正方体的一个顶点,正方体的棱长为2,一蚂蚁从点A 沿其表面爬到点B 的最短路程是( )第6题解:如图,AB =()1012122=++.故选C .6.正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为( ) 解:展开正方体的点M 所在的面, ∵BC 的中点为M , 所以MC =21BC =1, 在直角三角形中AM ==.7.如图,点A 和点B 分别是棱长为20cm 的正方体盒子上相邻面的两个中心,一只蚂蚁在盒子表面由A 处向B 处爬行,所走最短路程是cm 。

解:将盒子展开,如图所示:AB =CD =DF +FC =21EF +21GF =21×20+21×20=20cm. 故选C .8.正方体盒子的棱长为2,BC 的中点为M ,一只蚂蚁从A 点爬行到M 点的最短距离为. 解:将正方体展开,连接M 、D 1, 根据两点之间线段最短, MD =MC +CD =1+2=3, MD 1=132322212=+=+DD MD . 9.如图所示一棱长为3cm 的正方体,把所有的面均分成3×3个小正方形.其边长都为1cm ,假设一只蚂蚁每秒爬行2cm ,则它从下底面点A 沿表面爬行至侧面的B 点,最少要用2.5秒钟. 解:因为爬行路径不唯一,故分情况分别计算,进行大、小比较,再从各个路线中确定最短的路线.(1)展开前面右面由勾股定理得AB ==cm ;第7题1ABA 1B 1D CD 1C 124(2)展开底面右面由勾股定理得AB ==5cm ;所以最短路径长为5cm ,用时最少:5÷2=2.5秒.10.(2009?恩施州)如图,长方体的长为15,宽为10,高为20,点B 离点C 的距离为5,一只蚂蚁如果要沿着长方体的表面从点A 爬到点B ,需要爬行的最短距离是。

八年级数学中的最短路径问题模型与练习

八年级数学中的最短路径问题模型与练习

最短路径问题的13个模型与30道培优考题一、一条直线两定点一动点1.如图在直线上取一点P,使得PA+PB最小?A,B位于直线异侧,连接AB交直线于P。

2. 如图在直线上取一点P,使得PA+PB最小?作点A关于直线的对称点A',连接A’B交直线于点P3.如图在直线上取一点P,使得|PA-PB|最大?作直线AB交直线l于P。

4.如图在直线上取一点P,使得|PA-PB|最大?作点B关于l的对称点B’,直线AB’交l于P。

二、两条直线一定点两动点5.点A在∠O的内部,在角的两边上分别取两个点M,N使得△AMN的周长最小?分别作点A关于两直线的对称点A’,A”,连接A'A”与角的两边交于M,N。

6. 点B是水平直线上的一个动点,点P在另一条直线上,点A在两直线外,确定点P和点B的位置,使得AP+PB 最小。

过点A作垂线段AB垂直于水平的直线,垂足为B,AB与另一直线交点P即为所求。

常见的变形,当点A位于两直线内,先作点A的对称点,再作垂线段即可。

三、两条直线两定点两动点7. A,B在两条直线外,在两条直线上分别取两点P,Q使得AP+PQ+QB最小?连接AB并与直线分别交于PQ。

8. 点A在直线内,点B在直线外,在两条直线上分别取点P,Q使得AP+PQ+QB最小?作点A关于B反向的直线对称点A’,连接A’B与两直线交于P,Q。

9.点A,B都在两条直线内部,在两条直线上分别取点P,Q,使得AP+PQ+QB最小?首先要看哪个点离哪条线最近,然后作这点关于这线的对称点,另点关于另线的对称点,两个对称点再连与两线交点即为所求。

常见的变形情况:角内两点A,B,在角的两边上分别取点M,N,使得AM+MN+NB最短?分别向外侧作点AB关于两边的对称点A’,B’,连接A’B’。

10.分别以两条平行的直线代表一条河的两岸,河两岸分别是A村和B村,现在准备在河上修一座桥MN(桥垂直河岸),问修在哪个位置,从A村到B村的路程最短?作AA’垂直于河岸,且AA’距离等于桥长,连接A’B交河岸于N’,再作N’对岸点M。

八年级数学上册最短路径问题(将军饮马)专项训练(含解析)

八年级数学上册最短路径问题(将军饮马)专项训练(含解析)

最短路径问题(将军饮马)专项训练一、单选题1.如图,在ABC 中,AB AC =,10BC =,60ABC S =△,D 是BC 中点,EF 垂直平分AB ,交AB 于点E ,交AC 于点F ,在EF 上确定一点P ,使PB PD +最小,则这个最小值为( )A .10B .11C .12D .132.如图方格纸中每个小正方形的边长均为1,线段AC 的两个端点均在小正方形的顶点上,点P 也在小正方形的顶点上.某人从点P 出发,沿图中已有的格点所连线段走一周(即不能直接走线段AC 且要回到P ),则这个人所走的路程最少是( )A .7B .14C .10D .不确定3.如图,在等边△ABC 中,AB =2,N 为AB 上一点,且AN =1,AD =3,∠BAC 的平分线交BC 于点D ,M 是AD 上的动点,连接BM 、MN ,则BM+MN 的最小值是( )A .3B .2C .1D .34.如图,在△ABC 中,∠C=90°,∠BAC=30°,AB=12,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则BQ+QP 的最小值是( )A.4 B.5 C.6 D.75.如图,在△ABC中,点D、E分别是边AB、AC的中点,∠B=50°,∠A=26°,将△ABC沿DE折叠,点A的对应点是点A′,则∠AEA′的度数是()A.145°B.152°C.158°D.160°6.图1为某四边形ABCD纸片,其中∠B=70°,∠C=80°.若将CD迭合在AB上,出现折线MN,再将纸片展开后,M、N两点分别在AD、BC上,如图2所示,则∠MNB的度数为()度.A.90 B.95 C.100 D.1057.如图,在△ABC中,∠ACB=90°,以AC为底边在△ABC外作等腰△ACD,过点D作∠ADC的平分线分别交AB,AC于点E,F.若AC=12,BC=5,△ABC的周长为30,点P是直线DE上的一个动点,则△PBC周长的最小值为()A.15 B.17 C.18 D.208.平面直角坐标系xOy中,已知A(-1,0),B(3,0),C(0,-1)三点,D(1,m)是一个动点,当△ACD 的周长最小时,则△ABD的面积为()A.13B.23C.43D.839.如图,等边△ABC的边长为4,AD是边BC上的中线,F是边AD上的动点,E是边AC上一点,若AE=2,则EF+CF取得最小值时,∠ECF的度数为()A .15°B .22.5°C .30°D .45°10.如图,在△ABC 中,∠C =90°,∠BAC =30°,AB =8,AD 平分∠BAC ,点PQ 分别是AB 、AD 边上的动点,则PQ +BQ 的最小值是A .4B .5C .6D .711.如图,锐角三角形ABC 中,∠C =45°,N 为BC 上一点,NC =5,BN =2,M 为边AC 上的一个动点,则BM +MN 的最小值是( )A .29B .21C .74D .4512.如图是一块长,宽,高分别是6cm ,4cm 和3cm 的长方体纸盒子,一只老鼠要从长方体纸盒子的一个顶点A 处,沿着长方体的表面到长方体上和A 相对的顶点B 处吃食物,那么它需要爬行的最短路径的长是( )A .(3213cm +B 85cmC 97cmD 109cm13.如图,ABC ∆是等边三角形,2AB =,AD 是BC 边上的高,E 是AC 的中点,P 是AD 上的一个动点,则PE PC +的最小值为( )A .1B .2C .3D .2314.如图,在锐角△ABC 中,AB =42,∠BAC =45°,∠BAC 的平分线交BC 于点D ,M 、N 分别是AD 和AB 上的动点,则BM +MN 的最小值是( )A .3B .4C .5D .615.如图,A 、B 是两个居民小区,快递公司准备在公路l 上选取点P 处建一个服务中心,使P A +PB 最短.下面四种选址方案符合要求的是( )A .B .C .D .16.已知:如图,在Rt △ABC 中,∠ACB=90°,∠A <∠B ,CM 是斜边AB 上的中线,将△ACM 沿直线CM 折叠,点A 落在点A 1处,CA 1与AB 交于点N ,且AN=AC ,则∠A 的度数是( )A .30°B .36°C .50°D .60°17.如图,在ABC 中,90BCA ∠=︒,3BC =,4CA =,AD 平分BAC ∠,点M N 、分别为AD AC 、上的动点,则CM MN +的最小值是( )A .1.2B .2C .2.4D .518.在平面直角坐标系中,点A 、B 的坐标分别为( 2,0 ),(4,0),点C 的坐标为(m ,3 m )(m 为非负数),则CA +CB 的最小值是( )A .6B .37C .27D .5二、填空题 19.如图,在等边ABC ∆中,D 是BC 的中点,E 是AB 的中点,H 是AD 上任意一点.如果10AB AC BC ===,53AD =,那么HE HB +的最小值是 .20.如图,在ABC 中,10AB AC cm ==,8BC cm =,AB 的垂直平分线交AB 于点M ,交AC 于点N ,在直线MN 上存在一点P ,使P 、B 、C 三点构成的PBC 的周长最小,则PBC 的周长最小值为______.21.如图,等腰三角形ABC 的底边BC 长为6,面积是36,腰AC 的垂直平分线EF 分别交AC ,AB 边于E ,F 点,若点D 为BC 边的中点,点M 为线段EF 上一动点,则CDM ∆周长的最小值____.22.如图,P 是AOB ∠内一定点,点M ,N 分别在边OA ,OB 上运动,若30AOB ∠=︒,3OP =,则PMN 的周长的最小值为___________.23.等边三角形ABC中,∠BPC=150°,BP=3,PC=4,M、N分别为AB,AC上两点,且AM=AN,则PM+PN的最小值为__.24.如图,在Rt△ABC中,∠C=90°,∠A=30°,AC=4,M是AB边上一动点,N是AC边上的一动点,则MN+MC的最小值为_____.25.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC、CD上分别找一点M、N,使△AMN 周长最小时,则∠AMN+∠ANM的度数为____.26.如图所示,在边长为2的等边三角形ABC中,G为BC的中点,D为AG的中点,过点D作EF∥BC 交AB于E,交AC于F,P是线段EF上一个动点,连接BP,GP,则△BPG的周长的最小值是________.27.已知∠AOB=30°,点P、Q分别是边OA、OB上的定点,OP=3,OQ=4,点M、N是分别是边OA、OB上的动点,则折线P-N -M -Q长度的最小值是___________.28.如图,在等边三角形ABC中,BC边上的中线4AD=,E是AD上的一个动点,F是边AB上的一个动点,在点E、F运动的过程中,EB EF+的最小值是______.29.如图,∠AOB=30°,∠AOB内有一定点P,且OP=12,在OA上有一点Q,OB上有一点R,若△PQR 周长最小,则最小周长是_____30.如图,在△ABC中,AB=AC=5,BC=6,AD是∠BAC的平分线,AD=4.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是_____.31.如图,在Rt△ABC中,∠ACB=90°,∠ABC=60°,AB=4,点D是BC上一动点,以BD为边在BC 的右侧作等边△BDE,F是DE的中点,连结AF,CF,则AF+CF的最小值是_____.32.如图,∠AOB的边OB与x轴正半轴重合,点P是OA上的一动点,点N(6,0)是OB上的一定点,点M是ON的中点,∠AOB=30°,要使PM+PN最小,则点P的坐标为_____.33.某市为解决农村燃气困难,在P处建立了一个燃气站,从P站分别向A、B、C村铺设燃气管道。

