2015-2016学年江苏省泰州市泰兴市黄桥东区域八年级(下)期末数学试卷(解析版)
2015-2016学年江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷-含详细解析
2015-2016学年江苏省泰州市泰兴市西城中学八年级(下)第一次月考数学试卷副标题一、选择题(本大题共8小题,共16.0分)1.以下是回收、绿色包装、节水、低碳四个标志,其中是中心对称图形的是()A. B. C. D.2.下列调查中,适宜采用全面调查(普查)方式的是()A. 对全国中学生心理健康现状的调查B. 对冷饮市场上冰淇淋质量情况的调查C. 对我市市民实施低碳生活情况的调查D. 对我国首架大型民用直升机各零部件的检查3.今年我市有4万名学生参加中考,为了了解这些考生的数学成绩,从中抽取2000名考生的数学成绩进行统计分析.在这个问题中,下列说法:①这4万名考生的数学中考成绩的全体是总体;②每个考生是个体;③2000名考生是总体的一个样本;④样本容量是2000.其中说法正确的有()A. 4个B. 3个C. 2个D. 1个4.如图,菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A. B. 4 C. 7 D. 145.在一个不透明的口袋中装有4个红球和若干个白球,他们除颜色外其他完全相同.通过多次摸球实验后发现,摸到红球的频率稳定在25%附近,则口袋中白球可能有()A. 16个B. 15个C. 13个D. 12个6.如图,AB∥CD,E,F分别为AC,BD的中点,若AB=5,CD=3,则EF的长是()A. 4B. 3C. 2D. 17.如图,P是矩形ABCD的边AD上一个动点,矩形的两条边AB、BC的长分别为3和4,那么点P到矩形的两条对角线AC和BD的距离之和是()A.B.C.D. 不确定8.如图,在△ABC中,AB=3,AC=4,BC=5,P为边BC上一动点,PE⊥AB于E,PF⊥AC于F,M为EF中点,则AM的最小值为()A. 1B.C.D.二、填空题(本大题共10小题,共20.0分)9.随机抽查了某校七年级63名学生的身高(单位:cm),所得到的数据中最大值是172,最小值是149、若取组距为4,则这些数据可分成______ 组.10.把容量是64的样本分成8组,从第1组到第4组的频数分别是5,7,11,13,第5组到第7组的频率是0.125,那么第8组的频数是______.11.六张完全相同的卡片上,分别画有等边三角形、正方形、矩形、平行四边形、圆、菱形,现从中随机抽取一张,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为______.12.平行四边形ABCD的周长是56cm,对角线相交于点O,△BOC的周长比△AOB的周长小8cm,则AB= ______ cm,BC= ______ cm.13.如图,△ABC是等腰直角三角形,BC是斜边,将△ABP绕A逆时针旋转后,能够与△ACP′重合,如果AP=3,那么PP′= ______ .14.如图,矩形ABCD中,AB=8,BC=4,将矩形沿AC折叠,点D落在点D′处,则重叠部分△AFC的面积为______.15.如图,菱形ABCD的对角线AC,BD相交于点O,AC=16cm,BD=12cm,则菱形边AB上的高DH的长是______ cm.16.如图,在△ABC中,M是BC的中点,AD平分∠BAC,BD⊥AD,AB=12,AC=22,则MD的长为______ .17.已知:如图,在等腰Rt△ABC中,∠ABC=90°,AB=2,D为BC的中点,P为线段AC上任意一点,则PB+PD的最小值为______ .18.如图,在直角坐标系中,菱形ABCD的顶点坐标C(-1,0)、B(0,2),点A在第二象限.直线y=-x+5与x轴、y轴分别交于点N、M.将菱形ABCD沿x轴向右平移m个单位.当点A落在MN上时,则m= ______ .三、解答题(本大题共7小题,共34.0分)19.在读书月活动中,学校准备购买一批课外读物.为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了______名同学;(2)条形统计图中,m=______,n=______;(3)扇形统计图中,艺术类读物所在扇形的圆心角是______度;(4)学校计划购买课外读物6000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?20.如图,在平面直角坐标系中,有一Rt△ABC,且A(-1,3),B(-3,-1),C(-3,3),已知△A1AC1是由△ABC旋转得到的.(1)请写出旋转中心的坐标是______ ,旋转角是______ 度;(2)以(1)中的旋转中心为中心,画出△A1AC1顺时针旋转90°的三角形.21.随着我市社会经济的发展和交通状况的改善,我市的旅游业得到了高速发展,某旅游公司对我市一企业旅游年消费情况进行了问卷调查,随机抽取部分员工,记录每个人消费金额,并将调查数据适当调整,绘制成如图两幅尚不完整的表和图.根据以上信息回答下列问题:(1)a=______,b=______,c=______.并将条形统计图补充完整;(2)这次调查中,个人年消费金额的中位数出现在______组;(3)若这个企业有3000多名员工,请你估计个人旅游年消费金额在6000元以上的人数.22.如图,在△ABC中,D、E分别是AB、AC的中点,过点E作EF∥AB,交BC于点F.试问当△ABC满足什么条件时,四边形DBEF是菱形?为什么?23.如图,在梯形ABCD中,AD∥BC,AB∥DE,AF∥DC,E、F两点在边BC上,且四边形AEFD是平行四边形.(1)AD与BC有何等量关系,请说明理由;(2)当AB=DC时,求证:平行四边形AEFD是矩形.24.如图,平行四边形ABCD中,AB=3cm,BC=5cm,∠B=60°,G是CD的中点,E是边AD上的动点,EG的延长线与BC的延长线交于点F,连结CE,DF.(1)求证:四边形CEDF是平行四边形;(2)①当AE=______cm时,四边形CEDF是矩形;②当AE=______cm时,四边形CEDF是菱形.(直接写出答案,不需要说明理由)25.如图1,等腰直角三角板的一个锐角顶点与正方形ABCD的顶点A重合,将此三角板绕点A旋转,使三角板中该锐角的两条边分别交正方形的两边BC,DC于点E,F,连接EF.(1)猜想BE、EF、DF三条线段之间的数量关系,并证明你的猜想;(2)在图1中,过点A作AM⊥EF于点M,请直接写出AM和AB的数量关系;(3)如图2,将Rt△ABC沿斜边AC翻折得到Rt△ADC,E,F分别是BC,CD边上的点,∠EAF=∠BAD,连接EF,过点A作AM⊥EF于点M,试猜想AM与AB之间的数量关系.并证明你的猜想.答案和解析1.【答案】B【解析】解:A、不是中心对称图形,故本选项错误;B、是中心对称图形,故本选项正确;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:B.根据中心对称图形的定义,结合选项所给图形进行判断即可.此题主要考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.2.【答案】D【解析】解:A、普查的难度较大,适合用抽样调查的方式,故A错误;B、调查过程带有破坏性,只能采取抽样调查的方式,故B错误;C、普查的难度较大,适合用抽样调查的方式,故C错误;D、事关重大应选用普查,正确.故选:D.根据抽样调查和全面调查的特点即可作出判断.本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.3.【答案】C【解析】解:这4万名考生的数学中考成绩的全体是总体;每个考生的数学中考成绩是个体;2000名考生的中考数学成绩是总体的一个样本,样本容量是2000.故正确的是①④.故选:C.总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象,从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.本题考查了总体、个体、样本、样本容量的概念,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.4.【答案】A【解析】解:∵菱形ABCD的周长为28,∴AB=28÷4=7,OB=OD,∵H为AD边中点,∴OH是△ABD的中位线,∴OH=AB=×7=3.5.故选:A.根据菱形的四条边都相等求出AB,菱形的对角线互相平分可得OB=OD,然后判断出OH是△ABD的中位线,再根据三角形的中位线平行于第三边并且等于第三边的一半可得OH=AB.本题考查了菱形的对角线互相平分的性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记性质与定理是解题的关键.5.【答案】D【解析】解:设白球个数为:x个,∵摸到红色球的频率稳定在25%左右,∴口袋中得到红色球的概率为25%,∴=,解得:x=12,经检验x=12是原方程的根,故白球的个数为12个.故选:D.由摸到红球的频率稳定在25%附近得出口袋中得到红色球的概率,进而求出白球个数即可.此题主要考查了利用频率估计概率,根据大量反复试验下频率稳定值即概率得出是解题关键.6.【答案】D【解析】解:连接DE并延长交AB于H,∵CD∥AB,∴∠C=∠A,∠CDE=∠AHE,∵E是AC中点,∴AE=CE,∴△DCE≌△HAE(AAS),∴DE=HE,DC=AH,∵F是BD中点,∴EF是△DHB的中位线,∴EF=BH,∴BH=AB-AH=AB-DC=2,∴EF=1.故选:D.连接DE并延长交AB于H,由已知条件可判定△DCE≌△HAE,利用全等三角形的性质可得DE=HE,进而得到EF是三角形DHB的中位线,利用中位线性质定理即可求出EF的长.本题考查了全等三角形的判定和性质、三角形的中位线的判定和性质,解题的关键是连接DE和AB相交构造全等三角形,题目设计新颖.7.【答案】A【解析】【分析】此题考查了矩形的性质以及三角形面积问题.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.首先连接OP,由矩形的两条边AB、BC的长分别为3和4,可求得OA=OD=2.5,△AOD的面积,然后由S△AOD=S△AOP+S△DOP=OA•PE+OD•PF求得答案.【解答】解:连接OP,∵矩形的两条边AB、BC的长分别为和4,∴S=AB•BC=12,OA=OC,OB=OD,AC=BD=5,矩形ABCD∴OA=OD=2.5,∴S△ACD=S=6,矩形ABCD∴S△AOD=S△ACD=3,∵S△AOD=S△AOP+S△DOP=OA•PE+OD•PF=×2.5×PE+×2.5×PF=(PE+PF)=3,解得:PE+PF=.故选A.8.【答案】B【解析】解:∵在△ABC中,AB=3,AC=4,BC=5,∴AB2+AC2=BC2,即∠BAC=90°.又PE⊥AB于E,PF⊥AC于F,∴四边形AEPF是矩形,∴EF=AP.∵M是EF的中点,∴AM=EF=AP.因为AP的最小值即为直角三角形ABC斜边上的高,即2.4,∴AM的最小值是1.2.故选:B.根据勾股定理的逆定理可以证明∠BAC=90°;根据直角三角形斜边上的中线等于斜边的一半,则AM=EF,要求AM的最小值,即求EF的最小值;根据三个角都是直角的四边形是矩形,得四边形AEPF是矩形,根据矩形的对角线相等,得EF=AP,则EF的最小值即为AP的最小值,根据垂线段最短,知:AP的最小值即等于直角三角形ABC斜边上的高.此题综合运用了勾股定理的逆定理、矩形的判定及性质、直角三角形的性质.要能够把要求的线段的最小值转换为便于分析其最小值的线段.9.【答案】6【解析】解:(172-149)÷4=23÷4≈6组.故答案为:6.计算最大值与最小值的差,除以组距即可求得.此题考查的是组数的确定方法,组数=极差÷组距.10.【答案】4【解析】解:第5组到第7组的频率是0.125,且容量是64,那么第5组到第7组的频数是64×0.125=8,那么第8组的频数是64-(5+7+11+13+8×3)=4.故答案为:4.求出第5组到第7组的频数,利用总数减去第1组到底7组的频数,即可求得.本题是对频率、频数灵活运用的综合考查,各小组频数之和等于数据总和,各小组频率之和等于1.11.【答案】【解析】解:等边三角形是轴对称图形,不是中心对称图形,正方形是轴对称图形,也是中心对称图形,矩形是轴对称图形,也是中心对称图形,平行四边形不是轴对称图形,是中心对称图形,圆是轴对称图形,也是中心对称图形,菱形是轴对称图形,也是中心对称图形,卡片上画的恰好既是轴对称图形又是中心对称图形的概率为=,故答案为:.根据中心对称图形与轴对称图形的概念进行判断,根据概率的公式计算.本题考查的是概率的计算、中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.12.【答案】18;10【解析】解:∵▱ABCD的周长为56cm,∴BC+AB=28cm,①又∵△BOC的周长比△AOB的周长小8cm,∴AB-BC=8cm,②由①②得AB=18cm,BC=10cm.故答案为:18,10.根据平行四边形的性质可知,平行四边形的对角线互相平分,对边相等,周长是56cm可得BC+AB=28cm,根据由于△BOC的周长比△AOB的周长小8cm,则AB比BC大8cm,继而可求出AB、BC的长度.此题主要考查平行四边的性质:平行四边形的两组对边分别相等且平行四边形的对角线互相平分.13.【答案】18【解析】解:∵△ABP绕A逆时针旋转后,能够得到△ACP′,∴AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理,得PP′2=AP2+AP′2=32+32=18,故答案为:18.由旋转的性质可知,AP=AP′=3,∠PAP′=∠BAC=90°,在Rt△APP′中,由勾股定理求PP′2.本题考查了旋转的性质,等腰直角三角形的性质.关键是由旋转的性质得出△APP′为等腰直角三角形.14.【答案】10【解析】解:易证△AFD′≌△CFB,∴D′F=BF,设D′F=x,则AF=8-x,在Rt△AFD′中,(8-x)2=x2+42,解之得:x=3,∴AF=AB-FB=8-3=5,∴S△AFC=•AF•BC=10.故答案为:10.因为BC为AF边上的高,要求△AFC的面积,求得AF即可,求证△AFD′≌△CFB,得BF=D′F,设D′F=x,则在Rt△AFD′中,根据勾股定理求x,∴AF=AB-BF.本题考查了勾股定理的正确运用,本题中设D′F=x,根据直角三角形AFD′中运用勾股定理求x是解题的关键.15.【答案】9.6【解析】【分析】根据菱形的对角线互相垂直平分求出OA、OB,再根据勾股定理列式求出AB,然后利用菱形的面积列式计算即可得解.本题考查了菱形的对角线互相垂直平分的性质,勾股定理,根据菱形的面积的两种表示方法列出方程是解题的关键.【解答】解:在菱形ABCD中,AC⊥BD,∵AC=16cm,BD=12cm,∴OA=AC=×16=8cm,OB=BD=×12=6cm,在Rt△AOB中,AB==10cm,∵DH⊥AB,∴菱形ABCD的面积=AC•BD=AB•DH,即×16×12=10•DH,解得DH=9.6cm.故答案为9.6.16.【答案】5【解析】解:延长BD交AC于N,∵AD是∠BAC的平分线,BD⊥AD,∴BD=DN,AN=AB=12,∵BM=CM,BD=DN,AC=22,∴DM=NC=(AC-AN)=5,则MD的长为5.延长BD交AC于N,根据等腰三角形三线合一得到BD=DN,AN=AB,根据三角形中位线定理得到DM=NC,代入计算即可.本题考查的是三角形中位线定理和等腰三角形的性质的应用,掌握三角形的中位线平行于第三边且等于第三边的一半和等腰三角形三线合一是解题的关键.17.【答案】【解析】解:作点B关于直线AC的对称点C′,连接DC′,交AC于P,连接BP,此时DP+BP=DP+PC′=DC′的值最小.∵D为BC的中点,∴BD=1,DC=1,∴BC=AB=2,连接CC′,由对称性可知∠C′CB=∠BC′C=45°,∴∠BCC′=90°,∴CC′⊥BC,∠CBC′=∠BC′C=45°,∴BC=CC′=2,根据勾股定理可得DC′==.故答案为:.首先确定DC′=DP+PC′=DP+BP的值最小,然后根据勾股定理计算.此题考查了线路最短的问题,确定动点E何位置时,使PB+PD的值最小是关键.18.【答案】3【解析】解:∵菱形ABCD的顶点C(-1,0),点B(0,2),∴点A的坐标为(-1,4),当y=4时,-x+5=4,解得x=2,∴点A向右移动2+1=3时,点A在MN上,∴m的值为3,故答案为3.根据菱形的对角线互相垂直平分表示出点A的坐标,再根据直线解析式求出点A移动到MN上时的x的值,从而得到m的值.本题是一次函数综合题型,主要利用了一次函数图象上点的坐标特征,菱形的性质,平移的性质,比较简单.19.【答案】200 40 60 72【解析】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200-70-30-60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得(册).答:学校购买其他类读物900册比较合理.(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)根据艺术类读物所在扇形的圆心角是:×360°=72°;(3)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;此题主要考查了条形图表和扇形统计图综合应用,将条形图与扇形图结合得出正确信息求出调查的总人数是解题关键.20.【答案】(0,0);90【解析】解:(1)旋转中心的坐标是(0,0),旋转角是90°;(2)如图所示,△A1A2C2是△A1AC1以O为旋转中心,顺时针旋转90°的三角形,(1)根据网格结构,找出对应点连线的垂直平分线的交点即为旋转中心,一对对应点与旋转中心连线的夹角即为旋转角;(2)根据网格结构分别找出找出△A1AC1顺时针旋转90°后的对应点的位置,然后顺次连接即可.本题考查了利用旋转变换作图,旋转变换的旋转中心与旋转角的确定,熟练掌握网格结构准确找出对应点的位置是解题的关键.21.【答案】36;0.30;120;C【解析】解:(1)观察频数分布表知:A组有18人,频率为0.15,∴c=18÷0.15=120,∵a=36,∴b=36÷120=0.30;∴C组的频数为120-18-36-24-12=30,补全统计图为:故答案为:36,0.30,120;(2)∵共120人,∴中位数为第60和第61人的平均数,∴中位数应该落在C小组内;(3)个人旅游年消费金额在6000元以上的人数3000×(0.10+0.20)=900人.(1)首先根据A组的人数和所占的百分比确定c的值,然后确定a和b的值;(2)根据样本容量和中位数的定义确定中位数的位置即可;(3)利用样本估计总体即可得到正确的答案.本题考查了统计图的知识,读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据.理解平均数、中位数和众数的概念,并能根据它们的意义解决问题.22.【答案】解:当AB=BC时,四边形DBFE是菱形.理由如下:∵D、E分别是AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,又∵EF∥AB,∴四边形DBFE是平行四边形;∵D是AB的中点,∴BD=AB,∵DE是△ABC的中位线,∴DE=BC,∵AB=BC,∴BD=DE,∴四边形DBFE是菱形.【解析】当AB=BC时,四边形DBFE是菱形.先根据三角形的中位线平行于第三边并且等于第三边的一半可得DE∥BC,然后根据两组对边分别平行的四边形是平行四边形证明四边形DBFE是平行四边形;再根据邻边相等的平行四边形是菱形即可证明结论成立.本题考查了三角形的中位线平行于第三边并且等于第三边的一半,菱形的判定以及菱形与平行四边形的关系,熟记性质与判定方法是解题的关键.23.【答案】(1)解:AD=BC.理由如下:∵AD∥BC,AB∥DE,AF∥DC,∴四边形ABED和四边形AFCD都是平行四边形.∴AD=BE,AD=FC,又∵四边形AEFD是平行四边形,∴AD=EF.∴AD=BE=EF=FC.∴AD=BC.(2)证明:∵四边形ABED和四边形AFCD都是平行四边形,∴DE=AB,AF=DC.∵AB=DC,∴DE=AF.又∵四边形AEFD是平行四边形,∴平行四边形AEFD是矩形.【解析】(1)由题中所给平行线,不难得出四边形ABED和四边形AFCD都是平行四边形,而四边形AEFD也是平行四边形,三个平行四边形都共有一条边AD,所以可得出AD=BC的结论.(2)根据矩形的判定和定义,对角线相等的平行四边形是矩形.只要证明AF=DE即可得出结论.本题考查了梯形、平行四边形的性质和矩形的判定,是一道集众多四边形于一体的小综合题,难度中等稍偏上的考题.有的学生往往因为基础知识不扎实,做到一半就做不下去了,建议老师平时教学中,重视一题多变,适当地变式联系,可以触类旁通.24.【答案】3.5 2【解析】(1)证明:∵四边形ABCD是平行四边形,∴CF∥ED,∴∠FCG=∠EDG,∵G是CD的中点,∴CG=DG,在△FCG和△EDG中,,∴△FCG≌△EDG(ASA)∴FG=EG,∵CG=DG,∴四边形CEDF是平行四边形;(2)①解:当AE=3.5时,平行四边形CEDF是矩形,理由是:过A作AM⊥BC于M,∵∠B=60°,AB=3,∴BM=1.5,∵四边形ABCD是平行四边形,∴∠CDA=∠B=60°,DC=AB=3,BC=AD=5,∵AE=3.5,∴DE=1.5=BM,在△MBA和△EDC中,,∴△MBA≌△EDC(SAS),∴∠CED=∠AMB=90°,∵四边形CEDF是平行四边形,∴四边形CEDF是矩形,故答案为:3.5;②当AE=2时,四边形CEDF是菱形,理由是:∵AD=5,AE=2,∴DE=3,∵CD=3,∠CDE=60°,∴△CDE是等边三角形,∴CE=DE,∵四边形CEDF是平行四边形,∴四边形CEDF是菱形,故答案为:2.(1)证△CFG≌△EDG,推出FG=EG,根据平行四边形的判定推出即可;(2)①求出△MBA≌△EDC,推出∠CED=∠AMB=90°,根据矩形的判定推出即可;②求出△CDE是等边三角形,推出CE=DE,根据菱形的判定推出即可.本题考查了平行四边形的性质和判定,菱形的判定,矩形的判定,等边三角形的性质和判定,全等三角形的性质和判定的应用,注意:有一组邻边相等的平行四边形是菱形,有一个角是直角的平行四边形是矩形.25.【答案】(1)EF=BE+DF,证明:如答图1,延长CB到Q,使BQ=DF,连接AQ,∵四边形ABCD是正方形,∴AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠DAB=90°,∠FAE=45°,∴∠DAF+∠BAE=45°,∴∠BAE+∠BAQ=45°,即∠EAQ=∠FAE,在△EAQ和△EAF中∴△EAQ≌△EAF,∴EF=EQ=BE+BQ=BE+DF.(2)解:AM=AB,理由是:∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.(3)AM=AB,证明:如答图2,延长CB到Q,使BQ=DF,连接AQ,∵折叠后B和D重合,∴AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,在△ADF和△ABQ中,∴△ADF≌△ABQ(SAS),∴AQ=AF,∠QAB=∠DAF,∵∠FAE=∠BAD,∴∠DAF+∠BAE=∠BAE+∠BAQ=∠EAQ=∠BAD,即∠EAQ=∠FAE,在△EAQ和△EAF中,,∴△EAQ≌△EAF(SAS),∴EF=EQ,∵△EAQ≌△EAF,EF=EQ,∴×EQ×AB=×FE×AM,∴AM=AB.【解析】(1)延长CB到Q,使BQ=DF,连接AQ,根据四边形ABCD是正方形求出AD=AB,∠D=∠DAB=∠ABE=∠ABQ=90°,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠EAF,证△EAQ≌△EAF,推出EF=BQ即可;(2)根据△EAQ≌△EAF,EF=BQ得出×BQ×AB=×FE×AM,求出即可;(3)延长CB到Q,使BQ=DF,连接AQ,根据折叠和已知得出AD=AB,∠D=∠ABE=90°,∠BAC=∠DAC=∠BAD,证△ADF≌△ABQ,推出AQ=AF,∠QAB=∠DAF,求出∠EAQ=∠FAE,证△EAQ≌△EAF,推出EF=EQ即可.本题考查了正方形的性质,全等三角形的性质和判定,折叠的性质的应用,主要考查学生综合运用定理进行推理的能力,题目比较典型,证明过程类似.。
