完整版七年级数学平行线的有关证明及答案
0七年级数学-平行线的性质与判定的证明-练习题及答案
例 2 如图,Z AG4Z ACB,CDL AB,EF丄AB,证明:Z 1 = Z 2.解析:(标注:/ 1 = Z 2=Z DCB DG/ BC, CD// EF)答案:(标注:/ 1 = / 2=Z DCB证明:因为/ AGD/ACB所以DG/ BC,所以/ 1 = / DCB又因为CD!AB,EF丄AB,所以CD// EF,所以/ 2=/ DCB所以/仁/ 2.小结:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系•例3 (1)已知:如图2-4①,直线AB// ED,求证:/ ABC/ CDE/ BCD(2)当点C位于如图2-4②所示时,/ ABC / CDE与/ BCD存在什么等量关系?并证明.(1)解析:动画过点C作CF// AB由平行线性质找到角的关系.(标注/仁/ ABC / 2=/ CDE)答案:证明:如图,过点C作CF// AB•••直线AB// ED,••• AB// CF// DE•••/ 1=/ ABC / 2=/ CDE.•••/ BCD/ 1+/ 2 ,•••/ ABC/ CDE/ BCD(2)解析:动画过点C作CF// AB,由平行线性质找到角的关系•(标注/ ABC/ 仁180°, / 2+/CDE=180 )答案:/ ABC-/ BCD/ CDE=360 .证明:如图,过点C作CF// AB•••直线AB// ED,••• AB// CF// DE•••/ ABC/ 仁180°, / 2+/ CDE=180 .•••/ BCD/ 1+/ 2 ,•••/ ABC/ BCD/ CDE=360 .小结:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化例4如图2-5 , 一条公路修到湖边时,需绕道,如果第一次拐的角/ A是120°,第二次拐的角/ B是150第三次拐的角是/ C,这时的道路恰好和第一次拐弯之前的道路平行,那么/ C应为多少度?解析:动画过点B作BD// AE,:丄 GEF=1/ BEF=30°2例5如图2-6,已知AB// CD试再添上一个条件,使/ 仁/ 2成立,并说明理由.解析:标注AB// CD /仁/2答案:方法一:(标注CF// BE 解:需添加的条件为CF// BE , 理由:••• AB// CD•••/ DCB M ABC.v CF/ BE,•••/ FCB玄EBC•••/ 仁/ 2;方法二:(标注CF, BE /仁/ 2=Z DCF2 ABE解:添加的条件为CF, BE分别为/ BCD / CBA的平分线. 理由:v AB// CD•••/ DCB M ABC.v CF, BE分别为/ BCD / CBA的平分线,•••/ 仁/ 2.小结:解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因例6如图1-7,已知直线|旧2,且13和11、12分别交于A、两点,点P在AB上 ,14和I l、12分别交于C D两点,连接PC PD(1)试求出/ 1、/ 2、/ 3之间的关系,并说明理由。
(完整版)平行线及其判定(证明应用题)
授课教案学员姓名:________________ 学员年级:________________ 授课教师:_________________ 所授科目:_________ 上课时间:______年____月____日(~);共_____课时(以上信息请老师用正楷字手写)平行线及其判定(证明应用题)一.解答题(共11小题)1.已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.2.将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.3.如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?2015年03月05日752444625的初中数学组卷参考答案与试题解析一.解答题(共11小题)1.(2014•槐荫区二模)已知:如图,∠A=∠F,∠C=∠D.求证:BD∥CE.考点:平行线的判定.专题:证明题.分析:由∠A=∠F,根据内错角相等,两直线平行,即可求得AC∥DF,即可得∠C=∠FEC,又由∠C=∠D,则可根据同位角相等,两直线平行,证得BD∥CE.解答:证明:∵∠A=∠F,∴AC∥DF,∴∠C=∠FEC,∵∠C=∠D,∴∠D=∠FEC,∴BD∥CE.点评:此题考查了平行线的判定与性质.注意内错角相等,两直线平行与同位角相等,两直线平行.2.(2013•邵阳)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.(1)求证:CF∥AB;(2)求∠DFC的度数.考点:平行线的判定;角平分线的定义;三角形内角和定理.专题:证明题.分析:(1)首先根据角平分线的性质可得∠1=45°,再有∠3=45°,再根据内错角相等两直线平行可判定出AB∥CF;(2)利用三角形内角和定理进行计算即可.解答:(1)证明:∵CF平分∠DCE,∴∠1=∠2=∠DCE,∵∠DCE=90°,∴∠1=45°,∵∠3=45°,∴∠1=∠3,∴AB∥CF(内错角相等,两直线平行);(2)∵∠D=30°,∠1=45°,∴∠DFC=180°﹣30°﹣45°=105°.点评:此题主要考查了平行线的判定,以及三角形内角和定理,关键是掌握内错角相等,两直线平行.3.(2010•江宁区一模)如图,△ABC中,AB=AC,D是CA延长线上的一点,且∠B=∠DAM.求证:AM∥BC.考点:平行线的判定.专题:证明题.分析:判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.要证明AM∥BC,只要转化为证明∠C=∠DAM即可.解答:证明:∵AB=AC,∴∠B=∠C,∵∠B=∠DAM,∴∠C=∠DAM,∴AM∥BC.点评:本题主要考查了平行线的判定,注意等量代换的应用.4.如图,已知DF∥AC,∠C=∠D,你能否判断CE∥BD?试说明你的理由.考点:平行线的判定.专题:探究型.分析:因为DF∥AC,由内错角相等证明∠C=∠FEC,又因为∠C=∠D,则∠D=∠FEC,故CE∥BD.解答:解:CE∥BD.理由:∵DF∥AC(已知),∴∠C=∠FEC(两直线平行,内错角相等),又∵∠C=∠D(已知),∴∠D=∠FEC(等量代换),∴CE∥BD(同位角相等,两直线平行).点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.本题能有效地培养“执果索图”的思维方式与能力.5.如图,已知∠1=∠2,∠3=∠4,∠5=∠6,试判断ED与FB的位置关系,并说明为什么.考点:平行线的判定.专题:探究型.分析:设AB与DE相交于H,若判断ED与FB的位置关系,首先要判断∠1和∠EHA的大小;由∠3=∠4可证得BD∥CF(内错角相等,两直线平行),可得到∠5=∠BAF;已知∠5=∠6,等量代换后发现AB∥CD,即∠2=∠EHA,由此可得到∠1=∠EHA,根据同位角相等,两直线平行即可判断出BF、DE的位置关系.解答:解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,又∵∠5=∠6,∴∠BAF=∠6,∴AB∥CD,∴∠2=∠EHA,又∵∠1=∠2,即∠1=∠EHA,∴BF∥DE.另解:BF、DE互相平行;理由:如图;∵∠3=∠4,∴BD∥CF,∴∠5=∠BAF,∵∠5=∠6,∴∠BAF=∠6,∵△BFA、△DEC的内角和都是180°∴△BFA=∠1+∠BFA+BAF;△DEC=∠2+∠4+∠6∵∠1=∠2;∠BAF=∠6∴∠BFA=∠4,∴BF∥DE.点评:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.6.如图,已知AD⊥BC,EF⊥BC,∠3=∠C,求证:∠1=∠2.考点:平行线的判定.专题:证明题.分析:先由已知证明AD∥EF,再证明1∠1=∠4,∠2=∠4,等量代换得出∠1=∠2.解答:证明:∵AD⊥BC,EF⊥BC(已知),∴AD∥EF(垂直于同一条直线的两直线平行),∴∠1=∠4(两直线平行,同位角相等),又∵∠3=∠C(已知),∴AC∥DG(同位角相等,两直线平行),∴∠2=∠4(两直线平行,内错角相等),∴∠1=∠2(等量代换).点评:此题的关键是理解平行线的性质及判定.①两直线平行,同位角相等.②两直线平行,内错角相等.③同位角相等,两直线平行.④内错角相等,两直线平行.7.如图,已知∠A=∠F,∠C=∠D,试说明BD∥CE.考点:平行线的判定.专题:推理填空题.分析:由∠A=∠F,根据内错角相等,得两条直线平行,即AC∥DF;根据平行线的性质,得∠C=∠CEF,借助等量代换可以证明∠D=∠CEF,从而根据同位角相等,证明BD∥CE.解答:解:∵∠A=∠F(已知),∴AC∥DF(内错角相等,两直线平行),∴∠C=∠CEF(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠D=∠CEF(等量代换),∴BD∥CE(同位角相等,两直线平行).点评:此题综合运用了平行线的判定及性质,比较简单.8.已知:如图,AD是△ABC的平分线,点E在BC上,点G在CA的延长线上,EG交AB于点F,且∠AFG=∠G.求证:GE∥AD.考点:平行线的判定.专题:证明题.分析:首先根据角平分线的性质可得∠BAC=2∠DAC,再根据三角形外角与内角的关系可得∠G+∠GFA=∠BAC,又∠AFG=∠G.进而得到∠BAC=2∠G,从而得到∠DAC=∠G,即可判定出GE∥AD.解答:证明:∵AD是△ABC的平分线,∴∠BAC=2∠DAC,∵∠G+∠GFA=∠BAC,∠AFG=∠G.∴∠BAC=2∠G,∴∠DAC=∠G,∴AD∥GE.点评:此题主要考查了平行线的判定,关键是掌握三角形内角与外角的关系,以及平行线的判定定理.9.如图,CA⊥AD,垂足为A,∠C=50°,∠BAD=40°,求证:AB∥CD.考点:平行线的判定.专题:证明题.分析:利用直角三角形中两锐角互余得出∠D=40°,再利用内错角相等,两直线平行的判定证明即可.解答:证明:∵CA⊥AD,∴∠C+∠D=90°,∴∠C=50°,∴∠D=40°,∵∠BAD=40°,∴∠D=∠BAD,∴AB∥CD.点评:本题主要考查了平行线的判定和直角三角形中两锐角互余,比较简单.10.如图,BE平分∠ABD,DE平分∠BDC,且∠1+∠2=90°.求证:AB∥CD.考点:平行线的判定;角平分线的定义.专题:证明题.分析:运用角平分线的定义,结合图形可知∠ABD=2∠1,∠BDC=2∠2,又已知∠1+∠2=90°,可得同旁内角∠ABD和∠BDC互补,从而证得AB∥CD.解答:证明:∵BE平分∠ABD,DE平分∠BDC(已知),∴∠ABD=2∠1,∠BDC=2∠2(角平分线定义).∵∠1+∠2=90°,∴∠ABD+∠BDC=2(∠1+∠2)=180°.∴AB∥CD(同旁内角互补,两直线平行).点评:灵活运用角平分线的定义和角的和差的关系是解决本题的关键,注意正确识别“三线八角”中的同位角、内错角、同旁内角.11.如图所示,已知直线a、b、c、d、e,且∠1=∠2,∠3+∠4=180°,则a与c平行吗?为什么?考点:平行线的判定;平行公理及推论.专题:探究型.分析:根据内错角相等,两直线平行可知a∥b,由同旁内角互补,两直线平行可知b∥c,根据如果两条直线都与第三条直线平行那么这两条直线平行得出结论.解答:解:平行.理由如下:∵∠1=∠2,∴a∥b(内错角相等,两直线平行),∵∠3+∠4=180°,∴b∥c(同旁内角互补,两直线平行),∴a∥c(平行于同一直线的两直线平行).点评:本题很简单,考查的是平行线的判定定理和平行公理的推论.内错角相等,两直线平行;同旁内角互补,两直线平行;如果两条直线都与第三条直线平行那么这两条直线平行.。
七年级数学平行线的证明
七年级数学下册 5.2平行线及其判定(十大题型)(解析版 )
七级下册数学《第五章相交线与平行线》5.2平行线及其判定平行线及其表示方法★1、平行线定义:在同一个平面内,不相交的两条直线叫做平行线.记作:AB∥CD;记作:a∥b;读作:直线AB平行于直线CD.读作:直线a平行于直线b.【注意】1、在同一平面内,不重合的两条直线只有两种位置关系:相交和平行.(重合的直线视为一条直线)2、.线段或射线平行是指它们所在的直线平行.平行线的画法◆过直线外一点画已知直线的平行线的方法:一“落”把三角尺一边落在已知直线上;二“靠”把直尺紧靠三角尺的另一边;三“移”沿直尺移动三角尺,使三角尺与已知直线重合的边过已知点;四“画”沿三角尺过已知点的边画直线.【注意】1.经过直线上一点不能作已知直线的平行线.2.画线段或射线的平行线是指画它们所在直线的平行线.3.借助三角尺画平行线时,必须保持紧靠,否则画出的直线不平行.平行公理及其推论★1、平行公理:经过直线外一点,有且只有一条直线与这条直线平行.★2、平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.也就是说:如图,如果b∥a,c∥a,那么b∥c.几何语言:∵b∥a,c∥a,∴b∥c.【注意】1、平行公理的推论中,三条直线可以不在同一个平面内.2、平行公理中强调“直线外一点”,因为若点在直线上,不可能有平行线;“有且只有”强调这样的直线是存在的,也是唯一的.平行线的判定方法★1、平行线的判定:判定方法1:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:同位角相等,两直线平行.几何语言表示:∵∠2=∠3(已知),∴a∥b(同位角相等,两直线平行).判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:内错角相等,两直线平行.几何语言表示:∵∠2=∠4(已知),∴a∥b.(内错角相等,两直线平行).判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:同旁内角互补,两直线平行.几何语言表示:∵∠1+∠2=180°(已知),∴a∥b(同旁内角互补,两直线平行).★2、在同一平面内,垂直于同一条直线的两直线垂直.几何语言表示:直线a,b,c在同一平面内,∵a⊥c,b⊥c,∴a∥b.【注意】三条直线在“同一平面内”是前提,没有这个条件结论不一定成立.★3、判定两直线平行的方法(1)平行线的定义;(2)平行公理的推论(如果两条直线都与第三条直线平行,那么这两条直线也互相平行);(3利用同位角相等说明两直线平行;(4)利用内错角相等说明两直线平行;(5)利用同旁内角互补说明两直线平行;(6)同一平面内,垂直于同一直线的两直线平行.【例题1】(2023秋•埇桥区期中)在同一平面内,两条直线的位置关系可能是()A.相交或垂直B.垂直或平行C.平行或相交D.相交或垂直或平行【分析】根据两条直线有一个交点的直线是相交线,没有交点的直线是平行线,可得答案.【解答】解:在同一平面内,两条直线有一个交点,两条直线相交;在同一平面内,两条直线没有交点,两条直线平行,故C正确;故选:C.【点评】本题考查了平行线,两条直线有一个交点的直线是相交线,没有交点的直线是平行线.解题技巧提炼解题的关键是准确把握平行线的概念,牢记平行线的三个条件:①在同一平面内;②不相交;③都是直线,通过与定义进行对比来进行判断.【变式1-1】如图所示,能相交的是,平行的是.(填序号)【分析】根据平行线、相交线的定义,逐项进行判断,即可正确得出结果.【解答】解:①中一条直线,一条射线,不可相交,也不会平行;②中一条直线,一条线段,不可相交,也不会平行;③中一条直线,一条线段,可相交;④中都是线段,不可延长,不可相交,也不平行,⑤中都是直线,延长后不相交,是平行.故答案为:③,⑤.【点评】本题考查平行线和相交线,解题的关键是掌握直线可以沿两个方向延伸,射线可以沿一个方向延伸,线段不能延伸.【变式1-2】下列说法正确的是()A.同一平面内,如果两条直线不平行,那么它们互相垂直B.同一平面内,如果两条直线不相交,那么它们互相垂直C.同一平面内,如果两条直线不相交,那么它们互相平行D.同一平面内,如果两条直线不垂直,那么它们互相平行【分析】根据平行线的判定及垂直、相交的定义判断求解即可.【解答】解:在同一平面内,如果两条直线不平行,那么这两条直线相交,故A不符合题意;在同一平面内,两条直线不相交,那么这两条直线平行,故B不符合题意;同一平面内,如果两条直线不相交,那么这两条直线平行,故C符合题意;同一平面内,如果两条直线不垂直,它们不一定平行,故D不符合题意;故选:C.【点评】此题考查了平行线的判定、垂直、相交等知识,熟练掌握有关定理、定义是解题的关键.