最短路径问题 课后练习-河北省石家庄市第四十二中学2021-2022学年人教版数学八年级上册

最短路径问题 课后练习-河北省石家庄市第四十二中学2021-2022学年人教版数学八年级上册

课题学习:最短路径问题一、单选题1.如图,直线上的四个点A,B,C,D分别代表四个小区,其中A小区和B小区相距50m,B 小区和C小区相距200m,C小区和D小区相距50m,某公司的员工在A小区有30人,B小区有5人,C小区有20人,D小区有6人,现公司计划在A,B,C,D四个小区中选一个作为班车停靠点,为使所有员工步行到停靠点的路程总和最小,那么停靠点的位置应设在()A.A小区B.B小区C.C小区D.D小区2.如图,点A,B在直线l的同侧,在直线l上找一点P,使P A+PB最小,则下列图形正确的是()A.B.C.D.3.如图,一只电子蚂蚁从正方体的顶点A处沿着表面爬到顶点C处,电子蚂蚁的部分爬行路线在平面展开图中的表示如图的虚线,其中能说明爬行路线最短的是()A.B.C .D .4.如图,在ABC ∆中,点D 是AB 边的中点,过点D 作边AB 的垂线l ,E 是l 上任意一点,5cm AC =,8cm BC =.则AEC ∆的周长的最小值为( )A .8cmB .5cmC .18cmD .13cm5.如图所示,从A 到B 有①②③三条路可以走,每条路长分别为L ,M ,N ,则L ,M ,N 的大小关系是() .A .L M N >>B .L M N =>C .M N L >>D .L N M >> 6.如图,一个底面直径为30πcm ,高为20cm 的糖罐子,一只蚂蚁从A 处沿着糖罐的表面爬行到B 处,则蚂蚁爬行的最短距离是( )A .24cmB .C .25cmD .30cm7.如图,在五边形ABCDE 中,152BAE ∠=︒,90B E ︒∠=∠=,AB BC =,AE DE =在BC ,DE 上分别找一点M ,N ,使得AMN ∆的周长最小时,则AMN ANM ∠+∠的度数为( )A .55°B .56°C .57°D .58°8.如图,在平面直角坐标系中,点A 的坐标为(2,7),点B 的坐标为(5,0),点C 是y 轴上一个动点,且点A ,B ,C 三点不在同一条直线上,当△ABC 的周长最小时,点C 的坐标是( )A .(0,2)B .(0,5)C .(0,7)D .(0,9)9.如图,30AOB ∠=︒,M ,N 分别是边,OA OB 上的定点,P ,Q 分别是边,OB OA 上的动点,记,OPM OQN αβ∠=∠=,当MP PQ QN ++的值最小时,关于α,β的数量关系正确的是( )A .60βα-=︒B .210βα+=︒C .230βα-=︒D .2240βα+=︒10.如图,,OA OB 分别是线段,MC MD 的垂直平分线,5cm,7cm,10cm MD MC CD ===,一只小蚂蚁从点M 出发爬到OA 边上任意一点E ,再爬到OB 边上任意一点F ,然后爬回M 点,则小蚂蚁爬行的最短路径为( )A .12cmB .10cmC .7cmD .5cm11.如图,在△ABC 中,△ACB =90°,以AC 为底边在△ABC 外作等腰△ACD ,过点D 作△ADC 的平分线分别交AB ,AC 于点E ,F .若AC =12,BC =5,△ABC 的周长为30,点P 是直线DE 上的一个动点,则△PBC 周长的最小值为( )A .15B .17C .18D .2012.如图,已知点P (0,3) ,等腰直角△ABC 中,△BAC=90°,AB=AC ,BC =2,BC 边在x 轴上滑动时,P A +PB 的最小值是 ( )A 2BC .5D .二、填空题P M N分别是AC和BC边上的13.如图,在锐角ABC中,50ACB,边AB上有一定点,,∠=°∠的度数是_________.动点,当PMN的周长最小时,MPN14.如图,在平面直角坐标系xOy中,点A的坐标为(0,6),点B为x轴上一动点,以AB为边在直线AB的右侧作等边三角形ABC.若点P为OA的中点,连接PC,则PC的长的最小值为_____.15.如图,网格纸上每个小正方形的边长为1,点A,点C均在格点上,点P为x轴上任意一点,△周长的最小值为________.则PAC16.将图中的树叶沿虚线剪掉一部分,发现剩下的树叶的周长比原来的周长要小,能正确解释这一现象的数学道理是______.17.如下图,,,120⊥⊥∠=,在BC、CD上分别找一点M、N,当AMN周AB BC AD DC BAD长最小时,AMN ANM∠+∠的度数是_____________.三、解答题18.如图,已知两点P、Q在锐角△AOB内,分别在OA、OB上求作点M、N,使PM+MN+NQ最短.(要求:尺规作图,保留作图痕迹,不写作法)19.如图,一个旅游船从大桥AB的P处前往山脚下的Q处接游客,然后将游客送往河岸BC 上,再回到P处.请画出旅游船的最短路径(实际行走路径画实线,其它辅助线画虚线)20.如图,ABC ∆中,90ACB ∠=,以AC 为底边作等腰三角形ACD ∆,AD CD =,过点D 作DE AC ⊥,垂足为F ,DE 与AB 相交于点E ,连接CE .(1)求证:AE CE BE ==.(2)若15AB cm =,9BC cm =,点P 是射线DE 上的一点,则当点P 为何处时,PBC ∆的周长最小,并求出此时PBC ∆的周长.21.如图,在ABC 中,AB AC =,AB 的垂直平分线交AB 于N ,交AC 于M .(1)若70B ∠=︒,则NMA ∠的度数是 ;(2)连接MB ,若8AB cm =,MBC △的周长是14cm .△求BC 的长;△在直线MN 上是否存在点P ,使由P ,B ,C 构成的PBC 的周长值最小?若存在,标出点P 的位置并求PBC 的周长最小值;若不存在,说明理由.22.如图,, A B 两村在一条小河的同一侧,要在河边建水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址M 应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址N 应选在哪个位置?(3)自来水厂建好后,在招收职工的试卷中有道题“请你在河流CD 上找出一点P ,使PA PB -的值最大.”你能找到P 点吗?请将上述M N P 、、三点在下列各图分别标出,并保留尺规作图痕迹.23.如图,在△ABC中,AB=AC=5,BC=6,点M在△ABC内,AM平分△BAC.点E与点M在AC所在直线的两侧,AE△AB,AE=BC,点N在AC边上,CN=AM,连接ME,BN.(1)补全图形;(2)求ME:BN的值;(3)问:点M在何处时BM+BN取得最小值?确定此时点M的位置,并求此时BM+BN的最小值.参考答案1.B解:当停靠点在A区时,所有员工步行到停靠点路程和是:5×50+20×(200+50)+6(2×50+200)=7050(m),当停靠点在B区时,所有员工步行到停靠点路程和是:30×50+20×200+6(50+200)=7000(m),当停靠点在C区时,所有员工步行到停靠点路程和是:30(50+200)+5×200+6×50=8800(m),当停靠点在D区时,所有员工步行到停靠点路程和是:30×(2×50+200)+5(50+200)+20×50=11900(m),因为7000<7050<8800<11900,所以当停靠点在B小区时,所有员工步行到停靠点路程和最小,那么停靠点的位置应该在B 区.故选:B.2.B解:△点A,B在直线l的同侧,△作A点关于l的对称点A',连接A'B与l的交点为P,由对称性可知AP=A'P,此时P A+PB最小,故选:B.3.A解:一只蚂蚁要从正方体的一个顶点A沿表面爬行到顶点C,则沿线段AC爬行,就可以使爬行路线最短,是根据两点之间,线段最短.故选:A.4.D解:如图,连接BE,△点D是AB边的中点,l△AB,△l是AB的垂直平分线,△AE=BE,△AE+CE=BE+CE,△BE+CE≥BC,△当B,E,C在同一直线上时,BE+CE的最小值等于BC的长,而AC长不变,△△AEC的周长最小值等于AC+BC=5+8=13.故选:D.5.B解:根据两点之间线段最短可得第△条路比第△条路短;由于台阶的高度之和就是总体的高=>;度,台阶的长度之和就是总体的长度,所以第△条路和第△条路一样长,所以L M N故选B.6.C解:将此圆柱展成平面图得:△有一圆柱,它的高等于20cm,底面直径等于30πcm,△底面周长=3030ππ⋅=cm,△BC=20cm,AC=12×30=15(cm),△AB25(cm).答:它需要爬行的最短路程为25cm.故选:C.7.B解:作A关于BC的对称点G,A关于DE的对称点H,连接MG,NH,则AM=MG,AN=NH,△△AMN的周长为AM+MN+AN=MG+MN+NH,由两点之间,线段最短可知:当G、M、N、H共线时,△AMN的周长最小,△△BAE=152°,△△G+△H=28°,△AM=MG,AN=NH,△△G=△GAM,△H=△HAN,△AMN +△ANM =2△G +2△H =2×28°=56°,故选:B .8.B解:作点A 关于y 轴的对称点A ',连接A B '交y 轴于点C ,当△ABC 的周长最小时,即CA CB +最小,(2,7),(2,7)A B -设直线A B '的解析式为:(0)y kx b k =+≠,代入,A B '的坐标得,2750k b k b -+=⎧⎨+=⎩ 解得15k b =-⎧⎨=⎩ 5y x ∴=-+当0x =时,解得5y =(0,5)C ∴故选:B .9.B解:如图,作M 关于OB 的对称点M ',N 关于OA 的对称点N ',连接M N ''交OA 于Q ,交OB于P ,则此时MP PQ QN ++的值最小.易知'∠=∠=∠OPM OPM NPQ ,'∠=∠=∠OQP AQN AQN .△18030∠=︒-︒-∠OQN ONQ ,30∠=∠=︒+∠OPM NPQ OQP30∠=∠=︒+∠OQP AQN ONQ ,△303018030210+=︒+︒+∠+︒-︒-∠=︒ONQ ONQ αβ.故选:B.10.B解:由题意可知CD 与OA 的交点为E ,与OB 的交点为F .△,OA OB 分别是线段,MC MD 的垂直平分线,△,==ME CE MF DF ,△小蚂蚁爬行的最短路径为10cm ++=++==ME EF FM CE EF FD CD .11.C解:ACD ∆是以AC 为底边的等腰三角形,DE 平分ADC ∠,ED ∴垂直平分AC ,∴点A 与点C 关于DE 对称,PC PA∴=,如图所示,当点P与点E重合时,PC PB PA PB AB+=+=,∆的周长最小,此时PBC∆的周长为30,AC,512BC=,ABC∴=,AB13∴∆周长的最小值为13518PBC+=+=,AB BC故选:C.12.B解:如图,过点P作PD△x轴,做点A关于直线PD的对称点A´,延长A´ A交x轴于点E,则当A´、P、B三点共线时,P A+PB的值最小,△等腰直角△ABC中,△BAC=90°,AB=AC,BC=2,△AE=BE=1,△P(0,3) ,△A A´=4,△A´E=5,△A B'故选B.13.80°解:△ PD△AC,PG△BC,△△PEC=△PFC=90°,△ △C+△EPF=180°,△△C=50°,△△D+△G+△EPF=180°,△ △D+△G=50°,由对称可知:△G=△GPN,△D=△DPM,L △△GPN+△DPM=50°,△△MPN=130°-50°=80°,故答案为:80°.14.9 2解:如图,以AP为边作等边三角形APE,连接BE,过点E作EF△AP于F,△点A的坐标为(0,6),△OA =6,△点P 为OA 的中点,△AP =3,△△AEP 是等边三角形,EF△AP ,△AF =PF =32,AE =AP ,△EAP =△BAC =60°, △△BAE =△CAP ,在△ABE 和△ACP 中,AE AP BAE CAP AB AC =⎧⎪∠=∠⎨⎪=⎩△△ABE△△ACP (SAS ),△BE =PC ,△当BE 有最小值时,PC 有最小值,即BE△x 轴时,BE 有最小值,△BE 的最小值为OF =OP +PF =3+32=92, △PC 的最小值为92, 故答案为92. 15.解:=如图,作点C 关于x 轴的对称点C′,连接AC′,与x 轴交于点P ,则AP+PC=AP+PC′=AC′,此时AP+PC=所以△PAC周长的最小值为故答案为:16.两点之间线段最短解:如图,设虚线与树叶边缘交于A、B两点,则剩下的树叶周长与原来的周长相差的只是线段AB左侧的部分,原来AB左侧是一条曲线,剪后AB左侧即为线段AB,△线段AB的长度小于原来AB之间曲线的长度,△剩下的树叶的周长比原来的周长要小,其原因即为两点之间线段最短,故答案为两点之间线段最短.17.120°解:作A关于BC和CD的对称点A′,A″,连接A′A″,交BC于M,交CD于N,则A′A″即为△AMN的周长最小值.△△DAB=120°,△△AA′M+△A″=180°-△BAD=60°,△△MA′A=△MAA′,△NAD=△A″,且△MA′A+△MAA′=△AMN,△NAD+△A″=△ANM,△△AMN+△ANM=△MA′A+△MAA′+△NAD+△A″=2(△AA′M+△A″)=2×60°=120°,故答案为:120°.18.见解析解:如图:△M、N即为所求.19.详见解析解:(1)两点之间,线段最短,连接PQ;(2)作P关于BC的对称点P1,连接QP1,交BC于M,再连接MP,最短路线P--Q--M--P.如图所示:20.(1)证明见解析.(2)24cm.解:(1)△DA=DC,DF△AC,△AF=CF,△DE垂直平分线段AC,△EA=EC,△△EAC=△ECA,△△ACB=90°,△△EAC+△B=90°,△ECA+△ECB=90°,△△ECB=△B,△EC=EB=EA.(2)连接PB、PC、PA.要使得△PBC的周长最小,只要PB+PC最小即可.△PB+PC=PA+PB≥AB,△当P与E重合时,PA+PB最小,△△PBC的周长最小值=AB+BC=15+9=24cm.21.(1)50° (2)△ 6cm;△存在点P,点P与点M重合,△PBC周长的最小值为14cm 解:(1)△AB=AC,△△B=△C=70°,△△A=180°-70°-70°=40°△MN垂直平分AB交AB于N△MN△AB, △ANM=90°,在△AMN中,△NMA=180°-90°-40°=50°;(2)△如图所示,连接MB,△MN垂直平分AB交于AB于N△AM=BM,△△MBC的周长=BM+BC+CM=AM+BC+CM=BC+AC=14cm又△AB=AC=8cm,△BC=14 cm-8 cm=6cm;△如图所示,△MN垂直平分AB,△点A、B关于直线MN对称,AC与MN交于点M,因此点P与点M重合;△△MBC的周长就是△PBC周长的最小值,△△PBC周长的最小值=△MBC的周长=14cm.22.(1)见解析;(2)见解析;(3)见解析解:(1)△自来水厂到两村的距离相等,即MA=MB,△M在AB的垂直平分线上,如图:厂址应该选在M处;(2)由题意可知,若自来水厂到两村的输水管用料最省,即AN+BN最小,如图,A′为点A关于CD的对称点,连接A′B,与CD交于点N,则厂址应该选在点N处;最大,根据三角形两边之差小于第三边,如图,(3)若PA PB可知P位于AB与CD交点处时,|PA-PB|最大;23.(1)补图见解析;(2)ME:BN=1;(3)当点M在△BAC的平分线上运动到它与BE的交点处时,BM+BN解:(1)补全图形见图1:(2)如图2,延长AM 交BC 于点D ,△AB=AC ,AM 平分△BAC ,△△CAD=△BAD ,AD△BC ,△AE△AB ,△△MAE+△BAD=90°,△AD△BC ,△△C+△CAD=90°,△△MAE=△C ,在△AME 和△CNB 中,AM CN MAE C AE BC ⎧⎪∠∠⎨⎪⎩=== , △△AME△△CNB (SAS ),△ME=BN ,△ME :BN=1;(3)△ME=BN ,△BM+BN=BM+ME ,△当点M 在△BAC 的平分线上运动到它与BE 的交点处时,BM+BN 取得最小值, △AB=AC=5,BC=6,△AE=BC=6,,△BM+BN.。