2015年江苏省泰州市泰兴市八年级下学期期末数学试卷及解析word版
2014-2015学年江苏省泰州市泰兴市八年级(下)期末数学试卷一、选择题(本大题共有6小题,每小题3分,共18分)1.(3分)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.2.(3分)以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.了解全市中小学生每天的零花钱C.学校招聘教师,对应聘人员面试D.旅客上飞机前的安检3.(3分)今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量4.(3分)下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=25﹣24=15.(3分)如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变B.扩大为原来的3倍C.扩大为原来的10倍D.缩小为原来的6.(3分)已知下列命题,其中真命题的个数是()①若a2=b2,则a=b;②对角线互相垂直且相等的四边形是正方形;③两组对角分别相等的四边形是平行四边形;④在反比例函数y=中,如果函数值y<1时,那么自变量x>2.A.4个 B.3个 C.2个 D.1个二、填空题(本大题共10小题,每小题3分,共30分)7.(3分)代数式在实数范围内有意义,则x的取值范围是.8.(3分)从﹣1,0,π,3中随机任取一数,取到无理数的概率是.9.(3分)当a=时,最简二次根式与是同类二次根式.10.(3分)如果+=0,那么=.11.(3分)已知(﹣2,y1),(﹣1,y2),(3,y3)是反比例函数的图象上的三个点,则y1,y2,y3的大小关系是.12.(3分)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=°.13.(3分)若关于x的方程=+1无解,则a的值是.14.(3分)如图,平行四边形ABCD中,点E在AD上,以BE为折痕,把△ABE 向上翻折,点A正好落在CD边的点F处.若△FDE的周长为6,平行四边形ABCD 的周长为26,那么CF的长为.15.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为度.16.(3分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x 轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k 值为.三、解答题(本大题共10小题,共102分)17.(12分)计算:(1)解方程:=1﹣;(2)计算:+(﹣1)+()0.18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.19.(8分)如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.20.(8分)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).21.(10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?22.(10分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?23.(10分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?24.(10分)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.25.(12分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.26.(14分)如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.(1)写出图中一对全等三角形:;(2)求证:△BEF是等边三角形;(3)若菱形ABCD的边长为2,设△DEF的周长为m,则m的取值范围为(直接写出答案);(4)连接AC分别与边BE、BF交于点M、N,且∠CBF=15°,试说明:MN2+CN2=AM2.2014-2015学年江苏省泰州市泰兴市八年级(下)期末数学试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分)1.(3分)随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()A.B. C.D.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.2.(3分)以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.了解全市中小学生每天的零花钱C.学校招聘教师,对应聘人员面试D.旅客上飞机前的安检【解答】解:A、了解全班同学每周体育锻炼的时间,数量不大,宜用全面调查,故A选项错误;B、了解全市中小学生每天的零花钱,数量大,不宜用全面调查,故B选项正确;C、学校招聘教师,对应聘人员面试,必须全面调查,故C选项错误;D、旅客上飞机前的安检,必用全面调查,故D选项不正确.故选:B.3.(3分)今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量【解答】解:A、这50名考生的数学成绩是总体的一个样本,故选项错误;B、近1千名考生的数学成绩是总体,故选项错误;C、每位考生的数学成绩是个体,正确;D、样本容量是:50,故选项错误;故选:C.4.(3分)下列变形正确的是()A.=×B.=×=4×=2C.=|a+b| D.=25﹣24=1【解答】解:A、=×,故A选项错误;B、=×=×=,故B选项错误;C、=|a+b|,故C选项正确;D、==7,故D选项错误.故选:C.5.(3分)如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变B.扩大为原来的3倍C.扩大为原来的10倍D.缩小为原来的【解答】解:∵把中的x与y都扩大为原来的10倍,∴分式的分子和分母都扩大10倍,∴这个代数式的值不变.故选:A.6.(3分)已知下列命题,其中真命题的个数是()①若a2=b2,则a=b;②对角线互相垂直且相等的四边形是正方形;③两组对角分别相等的四边形是平行四边形;④在反比例函数y=中,如果函数值y<1时,那么自变量x>2.A.4个 B.3个 C.2个 D.1个【解答】解:若a2=b2,则a=b或a=﹣b,所以①错误;对角线互相垂直平分且相等的四边形是正方形,所以②错误;两组对角分别相等的四边形是平行四边形,所以③正确;在反比例函数y=中,如果函数值y<1时,那么自变量x>2或x<0,所以④错误.故选:D.二、填空题(本大题共10小题,每小题3分,共30分)7.(3分)代数式在实数范围内有意义,则x的取值范围是x≥1.【解答】解:∵在实数范围内有意义,∴x﹣1≥0,解得x≥1.故答案为:x≥1.8.(3分)从﹣1,0,π,3中随机任取一数,取到无理数的概率是.【解答】解:∵﹣1,0,π,3中是无理数的是π,∴取到无理数的概率是:.故答案为:.9.(3分)当a=5时,最简二次根式与是同类二次根式.【解答】解:因为最简二次根式与是同类二次根式,可得:a﹣3=12﹣2a,解得:a=5,故答案为:5.10.(3分)如果+=0,那么=1+.【解答】解:∵+=0,而≥0,≥0;∴a=1,b=2∴原式=1+=1+.故本题答案为:1+.11.(3分)已知(﹣2,y1),(﹣1,y2),(3,y3)是反比例函数的图象上的三个点,则y1,y2,y3的大小关系是y3<y2<y1.【解答】解:∵反比例函数的k=﹣6<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大.∵﹣2<0,﹣1<0,∴点(﹣2,y1),(﹣1,y2)位于第二象限,∴y1>0,y2>0,∵﹣1>﹣2<0,∴0<y1<y2.∵2>0,∴点(2,y3)位于第四象限,∴y3<0,∴y3<y1<y2.故答案为:y3<y1<y2.12.(3分)如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=70°.【解答】解:∵将△OAB绕点O逆时针旋转100°得到△OA1B1,∠AOB=30°,∴△OAB≌△OA1B1,∴∠A1OB1=∠AOB=30°.∴∠A1OB=∠A1OA﹣∠AOB=70°.故答案为:70.13.(3分)若关于x的方程=+1无解,则a的值是2或1.【解答】解:x﹣2=0,解得:x=2.方程去分母,得:ax=4+x﹣2,即(a﹣1)x=2当a﹣1≠0时,把x=2代入方程得:2a=4+2﹣2,解得:a=2.当a﹣1=0,即a=1时,原方程无解.故答案是:2或1.14.(3分)如图,平行四边形ABCD中,点E在AD上,以BE为折痕,把△ABE 向上翻折,点A正好落在CD边的点F处.若△FDE的周长为6,平行四边形ABCD 的周长为26,那么CF的长为7.【解答】解:如图,∵四边形ABCD为平行四边形,∴AD=BC,AB=DC;由题意得:AE=FE,AB=BF;∵平行四边形ABCD的周长为26,∴AD+DC=AB+BC=13,∵△FDE的周长为6,∴DE+DF+EF=AD+DF=6,∴FC=13﹣6=7.故答案为7.15.(3分)如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF,若∠BEC=60°,则∠EFD的度数为15度.【解答】解:∵△DCF是△BCE旋转以后得到的图形,∴∠BEC=∠DFC=60°,∠ECF=∠BCE=90°,CF=CE.又∵∠ECF=90°,∴∠EFC=∠FEC=(180°﹣∠ECF)=(180°﹣90°)=45°,故∠EFD=∠DFC﹣∠EFC=60°﹣45°=15°.故答案为:15°16.(3分)如图,四边形OABC是矩形,四边形ADEF是正方形,点A、D在x 轴的负半轴上,点C在y轴的正半轴上,点F在AB上,点B、E在反比例函数y=(k为常数,k≠0)的图象上,正方形ADEF的面积为4,且BF=2AF,则k 值为﹣6.【解答】解:∵正方形ADEF的面积为4,∴正方形ADEF的边长为2,∴BF=2AF=4,AB=AF+BF=2+4=6.设B点坐标为(t,6),则E点坐标(t﹣2,2),∵点B、E在反比例函数y=的图象上,∴k=6t=2(t﹣2),解得t=﹣1,k=﹣6.故答案为﹣6.三、解答题(本大题共10小题,共102分)17.(12分)计算:(1)解方程:=1﹣;(2)计算:+(﹣1)+()0.【解答】解:(1)方程两边同乘x﹣2,得2x=x﹣2+1,解这个方程,得x=﹣1,检验:x=﹣1时,x﹣2≠0,则x=﹣1是原方程的解;(2)原式=2+﹣1+1=3.18.(8分)先化简,再求值:(1﹣)÷,其中a=﹣1.【解答】解:原式=÷=×=a+1.当a=﹣1时,原式=﹣1+1=.19.(8分)如图,E,F是四边形ABCD对角线AC上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.【解答】证明:(1)如图,∵AD∥BC,DF∥BE,∴∠1=∠2,∠3=∠4.又AE=CF,∴AE+EF=CF+EF,即AF=CE.在△AFD与△CEB中,,∴△AFD≌△CEB(ASA);(2)由(1)知,△AFD≌△CEB,则AD=CB.又∵AD∥BC,∴四边形ABCD是平行四边形.20.(8分)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).【解答】解:(1)a=4÷20%=20;(2)在一个暗箱里放有20个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,蓝求有6个,所以从中任意摸出一个球,该球是红球的概率=20%;该球是白球的概率==50%;该球是蓝球的概率==30%,所以可能性从小到大排序为:①③②.21.(10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?【解答】解:(1)观察扇形统计图知:科普类有128册,占40%,∴借阅总册数为128÷40%=320本,∴m=320﹣128﹣80﹣48=64;教辅类的圆心角为:360°×=90°;(2)设全校500名学生借阅教辅类书籍x本,根据题意得,解得:x=1000,∴八年级500名学生中估计共借阅教辅类书籍约1000本.22.(10分)某漆器厂接到制作480件漆器的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?【解答】解:设原来每天制作x件,根据题意得:﹣=10,解得:x=16,经检验x=16是原方程的解,答:原来每天制作16件.23.(10分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度约为多少度?【解答】解:(1)恒温系统在这天保持大棚温度18℃的时间为12﹣2=10小时.(2)∵点B(12,18)在双曲线y=上,∴18=,∴解得:k=216.(3)当x=16时,y==13.5,所以当x=16时,大棚内的温度约为13.5℃.24.(10分)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;.以上这种化简过程叫做分母有理化.还可以用以下方法化简:.(1)请用其中一种方法化简;(2)化简:.【解答】解:(1)原式==;(2)原式=+++…=﹣1+﹣+﹣+…﹣=﹣1=3﹣125.(12分)如图,已知正比例函数y=2x和反比例函数的图象交于点A(m,﹣2).(1)求反比例函数的解析式;(2)观察图象,直接写出正比例函数值大于反比例函数值时自变量x的取值范围;(3)若双曲线上点C(2,n)沿OA方向平移个单位长度得到点B,判断四边形OABC的形状并证明你的结论.【解答】解:(1)设反比例函数的解析式为y=(k>0),∵A(m,﹣2)在y=2x上,∴﹣2=2m,∴m=﹣1,∴A(﹣1,﹣2),又∵点A在y=上,∴k=2,∴反比例函数的解析式为y=;(2)观察图象可知正比例函数值大于反比例函数值时自变量x的取值范围为﹣1<x<0或x>1;(3)四边形OABC是菱形.证明:∵A(﹣1,﹣2),∴OA==,由题意知:CB∥OA且CB=,∴CB=OA,∴四边形OABC是平行四边形,∵C(2,n)在y=上,∴n=1,∴C(2,1),OC==,∴OC=OA,∴四边形OABC是菱形.26.(14分)如图,菱形ABCD中,E、F分别是边AD,CD上的两个动点(不与菱形的顶点重合),且满足CF=DE,∠A=60°.(1)写出图中一对全等三角形:△BDE≌△BCF;(2)求证:△BEF是等边三角形;(3)若菱形ABCD的边长为2,设△DEF的周长为m,则m的取值范围为2+≤m<4(直接写出答案);(4)连接AC分别与边BE、BF交于点M、N,且∠CBF=15°,试说明:MN2+CN2=AM2.【解答】(1)解:如图1,△BAE≌△BDF,△BDE≌△BCF,△BAD≌△BCD,共三对;证明:△BDE≌△BCF.在△BDE和△BCF中,,∴△BDE≌△BCF(SAS).故答案可以是:△BDE≌△BCF.(2)证明:如图1,∵由(1)知,△BDE≌△BCF,∴∠DBE=∠CBF,BE=BF,∵∠DBC=∠DBF+∠CBF=60°,∴∠DBF+∠DBE=60°即∠EBF=60°,∴△BEF为正三角形;(3)解:如图1,由(2)知,△BEF是等边三角形,则EF=BE=BF.则m=DE+DF+EF=AD+BE.当BE⊥AD时,BE最短,此时△DEF的周长最短∵在Rt△ABE中,sin60°=,即=,∴BE=.∴m=2+.当点E与点A重合,△DEF的周长最长,此时m=2+2=4.综上所述,m的取值范围是:2+≤m<4;故答案是:2+≤m<4;(4)证明:如图2,把△BNC绕点B逆时针旋转120°,使CB与AB重合,N对应点为N′,连接MN′.则∠NBC=∠N′BA.∴∠N′BA+∠EBA=60°=∠EBF.在△N′BM与△NBM中,,∴△N′BM≌△NBM(SAS),∴N′M=NM,∠MN′B=∠MNB=45°.又∵∠AN′B=∠BNC=180°﹣(15°+30°)=135°,∴∠AN′M=135°﹣45°=90°,∴MN2+CN2=AM2.。
初中数学 泰州市泰兴市黄桥东区域八年级下期末数学考试卷含答案
xx学校xx学年xx学期xx 试卷姓名:_____________ 年级:____________ 学号:______________题型选择题填空题简答题xx题xx题xx题总分得分一、xx题评卷人得分(每空xx 分,共xx分)试题1:下列图形中,是中心对称图形的是()A. B. C. D.试题2:为了解2016年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是500试题3:下列计算正确的是()A.= B.×= C.=4 D.=用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9试题5:当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A. B.C. D.试题6:下列说法:(1)矩形的对角线互相垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分.其中正确的个数是()A.1个 B.2个 C.3个 D.4个试题7:在英文单词believe中,字母“e”出现的频率是.试题8:在分式中,当x= 时分式没有意义.试题9:当x≤2时,化简:= .已知:+|b﹣1|=0,那么(a+b)2016的值为.试题11:若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是.试题12:若关于x的方程=+2产生增根,那么m的值是.试题13:已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“<”连接y1,y2,y3为.试题14:如图,边长为6的正方形ABCD和边长为8的正方形BEFG排放在一起,O1和O2分别是两个正方形的对称中心,则△O1BO2的面积为.试题15:平行四边形ABCD中一个角的平分线把一条边分成3cm和4cm两部分,则这个四边形的周长是cm.试题16:在平面直角坐标系中,平行四边形OABC的边OC落在x轴的正半轴上,且点C(4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过秒该直线可将平行四边形OABC的面积平分.试题17:(﹣2)2﹣×试题18:﹣a+1.试题19:+=;试题20:(x﹣2)2=2x﹣4.试题21:先化简再求值:÷(m﹣1﹣),其中m是方程x2﹣x=2016的解.试题22:在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查如图,在四边形ABCD中,AB∥CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.试题23:某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?试题24:先观察下列等式,再回答问题:①=1+1=2;②=2+=2;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.试题25:码头工人每天往一艘轮船上装载货物,装载速度y(吨/天)与装完货物所需时间x(天)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?试题26:如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.试题27:如图,在平面直角坐标系xOy中,直线y=kx+b与x轴相交于点C,与反比例函数在第一象限内的图象相交于点A(1,8)、B(m,2).(1)求该反比例函数和直线y=kx+b的表达式;(2)求证:△OBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图象上一动点且满足90°﹣α<∠QOC<α,求点Q的横坐标q的取值范围.试题1答案:A【考点】中心对称图形.【分析】根据中心对称的定义,结合所给图形即可作出判断.【解答】解:A、是中心对称图形,故本选项正确;B、不是中心对称图形,故本选项错误;C、不是中心对称图形,故本选项错误;D、不是中心对称图形,故本选项错误;故选:A.【点评】本题考查了中心对称图形的特点,属于基础题,判断中心对称图形的关键是旋转180°后能够重合.试题2答案:D【考点】总体、个体、样本、样本容量.【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、2016年泰兴市八年级学生的视力情况是总体,故A错误;B、每一名八年级学生的视力情况是个体,故B错误;C、从中随机调查了500名学生的视力情况是一个样本,故C错误;D、样本容量是500,故D正确;故选:D.【点评】考查了总体、个体、样本、样本容量,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.样本容量是样本中包含的个体的数目,不能带单位.试题3答案:B【考点】二次根式的加减法;二次根式的乘除法.【分析】分别根据二次根式的加减法则和乘法法则求解,然后选择正确选项.【解答】解:A、和不是同类二次根式,不能合并,故错误;B、×=,原式计算正确,故正确;C、=2,原式计算错误,故错误;D、﹣=2﹣,原式计算错误,故错误.故选B.【点评】本题考查了二次根式的加减法和乘除法,掌握运算法则是解答本题的关键.试题4答案:B【考点】解一元二次方程-配方法.【专题】计算题.【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B【点评】此题考查了解一元二次方程﹣配方法,熟练掌握完全平方公式是解本题的关键.试题5答案:C【考点】反比例函数的应用;反比例函数的图象.【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【解答】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.【点评】此题主要考查了反比例函数的应用,现实生活中存在大量成反比例函数的两个变量,解答该类问题的关键是确定两个变量之间的函数关系,然后利用实际意义确定其所在的象限.试题6答案:B【考点】正方形的性质;线段垂直平分线的性质;菱形的性质;矩形的性质.【分析】依据矩形的性质、菱形的性质、平行线四边形的判定定理、正方形的性质求解即可.【解答】解:(1)矩形的对角线相等且互相平分,故(1)错误;(2)菱形的四边相等,故(2)正确;(3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;(4)正方形的对角线相等,并且互相垂直平分,故(4)正确.故选:B.【点评】本题主要考查的是矩形、菱形、正方形的性质,熟练掌握相关图形的性质是解题的关键.试题7答案:.【考点】频数与频率.【分析】先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.