专题1:实数

合集下载

中考数学第1讲 实数(含答案)

中考数学第1讲 实数(含答案)

第1讲 实数【回顾与思考】(1)实数的有关概念{}⎧⎧⎧⎫⎪⎪⎪⎪⎨⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎨⎪⎪⎪⎭⎩⎪⎧⎪⎨⎪⎩⎩正整数整数零负整数有理数有尽小数或无尽循环小数正分数实数分数负分数正无理数无理数无尽不循环小数 负无理数①实数: 和 统称实数, 和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

) ②有理数: 和 的统称.任何一个有绿树都可以写成分数pq的形式,其中p 和q 是整数且最大公约数是1。

③无理数:无限 叫无理数,常见的有三类:① ;② ;③ ;④对实数进行分类,应先 ,后 。

(2)数轴:规定了 、 和 的直线叫做数轴(画数轴时,要注童上述规定的三要素缺一个不可)。

和数轴上的点是一一对应....的。

(即:每一个实数都可以用数轴上的一个点来表示;反过来,数轴上的每一个点都表示一个实数。

)(3)相反数: 实数的相反数是一对数(只有 的两个数,叫做互为相反数,零的相反数是 ). 从数轴上看,互为相反数的两个数所对应的点关于 对称.(4)绝对值①从数轴上看,一个数的绝对值就是 的距离。

⎪⎩⎪⎨⎧<-=>=)0()0(0)0(||a a a a a a②一个正数的绝对值是 ,一个负数的绝对值是 ,零的绝对值是 。

(5)倒数: 实数a(a ≠0)的倒数是 (乘积为1的两个数,叫做互为倒数);零 倒数.(6)平方根:如果 ,即 ,那么这个数x 叫做做a 的平方根(也叫二次方根)。

一个正数有 平方根,且互为相反数;0的平方根是 ;负数 平方根。

(7)算术平方根:如果 ,即 ,那么这个正数x 叫做a 的算.术.平方根,即x a =;特别规定0的算术平方根是 。

即00=。

(8)立方根:如果一个数x 的立方等于a ,即x 3=a ,那么这个数x 叫做a 的立方根(也叫三次方根),一个正数的立方根是 ;0的立方根是 ;负数的立方根是 。