【变式1-3】(2022春•莱芜区校级期末)下列说法中,正确的是()A.两条不相交的直线叫做平行线B.一条直线的平行线有且只有一条C.在同一平面内,若直线a∥b,a∥c,则b∥cD.若两条线段不相交,则它们互相平行【分析】根据平行线的定义、性质、判定方法判断,排除错误答案.【解答】解:A、平行线的定义:在同一平面内,两条不相交的直线叫做平行线.故错误;B、过直线外一点,有且只有一条直线与已知直线平行.一条直线的平行线有无数条,故错误;C、在同一平面内,平行于同一直线的两条直线平行.故正确;D、根据平行线的定义知是错误的.故选:C.【点评】本题考查平行线的定义、性质及平行公理,熟练掌握公理和概念是解决本题的关键.【变式1-4】(2022秋•乌鲁木齐期末)如图,在长方体AB CD-EFGH中,与棱EF异面且与平面EFGH 平行的棱是.【分析】与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.【解答】解:与棱EF异面且与平面EFGH平行的棱是:棱AD和棱BC.故答案为:棱AD和棱BC.【点评】本题主要考查了平行线与立体图形,熟练掌握平行线与立体图形的特征进行求解是解决本题的关键.【变式1-5】(2022春•沙河市期末)观察如图所示的长方体,与棱AB平行的棱有几条()A.4B.3C.2D.1【分析】根据长方体即平行线的性质解答.【解答】解:图中与AB平行的棱有:EF、CD、GH.共有3条.故选:B.【点评】本题考查了平行线的定义、长方体的性质.一个长方形的两条对边平行.【变式1-6】在同一平面内,直线l1与l2满足下列关系,写出其对应的位置关系:(1)若l1与l2没有公共点,则l1和l2;(2)若l1与l2只有一个公共点,则l1和l2;(3)若l1与l2有两个公共点,则l1和l2.【分析】(1)结合平行线的定义进行解答即可;(2)结合相交的定义进行解答即可;(3)结合重合的定义进行解答即可.【解答】解:(1)由于l1和l2没有公共点,所以l1和l2平行;(2)由于l1和l2有且只有一个公共点,所以l1和l2相交;(3)由于l1和l2有两个公共点,所以l1和l2重合;故答案为:(1)平行;(2)相交;(3)重合.【点评】本题侧重考查两直线的位置关系,掌握平行定义是解题关键.【变式1-7】(2022春•赵县月考)在同一平面内,直线a,b相交于P,若a∥c,则b与c的位置关系是.【分析】根据同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.解答即可.【解答】解:因为a∥c,直线a,b相交,所以直线b与c也有交点;故答案为:相交.【点评】本题主要考查了平行线和相交线,同一平面内,一条直线与两条平行线中的一条相交,则必与另一条直线也相交.【例题2】(2022春•梁山县期中)若a、b、c是同一平面内三条不重合的直线,则它们的交点可以有()A.1个或2个或3个B.0个或1个或2个或3个C.1个或2个D.以上都不对【分析】根据平行线的定义,相交线的定义,可得答案.【解答】解:当三条直线互相平行,交点是个0;当两条直线平行,与第三条直线相交,交点是2个;当三条直线两两相交交于同一点,交点个数是1个;当三条直线两两相交且不交于同一点,交点个数是3个;故选:B.【点评】本题考查了平行线,分类讨论是解题关键.解题技巧提炼用分类讨论的思想根据平面内两条直线的位置关系去讨论求解.【变式2-1】在同一平面内,两条不重合直线的位置关系可能是()A.垂直或平行B.垂直或相交C.平行或相交D.平行、垂直或相交【分析】同一平面内,直线的位置关系通常有两种:平行或相交;垂直不属于直线的位置关系,它是特殊的相交.【解答】解:平面内的直线有平行或相交两种位置关系.故选:C.【点评】本题主要考查了在同一平面内的两条直线的位置关系.【变式2-2】在同一平面内有三条直线,如果使其中有且只有两条直线平行,那么这三条直线有且只有个交点.【分析】根据同一平面内直线的位置关系得到第三条直线与另两平行直线相交,再根据直线平行和直线相交的定义即可得到交点的个数.【解答】解:∵在同一平面内有三条直线,如果其中有两条且只有两条相互平行,∴第三条直线与另两平行直线相交,∴它们共有2个交点.故答案为2.【点评】本题考查了直线平行的定义:没有公共点的两条直线是平行直线.也考查了同一平面内两直线的位置关系有:平行,相交.【变式2-3】平面内四条直线共有三个交点,则这四条直线中最多有条平行线.【分析】根据同一平面内两条直线的位置关系有两种:相交或平行,及一条直线的平行线有无数条,由四条直线相互平行,其交点为0个开始分析,然后依次变为三条直线相互平行、两条直线相互平行即可求解.【解答】解:若四条直线相互平行,则没有交点;若四条直线中有三条直线相互平行,则此时恰好有三个交点;若四条直线中有两条直线相互平行,另两条不平行,则此时有三个交点或五个交点;若四条直线中有两条直线相互平行,另两条也平行,但它们之间相互不平行,则此时有四个交点;若四条直线中没有平行线,则此时的交点是一个或四个或六个.综上可知,平面内四条直线共有三个交点,则这四条直线中最多有三条平行线.故答案是:三.【点评】本题考查了平行线,题目没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都是平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出答案.【变式2-4】平面上不重合的四条直线,可能产生交点的个数为个.【分析】从平行线的角度考虑,先考虑四条直线都平行,再考虑三条、两条直至都不平行,作出草图即可看出.【解答】解:(1)当四条直线平行时,无交点;(2)当三条平行,另一条与这三条不平行时,有三个交点;(3)当两两直线平行时,有4个交点;(4)当有两条直线平行,而另两条不平行时,有5个交点;(5)当四条直线同交于一点时,只有一个交点;(6)当四条直线两两相交,且不过同一点时,有6个交点;(7)当有两条直线平行,而另两条不平行并且交点在平行线上时,有3个交点.故答案为:0,1,3,4,5,6.【点评】本题没有明确平面上四条不重合直线的位置关系,需要运用分类讨论思想,从四条直线都平行线,然后数量上依次递减,直至都不平行,这样可以做到不重不漏,准确找出所有答案;本题对学生要求较高.【例题3】如图,直线a,点B,点C.(1)过点B画直线a的平行线,能画几条?(2)过点C画直线a的平行线,它与过点B的平行线平行吗?【分析】根据平行公理及推论进行解答.【解答】解:(1)如图,过直线a外的一点画直线a的平行线,有且只有一条直线与直线a平行;(2)过点C画直线a的平行线,它与过点B的平行线平行.理由如下:如图,∵b∥a,c∥a,∴c∥b.【点评】本题考查了平行公理及推论.平行公理:经过直线外一点,有且只有一条直线与这条直线平行(平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思);推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式3-1】如图中完成下列各题.(1)用直尺在网格中完成:①画出直线AB的一条平行线;②经过C点画直线垂直于CD.(2)用符号表示上面①、②中的平行、垂直关系.【分析】(1)根据AB所在直线,利用AB所在直角三角形得出EF,以及MD⊥CD即可;(2)根据图形得出EF,MD⊥CD,标出字母即可.【解答】解:(1)如图所示:(2)EF∥AB,MC⊥CD.【点评】此题考查了基本作图以及直角三角形的性质,利用直角三角形的性质得出平行线以及垂线是解答此题的关键.【变式3-2】如图,已知直线a和直线a外一点A.(1)完成下列画图:过点A画AB⊥a,垂足为点B,画AC∥a;(2)过点A你能画几条直线和a垂直?为什么?过点A你能画几条直线和a平行?为什么?(3)说出直线AC与直线AB的位置关系.【分析】(1)根据要求画出图形即可;(2)过点A有一条直线和直线a垂直,过点A可以画一条直线和a平行.(3)结论:AC⊥AB.【解答】解:(1)直线AB、AC如图所示;(2)过点A有一条直线和直线a垂直,理由:过直线外一点有且只有一条直线和已知直线垂直.过点A可以画一条直线和a平行.理由:过直线外一点有且只有一条直线和已知直线平行.(3)结论:AC⊥AB.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.【变式3-3】作图题:(只保留作图痕迹)如图,在方格纸中,有两条线段AB、BC.利用方格纸完成以下操作:(1)过点A作BC的平行线;(2)过点C作AB的平行线,与(1)中的平行线交于点D;(3)过点B作AB的垂线.【分析】(1)A所在的横线就是满足条件的直线;(2)在直线AD上到A得等于BC的点D,则直线CD即为所求;(3)取AE上D右边的点F,过B,F的直线即为所求.【解答】解:如图,(1)A所在的横线就是满足条件的直线,即AE就是所求;(2)在直线AE上,到A距离是5个格长的点就是D,则CD就是所求与AB平行的直线;(3)取AE上D右边的点F,过B,F作直线,就是所求.【点评】本题考查复杂作图、垂线、平行线的定义等知识,解题的关键是灵活运用所学知识解决问题,【变式3-4】(2022秋•内乡县期末)如图所示,在∠AOB内有一点P.(1)过P画l1∥OA;(2)过P画l2∥OB;(3)用量角器量一量l1与l2相交的角与∠O的大小有怎样关系?【分析】用两个三角板,根据同位角相等,两直线平行来画平行线,然后用量角器量一量l1与l2相交的角与∠O的关系为:相等或互补.【解答】解:(1)(2)如图所示,(3)l1与l2夹角有两个:∠1,∠2;∠1=∠O,∠2+∠O=180°,所以l1和l2的夹角与∠O相等或互补.【点评】注意∠2与∠O是互补关系,容易漏掉.【例题4】(2022•寻乌县模拟)下面推理正确的是()A.∵a∥b,b∥c,∴c∥d B.∵a∥c,b∥d,∴c∥dC.∵a∥b,a∥c,∴b∥c D.∵a∥b,c∥d,∴a∥c【分析】根据平行公理的推论“如果两条直线都和第三条直线平行,那么这两条直线平行“进行分析,得出正确答案.【解答】解:A、a、c都和b平行,应该推出的是a∥c,而非c∥d,故错误;B、没有两条直线都和第三条直线平行,推不出平行,故错误;C、b、c都和a平行,可推出是b∥c,故正确;D、a、c与不同的直线平行,无法推出两者也平行.故选:C.【点评】本题考查的重点是平行公理的推论:如果两条直线都和第三条直线平行,那么这两条直线平行.【变式4-1】(2022春•丛台区校级期中)如图,过点A画直线l的平行线,能画()A.两条以上B.2条C.1条D.0条【分析】经过直线外一点,有且只有一条直线与这条直线平行.【解答】解:因为经过直线外一点,有且只有一条直线与这条直线平行.所以如图,过点A画直线l的平行线,能画1条.故选:C.【点评】本题考查了平行公理及推论.平行公理中要准确理解“有且只有”的含义.从作图的角度说,它是“能但只能画出一条”的意思.【变式4-2】(2023春•萨尔图区期中)下面说法正确的个数为()(1)在同一平面内,过直线外一点有一条直线与已知直线平行;(2)过一点有且只有一条直线与已知直线垂直;(3)两角之和为180°,这两个角一定邻补角;(4)同一平面内不平行的两条直线一定相交.A.1个B.2个C.3个D.4个【分析】根据同一平面内,过直线外一点有一条直线和已知直线平行即可判断(1);在同一平面内,过一点有且只有一条直线和已知直线垂直即可判断(2);举出反例即可判断(3);根据在同一平面内,两直线的位置关系是平行或相交,即可判断(4).【解答】解:在同一平面内,过直线外一点有一条直线和已知直线平行,故(1)正确;只有在同一平面内,过一点有且只有一条直线和已知直线垂直,故(2)错误;如图:∠ABC=∠DEF=90°,且∠ABC+∠DEF=180°,但是两角不是邻补角,故(3)错误;同一平面内不平行的两条直线一定相交正确,因为不特别指出时,一般认为,两条直线重合就是同一条直线,所以所提出的命题是正确的,故(4)正确.即正确的个数是2个.故选:B.【点评】本题考查了平行公理和推论,邻补角,垂线,平行线等知识点,此题比较典型,但是一道比较容易出错的题目.【变式4-3】(2023春•泸县校级期中)下列说法正确的是()A.经过一点有一条直线与已知直线平行B.经过一点有无数条直线与已知直线平行C.经过一点有且只有一条直线与已知直线平行D.经过直线外一点有且只有一条直线与已知直线平行【分析】平行线公理:经过直线外一点有且只有一条直线与已知直线平行.【解答】解:根据平行线公理:经过直线外一点有且只有一条直线与已知直线平行,可判断只有D选项正确.【点评】本题考查了平行公理,要熟练掌握.【变式4-4】(2023春•新民市期中)已知a∥b,c∥d,若由此得出b∥d,则直线a和c应满足的位置关系是()A.在同一个平面内B.不相交C.平行或重合D.不在同一个平面内【分析】根据平行推论:平行于同一条直线的两条直线互相平行,可得答案.【解答】解:当a∥c时,a∥b,c∥d,得b∥d;当a、c重合时,a∥b,c∥d,得b∥d,故C正确;故选:C.【点评】本题考查了平行公理及推论,利用了平行推论:平行于同一条直线的两条直线互相平行.【变式4-5】(2022春•和平区校级月考)下列语句正确的有()个①任意两条直线的位置关系不是相交就是平行②过一点有且只有一条直线和已知直线平行③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b④若直线a∥b,b∥c,则c∥a.A.4B.3C.2D.1【分析】根据同一平面内,任意两条直线的位置关系是相交、平行;过直线外一点有且只有一条直线和已知直线平行;如果两条直线都与第三条直线平行,那么这两条直线也互相平行进行分析即可.【解答】解:①任意两条直线的位置关系不是相交就是平行,说法错误,应为根据同一平面内,任意两条直线的位置关系不是相交就是平行;②过一点有且只有一条直线和已知直线平行,说法错误,应为过直线外一点有且只有一条直线和已知直线平行;③过两条直线a,b外一点P,画直线c,使c∥a,且c∥b,说法错误;④若直线a∥b,b∥c,则c∥a,说法正确;【点评】此题主要考查了平行线,关键是掌握平行公理:过直线外一点有且只有一条直线和已知直线平行;推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.【变式4-6】(2022春•大荔县期末)如图,已知OM∥a,ON∥a,所以点O、M、N三点共线的理由是.【分析】利用平行公理:经过直线外一点,有且只有一条直线与这条直线平行,进而得出答案.【解答】解:已知OM∥a,ON∥a,所以点O、M、N三点共线的理由:经过直线外一点,有且只有一条直线与这条直线平行.故答案为:经过直线外一点,有且只有一条直线与这条直线平行.【点评】此题主要考查了平行公理,正确掌握平行公理是解题关键.【变式4-7】(2022春•海阳市期末)若P,Q是直线AB外不重合的两点,则下列说法不正确的是()A.直线PQ可能与直线AB垂直B.直线PQ可能与直线AB平行C.过点P的直线一定与直线AB相交D.过点Q只能画出一条直线与直线AB平行【分析】根据过直线外一点有且只有一条直线与已知直线平行以及两直线的位置关系即可回答.【解答】解:PQ与直线AB可能平行,也可能垂直,过直线外一点有且只有一条直线与已知直线平行,故A、B、D均正确,故C错误;故选:C.【点评】本题考查了平行线、相交线、垂线的性质,掌握相关定义和性质是解题的关键.【变式4-8】如图所示,将一张长方形纸对折三次,则产生的折痕与折痕间的位置关系是()A.平行B.垂直C.平行或垂直D.无法确定【分析】根据平行公理和垂直的定义解答.【解答】解:∵长方形对边平行,∴根据平行公理,前两次折痕互相平行,∵第三次折叠,是把平角折成两个相等的角,∴是90°,与前两次折痕垂直.∴折痕与折痕之间平行或垂直.故选:C.【点评】本题利用平行公理和垂直定义求解,需要熟练掌握.【例题5】(2022春•昭阳区校级月考)如图,把三角尺的直角顶点放在直线b上.若∠1=50°,则当∠2=时,a∥b.【分析】由直角三角板的性质可知∠3=180°﹣∠1﹣90°=40°,当∠2=40°时,∠2=∠3,得出a∥b即可.【解答】解:当∠2=40°时,a∥b;理由如下:如图所示:∵∠1=50°,∴∠3=180°﹣90°﹣50°=40°,当∠2=40°时,∠2=∠3,∴a∥b.故答案为:40°.【点评】本题考查了平行线的判定方法、平角的定义;熟记同位角相等,两直线平行是解决问题的关键.【变式5-1】(2022春•洞头区期中)如图,在下列给出的条件中,能判定DF∥BC的是()A.∠B=∠3B.∠1=∠4C.∠1=∠B D.∠B+∠2=180°【分析】根据平行线的判定定理求解即可.【解答】解:∵∠B=∠3,∴AB∥EF,故A不符合题意;∵∠1=∠4,∴AB∥EF,故B不符合题意;∵∠1=∠B,∴DF∥BC,故C符合题意;∵∠B+∠2=180°,∴AB∥EF,故D不符合题意;故选:C.