最短路线练习题

最短路线练习题

最短路线练习题在我们日常的生活中,经常会面临着需要找到最短路线的情况。

无论是出行、送货还是旅游,找到最短路线可以节省时间和精力。

为了提升解决这类问题的能力,下面我们来做一些最短路线的练习题。

练习题一:假如你正在一个陌生的城市旅游,你想从你所在的地方(点A)前往一个景点(点B)。

给定地图上的道路信息,以及各点之间的直线距离,请你找出从点A到点B的最短路线。

这道题目需要我们运用最短路算法来解决。

最常见的算法之一是迪杰斯特拉算法。

迪杰斯特拉算法的基本思想是:从起点开始,不断扩展已经找到的最短路线,直到找到终点为止。

具体步骤如下:1. 初始化:将起点到所有其他点的距离设置为无穷大,将起点到自身的距离设置为0。

2. 将起点标记为已访问。

3. 从起点开始,找到与起点直接相连且未被访问过的点中,距离最短的一个点。

4. 更新与该点相连的所有点的距离,如果通过该点到某个点的距离更短,则更新该点的距离。

5. 标记该点为已访问。

6. 重复步骤3到步骤5,直到找到终点或者所有点都被标记为已访问。

7. 如果找到终点,则回溯路径,即可得到最短路线。

练习题二:现在来做一个稍微复杂一些的练习题。

假设你是一名送货员,需要驾驶卡车从仓库(点A)出发,依次前往多个客户的位置(点B、点C、点D...)。

你希望按照最短距离完成任务。

为了解决这个问题,我们可以运用另一种常见的最短路算法,即弗洛伊德算法。

弗洛伊德算法的基本思想是:逐一考虑所有点作为中转点,计算出任意两点之间的最短距离。

具体步骤如下:1. 初始化:将各个点之间的距离初始化为无穷大。

2. 设置直接相连的两个点之间的距离为实际距离。

3. 逐一考虑每个点作为中转点,计算出通过该点的路径是否更短,若更短,则更新距离。

4. 重复步骤3,直到所有点都作为中转点计算过。

通过弗洛伊德算法,我们可以得到任意两点之间的最短距离。

然后,我们可以利用这些距离信息,进行路径规划,找出从仓库出发,依次前往各个客户位置的最短路线。

最短路径问题练习题

最短路径问题练习题

最短路径问题Description:平面上有n个点(n<=100),每个点的坐标均在-10000到10000之间.其中的一些点之间有连线.若有连线,则表示可从一个点到达另一个点,即两点间有通路,通路的距离为两点间的直线距离.现在的任务是找出从一点到另一点之间的最短路径.Input:共n+m+3行第一行为整数n.第2行到第n+行,每行两个整数x和y,描述了一个点的坐标(以一个空格分开)第n+2行为一个整数m,表示图中连线的个数.以后的m行,每行描述一条连线,由两个整数i和j组成,表示第i个点和第j个点之间有连线.最后一行;两个整数s和t,分别表示源点和目标点.Output:仅一行,一个实数(保留两位小数),表示从s到t的最短路径长度Sample Input50 02 02 20 23 151 21 31 42 53 51 5Sample Output:3.41最小花费【问题描述】:在n个人中,某些人的银行账号之间可以互相转账。

这些人之间转账的手续费各不相同。

给定这些人之间转账时需要从转账金额里扣除百分之几的手续费,请问A 最少需要多少钱使得转账后B收到100元。

【输入数据】:第一行输入两个正整数n,m,分别表示总人数和可以互相转账的人的对数。

以下m行每行输入三个正整数x,y,z,表示标号为x的人和标号为y的人之间互相转账需要扣除z%的手续费 (z<100)。

最后一行输入两个正整数A,B。

数据保证A与B之间可以直接或间接地转账。

【输出数据】:输出A使得B到账100元最少需要的总费用。

精确到小数点后8位。

【输入样例】:3 31 2 12 3 21 3 31 3【输出样例】:103.07153164【数据规模】: 1<=n<=2000公园漫步(park.pas)【问题描述】小M 和小Z 饭后在公园散步,走着走着小Z 忽然想起来家中的水龙头没有关,于是他们要在最快的时间内走出公园赶到家中。