专题1-实数的相关概念(考点讲练)(解析版)_1

专题1-实数的相关概念(考点讲练)(解析版)_1

专题1 实数的相关概念考点一:实数的分类1.(2022·山东聊城·中考二模)下列各数:3.1415926,9−17,2π,其中是无理数的是( )A .3.1415926B .2πC .17D .9−【答案】B【分析】无限不循环小数是无理数,根据无理数的定义判断.【详解】解:是无理数的是2π, 故选:B .【点睛】此题考查了无理数的定义,熟记定义并正确判断是解题的关键.A .()3−−B .()22−C .|4|−D .5−【答案】D【分析】根据负数的定义逐项判断即得答案.【详解】解:A 、()33−−=,3不是负数,故本选项不符合题意;B 、()224−=,4不是负数,故本选项不符合题意;C 、44−=,4不是负数,故本选项不符合题意;D 、5−是负数,故本选项符合题意.故选:D .【点睛】本题考查了负数的定义以及实数的基本知识,属于基础题型,熟练掌握基本知识是解题关键.3.(2022·山东日照·中考真题)在实数2,x 0(x ≠0),cos30°,38中,有理数的个数是( )A .1个B .2个C .3个D .4个【答案】B【分析】根据零指数幂,特殊角的三角函数值,实数的意义,即可解答.【详解】解:在实数2,x 0(x ≠0)=1,3cos302=°,382=中,有理数是382=,x 0=1, 所以,有理数的个数是2,故选:B .【点睛】本题考查了零指数幂,特殊角的三角函数值,实数,熟练掌握这些数学概念是解题的关键.4.(2022·江苏南通·中考真题)若气温零上2℃记作2+℃,则气温零下3℃记作()A.3−℃B.1−℃C.1+℃D.5+℃【答案】A【分析】根据气温是零上2℃记作+2℃,则可以表示出气温是零下3℃,从而可以解答本题.【详解】解:∵气温是零上2℃记作+2℃,∴气温是零下3℃记作−3℃.故选:A.【点睛】本题考查正数和负数,解题的关键是明确正数和负数在题中表示的含义.5.(2021·黑龙江大庆·中考真题)在π,12,3−,47这四个数中,整数是()A.πB.12C.3−D.47【答案】C【分析】根据整数分为正整数、0、负整数,由此即可求解.【详解】解:选项A:π是无理数,不符合题意;选项B:12是分数,不符合题意;选项C:3−是负整数,符合题意;选项D:47是分数,不符合题意;故选:C.【点睛】本题考查了有理数的定义,熟练掌握整数分为正整数、0、负整数是解决本题的关键.6.(2021·四川遂宁·九年级期中)给出一组数,-2021,sin45°,π539,2.12112111211112…(每相邻两个2之间依次多一个1)中,无理数有___________个【答案】4.【分析】根据无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,找出无理数的个数.【详解】解:sin45°=22,93=,则无理数有:sin45°,π,5,2.12112111211112…(每相邻两个2之间依次多一个1)共4个;故答案为:4.【点睛】本题考查了无理数的知识,解答本题的关键是掌握无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数.7.(2022·山东·邹城市郭里中学一模)从实数227,tan 30︒21,2π,23−,0.101001−39−______. 【答案】47 【分析】找出所给实数中的无理数的个数,然后与所给实数的个数相除即可.【详解】解:227是分数属于有理数; 3tan 303︒=是无理数; 21+是无理数;2π是无理数;()2133−=是有理数; 0.101001−是有理数; 39−是无理数,∴无理数有4个,∴任意抽取一个数是无理数的概率为47, 故答案为:47. 【点睛】本题考查了简单的概率计算,理解掌握无理数和有理数的定义是解题的关键.考点二:相反数、绝对值、倒数8.(2022·山东枣庄·中考真题)实数﹣2023的绝对值是( )A .2023B .﹣2023C .12023D .12023− 【答案】A【分析】根据绝对值的代数意义即可得出答案.【详解】解:因为负数的绝对值等于它的相反数,所以,﹣2023的绝对值等于2023.故选:A .【点睛】本题考查了绝对值的代数意义,熟练掌握知识点是本题的关键.9.(2022·海南省直辖县级单位·二模)实数12的倒数是( )A .12−B .12C .2−D .2 【答案】D【分析】根据倒数的定义,即可求解.【详解】解:∵1212⨯=, ∴12的倒数是2.故选:D【点睛】本题主要考查了倒数的定义,熟练掌握乘积为1的两个数互为倒数是解题的关键. A .2022B .2022−C .12022D .12022− 【答案】A【分析】直接利用相反数的定义分析得出答案.【详解】解:∵一个数的相反数是|2022|−−,即-2022,∴这个数是:2022.故选:A .【点睛】本题主要考查了相反数,正确把握定义是解题关键.11.(2022·湖北宜昌·中考真题)下列说法正确的个数是( )①-2022的相反数是2022;②-2022的绝对值是2022;③12022的倒数是2022. A .3B .2C .1D .0 【答案】A【分析】根据相反数、绝对值、倒数的定义逐个判断即可.【详解】①-2022的相反数是2022,故此说法正确;②-2022的绝对值是2022,故此说法正确;③12022的倒数是2022,故此说法正确; 正确的个数共3个;故选:A .【点睛】本题考查相反数、绝对值、倒数的含义,只有符号相反的两个数叫做互为相反数,数轴上一个数所对应的点与原点的距离叫做该数的绝对值,乘积为1的两个数互为倒数,熟知定义是解题的关键.12.(2022·广东·深圳市中考模拟)计算:0|232022+的结果为( )A .1B .2C .3D .33【答案】D【分析】根据实数的运算法则计算即可.【详解】解:0232022-+ 231=-+33=−故选:D .【点睛】此题考查了化简绝对值、零指数幂、二次根式的加减法,解题的关键熟悉运算法则.22【答案】 2 12##0.5【分析】先根据负整数指数幂计算出12−的值,再根据倒数及绝对值的定义作答即可.【详解】解:11112==22−, ∴12−的倒数为2,绝对值为12.故答案为:①2;②12.【点睛】本题考查了负整数指数幂的运算法则,倒数及绝对值的定义,即乘积为1 的两个数互为倒数,熟练掌握知识点是解题的关键.π【答案】1−π【分析】直接利用相反数的定义分析得出答案. 【详解】解:1π−的相反数是:1−π.故答案为:1−π.【点睛】本题考查了相反数,解题的关键是正确掌握相关定义即:指绝对值相等,正负号相反的两个数互为相反数.15.(2022·四川南充·中考一模)若5x =,则x =______.【答案】5或-5【分析】由绝对值的意义即可求得,绝对值意义:在数轴上,一个数到原点的距离叫做该数的绝对值.【详解】5x =表示到原点距离等于5的数,数轴上到原点距离为5的数有两个:5或者-5,。