【点评】此题考查了平行线的判定,熟记平行线的判定定理是解题的关键.【变式5-2】(2023秋•淮阳区校级期末)如图,木条a,b,c在同一平面内,经测量∠1=115°,要使木条a∥b,则∠2的度数应为()A.65°B.75°C.115°D.165°【分析】根据邻补角互补和平行线的判定定理求解即可.【解答】解:∠2的度数应为65°.证明:如图,∵∠1=115°,∴∠3=180°﹣115°=65°,∵∠2=65°,∴∠2=∠3,∴a∥b.故选:A.【点评】本题考查邻补角互补,平行线的判定.熟练掌握平行线的判定定理是解题关键.【变式5-3】(2023秋•泾阳县期末)如图,直线AB、CD分别与EF相交于点G、H,已知∠1=70°,∠2=70°,试说明:AB∥CD.【分析】根据对顶角相等得出∠1=∠AGH,进而根据∠2=∠AGH,即可得证.【解答】解:∵∠1=∠AGH,∠1=∠2=70°,∴∠2=∠AGH,∴AB∥CD.【点评】本题考查了对顶角相等,同位角相等两直线平行,熟练掌握平行线的判定定理是解题的关键.【变式5-4】(2023秋•泰和县期末)如图,CE平分∠ACD,若∠1=30°,∠2=60°,求证:AB∥CD.【分析】根据平行线的判定,依据角平分线的定义即可解决问题.【解答】证明:∵CE平分∠ACD,∠1=30°,∴∠ACD=2∠1=60°(角平分线定义),∵∠2=60°,(已知),∴∠2=∠ACD(等量代换),∴AB∥CD(同位角相等两直线平行).【点评】本题主要考查平行线的判定,解题的关键是熟练掌握基本知识,属于中考常考题型.【变式5-5】(2023春•樟树市期中)将一副三角板拼成如图所示的图形,过点C作CF平分∠DCE交DE于点F.求证:CF∥AB.【分析】根据CF平分∠DCE以及∠DCE=90°即可得出∠FCE=45°,再根据三角形ABC为等腰直角三角形,即可得出∠ABC=∠FCE=45°,利用“同位角相等,两直线平行”即可证出结论.【解答】证明:∵CF平分∠DCE,∠DCE=90°,∴∠FCE=12∠DCE=45°.∵△ABC为等腰直角三角形,∴∠ABC=45°,∴∠ABC=∠FCE,∴CF∥AB.【点评】本题考查了平行线的判定,解题的关键是找出∠ABC=∠FCE=45°.本题属于基础题,难度不大,解决该题型题目时,找出相等(或互补)的角的关键.【变式5-6】(2023秋•靖边县期末)如图,AF与BD相交于点C,∠B=∠ACB,且CD平分∠ECF.试说明:AB∥CE.【分析】根据角平分线的定义结合对顶角得到∠ECD=∠ACB,则可证明∠B=∠ECD,根据平行线的判定即可证明AB∥CE.【解答】证明:因为CD平分∠ECF,所以∠ECD=∠FCD(角平分线的定义).因为∠ACB=∠FCD(对顶角相等),所以∠ECD=∠ACB(等量代换).因为∠B=∠ACB,。
初一数学:平行线(含解析)
平行线知识互联网板块一 平行线的定义、性质及判定知识导航【例1】 ⑴ 如下左图,AB CD ∥,AD AC ⊥,32ADC ∠=°,则CAB ∠的度数是________. ⑵ 如下中图,直线l 与直线a ,b 相交.若a b ∥,170∠=°,则2∠的度数是________. ⑶ 如下右图,已知a b ∥,170∠=°,240∠=°,则3∠=________. 图DCBA21ba lb a321CBA 【解析】⑴ 122°;⑵ 110°;⑶ 70°【例2】 ⑴ 根据图在()内填注理由:① ∵B CEF ∠ =∠(已知)∴AB CD ∥( )② ∵B BED ∠= ∠(已知)∴AB CD ∥( ) ③ ∵180B CEB ∠+∠=°(已知) ∴AB CD ∥( )⑵ 下列说法中,不正确的是( )A .如果两条直线都和第三条直线平行,那么这两条直线也互相平行B .过直线外一点,有且只有一条直线和已知直线相交C .同一平面内的两条不相交直线平行D .过直线外一点,有且只有一条直线与已知直线平行【解析】⑴ ① 同位角相等,两直线平行;② 内错角相等,两直线平行;③ 同旁内角互补,两直线平行.⑵ 本题主要考察两直线平行的识别.根据平行公理及其推论可知A 、D 正确;同一平面内的两条直线的位置关系只有相交和平行两种,C 正确;过直线外一点,有且只有一条直经典例题FC EB D A线与这条直线平行,而有无数条直线与这条直线相交,B 不正确.【例3】 请你分析下面的题目,从中总结规律,填写在空格上,并选择一道题目具体书写证明.⑴ 如图⑴,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AME ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑵ 如图⑵,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分BMF ∠,CNE ∠.求证:MG NH ∥.从本题我能得到的结论是:____________________________________.⑶ 如图⑶,已知:AB CD ∥,直线EF 分别交AB ,CD 于M ,N ,MG ,NH 分别平分AMF ∠,CNE ∠,相交于点O .求证:MG NH ⊥.从本题我能得到的结论是:____________________________________.(1)A B C DE FG H M N(2)NMFEDC B A GH (3)NM FEDC B A G H O 【解析】⑴ 两直线平行,同位角的角平分线平行.⑵ 证明:∵AB ∥CD ,∴BMFCNE ∠ 又∵MG ,NH 分别平分BMF从本题我能得到的结论是:两直线平行,内错角的角平分线平行.⑶ 证明:∵AB ∥CD ,∴180AMF CNE ∠+∠=又∵MG ,NH 分别平分AMF ∠,CNE ∠ ∴∴18090MON GMF HNE ∠= ,∴MG ⊥NH从本题我能得到的结论是:两直线平行,同旁内角的角平分线垂直.【例4】 证明:三角形三个内角的和等于180°.【解析】平角为180°,若能用平行线的性质,将三角形三个内角集中到同一个顶点,并得到一个平角,问题即可解决.证法1 : 如图所示,过ABC △的顶点A 作直线l BC ∥,则1BBAC所以180B BAC C ∠+∠+∠=°量代换).即三角形三个内角的和等于180°. 证法2 : 如图所示,延长BC ,过C 作CE AB ∥,则1A ∠=∠ (两直线平行,内错角相等),2B ∠= ∠ (两直线平行,同位角12180BCA ∠+∠+∠=°, 所以180BCA A B ∠+∠+∠=°,即三角形三个内角的和等于180°.【教师备案】利用平行线证明三角形内角和为180°的方法有很l21C BA 21D C EB A多,老师可以带着学生多练几个【例5】 如图,ABC △中CD AB ⊥于D ,DE BC ∥,交AC 于点E .过BC 上任意一点F ,作FG AB ⊥于G ,求证:12∠=∠.GFE 21D CBA【解析】∵FG AB CD AB ⊥⊥,, ∴GF CD ∥ ∴∠∵DE BC ∥, ∴2BCD ∠=∠, ∴12∠=∠【例6】 我们知道,光线从空气射入水中会发生折射现象.光线从水射入空气中,同样也会发生折射现象.如图,为光线从空气射入水中,再从水射入空气中的示意图.由于折射率相同,因此有14∠=∠,23∠=∠.请你用所学的知识来判断光线c 与d 是否平行?并说明理由.ba465dcba321【解析】c d ∥如图:∵25180∠+∠=°,36180∠+∠=°,23∠= ∠ ∴56∠= ∠(等角的补角相等)又∵14∠=∠∴1564∠+∠=∠+∠∴c d ∥(内错角相等,两直线平行)【例7】 (成都市初中数学竞赛)如图,已知AE 平分BAC ∠,BE AE ⊥,垂足为E ,ED AC ∥,36BAE ∠ = ° 求BED ∠ 的度数.EDCBA【解析】126°【例8】 ⑴ 如图所示AB CD ∥.求证:360B E D ∠+∠+∠=°EDCBA⑵ 已知,如图,AEC A C ∠=∠+∠,证明AB CD ∥ED CBA【解析】⑴ 如图,过E 点作EF AB ∥,则180B BEF ∠+∠=°因为AB CD ∥,所以EF CD ∥,180FED D ∠+∠=°所以360B BEF FED D ∠+∠+∠+∠=°又BEF FED BED ∠+∠=∠,∴360B BED D ∠+∠+∠=°即360B E D ∠+∠+∠=°F EDCBA ⑵ 解法一:过点E 作AEF A ∠=∠,则AB EF ∥, 又AEC A C AEF CEF ∠=∠+∠=∠+∠,∴C CEF ∠=∠,∴EF CD ∥,∴AB CD ∥. F ED CBA解法二:作180AEF A ∠+∠=°, 则AB EF ∥,∵360AEC AEF CEF ∠+∠+∠=°, ∴360A C AEF CEF ∠+∠+∠+∠=°, 经典例题板块二 平行线的构造∴180C CEF ∠+∠=°, ∴CD EF ∥, ∴AB CD ∥FE DCB A 【教师备案】这两个模型非常重要,建议各位老师分别从已知角度关系证明平行和已知平行证明角度关系两个方面讲解这两个小题,重点强调书写过程 【例9】 ⑴ 如图⑴,已知14MA NA ∥,探索1A ∠、2A ∠、3A ∠、4A ∠,1B ∠、2B ∠之间的关系.⑵ 如图⑵,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠之间的关系.⑶ 如图⑶,已知1n MA NA ∥,探索1A ∠、2A ∠、…、n A ∠,1B ∠、2B ∠、…、1n B −∠之间的关系.MNA 4B 2A 2A 3B 1A 1MNA nA 4A 3A 2A 1B n -1B 2B 1A nA n -1A 2A 1NM图⑴ 图⑵ 图⑶【解析】⑴ 123412180A A A A B B ∠+∠+∠+∠=∠+∠+°;⑵ 123(1)180n A A A A n ∠+∠+∠++∠=−×° . ⑶ 12121n n A A A B B B −∠+∠++∠=∠+∠++∠ ;【例10】如图,已知,CD EF ∥,C F ABC +=∠∠∠,求证AB GF ∥G FDECBAQPABCEDFG【解析】如图,过点B 作PQ CD ∥交GF 的延长线于点Q 则PQ EF ∥,【拓1】 如图所示,已知CB OA ∥,100C OAB∠ =∠ ,E ,F 在CB 上,且满足FOB AOB ∠= ∠,OE 平分COF ∠.思维拓展⑴ 求EOB ∠的度数;⑵ 若平行移动AB ,那么OBC ∠:OFC ∠的值是否随之发生变化?若变化,找出变化规律;若不变,求出这个比值;⑶ 在平行移动AB 的过程中,是否存在某种情况,使OECOBA ∠=∠?若存在,求出其度数;若不存在,请说明理由.ABC E FO 【解析】⑴40°;⑵1:2;⑶存在,60OECOBA ∠=【拓2】 在同一平面内有1a ,2a ,3a ,…,97a 共97条直线,如果12a a ∥,23a a ⊥,34a a ∥,45a a ⊥,56a a ∥,67a a ⊥,…,那么1a 与97a 的位置关系是________.【解析】寻找规律,12a a ∥,13a a ⊥,14a a ⊥;15a a ∥,16a a ∥,17a a ⊥,18a a ⊥…,4个一循环,974241÷= ,所以971a a ∥【拓3】 在同一平面内有7条直线,证明:必有两条直线的夹角小于26°.【解析】由平行线的性质可知,平移某条直线不影响该直线与其它直线的夹角,故可将7条直线平移使其交于同一点(如下图),A 7A 6A 5A 4A 3A 2A 1O点O 把7条直线分成14条射线,记为1OA ,2OA ,…,14OA ,相邻两射线组成14个角,记为1α,2α,…,14α,其和为一个周角:1214360ααα+++=° , 若结论不成立,则26i α°≥,()1214i = ,,,, 相加,得360这一矛盾说明,在1α,2α,…,14α中,必有一个角小于26°,即必有两条直线的夹角小于26°.【拓4】 如图,已知ABCDFED BC A FEDBC A【解析】如右图所示,分别过点E ,F 做AB 和CD 的平行线,易得:AEC EAB ECD∠=∠+∠x 90°50°30°30°ABCD E FG HMNPR Qx 90°50°30°30°AB CDE FG HMNOP【解析】过点G ,H 作AB ,CD 的平行线,那么AB OG HQ CD ∥∥∥∵AB OG ∥,HQ CD ∥∵OG HQ ∥,∴60GHQ OGH HGE EGO ∠=∠=∠−∠=° ∵在MHQ ∆中,180MHQ HMQ MQH ∠+∠+∠=°又∵180MQR MQH ∠+∠=°,∴MHQ HMQ MQR ∠+∠=∠ ,∴40GHM GHQ MHQ ∠=∠−∠=°习题1. 如图:已知12∠=∠,A C ∠= ∠,求证:①ABDC ∥证明:∵12∠=∠( )∴______∥______( ). ∴C CBE ∠= ∠( )又∵C A ∠=∠( )∴A ∠=________( ) ∴______∥______( ).EDCBA21【解析】已知:AB ,CD ;内错角相等,两直线平行;两直线平行,内错角相等;已知;CBE ∠; 等量代换;AD ,BC ;同位角相等,两直线平行. 习题2. 如图所示,复习巩固⑴ 已知:AB CD ∥,12∠=∠,求证:BE CF ∥; ⑵ 已知:AB CD ∥,BE CF ∥,求证:12∠=∠.F 21E B DA C【解析】⑴ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) ∵12∠=∠(已知),∴EBC BCF ∠= ∠(等量减等量差相等) ∴BE CF ∥(内错角相等,两直线平行)⑵ ∵AB CD ∥(已知),∴ABC BCD ∠= ∠(两直线平行,内错角相等) 又BE CF ∥(已知),∴EBCBCF ∠= ∠(两直线平行,内错角相等) ∴12∠=∠(等量减等量差相等)习题3. 如图,A B C ,,和D E F ,,分别在同一直线上,AF 分别交CE ,BD 于点G ,H .已知H BCG FE D A习题4. 如图,在折线ABCDEFG 中,已知∠1=∠2=∠3=∠4=∠5,延长AB GF 、交于点M .试探索AMG ∠与3∠的关系,并说明理由.M5G4321DCFEBA【解析】3AMG ∠= ∠.理由:∵12∠=∠,∴AB CD ∥(内错角相等,两直线平行). ∵34∠= ∠,∴CD EF ∥(内错角相等,两直线平行). ∴AB EF又53习题5. (十二届希望杯)如图所示,AB ED ∥,A E α=∠+∠,B C D β=∠+∠+∠,证明:2βα=.DCEBA21D CFEBA21DCFEBA【解析】证法l :因为AB ED ∥,所以180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥.由AB ED ∥,得CF ED ∥ (平行于同一条直线的两条直线平行) 因为CF AB ∥,有1B ∠= ∠ (两直线平行,内错角相等) 又CF ED ∥,有2D ∠= ∠,(两直线平行,内错角相等)所以12360B C D BCD β=∠+∠+∠=∠+∠+∠=° (周角定义)所以2βα=(等量代换)证法2:由AB ED ∥,得180A E α=∠+∠=°.(两直线平行,同旁内角互补)过C 作CF AB ∥(如图). 由AB ED ∥,得CF ED ∥.(平行于同一条直线的两条直线平行)因为CF AB ∥,所以1180B ∠+∠=(两直线平行,同旁内角互补), 又CF ED ∥,所以2180D ∠+∠=(两直线平行,同旁内角互补) 所以(12)(1)(2)360BCD B D B D β=∠+∠+∠=∠+∠+∠+∠=∠+∠+∠+∠=°所以2βα=(等量代换). 习题6. 如图,已知:AB CD ∥,ABFDCE ∠=∠,求证:BFE FEC ∠=∠ FEDCBA4321ABC DEF 习题7. 如图,AB DE ∥,70ABC ∠=,147CDE ∠= °,求C ∠的度数. 147°70°ED CB AF147°70°E DCBA∴CF DE∥∴18018014733DCF CDE ∴703337BCD BCF DCF ∠=∠−∠=°−°=°.练习1. (2012年第23届“希望杯”初一决赛试题)下面四个命题:① 若两个角是同旁内角,则这两个角互补② 若两个角互补,则这两个角是同旁内角③ 若两个角不是同旁内角,则这两个角不互补④ 若两个角不互补,则这两个角不是同旁内角其中错误的命题个数是( )A .1B .2C .3D .4【解析】D练习2. 如图,已知AB CD ∥,CE 平分ACD ∠,且交AB 于E ,118A ∠=°,则AEC ∠=________. E BC DA 【解析】∵AB CD练习3. 如图,∵3E ∠=∠(已知),12∠=∠(已知) 又∵∠________=∠________( )∴∠________=∠________( )∴AB CE ∥( )【解析】2;3;对顶角相等;1;E ;等量代换;内错角相等,两直线平行. 练习4. 如图,AD 是ABC △的角平分线,2BAC B ∠=∠,DE BA ∥.试探究B ∠与ADE ∠有何关系?并对你的结论加以说明.补充练习12图F 3E D AAB C D E【解析】 B ADE ∠= ∠,证明略.练习5. 已知,如图所示,AB DE ∥,116D ∠=°,93DCB ∠,求B ∠的度数. E D C B A FED C BA 【解析】过点C 作直线CF AB ∥,因为AB DE ∥,所以AB DE CF ∥∥,练习6. 如图所示,两直线AB CD 、平行,则123456∠+∠+∠+∠+∠+∠=()A .630° B .720° C .800° D .900°65HG4321DC FE BA 【解析】分别过E F G H ,,,点做AB 的平行线,再求各个角度的和.选D。