初中数学八年级上册最短路径问题同步专项练习题含答案

初中数学八年级上册最短路径问题同步专项练习题含答案

初中数学八年级上册最短路径问题同步专项练习题含答案学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 10 小题,每题 3 分,共计30分,)1. 如图,在Rt△ABC中,AB=BC=4,D为BC的中点,在AC边上存在一点E,连接ED,EB,则△BDE周长的最小值是()A.2√5+2B.2√3C.2√5D.2√3+22. 如图,圆柱形纸杯高8cm,底面周长为l2cm,在纸杯内壁离杯底2cm的点C处有一滴蜂蜜,一只蚂蚁正好在纸杯外壁,离杯上沿2cm与蜂蜜相对的点A处,则蚂蚁到达蜂蜜的最短距离为()A.2√3B.6√2C.10D.以上答案都不对3. 如图,在矩形ABCD中,AB=6,AD=8,点P在矩形内部,且满足S PCD=1 4S长方形ABCD,则点P到A,B两点的距离之和PA+PB的最小值为( )A.8B.10C.14D.2√134. 如图,直线l是一条河,P,Q是两个村庄.欲在l上的某处修建一个水泵站,向P,Q 两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则所需管道最短的是( )A. B.C. D.5. 如图,直线l是一条河,A、B两地相距10km,A、B两地到l的距离分别为8km、14km,欲在l上的某点M处修建一个水泵站,向A、B两地供水,现有如下四种铺设方案,图中实线表示铺设的管道,则铺设的管道最短的是()A. B.C. D.6. 如图所示,矩形ABCD中,BC=6,AB=4,点P是平面内的一个动点,点P运动过程中始终满足∠BPC=90∘,线段AP的最小值是( )A.1B.2C.3D.47. 如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是( )A.√2B.√3C.√5D.28. 如图,正方形ABCD的边长为8,M在DC上,且DM=2,N是AC上一动点,则DN+ MN的最小值为( )A.6B.8C.12D.109. 已知∠MON=40∘,P为∠MON内一定点,OM上有一点A,ON上有一点B,当△PAB的周长取最小值时,∠APB的度数是()A.40∘B.100∘C.140∘D.50∘10. 如图,△ABC中,AC=BC=3,AB=2,将它沿AB翻折得到△ABD,点P、E、F 分别为线段AB、AD、DB上的动点,则PE+PF的最小值是()A. B. C. D.二、填空题(本题共计 10 小题,每题 3 分,共计30分,)11. 对于平面直角坐标系中的线段MN及点Q,给出如下定义:若点Q满足QM=QN,则称点Q为线段MN的“对称点”;当QM=QN=MN时,称点Q为线段MN的“完美对称点”.(1)如图1,点A坐标为(4,0),有点Q1(0,4),Q2(2,−4),Q3(1,√3),则线段OA的“对称点”是________.(填“Q1”"Q2"或 "Q3")(2)如图2,已知Q(2,2√3)为线段OA的“完美对称点”,D为线段OQ的中点,B为线段OA 的一个“对称点”,则BO+BD的最小值为________.12. 在矩形ABCD中,AB=20cm,BC=10cm,若在AC,AB上各取点M,N,使BM+NM最小,则BM+NM的最小值是________.AC,AB=8,E是AB上13. 如图,在Rt△ABC中,∠CAB=30∘,∠C=90∘.AD=14任意一点,F是AC上任意一点,则折线DEFB的最短长度为________.14. 小明在广场上散步,先向东走12m后,再向北又走了9m,现要以最短距离________m回到原地.15. 如图,一只蚂蚁从棱长为1的正方体纸箱的A点沿纸箱表面爬到B点,那么它所爬行的最短路线的长是________.16. 如图,矩形ABCD中,AB=3,BC=6,点E,F将对角线AC三等分,点P是矩形的边上的动点.则△PEF周长的最小值为________.17. 如图,△ABC中,∠ACB=45∘,边AB上一定点P,M、N分别是AC和BC边上的动点,当△PMN的周长最短时,∠MPN的度数是________.18. 一只蚂蚁从长为4cm、宽为3cm,高是12cm的长方体纸箱的A点沿纸箱爬到B点,那么它所行的最短路线的长是________.19. 如图,在△ABC中,AC=4,AB=5,BC=6,⊙A的半径为2,点P是BC边上的动点,过点P作⊙A的一条切线PQ(其中点Q为切点),则线段PQ长度的最小值为________.20. 如图,∠AOB=45∘,点C在∠AOB内部,CD⊥OB于点D,CD=5,OD=13,点E、点F分别是射线OA、射线OB上的动点,那么FE+FC的最小值是________.三、解答题(本题共计 20 小题,每题 10 分,共计200分,)21. 如图所示,在△ABC中,∠ACB=90∘,AC=BC=2,D是BC的中点,E是AB上的一动点,且不与A,B重合,是否存在一个位置,使DE+CE的值最小?若不存在,说明理由;若存在,试求出最小值.22. 如图,要在河岸l修建一个水泵站P,分别向张庄、李庄送水,修在河岸l的什么地方:(1)使到张庄、李庄的距离相等.(2)使所用的水管最短?(请通过你所学的知识画出这个地点的位置,不必说明理由.请保留作图痕迹).23. 已知:如图所示(每个小正方形的边长为1),(1)求△ABC的面积,并求出它的AC边上高的长度;(2)在x轴上画出点P,使PA+PC最小,并求出该最小值.24. 一只蚂蚁从长为4cm,高时5cm的长方体纸箱的A点沿纸箱跑到B点,有不同的爬行路线.画出平面图示(相同类型画一个),并通过计算说明哪条线路最短,最短路线长多少?,高BC=12cm,P为BC的中点,求蚂25. 如图:有一个圆柱,底面圆的直径AB=16π蚁从A点爬到P点的最短距离.26. 如图,一圆柱高8cm,底面半径为2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程是多少厘米?注:π取3.27. 如图,圆柱的高为12cm,底面半径为3cm,在圆柱下底面A处有一只蚂蚁,它想得到上底面B处的食物,则蚂蚁经过的最短距离是多少cm?(π取3).28. 如图,C为线段BD上一动点,分别过点B、D作AB⊥BD,ED⊥BD,连接AC、EC.已知AB=5,DE=1,BD=8,设CD=x.(1)用含x的代数式表示AC+CE的长;并求AC+CE的最小值;(2)若x+y=12,x>0,y>0请仿照(1)中的规律,运用构图法求出代数式√x2+4+√y2+9的最小值.29. 如图,已知∠MON=30∘,在OM上有两点A、B分别到ON的距离为2cm和1cm,若在ON上找一点P使|PA−PB|的值最大,求P点到O点的距离.30. 从A村到B村要修一条路,中间隔着两条河,在河上需要架2座桥,桥与两岸垂直,桥架在什么地方,使A村到B村总路程最短?31. 如图,已知∠AOB=30∘,P为其内部一点,OP=3,M,N分别为OA,OB边上的一点,要使△PMN的周长最小,请给出确定点M,N位置的方法,并求出最小周长.32. 一只螳螂在松树树干的A点处,发现它的正上方B点处有一只小虫子,螳螂想捕到这只虫子,但又怕被发现,于是按如图所示的路线,绕到虫子后面吃掉它.已知树干的半径为10cm,A、B两点的距离为40cm.(其中π取3)(1)若螳螂想吃掉在B点的小虫子,求螳螂绕行的最短距离.(要求画图)(2)螳螂得知又有一只虫子在点C处被松树油粘住不能动弹,这时螳螂还在A点,螳螂想吃掉虫子,求螳螂爬行的最短距离.(要求画图)(3)如果螳螂在点A处时,虫子在点E处不动,其中点E是CD的中点那么螳螂吃掉虫子的最短距离是多少cm?(要求画图)33.作图题:现要在形如△ABC的地面范围内建一中心医院,使医院到A,B两个居民小区的距离相等,并且到公路AB和AC的距离也相等,请确定这个中心医院的位置.(要求:保留作图痕迹,并用适当的文字说明作图方法)34. 在一条笔直公路上分布A,B,C,D,E五个工厂(各相邻工厂之间的距离均不相等),为方便这些工厂的员工,现要在公路上设一个汽车站,使各工厂到汽车站的距离之和最小.【简化分析】(1)假若由三个工厂A,B,C时,汽车站的位置有五种情形:①A厂门口,②AB之间,③B厂门口,④BC之间,⑤C厂门口.【分类讨论】①当车站设在A工厂门口时,则A厂到汽车站的距离为0,B厂到汽车站的距离为AB,C厂到汽车站的距离为AB+BC,所以各工厂到车站的距离之和为________②当车站设在A,B两工厂之间的P点时,则A厂到汽车站的距离为AP,B厂到汽车站的距离为BP,C厂到汽车站的距离为BP+BC,所以各工厂到车站的距离之和为_________③当车站设在B工厂门口,则各工厂到汽车站的距离之和为_________④当车站设在B,C两工厂之间的Q点时,则各工厂到汽车站的距离之和为_________⑤当车站设在C工厂门口,则各工厂到汽车站的距离之和为________【总结归纳】综上可知:汽车站设在________时,各工厂到汽车站的距离之和最小.【问题解决】 (2)当有A,B,C,D,E五个工厂时,汽车站设在哪里,才能使各工厂到汽车站的距离之和最小?请说明理由.35. 如图是平放在桌面上的长方体木块,其长为14cm,宽为10cm,高为20cm,点B是高CD的中点,一只蜘蛛要沿长方体木块的表面从A点爬到B点,请你求出蜘蛛爬行的最短路程是多少?36. (1)如图,已知:线段r和∠ACB=60∘,求作一⊙O,使它与∠ACB的两边相切,且圆的半径等于r;(不写作法,要求用直尺和圆规作图,保留作图痕迹)36.(2)如图,已知点A是锐角∠MON内的一点,试分别在OM,ON上确定点B,点C,使△ABC的周长最小.(不写作法,要求用直尺和圆规作图,保留作图痕迹)37. 如图,要在河边修建一个水泵站,分别向张村A和李村B送水,已知张村A、李村B 到河边的距离分别为2km和7km,且张、李二村庄相距13km.(1)水泵应建在什么地方,可使所用的水管最短?请在图中设计出水泵站的位置;(用尺规作图,保留作图痕迹,不写作法,不要求证明)(2)如果铺设水管的工程费用为每千米3000元,为使铺设水管费用最节省,请求出最节省的铺设水管的费用为多少元?38. 如图所示,一只昆虫要从正方体的一个顶点A爬到相距它最远的另一个顶点B,哪条路径最短?说明理由.39. 如图,C为线段BD上一动点,分别过点B,D作AB⊥BD,ED⊥BD,连结AC、EC.已知AB=5,DE=1,BD=8,设CD=x(1)用含x的代数式表示AC+CE的长;(2)试求AC+CE的最小值.40. 李老师在与同学进行“蚂蚁怎样爬最近”的课题研究时设计了以下三个问题,请你根据下列所给的重要条件分别求出蚂蚁需要爬行的最短路程的长.(1)如图1,正方体的棱长为5cm一只蚂蚁欲从正方体底面上的点A沿着正方体表面爬到点C1处;(2)如图2,正四棱柱的底面边长为5cm,侧棱长为6cm,一只蚂蚁从正四棱柱底面上的点A沿着棱柱表面爬到C1处;(3)如图3,圆锥的母线长为4cm,圆锥的侧面展开图如图4所示,且∠AOA1=120∘,一只蚂蚁欲从圆锥的底面上的点A出发,沿圆锥侧面爬行一周回到点A.参考答案与试题解析初中数学八年级上册最短路径问题同步专项练习题含答案一、选择题(本题共计 10 小题,每题 3 分,共计30分)1.【答案】A【考点】轴对称——最短路线问题【解析】求△BDE周长的最小值,就是要求DE+BE的最小值,根据勾股定理即可求得.【解答】解:过点B做BO⊥AC于点O,延长BO到B′,使OB′=OB,连接DB′,交AC于E,此时DB′=DE+EB′=DE+BE的值最小,连接CB′易证CB′⊥BC在RT△DCB′中,根据勾股定理可得DB′=√B′C2+CD2=√42+22=√20=2√5.故△BDE周长的最小值为2√5+2.