量子力学发展简史 PPT课件
量子力学发展简史
量子力学发展简史
量子力学的发展始于20世纪初,主要有以下几个关键阶段:
1.经典物理学的挑战:对经典物理学的一系列挑战启示了人们需要发展一种新的物理学理论。
其中一个重要的挑战是基于黑体辐射的热力学问题,以及光电效应现象。
2.普朗克的量子化假说:1900年,普朗克提出了量子化假说,对光的能量假定只能是离散的值,即量子,这为未来量子力学的形成奠定了基础。
3.波尔的原子模型:1913年,波尔提出了原子模型,通过假设电子在围绕原子核的轨道上只能发射和吸收固定的能量量子,解决了一系列矛盾问题。
4.德布罗意假说和波动力学:1923年,德布罗意提出了物质波假说,认为物质也具有波动性,波动力学为解释物质的波粒二象性提供了关键的理论基础。
5.海森堡的不确定性原理:根据量子力学原理,人们似乎无法准确度量粒子的位置和运动的状态,海森堡在1927年提出了不确定性原理,宣告量子力学的正式诞生。
6.薛定谔方程:薛定谔的波动方程(薛定谔方程)允许人们处理复杂的量子系统,它首次提出了波函数的概念,为量子力学的发展提供了新的工具。
7.量子力学的发展和应用:随着时间的推移,科学家们不断发展量子力学的数学框架和物理解释。
量子力学逐步应用于理解原子核和高能物理领域,并在化学、材料科学、生物学和信息学等领域产生了深远的影响。
量子力学的发展简史
量子力学的发展简史量子力学是在旧量子论的基础上发展起来的。
旧量子论包括普朗克的量子假说、爱因斯坦的光量子理论和玻尔的原子理论。
1900年,普朗克提出辐射量子假说,假定电磁场和物质交换能量是以间断的形式(能量子)实现的,能量子的大小同辐射频率成正比,比例常数称为普朗克常数,从而得出黑体辐射能量分布公式,成功地解释了黑体辐射现象。
1905年,爱因斯坦引进光量子(光子)的概念,并给出了光子的能量、动量与辐射的频率和波长的关系,成功地解释了光电效应。
其后,他又提出固体的振动能量也是量子化的,从而解释了低温下固体比热问题。
1913年,玻尔在卢瑟福原有核原子模型的基础上建立起原子的量子理论。
按照这个理论,原子中的电子只能在分立的轨道上运动,在轨道上运动时候电子既不吸收能量,也不放出能量。
原子具有确定的能量,它所处的这种状态叫“定态”,而且原子只有从一个定态到另一个定态,才能吸收或辐射能量。
这个理论虽然有许多成功之处,但对于进一步解释实验现象还有许多困难。
在人们认识到光具有波动和微粒的二象性之后,为了解释一些经典理论无法解释的现象,法国物理学家德布罗意于1923年提出了物质波这一概念。
认为一切微观粒子均伴随着一个波,这就是所谓的德布罗意波。
德布罗意的物质波方程:E=ħω,p=h/λ,其中ħ=h/2π,可以由E=p²/2m 得到λ=√(h²/2mE)。
由于微观粒子具有波粒二象性,微观粒子所遵循的运动规律就不同于宏观物体的运动规律,描述微观粒子运动规律的量子力学也就不同于描述宏观物体运动规律的经典力学。
当粒子的大小由微观过渡到宏观时,它所遵循的规律也由量子力学过渡到经典力学。
量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。
在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。
为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。
《量子力学》课件
贝尔不等式实验
总结词
验证量子纠缠的非局域性
详细描述
贝尔不等式实验是用来验证量子纠缠特性的重要实验。通过测量纠缠光子的偏 振状态,实验结果违背了贝尔不等式,证明了量子纠缠的非局域性,即两个纠 缠的粒子之间存在着超光速的相互作用。
原子干涉仪实验
总结词
验证原子波函数的存在
详细描述
原子干涉仪实验通过让原子通过双缝,观察到干涉现象,证明了原子的波函数存在。这个实验进一步 证实了量子力学的预言,也加深了我们对微观世界的理解。
量子力学的意义与价值
推动物理学的发展
量子力学是现代物理学的基础之一,对物理学的发展产生了深远 的影响。
促进科技的创新
量子力学的发展催生了一系列高科技产品,如电子显微镜、晶体 管、激光器等。
拓展人类的认知边界
量子力学揭示了微观世界的奥秘,拓展了人类的认知边界。
量子力学对人类世界观的影响
01 颠覆了经典物理学的观念
量子力学在固体物理中的应用
量子力学解释了固体材料的电子 结构和热学性质,为半导体技术 和超导理论的发现和应用提供了
基础。
量子力学揭示了固体材料的磁性 和光学性质,为磁存储器和光电 子器件的发展提供了理论支持。