人教版七年级数学下册:平行线与相交线证明题过程(含答案与解析)
人教版七年级数学下册:平行线与相交线证明一.解答题(共8小题)1.如图,已知DF∥AC,∠C=∠D,要证∠AMB=∠2,请完善证明过程:∵DF∥AC(_________)∴∠D=∠1(_________)∵∠C=∠D(_________)∴∠1=∠C(_________)∴DB∥EC(_________)∴∠ABM=∠2(_________)2.已知:如图,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求证:DG⊥BC证明:∵EF⊥AB CD⊥AB_________∴∠EFA=∠CDA=90°(垂直定义)∠1=∠_________∴EF∥CD_________∴∠1=∠2(已知)∴∠2=∠ACD(等量代换)∴DG∥AC_________∴∠DGB=∠ACB_________∵AC⊥BC(已知)∴∠ACB=90°(垂直定义)∴∠DGB=90°即DG⊥BC.3.请填空完成下面的证明:如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,DE∥BA,∠A=∠FDE.求证:DF∥AC.证明:∵DE∥BA∴∠A=_________(_________)∵∠A=∠FDE∴∠FDE=_________∴DF∥AC(_________)4.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=_________.(_________)又因为∠1=∠2,所以∠1=∠3.(_________)所以AB∥_________.(_________)所以∠BAC+_________=180°(_________)又因为∠BAC=70°,所以∠AGD=_________.5.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB (已知)∴∠DBC=∠_________,∠ECB=∠_________∵∠ABC=∠ACB (已知)∴∠_________=∠_________.∠_________=∠_________(已知)∴∠F=∠_________∴EF∥AD_________.6.补全下列推理过程:如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.因为EF∥AD (已知)所以∠2=_________(_________)又因为∠1=∠2 (已知)所以∠1=∠3(等量代换)所以AB∥_________(_________)所以∠BAC+_________=180°(两直线平行,同旁内角互补)因为∠BAC=80°(已知)所以∠AGD=_________(等量代换)7.完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=_________(_________),∵DF∥CA,∴∠A=_________(_________),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(_________),∴∠C=_________,∴AC∥BD(_________).参考答案与试题解析一.解答题(共8小题)1.如图,已知DF∥AC,∠C=∠D,要证∠AMB=∠2,请完善证明过程:∵DF∥AC(已知)∴∠D=∠1(两直线平行,内错角相等)∵∠C=∠D(已知)∴∠1=∠C(等量代换)∴DB∥EC(同位角相等,两直线平行)∴∠ABM=∠2(两直线平行,同位角相等)考点:平行线的判定与性质.专题:推理填空题.分析:先根据平行线的性质由DF∥AC得到∠D=∠1,再根据等量代换得到∠1=∠C,于是可根据平行线的判定方法得到DB∥EC,然后根据平行线的性质得到∠AMB=∠2.解答:证明:∵DF∥AC(已知),∴∠D=∠1(两直线平行,内错角相等),∵∠C=∠D(已知),∴∠1=∠C(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠AMB=∠2(两直线平行,同位角相等).故答案为:已知,两直线平行,内错角相等,已知,等量代换,同位角相等,两直线平行,两直线平行,同位角相等.点评:本题考查了平行线的判定与性质:同位角相等,两直线平行;内错角相等,两直线平行;两直线平行,同位角相等;两直线平行,内错角相等.2.已知:如图,EF⊥AB,CD⊥AB,AC⊥BC,∠1=∠2,求证:DG⊥BC 证明:∵EF⊥AB CD⊥AB已知∴∠EFA=∠CDA=90°(垂直定义)∠1=∠ACD∴EF∥CD(两直线平行,同位角相等)∴∠1=∠2(已知)∴∠2=∠ACD(等量代换)∴DG∥AC(内错角相等,两直线平行)∴∠DGB=∠ACB(两直线平行,同位角相等)∵AC⊥BC(已知)∴∠ACB=90°(垂直定义)∴∠DGB=90°即DG⊥BC.考点:平行线的判定与性质;垂线.专题:推理填空题.分析:根据垂直定义求出∠EFA=∠CDA=90°,求出∠1=∠ACD,推出EF∥CD,根据平行线的性质得出∠2=∠ACD,推出DG∥AC,根据平行线的性质推出∠ACB=∠DGB即可.解答:证明:∵EF⊥AB,CD⊥AB(已知),∴∠EFA=∠CDA=90°(垂直定义),∴EF∥CD(同位角相等,两直线平行),∴∠1=∠ACD(两直线平行,同位角相等),∵∠1=∠2(已知),∴∠2=∠ACD(等量代换),∴DG∥AC(内错角相等,两直线平行),∴∠DGB=∠ACB(两直线平行,同位角相等),∵AC⊥CB,∴∠ACB=90°,∴∠DGB=90°,即DG⊥BC,故答案为:已知,ACD,(两直线平行,同位角相等),(内错角相等,两直线平行),(两直线平行,同位角相等).点评:本题考查了平行线的判定和性质,三角形内角和定理,垂直定义的应用,主要考查学生的推理能力.3.请填空完成下面的证明:如图,点D、E、F分别是三角形ABC的边BC、CA、AB上的点,DE∥BA,∠A=∠FDE.求证:DF∥AC.证明:∵DE∥BA∴∠A=∠DEC(两直线平行,同位角相等)∵∠A=∠FDE∴∠FDE=∠DEC∴DF∥AC(内错角相等,两直线平行)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质得出∠A=∠DEC,求出∠FDE=∠DEC,根据平行线的判定推出即可.解答:证明:∵DE∥BA,∴∠A=∠DEC(两直线平行,同位角相等),∵∠A=∠FDE(已知),∴∠FDE=∠DEC(等量代换),∴DF∥AC(内错角相等,两直线平行),故答案为:∠DEC,两直线平行,同位角相等;∠DEC,内错角相等,两直线平行.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②内错角相等,两直线平行.4.推理填空:如图,EF∥AD,∠1=∠2,∠BAC=70°.将求∠AGD的过程填写完整.因为EF∥AD,所以∠2=∠3.(两直线平行,同位角相等)又因为∠1=∠2,所以∠1=∠3.(等量代换)所以AB∥DG.(内错角相等,两直线平行)所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补)又因为∠BAC=70°,所以∠AGD=110°.考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线的性质推出∠1=∠2=∠3,推出AB∥DG,根据平行线的性质得出∠BAC+∠DGA=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3(等量代换),∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠DGA=180°(两直线平行,同旁内角互补),∵∠BAC=70°,∴∠AGD=110°,故答案为:∠3,两直线平行,同位角相等,等量代换,DG,内错角相等,两直线平行,∠AGD,两直线平行,同旁内角互补,110°.点评:本题考查了平行线的性质和判定的应用,注意:平行线的性质是①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.5.如图:∠ABC=∠ACB,BD平分∠ABC,CE平分∠ACB,∠DBF=∠F,那么EC与DF 平行吗?为什么?请完成下面的解题过程解:∵BD平分∠ABC,CE平分∠ACB (已知)∴∠DBC=∠ABC,∠ECB=∠ACB∵∠ABC=∠ACB (已知)∴∠DBC=∠ECB.∠F=∠DBF(已知)∴∠F=∠ECB∴EF∥AD(同位角相等,两直线平行).考点:平行线的判定.专题:推理填空题.分析:利用角平分线的性质得出∠DBC=∠ABC,∠ECB=∠ACB,进而求出∠F=∠ECB,得出答案即可.解答:解:∵BD平分∠ABC,CE平分∠ACB(已知)∴∠DBC=∠ABC,∠ECB=∠ACB,∵∠ABC=∠ACB (已知)∴∠DBC=∠ECB.∵∠DBF=∠F,(已知)∴∠F=∠ECB,∴EF∥AD(同位角相等,两直线平行).点评:此题主要考查了平行线的判定以及角平分线的性质,得出∠F=∠ECB是解题关键.6.补全下列推理过程:如图,EF∥AD,∠1=∠2,∠BAC=80°.求∠AGD的度数.因为EF∥AD (已知)所以∠2=∠3(两直线平行,同位角相等)又因为∠1=∠2 (已知)所以∠1=∠3(等量代换)所以AB∥DG(内错角相等,两直线平行)所以∠BAC+∠AGD=180°(两直线平行,同旁内角互补)因为∠BAC=80°(已知)所以∠AGD=100°(等量代换)考点:平行线的判定与性质.专题:推理填空题.分析:根据平行线性质推出∠2=∠3,推出∠1=∠3,根据平行线的判定推出AB∥DG,根据平行线的性质得出∠BAC+∠AGD=180°,代入求出即可.解答:解:∵EF∥AD,∴∠2=∠3(两直线平行,同位角相等),∵∠1=∠2,∴∠1=∠3,∴AB∥DG(内错角相等,两直线平行),∴∠BAC+∠AGD=180°,∵∠BAC=80°,∴∠AGD=100°,故答案为:∠3,两直线平行,同位角相等,DG,内错角相等,两直线平行,∠AGD,100°.点评:本题考查了平行线的性质和判定的应用,注意:平行线的性质是:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然.7.完成下面的证明:(1)如图1,点D,E,F分别是三角形ABC的边BC,CA,AB上的点,DE∥BA,DF∥CA.求证:∠FDE=∠A.证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等),∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等),∴∠FDE=∠A;(2)如图2,AB和CD相交于点O,∠C=∠COA,∠D=∠BOD,求证:AC∥BD;证明:∵∠C=∠COA,∠D=∠BOD,∵∠COA=∠BOD(对顶角相等),∴∠C=∠D,∴AC∥BD(内错角相等,两直线平行).考点:平行线的判定与性质.专题:推理填空题.分析:(1)根据平行线的性质得出∠FDE=∠BFD,∠A=∠BFD,推出即可;(2)根据对顶角相等和已知求出∠C=∠D,根据平行线的判定推出即可.解答:(1)证明:∵DE∥BA,∴∠FDE=∠BFD(两直线平行,内错角相等),∵DF∥CA,∴∠A=∠BFD(两直线平行,同位角相等),∴∠FDE=∠A,故答案为:∠BFD,两直线平行,内错角相等,∠BFD,两直线平行,同位角相等;(2)证明:∵∠C=∠COA,∠D=∠BOD,又∵∠COA=∠BOD(对顶角相等),∴∠C=∠D,∴AC∥BD(内错角相等,两直线平行),故答案为:对顶角相等,∠D,内错角相等,两直线平行.点评:本题考查了平行线的性质和判定的应用,注意:①两直线平行,同位角相等,②两直线平行,内错角相等,③两直线平行,同旁内角互补,反之亦然,题目比较好,难度适中.8.如图,在△ABC中,DE∥BC,连结DC,点F是边BC上一点,GF⊥AB,垂足为G,∠1=∠2,求证:CD⊥AB.考点:平行线的判定与性质;垂线.专题:证明题.分析:求出∠BGF=90°,根据平行线的性质和已知求出∠2=∠BCD,推出FG∥CD,根据平行线的性质得出∠CDB=∠BGF=90°即可.解答:证明:∵FG⊥AB,∴∠BGF=90°,∵DE∥BC,∴∠1=∠BCD,∵∠1=∠2,∴∠2=∠BCD,∴FG∥CD,∴∠CDB=∠BGF=90°,∴CD⊥AB.点评:本题考查了平行线的性质和判定,垂直的定义的应用,主要考查学生的推理能力.。
(完整版)七年级数学培优-平行线四大模型
平行线四大模型平行线的判定与性质l、平行线的判定根据平行线的定义,如果平面内的两条直线不相交,就可以判断这两条直线平行,但是,由于直线无限延伸,检验它们是否相交有困难,所以难以直接根据定义来判断两条直线是否平行,这就需要更简单易行的判定方法来判定两直线平行.判定方法l:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简称:同位角相等,两直线平行.判定方法2:两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简称:内错角相等,两直线平行,判定方法3:两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简称:同旁内角互补,两直线平行,如上图:若已知∠1=∠2,则AB∥CD(同位角相等,两直线平行);若已知∠1=∠3,则AB∥CD(内错角相等,两直线平行);若已知∠1+ ∠4= 180°,则AB∥CD(同旁内角互补,两直线平行).另有平行公理推论也能证明两直线平行:平行公理推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行.2、平行线的性质利用同位角相等,或者内错角相等,或者同旁内角互补,可以判定两条直线平行.反过来,如果已知两条直线平行,当它们被第三条直线所截,得到的同位角、内错角、同旁内角也有相应的数量关系,这就是平行线的性质.性质1:两条平行线被第三条直线所截,同位角相等.简称:两直线平行,同位角相等性质2:两条平行线被第三条直线所截,内错角相等.简称:两直线平行,内错角相等性质3:两条平行线被第三条直线所截,同旁内角互补.简称:两直线平行,同旁内角互补本讲进阶平行线四大模型模型一“铅笔”模型点P在EF右侧,在AB、CD内部“铅笔”模型结论1:若AB∥CD,则∠P+∠AEP+∠PFC=3 60°;结论2:若∠P+∠AEP+∠PFC= 360°,则AB∥CD.模型二“猪蹄”模型(M模型)点P在EF左侧,在AB、CD内部“猪蹄”模型结论1:若AB∥CD,则∠P=∠AEP+∠CFP;结论2:若∠P=∠AEP+∠CFP,则AB∥CD.模型三“臭脚”模型点P在EF右侧,在AB、CD外部“臭脚”模型结论1:若AB∥CD,则∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP;结论2:若∠P=∠AEP-∠CFP或∠P=∠CFP-∠AEP,则AB∥CD.模型四“骨折”模型·点P在EF左侧,在AB、CD外部“骨折”模型结论2:若∠P=∠CFP-∠AEP或∠P=∠AEP-∠CFP,则AB∥CD.巩固练习平行线四大模型证明(1)已知AE // CF ,求证∠P +∠AEP +∠PFC = 360°.(2)已知∠P=∠AEP+∠CFP,求证AE∥CF.(3)已知AE∥CF,求证∠P=∠AEP-∠CFP.(4)已知∠P= ∠CFP -∠AEP,求证AE //CF.模块一平行线四大模型应用例1(1)如图,a∥b,M、N分别在a、b上,P为两平行线间一点,那么∠l+∠2+∠3= .(2)如图,AB∥CD,且∠A=25°,∠C=45°,则∠E的度数是.(3)如图,已知AB∥DE,∠ABC=80°,∠CDE =140°,则∠BCD= .(4) 如图,射线AC∥BD,∠A= 70°,∠B= 40°,则∠P= .练(1)如图所示,AB∥CD,∠E=37°,∠C= 20°,则∠EAB的度数为.(2) 如图,AB∥CD,∠B=30°,∠O=∠C.则∠C= .例2如图,已知AB ∥DE ,BF 、 DF 分别平分∠ABC 、∠CDE ,求∠C 、 ∠F 的关系.练如图,已知AB ∥DE ,∠FBC =n 1∠ABF ,∠FDC =n1∠FDE . (1)若n =2,直接写出∠C 、∠F 的关系 ; (2)若n =3,试探宄∠C 、∠F 的关系;(3)直接写出∠C 、∠F 的关系 (用含n 的等式表示).例3如图,已知AB ∥CD ,BE 平分∠ABC ,DE 平分∠ADC .求证:∠E = 2 (∠A +∠C ) .练如图,己知AB ∥DE ,BF 、DF 分别平分∠ABC 、∠CDE ,求∠C 、∠F 的关系.例4如图,∠3==∠1+∠2,求证:∠A+∠B+∠C+∠D= 180°.练(武昌七校2015-2016 七下期中)如图,AB⊥BC,AE平分∠BAD交BC于E,AE⊥DE,∠l+∠2= 90°,M、N分别是BA、CD的延长线上的点,∠EAM和∠EDN的平分线相交于点F则∠F的度数为().A. 120°B. 135°C. 145°D. 150°模块二平行线四大模型构造例5如图,直线AB∥CD,∠EF A= 30°,∠FGH= 90°,∠HMN=30°,∠CNP= 50°,则∠GHM= .练如图,直线AB∥CD,∠EFG =100°,∠FGH =140°,则∠AEF+ ∠CHG= .例6 已知∠B =25°,∠BCD=45°,∠CDE =30°,∠E=l0°,求证:AB∥EF.练已知AB∥EF,求∠l-∠2+∠3+∠4的度数.(1)如图(l),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n,∠B1、∠B2…∠B n-1之间的关系.(2)如图(2),己知MA1∥NA4,探索∠A1、∠A2、∠A3、∠A4,∠B1、∠B2之间的关系.(3)如图(3),已知MA1∥NA n,探索∠A1、∠A2、…、∠A n之间的关系.如图所示,两直线AB∥CD平行,求∠1+∠2+∠3+∠4+∠5+∠6.。