【解答】解:∵英文单词believe共有7个字母,其中有3个e,∴字母“e”出现的频率是;故答案为:.【点评】此题考查了频数与频率,掌握频率=是本题的关键,是一道基础题.试题8答案:﹣2【考点】分式有意义的条件.【分析】根据分式无意义,分母等于0列方程求解即可.【解答】解:由题意得,2+x=0,解得x=﹣2.故答案为:﹣2.【点评】本题考查了分式有意义的条件,从以下三个方面透彻理解分式的概念:(1)分式无意义⇔分母为零;(2)分式有意义⇔分母不为零;(3)分式值为零⇔分子为零且分母不为零.试题9答案:2﹣x .【考点】二次根式的性质与化简.【分析】直接利用完全平方公式和二次根式的性质,再结合x的取值范围化简即可.【解答】解:∵x≤2,∴==2﹣x.故答案为:2﹣x.【点评】此题主要考查了二次根式的性质与化简,正确应用二次根式的性质是解题关键.试题10答案:1 .【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】根据非负数的性质分别求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得,a=﹣2,b=1,则(a+b)2016=1,故答案为:1.【点评】本题考查的是非负数的性质和乘方运算,掌握非负数之和等于0时,各项都等于0是解题的关键.试题11答案:m≤.【考点】根的判别式.【专题】计算题.【分析】根据判别式的意义得到△=(﹣2)2﹣4×4m≥0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4×4m≥0,解得m≤.故答案为m≤.【点评】本题考查了一元二次方程ax2+bx+c=0(a≠0)的根的判别式△=b2﹣4ac:当△>0,方程有两个不相等的实数根;当△=0,方程有两个相等的实数根;当△<0,方程没有实数根.试题12答案:1 .【考点】分式方程的增根.【专题】计算题.【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x﹣2=0,将x=2代入整式方程计算即可求出m的值.【解答】解:分式方程去分母得:x﹣1=m+2x﹣4,由题意得:x﹣2=0,即x=2,代入整式方程得:2﹣1=m+4﹣4,解得:m=1.故答案为:1.【点评】此题考查了分式方程的增根,增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.试题13答案:y2<y3<y1.【考点】反比例函数图象上点的坐标特征.【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=中,﹣k2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,∵﹣1<0,∴点A(﹣1,y1)位于第二象限,∴y1>0;∵0<2<3,∴B(1,y2)、C(2,y3)在第四象限,∵2<3,∴y2<y3<0,∴y2<y3<y1.故答案为:y2<y3<y1.【点评】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.试题14答案:12 .【考点】正方形的性质.【分析】由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.【解答】解:∵O1和O2分别是这两个正方形的中心,∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,∴∠O1BO2=∠O1BC+∠O2BC=90°,∴阴影部分的面积=×3×4=12.故答案是:12.【点评】本题考查了正方形的性质.主要利用了正方形的中心在对角线上,以及对称中心到顶点的距离等于边长的倍.试题15答案:20或22 cm.【考点】平行四边形的性质.【分析】利用平行四边形的性质和角平分线证出∠DAE=∠BEA,得出AB=BE,由此求出另一边,从而求出周长,注意两种情况.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∵∠A的平分线交BC于点E,∴∠BAE=∠DAE∵AD∥BC,∴∠DEA=∠BEA,∴∠DAE=∠BEA∴AB=BE,分两种情况进行讨论:当BE=3cm,EC=4cm时,AB=BE=3cm,BC=7cm,平行四边形的周长=2(3+7)=20(cm);当BE=4cm,EC=3cm时,AB=BE=4cm,BC=7cm,平行四边形的周长=2(4+7)=22(cm);综上所述:▱ABCD的周长是22或22cm.故答案为20或22.【点评】本题考查了平行四边形的性质、等腰三角形的判定;熟练掌握平行四边形的性质,证明AB=BE是解题的关键.试题16答案:6【考点】平行四边形的性质;坐标与图形变化-平移.【分析】首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将□OABC的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式,从而可得直线y=2x+1要向下平移6个单位,进而可得答案.【解答】解:连接AC、BO,交于点D,如图所示:当y=2x+1经过D点时,该直线可将□OABC的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设直线y=2x+1平移后的直线为y=kx+b,∵平行于y=2x+1,∴k=2,∵过D(3,1),∴y=2x﹣5,∴直线y=2x+1要向下平移6个单位,∴时间为6秒,故答案为:6.【点评】此题主要考查了平行四边形的性质,以及一次函数,关键是正确掌握经过平行四边形对角线交点的直线平分平行四边形的面积.试题17答案:原式=3﹣4+4﹣=7﹣4﹣6=1﹣4;试题18答案:原式=﹣==.试题19答案:去分母得:x﹣1+2x+2=4,解得:x=1,经检验x=1是增根,原方程无解;试题20答案:方程整理得:(x﹣2)2﹣2(x﹣2)=0,分解因式得:(x﹣2)(x﹣2﹣2)=0,即(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4.【点评】此题考查了解分式方程,以及解一元二次方程﹣因式分解法,熟练掌握运算法则是解本题的关键.试题21答案:【考点】分式的化简求值.【分析】先将括号内通分计算分式的减法,再讲除式分子因式分解、除法转化为乘法,约分即可化简,由方程得解得概念可得m2﹣m=2016,即可知原式的值.【解答】解:原式=÷[﹣]=÷=•=,∵m是方程x2﹣x=2016的解,∴m2﹣m=2016,∴原式=.【点评】本题主要考查分式的化简与求值及方程得解的概念,熟练掌握分式的通分、约分及混合运算顺序化简分式是解题的关键.试题22答案:【考点】菱形的判定;平行四边形的判定与性质.【专题】证明题.【分析】(1)根据平行线的性质和平行四边形的判定证明即可;(2)根据角平分线的性质和菱形的判定证明即可.【解答】证明:(1)∵AB∥CD,∴∠DCA=∠BAC,在△ADC与△ABC中,,∴△ADC≌△ABC(AAS),∴AB=DC,∵AB∥CD,∴四边形ABCD为平行四边形;(2)∵四边形ABCD为平行四边形,∴∠DAB=∠DCB,∵PE⊥AB于E,PF⊥AD于F,且PE=PF,∴∠DAC=∠BAC=∠DCA=∠BCA,∴AB=BC,∴四边形ABCD是菱形.【点评】本题考查了菱形的判定与性质.菱形的判定方法有五多种,应用时要认真领会它们之间的联系与区别,同时要根据条件合理、灵活地选择方法.试题23答案:【考点】分式方程的应用.【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.【点评】本题考查了分式方程的应用.分析题意,找到合适的等量关系是解决问题的关键.本题应用的等量关系为:工作时间=工作总量÷工效.试题24答案:【考点】二次根式的性质与化简.【专题】规律型.【分析】(1)根据“第一个等式内数值为1,第二个等式内数值为2,第三个等式内数值为3”,即可猜想出第四个等式为=4+=4;(2)根据等式的变化,找出变化规律“=n+=”,在利用开方即可证出结论成立.【解答】解:(1)∵①=1+1=2;②=2+=2;③=3+=3;里面的数值分别为1、2、3,∴④=4+=4.(2)观察,发现规律:=1+1=2,=2+=2,=3+=3,=4+=4,…,∴=n+=.证明:等式左边=,=,=n+,==右边.故=n+=成立.【点评】本题考查了二次根式的性质与化简以及规律型中数的变化类,解题的关键是:(1)猜测出第四个等式中变化的数值为4;(2)找出变化规律“=n+=”.本题属于基础题,难度不大,解决该题型题目时,根据数值的变化找出变化规律是关键.试题25答案:【考点】反比例函数的应用.【分析】【分析】(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.【解答】解:(1)设y与x之间的函数表达式为y=,根据题意得:50=,解得k=400,∴y与x之间的函数表达式为y=;(2)∵x=5,∴y=80,解得:y=80;答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.【点评】此题考查了反比例函数的应用.解题的关键是理解题意,根据题意求函数的解析式.试题26答案:【考点】四边形综合题.【分析】(1)由已知条件可得RT△CDF中∠C=30°,即可知DF=CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t 的值,继而可得DF≠BF,可得答案.【解答】解:(1)∵RT△ABC中,∠B=90°,∠A=60°,∴∠C=90°﹣∠A=30°.又∵在RT△CDF中,∠C=30°,CD=4t∴DF=CD=2t,∴DF=AE;(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°但BF≠DF,∴四边形BEDF不可能为正方形.【点评】本题主要考查直角三角形的性质、平行四边形的判定、菱形的性质、正方形的性质等知识点,熟练掌握平行四边形、菱形、正方形的判定是解题的关键.试题27答案:【考点】反比例函数综合题.【分析】(1)首先利用待定系数法求得反比例函数的解析式,然后求得B的坐标,则利用待定系数法即可求得直线的解析式;(2)过点B作BD⊥OC于点D,在直角△OBD和直角△OBC中,利用勾股定理求得OB2和BC2,然后利用勾股定理的逆定理即可证明;(3)分成Q在B的左侧和右侧两种情况讨论,当在右侧时一定不成立,当在左侧时,判断是否存在点Q时∠QCO=90°﹣α即可.【解答】解:(1)设反比例函数的解析式是y=,把(1,8)代入得k=8,则反比例函数表达式为y=,把(m,2)代入得m==4,则B的坐标是(4,2).根据题意得:,解得:,,则直线表达式y=﹣2x+10;(2)过点B作BD⊥OC于点D,(图1)则D的坐标是(4,0).在y=﹣2x+10中,令y=0,解得x=5,则OC=5.∵在直角△OBD中,BD=2,OD=OC﹣OD=5﹣5=1,则OB2=OD2+BD2=42+22=20,同理,直角△BCD中,BC2=BD2+CD2=22+12=5=25,∴OB2+BC2=OC2,∴△OBC是直角三角形;(3)当Q在B的右侧时一定不成立.在y=﹣2x+10中,令x=0,则y=10,则当Q在的左边时,(图2)tan∠ACO=tanα=2,则tan(90°﹣α)=.当∠QCO=90°﹣α是,Q的横坐标是p,则纵坐标是,tan∠QCO=tan(90°﹣α)=:(5﹣p)=.即p2﹣5p+16=0,△=25﹣4×16=﹣39<0,则Q不存在.故当Q在AB之间时,满足条件,因而2<q<4.【点评】本题考查了待定系数法求反比例函数与一次函数的解析式以及正切函数的性质,判断Q在AB之间是关键.。
2015-2016学年八年级下学期期末质量检测数学试题带答案
E ODC BA2015-2016学年度第二学期期末质量检测八年级 数学一、选择题(本大题共10题,每题3分,共30分) 1.下列二次根式中,是最简二次根式的是A. B. 0.5 C.50 D.5下列计算正确的是 A.752=+ C. D.4. 若平行四边形中两个内角的度数比为1:2,则其中较大的内角是 A .120° B .90° C .60° D .45°5. 已知一组数据5、3、5、4、6、5、14.关于这组数据的中位数、众数、平均数, 下列说法正确的是A.中位数是4B.众数是14C.中位数和众数都是5D.中位数和平均数都是5 6.如图,在菱形ABCD 中,对角线AC 、BD 相交于点O ,E 为BC 的中点, 则下列式子中,一定成立的是A.OE BC 2=B. OE AC 2=C.OE AD =D.OE OB = 7. 要得到y=2x-4的图象,可把直线y=2xA . 向左平移4个单位 B. 向右平移4个单位 C. 向上平移4个单位 D. 向下平移4个单位 8. 对于函数y=-3x+1,下列结论正确的是A .它的图象必经过点(-1,3)B .它的图象经过第一、二、三象限C .当x >1时,y <0D .y 的值随x 值的增大而增大9.甲、乙两班举行电脑汉字录入比赛,参加学生每分钟录入汉字的个数统计计算后填入下表:某同学根据上表分析得出如下结论:22540=÷15)15(2-=-5112题①甲、乙两班学生成绩的平均水平相同;②乙班优秀的人数多于甲班优秀的人数(每分钟输入汉字数≥150个为优秀); ③甲班的成绩波动情况比乙班的成绩波动大. 其中正确结论的序号是A. ①②③ B .①② C .①③ D .②③10.王老师开车从甲地到相距240千米的乙地,如果油箱剩余油量Y (升)与行驶路程X (千米)之间是一次函数关系,如图,那么到达乙地时油 箱剩余油量是A. 10升B.20升C. 30升D. 40升二.填空题(本大题共6题,每题3分, 共18分)11 .函数3X2X Y +=的自变量X 的取值范围是______________12. 四边形ABCD 是周长为20cm 的菱形,点A 的坐标是则点B 的坐标为___________13.已知样本x 1 ,x 2 , x 3 , x 4的平均数是3,则x 1+3,x 2+3, x 3+3, x 4+3的平均数为 ____14.若一次函数y =(3-k )x -k 的图象经过第二、三、四象限,则k 的取值范围是____15.如图,以Rt △ABC 的三边为斜边分别向外作等 腰直角三角形,若斜边AB =3,则图中阴影部分 的面积为________.16.如图,矩形ABCD 中,AB=3,BC =4,点E 是BC 边上一点,连接AE ,把∠B 沿AE 折叠,使点B落在点B ′处,当△AEB ′为直角三角形时,BE 的长为___三、解答题(本大题共8题,共72分,解答时要写出必要的文字说明,演算步骤或推证过程)17.计算(本题共2小题,每小题5分,共10分) (1) 32)48312123(÷+-(2) (18.(本题满分8分)已知一次函数的图象经过(-2,1)和(1,4)两点, (1)求这个一次函数的解析式; (2)当x =3时,求y 的值。
泰兴市实验初级中学学初二下数学期末试题含答案
1 /3第17题泰兴市实验初级中学初二数学期末试题2017.6<时间:120分钟满分:100分>注意:请考生答在答题纸上.一、选择题:<本大题共8小题,每小题2分>1.下列图案中既是轴对称图形,又是中心对称图形的是<> A .B .C .D .2.下列运算正确的是<>A .8-2=6B .8÷2=4C .2)2(-=-2D .<-2>2=2 3. 如图,在平行四边形ABCD 中,EF ∥AB 交AD 于E,交BD 于F, DE :EA=3:4,EF=6,则CD 的长为<> A .14 B .17C .8D .124.一个不透明的袋子中装有2个红球、3个白球,每个球除颜色外都相同.从中任意摸出3个球,下列事件为必然事件的是<>A .至少有1个球是红球B .至少有1个球是白球C .至少有2个球是红球D .至少有2个球是白球 5.已知反比例函数y=-x2,下列结论不正确...的是<> A. 图象必经过点<-1,2> B. y 随x 的增大而增大 C. 图象在第二、四象限内D. 当x >1时,-2<y <06.将分式nm m-2中的m 、n 都扩大为原来的3倍,则分式的值<>A .不变B .扩大3倍C .扩大6倍D .扩大9倍7.如图,已知正方形ABCD 边长为1,连接AC 、BD,CE 平分∠ACD 交BD 于点E,则DE 长为〔 〕A .22-2B .3-1C .2-1D .2-2 8. 如图,Rt △AOB,∠AOB=90°,BO=2, AO=4.动点Q 从点O 出发, 以每秒1个单位长度的速度向B 运动,同时动点M 从A 点出发以每秒 2个单位长度的速度向O 运动,设运动的时间为t 秒<0<t <2>.过点Q 作OB 的垂线交线段AB 于点N, 则四边形OMNQ 的形状是<>A.平行四边形B.矩形C.菱形D.无法确定二、填空:<本大题共10小题,每小题2分> 9.要使21-x 有意义,x 的取值范围是______.10.当a=2017时,分式242--a a 的值是_______ .11.如果在比例尺为1∶1 000 000的地图上,A 、B 两地的图上距离是3.4厘米,则A 、B 两地的实际距离是 千米.12.已知点<-1,y 1>、<2,y 2>、<5,y 3>在反比例函数xk y 12+-=的图像上,则y 1、y 2、y 3的大小关系是__________<用">"连接>13.若关于x 的方程111----x xx m =0有增根,则m 的值是______. 14.如图,一次函数b kx y +=与反比例函数x m y =的图像交于A 、B 两点,则b kx xm+<<0的解集是_______________15.小华同学自制了一个简易的幻灯机,其工作情况如图所示,幻灯片与屏幕平行,光源到幻灯片的距离是30cm,幻灯片到屏幕的距离是1.5m,幻灯片上小树的高度是10cm,则屏幕上 小树的高度是cm.16.如图,四边形ABCD 为菱形,O 为两条对角线的交点,过点O 的三条直线将菱形分成阴影和空白部分.当菱形的两条对角线长分别为6和8时,则阴影部分的面积为.17.如图,点G 是△ABC 的重心,连结AG 并延长交BC 于点D ,过点G 作EF ∥AB 交BC 与E ,交AC与F ,若EF =8,则AB =.第14题 第15题 第16题18. 如图,在Rt ABC ∆中,90,3,4BAC AB AC ∠=︒==,点P 为BC 上任意一点,连接PA ,以,PA PC 为邻边作平行四边形PAQC ,连接PQ ,则PQ 的最小值为.三、解答题:19.<1><4分>解分式方程:223-x+x-11=3 Q2 /3O EDCBA30秒跳绳次数的频数分布直方图<2> <6分>先化简,再求值:2211x+1x 1⎛⎫-÷ ⎪-⎝⎭,其中13+=x .20.<6分>已知:如图△ABC 三个顶点的坐标分别为A<0,-3>、 B<3,-2>、C<2,-4>,正方形网格中,每个小正方形的 边长是1个单位长度.<1>画出△ABC 向上平移6个单位得到的△A 1B 1C 1; <2>以点C 为位似中心,在网格中画出△A 2B 2C 2,使△A 2B 2C 2与 △ABC 位似,且△A 2B 2C 2与△ABC 的位似比为2:1,并直接 写出点2A 的坐标.21.<6分>我校为迎接体育中考,了解学生的体育情况,学校随机调查了本校九年级若干名学生"30秒跳绳"的次数,并将调查所得的数据整理如下:根据以上图表信息,解答下列问题: <1>本次调查了九年级学生名; 表中的a =,m =;<2>请把频数分布直方图补充完整;<画图后请标注相应的数据><3>若该校九年级共有600名学生,请你估计"30秒跳绳"的次数60次以上<含60次>的学生有多少人?22.<6分>如图,已知菱形ABCD 的对角线AC 、BD 相交于点O , 延长AB 至点E ,使BE =AB ,连接CE . <1>求证:四边形BECD 是平行四边形; <2>若∠E =60°,AC =求菱形ABCD 的面积.23.<8分>为缓解城市交通压力,某市启动地铁工程,在一号线地铁工程开工期间,某工程队负责修建一条长1800米的隧道,计划每天修建隧道x 米,若施工12天后工程队采用新的施工方式,工效可以提升50%,预计比原计划提前56天完成任务.<1>工程队采用新的施工方式后,修建隧道的长度为米;<用含有x 的代数式表示> <2>求x 的值.24. <8分>我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭与关闭后,大棚内温度y <℃>随时间x <小时>变化的函数图象,其中BC 段是双曲线y=xk的一部分.请根据图##息解答下列问题: <1>恒温系统在这天保持大棚内温度18℃的时间有多少小时? <2>求k 的值;<3>当棚内温度不低于16℃时,该蔬菜能够快速生长,请问这天该蔬菜 能够快速生长多长时间?25.<10分>△ABC 中,点H 是BC 上一点,D 、E 分别是AB 、AC 中点,M 、N 分别为BH 、CH 中点 <1>如图1,求证:四边形DENM 是平行四边形.<2>如图2,当AH 与BC 满足什么关系时,□DENM 是正方形,请直接写出结论.<3>当AH 与BC 满足〔2〕中的关系,且S △ABC =2时,若点P 为AB 边上的动点,过点P 作PQ ⊥BC 于Q,PG ∥BC 交AC 于G ,GK ⊥BC于K,四边形PGKQ 的周长是否会随着P 点位置的变化而变化?若不变,请求出周长,若变化,请说明理由.图1 图2备用图26.<10分>如图,已知直线32+-=x y 与x 、y 轴交于M 、N,若将N 向右平移3个单位后的N ,,恰好落在反比例函数xky =的图像上. 30秒跳绳次数的频数、频率分布表3 / 3<1>求k 的值;<2>点P 为双曲线上的一个动点,过点P 作直线PA ⊥x 轴于 A 点,交NM 延长线于F 点,过P 点作PB ⊥y 轴于B 交 MN 于点E.设点P 的横坐标为m . ①用含有m 的代数式表示点E 、F 的坐标 ②找出图中与△EOM 相似的三角形,并说明理由.初二数学期末试题参考答案一、选择: ADABB ACB 二、填空: 9.x>2 10.2019 11.34 12.y 1>y 3>y 2 13.2 14.x<-1 15.60 16.12 17.12 18.512 三、解答 19.67 320.〔-2,-2〕21.50 0.2 16 336 22.8323.1800-2x 10 24.10 216 12.5 25.垂直且相等不变 426.k=6 E<23-6m ,6m> F<m, 23-m> △EOM ∽△OFN。
江苏省泰州中学附属初级中学八年级数学下学期期末考试试题