故选:A.2.【答案】C【考点】平面展开-最短路径问题【解析】将杯子侧面展开,建立A关于EF的对称点A′,根据两点之间线段最短可知A′C的长度即为所求.【解答】解:如图:将杯子侧面展开,作A关于EF的对称点A′,连接A′C,则A′C即为最短距离,由题意可得出:A′D=6cm,CD=8cm,A′C=√A′D2+CD2=10(cm),故选:C.3.【答案】B【考点】路径最短问题【解析】此题暂无解析【解答】解:∵S PCD=14S长方形ABCD,设△PCD的CD边上的高为ℎ∴12CD⋅ℎ=14CD⋅AD,又AD=8,∴ℎ=4,∴动点P在与CD平行且与CD的距离为4的直线l上,如图,作D关于直线l的对称点A,连接AC,则AC的长就是所求的最短距离.在Rt△ADC中,CD=AB=6,AD=8∴AC=√AD2+CD2解得AC=10.故选B.4.【答案】D【考点】轴对称——最短路线问题利用对称的性质,通过等线段代换,将所求路线长转化为两定点之间的距离.【解答】解:作点P关于直线l的对称点P′,连结QP′交直线l于M.根据两点之间,线段最短,可知选项D铺设的管道,所需管道最短.故选D.5.【答案】B【考点】轴对称——最短路线问题【解析】作点A关于直线l的对称点,再把对称点与点B连接,根据轴对称确定最短路线问题,交点即为所求点M.【解答】解:根据轴对称确定最短路线问题,B选项图形方案符合.故选B.6.【答案】B【考点】路径最短问题【解析】要想求得点P的个数,由∠BPC=90∘可判断以BC为直径的圆与AD的交点个数即可.【解答】解:∵ 点P运动过程中始终满足∠BPC=90∘,∴ 点P在以BC为直径的半圆上,圆心为O,如下图所示,连接AO,AO与半圆的交点为P,此时AP距离最短.由题意知,AO=√AB2+OB2=√42+32=5,∴ AP=AO−OP=5−3=2,∴ 线段AP的最小值是2.7.【答案】C【考点】平面展开-最短路径问题【解析】本题考查了平面展开-最短路径问题,“化曲面为平面”是解决“怎样爬行最近”这类问题的关键.【解答】解:将纸箱展开,如图所示,由勾股定理得:AB2=12+(1+1)2=5,∴ AB=√5.故选C.8.【答案】D【考点】轴对称——最短路线问题【解析】要使DN+MN最小,首先应分析点N的位置.根据正方形的性质:正方形的对角线互相垂直平分.知点D的对称点是点B,连接MB交AC于点N,此时DN+MN最小值即是BM的长.【解答】解:根据题意,连接BD,BM,则BM就是所求DN+MN的最小值,在Rt△BCM中,BC=8,CM=6根据勾股定理得:BM=√62+82=10,即DN+MN的最小值是10.故选D.9.【答案】B【考点】轴对称——最短路线问题【解析】AB+BP=P′P″,此时周长最小.根据轴对称的性质,可求出∠APB的度数.【解答】解:分别作点P关于OM、ON的对称点P′、P″,连接OP′、OP″、P′P″,P′P″交OM、ON 于点A、B,连接PA、PB,此时△PAB周长的最小值等于P′P″.由轴对称性质可得,OP′=OP″=OP,∠P′OA=∠POA,∠P″OB=∠POB,∴∠P′OP″=2∠MON=2×40∘=80∘,∴∠OP′P″=∠OP″P′=(180∘−80∘)÷2=50∘,又∵∠BPO=∠OP″B=50∘,∠APO=∠AP′O=50∘,∴∠APB=∠APO+∠BPO=100∘.故选B.10.【答案】C【考点】平面展开-最短路径问题【解析】首先证明四边四边形ABCD是菱形,得AD//BC,作出F关于AB的对称点M,再过M作ME′⊥AD,交AB于点P,此时PE′+PF最小,求出ME即可.【解答】解:作出F关于AB的对称点M,再过M作iM′⊥AD,交AB于点P,此时FE′+PF最小,此时PE′+PF=ME,过点A作AN⊥BC&nbspCH⊥AB于H,________△ABC沿AB翻折得到△ABDAC=AD&nbspBC=BD.AC=BCAC=AD=BC=BD四边形ADBC是菱形,.AD//BC∵AC=BCAE=1AB=1由勾股定理可得,CH=√32−12=2√2.12×AB×CH=12×BC×AN可得AN=4√23ME′=AN=4√2 3PE+PF最小为4√23故选:C.二、填空题(本题共计 10 小题,每题 3 分,共计30分)11.【答案】Q22.【考点】图形间的距离定义新图形路径最短问题坐标与图形性质【解析】(1)找到OA的垂直平分线即可找到对应的点.(2)利用“完美对称点”的特征,作出图象,从而确定最小值.【解答】解:(1)当点Q满足QO=QA时,Q为OA的“对称点”,∴ Q在线段OA的垂直平分线上,∵ A(4,0),∴ 线段OA的垂直平分线是直线x=2,∵Q2(2,−4),∴ 线段OA的“对称点”是Q2.故答案为:Q2.∵ Q(2,2√3)为线段OA的“完美对称点”,∴ QO=OA=QA,∴ △QOA是等边三角形,过点Q作QH⊥OA于H,则直线QH为线段AO的垂直平分线,如图:∵ B为线段OA的一个“对称点”,∴ BO=BA,∴ B是直线QH上的一点,显然,当Q、B重合时,BQ+BD有最小值,此时BQ+BD=BD,∵ Q(2,2√3),∴ OQ=√22+(2√3)2=4,∵ D为线段OQ的中点,∴ DQ=12OQ=12×4=2,∴ BD=2,∴ BQ+BD的最小值为2. 故答案为:2.12.【答案】16cm【考点】轴对称——最短路线问题【解析】过B点作BE⊥AC于O,使OE=OB,过E作EN⊥AB交AB于N点,交AC于M,此时BM+NM有最小值,EN就是所求的线段.【解答】解:过B点作BE⊥AC于O,使OE=OB,过E作EN⊥AB交AB于N点,交AC于M,此时BM+NM有最小值,EN就是所求的线段.∵AB=20cm,BC=10cm,∴AC=√AB2+BC2=10√5cm,∵12AB⋅BC=12AC⋅OB,∴OB=4√5cm,∴BE=8√5cm.∵△ABC∽△BEN,∴ENAB =BEAC,∴EN=AB⋅BEAC =√510√5=16cm.∴BM+NM的最小值为16cm,故答案为16cm.13.【答案】√67【考点】【解析】利用轴对称求最短路径的方法,重新构造直角三角形,进而利用勾股定理求出即可.【解答】解:作D 点关于AB 的对称点D′,B 点关于AC 的对称点B′,连接D′B′分别交AB 于点E ,AC 于点F ,作B′R ⊥AB ,过点D′作D′W ⊥B′R 于点W ,∵ ∠CAB =30∘,∠C =90∘.AD =14AC ,AB =8, ∴ BC =4,AC =4√3,则AD =√3,BB′=8,B′R =4√3,∴ DT =12AD =√32,AT =√AD 2−DT 2=32,BR =4, ∴ RW =√32,D′W =8−32−4=52, ∴ B′W =9√32,B′D′=√D′W 2+B′W 2=(52)+(9√32)=√67.故答案为:√67.14.【答案】15【考点】勾股定理路径最短问题 【解析】此题暂无解析【解答】解:设小明散步原地为O ,则先向东走12m 到达A 点后,再向北又走了9m 到达B 点,则要回到原地,最短行走距离为OB 的距离,根据勾股定理可得OB =√122+92=15m .15.【答案】√5【考点】平面展开-最短路径问题【解析】把此正方体的一面展开,然后在平面内,利用勾股定理求点A和B点间的线段长,即可得到蚂蚁爬行的最短距离.在直角三角形中,一条直角边长等于棱长,另一条直角边长等于两条棱长,利用勾股定理可求得.【解答】解:∵展开后由勾股定理得:AB2=12+(1+1)2=5,∴AB=√5.故答案为:√5.16.【答案】√5+√13【考点】轴对称——最短路线问题【解析】此题暂无解析【解答】解: ①P在AD上,如图所示:则作E点关于AD的对称点G,连接EG,FG交AD于点P′,则对AD上点P,PG=PE,则△PEF周长=PE+PF+EF=PG+PF+EF≥GF+EF,故当C△PEF最小时,PG+PF=GF,即P与P′重合,记GE交AD于点M,由AB=3,BC=6,四边形ABCD为矩形知:AC=√32+62=3√5,∵EF为三等分点,知AE=EF=13AC=√5,GM=ME=13CD=1,作FN⊥GE于N,则EN=1,FN=2,GF=√22+32=√13,C△PEF=GF+EF=√13+√5;②P在CD上,如图所示,则同理QF=FR=RH=2,EQ=1,当P与P′重合时,C△PEF最小,最小值为EF+EH=√5+√62+12=√5+√37>√13+√5,所以C△DEF最小值为√5+√13.故答案为:√5+√13.17.【答案】90∘【考点】轴对称——最短路线问题【解析】根据对称的性质,易求得∠C+∠EPF=180∘,由∠ACB=45∘,易求得∠D+∠G=45∘,继而求得答案.【解答】解:∵PD⊥AC,PG⊥BC,∴∠PEC=∠PFC=90∘,∴∠C+∠EPF=180∘,∵∠C=45∘,∴∠EPF=135∘,∵∠D+∠G+∠EPF=180∘,∴∠D+∠G=45∘,由对称可知:∠G=∠GPN,∠D=∠DPM,∴∠GPN+∠DPM=45∘,∴∠MPN=135∘−45∘=90∘,故答案为:90∘18.【答案】√193【考点】平面展开-最短路径问题【解析】先将图形展开,再根据两点之间线段最短,再由勾股定理求解即可.【解答】解:如图1:AB=√162+32=√265(cm),如图2:AB=√152+42=√241(cm),如图3:AB=√122+72=√193(cm),∴√265>√241>√193,∴它所行的最短路线的长是√193cm.故答案为:√193cm.19.【答案】√1114【考点】切线的性质勾股定理路径最短问题【解析】连接PA,AQ,由切线的性质得到∠AQP=90∘,由AQ=2是定值,要使PQ的长度最小,只有PA的值最小时才成立,进而确定出△PCA和△PBA是直角三角形,由勾股定理求出PC的长度,进而求出PA2,最后求勾股定理求解.【解答】解:连接PA,AQ,如下图.∵ PQ是⊙A的切线,∴ AQ⊥PQ,∴ ∠AQP=90∘.∵ AQ=2是定值,要使PQ的长度最小,∴ PA ⊥BC ,即PA 的值最小时才成立,∴ PQ 2=PA 2−AQ 2.由PA ⊥BC 可知,△PCA 和△PBA 是直角三角形,∵ AC =4,AB =5,BC =PC +PB =6,∴ PA 2=AC 2−PC 2,PA 2=AB 2−PB 2,∴ AC 2−PC 2=AB 2−PB 2,即42−PC 2=52−(6−PC )2,解得PC =94,∴ PA 2=42−(94)2, ∴ PQ =√PA 2−AQ 2=√16−8116−4=√11116=√1114, 即线段PQ 的最小值是√1114. 故答案为:√1114. 20.【答案】 9√2【考点】轴对称——最短路线问题【解析】如图,作点E 关于OD 的对称点E′,作射线OE′,作CE ″⊥OE′交OD 于F′,延长DC 交OA 于H ,作CM ⊥OA 于M .因为EF +CF =E′F +CF ,所以根据垂线段最短可知,当CE ″⊥OE′时,EF +CF 的值最小,最小值为CE ″,求出CE ″即可解决问题.【解答】如图,作点E 关于OD 的对称点E′,作射线OE′,作CE ″⊥OE′交OD 于F′,延长DC 交OA 于H ,作CM ⊥OA 于M .∵ EF +CF =E′F +CF ,∴ 根据垂线段最短可知,当CE ″⊥OE′时,EF +CF 的值最小,最小值为CE ″, ∵ ∠AOD =45∘,∠ADO =90∘,∴ ∠DOH =∠DHO =45∘,∴ OD =DH =13,∵ CD =5,∴ CH =8,∵ CM ⊥OA ,∴ ∠CMH =90∘,∠MCH =∠MHC =45∘,∴ CM =MH =4√2,∵ ∠AOE′=2∠AOD =90∘=∠OE ″C =∠CMO ,∴四边形CMOE″是矩形,∴OE″=CM=4√2,在Rt△OCD中,OC2=OD2+CD2=132+52=194,在Rt△OCE″中,CE″$= \sqrt{OC^{2} - OE"^{2}} = \sqrt{194 - 32} = 9\sqrt{2}$,∴EF+CF的值最小为9√2.