(完整版)七年级数学平行线的有关证明及答案
平行线的性质与判定的证明练习题温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°2. 已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.例4如图2-6,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立,并说明理由.解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.5.如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)
人教版七年级下册数学平行线的判定及性质证明题训练(含答案)1.如图,三角形ABC 中,点D 在AB 上,点E 在BC 上,点F ,G 在AG 上,连接,,DG BG EF .己知12∠=∠,3180ABC ∠+∠=︒,求证:∥BG EF .将证明过程补充完整,并在括号内填写推理依据.证明:∵_____________(已知)∴∥DG BC (_______________________)∴.CBG ∠=________(____________________)∵12∠=∠(已知)∴2∠=________(等量代换)∴∥BG EF (___________________)2.如图,已知12∠=∠,A F ∠=∠,试说明C D ∠=∠的理由.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=( ),所以 ∥ ( ).(请继续完成接下去的说理过程)3.如图,CD ∥AB ,点O 在直线AB 上,OE 平分∠BOD ,OF ⊥OE ,∠D =110°,求∠DOF 的度数.4.如图,DH 交BF 于点E ,CH 交BF 于点G ,12∠=∠,34∠=∠,5B ∠=∠.试判断CH 和DF 的位置关系并说明理由.5.已知:如图,直线DE//AB.求证:∠B+∠D=∠BCD.6.如图,已知AB CD∥,BE平分ABC∠,CE平分BCD∠,求证1290∠+∠=︒.证明:∵BE平分ABC∠(已知),∴2∠=(),同理1∠=,∴1122∠+∠=,又∵AB CD∥(已知)∴ABC BCD∠+∠=(),∴1290∠+∠=︒.7.请把下列证明过程及理由补充完整(填在横线上):已知:如图,BC,AF是直线,AD∥BC,∠1=∠2,∠3=∠4.求证:AB∥CD.证明:∵AD∥BC(已知),∴∠3=().∵∠3=∠4(已知),∴∠4=().∵∠1=∠2(已知),∴∠1+∠CAF=∠2+∠CAF().即∠BAF=.∴∠4=∠BAF.().∴AB∥CD().8.如图,已知∠A=120°,∠FEC=120°,∠1=∠2,试说明∠FDG=∠EFD.请补全证明过程,即在下列括号内填上结论或理由.解:∵∠A=120°,∠FEC=120°(已知),∴∠A=().∴AB∥().又∵∠1=∠2(已知),∴EF ∥ ( ).∴∠FDG =∠EFD ( ).9.在三角形ABC 中,CD AB ⊥于D ,F 是BC 上一点,FH AB ⊥于H ,E 在AC 上,EDC BFH ∠=∠.(1)如图1,求证:∥DE BC ;(2)如图2,若90ACB ∠=︒,请直接写出图中与ECD ∠互余的角,不需要证明.10.已知:如图,直线MN HQ ∥,直线MN 交EF ,PO 于点A ,B ,直线HQ 交EF ,PO 于点D ,C ,DG 与OP 交于点G ,若1103∠=︒,277∠=︒,396∠=︒.(1)求证:EF OP ∥;(2)请直接写出CDG ∠的度数.11.如图直线a b ∥,直线EF 与,a b 分别和交于点,,A B AC AB AC ⊥、交直线b 于点C .(1)若160∠=︒,直接写出2∠= ;(2)若3,4,5AC AB BC ===,则点B 到直线AC 的距离是 ;(3)在图中直接画出并求出点A 到直线BC 的距离.12.如图,已知AB CD ,BE 平分∠ABC ,∠CDE = 150°,求∠C 的度数.13.如图,在ABC 中,CD 平分ACB ∠交AB 于D ,EF 平分AED ∠交AB 于F ,已知ADE B ∠=∠,求证:EF CD ∥.14.已知:如图,AB ∥CD ∥EF ,点G 、H 、M 分别在AB 、CD 、EF 上.求证:GHM AGH EMH ∠∠∠=+.15.如图所示,点B 、E 分别在AC 、DF 上,BD 、CE 均与AF 相交,A F ∠=∠,C D ∠=∠,求证:12∠=∠.16.如图,在ABC 中,DE ∥AC ,DF ∥AB .(1)判断∠A 与∠EDF 之间的大小关系,并说明理由.(2)求∠A +∠B +∠C 的度数.17.已知:如图,ABC 中,点D 、E 分别在AB 、AC 上,EF 交DC 于点F ,32180∠+∠=︒ ,1B ∠=∠.(1)求证:∥DE BC ;(2)若DE 平分ADC ∠,33B ∠=∠,求2∠的度数.18.如图,AB ∥DG ,∠1+∠2=180°.(1)试说明:AD ∥EF ;(2)若DG 是∠ADC 的平分线,∠2=142°,求∠B 的度数.19.问题情境:如图1,AB CD ∥,130PAB ∠=︒,120PCD ∠=︒,求APC ∠的度数.小明的思路是:如图2,过P 作PE AB ∥,通过平行线性质,可得APC ∠=______.问题迁移:如图3,AD BC ∥,点P 在射线OM 上运动,ADP α∠=∠,BCP β∠=∠.(1)当点P 在A 、B 两点之间运动时,CPD ∠、α∠、β∠之间有何数量关系?请说明理由.(2)如果点P 在A 、B 两点外侧运动时(点P 与点A 、B 、O 三点不重合),请你直接写出CPD ∠、α∠、β∠之间有何数量关系.20.直线AB CD∠.∥,直线EF分别交AB、CD于点M、N,NP平分MND(1)如图1,若MR平分EMB∠,则MR与NP的位置关系是.∠,则MR与NP有怎样的位置关系?请说明理由.(2)如图2,若MR平分AMN(3)如图3,若MR平分BMN∠,则MR与NP有怎样的位置关系?请说明理由.参考答案:1.解:证明:∵3180ABC ∠+∠=︒(已知)∴∥DG BC (同旁内角互补,两直线平行)∴.1CBG ∠=∠(两直线平行,内错角相等)∵12∠=∠(已知)∴2CBG ∠=∠(等量代换)∴∥BG EF (同位角相等,两直线平行)2.解:把1∠的对顶角记作3∠,所以13∠=∠(对顶角相等).因为12∠=∠(已知),所以23∠∠=(等量代换),所以//BD CE (同位角相等,两直线平行),所以4C ∠=∠(两直线平行,同位角相等),又因为A F ∠=∠,所以//DF AC (同位角相等,两直线平行),所以4D ∠=∠(两直线平行,内错角相等),所以C D ∠=∠(等量代换).故答案为:等量代换;BD ;CE ;同位角相等,两直线平行.3.解:∵CD AB ∥∴110DOB D ∠=∠=︒∵OE 平分∠BOD ∴1552DOE DOB ∠=∠=︒ 又∵OF ⊥OE∴90EOF ∠=︒∴905535DOF EOF DOE ∠=∠-∠=︒-︒=︒故答案为:35︒4.解:CH DF,理由如下:∵34∠=∠,∴CD BF,∴5180BED∠+∠=︒,∵5B∠=∠,∴180B BED∠+∠=︒,∴BC DH,∴2H∠=∠,∵12∠=∠,∴1H∠=∠,∴CH DF.5.证明:过点C作CF∥AB,∴∠B=∠BCF,∵DE//AB.CF∥AB,∴CF∥DE,∴∠D=∠DCF,∴∠BCD=∠BCF+∠DCF=∠B+∠D.6.证明:∵BE平分∠ABC(已知),∴∠2=12∠ABC(角平分线的定义),同理∠1=12∠BCD,∴∠1+∠2=12(∠ABC+∠BCD),又∵AB∥CD(已知)∴∠ABC +∠BCD =180°(两直线平行,同旁内角互补 ),∴∠1+∠2=90°. 故答案为:12∠ABC ;角平分线的定义;12∠BCD ;(∠ABC +∠BCD );180°;两直线平行,同旁内角互补.7.证明:∵AD ∥BC (已知),∴∠3=∠CAD (两直线平行,内错角相等).∵∠3=∠4(已知),∴∠4=∠CAD (等量代换).∵∠1=∠2(已知),∴∠1+∠CAF =∠2+∠CAF (等式的性质).即∠BAF =∠CAD .∴∠4=∠BAF .(等量代换).∴AB ∥CD (同位角相等,两直线平行).8.解:∵∠A =120°,∠FEC =120°(已知),∴∠A =∠FEC (等量代换),∴AB ∥EF (同位角相等,两直线平行),又∵∠1=∠2(已知),∴AB ∥CD (内错角相等,两直线平行),∴EF ∥CD (平行于同一条直线的两直线互相平行),∴∠FDG =∠EFD (两直线平行,内错角相等),故答案为:∠FEC ;等量代换;EF ;同位角相等,两直线平行;内错角相等,两直线平行;CD ;平行于同一条直线的两直线互相平行;两直线平行,内错角相等.9.证明:∵CD AB ⊥,FH AB ⊥,∴//CD FH ,∴BCD BFH ∠=∠.∵EDC BFH ∠=∠,∴BCD EDC ∠=∠,∴//ED BC .(2)与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.证明:∵//ED BC ,∴90DEC ACB ∠=∠=︒,EDC BCD ∠=∠,∴90ECD EDC ∠+∠=︒,90ECD BCD ∠+∠=︒.∵//CD FH ,∴BCD BFH ∠=∠,∴90ECD BFH ∠+∠=︒.∵CD AB ⊥,∴90ACD A ∠+∠=︒,即90ECD A ∠+∠=︒.综上,可知与ECD ∠互余的角有:EDC BCD BFH A ∠∠∠∠,,,.10.解:(1)∵1103∠=︒,∴77∠=︒ABC ,∵277∠=︒,∴2ABC ∠=∠,∴EF OP ∥;(2)∵MN HQ ∥,EF OP ∥,∴1103∠=∠=∠=︒FDC FAB ,3180∠+∠=︒FDG ,∵396∠=︒,∴180********∠=︒-∠=︒-︒=︒FDG ,∴1038419∠=∠-∠=︒-︒=︒CDG FDC FDG .11.解:(1)∵a b ∥,∴12180BAC ∠+∠+∠=︒,∵AC AB ⊥,160∠=︒,∴230∠=︒,故答案为:30︒;(2)∵AC AB⊥,∴点B到直线AC的距离为线段4AB=,故答案为:4;(3)如图所示:过点A作AD BC⊥,点A到直线BC的距离为线段AD的长度,∵AC AB⊥,∴ABC∆为直角三角形,∴1122ABCS AC AB BC AD∆=⨯⨯=⨯⨯,即1134522AD ⨯⨯=⨯⨯,解得:125 AD=,∴点A到直线BC的距离为125.12.解:∵∠CDE=150°,∴∠CDB=180°-∠CDE=30°,又∵AB CD,∴∠ABD=∠CDB=30°,∵BE平分∠ABC,∴∠ABC=2∠ABD=60°,∵AB CD,∴∠C=180°-∠ABC=120°.13.证明:ADE B∠=∠(已知),DE//BC∴(同位角相等,两直线平行),ACB AED∴∠=∠(两直线平行,同位角相等),CD 平分ACB ∠,EF 平分AED ∠(已知),12ACD ACB ∴∠=∠,12AEF AED ∠=∠(角平分线的定义), ACD AEF ∴∠=∠(等量代换).EF //CD ∴(同位角相等,两直线平行).14.证明:∵AB ∥CD (已知)∴1AGH ∠=∠(两直线平行,内错角相等) 又 ∵CD ∥EF (已知)∴2EMH ∠=∠,(两直线平行,内错角相等) ∵12GHM ∠∠∠=+(已知)∴GHM AGH EMH ∠∠∠=+(等式性质)15.证明:∵A F ∠=∠,∴AC DF ∥,∴ABD D ∠=∠,又∵C D ∠=∠,∴ABD C ∠=∠,∴DB CE ∥,∴13∠=∠,∵23∠∠=,∴12∠=∠.16.(1)两角相等,理由如下:∵DE ∥AC ,∴∠A =∠BED (两直线平行,同位角相等).∵DF ∥AB ,∴∠EDF =∠BED (两直线平行,内错角相等), ∴∠A =∠EDF (等量代换).(2)∵DE ∥AC ,∴∠C =∠EDB (两直线平行,同位角相等).∵DF ∥AB ,∴∠B =∠FDC (两直线平行,同位角相等).∵∠EDB +∠EDF +∠FDC =180°,∴∠A +∠B +∠C =180°(等量代换).17.解:(1)∵32180∠+∠=︒,∠2+∠DFE =180°, ∴∠3=∠DFE ,∴EF //AB ,∴∠ADE =∠1,又∵1B ∠=∠,∴∠ADE =∠B ,∴DE //BC ,(2)∵DE 平分ADC ∠,∴∠ADE =∠EDC ,∵DE //BC ,∴∠ADE =∠B ,∵33B ∠=∠∴∠5+∠ADE +∠EDC =3B B B ∠+∠+∠=180°, 解得:36B ∠=︒,∴∠ADC =2∠B =72°,∵EF //AB ,∴∠2=∠ADC =180°-108°=72°,18.(1)∵AB ∥DG ,∴∠BAD =∠1,∵∠1+∠2=180°,∴∠BAD +∠2=180°.∵AD ∥EF .(2)∵∠1+∠2=180°且∠2=142°,∴∠1=38°,∵DG 是∠ADC 的平分线,∴∠CDG =∠1=38°,∵AB ∥DG ,∴∠B =∠CDG =38°.19.解:问题情境:∵AB ∥CD ,PE ∥AB ,∴PE ∥AB ∥CD ,∴∠A +∠APE =180°,∠C +∠CPE =180°,∵∠P AB =130°,∠PCD =120°,∴∠APE =50°,∠CPE =60°,∴∠APC =∠APE +∠CPE =50°+60°=110°;(1)CPD αβ∠=∠+∠;过点P 作PQ AD ∥,又因为AD BC ∥,所以PQ AD BC ∥∥,则ADP DPE ∠=∠,BCP CPE ∠=∠,所以CPD DPE CPE ADP BCP ∠=∠+∠=∠+∠;(2)情况1:如图所示,当点P 在B 、O 两点之间时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠DPE -∠CPE =∠α-∠β,情况2:如图所示,点P 在射线AM 上时,过P 作PE ∥AD ,交ON 于E ,∵AD ∥BC ,∴AD ∥BC ∥PE ,∴∠DPE =∠ADP =∠α,∠CPE =∠BCP =∠β, ∴∠CPD =∠CPE -∠DPE =∠β-∠α20.(1)如题图1,AB CD ∥EMB END ∴∠=∠MR 平分EMB ∠,NP 平分MND ∠.11,22EMR EMB ENP END ∴∠=∠∠=∠ EMR ENP ∴∠=∠∴MR ∥NP ;(2)如题图2,AB CD ∥AMN END ∴∠=∠MR 平分AMN ∠,NP 平分MND ∠.11,22RMN AMN ENP END ∴∠=∠∠=∠ RMN ENP ∴∠=∠∴MR ∥NP ;(3)如图,设,MR PN 交于点Q ,过点Q 作QG AB ∥AB CD ∥180BMN END ∴∠+∠=︒,QG CD ∥ ,MQG BMR GQN PND ∴∠=∠∠=∠ MR 平分BMN ∠,NP 平分MND ∠.11,22BMR BMN PND END ∴∠=∠∠=∠ 90BMR PND ∴∠+∠=︒90MQN MQG NQG ∴∠=∠+∠=︒ ∴MR ⊥NP ;。