量子力学还解释了固体材料的相 变和晶体结构,为材料科学和晶
体学的发展提供了理论基础。
量子力学在光学中的应用
复数与复变函数基础
01
复数
复数是实数的扩展,包含实部和虚部,是量子力 学中描述波函数的必备工具。
02
复变函数
复变函数是定义在复数域上的函数,其性质与实 数域上的函数类似,但更为丰富。
泛函分析基础
函数空间
泛函分析是研究函数空间的数学分支,函数空间中的元素称为函数或算子。
量子力学发展史
PPT文档演模板
在接下来的几个月中,海森伯与玻尔深入、 持续地讨论,把酝酿阶段推向了高潮。由于 用矩阵力学的数学形式描述云室中电子的迹 径没有可能,海森伯试图利用薛定谔波动方 程去表示,尝试的结果表明,这种方法也是 不可能的。在初始位置时,电子可用波包来 表示。波包向前运动,可获得有些像穿过云 室的电子径迹的东西,但是波包要越变越大, 这与实验不相符。
量子力学发展史
n 测不准原理表明:同时严格确定 两个共轭变量(例如,位置和速 度)的数值是不可能的,它们的 数值的准确度有个下限。这是一 条自然定律。它说明,在原子层 次上,同时得到一个粒子的位置 和速度的严格准确的测量在原则 上是不可能的。
PPT文档演模板
量子力学发展史
PPT文档演模板
围绕测不准原理是否成立等量子力学 的基本问题,爱因斯坦同以玻尔为首 的哥本哈根学派进行了激烈的辩论。 在辩论中,测不准原理经受住了考验。
n 非连续性创新的突显,让人在商业和管理上也遭 遇到“测不准原理”。在测不准原理统治的领域, 再发达、再敏感的“数字神经系统”都是无能为 力的。而且,对机器的过分迷信,必将使决策者 堕入不测的陷阱。
量子力学发展史
不被量子力学 所震撼的人,根本 不懂得量子力学 !
——克拉克
PPT文档演模板
量子力学发展史
量子力学发展史
➢测不准原理 的经典表达式
PPT文档演模板
量子力学发展史
• 原子中电子的运动,由于其质量非常小,运动 速度又极快,且具有波粒二象性。因此人们对于电 子以及其他微观粒子的运动速度和空间位置两个相 关物理量的测量也有一定的精确度极限。 •如果以 △p表示粒子位置的测量误差,以 △x表示粒 子动量的测量误差,则同时测定二者时,精确度极 限为:
量子力学发展简史
量子力学发展简史摘要:相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。
玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。
终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两论支柱。
关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。
经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。
量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。
量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。
它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。
爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。
原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。
现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。
上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。
量子力学.ppt
2019-8-11
感谢你的观赏
7
第一章 绪论
§1.1 量子力学发展简史
§1.2 经典物理学的困难 §1.3 光的量子性 §1.4 玻尔的量子论
§1.5 微观粒子的波粒二象性
§1.6 波函数的统计解释
2019-8-11
感谢你的观赏
8
§1.1 量子力学发展简史
1896年 1897年
气体放电管,发现阴极射线。
感谢你的观赏
25
普朗克能量子假说 * 辐射物体中包含大量谐振子,它们的能量取分立值
* 存在着能量的最小单元(能量子=h)
* 振子只能一份一份地按不连续方式辐射或吸收能量
从理论上推出:
M 0 (,T ) 2hc 2 5