三、解答题(本题共计 20 小题,每题 10 分,共计200分)21.【答案】解:如图所示:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC;连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小;连接BC′,由轴对称的性质得:∠C′BE=∠CBE=45∘,∴∠CBC′=90∘,∴BC′⊥BC,∠BCC′=∠BC′C=45∘,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理得:DC′=√BC′2+BD2=√22+12=√5;∴DE+CE的最小值为√5.【考点】轴对称——最短路线问题【解析】过点C作CO⊥AB于O,延长CO到C′,使OC′=OC;连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小;再根据勾股定理求出DC′即可.【解答】解:如图所示:过点C作CO⊥AB于O,延长CO到C′,使OC′=OC;连接DC′,交AB于E,连接CE,此时DE+CE=DE+EC′=DC′的值最小;连接BC′,由轴对称的性质得:∠C′BE=∠CBE=45∘,∴∠CBC′=90∘,∴BC′⊥BC,∠BCC′=∠BC′C=45∘,∴BC=BC′=2,∵D是BC边的中点,∴BD=1,根据勾股定理得:DC′=√BC′2+BD2=√22+12=√5;∴DE+CE的最小值为√5.22.【答案】解:(1)如图1,设河边为直线CD,∵到A,B两点的距离相等,∴可以作线段AB的垂直平分线,交河边CD于点P,则PA=PB,∴P点位置即为到张庄、李庄距离相等的点;(2)如图2,设河边为直线CD,点A关于直线CD的对称点为A′,连接A′B,交CD于点Q,则AQ=A′Q,∴A′B=AQ+BQ,∴此时到A、B两地的距离最短,∴Q点即为所求的位置.【考点】路径最短问题作图—应用与设计作图轴对称——最短路线问题线段垂直平分线的性质【解析】(1)可作线段AB的垂直平分线,与河边的交点即为所求的点;(2)找出A点关于河边的对称点A′,连接A′B交河边于点Q,则Q即为所求的点.【解答】解:(1)如图1,设河边为直线CD,∵到A,B两点的距离相等,∴可以作线段AB的垂直平分线,交河边CD于点P,则PA=PB,∴P点位置即为到张庄、李庄距离相等的点;(2)如图2,设河边为直线CD,点A关于直线CD的对称点为A′,连接A′B,交CD于点Q,则AQ=A′Q,∴A′B=AQ+BQ,∴此时到A、B两地的距离最短,∴Q点即为所求的位置.23.【答案】解:(1)△ABC的面积=3×4−12×1×2−12×2×3−12×2×4,=12−1−3−4,=12−8,=4,由勾股定理得,AC=√22+42=2√5,设AC边上高的长度为ℎ,则12×2√5ℎ=4,解得ℎ=4√55.所以,AC边上高的长度为4√55;(2)点P如图所示,由勾股定理得,PA+PC最小值=√62+42=2√15.【考点】轴对称——最短路线问题【解析】(1)利用三角形所在的矩形的面积减去四周三个直角三角形的面积列式求出△ABC的面积,再利用勾股定理列式求出AC,然后根据三角形的面积公式列式计算即可得解;(2)找出点A关于直线l的对称点A′,连接A′C,根据轴对称确定最短路线问题,A′C与直线l的交点即为所求的点P,最短距离为A′C的长度,再利用勾股定理列式计算即可得解.【解答】解:(1)△ABC的面积=3×4−12×1×2−12×2×3−12×2×4,=12−1−3−4,=12−8,=4,由勾股定理得,AC=√22+42=2√5,设AC边上高的长度为ℎ,则12×2√5ℎ=4,解得ℎ=4√55.所以,AC边上高的长度为4√55;(2)点P如图所示,由勾股定理得,PA+PC最小值=√62+42=2√15.24.【答案】解:如图1所示:AB=√(4+3)2+52=√74(cm),如图2所示:AB=√(5+3)2+42=√80(cm),∵√74<√80,∴蚂蚁按照图1这条路线爬行,路线最短,最短路线长为:√74cm.【考点】平面展开-最短路径问题【解析】利用展开图不同,分别结合勾股定理得出AB的长,进而求出答案.【解答】解:如图1所示:AB=√(4+3)2+52=√74(cm),如图2所示:AB=√(5+3)2+42=√80(cm),∵√74<√80,∴蚂蚁按照图1这条路线爬行,路线最短,最短路线长为:√74cm.25.【答案】解:已知如图:∵圆柱底面直径AB=16πcm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是8πcm,BP=6cm,∴AB=12×2×8π=8cm,在Rt△ABP中,AP=√AB2+BP2=10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.【考点】平面展开-最短路径问题【解析】把圆柱的侧面展开,连接AP,利用勾股定理即可得出AP的长,即蚂蚁从A点爬到P点的最短距离.【解答】解:已知如图:∵圆柱底面直径AB=16πcm、母线BC=12cm,P为BC的中点,∴圆柱底面圆的半径是8πcm,BP=6cm,∴AB=12×2×8π=8cm,在Rt△ABP中,AP=√AB2+BP2=10cm,∴蚂蚁从A点爬到P点的最短距离为10cm.26.【答案】解:B为CE的中点.AB就是蚂蚁爬的最短路径.∵CE=2π⋅r=2×3×2=12厘米,∴CB=12÷2=6厘米.∵AC=8厘米,∴AB=√62+82=10厘米.蚂蚁要爬行的最短距离是10厘米.【考点】平面展开-最短路径问题【解析】圆柱展开为长方形,根据题意可知道点A和B在平面上的位置,根据两点之间线段最短可求出解.【解答】解:B为CE的中点.AB就是蚂蚁爬的最短路径.∵CE=2π⋅r=2×3×2=12厘米,∴CB=12÷2=6厘米.∴AB=√62+82=10厘米.蚂蚁要爬行的最短距离是10厘米.27.【答案】解:如图,将圆柱的侧面沿过A点的一条母线剪开,得到长方形ADFE,连接AB,则线段AB的长就是蚂蚁爬行的最短距离,其中C,B分别是AE,DF的中点.∵AD=12cm,DB=πr=3π=9cm(π取3),∴AB=√AD2+DB2=√122+92=15cm.故蚂蚁经过的最短距离为15cm.【考点】平面展开-最短路径问题【解析】先把圆柱的侧面展开得其侧面展开图,则A,B所在的长方形的长为圆柱的高12cm,宽为底面圆周长的一半为πr,蚂蚁经过的最短距离为连接A,B的线段长,由勾股定理求得AB的长.【解答】解:如图,将圆柱的侧面沿过A点的一条母线剪开,得到长方形ADFE,连接AB,则线段AB的长就是蚂蚁爬行的最短距离,其中C,B分别是AE,DF的中点.∵AD=12cm,DB=πr=3π=9cm(π取3),∴AB=√AD2+DB2=√122+92=15cm.故蚂蚁经过的最短距离为15cm.28.【答案】解:(1)∵CD=x,BD=8,∴CB=8−x,AC+CE=√52+(8−x)2+√x2+1,当A、C、E在同一直线上,AC+CE最小;当A、C、E在同一直线上时,延长AB,作EF⊥AB于点F,∵AB=5,DE=1,∴AF=6,∵∠ABD=90∘,∵∠BDE=∠BFE=90∘,∴四边形BFED是矩形,∴BD=EF=8,∴AE=√AF2+EF2=√62+82=10,;(2)如下图所示:作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,当BC=x,∵x+y=12,∴y=12−x,AE的长即为代数式√x2+4+√(12−x)2+9的最小值,过点A作AF // BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,所以AE=√AF2+EF2=√122+(3+2)2=13,即代数式√x2+4+√y2+9的最小值为13.【考点】轴对称——最短路线问题【解析】(1)根据勾股定理得出AC,CE的长进而得出用含x的代数式表示AC+CE的长;由于△ABC和△CDE都是直角三角形,故AC,CE可由勾股定理求得;若点C不在AE的连线上,根据三角形中任意两边之和>第三边知,AC+CE>AE,故当A、C、E三点共线时,AC+CE的值最小,利用勾股定理求出即可;(2)由(1)的结果可作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,则AE的长即为代数式√x2+4+√y2+9的最小值,然后构造矩形AFDB,Rt△AFE,利用矩形的直角三角形的性质可求得AE的值.【解答】解:(1)∵CD=x,BD=8,∴CB=8−x,AC+CE=√52+(8−x)2+√x2+1,当A、C、E在同一直线上,AC+CE最小;当A、C、E在同一直线上时,延长AB,作EF⊥AB于点F,∵AB=5,DE=1,∴AF=6,∵∠ABD=90∘,∴∠FBD=90∘,∵∠BDE=∠BFE=90∘,∴四边形BFED是矩形,∴BD=EF=8,∴AE=√AF2+EF2=√62+82=10,;(2)如下图所示:作BD=12,过点B作AB⊥BD,过点D作ED⊥BD,使AB=2,ED=3,连接AE交BD于点C,当BC=x,∵x+y=12,∴y=12−x,AE的长即为代数式√x2+4+√(12−x)2+9的最小值,过点A作AF // BD交ED的延长线于点F,得矩形ABDF,则AB=DF=2,AF=BD=12,所以AE=√AF2+EF2=√122+(3+2)2=13,即代数式√x2+4+√y2+9的最小值为13.29.【答案】解:因为A、B在OM上,要使|PA−PB|的值最大,P应在OM上,如果P不在OM上,则P、A、B构成三角形,根据三角形的三边关系,|PA−PB|<AB,所以,P是OM和ON的交点,即O点,所以P到O的距离为0.【考点】轴对称——最短路线问题【解析】根据三角形的三边关系,两边的差小于第三边,可以判定当P点在OM和ON的交点处|PA−PB|的值最大,从而求得P点到O点的距离.【解答】解:因为A、B在OM上,要使|PA−PB|的值最大,P应在OM上,如果P不在OM上,则P、A、B构成三角形,根据三角形的三边关系,|PA−PB|<AB,所以,P是OM和ON的交点,即O点,所以P到O的距离为0.30.【答案】解:把点A向下平移河②的宽度后得到A″,平移两条河的宽度后到点A′,连接A′B交于b于点P,作PQ⊥b,连接A″Q,交c于M,作MN⊥d于N,由于A″A′平行且等于PQ,AA′平行且等于MN,则四边形A″A′PQ是平行四边形,四边形AA′MN是平行四边形,有A′P=QA″,AN=A″M,由于A′B是点A′到点B的最短距离,所以在PQ、MN处建桥就是使得A村到B村总路程最短的桥的位置.【考点】轴对称——最短路线问题【解析】把点A向下平移河②的宽度后得到A″,平移两条河的宽度后到点A′,连接A′B交于b于点P,连接A″Q,交c于M,则点P、M就是所求的建桥的位置.【解答】解:把点A向下平移河②的宽度后得到A″,平移两条河的宽度后到点A′,连接A′B交于b于点P,作PQ⊥b,连接A″Q,交c于M,作MN⊥d于N,由于A″A′平行且等于PQ,AA′平行且等于MN,则四边形A″A′PQ是平行四边形,四边形AA′MN是平行四边形,有A′P=QA″,AN=A″M,由于A′B是点A′到点B的最短距离,所以在PQ、MN处建桥就是使得A村到B村总路程最短的桥的位置.31.【答案】解:作点P关于OA的对称点P1,点P关于OB的对称点P2,连结P1P2,与OA的交点即为点M,与OB的交点即为点N,△PMN的最小周长为:PM+MN+PN=P1M+MN+P2N=P1P2,。