第二节 平行线的性质和判定(含答案)...七年级数学 学而思
第二节 平行线的性质和判定1.平行线(1)定义:在同一平面内,不相交的两条直线叫做平行线,直线a 与直线b 互相平行,记作a∥b; 注:必须强调在同一平面内,否则无法说明平行.(2)平行公理:经过直线外一点,有且只有一条直线与已知直线平行,注:点必须在直线外,而不能在直线上; (3)平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也相互平行,即“平行于同一条直线的两直线平行”.2.两条直线的位置关系在同一平面内,两条直线的位置关系只有两种:(1)相交;(2)平行,注:判断同一平面内两条直线的位置关系时,可以根据它们的公共点的个数来确定:①有且只有一个公共点,两直线相交;②无公共点,两直线平行. 3.两直线平行的判定方法 (1)平行线的定义; (2)平行公理的推论;(3)同位角相等,两直线平行; (4)内错角相等,两直线平行; (5)同旁内角互补,两直线平行. 4.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.1.平行的判定和证明:证明平行一般从寻找相等的同位角,内错角或互补的同旁内角 出发,而这些角关系的获得条件一般有: ①已知平行条件; ②三角形内角和; ③角平分线; ④垂直;⑤互余互补关系.例1.如图5-2-1所示,如果,//,//CD EF EF AB 请写出一个关于3,2,1∠∠∠的等量关系125-- 225-- 325--检测1.如图5-2-2所示,已知a ‖b,0701=∠,,402ο=∠则=∠3 例2.如图5-2-3所示,已知,9021ο=∠+∠,,//AG CD FC DE ⊥求证:.//FH AG检测2.如图5-2-4所示,直线a ,b 被直线c 所截,下列条件能使b a //的是;61∠=∠①;62∠=∠②;31∠=∠③;75∠=∠④+∠2⑤;1807ο=∠.71∠=∠⑥例3.(江西兴国县期末)学习了平行线后,小龙同学想出了“过已知直线m 外一点P 画这条直线的平行线的新方法”,他是通过折一张半透明的正方形纸得到的.525--观察图5-2-5所示,经两次折叠展开后折痕CD 所在的直线即为过点P 的已知直线m 的平行线.从图中可知,小明画平行线的依据有( )①两直线平行,同位角相等; ②两直线平行,内错角相等; ③同位角相等,两直线平行; ④内错角相等,两直线平行. A.①② B.②③ C .③④ D .①④425--检测3.如图5-2-6所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在C D ,的位置,若,60ο=∠EFB 则=∠AED例4.已知,,100,//ο=∠=∠A B OA BC 试回答下列问题:725-- 825-- 925--(1)如图5-2-7所示,求证:;//AC OB(2)如图5-2-8所示,若点E ,F 在线段BC 上,且满足,AOC FOC ∠=∠并且OE 平分.BOF ∠则EOC ∠的度数等于 (在横线上填上答案即可);(3)在(2)的条件下,若平行移动AC ,如图5-2-9,那么OFB OCB ∠∠:的值是否随之发生变化?若变化,试说明理由;若不变,求出这个比值; (4)在(3)的条件下,如果平行移动AC 的过程中,若使,OCA OEB ∠=∠此时OCA ∠度数等于 (在横线上填上答案即可).检测4.(广东澄海区期末)如图5 -2 -10所示,直线MN 与直线AB 、CD 分别交于点E 、F ,1∠与2∠互补.(1)试判断直线AB 与直线CD 的位置关系,并说明理由; (2)如图5-2 -11所示,BEF ∠与FFD ∠的角平分线交于点P ,EP 与CD 交于点G .点H 是MN 上一点,且GHlEG ,求证:;//GH PF(3)如图5-2 -12所示,在(2)的条件下,连接PH ,K 是GH 上一点使=∠PHK ,HPK ∠作PQ 平分EPK ∠问HPQ ∠的大小是否发生变化?若不变,请求出其值;若变化,说明理由,625---122-5-5--1110225-第二节平行线的性质和判定(建议用时 35分钟)实战演练1.(浙江绍兴期末)如图5-2-1所示,,//,////DB EG DC EF AB 则图中与1∠相等的角(1∠除外)共有( )6.A 个 5.B 个 4.C 个 3.D 个2.(浙江金华中考)以下四种沿AB 折叠的方法中,不一定能判定纸带两条边线以,6互相平行的是( )125-- 225-- 325-- 425-- 525--A .如图5-2-2所示,展开后测得21∠=∠B .如图5-2-3所示,展开后测得4321∠=∠∠=∠且C .如图5-2-4所示,测得21∠=∠D .如图5-2-5所示,展开后再沿CD 折叠,两条折痕的交点为0,测得,OB OA =OD =OC3.如图5-2-6所示是五条胡同的路线图,),(F F D C B A →--→→→经过测量得到C B ∠=∠,70ο=,110ο=∠=∠E D 则图中互相平行的线有( )A .1对B .2对C .3对D .4对625-- 725-- 825-- 925--4.(山东聊城中考)如图5-2-7所示,,//CD AB ,68ο=∠B ,20ο=∠E 则D ∠的度数为( )ο28.A o B 38. ο48.C ο88.D5.如图5-2-8所示,HG EF BC AD ,,//交于点HI P ,平分,GHF ∠PM 平分EPH ∠HI 交PM 的反向延长线于Q ,//PN,HI 下列结论:,GEP EGP ∠=∠①若则;//AD PM 2=∠GEP ②;MPN ∠,2Q FPN ∠=∠③其中正确的是( )①②③.A ①③.B ②③.C ①②.D6,(山东聊城模拟)如图5-2-9所示,在四边形ABCD 中,=∠B ,120ο,50oD =∠将C ∠向内折出一个,PRC ∆恰好使,//AB CP //CR ,AD 则C ∠的度数是( )ο80.A ο85.B ο95.C o D 110.7.如图5 -2 - 10所示,已知,AB GF ⊥,21∠=∠,B AGH ∠=∠则下列结论:;//BC GH ①;HGM D ∠=∠②;//FG DE ③,AB HE ⊥④其中正确的是( )①②⋅A ③ ②③④⋅B ①③④⋅C ①②③④⋅D1125-- 1225--8.(广西玉州区期末)如图5 -2 - 11所示,已知BAD CD AB ∠,//和BCD ∠的平分线交于点E .,1001ο=∠,m BAD =∠ο则EC A ∠的度数为9,如图5 -2 - 12所示,直线,//21l l 若,125ο=∠A ,85ο=∠B 则=∠+∠21 10.如图 5 -2 - 13所示,已知,180ο=∠+∠BCD B .D B ∠=∠求证:.DFE E ∠=∠证明:οΘ180=∠+∠BCD B ( )CD AB //∴( )=∠∴B (两直线平行,同位角相等), D B ∠=∠Θ(已知), D DCE ∠=∠∴(等量代换), BF AD //∴( )DFE E ∠=∠∴( )11.如图5 -2 - 14所示,直线AB ,CD 被EF 所截,,21∠=∠,BME CNF ∠=∠求证:AB ,//CD .//NQ MP12.(山东招远市期耒)如图5-2 -15所示,点D ,E 分别在ABC ∆的边AB ,AC 上,点F 在DC 上,且,18021ο=∠+∠.3B ∠=∠求证:.//BC DE1325--1425--1525--13.小明将一直角三角板(ο30=∠A )放在如图5 -2 - 16所示的位置,且.21C ∠=∠+∠ (1)证明:;//b a(2)经测量知,1A ∠=∠求;2∠(3)如图5-2 - 17所示,将三角板进行适当转动,直角顶点始终在两直线间,M 在线段CD 上,且CEH CEM ∠=∠给出下列结论:BDFMEG∠∠①的值不变:BDF MEG ∠-∠②的值不变,可以证明,其中只有一个是正确的,请你作出正确的选择并直接写出此值,1625-- 1725--14.如图5-2-18所示,.F D B E C A ∠+∠+∠=∠+∠+∠求证:.//CD AF15.问题情景:如图5-2 - 19所示,,//CD AB ,130oPAB =∠,120ο=∠PCD 求APC ∠的度数. (1)天天同学看过图形后立即口答出:,110oAPC =∠请你补全他的推理依据.如图5 -2 - 20所示,过点P 作,//AB PE,//CD AB ΘCD AB PE ////∴( .180ο=∠+∠∴APE Aο180=∠+∠CPE C ( ),120,130οΘ=∠=∠PCD PAB O.60.50ο=∠=∴⊥CPE APE o1825--ο110=∠+∠=∠∴CPE APE APC ( )问题迁移:(2)如图5-2- 21所示,,//BC AD 当点P 在A ,B 两点之间运动时,,α∠=∠ADP ,β∠=∠BCP 求βα∠∠∠,与CPD 之间有何数量关系?请说明理由.(3)在(2)的条件下,如果点P 在A ,B 两点外侧运动时(点P 与点A ,B ,0三点不重合),请你直接写出CPD ∠与βα∠∠,之间的数量关系.1925-- 2025-- 2125--拓展创新16.(辽宁鞍山期末)实验证明,平面镜反射光线的规律是:射到平面镜上的光线和被反射出的光线与平面镜所夹的锐角相等.(1)如图5 -2 - 22所示,一束光线m 射到平面镜a 上,被a 反射到平面镜b 上,又被b 反射.若被6反射出的光线n 与光线m 平行,且,381ο=∠则=∠2 ;=∠3(2)在(1)中,若ο551=∠则=∠3 ;若,401ο=∠则=∠3(3)由(1).(2)猜想:当两平面镜a ,b 的夹角=∠3 时,可以使任何射到平面镜a 上的光线m ,经过平面镜a ,b 的两次反射后,入射光线m 与反射光线n 平行.你能说明理由吗?拓展1.有一款灯,内有两面镜子AB ,BC ,当光线经过镜子反射时,入射角等于反射角,即图5 -2 - 23、图5-2 -24中的.43,21∠=∠∠=∠2225--2325-- 2425--(1)如图5 -2 - 23所示,当BC AB ⊥时,说明为什么进入灯内的光线EF 与离开灯的光线GH 互相平行; (2)如图5-2 - 24所示,若两面镜子的夹角为)900(οο<<αα时,进入灯内的光线与离开灯的光线的夹角为),900(οο<<ββ试探索α与β的数量关系;(3)若两面镜子的夹角为),18090(οο<<αα进入灯内的光线与离开灯的光线所在直线的夹角为).900(οο<<ββ直接写出α与β的数量关系.拓展2.(湖北武昌区期末)一个长方形台球桌面ABCD )90,//,//(ο=∠A BC AD DC AB 如图5 -2 - 25所示,已知台球在与台球桌边沿碰撞的过程中,撞击线路与桌边的夹角等于反射线路与桌边的夹角,即.21∠=∠(1)台球经过如图5 -2 - 26所示的两次反弹后,撞击线路EF ,第二次反弹线路GH , 求证:;//GH EF(2)台球经过如图5 -2 - 27所示的两次反弹后,撞击线路EF 和第二次反弹线路GH 是否仍然平行,给出你的结论并说明理由.2525-- 2625-- 2725--极限挑战17.平面上有100条直线,其中有20条是互相平行的,问这100条直线最多能将平面分成部分,课堂答案培优答案。
人教版七年级下数学 小专题 平行线的性质与判定(含解析)
小专题(一)平行线的性质与判定1.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2( ).∵∠1=∠2,∴∠DCB=∠1( ).∴GD∥CB( ).∴∠3=∠ACB( ).2.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.5.(蓟县期中)已知:如图,∠1+∠2=180°,∠3=100°,OK平分∠DOH,求∠KOH的度数.6.如图,已知AB∥CD,∠B=40°,CN是∠BCE的平分线,CM⊥CN,求∠BCM的度数.7.如图,把一张长方形的纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.8.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=130°,∠FEC=15°,求∠ACF的度数.9.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.10.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF的度数;(2)若已知直线AB∥CD,求∠P的度数.12.(萧山区月考)如图,已知直线l1∥l2,直线l3和直线l1,l2交于点C和D,直线l3上有一点P.(1)如图1,若P点在C,D之间运动时,问∠PAC,∠APB,∠PBD之间的关系是否发生变化,并说明理由;(2)若点P在C,D两点的外侧运动时(P点与点C,D不重合,如图2和3),试直接写出∠PAC,∠APB,∠PBD 之间的关系,不必写理由.小专题(一)平行线的性质与判定1.填写推理理由:如图,CD∥EF,∠1=∠2.求证:∠3=∠ACB.证明:∵CD∥EF,∴∠DCB=∠2(两直线平行,同位角相等).∵∠1=∠2,∴∠DCB=∠1(等量代换).∴GD∥CB(内错角相等,两直线平行).∴∠3=∠ACB(两直线平行,同位角相等).2.如图,已知EAB是直线,AD∥BC,AD平分∠EAC,试判定∠B与∠C的大小关系,并说明理由.解:∠B=∠C.理由:∵AD平分∠EAC,∴∠EAD=∠DAC.∵AD∥BC,∴∠EAD=∠B,∠DAC=∠C.∴∠B=∠C.3.如图,已知AD∥BE,∠A=∠E,求证:∠1=∠2.证明:∵AD∥BE,∴∠A=∠EBC.∵∠A=∠E,∴∠EBC=∠E.∴DE∥AB.∴∠1=∠2.4.已知:如图,AD∥EF,∠1=∠2.求证:AB∥DG.证明:∵AD ∥EF , ∴∠1=∠BAD. ∵∠1=∠2, ∴∠BAD =∠2. ∴AB ∥DG .5.(蓟县期中)已知:如图,∠1+∠2=180°,∠3=100°,OK 平分∠DOH ,求∠KOH 的度数.解:∵∠1+∠2=180°,∴AB ∥CD.∴∠GOD =∠3=100°.∴∠DOH =180°-∠GOD =180°-100°=80°. 又∵OK 平分∠DOH ,∴∠KOH =12∠DOH =12×80°=40°.6.如图,已知AB ∥CD ,∠B =40°,CN 是∠BCE 的平分线,CM ⊥CN ,求∠BCM 的度数.解:∵AB ∥CD , ∴∠BCE +∠B =180°. ∵∠B =40°,∴∠BCE =180°-40°=140°. ∵CN 是∠BCE 的平分线,∴∠BCN =12∠BCE =12×140°=70°.∵CM ⊥CN ,∴∠BCM =90°-70°=20°.7.如图,把一张长方形的纸片ABCD沿EF折叠后,ED与BC的交点为G,点D,C分别落在D′,C′的位置上,若∠EFG=55°,求∠1,∠2的度数.解:∵AD∥BC,∠EFG=55°,∴∠2=∠GED,∠1+∠GED=180°,∠DEF=∠EFG=55°.由折叠知∠GEF=∠DEF=55°.∴∠GED=110°.∴∠1=180°-∠GED=70°,∠2=110°.8.如图,EF∥AD,AD∥BC,CE平分∠BCF,∠DAC=130°,∠FEC=15°,求∠ACF的度数.解:∵AD∥BC,∴∠ACB+∠DAC=180°.又∵∠DAC=130°,∴∠ACB=50°.∵EF∥AD,AD∥BC,∴EF∥BC.∴∠BCE=∠FEC=15°.又∵CE平分∠BCF,∴∠BCF=2∠BCE=30°.∴∠ACF=∠ACB-∠BCF=20°.9.如图,AD⊥BC于点D,EG⊥BC于点G,∠E=∠3.请问:AD平分∠BAC吗?若平分,请说明理由.解:AD平分∠BAC.理由:∵AD⊥BC,EG⊥BC,∴∠ADC=∠EGC=90°.∴∠3=∠2,∠E=∠1.∵∠3=∠E,∴∠1=∠2,即AD平分∠BAC.10.如图所示,已知∠ABC=80°,∠BCD=40°,∠CDE=140°,试确定AB与DE的位置关系,并说明理由.解:AB∥DE.理由:过点C作FG∥AB,∴∠BCG=∠ABC=80°.又∠BCD=40°,∴∠DCG=∠BCG-∠BCD=40°.∵∠CDE=140°,∴∠CDE+∠DCG=180°.∴DE∥FG.∴AB∥DE.11.如图,直线l1,l2均被直线l3,l4所截,且l3与l4相交,给定以下三个条件:①l1⊥l3;②∠1=∠2;③∠2+∠3=90°.请从这三个条件中选择两个作为条件,另一个作为结论组成一个真命题,并进行证明.解:已知:l1⊥l3,∠1=∠2.求证:∠2+∠3=90°.证明:∵∠1=∠2,∴l1∥l2.∵l1⊥l3,∴l2⊥l3.∴∠3+∠4=90°.∵∠4=∠2,∴∠2+∠3=90°.12.已知:如图,直线EF分别交AB,CD于点E,F,且∠AEF=66°,∠BEF的平分线与∠DFE的平分线相交于点P.(1)求∠PEF 的度数;(2)若已知直线AB ∥CD ,求∠P 的度数. 解:(1)∵∠AEF =66°,∴∠BEF =180°-∠AEF =180°-66°=114°. 又∵EP 平分∠BEF ,∴∠PEF =∠PEB =12∠BEF =57°.(2)过点P 作PQ ∥AB. ∴∠EPQ =∠PEB =57°. ∵AB ∥CD ,∴PQ ∥CD ,∠DFE =∠AEF =66°. ∴∠FPQ =∠PFO. ∵FP 平分∠DFE , ∴∠PFD =12∠DFE =33°.∴∠FPQ =33°.∴∠EPF =∠EPQ +∠FPQ =57°+33°=90°.13.(萧山区月考)如图,已知直线l 1∥l 2,直线l 3和直线l 1,l 2交于点C 和D ,直线l 3上有一点P.(1)如图1,若P 点在C ,D 之间运动时,问∠PAC ,∠APB ,∠PBD 之间的关系是否发生变化,并说明理由; (2)若点P 在C ,D 两点的外侧运动时(P 点与点C ,D 不重合,如图2和3),试直接写出∠PAC ,∠APB ,∠PBD 之间的关系,不必写理由.解:(1)当P 点在C ,D 之间运动时, ∠APB =∠PAC +∠PBD. 理由:过点P 作PE ∥l 1, ∵l 1∥l 2,∴PE ∥l 2∥l 1.∴∠PAC =∠APE ,∠PBD =∠BPE.∴∠APB =∠APE +∠BPE =∠PAC +∠PBD.(2)当点P 在C ,D 两点的外侧运动时,在l 2下方时,则∠PAC =∠PBD +∠APB ; 在l 1上方时,则∠PBD =∠PAC +∠APB.。