江苏省泰州中学附属初级中学2015-2016学年八年级数学下学期期末考试试题一、选择题(每小题3分,共18分)1、为了解某市八年级学生的课外数学阅读的时间,从中随机调查了400名学生的课外数学阅读的时间.下列说法正确的是( ▲ )A .某市八年级学生是总体B .每一名八年级学生是个体C .400名八年级学生是总体的一个样本D .样本容量是4002、质地均匀的骰子六个面分别刻有1到6的点数,掷两次骰子,得到向上一面的两个点数,则下列事件中,发生可能性最大的是( ▲ )A.点数都是偶数B.点数的和为奇数C.点数的和小于13D.点数和小于2 3、下列计算正确的是( ▲ ) A .532=+ B .632=⨯ C 248= D .13)13(2-=-4、一元二次方程2320x x --=的两根为12x x ,,则下列结论正确的是( ▲ ) A. 1212x x =-=, B. 121,2x x ==- C. 123x x += D. 122x x = 5、某服装厂准备加工400套运动装,在加工完160套后,采用了新技术,使得工作效率比原计划提高了20%,结果共用了18天完成任务,问计划每天加工服装多少套?在这个问题中,设计划每天加工x 套,则根据题意可得方程为( ▲ ) A .18%)201(400160=++x x B.18%)201(160400160=+-+xx C.18%20160400160=-+xx D.18%)201(160400400=+-+x x 6、若顺次连接四边形ABCD 各边的中点所得四边形是矩形,已知下列说法: (1)四边形ABCD 一定是矩形 (2)四边形ABCD 一定是菱形 (3) 四边形ABCD 的对角线相等(4)四边形ABCD 的面积是所得矩形面积的2倍则其中说法正确个数有(▲ )A .0B .1C .2D .3二、填空题(每小题3分,共30分)7、已知3=x 是方程260x x k -+=的一个根,则k = ▲ . 8、如图,在□ABCD 中,∠A =120°,则∠D = ▲ °.9、已知反比例函数x ky =的图象经过点P (-l ,2),则这个函数的图象位于 ▲ 象限10、某校为了了解九年级学生的体能情况,随机抽查了其中的ABCD 人数1210 第8题图30名学生,测试了1分钟仰卧起座的次数,并绘制成如图所示的频数分布直方图,请根据图示计算,仰卧起座次数在15~20次之间的频率是 ▲ .11、晓芳抛一枚质地均匀硬币10次,有7次正面朝上,当她抛第11次时,正面向上的概率为 ▲ 12、化简()222x y y x --的结果是 ▲ .13、计算:=+-3)23(2▲ . 14、已知a 为实数,那么()21a --等于 ▲ .15、矩形内有一点P 到各边的距离分别为1 cm 、3cm 、5cm 、7cm , 则该矩形的面积为 ▲ cm 2.16、如图,四边形ABCD 是正方形,ABE △是等边三角形,EC =232-,则正方形ABCD 的面积为 ▲ .三、解答题(共102分) 17、(本题满分10分)计算: (1)148312242÷-⨯+ (2)22141242x x x x x x -⎛⎫+÷- ⎪+-⎝⎭18、(本题满分10分)解方程 (1)2221x x x -=+ (2)23193xx x=+-- 19、(本题满分8分)如图,在□ABCD 中,AB =5,AC =4,AD =3. (1)求□ABCD 的面积; (2)求BD 的长20、(本题满分10分)某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,根据调查结果绘制了如下尚不完整的统计图.O AD C B第16题图(1)本次问卷共随机调查了 ▲ 名学生,扇形统计图中=m ▲ .(2)请根据数据信息补全条形统计图.并求扇形统计图中“D 类型”所对应的圆心角. (3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人? 21、(本题满分8分)一个不透明的盒子里有n 个除颜色外其他完全相同的小球,其中有6个黄球.(1)若先从盒子里拿走m 个黄球,这时从盒子里随机摸出一个球是黄球的事件为“随机事件”,则m 的最大值为 ▲ ;(2)若在盒子中再加入2个黄球,每次摸球前先将盒子里的球摇匀,任意摸出一个球记下颜色后再放回盒子,通过大量重复摸球实验后发现,摸到黄球的频率稳定在40%,问 n 的值大约是多少?22、(本题满分8分)已知:反比例函数()0ky k x=≠的图像过点A (k ,k -2) (1)求k 的值;(2)判断点B (m ,-m +3)是否在反比例函数()0ky k x=≠的图像上,并说明理由. 23、(本题满分10分)近期猪肉价格不断走高,引起民众及政府的关注,当市场猪肉平均每千克价格达到一定的单价时,政府将向市场投放储备猪肉以平抑猪肉价格.6月20日,猪肉价格为每千克40元.6月21日,政府决定向市场投放储备猪肉,并规定其销售价格在每千克40元的基础上下调a %销售.某超市按规定价格销售一批储备猪肉,还按每千克40元的价格销售了一些非储备的猪肉,这天两种猪肉的总销量比6月20日的总销量增加了a %,且储备猪肉的销量占总销量的34,两种猪肉的总销售金额比6月20日增加了1%10a ,求a 的值.24、(本题满分12分)(1)阅读:若一个三角形的三边长分别为a 、b 、c ,设()12p a b c =++,则这个三角形的面积为s =(2)应用:如图1,在△ABC 中,AB =6,AC =5,BC =4,求△ABC 面积.(3)引申:如图2,在(2)的条件下,AD 、BE 分别为△ABC 的角平分线,它们的交点为I ,求:I 到AB 的距离.25、(本题满分12分)在五边形ADBCE 中,∠ADB =∠AEC =90°,∠DAB =∠EAC ,M 、N 、O 分别为AC 、AB 、BC 的中点.(1)求证:△EMO ≌△OND ;(2)若AB =AC ,且∠BAC =40°,当∠DAB 等于多少时, 四边形ADOE 是菱形,并证明;26、(本题满分14分)关于x 的一元二次方程()222300a x ax a +-=≠.(1)求证:方程总有两个不相等的实数根;(2)当a <0时,设原方程的两个根分别为x 1、x 2, 且x 1>x 2①当21a -≤<-时,求:x 1,x 2的取值范围;②设点A (a ,x 1)B (a ,x 2)是平面直角坐标系xoy 中的两点,且OA =,求证:△ABO 是直角三角形注意:所有答案必须写在答题纸上第24题图 图1 图2A 第25题图参考答案一、选择题 D CBCBB 二、填空题7、9 8、60 9、二、四 10、0.1 11、1212、x y x y +- 13、2 14、0 15、48或60或64 16、8 三、解答题17、(1)4+(2)44x --18、(1)34± (2)-419、(1)12 (2)20、(1)50 、 32 (2)略 43.2°(3)560 21、(1)5 (2)1822、(1) 3 (2)不在 理由:略 23、2024、(2)4 (3) 225、(1)略 (2)35°理由:略 26、(1)略 (2)1332x ≤<,2112x -<≤- (3)略。
初二下学期数学练习题 含答案及解析
初二下学期数学练习题一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形 B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠34.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.247.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>18.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A .﹣1B .1C .52015D .﹣520159.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是( )A .①B .②C .③D .④10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是( )①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A .①③B .②③C .③④D .②④11.如图,在□ABCD 中,已知AD =8㎝, AB =6㎝, DE 平分∠ADC 交BC 边于点E ,则BE 等于( ) A. 2cm B. 4cmC. 6 cmD. 8cm12.一果农贩卖的西红柿,其重量与价钱成一次函数关系.小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少?( )A .1.5B .2C .2.5D .313.如图,在▱ABCD 中,对角线AC 与BD 相交于点O ,过点O 作EF ⊥AC 交BC 于点E ,交AD 于点F ,连接AE 、CF .则四边形AECF 是( )A .梯形B .矩形C .菱形D .正方形 14.已知xy >0,化简二次根式x的正确结果为( )A .B .C .﹣D .﹣15.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打( )A .六折B .七折C .八折D .九折16.已知2+的整数部分是a ,小数部分是b ,则a 2+b 2=( )A .13﹣2B .9+2C .11+D .7+4ABCD第11题图E17.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣119.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.2420.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为.24.若关于x的不等式组有4个整数解,则a的取值范围是.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?2015-2016学年山东省泰安市新泰市八年级(下)期末数学试卷参考答案与试题解析一、选择题(每小题3分)1.下列各数是无理数的是()A.B.﹣C.πD.﹣【考点】无理数.【分析】根据无理数的判定条件判断即可.【解答】解: =2,是有理数,﹣ =﹣2是有理数,∴只有π是无理数,故选C.【点评】此题是无理数题,熟记无理数的判断条件是解本题的关键.2.下列关于四边形的说法,正确的是()A.四个角相等的菱形是正方形B.对角线互相垂直的四边形是菱形C.有两边相等的平行四边形是菱形D.两条对角线相等的四边形是菱形【考点】多边形.【分析】根据菱形的判断方法、正方形的判断方法逐项分析即可.【解答】解:A、四个角相等的菱形是正方形,正确;B、对角线互相平分且垂直的四边形是菱形,错误;C、邻边相等的平行四边形是菱形,错误;D、两条对角线平分且垂直的四边形是菱形,错误;故选A【点评】本题考查了对菱形、正方形性质与判定的综合运用,特殊四边形之间的相互关系是考查重点.3.使代数式有意义的x的取值范围()A.x>2 B.x≥2 C.x>3 D.x≥2且x≠3【考点】二次根式有意义的条件;分式有意义的条件.【分析】分式有意义:分母不为0;二次根式有意义,被开方数是非负数.【解答】解:根据题意,得,解得,x≥2且x≠3.故选D.【点评】本题考查了二次根式有意义的条件、分式有意义的条件.概念:式子(a≥0)叫二次根式.性质:二次根式中的被开方数必须是非负数,否则二次根式无意义.4.如图,将△ABC绕着点C顺时针旋转50°后得到△A′B′C′,若∠A=45°,∠B′=110°,则∠BCA′的度数是()A.55°B.75°C.95°D.110°【考点】旋转的性质.【分析】根据旋转的性质可得∠B=∠B′,然后利用三角形内角和定理列式求出∠ACB,再根据对应边AC、A′C 的夹角为旋转角求出∠ACA′,然后根据∠BCA′=∠ACB+∠ACA′计算即可得解.【解答】解:∵△ABC绕着点C顺时针旋转50°后得到△A′B′C′,∴∠B=∠B′=110°,∠ACA′=50°,在△ABC中,∠ACB=180°﹣∠A﹣∠B=180°﹣45°﹣110°=25°,∴∠BCA′=∠ACB+∠ACA′=50°+25°=75°.故选B.【点评】本题考查了旋转的性质,三角形的内角和定理,熟记旋转变换的对应的角相等,以及旋转角的确定是解题的关键.5.已知点(﹣3,y1),(1,y2)都在直线y=kx+2(k<0)上,则y1,y2大小关系是()A.y1>y2B.y1=y2C.y1<y2D.不能比较【考点】一次函数图象上点的坐标特征.【分析】直线系数k<0,可知y随x的增大而减小,﹣3<1,则y1>y2.【解答】解:∵直线y=kx+2中k<0,∴函数y随x的增大而减小,∵﹣3<1,∴y1>y2.故选A.【点评】本题考查的是一次函数的性质.解答此题要熟知一次函数y=kx+b:当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.6.如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD 的面积为()A.6 B.12 C.20 D.24【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.【解答】解:在Rt△BCE中,由勾股定理,得CE===5.∵BE=DE=3,AE=CE=5,∴四边形ABCD是平行四边形.四边形ABCD的面积为BCBD=4×(3+3)=24,故选:D.【点评】本题考查了平行四边形的判定与性质,利用了勾股定理得出CE的长,又利用对角线互相平分的四边形是平行四边形,最后利用了平行四边形的面积公式.7.不等式组的解集是 x>2,则m的取值范围是()A.m<1 B.m≥1 C.m≤1 D.m>1【考点】解一元一次不等式组;不等式的性质;解一元一次不等式.【分析】根据不等式的性质求出不等式的解集,根据不等式组的解集得到2≥m+1,求出即可.【解答】解:,由①得:x>2,由②得:x>m+1,∵不等式组的解集是 x>2,∴2≥m+1,∴m≤1,故选C.【点评】本题主要考查对解一元一次不等式(组),不等式的性质等知识点的理解和掌握,能根据不等式的解集和已知得出2≥m+1是解此题的关键.8.若+|2a﹣b+1|=0,则(b﹣a)2016的值为()A.﹣1 B.1 C.52015D.﹣52015【考点】非负数的性质:算术平方根;非负数的性质:绝对值.【分析】首先根据非负数的性质,几个非负数的和是0,则每个非负数等于0列方程组求得a和b的值,然后代入求解.【解答】解:根据题意得:,解得:,则(b﹣a)2016=(﹣3+2)2016=1.故选B.【点评】本题考查了非负数的性质,几个非负数的和是0,则每个非负数等于0,正确解方程组求得a和b的值是关键.9.如图,在方格纸中选择标有序号①②③④的一个小正方形涂黑,使它与图中阴影部分组成的新图形为中心对称图形,该小正方形的序号是()A.①B.②C.③D.④【考点】中心对称图形.【分析】根据中心对称图形的特点进行判断即可.【解答】解:应该将②涂黑.故选B.【点评】本题考查了中心对称图形的知识,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10.顺次连接一个四边形的各边中点,得到了一个矩形,则下列四边形中满足条件的是()①平行四边形;②菱形;③矩形;④对角线互相垂直的四边形.A.①③B.②③C.③④D.②④【考点】中点四边形.【分析】有一个角是直角的平行四边形是矩形,根据此可知顺次连接对角线垂直的四边形是矩形.【解答】解:AC⊥BD,E,F,G,H是AB,BC,CD,DA的中点,∵EH∥BD,FG∥BD,∴EH∥FG,同理;EF∥HG,∴四边形EFGH是平行四边形.∵AC⊥BD,∴EH⊥EF,∴四边形EFGH是矩形.所以顺次连接对角线垂直的四边形是矩形.而菱形、正方形的对角线互相垂直,则菱形、正方形均符合题意.故选:D.【点评】本题考查矩形的判定定理和三角形的中位线的定理,从而可求解.11.已知a,b,c为△ABC三边,且满足(a2﹣b2)(a2+b2﹣c2)=0,则它的形状为()A.直角三角形B.等腰三角形C.等腰直角三角形D.等腰三角形或直角三角形【考点】等腰直角三角形.【分析】首先根据题意可得(a2﹣b2)(a2+b2﹣c2)=0,进而得到a2+b2=c2,或a=b,根据勾股定理逆定理可得△ABC的形状为等腰三角形或直角三角形.【解答】解:(a2﹣b2)(a2+b2﹣c2)=0,∴a2+b2﹣c2,或a﹣b=0,解得:a2+b2=c2,或a=b,∴△ABC的形状为等腰三角形或直角三角形.故选D.【点评】此题主要考查了勾股定理逆定理以及非负数的性质,关键是掌握勾股定理的逆定理:如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.12.已知果农贩卖的西红柿,其重量与价钱成一次函数关系.今小华向果农买一竹篮的西红柿,含竹篮称得总重量为15公斤,付西红柿的钱26元,若他再加买0.5公斤的西红柿,需多付1元,则空竹篮的重量为多少公斤?()A.1.5 B.2 C.2.5 D.3【考点】一次函数的应用.【分析】设价钱y与重量x之间的函数关系式为y=kx+b,由(15,26)、(15.5,27)利用待定系数法即可求出该一次函数关系式,令y=0求出x值,即可得出空蓝的重量.【解答】解:设价钱y与重量x之间的函数关系式为y=kx+b,将(15,26)、(15.5,27)代入y=kx+b中,得:,解得:,∴y与x之间的函数关系式为y=2x﹣4.令y=0,则2x﹣4=0,解得:x=2.故选B.【点评】本题考查了待定系数法求函数解析式,解题的关键是求出价钱y与重量x之间的函数关系式.本题属于基础题,难度不大,根据给定条件利用待定系数法求出函数关系式是关键.13.如图,在▱ABCD中,对角线AC与BD相交于点O,过点O作EF⊥AC交BC于点E,交AD于点F,连接AE、CF.则四边形AECF是()A.梯形B.矩形C.菱形D.正方形【考点】菱形的判定;平行四边形的性质.【分析】首先利用平行四边形的性质得出AO=CO,∠AFO=∠CEO,进而得出△AFO≌△CEO,再利用平行四边形和菱形的判定得出即可.【解答】解:四边形AECF是菱形,理由:∵在▱ABCD中,对角线AC与BD相交于点O,∴AO=CO,∠AFO=∠CEO,∴在△AFO和△CEO中,∴△AFO≌△CEO(AAS),∴FO=EO,∴四边形AECF平行四边形,∵EF⊥AC,∴平行四边形AECF是菱形.故选:C.【点评】此题主要考查了菱形的判定以及平行四边形的判定与性质,根据已知得出EO=FO是解题关键.14.已知xy>0,化简二次根式x的正确结果为()A.B.C.﹣D.﹣【考点】二次根式的性质与化简.【分析】二次根式有意义,y<0,结合已知条件得y<0,化简即可得出最简形式.【解答】解:根据题意,xy>0,得x和y同号,又x中,≥0,得y<0,故x<0,y<0,所以原式====﹣.故答案选D.【点评】主要考查了二次根式的化简,注意开平方的结果为非负数.15.某星期天下午,小强和同学小颖相约在某公共汽车站一起乘车回学校,小强从家出发先步行到车站,等小颖到了后两人一起乘公共汽车回学校,图中折线表示小强离开家的路程y(公里)和所用时间x(分)之间的函数关系,下列说法中错误的是()A.小强乘公共汽车用了20分钟B.小强在公共汽车站等小颖用了10分钟C.公共汽车的平均速度是30公里/小时D.小强从家到公共汽车站步行了2公里【考点】函数的图象.【分析】直接利用函数图象进而分析得出符合题意跌答案.【解答】解:A、小强乘公共汽车用了60﹣30=30(分钟),故此选项错误;B、小强在公共汽车站等小颖用了30﹣20=10(分钟),正确;C、公共汽车的平均速度是:15÷0.5=30(公里/小时),正确;D、小强从家到公共汽车站步行了2公里,正确.故选:A.【点评】此题主要考查了函数图象,正确利用图象得出正确信息是解题关键.16.某商品原价500元,出售时标价为900元,要保持利润不低于26%,则至少可打()A.六折B.七折C.八折D.九折【考点】由实际问题抽象出一元一次不等式.【分析】由题意知保持利润不低于26%,就是利润大于等于26%,列出不等式.【解答】解:设打折为x,由题意知,解得x≥7,故至少打七折,故选B.【点评】要抓住关键词语,弄清不等关系,把文字语言的不等关系转化为用数学符号表示的不等式.17.如图,直线y=﹣x+m与y=x+3的交点的横坐标为﹣2,则关于x的不等式﹣x+m>x+3>0的取值范围为()A.x>﹣2 B.x<﹣2 C.﹣3<x<﹣2 D.﹣3<x<﹣1【考点】一次函数与一元一次不等式.【分析】解不等式x+3>0,可得出x>﹣3,再根据两函数图象的上下位置关系结合交点的横坐标即可得出不等式﹣x+m>x+3的解集,结合二者即可得出结论.【解答】解:∵x+3>0∴x>﹣3;观察函数图象,发现:当x<﹣2时,直线y=﹣x+m的图象在y=x+3的图象的上方,∴不等式﹣x+m>x+3的解为x<﹣2.综上可知:不等式﹣x+m>x+3>0的解集为﹣3<x<﹣2.故选C.【点评】本题考查了一次函数与一元一次不等式,解题的关键是根据函数图象的上下位置关系解不等式﹣x+m>x+3.本题属于基础题,难度不大,解集该题型题目时,根据函数图象的上下位置关键解不等式是关键.18.已知2+的整数部分是a,小数部分是b,则a2+b2=()A.13﹣2B.9+2C.11+D.7+4【考点】估算无理数的大小.【分析】先估算出的大小,从而得到a、b的值,最后代入计算即可.【解答】解:∵1<3<4,∴1<<2.∴1+2<2+<2+2,即3<2+<4.∴a=3,b=﹣1.∴a2+b2=9+3+1﹣2=13﹣2.故选:A.【点评】本题主要考查的是估算无理数的大小,根据题意求得a、b的值是解题的关键.19.如图,四边形ABCD是菱形,AC=8,DB=6,DH⊥AB于H,则DH=()A.B.C.12 D.24【考点】菱形的性质.【分析】设对角线相交于点O,根据菱形的对角线互相垂直平分求出AO、BO,再利用勾股定理列式求出AB,然后根据菱形的面积等对角线乘积的一半和底乘以高列出方程求解即可.【解答】解:如图,设对角线相交于点O,∵AC=8,DB=6,∴AO=AC=×8=4,BO=BD=×6=3,由勾股定理的,AB===5,∵DH⊥AB,∴S菱形ABCD=ABDH=ACBD,即5DH=×8×6,解得DH=.故选A.【点评】本题考查了菱形的性质,勾股定理,主要利用了菱形的对角线互相垂直平分的性质,难点在于利用菱形的面积的两种表示方法列出方程.20.如图,正方形ABCD中,点E、F分别在BC、CD上,△AEF是等边三角形,连接AC交EF于G,下列结论:①BE=DF;②∠DAF=15°,③AC垂直平分EF,④BE+DF=EF,⑤S△AEC=S△ABC,其中正确结论有()个.A.5 B.4 C.3 D.2【考点】正方形的性质;全等三角形的判定与性质;等边三角形的性质.【分析】由正方形和等边三角形的性质得出△ABE≌△ADF,从而得出∠BAE=∠DAF,BE=DF,①正确;②正确;由正方形的性质就可以得出EC=FC,就可以得出AC垂直平分EF,③正确;设EC=x,由勾股定理和三角函数就可以表示出BE与EF,得出④错误;由三角形的面积得出⑤错误;即可得出结论.【解答】解:∵四边形ABCD是正方形,∴AB=BC=CD=AD,∠B=∠BCD=∠D=∠BAD=90°.∵△AEF等边三角形,∴AE=EF=AF,∠EAF=60°.∴∠BAE+∠DAF=30°.在Rt△ABE和Rt△ADF中,,∴Rt△ABE≌Rt△ADF(HL),∴BE=DF(故①正确).∠BAE=∠DAF,∴∠DAF+∠DAF=30°,即∠DAF=15°(故②正确),∵BC=CD,∴BC﹣BE=CD﹣DF,即CE=CF,∵AE=AF,∴AC垂直平分EF..设EC=x,由勾股定理,得EF=x,CG=x,AG=AEsin60°=EFsin60°=2×CGsin60°=x,∴AC=,∴AB=,∴BE=AB﹣x=,∴BE+DF=x﹣x≠x,(故④错误),∵S△AEC=CEAB,S△ABC=BCAB,CE<BC,∴S△AEC<S△ABC,故⑤错误;综上所述,正确的有①②③,故选:C.【点评】本题考查了正方形的性质的运用,全等三角形的判定及性质的运用,勾股定理的运用,等边三角形的性质的运用,三角形的面积公式的运用,解答本题时运用勾股定理的性质解题时关键.二、填空题(本大题共4小题,满分12分)21.已知直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),则a的取值范围是7≤a≤9 .【考点】一次函数图象上点的坐标特征.【分析】根据题意得到x的取值范围是2≤x≤3,则通过解关于x的方程2x+(3﹣a)=0求得x的值,由x的取值范围来求a的取值范围.【解答】解:∵直线y=2x+(3﹣a)与x轴的交点在A(2,0)、B(3,0)之间(包括A、B两点),∴2≤x≤3,令y=0,则2x+(3﹣a)=0,解得x=,则2≤≤3,解得7≤a≤9.故答案是:7≤a≤9.【点评】本题考查了一次函数图象上点的坐标特征.根据一次函数解析式与一元一次方程的关系解得x的值是解题的突破口.22.如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为2.【考点】轴对称-最短路线问题;正方形的性质.【分析】由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.【解答】解:连接BD,与AC交于点F.∵点B与D关于AC对称,∴PD=PB,∴PD+PE=PB+PE=BE最小.∵正方形ABCD的面积为12,∴AB=2.又∵△ABE是等边三角形,∴BE=AB=2.故所求最小值为2.