初一辅导专题1 实数的概念

初一辅导专题1 实数的概念

初一辅导专题1 实数的概念一、知识要点:1、无理数的定义:无限不循环小数叫做无理数;无理数可分为正无理数和负无理数2、实数的定义:有理数和无理数统称为实数;3、实数的分类:正整数有理数 有限小数或无限循环小数 分数无理数 无限不循环小数二、例题讲解:1、在下列实数中,是无理数的为( )A .0;B . 3.5-;CD . 2、在220.6187-π,, A .1; B .2; C . 3; D .4. 3、无理数是( )A .无限循环小数;B .开方开不尽的数;C .除有限小数以外的所有实数;D .除有理数以外的所有实数. 4、实数中6,42,31π中,分数的个数是( ) A .0个; B .1个; C .2个; D .3个5、3-,00.3,227, 1.732-π2-,3,0.1010010001整数{} ;分数{} ; 正数{} ;负数{} ; 有理数{} ;无理数{} ; 6选择题(1)下列语句错误的是( )A 、正整数、0、负整数统称为整数B 、整数与分数统称为有理数C 、开方开不尽的数和π统称为无理数D 、有理数、无理数统称为实数 (2)下列说法正确的是( ).A 、无理数是开方不尽的数B 、无限小数不能化成分数C 、无限不循环小数是无理数D 、一个负数的平方是无理数 (3)下列说法错误的是( )A 、相反数与本身相等的数只有0B 、倒数与本身相等的数只有1和-1C 、平方与本身相等的数只有0和1D 、立方与本身相等的数只有0和1 (4)下列命题正确的是( )A 、无理数与无理数的和仍是无理数B 、无理数与无理数的积仍是无理数C 、有理数与无理数的积仍是无理数D 、有理数与无理数的和仍是无理数 (5)大家知道5是一个无理数,那么5-1在哪两个整数之间()A 、1与2B 、2与3C 、3与4D 、4与5 7:填空题(1)7-的相反数是__73-______,绝对值是___37-_____. (2)一个数的绝对值等于,则这个数是____3±_____.(3)绝对值最小的实数是___0___,绝对值小于的整数有±2、±1、0 8:已知b a ,都是无理数,且它们的和为2,试写出两对符合要求的无理数b a ,。