七年级10道平行线证明题
七年级10道平行线证明题
以下是七年级的10道平行线证明题:
题目:已知直线AB与CD相交于点O,且∠AOC = ∠BOD。
求证:AB ∥ CD。
题目:在直线AB上取一点O,作射线OC,使∠AOC = ∠BOC。
求证:OA ∥ OC。
题目:已知∠1 = ∠2,∠2 = ∠3,且∠1和∠3是内错角。
求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B,则BC边上的中线AD等于BC的一半。
求证:AD ∥ BC。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同位角。
求证:EF ∥ GH。
题目:在梯形ABCD中,若AD ∥ BC,且∠A = ∠B,求证:梯形ABCD是等腰梯形。
题目:在△ABC中,若∠C = 90°,且AC = BC,D为AB的中点。
求证:CD ⊥ AB。
题目:已知∠1 + ∠2 = 180°,∠2 + ∠3 = 180°,求证:AB ∥ CD。
题目:在△ABC中,若∠A = ∠B = ∠C,则△ABC是等边三角形。
求证:AB ∥ BC ∥ CA。
题目:已知∠1 = ∠2,∠3 = ∠4,且∠1和∠3是同旁内角。
求证:EF ∥ GH。
这些题目涵盖了平行线的多种性质和判定方法,通过练习这些题目,学生可以加深对平行线概念的理解,提高解题能力。
平行线的判定与性质 2021-2022学年北师大版七年级数学下册(含答案)
平行线的判定与性质1.如图,直线a,b被直线c所截,当∠1 ∠2时,a∥b.(用“>”,“<”或“=”填空)2.如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠2+∠3=180°C.∠1=∠4D.∠5+∠6=180°3.如图,请填写一个条件,使结论成立:∵,∴a∥b.4.如图,不能判定AB∥CD的是()A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180°D.∠A=∠DCE5.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠1=∠A6.如图,a∥b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°7.如图,AB∥CD,EF⊥CD于点F,若∠BEF=150°,则∠ABE=()A.30°B.40°C.50°D.60°8.一把直尺与一块三角板如图放置,若∠1=47°,则∠2的度数为()A.43°B.47°C.133°D.137°9.如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC=60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A.15°B.30°C.45°D.60°10.如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于()A.80°B.70°C.60°D.50°11.如图,AB∥CD,CB平分∠ECD,若∠B=26°,则∠1的度数是.12.如图,直线a∥b,∠1=60°,则∠2的度数是°.13.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.14.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.15.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.16.如图,直线a∥b,∠1=130°,则∠2等于()A.70°B.60°C.50°D.40°17.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°18.将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是()A.45°B.55°C.65°D.75°19.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°20.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°21.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132°B.128°C.122°D.112°22.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°23.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于()A.25°B.30°C.50°D.60°24.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°25.已知直线a∥b,用一块含30°角的直角三角板按图中所示的方式放置,若∠1=25°,则∠2=.26.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°27.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°28.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=°.29.如图,直线a∥b,在Rt△ABC中,∠C=90°,AC⊥b,垂足为A,则图中与∠1互余的角有()A.2个B.3个C.4个D.5个30.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°31.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个32.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°33.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°参考答案与试题解析1.如图,直线a,b被直线c所截,当∠1 =∠2时,a∥b.(用“>”,“<”或“=”填空)【分析】由图形可知∠1 与∠2是同位角,只需这两个同位角相等,便可得到a∥b.【解答】解:要使a∥b,只需∠1=∠2.即当∠1=∠2时,a∥b(同位角相等,两直线平行).故答案为=.2.如图,已知直线a,b被直线c所截,下列条件不能判断a∥b的是()A.∠2=∠6B.∠2+∠3=180°C.∠1=∠4D.∠5+∠6=180°【分析】根据同位角相等,内错角相等,同旁内角互补来判定两直线平行【解答】解:A,∠2和∠6是内错角,内错角相等两直线平行,能判定a∥b,不符合题意;B,∠2+∠3=180°,∠2和∠3是同旁内角,同旁内角互补两直线平行,能判定a∥b,不符合题意;C,∠1=∠4,由图可知∠1与∠2是对顶角,∴∠1=∠2=∠4,∠2和∠4互为同位角,能判定a∥b,不符合题意;D,∠5+∠6=180°,∠5和∠6是邻补角,和为180°,不能判定a∥b,符合题意;故选:D.3.如图,请填写一个条件,使结论成立:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.【分析】要使得a∥b,判别两条直线平行的方法有:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行;依此即可求解.【解答】解:∵∠1=∠4或∠2=∠4或∠3+∠4=180°,∴a∥b.故答案为:∠1=∠4或∠2=∠4或∠3+∠4=180°.4.如图,不能判定AB∥CD的是()A.∠B=∠DCE B.∠A=∠ACDC.∠B+∠BCD=180°D.∠A=∠DCE【分析】利用平行线的判定方法一一判断即可.【解答】解:由∠B=∠DCE,根据同位角相等两直线平行,即可判断AB∥CD.由∠A=∠ACD,根据内错角相等两直线平行,即可判断AB∥CD.由∠B+∠BCD=180°,根据同旁内角互补两直线平行,即可判断AB∥CD.故A,B,C不符合题意,故选:D.5.如图,在下列给出的条件中,不能判定AB∥DF的是()A.∠A=∠3B.∠A+∠2=180°C.∠1=∠4D.∠1=∠A【分析】利用平行线的判定定理,逐一判断,容易得出结论.【解答】解:A、因为∠A=∠3,所以AB∥DF(同位角相等,两直线平行),故本选项不符合题意.B、因为∠A+∠2=180,所以AB∥DF(同旁内角互补,两直线平行),故本选项不符合题意.C、因为∠1=∠4,所以AB∥DF(内错角相等,两直线平行),故本选项不符合题意.D、因为∠1=∠A,所以AC∥DE(同位角相等,两直线平行),不能证出AB∥DF,故本选项符合题意.故选:D.6.如图,a∥b,∠1=60°,则∠2的度数为()A.90°B.100°C.110°D.120°【分析】先根据图得出∠2的补角,再由a∥b得出结论即可.【解答】解:由图得∠2的补角和∠1是同位角,∵∠1=60°且a∥b,∴∠1的同位角也是60°,∠2=180°﹣60°=120°,故选:D.7.如图,AB∥CD,EF⊥CD于点F,若∠BEF=150°,则∠ABE=()A.30°B.40°C.50°D.60°【分析】过点E作GE∥AB.利用平行线的性质得到∠GEF+∠EFD=180°,由垂直的定义∠EFD=90°,进而得出∠GEF=90°,根据角的和差得到∠BEG=60°,再根据平行线的性质求解即可.【解答】解:如图,过点E作GE∥AB,∵AB∥CD,∴GE∥CD,∴∠GEF+∠EFD=180°,∵EF⊥CD,∴∠EFD=90°,∴∠GEF=180°﹣∠EFD=90°,∵∠BEF=∠BEG+∠GEF=150°,∴∠BEG=∠BEF﹣∠GEF=60°,∵GE∥AB,∴∠ABE=∠BEG=60°,故选:D.8.一把直尺与一块三角板如图放置,若∠1=47°,则∠2的度数为()A.43°B.47°C.133°D.137°【分析】根据直角三角形两锐角互余求出∠3,再根据邻补角定义求出∠4,然后根据两直线平行,同位角相等求解即可.【解答】解:如图,∵∠1=47°,∴∠3=90°﹣∠1=90°﹣47°=43°,∵∠3+∠4=180°,∴∠4=180°﹣43°=137°,∵直尺的两边互相平行,∴∠2=∠4=137°,故选:D.9.如图,将一副三角尺按图中所示位置摆放,点F在AC上,其中∠ACB=90°,∠ABC =60°,∠EFD=90°,∠DEF=45°,AB∥DE,则∠AFD的度数是()A.15°B.30°C.45°D.60°【分析】利用三角形的内角和定理可得∠A=30°,∠D=45°,由平行线的性质定理可得∠1=∠D=45°,利用三角形外角的性质可得结果.【解答】解:如图,∵∠ACB=90°,∠ABC=60°,∴∠A=180°﹣∠ACB﹣∠ABC=180°﹣90°﹣60°=30°,∵∠EFD=90°,∠DEF=45°,∴∠D=180°﹣∠EFD﹣∠DEF=180°﹣90°﹣45°=45°,∵AB∥DE,∴∠1=∠D=45°,∴∠AFD=∠1﹣∠A=45°﹣30°=15°,故选:A.10.如图,直线l1∥l2,直线l3交l1于点A,交l2于点B,过点B的直线l4交l1于点C.若∠3=50°,∠1+∠2+∠3=240°,则∠4等于()A.80°B.70°C.60°D.50°【分析】由题意得,∠2=60°,由平角的定义可得∠5=70°,再根据平行线的性质即可求解.【解答】解:如图,∵l1∥l2,∴∠1+∠3=180°,∵∠1+∠2+∠3=240°,∴∠2=240°﹣(∠1+∠3)=60°,∵∠3+∠2+∠5=180°,∠3=50°,∴∠5=180°﹣∠2﹣∠3=70°,∵l1∥l2,∴∠4=∠5=70°,故选:B.11.如图,AB∥CD,CB平分∠ECD,若∠B=26°,则∠1的度数是52°.【分析】根据平行线的性质得出∠B=∠BCD=26°,根据角平分线定义求出∠∠ECD=2∠BCD=52°,再根据平行线的性质即可得解.【解答】解:∵AB∥CD,∠B=26°,∴∠BCD=∠B=26°,∵CB平分∠ECD,∴∠ECD=2∠BCD=52°,∵AB∥CD,∴∠1=∠ECD=52°,故答案为:52°.12.如图,直线a∥b,∠1=60°,则∠2的度数是60°.【分析】根据对顶角相等求出∠3,再根据两直线平行,同位角相等求解即可.【解答】解:如图,∵∠1=60°,∴∠3=∠1=60°,∵a∥b,∴∠2=∠3=60°.故答案为:60.13.如图,点A、B、C、D在一条直线上,CE与BF交于点G,∠A=∠1,CE∥DF,求证:∠E=∠F.【分析】根据平行线的性质可得∠ACE=∠D,又∠A=∠1,利用三角形内角和定理及等式的性质即可得出∠E=∠F.【解答】证明一:∵∠A=∠1,∴AE∥BF,∴∠2=∠E.∵CE∥DF,∴∠2=∠F,∴∠E=∠F.证明二:∵CE∥DF,∴∠ACE=∠D,∵∠A=∠1,∴180°﹣∠ACE﹣∠A=180°﹣∠D﹣∠1,又∵∠E=180°﹣∠ACE﹣∠A,∠F=180°﹣∠D﹣∠1,∴∠E=∠F.14.如图,直线AB∥CD,BC平分∠ABD,∠1=65°,求∠2的度数.【分析】由平行线的性质得到∠ABC=∠1=65°,∠ABD+∠BDC=180°,由BC平分∠ABD,得到∠ABD=2∠ABC=130°,于是得到结论.【解答】解:∵AB∥CD,∴∠ABC=∠1=65°,∠ABD+∠BDC=180°,∵BC平分∠ABD,∴∠ABD=2∠ABC=130°,∴∠BDC=180°﹣∠ABD=50°,∴∠2=∠BDC=50°.15.如图,直线a∥b,点B在直线上b上,且AB⊥BC,∠1=55°,求∠2的度数.【分析】根据垂直定义和邻补角求出∠3,根据平行线的性质得出∠2=∠3,代入求出即可.【解答】解:∵AB⊥BC,∴∠ABC=90°,∴∠1+∠3=90°,∵∠1=55°,∴∠3=35°,∵a∥b,∴∠2=∠3=35°.16.如图,直线a∥b,∠1=130°,则∠2等于()A.70°B.60°C.50°D.40°【分析】由邻补角的定义,可求得∠3的度数,又根据两直线平行,同位角相等即可求得∠2的度数.【解答】解:如图:∵∠1=130°,∠1+∠3=180°,∴∠3=180°﹣∠1=180°﹣130°=50°,∵a∥b,∴∠2=∠3=50°.