故答案为:2.【点评】此题主要考查轴对称﹣﹣最短路线问题,要灵活运用对称性解决此类问题.23.在下面的网格图中,每个小正方形的边长均为1,△ABC的三个顶点都是网格线的交点,已知B,C两点的坐标分被为(﹣1,﹣1),(1,﹣2),将△ABC绕着点C顺时针旋转90°,则点A的对应点的坐标为(5,﹣1).【考点】坐标与图形变化-旋转.【分析】先利用B,C两点的坐标画出直角坐标系得到A点坐标,再画出△ABC绕点C顺时针旋转90°后点A的对应点的A′,然后写出点A′的坐标即可.【解答】解:如图,A点坐标为(0,2),将△ABC绕点C顺时针旋转90°,则点A的对应点的A′的坐标为(5,﹣1).故答案为:(5,﹣1).【点评】本题考查了坐标与图形变化:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.24.若关于x的不等式组有4个整数解,则a的取值范围是﹣≤a<﹣.【考点】一元一次不等式组的整数解.【分析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【解答】解:,由①得,x>8,由②得,x<2﹣4a,∵此不等式组有解集,∴解集为8<x<2﹣4a,又∵此不等式组有4个整数解,∴此整数解为9、10、11、12,∵x<2﹣4a,x的最大整数值为12,,∴12<2﹣4a≤13,∴﹣≤a<﹣.【点评】本题是一道较为抽象的中考题,利用数轴就能直观的理解题意,列出关于a的不等式组,临界数的取舍是易错的地方,要借助数轴做出正确的取舍.三、解答题(本大题共5个小题,共48分)25.(1)计算(+1)(﹣1)++﹣3(2)解不等式组,并在数轴上表示它的解集解不等式组,并把它们的解集表示在数轴上.【考点】二次根式的混合运算;在数轴上表示不等式的解集;解一元一次不等式组.【分析】(1)利用平方差公式、二次根式的性质化简计算即可;(2)利用解一元一次不等式组的一般步骤解出不等式组,把解集在数轴上表示出来.【解答】解:(1)原式=()2﹣12++×3﹣3×=3﹣1++﹣2=2+;(2),解①得,x<2,解②得,x≥﹣1,则不等式组的解集为:﹣1≤x<2.【点评】本题考查的是二次根式的混合运算、一元一次不等式组的解法,掌握二次根式的和和运算法则、一元一次不等式组的解法是解题的关键.26.如图,直线l1的解析式为y=﹣x+2,l1与x轴交于点B,直线l2经过点D(0,5),与直线l1交于点C(﹣1,m),且与x轴交于点A(1)求点C的坐标及直线l2的解析式;(2)求△ABC的面积.【考点】两条直线相交或平行问题.【分析】(1)首先利用待定系数法求出C点坐标,然后再根据D、C两点坐标求出直线l2的解析式;(2)首先根据两个函数解析式计算出A、B两点坐标,然后再利用三角形的面积公式计算出△ABC的面积即可.【解答】解:(1)∵直线l1的解析式为y=﹣x+2经过点C(﹣1,m),∴m=1+2=3,∴C(﹣1,3),设直线l2的解析式为y=kx+b,∵经过点D(0,5),C(﹣1,3),∴,解得,∴直线l2的解析式为y=2x+5;(2)当y=0时,2x+5=0,解得x=﹣,则A(﹣,0),当y=0时,﹣x+2=0解得x=2,则B(2,0),△ABC的面积:×(2+)×3=.【点评】此题主要考查了待定系数法求一次函数解析式,关键是掌握凡是函数图象经过的点必能满足解析式.27.如图,在△ABC中,D是BC边上的一点,E是AD的中点,过A点作BC的平行线交CE的延长线于点F,且AF=BD,连接BF.(1)证明:BD=CD;(2)当△ABC满足什么条件时,四边形AFBD是矩形?并说明理由.【考点】全等三角形的判定与性质;矩形的判定.【分析】(1)由AF与BC平行,利用两直线平行内错角相等得到一对角相等,再一对对顶角相等,且由E为AD 的中点,得到AE=DE,利用AAS得到三角形AFE与三角形DCE全等,利用全等三角形的对应边相等即可得证;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由为:由AF与BD平行且相等,得到四边形AFBD为平行四边形,再由AB=AC,BD=CD,利用三线合一得到AD垂直于BC,即∠ADB为直角,即可得证.【解答】解:(1)∵AF∥BC,∴∠AFE=∠DCE,∵E为AD的中点,∴AE=DE,在△AFE和△DCE中,,∴△AFE≌△DCE(AAS),∴AF=CD,∵AF=BD,∴CD=BD;(2)当△ABC满足:AB=AC时,四边形AFBD是矩形,理由如下:∵AF∥BD,AF=BD,∴四边形AFBD是平行四边形,∵AB=AC,BD=CD,∴∠ADB=90°,∴四边形AFBD是矩形.【点评】此题考查了全等三角形的判定与性质,以及矩形的判定,熟练掌握全等三角形的判定与性质是解本题的关键.28.如图,点P是正方形ABCD内一点,点P到点A、B和D的距离分别为1,2,,△ADP沿点A旋转至△ABP′,连结PP′,并延长AP与BC相交于点Q.(1)求证:△APP′是等腰直角三角形;(2)求∠BPQ的大小.【考点】旋转的性质;等腰直角三角形;正方形的性质.【分析】(1)根据正方形的性质得AB=AD,∠BAD=90°,再利用旋转的性质得AP=AP′,∠PAP′=∠DAB=90°,于是可判断△APP′是等腰直角三角形;(2)根据等腰直角三角形的性质得PP′=PA=,∠APP′=45°,再利用旋转的性质得PD=P′B=,接着根据勾股定理的逆定理可证明△PP′B为直角三角形,∠P′PB=90°,然后利用平角定义计算∠BPQ的度数.【解答】(1)证明:∵四边形ABCD为正方形,∴AB=AD,∠BAD=90°,∵△ADP沿点A旋转至△ABP′,∴AP=AP′,∠PAP′=∠DAB=90°,∴△APP′是等腰直角三角形;(2)解:∵△APP′是等腰直角三角形,∴PP′=PA=,∠APP′=45°,∵△ADP沿点A旋转至△ABP′,∴PD=P′B=,在△PP′B中,PP′=,PB=2,P′B=,∵()2+(2)2=()2,∴PP′2+PB2=P′B2,∴△PP′B为直角三角形,∠P′PB=90°,∴∠BPQ=180°﹣∠APP′﹣∠P′PB=180°﹣45°﹣90°=45°.【点评】本题考查了旋转的性质:对应点到旋转中心的距离相等;对应点与旋转中心所连线段的夹角等于旋转角;旋转前、后的图形全等.也考查了正方形的性质和勾股定理的逆定理.29.小颖到运动鞋店参加社会实践活动,鞋店经理让小颖帮助解决以下问题:运动鞋店准备购进甲乙两种运动鞋,甲种每双进价80元,售价120元;乙种每双进价60元,售价90元,计划购进两种运动鞋共100双,其中甲种运动鞋不少于65双.(1)若购进这100双运动鞋的费用不得超过7500元,则甲种运动鞋最多购进多少双?(2)在(1)条件下,该运动鞋店在6月19日“父亲节”当天对甲种运动鞋以每双优惠a(0<a<20)元的价格进行优惠促销活动,乙种运动鞋价格不变,请写出总利润w与a的函数关系式,若甲种运动鞋每双优惠11元,那么该运动鞋店应如何进货才能获得最大利润?【考点】一次函数的应用;一元一次不等式的应用;一次函数的性质.【分析】(1)设购进甲种运动鞋x双,根据题意列出关于x的一元一次不等式,解不等式得出结论;(2)找出总利润w关于购进甲种服装x之间的关系式,根据一次函数的性质判断如何进货才能获得最大利润.【解答】解:(1)设购进甲种运动鞋x双,由题意可知:80x+60(100﹣x)≤7500,解得:x≤75.答:甲种运动鞋最多购进75双.(2)因为甲种运动鞋不少于65双,所以65≤x≤75,总利润w=(120﹣80﹣a)x+(90﹣60)(100﹣x)=(10﹣a)x+3000,。
2016泰州英语试卷2016年江苏省泰州中学附属初中八年级下学期期末考试数学试题
数学(mathematics),是研究数量、结构、变化、空间以及信息等概念的一门学科,从某种角度看属于形式科学的一种。
今天,范文网小编是为大家分享2016年江苏省泰州中学附属初中八年级下学期期末考试数学试题范文,欢迎参考!2016年江苏省泰州中学附属初中八年级下学期期末考试数学试题(1)一、选择题(每题3分,共24分)1.下列数中不是无理数的是A.πB. ……D.2.下列式子中,是最简二次根式的是3.等腰三角形的两边长分别为2、4,则它的周长为或10D.以上都不对4.一次函数y=x+6的图像上有两点A(-1,y1)、B(2,y2),则y1与y2的大小关系是>=<≥y25.如图,△ABC中,AB=AC,BD⊥AC于D,CE⊥AB于E,BD、CE相交于点O,则图中全等三角形有对对对对6.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则一次函数y=kx+k的图像大致是ABCD7.如图,在平面直角坐标系中,在x轴、y轴的正半轴上分别截取OA、OB,使OA=OB;再分别以点A、B为圆心,以大于AB长为半径画弧,两弧交于点C.若点C的坐标为(m-1,2n),则m与n的关系为=+2n===18.下列说法:①若三角形一边上的中线和这边上的高重合,则这个三角形是等腰三角形;②若等腰三角形一腰上的高与底边的夹角为20°,则顶角为40°;③如果直角三角形的两边长分别为3、4,那么斜边长为5;④斜边上的高和一直角边分别相等的两个直角三角形全等.其中正确的说法有个个个个二、填空题(每题2分,共20分)的平方根是.10.小华的身高为,将身高精确到约为_______m.11.若式子在实数范围内有意义,则的取值范围是.12.如图,△ABC中,AB=AC,点D、E在边BC上,请你添加一个条件____________________,使△ABD与△ACE全等.13.请你写一个一次函数,使它的图像经过点(1,0),你写的函数为.14.如图,在Rt△ABC中,∠BAC=90°,过顶点A的直线DE∥BC,∠ABC,∠ACB的平分线分别交DE于点E、D,若AC=6,BC=10,则DE的长为.15.如图,直线相交于点P(m,1),则不等式-x+b>2x-3的解集为___________.16.如图,在Rt△ABC中,∠C=90°,BC=6,∠ABC的平分线BD交AC于D,且BD=8,点E是AB边上的一动点,则DE的最小值为.17.如图,在△ABC中,AB=AC=7,BC=6,AF⊥BC于F,BE⊥AC于E,D是AB的中点,则△DEF的周长是.第15题第16题第17题第18题18.如图,△ABC是第1个等腰直角三角形,∠C=90°,AC=BC=1,D是斜边AB的中点,以BD为一直角边向形外作第2个等腰直角三角形BDE,……,如此继续作下去,第n个等腰直角三角形的面积为________.三.解答题:19.(每小题4分,共12分)(1)计算:①②(+2)(-2)-(3-2)2(2)解方程:20.(本题6分)已知:如图,△ABC中,AB=AC,∠A=100°,BD是∠ABC的平分线,点E是BC上一点,且BD=BE.求∠DEC的度数.21.(本题6分)某厂计划生产A、B两种产品共50件.已知A产品每件可获利润1200元,B产品每件可获利润700元,设生产两种产品的获利总额为y(元),生产A产品x(件).(1)写出y与x之间的函数关系式;(2)若生产A、B两种产品的件数均不少于10件,求总利润的最大值.22.(本题6分)如图,有一个长方形花园,对角线AC是一条小路,现要在AD边上找一个位置建报亭,使报亭到小路两端点A、C的距离相等.(1)用尺规作图的方法,在图中找出报亭位置(不写作法,但需保留作图痕迹,交代作图结果);(2)如果AD=80m,CD=40m,求报亭到小路端点A的距离.23.(本题7分)如图,△ABC中,AB=AC,D、E、F分别在BC、AB、AC上,且BE=DC,BD=FC.(1)求证:DE=DF;(2)当∠A的度数为多少时,△DEF是等边三角形,并说明理由.24.(本题9分)甲、乙两地相距300千米,一辆轿车从甲地出发驶向乙地,同时一辆货车从乙地驶向甲地.如图,线段AB表示货车离甲地的距离y(千米)与行驶的时间x(小时)之间的函数关系;折线O-C-D表示轿车离甲地的距离y(千米)与行驶时间x(小时)之间的函数关系,请根据图像解答下列问题:(1)求线段CD对应的函数关系式;(2)求线段AB的函数关系式,并求出轿车出发多少小时与货车相遇?(3)当轿车出发多少小时两车相距80千米?25.(本题10分)如图,在平面直角坐标系中,OA=OB=OC=6,过点A的直线AD交BC于点D,交y轴与点G,△ABD的面积为△ABC面积的.(1)求点D的坐标;(2)过点C作CE⊥AD,交AB交于F,垂足为E.①求证:OF=OG;②求点F的坐标.(3)在(2)的条件下,在第一象限内是否存在点P,使△CFP为等腰直角三角形,若存在,直接写出点P坐标;若不存在,请说明理由.初二数学期末参考答案一、选择题:题号12345678答案BCBACDAC二、填空题:或-4≤1不唯一<216.18.三、解答题:19.(1)①②(2)x=-1或5°21.(1)y=500x+35000(2)55000元22.(1)略(2)50m23.(1)略(2)∠A=60°24.(1)y=100x-20(2y=-60x+300;2小时(3)25.(1)D(4,2)(2)①略②F(3)2016年江苏省泰州中学附属初中八年级下学期期末考试数学试题(2)一、选择题(每题 3 分,共 18 分) 1.下列调查中适合采用普查的是( ▲ )A.调查市场上某种牛奶中蛋白质的含量;B.调查鞋厂生产的鞋底能承受的弯折次数C.了解某班学生感染流感病毒的人数;D.了解我市“十三”规划知晓的情况2. 下列四个图形分别是四届国际数学家大会的会标,其中属于中心对称图形的有(▲)A 1个B2个C3个D 4个3.小明统计了他家今年 5 月份打电话的次数及通话时间,并列出了频数分布表:通话时间 x/min 频数(通话次数) 0<x≤5 20 5<x≤10 16 10<x≤15 9 15<x≤20 5则通话时间不超过 15min 的频率为( ▲ )4. 阅读下列各式从左到右的变形 (1)? b 2a ? b ? a ? a ? 2b(2) ?x ? 1 ?x ? 1 ? x? y x? y(3)1 1 ? ? ( x ? y) ? ( x ? y) x? y x? y▲ )(4)a2 ? 1 ? a ?1 a你认为其中变形正确的有( 个个 C. 1 个D. 0 个5. 如图,在平行四边形 ABCD 中,下列结论中错误的是( ▲ ) A.∠1=∠2 =CD B.∠BAD=∠BCD ⊥BD16. 下列说法正确的是( ) A.对角线互相垂直的四边形是平行四边形 B.对角线相等且互相平分的四边形是矩形 C.对角线相等且互相垂直的四边形是菱形D.对角线互相垂直的平行四边形是正方形二、填空题(每题 3 分,共 30 分)第 5 题图1 有意义,则 x 的取值为▲ x?2 1 1 8. 计算 ? 的结果为▲ a b7. 若分式.9 . 某冷饮店一天售出各种口味雪糕数量的扇形统计图如图,其中售出红豆口味的雪糕 200 支,那么售出水果口味雪糕的数量是▲ 支. 10. 方程x2 ? 4 =0 的解为 x?2▲2.第 9 题图11. 已知:一菱形的面积为 x -xy,一条对角线长为 x-y,则该菱形的另一条对角线长为▲ 。
江苏省泰兴市黄桥初级中学2024届数学八年级第二学期期末质量检测模拟试题含解析
江苏省泰兴市黄桥初级中学2024届数学八年级第二学期期末质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.将多项式-6a3b2-3a2b2+12a2b3分解因式时,应提取的公因式是()A.-3a2b2 B.-3ab C.-3a2b D.-3a3b32.如图,把矩形ABCD沿EF翻折,点B恰好落在AD边的B′处,若AE=2,DE=6,∠EFB=60°,则矩形ABCD的面积是()A.12 B.24 C.123D.1633.下图是某同学在沙滩上用石子摆成的小房子.观察图形的变化规律,第6个小房子用的石子数量为( )A.87 B.77 C.70 D.604.如图,一次函数y=kx+b的图象经过点(﹣1,0)与(0,2),则关于x的不等式kx+b>0的解集是()A.x>﹣1 B.x<﹣1 C.x>2 D.x<25.教练要从甲、乙两名射击运动员中选一名成绩较稳定的运动员参加比赛.两人在形同条件下各打了5发子弹,命中环数如下:甲:9、8、7、7、9;乙:10、8、9、7、1.应该选( )参加. A .甲B .乙C .甲、乙都可以D .无法确定6.在平面直角坐标系中,点O 为原点,直线y=kx+b 交x 轴于点A (﹣2,0),交y 轴于点B .若△AOB 的面积为8,则k 的值为( ) A .1B .2C .﹣2或4D .4或﹣47.已知(4+3)•a=b ,若b 是整数,则a 的值可能是( ) A .3 B .4+3C .4﹣3D .2﹣38.在函数23y x =-中x 的取值范围是( ) A .3x >B .3x >-C .3x ≠D .3x ≠-9.关于x 的方程()()231210ax a x a -+++=有两个不相等的实根1x 、2x ,且有11221x x x x a -+=-,则a 的值是( ) A .1 B .-1C .1或-1D .210.公式表示当重力为P 时的物体作用在弹簧上时弹簧的长度.表示弹簧的初始长度,用厘米(cm)表示,K 表示单位重力物体作用在弹簧上时弹簧的长度,用厘米(cm)表示.下面给出的四个公式中,表明这是一个短而硬的弹簧的是( ) A .L=10+0.5PB .L=10+5PC .L=80+0.5PD .L=80+5P二、填空题(每小题3分,共24分)11.如图,在正方形ABCD 中,边长为2的等边三角形AEF 的顶点E 、F 分别在BC 和CD 上,下列结论:①CE=CF ;②∠AEB=75°;③BE+DF=EF ;④S 正方形ABCD =23 其中正确的序号是 (把你认为正确的都填上).12.如图,若菱形ABCD 的顶点A ,B 的坐标分别为(3,0),(﹣2,0),点D 在y 轴上,则点C 的坐标是_____.13.如图,两个完全相同的正五边形ABCDE,AFGHM的边DE,MH在同一直线上,且有一个公共顶点A,若正五边形ABCDE绕点A旋转x度与正五边形AFGHM重合,则x的最小值为_____.14.在一次身体的体检中,小红、小强、小林三人的平均体重为42kg,小红、小强的平均体重比小林的体重多6kg,小林的体重是___kg.15.如图,矩形OABC中,D为对角线AC,OB的交点,直线AC的解析式为y2x4=+,点P是y轴上一动点,当PBD的周长最小时,线段OP的长为______.16.如图,点D是直线l外一点,在l上取两点A,B,连接AD,分别以点B,D为圆心,AD,AB的长为半径画弧,两弧交于点C,连接CD,BC,则四边形ABCD是平行四边形,理由是:_________________________.17.计算11x-−1xx-的结果为______18.已知一组数据44,45,45,51,52,54,则这组数据的众数是________.三、解答题(共66分)19.(10分)由边长为1的小正方形组成的格点中,建立如图平面直角坐标系,△ABC的三个顶点坐标分别为A(−2,1),B(−4,5),C(−5,2).(1)请画出△ABC关于y轴对称的△A1B1C1;(2)画出△ABC关于原点O成中心对称的△A2B2C2;(3)请你判断△AA1A2与△CC1C2的相似比;若不相似,请直接写出△AA1A2的面积. 20.(6分)已知四边形ABCD是正方形,△ADE是等边三角形,求∠BEC的度数.21.(6分)如图,△ABC的边AB=8,BC=5,AC=1.求BC边上的高.22.(8分)反比例函数kyx=的图象经过(21)A-,、(1)B m,、(2)C n,两点,试比较m、n大小.23.(8分)某校数学兴趣小组根据学习函数的经验,对函数y=12|x|+1的图象和性质进行了探究,探究过程如下:(1)自变量x的取值范围是全体实数,x与y的几组对应值如表:X …﹣4 ﹣3 ﹣2 ﹣1 0 1 2 3 4 …Y … 3 2.5 m 1.5 1 1.5 2 2.5 3 …(1)其中m=.(2)如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,根据描出的点,画出该函数的图象;(3)当2<y≤3时,x的取值范围为.24.(8分)我市某中学有一块四边形的空地ABCD,如图所示,为了绿化环境,学校计划在空地上种植草皮,经测量∠A=90°,AB=3m,DA=4m,BC=12m,CD=13m.(1)求出空地ABCD的面积.(2)若每种植1平方米草皮需要200元,问总共需投入多少元?25.(10分)在每年五月第二个星期日的母亲节和每年六月第三个星期日的父亲节这两天,很多青少年会精心准备小礼物和贺卡送给父母,以感谢父母的养育之恩.某商家看准商机,在今年四月底储备了母亲节贺卡A、B和父亲节贺卡C、D共2500张.(1)按照往年的经验,该商家今年母亲节贺卡的储备量至少应定为父亲节贺卡的1.5倍,求该商家今年四月底至多储备了多少张父亲节贺卡.(2)截至今年6月30日,母亲节贺卡A、B的销售总金额和父亲节贺卡C、D的销售总金额相同.已知母亲节贺卡A 的销售单价为20元,共售出150张,贺卡B的销售单价为2元,共售出1000张;父亲节贺卡C的销售单价比贺卡A 少m%,但是销售量与贺卡A相同,贺卡D的销售单价比贺卡B多4m%,销售量比贺卡B少m%,求m的值.26.(10分)如图,已知正方形ABCD中,以BF为底向正方形外侧作等腰直角三角形BEF,连接DF,取DF的中点G,连接EG,CG.(1)如图1,当点A与点F重合时,猜想EG与CG的数量关系为,EG与CG的位置关系为,请证明你的结论.(2)如图2,当点F在AB上(不与点A重合)时,(1)中结论是否仍然成立?请说明理由;如图3,点F在AB的左侧时,(1)中的结论是否仍然成立?直接做出判断,不必说明理由.(3)在图2中,若BC=4,BF=3,连接EC,求ECG的面积.参考答案一、选择题(每小题3分,共30分)1、A【解题分析】在找公因式时,一找系数的最大公约数,二找相同字母的最低次幂.同时注意首项系数通常要变成正数.2、D【解题分析】如图,连接BE,∵在矩形ABCD中,AD∥BC,∠EFB=60°,∴∠AEF=110°-∠EFB=110°-60°=120°,∠DEF=∠EFB=60°.∵把矩形ABCD沿EF翻折点B恰好落在AD边的B′处,∴∠BEF=∠DEF=60°.∴∠AEB=∠AEF-∠BEF=120°-60°=60°.在Rt△ABE中,AB=AE•tan∠AEB=2tan60°3∵AE=2,DE=6,∴AD=AE+DE=2+6=1.∴矩形ABCD的面积33D.考点:翻折变换(折叠问题),矩形的性质,平行的性质,锐角三角函数定义,特殊角的三角函数值.3、D【解题分析】分析:要找这个小房子的规律,可以分为两部分来看:第一个屋顶是3,第二个屋顶是3.第三个屋顶是2.以此类推,第n个屋顶是2n-3.第一个下边是4.第二个下边是5.第三个下边是36.以此类推,第n个下边是(n+3)2个.两部分相加即可得出第n个小房子用的石子数是(n+3)2+2n-3=n2+4n,将n=7代入求值即可.详解:该小房子用的石子数可以分两部分找规律:屋顶:第一个是3,第二个是3,第三个是2,…,以此类推,第n个是2n-3;下边:第一个是4,第二个是5,第三个是36,…,以此类推,第n个是(n+3)2个.所以共有(n+3)2+2n-3=n2+4n.当n=6时,n2+4n=60,故选:D.点睛:本题考查了图形的变化类,分清楚每一个小房子所用的石子个数,主要培养学生的观察能力和空间想象能力.4、A【解题分析】根据一次函数y=kx+b的图象经过点(-1,0),且y随x的增大而增大,得出当x>-1时,y>0,即可得到关于x的不等式kx+b>0的解集是x>-1.【题目详解】由题意可得:一次函数y=kx+b中,y>0时,图象在x轴上方,x>-1,则关于x的不等式kx+b>0的解集是x>﹣1,故选A.【题目点拨】此题主要考查了一次函数与一元一次不等式,关键是掌握数形结合思想.认真体会一次函数与一元一次不等式之间的内在联系.5、A【解题分析】试题分析:由题意可得,甲的平均数为:(9+8+7+7+9)÷5=8;方差为:=0.8乙的平均数为:(10+8+9+7+1)÷5=8;方差为:=2;∵0.8<2,∴选择甲射击运动员,故选A.考点:方差.6、D【解题分析】令x=0,y=b,∴B(0,b),∴OB=|b|,∵A(-2,0),∴OA=2,∴S△AOB=12OA·OB=8,即12×2×|b|=8,|b|=8,b=±8.∴B(0,8)或B(0,-8),①设y=kx+8,将A(-2,0)代入解析式得-2k+8=0,k=4;②设y=kx-8,将A(-2,0)代入解析式得-2k-8=0,k=-4;∴k=4或-4.故选D.点睛:将点的坐标转化为线段的长度时注意符号问题.7、C【解题分析】找出括号中式子的有理化因式即可得.【题目详解】解:(×()=42-)2=16-3=13,是整数,所以a的值可能为故选C【题目点拨】本题考查了有理化因式,正确选择两个二次根式,使它们的积符合平方差公式的结构特征是解题的关键.8、C【解题分析】根据分母不等于0列式计算即可得解.【题目详解】根据题意得,30x-≠,解得3x≠.故选C.【题目点拨】本题考查了函数自变量的范围,一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数; (2)当函数表达式是分式时,考虑分式的分母不能为0; (3)当函数表达式是二次根式时,被开方数非负. 9、B 【解题分析】根据根的判别式及一元二次方程的定义求得a 的取值范围,再根据一元二次方程根与系数的关系求得1212x x x x +、的值,再利用11221x x x x a -+=-列出以a 为未知数的方程,解方程求得a 值,由此即可解答. 【题目详解】∵关于x 的方程()()231210ax a x a -+++=有两个不相等的实根1x 、2x ,∴△=(3a+1)2-8a (a+1)=(a-1)2>0,1212312(1),a a x x x x a a+++==, a≠0, ∴a≠1且a≠0 ,∵11221x x x x a -+=-, ∴312(1)1a a a a a++-=-, 解得a=±1, ∴a=-1. 故选B. 【题目点拨】本题主要考查了根与系数的关系、根的判别式,利用根的判别式确定a 的取值及利用根与系数的关系列出方程求得a 的值是解决问题的关键. 10、A 【解题分析】试题分析:A 和B 中,L 0=10,表示弹簧短;A 和C 中,K=0.5,表示弹簧硬; 故选A考点:一次函数的应用二、填空题(每小题3分,共24分) 11、①②④ 【解题分析】分析:∵四边形ABCD 是正方形,∴AB=AD 。