实数的相关概念

实数的相关概念

专题1 实数的有关概念一、考纲要求1.了解有理数、无理数以及实数的有关概念;2.理解数轴、相反数、绝对值、倒数等概念,了解数的绝对值的几何意义; 3.会求一个数的相反数、绝对值和倒数;4.了解平方根、算术平方根、立方根的概念,会求一个数的平方根、立方根;5.画数轴,了解实数与数轴上的点一一对应,能用数轴上的点表示实数,会利用数轴比较大小;6.了解科学记数法、近似数与有效数字的概念,能按要求用四舍五入法求一个数的近似值,能正确识别一个数的有效数字的个数.在解决实际问题中,能用计算器进行近似计算,并按问题的要求对结果取近似值. 7.了解常见的非负数及性质.二、知识梳理 1.实数的分类 (1)按定义分类(2)按正负分类2.实数的有关概念(1)数轴:数轴的三要素为 原点 、 正方向 和 单位长度 .数轴上的点与 实数 一一对应. (2)相反数:实数的相反数为a -.若,互为相反数,则= 0 . (3)倒数:非零实数的倒数为1a.若,互为倒数,则= 1 . (4)绝对值:(0)0(0)(0)a a a a a a ⎧⎪⎨⎪-⎩=>=<(5)科学记数法:把一个数表示成 a ×10n的形式,其中1≤<10的数,n 是整数.(6)近似数的精确度:一个近似数,四舍五入到哪一位,就说这个近似数精确到哪一位(7)有效数字:四舍五入后的近似数,从左边第一个不是0的数字起,到精确到的数位止,所有的数字,都叫做这个数的有效数字.3.平方根、算术平方根、立方根(1)任何正数a 都有__两_个平方根,它们互为__相反数__.其中正的平方根a 叫做_a 的算术平方根__. 负数 没有平方根,0的算术平方根为_0__.(2) 任何一个实数a 都有立方根,记为3a .a ab b a +a a b ab a(3(0)(0)a a a ≥==<4.非负数:(1(2)非负数的性质: ①非负数有最小值是零;②任意几个非负数的和仍为非负数;③n 个非负数的和为0,则这n 个非负数同时为0. 例如:若a +2b +c =0,则a=b=c=0.三、要点精析(1)区分有理数和无理数的关键有两点:一是正确理解无限循环小数与无限不循环小数的意义;二是能写成分数形式的都是有理数,但2π,53等不是分数.(2)近似数、有效数字:①取一个数精确到某一位的近似数时,应对“某一位”后的第一个数进行四舍五入,而之后的数不予考虑;②用科学记数法表示的近似数,乘号前面的数(即a)的有效数字即为该近似数的有效数字;而这个近似数精确到哪一位,应将用科学记数法表示的数还原成原来的数,再看最后一个有效数字处于哪一个数位上.如0.030是2个有效数字(3和0)精确到千分位;3.14×105是3个有效数字;精确到千位.3.14万是3个有效数字(3,1,4)精确到百位.(3)绝对值 2x =的解为2±=x ;而22=-,但少部分同学写成 22±=-.(4)在已知中,以非负数a 2、|a|、 a (a ≥0)之和为零作为条件,解决有关问题.四、中考真题和试题精粹 1.(2015湖南益阳)下列实数中,是无理数的为( )A.13C .0D .3-【答案】A 【解析】试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项. 试题解析:AB .13是分数,是有理数,选项错误;C .0是整数,是有理数,选项错误;D .-3是整数,是有理数,选项错误. 故选A .考点:无理数.点评:此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.a ,b 在数轴上的位置如图所示,那么化简2a b a --的结果是 ( )A .2a -bB .bC .-bD .-2a +b 【答案】C 【解析】试题分析:先由数轴判断实数a ,b 的正负,再判断a -b 的正负,最后化简、合并.由数轴知a >0,b <0,a >b ,所以a -b >0,所以2a b a --=a -b -a =-b .故选C . 3.在-2,0,2,1,43,-0.4中,正数有 ( )A .2个B .3个C .4个D .5个 【答案】B 【解析】试题分析:正数包括正有理数和正无理数,本题中2,1,43三个数为正数.故选B . 点评:0既不是正数,也不是负数.无理数也有正、负之分. 考点:实数的分类.412a =-,则1a a --=( )A .1-2aB .1C .-1D .以上选项都不对 【答案】B 【解析】试题分析:12a =-左边为非负数,所以120a -≥,解得12a ≤∴10a ->.112a a a =-+=-,∴a a =-. ∴0a ≤. 又10a ->,故()111a a a a --=---=.故选B5.下列说法中,正确的是 ( )A .近似数3.20和近似数3.2的精确度一样B .近似数3.20和近似数3.2的有效数字一样C .近似数2千万和近似数2000万的精确度一样D .近似数32.0和近似数3.2的精确度一样 【答案】D 【解析】试题分析:近似数精确到哪一位,应当看末位数字实际在哪一位.试题解析:A 、近似数3.20精确到百分位,而近似数3.2精确到十分位,故本选项错误; B 、近似数3.20有3个有效数字,而近似数3.2有2个有效数字,故本选项错误; C 、近似数2千万精确到千万位,而近似数2000万精确到万位,故本选项错误; D 、近似数32.0和近似数3.2都是精确到了0.1,故本选项正确. 故选D .点评:考查了近似数和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.6.