故选:C.17.如图,AB∥CD,AD⊥AC,∠BAD=35°,则∠ACD=()A.35°B.45°C.55°D.70°【分析】由平行线的性质得∠ADC=∠BAD=35°,再由垂线的定义可得三角形ACD是直角三角形,进而得出∠ACD的度数.【解答】解:∵AB∥CD,∴∠ADC=∠BAD=35°,∵AD⊥AC,∴∠ADC+∠ACD=90°,∴∠ACD=90°﹣35°=55°,故选:C.18.将一张矩形纸片折叠成如图所示的图形,若∠CAB=30°,则∠ACB的度数是()A.45°B.55°C.65°D.75°【分析】根据平行线的性质和翻折的性质解答即可.【解答】解:如图所示:∵将一张矩形纸片折叠成如图所示的图形,∴ED∥F A,∠EBC=∠CBA,∴∠EBC=∠ACB,∠CAB=∠DBA=30°,∵∠EBC+∠CBA+∠ABD=180°,∴∠ACB+∠ACB+30°=180°,∴∠ACB=75°,故选:D.19.如图,将直尺与30°角的三角尺叠放在一起,若∠1=40°,则∠2的大小是()A.40°B.60°C.70°D.80°【分析】根据平角的定义和平行线的性质即可得到结论.【解答】解:由题意得,∠4=60°,∵∠1=40°,∴∠3=180°﹣60°﹣40°=80°,∵AB∥CD,∴∠3=∠2=80°,故选:D.20.如图,AB∥CD,点P为CD上一点,PF是∠EPC的平分线,若∠1=55°,则∠EPD 的大小为()A.60°B.70°C.80°D.100°【分析】根据平行线和角平分线的定义即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠CPF=55°,∵PF是∠EPC的平分线,∴∠CPE=2∠CPF=110°,∴∠EPD=180°﹣110°=70°,故选:B.21.如图,AB∥CD,直线EF分别交AB,CD于点E,F,EG平分∠BEF,若∠EFG=64°,则∠EGD的大小是()A.132°B.128°C.122°D.112°【分析】根据平行线的性质得到∠BEF=180°﹣∠EFG=116°,根据角平分线的定义得到∠BEG=∠BEF=58°,由平行线的性质即可得到结论.【解答】解:∵AB∥CD,∠EFG=64°,∴∠BEF=180°﹣∠EFG=116°,∵EG平分∠BEF交CD于点G,∴∠BEG=∠BEF=58°,∵AB∥CD,∴∠EGD=180°﹣∠BEG=122°.故选:C.22.如图,l1∥l2,l3∥l4,若∠1=70°,则∠2的度数为()A.100°B.110°C.120°D.130°【分析】根据平行线的性质即可得到结论.【解答】解:∵l1∥l2,∠1=70°,∴∠3=∠1=70°,∵l3∥l4,∴∠2=180°﹣∠3=180°﹣70°=110°,故选:B.23.如图,将矩形ABCD沿AC折叠,使点B落在点B′处,B′C交AD于点E,若∠1=25°,则∠2等于()A.25°B.30°C.50°D.60°【分析】由折叠的性质可得出∠ACB′的度数,由矩形的性质可得出AD∥BC,再利用“两直线平行,内错角相等”可求出∠2的度数.【解答】解:由折叠的性质可知:∠ACB′=∠1=25°.∵四边形ABCD为矩形,∴AD∥BC,∴∠2=∠1+∠ACB′=25°+25°=50°.故选:C.24.一副直角三角板如图放置,使两三角板的斜边互相平行,每块三角板的直角顶点都在另一三角板的斜边上,则∠1的度数为()A.30°B.45°C.55°D.60°【分析】根据平行线的性质即可得到结论.【解答】解:∵AB∥CD,∴∠1=∠D=45°,故选:B.25.已知直线a∥b,用一块含30°角的直角三角板按图中所示的方式放置,若∠1=25°,则∠2=35°.【分析】过点B作EF∥a.利用平行线的性质,把∠1、∠2集中在∠ABC上,利用角的和差求值即可.【解答】解:过点B作EF∥a.∵a∥b,∴EF∥a∥b.∴∠1=∠ABF,∠2=∠FBC.∵△ABC是含30°角的直角三角形,∴∠ABC=60°.∵∠ABF+∠CBF=60°,∴∠2=60°﹣25=35°.故答案为:35°.26.如图,DE∥BC,BE平分∠ABC,若∠1=70°,则∠CBE的度数为()A.20°B.35°C.55°D.70°【分析】根据平行线的性质可得∠1=∠ABC=70°,再根据角平分线的定义可得答案.【解答】解:∵DE∥BC,∴∠1=∠ABC=70°,∵BE平分∠ABC,∴∠CBE=∠ABC=35°,故选:B.27.如图,将一块三角尺的直角顶点放在直尺的一边上,当∠1=35°时,∠2的度数为()A.35°B.45°C.55°D.65°【分析】先根据平行线的性质求出∠3的度数,再由余角的定义即可得出结论.【解答】解:∵直尺的两边互相平行,∠1=35°,∴∠3=35°.∵∠2+∠3=90°,∴∠2=55°.故选:C.28.将一个矩形纸片折叠成如图所示的图形,若∠ABC=26°,则∠ACD=128°.【分析】直接利用翻折变换的性质以及平行线的性质分析得出答案.【解答】解:延长DC,由题意可得:∠ABC=∠BCE=∠BCA=26°,则∠ACD=180°﹣26°﹣26°=128°.故答案为:128.29.如图,直线a∥b,在Rt△ABC中,∠C=90°,AC⊥b,垂足为A,则图中与∠1互余的角有()A.2个B.3个C.4个D.5个【分析】首先在△ABC中由∠C=90°得∠1+∠B=90°,根据直线AC⊥b得∠1+∠2=90°,直线a∥b得∠2=∠∠3,∠2=∠4,等量代换∠1+∠3=90°,∠1+∠4=90°,最后综合所得与∠1互余的角有4个分别为:∠2、∠3、∠4、∠B.【解答】解:如图所示:∵∠C=90°,∴∠1+∠B=90°,∴∠1与∠B互余;又∵a∥b,∴∠2=∠3,∠2=∠4,又∵AC⊥b,∴∠1+∠2=90°,∴∠1+∠3=90°,∠1+∠4=90°∴∠1与∠2互余,∠1与∠3互余;综合所述与∠1互余的角有∠2、∠3、∠4、∠B,故选:C.30.将一个矩形纸片按如图所示折叠,若∠1=40°,则∠2的度数是()A.40°B.50°C.60°D.70°【分析】结合平行线的性质得出:∠1=∠3=∠4=40°,再利用翻折变换的性质得出答案.【解答】解:由题意可得:∠1=∠3=∠4=40°,则∠2=∠5==70°.故选:D.31.如图,若l1∥l2,l3∥l4,则图中与∠1互补的角有()A.1个B.2个C.3个D.4个【分析】直接利用平行线的性质得出相等的角以及互补的角进而得出答案.【解答】解:∵l1∥l2,l3∥l4,∴∠1+∠2=180°,2=∠4,∵∠4=∠5,∠2=∠3,∴图中与∠1互补的角有:∠2,∠3,∠4,∠5共4个.故选:D.32.如图,将矩形ABCD沿对角线BD折叠,点C落在点E处,BE交AD于点F,已知∠BDC=62°,则∠DFE的度数为()A.31°B.28°C.62°D.56°【分析】先利用互余计算出∠FDB=28°,再根据平行线的性质得∠CBD=∠FDB=28°,接着根据折叠的性质得∠FBD=∠CBD=28°,然后利用三角形外角性质计算∠DFE的度数.【解答】解:∵四边形ABCD为矩形,∴AD∥BC,∠ADC=90°,∵∠FDB=90°﹣∠BDC=90°﹣62°=28°,∵AD∥BC,∴∠CBD=∠FDB=28°,∵矩形ABCD沿对角线BD折叠,∴∠FBD=∠CBD=28°,∴∠DFE=∠FBD+∠FDB=28°+28°=56°.故选:D.33.如图,将矩形ABCD沿GH折叠,点C落在点Q处,点D落在AB边上的点E处,若∠AGE=32°,则∠GHC等于()A.112°B.110°C.108°D.106°【分析】由折叠可得,∠DGH=∠DGE=74°,再根据AD∥BC,即可得到∠GHC=180°﹣∠DGH=106°.【解答】解:∵∠AGE=32°,∴∠DGE=148°,由折叠可得,∠DGH=∠DGE=74°,∵AD∥BC,∴∠GHC=180°﹣∠DGH=106°,故选:D.。
(完整版)七年级数学平行线的有关证明及答案
平行线的性质与判定的证明练习题温故而知新:1.平行线的性质(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补.2.平行线的判定(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行互补.例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;(2)探求∠DNQ与∠AMN,∠EPN的数量关系.解析:在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.例2 如图,∠AGD=∠ACB,CD⊥AB,EF⊥AB,证明:∠1=∠2.解析:在完成证明的问题时,我们可以由角的关系可以得到直线之间的关系,由直线之间的关系也可得到角的关系.例3 (1)已知:如图2-4①,直线AB∥ED,求证:∠ABC+∠CDE=∠BCD;(2)当点C位于如图2-4②所示时,∠ABC,∠CDE与∠BCD存在什么等量关系?并证明.解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化.例4 如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A是120°,第二次拐的角∠B是150°,第三次拐的角是∠C,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C应为多少度?解析:把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答.举一反三:1.如图2-9,FG∥HI,则∠x的度数为()A.60°B. 72°C. 90°D. 100°2. 已知如图所示,AB∥EF∥CD,EG平分∠BEF,∠B+∠BED+∠D=192°,∠B-∠D=24°,求∠GEF的度数.3.已知:如图2-10,AB∥EF,BC∥ED,AB,DE交于点G.求证:∠B=∠E.例4如图2-6,已知AB ∥CD ,试再添上一个条件,使∠1=∠2成立,并说明理由.解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.5.如图1-7,已知直线1l 2l ,且3l 和1l 、2l 分别交于A 、两点,点P 在AB 上,4l 和1l 、2l 分别交于C 、D 两点,连接PC 、PD 。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
平行线的性质与判定的证明练习题
温故而知新:
1.平行线的性质
(1)两直线平行,同位角相等;
(2)两直线平行,内错角相等;
(3)两直线平行,同旁内角互补.
2.平行线的判定
(1)同位角相等,两直线平行;
(2)内错角相等,两直线平行;
(3)同旁内角互补,两直线平行互补.
例1 已知如图2-2,AB∥CD∥EF,点M,N,P分别在AB,CD,EF上,NQ平分∠MNP.(1)若∠AMN=60°,∠EPN=80°,分别求∠MNP,∠DNQ的度数;
(2)探求∠DNQ与∠AMN,∠EPN的数量关
系.
解析
在我们完成涉及平行线性质的相关问题时,注意实现同位角、内错角、同旁内角之间的角度转换,即同位角相等,内错角相等,同旁内角互补.
1
2.
1=∠AB,⊥AB,EF⊥证明:∠2 例如图,∠AGD=∠ACB,CD
解析:在完成证明的问题时,我们可以由角的关系可以得到直线之. 间的关系,由直线之间的关系也可得到角的关系
BCD;∠ED,求证:∠ABC+∠CDE=①,直线(例3 1)已知:如图2-4AB存在什么等量关系?并证明与BC,位于如)当2-②所示时,ABCD
(
. 解析:在运用平行线性质时,有时需要作平行线,取到桥梁的作用,实现已知条件的转化
2
°,第二次拐的是120如图2-5,一条公路修到湖边时,需绕道,如果第一次拐的角∠A例4
,这时的道路恰好和第一次拐弯之前的道路平行,那么∠C°,第三次拐的角是∠B是150角∠应为多少度?C
.
把关于角度的问题转化为平行线问题,利用平行线的性质与判定予以解答解析:
举一反三:)则∠FG∥HI,x的度数为(,如图1.2-9 D. 100 C.
90 B. 72A.60°°°°3
°,求∠D=24∠D=192°,∠B-,∠EG平分∠BEFB+∠BED+∠,∥2. 已知如图所示,ABEF∥CD. 的度数GEF
.GDEABEDBCEFAB2-103.已知:如图,∥,∥,,交于点求证:∠EB=∠.4
如2-,已AC,试再添上一个条件,使1成立,并说明理由
解决此类条件开放性问题需要从结果出发,找出结果成立所需要的条件,由果溯因.
lPlllllll分和上,、两点,点、分别交于AP在AB、和1-75.如图,已知直线,且22112134别交于C、D两点,连接PC、PD。
5
(1)试求出∠1、∠2、∠3之间的关系,并说明理由。
(2)如果点P在A、B两点之间运动时,问∠1、∠2、∠3之间的关系是否发生变化。
(3)如果点P在AB两点的外侧运动时,试探究∠1、∠2、∠3之间的关系(点P和A、B不重合)
6.如图2-11,CD平分∠ACB,DE∥AC,EF∥CD,EF平分∠DEB吗?请说明理由.
ABC,
2=1+EF, CD1-127.如图,∥∠∠∠6
求证:AB∥GF
8.如图2-13,已知AB∥CD,∠ECD=125°,∠BEC=20°,求∠ABE的度数.
答案:. 1. 根据两直线平行,内错角相等及角平分线定义求解)DNP=∠EPN(标注∠MND=∠
AMN,∠°,∠AMN=60答案:(标注∠MND= EPN=80°)∠DNP=∠ EF∥,AB解:(1)∵∥CD °,MND=∴∠∠AMN=60 EPN=80DNP=∠∠°,7
∴∠MNP=∠MND+∠DNP=60°+80°=140°,
又NQ平分∠MNP,
∴∠MNQ= ∠MNP= ×140°=70°,
∴∠DNQ=∠MNQ-∠MND=70°-60°=10°,
∴∠MNP,∠DNQ的度数分别为140°,10°.(下一步)
(2)(标注∠MND=∠AMN,∠DNP=∠EPN)
由(1)得∠MNP=∠MND+∠DNP=∠AMN+∠EPN,
∴∠MNQ= ∠MNP= (∠AMN+∠EPN),
∴∠DNQ=∠MNQ-∠MND
= (∠AMN+∠EPN)-∠AMN
= (∠EPN-∠AMN),
即2∠DNQ=∠EPN-∠AMN.
2.(标注:∠1=∠2=∠DCB,DG∥BC,CD∥EF)答案:(标注:∠1=∠2=∠DCB)
证明:因为∠AGD=∠ACB,
所以DG∥BC,
所以∠1=∠DCB,
又因为CD⊥AB,EF⊥AB,
所以CD∥EF,
所以∠2=∠DCB,
所以∠1=∠2.
3. (1)动画过点C作CF∥AB
由平行线性质找到角的关系.(标注∠1=∠ABC,∠2=∠CDE)
答案:证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠1=∠ABC,∠2=∠CDE.
∵∠BCD=∠1+∠2,
∴∠ABC+∠CDE=∠BCD;
(2)解析:动画过点C作CF∥AB, 由平行线性质找到角的关系.
(标注∠ABC+∠1=180°,∠2+∠CDE=180°)
答案:∠ABC+∠BCD+∠CDE=360°.
证明:如图,过点C作CF∥AB,
∵直线AB∥ED,
∴AB∥CF∥DE,
∴∠ABC+∠1=180°,∠2+∠CDE=180°.
∵∠BCD=∠1+∠2,
∴∠ABC+∠BCD+∠
CDE=360°.
,∥AEBD 4.动画过点B作答案: CFAEAEBDB解:过点作∥,∵∥,8
9
1)所示∠2。
理由:如图(∠3=∠1+
l l CPE,,则∠PE∥1=交∠于E过点P作41ll l,EPD=∠,所以PE∥2,则∠又因为∥2122 ∠3=∠1+CPD=∠1+∠2,即∠所以∠的关系不会发生改变。
∠2B两点之间运动时,∠3=∠1+在(2)解析: 点PA、两点外侧运动时,分两种情况:、B)所以,当P点在A)和((3)解析:如图(23
CD ∥∥AC,EF平分∠6.解析:标注CDACB,DEBEF ∠∠DCE=∠DEF=答案:标注∠CDE=∠ACD= .理由如下:EF平分∠DEB解:∥EFCD,∵DE∥AC,∠DEF,∴∠CDE=∠ACD,∠CDE=DCE. ∠BEF=∠ ACB,∵CD平分∠ ACD,∴∠DCE=∠,∠∴∠DEF=BEF .即EF平分∠DEB
又1,EF,所以∠H=∠∥°∠交于GF、CDH,则∠H+2+∠KCB=180.因为CD延长∥解析:如图,作7. CKFG,
AB,CK°,∠所以∠ABC21+因为∠∠=∠,ABC+KCB=180所以∥所以∥ABFG.10
8. 解析:(过E点作EF∥CD)标注AB∥EF∥CD
答案:解:过E点作EF∥CD,
∴∠ECD+∠CEF=180°,
而∠ECD=125°,
BEF=75∠°.ABE=∴∠11。