1
hc
e kT 1
k和c 分别是玻尔兹曼常数和光速。
2019-8-11
J.J Thomson 通过测定荷质比, 确定了电子的存在。
1900年
M.Plank 提出了量子化假说, 成功地解释了黑体辐射问题。
1905年 A.Einstein 将量子化概念明确为光子 的概念,并解释了光电效应。
同年创立了狭义相对论。
2019-8-11
感谢你的观赏
9
1911年 E.Rutherfold 确定了原子核式结构
b 2.897 103米开
2019-8-11
感谢你的观赏
23
经典物理遇到的困难
实验
瑞利和琼斯用
M 0 (,T )
能量均分定理
电磁理论得出:
M0
(,T
)
2ckT 4
只适于长波,有所谓的 “紫外灾难”。
T=1646k
量子力学发展简史
量子力学发展简史摘要:相对论是在普朗克为了克服经典理论解释黑体辐射规律的困难,引入能量子概念的基础上发展起来的,爱因斯坦提出光量子假说、运用能量子概念使量子理论得到进一步发展。
玻尔、德布罗意、薛定谔、玻恩、狄拉克等人为解决量子理论遇到的困难,进行了开创性的工作,先后提出电子自旋概念,创立矩阵力学、波动力学,诠释波函数进行物理以及提出测不准原理和互补原理。
终于在1925年到1928年形成了完整的量子力学理论,与爱因斯坦的相对论并肩形成现代物理学的两大理论支柱。
关键词:量子力学,量子理论,矩阵力学,波动力学,测不准原理量子力学是研究微观粒子(如电子、原子、分子等)的运动规律的物理学分支学科,它主要研究原子、分子、凝聚态物质,以及原子核和基本粒子的结构、性质的基础理论,它与相对论一起构成了现代物理学的理论基础,是现代物理学的两大基本支柱。
经典力学奠定了现代物理学的基础,但对于高速运动的物体和微观条件下的物体,牛顿定律不再适用,相对论解决了高速运动问题;量子力学解决了微观亚原子条件下的问题。
量子力学认为在亚原子条件下,粒子的运动速度和位置不可能同时得到精确的测量,微观粒子的动量、电荷、能量、粒子数等特性都是分立不连续的,量子力学定律不能描述粒子运动的轨道细节,只能给出相对机率,为此爱因斯坦和玻尔产生激烈争论,并直至去世时仍不承认量子力学理论的哥本哈根诠释。
量子力学是一个物理学的理论框架,是对经典物理学在微观领域的一次革命。
它有很多基本特征,如不确定性、量子涨落、波粒二象性等,在原子和亚原子的微观尺度上将变的极为显著。
爱因斯坦、海森堡、玻尔、薛定谔、狄拉克等人对其理论发展做出了重要贡献。
原子核和固体的性质以及其他微观现象,目前已基本上能从以量子力学为基础的现代理论中得到说明。
现在量子力学不仅是物理学中的基础理论之一,而且在化学和许多近代技术中也得到了广泛的应用。
上世纪末和本世纪初,物理学的研究领域从宏观世界逐渐深入到微观世界;许多新的实验结果用经典理论已不能得到解释。
量子力学发展简史
量子力学与经典力学的差别首先表现在对粒子的状态和力学量的描述及其变化规律上。在量子力学中,粒子的状态用波函数描述,它是坐标和时间的复函数。为了描写微观粒子状态随时间变化的规律,就需要找出波函数所满足的运动方程。这个方程是薛定谔在1926年首先找到的,被称为薛定谔方程。当微观粒子处于某一状态时,它的力学量(如坐标、动量、角动量、能量等)一般不具有确定的数值,而具有一系列可能值,每个可能值以一定的几率出现。当粒子所处的状态确定时,力学量具有某一可能值的几率也就完全确定。这就是1927年,海森伯得出的测不准关系,同时玻尔提出了并协原理,对量子力学给出了进一步的阐释。
不确定性也指量子力学中量子运动的不确定性。由于观测对某些量的干扰,使得与它关联的量(共轭量)不准确。这是不确定性的起源。
不确定性,经济学中关于风险管理的概念,指经济主体对于未来的经济状况(尤其是收益和损失)的分布范围和状态不能确知。
在量子力学中,不确定性指测量物理量的不确定性,由于在一定条件下,一些力学量只能处在它的本征态上,所表现出来的值是分立的,因此在不同的时间测量,就有可能得到不同的值,就会出现不确定值,也就是说,当你测量它时,可能得到这个值,可能得到那个值,得到的值是不确定的。只有在这个力学量的本征态上测量它,才能得到确切的值。
在经典物理学中,可以用质点的位置和动量精确地描述它的运动。同时知道了加速度,甚至可以预言质点接下来任意时刻的位置和动量,从而描绘出轨迹。但在微观物理学中,不确定性告诉我们,如果要更准确地测量质点的位置,那么测得的动量就更不准确。也就是说,不可能同时准确地测得一个粒子的位置和动量,因而也就不能用轨迹来描述粒子的运动。这就是不确定性原理的具体解释。