最短路径练习题

最短路径练习题

最短路径练习题一、基础理论题1. 请简述迪杰斯特拉(Dijkstra)算法的基本原理。

2. 什么是贝尔曼福特(BellmanFord)算法?它与迪杰斯特拉算法有什么区别?3. 请解释弗洛伊德(Floyd)算法的核心思想。

4. A算法是如何工作的?它相较于其他最短路径算法有什么优势?5. 请列举几种常见的最短路径问题应用场景。

二、单项选择题A. 初始化距离表,将起点到其他点的距离设置为无穷大B. 每次从距离表中找出未确定最短路径的点中距离最小的点C. 更新距离表时,可以出现负权边D. 确定起点到所有点的最短路径后,算法结束A. 图中存在负权边B. 图中存在负权环C. 图中不存在负权环D. 图中存在多条边3. 在弗洛伊德算法中,path[i][j]表示的是?A. 从点i到点j的最短路径长度B. 从点i到点j的最短路径C. 从点j到点i的最短路径长度D. 从点j到点i的最短路径A. 当前点到终点的直线距离B. 当前点到终点的实际路径长度C. 当前点的邻接点数量D. 当前点的父节点三、填空题1. 在迪杰斯特拉算法中,用来存储起点到各点最短距离的数据结构是______。

2. 贝尔曼福特算法的时间复杂度为______。

3. 弗洛伊德算法的核心三重循环分别对应三个变量:______、______和______。

4. A算法的启发式函数f(n) = g(n) + h(n),其中g(n)表示______,h(n)表示______。

四、应用题A 6 B| \ |1 2 3| \ |D 4 CA >B (2)^ || vC <D (1)A >B (4)^ || vC >D (2)4. 请简述如何使用A算法解决迷宫问题,并给出一个示例。

五、编程题1. 编写一个迪杰斯特拉算法的实现,输入为一个带权无向图和起点,输出为起点到其他各顶点的最短路径长度。

2. 编写一个贝尔曼福特算法的实现,输入为一个带权有向图和起点,输出为起点到其他各顶点的最短路径长度及是否存在负权环。

2022-2023学年人教版八年级数学上册《最短路径问题》专题练习(含答案)

2022-2023学年人教版八年级数学上册《最短路径问题》专题练习(含答案)