江苏省泰兴市黄桥东区域2015-2016学年八年级数学下学期期中试题 苏科版
(第5题图) (第6题图) 江苏省泰兴市黄桥东区域2015-2016学年八年级数学下学期期中试题一、选择题:(本大题共6小题,每题3分,共18分)1.下面四个图形分别是节能、节水、低碳和绿色食品标志,在这四个标志中,是轴对称图形的是 B C 2.下列等式成立的是 ( ▲ )A .b a b a +=+321B .b a a b ab ab -=-2C .b a b a +=+122D .b a a b a a +-=+-3.下列有四种说法中,正确的说法是 ( ▲ ) ①了解某一天出入无锡市的人口流量用普查方式最容易;②“在同一年出生的367名学生中,至少有两人的生日是同一天”是确定事件; ③“打开电视机,正在播放少儿节目”是随机事件;④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件. A .①②③ B .①②④ C .①③④ D .②③④4. 顺次连结菱形各边中点所得的四边形一定是 ( ▲ ) A .正方形 B .菱形 C .等腰梯形 D .矩形5. 如图,在△ABC 中,AD 平分∠BAC,按如下步骤作图:第一步,分别以点A 、D 为圆心, 以大于AD 的一半长为半径在AD 两侧作弧,交于两点M 、N ;第二步,连接MN 分别交AB 、AC 于点E 、F ;第三步,连接DE 、DF ,则可以得到四边形AEDF 的形状 ( ▲ )A .仅仅只是平行四边形B .是矩形C .是菱形D .无法判断6.如图,已知直线a∥b,且a 与b 之间的距离为4,点A 到直线a 的距离为2,点B 到直线b 的距离为3,AB=302.试在直线a 上找一点M ,在直线b 上找一点N ,满足MN ⊥a 且AM+MN+NB 的长度和最短,则此时AM+NB 的值为 ( ▲ )A .6B .8C .10D .12二、填空题(本大题共10小题,每空3分,共30分) 7.9的平方根是 ▲ .8.使二次根式1-x 的有意义的x 的取值范围是 ▲ . 9.若分式3x -1的值为正整数,则整数x 的值为 ▲ . 10.若分式242--x x 的值为0,则x 的值为 ▲ .11.若关于x 的分式方程111+-=+x x mx 有增根,则m 的值为 ▲ .(第13题图) (第16题图) (第15题图)A B C 第14题 12.事件A 发生的概率为120,大量重复做这种试验,事件A 平均每100次发生的次数 ▲ .13.如图,在平行四边形ABCD 中,BM 是∠ABC 的平分线交CD 于点M ,且MC=2,平行四边形ABCD 的周长是14,则DM 等于 ▲ .14.如图,在Rt△ABC 中,∠ACB=90°,D 、E 、F 分别是AB 、BC 、CA 的中点,若CD=3cm ,则EF= ▲ cm . 15.如图,将两张长为9,宽为3的矩形纸条交叉,使重叠部分是一个菱形,容易知道当两张纸条垂直时,菱形的面积有最小值9,那么菱形面积的最大值是 ▲ .16.如图,在矩形ABCD 中,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,取EF 的中点G ,连接CG ,BG ,BD ,DG ,下列结论:①BE=CD ;②∠DGF =135°;③DCG BEG ∆∆≅;④∠ABG+∠ADG =180°;⑤若32=AD AB ,则3S △BDG =13S △DGF .其中正确的结论是 ▲ .(请填写所有正确结论的序号)三、解答题(本大题共10小题,共102分.解答时应写出文字说明、证明过程或演算步骤.) 17.(本题满分12分)计算: (1)32 +|2-3|-(3)2; (2)5(10-25)-2002.18.(本题满分12分)解方程:(1) 2x x -2-22-x =1 ; (2) x +1x -1-4x 2-1-1=0.19.(本题满分8分)设A =3a -3 a ÷a 2-2a +1 a 2- aa -1,先化简A ,再从0,1,2三个数中选择一个合适的数代入a ,并求出A 的值.20. (本题满分8分)如图,E 、F 分别是□ABCD 的边BC 、AD 上的点,且BE =DF . (1)求证:四边形AECF 是平行四边形;(2)若BC =10,∠BAC=90°,且四边形AECF 是菱形,求BE 的长.AB F DC21.(本题满分8分)在平面直角坐标系中,点A 的坐标是(0,3),点B 的坐标是(-4,0),将△AOB 绕点A 逆时针旋转90°得到△AEF ,点O 、B 的对应点分别是点E 、F .(1)请在图中画出△AEF .(2)请在x 轴上找一个点P ,使PE PA 的值最小,并直接写出P 点的坐标为 .22.(本题满分8分)在信息快速发展的社会,“信息消费”已成为人们生活的重要部分.我市区机抽取了部分家庭,调查每月用于信息消费的金额,数据整理成如图所示的不完整统计图.已知A 、B 两组户数直方图的高度比为1:5,请结合图中相关数据回答下列问题:(1)A 组的频数是 ,本次调查样本的容量是 ; (2)补全直方图(需标明各组频数.......); (3)若该社区有1500户住户,请估计月信息消费额不少于300元的户数是多少?23.(本题满分10分)宜兴紧靠太湖,所产百合有“太湖人参”之美誉,今年百合上市后,甲、乙两超市分别用12000元以相同的进价购进质量相同的百合,甲超市销售方案是:将百合按分类包装销售,其中挑出优质的百合400千克,以进价的2倍价格销售,剩下的百合以高于进价10%销售.乙超市的销售方案是:不将百合分类,直接包装销售,价格按甲超市分类销售的两种百合单价和的一半定价.若两超市将百合全部售完,其中甲超市获利8400元(其它成本不计).问: (1)百合进价为每千克多少元?(2)乙超市获利多少元?并比较哪种销售方式更合算.24.(本题满分10分)已知:如图,□ABCD 中,对角线AC ,BD 相交于点O ,延长CD 至F ,使DF=CD ,连接BF 交AD 于点E .(1)求证:AE=ED ;(2)若AB=BC ,求∠CAF 的度数.25. (本题满分12分)已知四边形ABCD 是正方形,等腰直角△AEF 的直角顶点E 在直线...BC ..上.(不与点B ,C 重合),FM ⊥AD ,交射线AD 于点M .E F A D C BO(1)当点E 在边BC 上,点M 在边AD 的延长线上时,如图①,请直接写出线段AB ,BE ,AM 之间的数量关系: ;(2)当点E 在边CB 的延长线上,点M 在边AD 上时,如图②;请探索线段AB ,BE ,AM 之间的数量关系,并证明;(3)若BE=6,∠AFM=15°,则AM= .26.(本题满分14分)我们知道平行四边形有很多性质.现在如果我们把平行四边形沿着它的一条对角线翻折,会发现这其中还有更多的结论. 【发现与证明】平行四边形ABCD 中,AB≠BC,将△ABC 沿AC 翻折至△AB′C,连结B′D. 结论1:B′D∥AC ;结论2:△AB′C 与平行四边形ABCD 重叠部分的图形是等腰三角形…… 请利用图1证明结论1或结论2(只需证明一个结论).【应用与探究】在平行四边形ABCD 中,已知∠B =30°,将△ABC 沿A C 翻折至△AB′C,连结B′D. (1)如图1,若75=∠D 'AB °,则∠ACB= ° ;(2)如图2,若34=AB ,2=BC ,AB′与边CD 相交于点E ,求△AEC 的面积;(3)已知AB =,当BC 长为多少时,△AB′D 是直角三角形?(直接写出BC 的长)八年级数学试题答案一.选择题(本大题共小题,每题二.填空题(本大题共7.3±; 8.1≥x ; 9.2,4 ; 10.-2 ; 11.1; 12. 5 13. 3;. 14. 3 15.15 ; 16.①③④⑤.三、解答题(本大题共10小题,共102分.解答时应写出文字说明、证明过程或演算步骤.) 17.(1) 23 (2)-1018.(1)x= -4 (2)x=1 (验根) 19. 2a a -1 当a =2时,A =2a a -1=4.20. (1)证明:在□ABCD 中,AD ∥BC ,AD=BC . ∵BE =DF , ∴AF=CE . ∵AF ∥CE , ∴四边形AECF 是平行四边形. (2)解:在菱形AECF 中,AE=CE ∴∠EAC=∠ECA∵∠EAC+∠EAB=∠ECA+∠B=90°,∴∠EAB=∠B ∴AE=BE , ∴E 为BC 中点 ∴BE=21BC=5. 21.(1)图略(2)P(0,23) 22.(1)2;50 。
江苏省泰兴市黄桥东区2015-2016学年八年级下学期期末考试物理试题解析01(解析版)
试卷满分:100分考试时间:90分钟第一部分选择题(共24分)一、选择题(每题4个选项中只有1个符合题意,每题2分,共24分)1.今年6月19日是“父亲节”,小华给爸爸煮了两个鸡蛋。
通常两个鸡蛋的总质量约为A.10g B.20g C.100g D.200g【答案】C【解析】考点:质量的估测2.下列物理量的单位是用科学家的名字规定的是A.速度B.质量C.密度D.压强【答案】D【解析】试题分析:为了纪念帕斯卡对物理学的贡献,以他的名字命名了压强的单位,故选D。
考点:物理常识3.下列实例中属于增大压强的是A.压路机上碾子质量很大B.书包背带较宽C.铁轨下铺设枕木D.载重车装有许多车轮【答案】A【解析】试题分析:压强大小跟压力大小和受力面积大小有关,增大压强的方法:在压力一定时,减小受力面积来增大压强;在受力面积一定时,增大压力来增大压强。
压路机上的碾子质量,在受力面积一定时,增大压力来增大压强,A符合题意;书包背带较宽,在压力一定时,增大了受力面积,减小了压强,B不符合题意;铁轨下铺设枕木,在压力一定时,增大了受力面积,减小了压强,C不符合题意;载重车装有许多车轮,在压力一定时,增大了受力面积,减小了压强,D不符合。
考点:增大压强的方法及其应用4.有许多日常用品应用了物质的物理属性,下列说法不正确的是A.冰箱门吸应用了磁铁的磁性B.撑杆跳高应用了撑杆的弹性C.导线用铜物质制造是应用了铜的导热性D.炒锅用铁物质制造是应用了铁的导热性【答案】C【解析】考点:物质的基本属性5.如图所示,一同学实验时在弹簧测力计的两侧沿水平方向各加6牛拉力,并使其保持静止,此时弹簧测力计的示数为A.0牛B.3牛C.6牛D.12牛【答案】C【解析】试题分析:弹簧测力计测量力的时候都是在静止或匀速直线运动状态下的,静止和匀速直线运动状态是一种平衡状态,受到的就一定是平衡力;弹簧测力计的示数等于挂钩上受到的力,题中弹簧测力计的挂钩上受到了6N的力,所以弹簧测力计的示数为6N,故选C。
2016-2017学年江苏省泰州市泰兴实验中学八年级(下)期末数学试卷(解析版)
.
第 3 页(共 25 页)
三、解答题: 19.(10 分)(1)解分式方程:
+ =3
(2)先化简,再求值:(1﹣ )÷
,其中 x= +1.
20.(6 分)已知:如图△ABC 三个顶点的坐标分别为 A(0,﹣3)、B(3,﹣2)、C(2,﹣ 4),正方形网格中,每个小正方形的边长是 1 个单位长度.
为
.
17.(2 分)如图,点 G 是△ABC 的重心,连结 AG 并延长交 BC 于点 D,过点 G 作 EF∥AB
交 BC 于 E,交 AC 于 F,若 EF=8,那么 AB=
.
18.(2 分)如图 Rt△ABC 中,∠BAC=90°,AB=3,AC=4,点 P 为 BC 上任意一点,连
接 PA,以 PA,PC 为邻边作平行四边形 PAQC,连接 PQ,则 PQ 的最小值为
A.至少有 1 个球是红球
B.至少有 1 个球是白球
C.至少有 2 个球是红球
D.至少有 2 个球是白球
5.(2 分)已知反比例函数 y=﹣ ,下列结论不正确的是( )
A.图象必经过点(﹣1,2) C.图象在第二、四象限内
B.y 随 x 的增大而增大 D.若 x>1,则﹣2<y<0
6.(2 分)将分式 中的 m、n 都扩大为原来的 3 倍,则分式的值( )
9.(2 分)分式
有意义时,x 的取值范围是
.
D.无法确定
10.(2 分)当 a=2017 时,分式
的值是
.
11.(2 分)如果在比例尺为 1:1 000 000 的地图上,A、B 两地的图上距离是 3.4 厘米,那
么 A、B 两地的实际距离是
千米.
12.(2 分)已知点(﹣1,y1)、(2,y2)、( ,y3)在反比例函数 y=﹣
江苏省泰兴市_八年级数学下学期期末考试试题(精选资料)苏科版
江苏省泰兴市2015-2016学年八年级数学下学期期末考试试题(考试时间:120分钟,满分:150分)一.选择题(每题3分,共计18分)1. 下列图案中,不是中心对称图形的是(▲)2.为了了解某区八年级学生的体重情况,从中抽取了200名学生进行体重测试.在这个问题中,下列说法错误的是(▲)A.200名学生的体重是总体B.200名学生的体重是一个样本C.每个学生的体重是个体D.全县八年级学生的体重是总体。
3. 菱形具有而矩形不一定具有的性质是(▲)A.对角线互相垂直B.对角线相等C.对角线互相平分D.对角互补4.顺次连接平行四边形四边中点所得的四边形一定是(▲)A.任意四边形B.平行四边形C.矩形D.菱形5.如图,将矩形ABCD绕点A旋转至矩形AB'C'D'位置,此时AC'的中点恰好与D点重合,AB' 交CD于点E,若AB=6,则△AEC的面积为( ▲ )A. 3 B.6 C..第5题第6题6.如图,正方形ABCD中,AB=2,点E、F在边AD、CD上,且∠EBF=45°,则△EBF面积最小值为(▲)A.4B.2C.2.4-二.填空题(每题3分,共计30分)7.当x = ▲ 时,分式293x x -+的值为0.8.x 的取值范围是 ▲ .9. 若1x =是关于x 的一元二次方程230x mx n ++=的解,则62m n += ▲ . 10.用反证法证明“同位角不相等,两直线不平行”,首先应假设__▲_______ 11.写一个含字母x 的分式,使得无论x 取何值时分式的值为负,分式可以为__▲_12.当m =____▲____,分式方程3233m x m x x-+=-- 无解. 13.若关于x 的一元二次方程22(1)10kx k x k +++-=有两个实数根,则k 的取值范围是 ▲ .14.已知双曲线3y x= 与直线2y x =+ 相交于点P (a,b ),则22a b - =__▲____15. 正比例函数y 1=mx (m >0)的图象与反比例函数y 2=kx(k ≠0)的图象交于点A (n ,4)和点B ,AM ⊥y 轴,垂足为M .若△AMB 的面积为8,则满足y 1>y 2的实数x 的取值范围是 ▲第15题 第16题16.如图,在直角坐标系中,已知点E (3,2)在双曲线y=(x >0)上.过动点P (t ,0)作x 轴的垂线分别与该双曲线和直线y=﹣x 交于A 、B 两点,以线段AB 为对角线作正方形ADBC ,当正方形ADBC 的边(不包括正方形顶点)经过点E 时,则t 的值为 ▲ .三.解答题(共11大题,102分)17.计算或解方程:(18分)()()32232332)32(2-+--(3)2341123x xx x--=-+(4)214111xx x+-=--(5) )4(5)4(2+=+xx (6) 052222=--xx18.化简求值:(8分)若2a=,求21211a aa a-+-的值.19.(8分)某校想了解学生每周的课外阅读时间情况,随机调查了部分学生,对学生每周的课外阅读时间x(单位:小时)进行分组整理,并绘制了如图所示的不完整的频数分布直方图和扇形统计图:根据图中提供的信息,解答下列问题:(1)补全频数分布直方图;(2)求扇形统计图中m的值和E组对应的圆心角度数;(3)请估计该校3000名学生中每周的课外阅读时间不小于6小时的人数;(4)若E组4名学生中刚好1名男生3名女生,从E组中任选一个学生去参加活动,则男生被选中的概率是多少?20.(8分)已知x 为任意实数, 比较2356x x -+ 与2245x x -+ 的大小.21. (8分)甲、乙两位同学同时为校文化艺术节制作彩旗.已知甲每小时比乙多做5面彩旗,甲做60面彩旗与乙做50面彩旗所用时间相等,问甲、乙每小时各做多少面彩旗?22. (8分)如图,将ABCD 的边AB 延长至点E ,使AB =BE ,连接DE 、EC ,DE 交BC 于点O .(1)求证:△ABD ≌△BEC ;(2)连接BD ,若∠BOD =2∠A ,求证:四边形BECD 是矩形.23. (8分)如图,在平面直角坐标系中,矩形OABC 的对角线OB ,AC 相交于点D ,且BE ∥AC ,AE ∥OB .(1)求证:四边形AEBD 是菱形;(2)如果OA =3,OC =2,求出经过点E 的反比例函数解析式.24. (10分)如图,在平面坐标系中,∠AOB =90°,AB ∥x 轴,OB =2,双曲线y =xk经过点B .将△AOB 绕点B 逆时针旋转,使点O 的对应点D 落在X 轴的正半轴上。
江苏省泰州市八年级下学期期末考试数学试题
江苏省泰州市八年级下学期期末考试数学试题姓名:________ 班级:________ 成绩:________一、选择题 (共11题;共22分)1. (2分) (2020八下·西山期末) 下列等式成立的是()A .B .C .D .2. (2分)下列四组线段中,可以构成直角三角形的是()A . 1,2,3B . 2,3,4C . 3,4,5D . 4,5,63. (2分)(2019·通州模拟) 一组数据2,4,x,6,8的众数为8,则这组数据的中位数为()A . 2B . 4C . 6D . 84. (2分) (2020八上·天桥期末) 关于正比例函数y=-3x,下列结论正确是()A . 图象不经过原点B . y的值随着x增大而增大C . 图象经过二、四象限D . 当x=1时,y=35. (2分) (2015八下·绍兴期中) 已知样本数据x1 , x2 , x3 ,…,xn的方差为4,则数据2x1+3,2x2+3,2x3+3,…,2xn+3的方差为()A . 11B . 9C . 16D . 46. (2分)如图,将▱ABCD折叠,使顶点D恰好落在AB边上的点M处,折痕为AN,那么对于结论:①MN∥BC;②MN=AM.下列说法正确的是()A . ①②都对B . ①②都错C . ①对,②错D . ①错,②对7. (2分) (2017八下·垫江期末) 一次函数y=3x﹣6的图象不经过()A . 第一象限B . 第二象限C . 第三象限D . 第四象限8. (2分)(2020·包头) 如图,在中,,,按以下步骤作图:(1)分别以点为圆心,以大于的长为半径作弧,两弧相交于两点(点M在的上方);(2)作直线交于点O ,交于点D;(3)用圆规在射线上截取.连接,过点O作,垂足为F ,交于点G .下列结论:① ;② ;③ ;④若,则四边形的周长为25.其中正确的结论有()A . 1个B . 2个C . 3个D . 4个9. (2分)设a<4,函数y=(x﹣a)2(x﹣4)的图象可能是()A .B .C .D .10. (2分)对平面上任意一点(a,b),定义f,g两种变换:f(a,b)=(a,﹣b).如f(1,2)=(1,﹣2);g(a,b)=(b,a).如g(1,2)=(2,1).据此得g(f(5,﹣9))=()A . (5,﹣9)B . (﹣9,﹣5)C . (5,9)D . (9,5)11. (2分)(2017·全椒模拟) 如图,AC,BD相交于点O,且OA=OC=4,OB=OD=6,P是线段BD上一动点,过点P作EF∥AC,与四边形的两条边分别交于点E,F,设BP=x,EF=y,则下列能表示y与x之间函数关系的图象是()A .B .C .D .二、填空题 (共6题;共6分)12. (1分)(2020·镇江模拟) 要使分式有意义,则字母x的取值范围是________.13. (1分)如图,在平面直角坐标系中直线y=x-2与y轴相交于点A,与反比例函数在第一象限内的图象相交于点B(m,2).将直线y=x-2向上平移后与反比例函数图象在第一象限内交于点C,且△ABC的面积为18,求平移后的直线的函数关系式是________ .14. (1分) (2017九上·信阳开学考) 计算﹣的结果是________.15. (1分)在演唱比赛中,5位评委给一位歌手的打分如下:8.2分,8.3分,7.8分,7.7分,8.0分,则这位歌手的平均得分是________分.16. (1分) (2019九下·温州竞赛) 如图,在等腰△ABC中,AC=BC,AB=24.D,E是AB的三等分点,以AD 为直径的⊙E正好过点C.P点为⊙E上一点,弦PC与半径AE交于点F,过点F作FG⊥CA,垂足为G,连接PA.若,则EF的长是________17. (1分) (2020九上·闵行期末) 设抛物线l:的顶点为D,与y轴的交点是C,我们称以C为顶点,且过点D的抛物线为抛物线l的“伴随抛物线”,请写出抛物线的伴随抛物线的解析式________.三、解答题 (共7题;共75分)18. (10分) (2020·兴化模拟)(1)计算:(2)解方程:19. (10分) (2017八下·路南期末) 如图,点O是△ABC内一点,连结OB、OC ,并将AB、OB、OC、AC的中点D、E、F、G依次连接,得到四边形DEFG .(1)求证:四边形DEFG是平行四边形;(2)如果∠BOC=90°,∠OCB=30°,OB=2,求EF的长.20. (15分)(2019·宁津模拟) 2013年5月31日是第26个“世界无烟日”,校学生会书记小明同学就“戒烟方式”的了解程度对本校九年级学生进行了一次随机问卷调查,如图是他采集数据后绘制的两幅不完整的统计图(A:了解较多,B:不了解,C:了解一点,D:非常了解).请你根据图中提供的信息解答以下问题:(1)在扇形统计图中的横线上填写缺失的数据,并把条形统计图补充完整。
江苏泰兴市西城中学2015年初二下期末试卷--数学
17.已知a2+3ab+b2=0(a≠0,b≠0),则代数式 的值等于______________
18.已知菱形ABCD的两条对角线分别为6和8,M、N分别是边BC、CD的中点,P是对角线BD上一点,则PM+PN的最小值=.