如果a 与3互为相反数,那么|a+2|等于( ) A .5 B .1 C .-1 D .-5 【答案】B 【解析】试题分析:a 与3互为相反数,则a =-3,所以|a+2|=|-3+2|=|-1|=1. 故选B7.(-1)2 015的相反数是( )A .1B .-1C .2 015D .-2 015 【答案】A 【解析】试题分析:由于指数2 015为奇数,所以(-1)2 015=-1,其相反数为1. 故选A .8.m-n 的相反数是( )A .-(m+n)B .m+ nC .m-nD .-(m-n) 【答案】D【解析】试题分析:可设m =2,n =1,则m - n =1.又-( m + n)=-3,m+ n =3,m- n =1,-( m- n)=-1.故选D . 故选D点评:赋值时取值要符合题意,但又不能特殊,本题中m ,n 不能取0,得出结论后再用其他值试一试,如:m =3,n =-2等.9.(2014•广西玉林市)将6.18×10﹣3化为小数的是( )A .0.000618B .0.00618C .0.0618D .0.618 【答案】B 【解析】试题分析:科学记数法的标准形式为a ×10n (1≤|a|<10,n 为整数).本题把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到.试题解析:把数据“6.18×10﹣3中6.18的小数点向左移动3位就可以得到为0.00618. 故选B .点评:将科学记数法a ×10﹣n表示的数,“还原”成通常表示的数,就是把a 的小数点向左移动n 位所得到的数. 把一个数表示成科学记数法的形式及把科学记数法还原是两个互逆的过程,这也可以作为检查用科学记数法表示一个数是否正确的方法. 考点:科学记数法—原数. 10.(2012湖北荆门3分)下列实数中,无理数是( )A .﹣B .π C.|﹣2| 【答案】B 【解析】试题分析:根据初中无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案:A 、﹣是有理数,故本选项错误;B 、π是无理数,故本选项正确;C ,是有理数,故本选项错误; D、|﹣2|=2,是有理数,故本选项错误.故选B .考点:无理数.11.(2012湖北黄冈3分)下列实数中是无理数的是( ) AB . D 【答案】D 【解析】试题分析:根据初中无理数的三种形式:①开方开不尽的数,②无限不循环小数,③含有π的数,结合选项即可得出答案:A =2,是有理数,故本选项错误;B =2,是有理数,故本选项错误;C 、=1,是有理数,故本选项错误;D 是无理数,故本选项正确.故选D . 考点:无理数.12.的相反数是( ) A . B .5201- C .52011D .52011- 【答案】C【解析】试题分析:只有符号不同的两个数,我们称这两个数互为相反数.故选C . 考点:相反数的定义. 13.12015-的倒数是( ) A .2015 B .-2015 C .-D . 【答案】A【解析】试题分析:负数的绝对值等于它的相反数,当两数的乘积为1时,则两数互为倒数.5250π0π52011-52012015120151因为1120152015-=所以12015-的倒数是2015.故选A . 考点:绝对值和倒数的计算.14.(2015年浙江宁波4分)的绝对值是( ) A . B .3 C . D .-3【答案】A 【解析】试题分析:方法一,根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点到原点的距离是,所以,的绝对值是. 方法二,根据绝对值的性质:正数和0的绝对值是它本身,负数的绝对值是它的相反数.可得的绝对值是故选A .考点:绝对值 15.(2015浙江宁波)2015年中国高端装备制造业收入将超过6万亿元,其中6万亿元用科学计数法可表示为( )A .0.6×1013元B .60×1011元C .6×1012元D .6×1013元 【答案】C 【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,n 为它第一个有效数字前0的个数(含小数点前的1个0). 试题解析:∵6万亿=6 000 000 000 000一共13位,∴16万亿=6 000 000 000 000=6×1012. 故选C .考点:科学记数法. 16.(2015四川自贡)将-32.0510⨯用小数表示为( )A .0.000205B .0.0205C .0.00205D .-0.00205 【答案】C 【解析】试题分析:10﹣3就是0.001,把2.05的小数点向左移动3位即可.试题解析:2.05×10﹣3=0.00205, 故选C .考点:科学记数法—原数.点评:本题考查了科学记数法,用科学记数法表示的数还原成原数时,n >0时,n 是几,小数点就向右移几位;n <0时,n 是几,小数点就向左移几位. 17.(2013•内江)下列四个实数中,绝对值最小的数是( ) A .﹣5 B. C .1 D .4 【答案】C 【解析】试题分析: 计算出各选项的绝对值,然后再比较大小即可. 试题解析:|﹣5|=5,=,|1|=1,|4|=4,所以绝对值最小的是1.故选C .点评:本题考查了实数的大小比较,属于基础题,注意先运算出各项的绝对值. 18.(2013•东营)的算术平方根是( ) A . B .4 C . D .2【答案】D 【解析】试题分析:先计算出的值,然后再求其算术平方根即可.试题解析:因为=4,4的算术平方根是2,所以的算术平方根是2.