最短路径问题专题练习1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是()A.B.C.D.2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是()A.B.C.D.3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)()A.(BM垂直于a)B.(AM不平行BN)4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.85.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.46.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为()A.6B.10C.11D.139.如图,Rt △ABC 中,∠ACB =90°,AC =6,BC =8,AB =10,BD 平分∠ABC ,如果点M ,N 分别为BD ,BC上的动点,那么CM +MN 的最小值是( )A .4B .4.8C .5D .610.如图,OE 为∠AOB 的角平分线,∠AOB =30°,OB =6,点P ,C 分别为射线OE ,OB 上的动点,则PC +PB的最小值是( )A .3B .4C .5D .611.如图,△ABC 中,AD ⊥BC ,垂足为D ,AD =BC ,点P 为直线BC 上方的一个动点,△PBC 的面积等于△ABC的面积的12,则当PB +PC 最小时,∠PBD 的度数为( )A .30°B .45°C .60°D .90°12.如图,在锐角三角形ABC 中,AB =4,∠BAC =60°,∠BAC 的平分线交BC 于点D ,M ,N 分别是AD 和AB上的动点,当BM +MN 取得最小值时,AN =( )A .2B .4C .6D .813.如图,△ABC中,AD垂直BC于点D,且AD=BC,BC上方有一动点P满足S△PBC=12S△ABC,则点P到B、C两点距离之和最小时,∠PBC的度数为()A.30°B.45°C.60°D.90°14.如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为.15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB=.16.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cm C.6cm D.2cm17.如图,AB=AC=8,∠BAC=110°,AD是∠BAC内的一条射线,且∠BAD=25°,P为AD上一动点,则|PB ﹣PC|的最大值是.思考题1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ =α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°2.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN 最小时,∠MBN的度数为()A.15°B.22.5°C.30°D.47.5°最短路径问题专题练习(答案)1.如图,要在街道l设立一个牛奶站O,向居民区A,B提供牛奶,下列设计图形中使OA+OB值最小的是(D)A.B.C.D.2.小颖的爸爸要在某条街道l上修建一个奶站P,向居民区A,B提供牛奶,要使点P到A,B的距离之和最短,则下列作法正确的是(B)A.B.C.D.3.A和B两地在一条河的两岸,现要在河上造一座桥MN,使从A到B的路径AMNB最短的是(假定河的两岸是平行线,桥与河岸垂直)(D)A.(BM垂直于a)B.(AM不平行BN)4.如图,在△ABC中,AB=AC=10,BC=12,AD=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是()A.9.6B.8C.6D.4.8【解答】解:∵AB=AC,AD是∠BAC的平分线,∴AD垂直平分BC,∴BP=CP.过点B作BQ⊥AC于点Q,BQ交AD于点P,则此时PC+PQ取最小值,最小值为BQ的长,如图所示.∵S△ABC=12BC•AD=12AC•BQ,∴BQ=BC⋅ADAC=12×810=9.6.故选:A.5.如图,在△AOB中,∠OAB=∠AOB=15°,OB=6,OC平分∠AOB,点P在射线OC上,点Q为边OA上一动点,则P A+PQ的最小值是()A.1B.2C.3D.4【解答】解:作AH⊥OB于H,交OC于P,作PQ⊥OA于Q,∵∠OAB=∠AOB=15°,∴PH=PQ,∴P A+PQ=P A+PH=AH,∴P A+PQ的最小值为AH,在Rt△ABH中,∵OB=AB=6,∠ABH=30°,∴AH=12AB=3,∴P A+PQ的最小值为3,故选:C.6.如图,在△ABC中,AD是△ABC的角平分线,点E、F分别是AD、AB上的动点,若∠BAC=50°,当BE+EF 的值最小时,∠AEB的度数为()A.105°B.115°C.120°D.130°【解答】解:过点B作BB′⊥AD于点G,交AC于点B′,过点B′作B′F′⊥AB于点F′,与AD交于点E′,连接BE′,如图,此时BE+EF最小.∵AD是△ABC的角平分线,∴∠BAD=∠B′AD=25°,∴∠AE′F′=65°,∵BB′⊥AD,∴∠AGB=∠AGB′=90°,∵AG=AG,∴△ABG≌△AB′G(ASA),∴BG=B′G,∠ABG=∠AB′G,∴AD垂直平分BB′,∴BE=BE′,∴∠E′B′G=∠E′BG,∵∠BAC=50°,∴∠AB′F′=40°,∴∠ABE=40°,∴∠BE′F′=50°,∴∠AE′B=115°.故选:B.7.如图,四边形ABCD中,∠BAD=130°,∠B=∠D=90°,在BC,CD上分别找一点M,N,使△AMN的周长最小时,则∠ANM+∠AMN的度数为()A.80°B.90°C.100°D.130°【解答】解:作A点关于CD的对称点F,作A点关于BC的对称点E,连接EF交CD 于N,交BC于M,连接AM、AN,∵∠B=∠D=90°,∴AN=NF,AM=EM,∴△AMN的周长=AM+AN+MN=NF+MN+EM=EF,此时△AMN的周长有最小值,∵∠F AN=∠F,∠E=∠EAM,∴∠E+∠F=180°﹣∠BAD,∵∠BAD=130°,∴∠E+∠F=50°,∴∠BAM+∠F AN=50°,∴∠MAN=130°﹣50°=80°,∴∠ANM+∠AMN=180°﹣∠MAN=100°,故选:C.8.在△ABC中,AB=6,BC=7,AC==4,直线m是△ABC中BC边的垂直平分线,P是直线m.上的一动点,则△APC的周长的最小值为()A.6B.10C.11D.13【解答】解:∵直线m是△ABC中BC边的垂直平分线,∴BP=CP,∴△ACP的周长=AP+PC+AC=BP+AP+AC≥AB+AC,∴当A、B、P三点共线时,△ACP的周长最小,∵AB=6,BC=7,AC=4,∴△ACP的周长6+4=10,∴△ACP的周长最小值为10,故选:B.9.如图,Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,BD平分∠ABC,如果点M,N分别为BD,BC上的动点,那么CM+MN的最小值是()A.4B.4.8C.5D.6【解答】解:如图所示:过点C作CE⊥AB于点E,交BD于点M,过点M作MN⊥BC于点N,∵BD平分∠ABC,∴ME=MN,∴CM+MN=CM+ME=CE.∵Rt△ABC中,∠ACB=90°,AC=6,BC=8,AB=10,CE⊥AB,∴S△ABC=12•AB•CE=12•AC•BC,∴10CE=6×8,∴CE=4.8.即CM+MN的最小值是4.8,10.如图,OE 为∠AOB 的角平分线,∠AOB =30°,OB =6,点P ,C 分别为射线OE ,OB 上的动点,则PC +PB 的最小值是( )A .3B .4C .5D .6【解答】解:过点B 作BD ⊥OA 交于D 点,交OE 于点P ,过点P 作PC ⊥OB 交于C 点, ∵OE 为∠AOB 的角平分线,∴DP =CP ,∴PB +PC =PD +PB =BD ,此时PC +PB 的值最小,∵∠AOB =30°,OB =6,∴BD =3,故选:A .11.如图,△ABC 中,AD ⊥BC ,垂足为D ,AD =BC ,点P 为直线BC 上方的一个动点,△PBC 的面积等于△ABC 的面积的12,则当PB +PC 最小时,∠PBD 的度数为( )A .30°B .45°C .60°D .90° 【解答】解:∵△PBC 的面积等于△ABC 的面积的12,∴P 在与BC 平行,且到BC 的距离为12AD 的直线l 上,作点B关于直线l的对称点B',连接B'C交l于P,如图所示:则BB'⊥l,PB=PB',此时点P到B、C两点距离之和最小,作PM⊥BC于M,则BB'=2PM=AD,∵AD⊥BC,AD=BC,∴BB'=BC,BB'⊥BC,∴△BB'C是等腰直角三角形,∴∠B'=45°,∵PB=PB',∴∠PBB'=∠B'=45°,∴∠PBC=90°﹣45°=45°;故选:B.12.如图,在锐角三角形ABC中,AB=4,∠BAC=60°,∠BAC的平分线交BC于点D,M,N分别是AD和AB上的动点,当BM+MN取得最小值时,AN=()A.2B.4C.6D.8【解答】解:作B点关于AD的对称点E,过E点作EN⊥AB交AB于点N,交AD于CM于点M,连结BM,∵∠BAC=60°,AD平分∠BAC,∴E点在AC上,∵BM+MN=EM+MN=EN,此时BM+MN的值最小,由对称性可知,AE=AB,∵AB=4,在Rt △ABE 中,∠EAN =60°,∴∠AEN =30°,∴AN =2,故选:A .13.如图,△ABC 中,AD 垂直BC 于点D ,且AD =BC ,BC 上方有一动点P 满足S △PBC =12S △ABC,则点P 到B 、C 两点距离之和最小时,∠PBC 的度数为( )A .30°B .45°C .60°D .90° 【解答】解:∵S △PBC =12S △ABC ,∴P 在与BC 平行,且到BC 的距离为12AD 的直线l 上, ∴l ∥BC ,作点B 关于直线l 的对称点B ',连接B 'C 交l 于P ,如图所示:则BB '⊥l ,PB =PB ',此时点P 到B 、C 两点距离之和最小,作PM ⊥BC 于M ,则BB '=2PM =AD ,∵AD ⊥BC ,AD =BC ,∴BB '=BC ,BB '⊥BC ,∴△BB 'C 是等腰直角三角形,∴∠B '=45°,∵PB =PB ',∴∠PBB '=∠B '=45°,∴∠PBC =90°﹣45°=45°;14.如图,在等腰△ABC中,AB=AC,BC=8,作AD⊥BC于点D,AD=12AB,点E为AC边上的中点,点P为BC上一动点,则P A+PE的最小值为4.【解答】解:∵AB=AC,BC=8,AD⊥BC,∴BD=CD=4,延长AD至A',使AD=A'D,连接A'E,交BC于P,此时P A+PE的值最小,就是A'E的长,∵AD=12AB,AA′=2AD,∴AA'=AB=AC,∵AD=A'D,AD⊥CD,∴AC=A'C,∴△AA'C是等边三角形,∵E是AC的中点,∴A'E⊥AC,∴A'E=CD=4,即P A+PE的最小值是4,故答案为:4.15.如图,点P是∠AOB内任意一点,OP=5cm,点M、N分别是OB、OA边上的点,当△PMN周长的最小值是5cm时,则∠AOB=30°.【解答】解:分别作点P关于OA、OB的对称点D、C,连接CD,分别交OA、OB于点M、N,连接OC、OD、PM、PN、MN,如图所示:∵点P关于OA的对称点为D,∴PM=DM,OP=OD,∠DOA=∠POA,∵点P关于OB的对称点为C,∴PN=CN,OP=OC,∠COB=∠POB,∴OC=OP=OD=5,∠AOB=12∠COD,∵△PMN周长的最小值是5cm,∴PM+PN+MN=5,∴DM+CN+MN=5,即CD=5,∴OC=OD=CD,即△OCD是等边三角形,∴∠COD=60°,∴∠AOB=30°;故答案为30°.16.如图,在△ABC中,AB=AC,AC的垂直平分线交AC于点N,交AB于点M,AB=12cm,△BMC的周长是20cm,若点P在直线MN上,则P A﹣PB的最大值为()A.12cm B.8cm C.6cm D.2cm【解答】解:∵MN垂直平分AC,∴MA=MC,又∵C△BMC=BM+MC+BC=20cm,BM+MA=AB=12cm,∴BC=20﹣12=8(cm),在MN上取点P,∵MN垂直平分AC连接P A、PB、PC∴P A=PC∴P A﹣PB=PC﹣PB在△PBC中PC﹣PB<BC当P、B、C共线时,即P运动到与P'重合时,(PC﹣PB)有最大值,此时PC﹣PB=BC=8cm.故选:B.17.如图,AB=AC=8,∠BAC=110°,AD是∠BAC内的一条射线,且∠BAD=25°,P 为AD上一动点,则|PB﹣PC|的最大值是8.【解答】解:如图.作点B关于射线AD的对称点B',连接AB'、CB'.则AB=AB',PB'=PB,∠B'AD=∠BAD=25°,∠B'AC=∠BAC﹣∠BAB'=110°﹣25°﹣25°=60°.∵AB=AC=8,∴AB'=AC=8,∴△AB'C是等边三角形,∴B'C=8,在△PB'C中,|PB'﹣PC|≤B'C,当P、B'、C在同一直线上时,|PB'﹣PC|取最大值B'C,即为8.∴|PB﹣PC|的最大值是8.故答案为:8.思考题1.如图,∠AOB=20°,点M、N分别是边OA、OB上的定点,点P、Q分别是边OB、OA上的动点,记∠MPQ=α,∠PQN=β,当MP+PQ+QN最小时,则β﹣α的值为()A.10°B.20°C.40°D.60°【解答】解:如图,作M关于OB的对称点M′,N关于OA的对称点N′,连接M′N′交OA于Q,交OB于P,则MP+PQ+QN最小,∴∠OPM=∠OPM′=∠NPQ,∠OQP=∠AQN′=∠AQN,∴∠QPN=12(180°﹣α)=∠AOB+∠MQP=20°+12(180°﹣β),∴180°﹣α=40°+(180°﹣β),∴β﹣α=40°,故选:C.2.如图,等边△ABC中,AD为BC边上的高,点M、N分别在AD、AC上,且AM=CN,连BM、BN,当BM+BN最小时,∠MBN的度数为()A.15°B.22.5°C.30°D.47.5°【解答】解:如图1中,作CH⊥BC,使得CH=BC,连接NH,BH.∵△ABC是等边三角形,AD⊥BC,CH⊥BC,∴∠DAC=∠DAB=30°,AD∥CH,∴∠HCN=∠CAD=∠BAM=30°,∵AM=CN,AB=BC=CH,∴△ABM≌△CHN(SAS),∴BM=HN,∵BN+HN≥BH,∴B,N,H共线时,BM+BN=NH+BN的值最小,如图2中,当B,N,H共线时,∵△ABM≌△CHN,∴∠ABM=∠CHB=∠CBH=45°,∵∠ABD=60°,∴∠DBM=15°,∴∠MBN=45°﹣15°=30°,∴当BM+BN的值最小时,∠MBN=30°,故选:C.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

评测练习
青岛版八年级下册
仪阳镇初级中学李国龙
教学中,在处理完主问题和拓展题之后,出示了课堂练习题:
【考考你】
在课堂的最后,布置了课后作业:
【课后实践】
1.如图,A和B两地之间有三条河,现要在两条河上各建一座桥.桥分别建在何处才能使从A 到B的路径最短?(假定河的两岸互相平行,桥要与河岸垂直)
2.若A、B两地之间有n条河,现要在每条河上各建一座桥.桥分别建在何处才能使从A到B的路径最短?请你设计出建桥方案.(假定河的两岸互相平行,桥要与河岸垂直).
如果把问题三中的两条平行的河流改为两条互相垂直的河流,其他条件不变,该怎样设计建桥方案呢?
本节课课堂上共涉及了三个问题:一个主问题,一个延伸题,一道考考“你”,这三个问题由易到难,难度依次增加.但考虑问题三相对于问题二来讲,只是图形上的变化,作法不变,所以把问题三设成了“考考你”.课后布置了两道实践题的作业.
学生做题情况分析:本题做题时间大约33分钟,绝大多数学生都用铅笔作图,非常整洁,正确率较高达90%以上.
课后实践这两道题实际上是课堂题目的进一步延伸,其中第1题属相隔三条小河的剑桥问题,问题四是由相隔有限条河扩展到相隔无限条河,要求学生能从特殊到一般、找出规律解决.
老师要继续关注这两道题的完成情况.并且给学生一个评价.。

相关文档
最新文档