三、解答题
19.计算:(本题6分,每小题3分)
泰兴市西城中学2015春学期初二数学期末试卷
一.选择题(每题2分,共18分)
题号
1
2
3
4
5
6
7
8
9
答案
1.以下问题,不适合用全面调查的是()
A.了解全班同学每周体育锻炼的时间B.旅客上飞机前的安检
C.学校招聘教师,对应聘人员面试D.了解全市中小学生每天的零花钱
2.如果代数式 有意义,那么x的取值范围是()
A.2 B.2.4 C.2.6 D.3
9.两个反比例函数y= 和y= 在第一象限内的图象如图
所示,点P在y= 的图象上,PC⊥x轴于点C,交
y= 的图象于点A,PD⊥y轴于点D,交y= 的图象
于点B,当点P在y= 的图象上运动时,以下结论:①△ODB与△OCA的面积相等;②四边形PAOB的面积不会发生变化;③PA与PB始终相等;④当点A是PC的中点时,点B一定是PD的中点.其中一定正确的是()
x轴的正半轴上,反比例函数y= (x>0)的图象经过顶
点B,则k的值为()
A.12 B.20 C.24 D.32
6.如图,菱形纸片ABCD中,∠A=60°,折叠菱形纸片ABCD,
使点C落在DP(P为AB中点)所在的直线上,得到经过点
D的 折痕DE.则∠DEC的大小为( )
江苏省泰州市泰兴市八年级(下)期末数学模拟试卷(含答案)
江苏省泰州市泰兴市八年级(下)期末模拟试卷数学一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上)1.(3分)下列图形中既是中心对称图形又是轴对称图形的是()A.B.C.D.2.(3分)下列成语描述的事件为随机事件的是()A.水涨船高B.守株待兔C.水中捞月D.缘木求鱼3.(3分)下列计算正确的是()A.=±B.()2=﹣C.=3+4 D.=3+4 4.(3分)下列一元二次方程中,没有实数根的是()A.4x2﹣5x+2=0 B.x2﹣6x+9=0 C.5x2﹣4x﹣1=0 D.3x2﹣4x+1=05.(3分)物体所受的压力F (N)与所受的压强P(Pa)及受力面积S (m2)满足关系式为P×A=F(S≠0),当压力F (N)一定时,P与S的图象大致是()A.B.C.D.6.(3分)如图,平行四边形ABCD的顶点A的坐标为(﹣,0),顶点D在双曲线y=(x>0)上,AD交y轴于点E(0,2),且四边形BCDE的面积是△ABE面积的3倍,则k的值为()A.4 B.6 C.7 D.8二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题纸相应位置上.)7.(3分)五十中数学教研组有25名教师,将他们按年龄分组,在38﹣45岁组内的教师有8名教师,那么这个小组的频率是.8.(3分)在分式中,当x 时分式有意义.9.(3分)用反证法证明:“三角形中最多有一个钝角”时,首先应假设这个三角形中.10.(3分)已知+=0,则+= .11.(3分)关于x的方程是一元二次方程,则a= .12.(3分)关于x的方程的解是正数,则a的取值范围是.13.(3分)点(a﹣1,y1)、(a+1,y2)在反比例函数y=(k<0)的图象上,若y1>y2,则a的取值范围是.14.(3分)如图,小红在作线段AB的垂直平分线时,是这样操作的:分别以点A,B为圆心,大于线段AB长度一半的长为半径画弧,相交于点C,D,则直线CD即为所求.连结AC,BC,AD,BD,根据她的作图方法可知,四边形ADBC一定是.15.(3分)如图,菱形ABCD中,AB=4,∠A=120°,点P,Q,K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为.16.(3分)如图,在直角坐标系中,已知点E(3,2)在双曲线y=(x>0)上.过动点P(t,0)作x轴的垂线分别与该双曲线和直线y=﹣x交于A、B两点,以线段AB为对角线作正方形ADBC,当正方形ADBC的边(不包括正方形顶点)经过点E时,则t的值为.三、解答题(本大题共有10小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)计算:(1)(3+)(﹣)(2)a﹣b+.18.(10分)解方程:(1)=1﹣(2)x2﹣2x=4.19.(8分)小亮与小明做投骰子(质地均匀的正方体)的实验与游戏.(1)在实验中他们共做了50次试验,试验结果如下:朝上的点数123456出现的次数1096988①填空:此次实验中,“1点朝上”的频率是;②小亮说:“根据实验,出现1点朝上的概率最大.”他的说法正确吗?为什么?(2)在游戏时两人约定:每次同时掷两枚骰子,如果两枚骰子的点数之和超过6,则小亮获胜,否则小明获胜.则小亮与小明谁获胜的可能性大?试说明理由.20.(8分)某校八年级学生全部参加“初二生物地理会考”,从中抽取了部分学生的生物考试成绩,将他们的成绩进行统计后分为A,B,C,D四等,并将统计结果绘制成如下的统计图,请结合图中所给的信息解答下列问题(说明:测试总人数的前30%考生为A等级,前30%至前70%为B等级,前70%至前90%为C等级,90%以后为D等级)(1)抽取了名学生成绩;(2)请把频数分布直方图补充完整;(3)扇形统计图中A等级所在的扇形的圆心角度数是;(4)若测试总人数前90%为合格,该校初二年级有900名学生,求全年级生物合格的学生共约多少人.21.(10分)如图,△ABC中,AB=AC,E、F分别是BC、AC的中点,以AC为斜边作Rt△ADC.(1)求证:FE=FD;(2)若∠CAD=∠CAB=24°,求∠EDF的度数.22.(10分)探索:(1)如果=3+,则m= ;(2)如果=5+,则m= ;总结:如果=a+(其中a、b、c为常数),则m= ;应用:利用上述结论解决:若代数式的值为整数,求满足条件的整数x的值.23.(10分)如图1,△ABC和△DBC都是边长为2的等边三角形.(1)以图1中的某个点为旋转中心,旋转△DBC,就能使△DBC与△ABC重合,则满足题意的点为:(写出符合条件的所有点);(2)将△DBC沿BC方向平移得到△D1B1C1,如图2、图3,则四边形ABD1C1是平行四边形吗?证明你的结论;(3)在(2)的条件下,当BB1= 时,四边形ABD1C1为矩形.24.(10分)某经销单位将进货27.4元的商品按每件40元销售,经两次调价后调至每件32.4元.(1)若该商店两次调价的降价率相同,求这个降价率;(2)经调查,该商品每降价0.2元,其销量就增加10件,若该商品原来每月可销售500件,那么两次调价后,每月销售该商品可获利多少元?25.(12分)如图,点A(2,2)在双曲线y1=(x>0)上,点C在双曲线y2=﹣(x<0)上,分别过A、C向x轴作垂线,垂足分别为F、E,以A、C为顶点作正方形ABCD,且使点B在x轴上,点D在y轴的正半轴上.(1)求k的值;(2)求证:△BCE≌△ABF;(3)求直线BD的解析式.26.(14分)“半角型”问题探究:(1)如图1,在四边形ABCD中,AB=AD,∠BAD=120°,∠B=∠ADC=90°,且∠EAF=60°,探究图中线段BE,EF,FD之间的数量关系.小明同学的方法是将△ABE绕点A逆时针旋转120°到△ADG的位置,然后再证明△AFE≌△AFG,从而得出结论:(2)如图2,在四边形ABCD中,AB=AD,∠B+∠D=180°,E,F分别是边BC,CD上的点,且∠EAF=∠BAD,上述结论是否仍然成立,并说明理由.归纳应用(3)正方形ABCD中,点E、F分别在BC、CD上,且∠EAF=45°,已知BE=3,DF=2,求正方形ABCD的边长.拓展提高(4)边长为4的正方形ABCD中,点E、F分别在AB、CD上,AE=CF=1,O为EF 的中点,动点G、H分别在边AD、BC上,EF与GH的交点P在O、F之间(与0、F不重合),且∠GPE=45°,设AG=m,求m的取值范围.江苏省泰州市泰兴市八年级(下)期末模拟试卷参考答案与试题解析一、选择题(本大题共有6小题,每小题3分,共18分.在每小题所给出的四个选项中,恰有一项是符合题目要求的,请将正确选项的字母代号填涂在答题纸相应位置上)1.【解答】解:A、不是轴对称图形,是中心对称图形;B、是轴对称图形,是中心对称图形;C、是轴对称图形,不是中心对称图形;D、不是轴对称图形,是中心对称图形.故选:B.2.【解答】解:水涨船高是必然事件,A不正确;守株待兔是随机事件,B正确;水中捞月是不可能事件,C不正确缘木求鱼是不可能事件,D不正确;故选:B.3.【解答】解:A、=,故此选项错误;B、()2=﹣,二次根式无意义,故此选项错误;C、==5,故此选项错误;D、=3+4,正确.故选:D.4.【解答】解:A、∵△=25﹣4×2×4=﹣7<0,∴方程没有实数根,故本选项正确;B、∵△=36﹣4×1×4=0,∴方程有两个相等的实数根,故本选项错误;C、∵△=16﹣4×5×(﹣1)=36>0,∴方程有两个相等的实数根,故本选项错误;D、∵△=16﹣4×1×3=4>0,∴方程有两个相等的实数根,故本选项错误;故选:A.5.【解答】解:P=,所以P与S为反比例函数关系,因为S>0,所以反比例函数图象在第一象限.故选:C.6.【解答】解:如图,连结BD,∵四边形EBCD的面积是△ABE面积的3倍,∴平行四边形ABCD的面积是△ABE面积的4倍,∴S△ABD =2S△ABE,∴AD=2AE,即点E为AD的中点,∵E点坐标为(0,2),A点坐标为(﹣,0),∴D点坐标为(,4),∵顶点D在双曲线y=(x>0)上,∴k=×4=6,故选:B.二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题纸相应位置上.)7.【解答】解:根据题意,38﹣45岁组内的教师有8名,即频数为8,而总数为25;故这个小组的频率是为=0.32;故答案为0.32.8.【解答】解:由题意,得x+1≥0且x≠0,解得x>﹣1且x≠0;故答案为:x>﹣1且x≠0.9.【解答】解:∵“最多有一个”的反面是“至少有两个”,反证即假设原命题的逆命题正确∴应假设:至少有两个角是钝角.故答案为:至少有两个角是钝角.10.【解答】解:由题意得,a﹣3=0,2﹣b=0,解得a=3,b=2,所以,+=+=+=.故答案为:.11.【解答】解:由题意得:,解得:a=3.故答案为:a=3.12.【解答】解:去分母得2x+a=x﹣1,解得x=﹣a﹣1,∵关于x的方程的解是正数,∴x>0且x≠1,∴﹣a﹣1>0且﹣a﹣1≠1,解得a<﹣1且a≠﹣2,∴a的取值范围是a<﹣1且a≠﹣2.故答案为:a<﹣1且a≠﹣2.13.【解答】解:∵k<0,∴在图象的每一支上,y随x的增大而增大,①当点(a﹣1,y1)、(a+1,y2)在图象的同一支上,∵y1>y2,∴a﹣1>a+1,解得:无解;②当点(a﹣1,y1)、(a+1,y2)在图象的两支上,∵y1>y2,∴a﹣1<0,a+1>0,解得:﹣1<a<1,故答案为:﹣1<a<1.14.【解答】解:∵分别以A和B为圆心,大于AB的长为半径画弧,两弧相交于C、D,∴AC=AD=BD=BC,∴四边形ADBC一定是菱形,故答案为:菱形.15.【解答】解:如图,作点P关于BD的对称点P′,连接P′Q与BD的交点即为所求的点K,然后根据直线外一点到直线的所有连线中垂直线段最短的性质可知P′Q⊥CD时PK+QK的最小值,作AE⊥CD,∴AE=P′Q,∵AB=4,∠A=120°,∴∠DAE=30°,∴AE=cos30°•AD=4×=2∴点P′到CD的距离为2,∴PK+QK的最小值为2.故答案为:2.16.【解答】解:存在两种情况:①当AD经过点E时,如图1所示:∵点E(3,2)在双曲线y=(x>0)上,∴k=3×2=6,∴双曲线解析式为:y=,∵四边形ADBC是正方形,∴∠DAB=∠DAC=45°,∵AB⊥x轴,∴设直线AD的解析式为y=﹣x+b,把点E(3,2)代入得:b=5,∴直线AD的解析式为:y=﹣x+5,设A(t,),代入y=﹣x+5得:﹣t+5=,解得:t=2,或t=3(不合题意,舍去),∴t=2;②当BD经过点E时,如图2所示:∵BD⊥AD,∴设直线BD的解析式为:y=x+c,把点E(3,2)代入得:c=﹣1,∴直线BD的解析式为:y=x﹣1,设B(t,﹣t),代入y=x﹣1得:﹣t=t﹣1,解得:t=;综上所述:当正方形ADBC的边(不包括正方形顶点)经过点E时,t的值为:2或;故答案为:2或.三、解答题(本大题共有10小题,共102分,请在答题卡指定区域内作答,解答时应写出必要的文字说明、证明过程或演算步骤)17.【解答】解:(1)原式=3﹣3+2﹣5=﹣2﹣;(2)原式==.18.【解答】解:(1)方程两边都乘以2x﹣1,得:x=2x﹣1+2,解得:x=﹣1,检验:当x=﹣1时,2x﹣1=﹣3≠0,∴分式方程的解为x=﹣1;(2)∵x2﹣2x+1=4+1,即(x﹣1)2=5,∴x﹣1=,则x=1.19.【解答】解:(1)①0.2,②不正确,因为在一次实验中频率并不等于概率,只有当实验中试验次数很大时,频率才趋近于概率.(2)列表如下:123456第2枚骰子掷得第1枚的点数骰子掷得的点数123456723456783456789456789105678910116789101112所有可能的结果共有36种,每一种结果出现的可能性相同.所以P(点数之和超过6)=,P(点数之和不超过6)=,因为>,所以小亮获胜的可能性大.20.【解答】解:(1)根据题意得:23÷46%=50(名),则抽取了50名学生成绩;故答案为:50;(2)D等级的学生有50﹣(10+23+12)=5(名),补全直方图,如图所示:(3)根据题意得:20%×360°=72°,故答案为:72°;(4)根据题意得:900×90%=810(人),则全年级生物合格的学生共约810人.21.【解答】(1)证明:∵E、F分别是BC、AC的中点,∴FE=AB,∵F是AC的中点,∠ADC=90°,∴FD=AC,∵AB=AC,∴FE=FD;(2)解:∵E、F分别是BC、AC的中点,∴FE∥AB,∴∠EFC=∠BAC=24°,∵F是AC的中点,∠ADC=90°,∴FD=AF.∴∠ADF=∠DAF=24°,∴∠DFC=48°,∴∠EFD=72°,∵FE=FD,∴∠FED=∠EDF=54°.22.【解答】解:探索:(1)已知等式整理得:=,即3x+4=3x+3+m,解得:m=1;故答案为:1;(2)已知等式整理得:=,即5x﹣3=5x+10+m,解得:m=﹣13;总结:m=b﹣ac;故答案为:m=b﹣ac;应用:==4+,∵x为整数且为整数,∴x﹣1=±1,∴x=2或0.23.【解答】解:(1)∵等边△ABC和等边△DBC有公共的底边BC,∴AB=BC=CD=AD,∴四边形ABCD是菱形.∴要旋转△DBC,使△DBC与△ABC重合,有三点分别为:B点、C点、BC的中点,故答案为:B点、C点、BC的中点;(2)四边形ABD1C1是平行四边形.理由如下:根据平移的性质,得到BB1=CC1,根据等边三角形的性质,得到AC=B1D1,∠BB1D1=∠ACC1,∴△BB1D1≌△ACC1,∴AC1=BD1,又AB=C1D1,∴四边形ABD1C1是平行四边形;(3)当移动距离BB1=2时,四边形ABC1D1是矩形.理由:连接BC1,AD1,∵△ABD,△BDC都是边长为2的等边三角形,∴AD=BD=DD1,∠ADB=60°,∴∠DAD1=∠DD1A=30°,∴∠BAD=60°+30°=90°,∵由(2)可得出四边形ABC1D1是平行四边形,∴平行四边形ABC1D1是矩形.故答案为:2.24.【解答】解:(1)设这个降价率是x,依题意得:40(1﹣x)2=32.4,解得:x1=0.1=10%,x2=1.9(舍去);答:这个降价率为10%;(2)∵降价后多销售的件数:[(40﹣32.4)÷0.2]×10=380,∴两次调价后,每月可销售该商品数量为:380+500=880(件),∴每月销售该商品可获利(32.4﹣27.4)×880=4400元;答:两次调价后,每月销售该商品可获利4400元.25.=,【解答】(1)解:把点A(2,2)代入y1得:2=,∴k=4;(2)证明:∵四边形ABCD是正方形,∴BC=AB,∠ABC=90°,BD=AC,∴∠EBC+∠ABF=90°,∵CE⊥x轴,AF⊥x轴,∴∠CEB=∠BFA=90°,∴∠BCE+∠EBC=90°,∴∠BCE=∠ABF,在△BCE和△ABF中,,∴△BCE≌△ABF(AAS);(3)解:连接AC,作AG⊥CE于G,如图所示:则∠AG C=90°,AG=EF,GE=AF=2,由(2)得:△BCE≌△ABF,∴BE=AF=2,CE=BF,设OB=x,则OE=x+2,CE=BF=x+2,∴OE=CE,∴点C的坐标为:(﹣x﹣2,x+2),=﹣(x<0)得:﹣(x+2)2=﹣9,代入双曲线y2解得:x=1,或x=﹣5(不合题意,舍去),∴OB=1,BF=3,CE=OE=3,∴EF=2+3=5,CG=1=OB,B(﹣1,0),AG=5,在Rt△BOD和Rt△CGA中,,∴Rt△BOD≌Rt△CGA(HL),∴OD=AG=5,∴D(0,5),设直线BD的解析式为:y=kx+b,把B(﹣1,0),D(0,5)代入得:,解得:k=5,b=5.∴直线BD的解析式为:y=5x+5.26.【解答】(1)解:如图1,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;故答案为:EF=BE+DF;(2)解:结论EF=BE+DF仍然成立;理由:如图2,延长FD到点G.使DG=BE.连结AG,在△ABE和△ADG中,∵,∴△ABE≌△ADG(SAS),∴AE=AG,∠BAE=∠DAG,∵∠EAF=∠BAD,∴∠GAF=∠DAG+∠DAF=∠BAE+∠DAF=∠BAD﹣∠EAF=∠EAF,∴∠EAF=∠GAF,在△AEF和△GAF中,∵,∴△AEF≌△AGF(SAS),∴EF=FG,∵FG=DG+DF=BE+DF,∴EF=BE+DF;(3)解:如图3,延长CD到点G,截取DG=BE,连接AG,在△AEB与△AGD中,∵,∴△AEB≌△AGD(SAS),∴AE=GG,∠BAE=∠GAD,∵∠EAF=45°,∠BAD=90°,∴∠BAE+∠DAF=45°,∴∠DAF+∠DAG=45°.在△EAF与△GAF中,∵,∴△EAF≌△GAF(SAS),∴EF=GF=BE+DF=5,设正方形ABCD的边长=x,∴CE=x﹣3,CF=x﹣2,∵EF2=CE2+CF2,∴25=(x﹣3)2+(x﹣2)2,∴x=6,x=﹣1(不合题意,舍去),∴正方形ABCD的边长是6;(4)①假设P与O重合,如图4,∵O为EF的中点,∴O为正方形ABCD的对称中心,过A作AN∥EF交CD于N,则NF=AE=1,∴DN=CN=2,过O作G′H′∥GH交AD于G′,交BC于H′,∴AG′=CH′,DG′=BH′,过A作AM∥G′H′交BC于M,∴AG′=MH′,∠G′OE=45°,∴∠MAN=45°,延长CD到Q,使DQ=BM′,由(3)知MN=NQ,设BM=a,则CM=4﹣a,MN=QN=a+2,∵MN2=CM2+CN2,∴(2+a)2=(4﹣a)2+22,解得:a=,∴AG′=;②当H与C重合时,如图5,由①知BM=,∴AG″=CM=4﹣=;∴m的取值范围为:<m≤.。
泰兴市-八年级数学下学期期末试题附答案
泰兴市2014-2015八年级数学下学期期末试题(附答案)泰兴市2014-2015八年级数学下学期期末试题(附答案)一、选择题(本大题共有6小题,每小题3分,共18分)1.随着人们生活水平的提高,我国拥有汽车的居民家庭也越来越多,下列汽车标志中,是中心对称图形的是()ABCD2.以下问题,不适合用全面调查的是()A.了解全班同学每周体育锻炼的时间B.了解全市中小学生每天的零花钱C.学校招聘教师,对应聘人员面试D.旅客上飞机前的安检3.今年某初中有近1千名考生参加中考,为了了解这些考生的数学成绩,从中抽取50名考生的数学成绩进行统计分析,以下说法正确的是()A.这50名考生是总体的一个样本B.近1千名考生是总体C.每位考生的数学成绩是个体D.50名学生是样本容量4.下列变形正确的是()A.B.C.D.5.如果把中的x与y都扩大为原来的10倍,那么这个代数式的值()A.不变B.扩大为原来的3倍C.扩大为原来的10倍D.缩小为原来的6.已知下列命题,其中真命题的个数是()①若,则;②对角线互相垂直且相等的四边形是正方形;③两组对角分别相等的四边形是平行四边形;④在反比例函数中,如果函数值y1时,那么自变量x2.A.4个B.3个C.2个D.1个二、填空题(本大题共10小题,每小题3分,共30分)7.若代数式在实数内范围有意义,则的取值范围为.8.从﹣1,0,π,3中随机任取一数,取到无理数的概率是.9.当a=时,最简二次根式与是同类二次根式.10.如果+=0,则+=.11.已知(-2,y1),(-1,y2),(3,y3)是反比例函数的图象上的三个点,则y1,y2,y3的大小关系是______________.12.如图,在直角△OAB中,∠AOB=30°,将△OAB绕点O逆时针旋转100°得到△OA1B1,则∠A1OB=.13.若关于x的方程=+1无解,则a的值是.14.如图,平行四边形中,点在上,以为折痕,把△向上翻折,点正好落在边的点处,若△的周长为6,平行四边形的周长为26,那么的长为.15.如图,在正方形ABCD中,E为DC边上的点,连接BE,将△BCE绕点C顺时针方向旋转90°得到△DCF,连接EF.若∠BEC=60°,则∠EFD的度数为.16.如图,四边形是矩形,四边形是正方形,点在轴的负半轴上,点在轴的正半轴上,点在上,点在反比例函数的图像上,正方形的面积为4,且,则值为____.三、解答题(本大题共10小题,共102分)17.计算:(每小题6分,共12分)(1)解方程:(2)计算:18.(本题满分8分)先化简,再求值:,其中.19.(本题满分8分)如图,E,F是四边形ABCD对角线AC 上的两点,AD∥BC,DF∥BE,AE=CF.求证:(1)△AFD≌△CEB;(2)四边形ABCD是平行四边形.20.(本题满分8分)在一个暗箱里放有a个除颜色外都完全相同的红、白、蓝三种球,其中红球有4个,白球有10个,每次将球搅拌均匀后,任意摸出一个球记下颜色再放回暗箱.通过大量重复摸球实验后发现,摸到红球的频率稳定在20%.(1)试求出a的值;(2)从中任意摸出一个球,下列事件:①该球是红球;②该球是白球;③该球是蓝球.试估计这三个事件发生的可能性的大小,并将三个事件按发生的可能性从小到大的顺序排列(用序号表示事件).21.(本题满分10分)某校为了解2014年八年级学生课外书籍借阅情况,从中随机抽取了40名学生课外书籍借阅情况,将统计结果列出如下的表格,并绘制成如图所示的扇形统计图,其中科普类册数占这40名学生借阅总册数的40%.类别科普类教辅类文艺类其他册数(本)12880m48(1)求表格中字母m的值及扇形统计图中“教辅类”所对应的圆心角a的度数;(2)该校2014年八年级有500名学生,请你估计该年级学生共借阅教辅类书籍约多少本?第21题22.(本题满分10分)某乐器厂接到制作480件小提琴的订单,为了尽快完成任务,该厂实际每天制作的件数比原来每天多50%,结果提前10天完成任务.原来每天制作多少件?23.(本题满分10分)我市某蔬菜生产基地在气温较低时,用装有恒温系统的大棚栽培一种在自然光照且温度为18℃的条件下生长最快的新品种.如图是某天恒温系统从开启到关闭及关闭后,大棚内温度y(℃)随时间x(小时)变化的函数图象,其中BC段是双曲线的一部分.请根据图中信息解答下列问题:(1)恒温系统在这天保持大棚内温度18℃的时间有多少小时?(2)求k的值;(3)当x=16时,大棚内的温度为多少度?第23题24.(本题满分10分)阅读下列材料,然后回答问题:在进行二次根式运算时,我们有时会碰上如、这样的式子,其实我们还可以将其进一步化简:;。
江苏省泰州市泰兴市黄桥东区八年级数学下期期中试题(含解析)新人教版
②“在同一年出生的 367 名学生中,至少有两人的生日是同一天”是必然事件;
③“打开电视机,正在播放少儿节目”是随机事件;
④如果一件事发生的概率只有十万分之一,那么它仍是可能发生的事件.
其中,正确的说法是(
)
A.①②③
B.①②④
C.①③④
D.②③④
【考点】 随机事件;全面调查与抽样调查;概率的意义.
=
有增根,则 m的值为
.
12.事件 A 发生的概率为 13.如图,在平行四边形 14,则 DM等于
,大量重复做这种试验,事件 A 平均每 100 次发生的次数是 ABCD中, BM是∠ ABC的平分线交 CD于点 M,且 MC=2,平行四边形
.
. ABCD的周长是
14.如图,在 Rt △ ABC 中,∠ ACB=90°, D、 E、 F 分别是 AB、 BC、 CA 的中点,若 CD=3cm,则 EF= cm.
21.在平面直角坐标系中,点 A 的坐标是( 0, 3),点 B 的坐标是(﹣ 4, 0),将△ AOB 绕点 A 逆时针旋转
90°得到△ AEF,点 O、 B 的对应点分别是点 E、 F.
(1)请在图中画出△ AEF.
(2)请在 x 轴上找一个点 P,使 PA+PE的值最小,并直接写出 P 点的坐标为
BC 于点 E,交 DC 的延长线于点
F,取 EF 的中点 G,连接
⑤若
=
,则 3S△BDG=13S△ . DGF
其中正确的结论是
.(请填写所有正确结论的序号)
三、解答题(本大题共 17.计算:
(1)
+|
10 小题,共 102 分.解答时应写出文字说明、证明过程或演算步骤.)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2015-2016学年江苏省泰州市泰兴市黄桥东区域八年级(下)期末数学试卷一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列图形中,是中心对称图形的是()A.B.C. D.2.(3分)为了解2016年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是5003.(3分)下列计算正确的是()A.=B.×= C.=4 D.=4.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=95.(3分)当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A.B.C.D.6.(3分)下列说法:(1)矩形的对角线互相垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分.其中正确的个数是()A.1个 B.2个 C.3个 D.4个二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题纸相应位置上.)7.(3分)在英文单词believe中,字母“e”出现的频率是.8.(3分)在分式中,当x=时分式没有意义.9.(3分)当x≤2时,化简:=.10.(3分)已知:+|b﹣1|=0,那么(a+b)2016的值为.11.(3分)若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是.12.(3分)若关于x的方程=+2产生增根,那么m的值是.13.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“<”连接y1,y2,y3为.14.(3分)如图,边长为6的正方形ABCD和边长为8的正方形BEFG排放在一起,O1和O2分别是两个正方形的对称中心,则△O1BO2的面积为.15.(3分)平行四边形ABCD中一个角的平分线把一条边分成3cm和4cm两部分,则这个四边形的周长是cm.16.(3分)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,且点C (4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过秒该直线可将□OABC的面积平分.三、解答题(本大题共有10小题,共102分)17.(10分)计算(1)(﹣2)2﹣×(2)﹣a+1.18.(10分)解方程:(1)+=;(2)(x﹣2)2=2x﹣4.19.(8分)先化简再求值:÷(m﹣1﹣),其中m是方程x2﹣x=2016的解.20.(10分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了名同学;(2)条形统计图中,m=,n=;(3)扇形统计图中,艺术类读物所在扇形的圆心角是度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?21.(10分)如图,在四边形ABCD中,AB∥CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.22.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路米;(2)求原计划每小时抢修道路多少米?23.(8分)先观察下列等式,再回答问题:①=1+1=2;②=2+=2;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.24.(12分)码头工人每天往一艘轮船上装载货物,装载速度y(吨/天)与装完货物所需时间x(天)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?25.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.26.(14分)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴相交于点C,与反比例函数在第一象限内的图象相交于点A(1,8)、B(m,2).(1)求该反比例函数和直线y=kx+b的表达式;(2)求证:△OBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图象上一动点且满足90°﹣α<∠QOC<α,求点Q的横坐标q的取值范围.2015-2016学年江苏省泰州市泰兴市黄桥东区域八年级(下)期末数学试卷参考答案与试题解析一、选择题(共6小题,每小题3分,满分18分)1.(3分)下列图形中,是中心对称图形的是()A.B.C. D.【分析】根据中心对称图形的定义逐个判断即可.【解答】解:A、不是中心对称图形,故本选项不符合题意;B、不是中心对称图形,故本选项不符合题意;C、是中心对称图形,故本选项符合题意;D、不是中心对称图形,故本选项不符合题意;故选:C.2.(3分)为了解2016年泰兴市八年级学生的视力情况,从中随机调查了500名学生的视力情况.下列说法正确的是()A.2016年泰兴市八年级学生是总体B.每一名八年级学生是个体C.500名八年级学生是总体的一个样本D.样本容量是500【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,而样本容量则是指样本中个体的数目.我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象.从而找出总体、个体.再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量.【解答】解:A、2016年泰兴市八年级学生的视力情况是总体,故A错误;B、每一名八年级学生的视力情况是个体,故B错误;C、从中随机调查了500名学生的视力情况是一个样本,故C错误;D、样本容量是500,故D正确;故选:D.3.(3分)下列计算正确的是()A.=B.×= C.=4 D.=【分析】分别根据二次根式的加减法则和乘法法则求解,然后选择正确选项.【解答】解:A、和不是同类二次根式,不能合并,故错误;B、×=,原式计算正确,故正确;C、=2,原式计算错误,故错误;D、﹣=2﹣,原式计算错误,故错误.故选:B.4.(3分)用配方法解方程x2﹣2x﹣5=0时,原方程应变形为()A.(x+1)2=6 B.(x﹣1)2=6 C.(x+2)2=9 D.(x﹣2)2=9【分析】方程常数项移到右边,两边加上1变形即可得到结果.【解答】解:方程移项得:x2﹣2x=5,配方得:x2﹣2x+1=6,即(x﹣1)2=6.故选:B.5.(3分)当压力F(N)一定时,物体所受的压强p(Pa)与受力面积S(m2)的函数关系式为P=(S≠0),这个函数的图象大致是()A.B.C.D.【分析】根据实际意义以及函数的解析式,根据函数的类型,以及自变量的取值范围即可进行判断.【解答】解:当F一定时,P与S之间成反比例函数,则函数图象是双曲线,同时自变量是正数.故选:C.6.(3分)下列说法:(1)矩形的对角线互相垂直且平分;(2)菱形的四边相等;(3)一组对边平行,另一组对边相等的四边形是平行四边形;(4)正方形的对角线相等,并且互相垂直平分.其中正确的个数是()A.1个 B.2个 C.3个 D.4个【分析】依据矩形的性质、菱形的性质、平行线四边形的判定定理、正方形的性质求解即可.【解答】解:(1)矩形的对角线相等且互相平分,故(1)错误;(2)菱形的四边相等,故(2)正确;(3)等腰梯形的一组对边平行,另一组对边相等,故(3)错误;(4)正方形的对角线相等,并且互相垂直平分,故(4)正确.故选:B.二、填空题(本大题共10个小题,每小题3分,共30分.请把答案直接填写在答题纸相应位置上.)7.(3分)在英文单词believe中,字母“e”出现的频率是.【分析】先求出英文单词believe总的字母个数和e的个数,再根据握频率=进行计算即可.【解答】解:∵英文单词believe共有7个字母,其中有3个e,∴字母“e”出现的频率是;故答案为:.8.(3分)在分式中,当x=﹣2时分式没有意义.【分析】根据分式无意义,分母等于0列方程求解即可.【解答】解:由题意得,2+x=0,解得x=﹣2.故答案为:﹣2.9.(3分)当x≤2时,化简:=2﹣x.【分析】直接利用完全平方公式和二次根式的性质,再结合x的取值范围化简即可.【解答】解:∵x≤2,∴==2﹣x.故答案为:2﹣x.10.(3分)已知:+|b﹣1|=0,那么(a+b)2016的值为1.【分析】根据非负数的性质分别求出a、b的值,代入代数式计算即可.【解答】解:由题意得,a+2=0,b﹣1=0,解得,a=﹣2,b=1,则(a+b)2016=1,故答案为:1.11.(3分)若关于x的一元二次方程x2﹣2x+4m=0有实数根,则m的取值范围是m≤.【分析】根据判别式的意义得到△=(﹣2)2﹣4×4m≥0,然后解不等式即可.【解答】解:根据题意得△=(﹣2)2﹣4×4m≥0,解得m≤.故答案为m≤.12.(3分)若关于x的方程=+2产生增根,那么m的值是1.【分析】分式方程去分母转化为整式方程,根据分式方程有增根得到x﹣2=0,将x=2代入整式方程计算即可求出m的值.【解答】解:分式方程去分母得:x﹣1=m+2x﹣4,由题意得:x﹣2=0,即x=2,代入整式方程得:2﹣1=m+4﹣4,解得:m=1.故答案为:1.13.(3分)已知点(﹣1,y1),(2,y2),(3,y3)在反比例函数y=的图象上,则用“<”连接y1,y2,y3为y2<y3<y1.【分析】先根据反比例函数中k<0判断出函数图象所在的象限及增减性,再根据各点横坐标的特点即可得出结论.【解答】解:∵反比例函数y=中,﹣k2﹣1<0,∴函数图象的两个分式分别位于二、四象限,且在每一象限内y随x的增大而增大,∵﹣1<0,∴点A(﹣1,y1)位于第二象限,∴y1>0;∵0<2<3,∴B(1,y2)、C(2,y3)在第四象限,∵2<3,∴y2<y3<0,∴y2<y3<y1.故答案为:y2<y3<y1.14.(3分)如图,边长为6的正方形ABCD和边长为8的正方形BEFG排放在一起,O1和O2分别是两个正方形的对称中心,则△O1BO2的面积为12.【分析】由O1和O2分别是两个正方形的对称中心,可求得BO1,BO2的长,易证得∠O1BO2是直角,继而求得答案.【解答】解:∵O1和O2分别是这两个正方形的中心,∴BO1=×6=3,BO2=×8=4,∠O1BC=∠O2BC=45°,∴∠O1BO2=∠O1BC+∠O2BC=90°,∴阴影部分的面积=×3×4=12.故答案是:12.15.(3分)平行四边形ABCD中一个角的平分线把一条边分成3cm和4cm两部分,则这个四边形的周长是20或22cm.【分析】利用平行四边形的性质和角平分线证出∠DAE=∠BEA,得出AB=BE,由此求出另一边,从而求出周长,注意两种情况.【解答】解:如图所示:∵四边形ABCD是平行四边形,∴AB=CD,AD=BC,AD∥BC,∵∠A的平分线交BC于点E,∴∠BAE=∠DAE∵AD∥BC,∴∠DEA=∠BEA,∴∠DAE=∠BEA∴AB=BE,分两种情况进行讨论:当BE=3cm,EC=4cm时,AB=BE=3cm,BC=7cm,平行四边形的周长=2(3+7)=20(cm);当BE=4cm,EC=3cm时,AB=BE=4cm,BC=7cm,平行四边形的周长=2(4+7)=22(cm);综上所述:▱ABCD的周长是22或22cm.故答案为20或22.16.(3分)在平面直角坐标系中,▱OABC的边OC落在x轴的正半轴上,且点C (4,0),B(6,2),直线y=2x+1以每秒1个单位的速度向下平移,经过6秒该直线可将□OABC的面积平分.【分析】首先连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将□OABC 的面积平分,然后计算出过D且平行直线y=2x+1的直线解析式,从而可得直线y=2x+1要向下平移6个单位,进而可得答案.【解答】解:连接AC、BO,交于点D,当y=2x+1经过D点时,该直线可将□OABC 的面积平分;∵四边形AOCB是平行四边形,∴BD=OD,∵B(6,2),点C(4,0),∴D(3,1),设DE的解析式为y=kx+b,∵平行于y=2x+1,∴k=2,∵过D(3,1),∴DE的解析式为y=2x﹣5,∴直线y=2x+1要向下平移6个单位,∴时间为6秒,故答案为:6.三、解答题(本大题共有10小题,共102分)17.(10分)计算(1)(﹣2)2﹣×(2)﹣a+1.【分析】(1)先利用完全平方公式和二次根式的乘法法则运算,然后合并即可;(2)先进行通分,然后进行同分母的减法运算即可.【解答】解:(1)原式=3﹣4+4﹣=7﹣4﹣6=1﹣4;(2)原式=﹣==.18.(10分)解方程:(1)+=;(2)(x﹣2)2=2x﹣4.【分析】(1)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解;(2)方程整理后,利用因式分解法求出解即可.【解答】解:(1)去分母得:x﹣1+2x+2=4,解得:x=1,经检验x=1是增根,原方程无解;(2)方程整理得:(x﹣2)2﹣2(x﹣2)=0,分解因式得:(x﹣2)(x﹣2﹣2)=0,即(x﹣2)(x﹣4)=0,可得x﹣2=0或x﹣4=0,解得:x1=2,x2=4.19.(8分)先化简再求值:÷(m﹣1﹣),其中m是方程x2﹣x=2016的解.【分析】先将括号内通分计算分式的减法,再讲除式分子因式分解、除法转化为乘法,约分即可化简,由方程得解得概念可得m2﹣m=2016,即可知原式的值.【解答】解:原式=÷[﹣]=÷=•=,∵m是方程x2﹣x=2016的解,∴m2﹣m=2016,∴原式=.20.(10分)在读书月活动中,学校准备购买一批课外读物,为使课外读物满足同学们的需求,学校就“我最喜爱的课外读物”从文学、艺术、科普和其他四个类别进行了抽样调查(每位同学只选一类),如图是根据调查结果绘制的两幅不完整的统计图.请你根据统计图提供的信息,解答下列问题:(1)本次调查中,一共调查了200名同学;(2)条形统计图中,m=40,n=60;(3)扇形统计图中,艺术类读物所在扇形的圆心角是72度;(4)学校计划购买课外读物5000册,请根据样本数据,估计学校购买其他类读物多少册比较合理?【分析】(1)结合两个统计图,根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,即可得出总人数;(2)利用科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,即可得出m的值;(3)利用360°乘以对应的百分比即可求解;(4)根据喜欢其他类读物人数所占的百分比,即可估计6000册中其他读物的数量;【解答】解:(1)根据条形图得出文学类人数为:70,利用扇形图得出文学类所占百分比为:35%,故本次调查中,一共调查了:70÷35%=200人,故答案为:200;(2)根据科普类所占百分比为:30%,则科普类人数为:n=200×30%=60人,m=200﹣70﹣30﹣60=40人,故m=40,n=60;故答案为:40,60;(3)艺术类读物所在扇形的圆心角是:×360°=72°,故答案为:72;(4)由题意,得5000×=750(册).答:学校购买其他类读物750册比较合理.21.(10分)如图,在四边形ABCD中,AB∥CD,∠B=∠D.(1)求证:四边形ABCD为平行四边形;(2)若点P为对角线AC上的一点,PE⊥AB于E,PF⊥AD于F,且PE=PF,求证:四边形ABCD是菱形.【分析】(1)根据平行线的性质和平行四边形的判定证明即可;(2)根据角平分线的性质和菱形的判定证明即可.【解答】证明:(1)∵AB∥CD,∴∠DCA=∠BAC,在△ADC与△ABC中,,∴△ADC≌△ABC(AAS),∴AB=DC,∵AB∥CD,∴四边形ABCD为平行四边形;(2)∵四边形ABCD为平行四边形,∴∠DAB=∠DCB,∵PE⊥AB于E,PF⊥AD于F,且PE=PF,∴∠DAC=∠BAC=∠DCA=∠BCA,∴AB=BC,∴四边形ABCD是菱形.22.(8分)某部队将在指定山区进行军事演习,为了使道路便于部队重型车辆通过,部队工兵连接到抢修一段长3600米道路的任务,按原计划完成总任务的后,为了让道路尽快投入使用,工兵连将工作效率提高了50%,一共用了10小时完成任务.(1)按原计划完成总任务的时,已抢修道路1200米;(2)求原计划每小时抢修道路多少米?【分析】(1)按原计划完成总任务的时,列式计算即可;(2)设原计划每天修道路x米.根据原计划工作效率用的时间+实际工作效率用的时间=10等量关系列出方程.【解答】解:(1)按原计划完成总任务的时,已抢修道路3600×=1200米,故答案为:1200米;(2)设原计划每小时抢修道路x米,根据题意得:,解得:x=280,经检验:x=280是原方程的解.答:原计划每小时抢修道路280米.23.(8分)先观察下列等式,再回答问题:①=1+1=2;②=2+=2;③=3+=3;…(1)根据上面三个等式提供的信息,请猜想第四个等式;(2)请按照上面各等式规律,试写出用n(n为正整数)表示的等式,并用所学知识证明.【分析】(1)根据“第一个等式内数值为1,第二个等式内数值为2,第三个等式内数值为3”,即可猜想出第四个等式为=4+=4;(2)根据等式的变化,找出变化规律“=n+=”,再利用开方即可证出结论成立.【解答】解:(1)∵①=1+1=2;②=2+=2;③=3+=3;里面的数值分别为1、2、3,∴④=4+=4.(2)观察,发现规律:=1+1=2,=2+=2,=3+=3,=4+=4,…,∴=n+=.证明:等式左边=,=,=n+,==右边.故=n+=成立.24.(12分)码头工人每天往一艘轮船上装载货物,装载速度y(吨/天)与装完货物所需时间x(天)之间的函数关系如图.(1)求y与x之间的函数表达式;(2)由于遇到紧急情况,要求船上的货物不超过5天卸货完毕,那么平均每天至少要卸多少吨货物?(3)若码头原有工人10名,且每名工人每天的装卸量相同,装载完毕恰好用了8天时间,在(2)的条件下,至少需要增加多少名工人才能完成任务?【分析】【分析】(1)根据题意即可知装载速度y(吨/天)与装完货物所需时间x(天)之间是反比例函数关系,则可求得答案;(2)由x=5,代入函数解析式即可求得y的值,即求得平均每天至少要卸的货物;(3)由10名工人,每天一共可卸货50吨,即可得出平均每人卸货的吨数,即可求得答案.【解答】解:(1)设y与x之间的函数表达式为y=,根据题意得:50=,解得k=400,∴y与x之间的函数表达式为y=;(2)∵x=5,∴y=400÷5=80,解得:y=80;答:平均每天至少要卸80吨货物;(3)∵每人一天可卸货:50÷10=5(吨),∴80÷5=16(人),16﹣10=6(人).答:码头至少需要再增加6名工人才能按时完成任务.25.(12分)如图,在Rt△ABC中,∠B=90°,AC=60cm,∠A=60°,点D从点C 出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D、E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.(1)求证:AE=DF;(2)四边形AEFD能够成为菱形吗?如果能,求出t的值,如果不能,说明理由;(3)在运动过程中,四边形BEDF能否为正方形?若能,求出t的值;若不能,请说明理由.【分析】(1)由已知条件可得RT△CDF中∠C=30°,即可知DF=CD=AE=2t;(2)由(1)知DF∥AE且DF=AE,即四边形ADFE是平行四边形,若构成菱形,则邻边相等即AD=AE,可得关于t的方程,求解即可知;(3)四边形BEDF不为正方形,若该四边形是正方形即∠EDF=90°,即DE∥AB,此时AD=2AE=4t,根据AD+CD=AC求得t的值,继而可得DF≠BF,可得答案.【解答】解:(1)∵RT△ABC中,∠B=90°,∠A=60°,∴∠C=90°﹣∠A=30°.又∵在RT△CDF中,∠C=30°,CD=4t∴DF=CD=2t,∴DF=AE;(2)∵DF∥AB,DF=AE,∴四边形AEFD是平行四边形,当AD=AE时,四边形AEFD是菱形,即60﹣4t=2t,解得:t=10,即当t=10时,四边形AEFD是菱形;(3)四边形BEDF不能为正方形,理由如下:当∠EDF=90°时,DE∥BC.∴∠ADE=∠C=30°∴AD=2AE∵CD=4t,∴DF=2t=AE,∴AD=4t,∴4t+4t=60,∴t=时,∠EDF=90°但BF≠DF,∴四边形BEDF不可能为正方形.26.(14分)如图,在平面直角坐标系xOy中,直线y=kx+b与x轴相交于点C,与反比例函数在第一象限内的图象相交于点A(1,8)、B(m,2).(1)求该反比例函数和直线y=kx+b的表达式;(2)求证:△OBC为直角三角形;(3)设∠ACO=α,点Q为反比例函数在第一象限内的图象上一动点且满足90°﹣α<∠QOC<α,求点Q的横坐标q的取值范围.【分析】(1)首先利用待定系数法求得反比例函数的解析式,然后求得B的坐标,则利用待定系数法即可求得直线的解析式;(2)过点B作BD⊥OC于点D,在直角△OBD和直角△OBC中,利用勾股定理求得OB2和BC2,然后利用勾股定理的逆定理即可证明;(3)分成Q在B的左侧和右侧两种情况讨论,当在右侧时一定不成立,当在左侧时,判断是否存在点Q时∠QCO=90°﹣α即可.【解答】解:(1)设反比例函数的解析式是y=,把(1,8)代入得k=8,则反比例函数表达式为y=,把(m,2)代入得m==4,则B的坐标是(4,2).根据题意得:,解得:,,则直线表达式y=﹣2x+10;(2)过点B作BD⊥OC于点D,(图1)则D的坐标是(4,0).在y=﹣2x+10中,令y=0,解得x=5,则OC=5.∵在直角△OBD中,BD=2,OD=OC﹣OD=5﹣5=1,则OB2=OD2+BD2=42+22=20,同理,直角△BCD中,BC2=BD2+CD2=22+12=5=25,∴OB2+BC2=OC2,∴△OBC是直角三角形;(3)当Q在B的右侧时一定不成立.在y=﹣2x+10中,令x=0,则y=10,则当Q在的左边时,(图2)tan∠ACO=tanα=2,则tan(90°﹣α)=.当∠QCO=90°﹣α是,Q的横坐标是p,则纵坐标是,tan∠QCO=tan(90°﹣α)=:(5﹣p)=.即p2﹣5p+16=0,△=25﹣4×16=﹣39<0,则Q不存在.故当Q在AB之间时,满足条件,因而2<q<4.。