故选D . 考点:算术平方根的定义31-3131-31-3131-3131-31164±2±16161619.下列各数:π2,00.23•,cos 60°,227,0.300 03…,( )A .2个B .3个C .4个D .5个【答案】B 【解析】试题分析:π2中π是无理数,所以π2是无理数;0=3是有理数;0.23•是无限循环小数,属于有理数;cos 60°=12,是有理数;227是有理数;0.300 03…是无理数;是无理数.故选B点评:有理数都可以化成分数的形式.常见的无理数有四种形式:(1)含有π的式子;(2)根号内含开方开不尽的式子;(3)无限且不循环的小数;(4)某些三角函数式.20.已知四个命题:①如果一个数的相反数等于它本身,那么这个数是0;②若一个数的倒数等于它本身,则这个数是1;③若一个数的算术平方根等于它本身,则这个数是1或0;④如果一个数的绝对值等于它本身.那么这个数是正数.其中真命题有 ( )A .1个B .2个C .3个D .4个 【答案】B 【解析】试题分析:倒数等于它本身的数为±1,故②错;绝对值等于它本身的数除了正数还有0.故④错.①③是正确的.故选B . 21.(2014•广西贺州,第4题3分)未来三年,国家将投入8450亿元用于缓解群众“看病难、看病贵”的问题.将8450亿元用科学记数法表示为( )A .0.845×104亿元B .8.45×103亿元C .8.45×104亿元D .84.5×102亿元 【答案】B 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.试题解析:将8450亿元用科学记数法表示为8.45×103亿元.故选B . 考点:科学记数法—表示较大的数.22.(2014年四川资阳,第4题3分)餐桌边的一蔬一饭,舌尖上的一饮一酌,实属来之不易,舌尖上的浪费让人触目惊心.据统计,中国每年浪费的食物总量折合粮食约500亿千克,这个数据用科学记数法表示为( )A .5×1010千克B .50×109千克C .5×109千克D .0.5×1011千克 【答案】A 【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值是易错点,由于500亿有11位,所以可以确定n=11﹣1=10.试题解析:500亿=50 000 000 000=5×1010. 故选A .考点:科学记数法—表示较大的数.点评:此题考查科学记数法表示较大的数的方法,准确确定a 与n 值是关键. 23.(2014年云南省,第1题3分)17-=( ) A .17-B .17C .﹣7D .7 【答案】B 【解析】试题分析:根据负数的绝对值是它的相反数,可得答案. 试题解析:1177-=. 故选:B .考点:绝对值.点评:本题考查了相反数,在一个数的前面加上负号就是这个数的相反数.24.(2014•襄阳,第1题3分)有理数53-的倒数是()A.53B.53-C.35D.35-【答案】D【解析】试题分析:根据倒数的定义:乘积是1的两数互为倒数,可得出答案.试题解析:53-的倒数是35-.故答案选D.考点:倒数.点评:本题考查了倒数的知识,属于基础题,解答本题的关键是掌握倒数的定义.25.(2014•襄阳,第7题3分)下列命题错误的是()A.所有的实数都可用数轴上的点表示B.等角的补角相等C.无理数包括正无理数,0,负无理数D.两点之间,线段最短【答案】C【解析】试题分析:根据实数与数轴上的点一一对应对A进行判断;根据补角的定义对B进行判断;根据无理数的分类对C进行判断;根据线段公理对D进行判断.试题解析:A、所有的实数都可用数轴上的点表示,所以A选项的说法正确;B、等角的补角相等,所以B选项的说法正确;C、无理数包括正无理数和负无理,0是有理数,所以C选项的说法错误;D、两点之间,线段最短,所以D选项的说法正确.故选C.点评:本题考查了命题与定理:判断事物的语句叫命题;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理.26.(2014·台湾,第14题3分)小明在网络上搜寻到水资源的数据如下:地球上水的总储量为1.36×1018立方公尺,其中可供人类使用的淡水只占全部的0.3%.根据他搜寻到的数据,判断可供人类使用的淡水有多少立方公尺?( )A.4.08×1014B.4.08×1015C.4.08×1016D.4.08×1017【答案】B【解析】试题分析:科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.试题解析:36×1018×0.3%=0.00408×1018=4.08×1015.故选:B.27.(2014•浙江宁波,第1题4分)下列各数中,既不是正数也不是负数的是()A.0 B.-1 C.2【答案】A【解析】试题分析:根据实数的分类,可得答案.试题解析:0既不是正数也不是负数,故选:A.点评:本题考查了实数,大于0的数是正数,小于0的数是负数,0既不是正数也不是负数.考点:实数的分类;正数和负数.28.(2014•株洲,第1题,3分)下列各数中,绝对值最大的数是()A.﹣3 B.﹣2 C.0 D.1【答案】A【解析】试题分析:根据绝对值是实数轴上的点到原点的距离,可得答案.试题解析:|﹣3|>|﹣2|>|1|>|0|,故选:A.考点:绝对值;有理数大小比较点评:本题考查了绝对值,绝对值是实数轴上的点到原点的距离.29.(2014年江苏南京,第5题,2分) 8的平方根是()A .4B .±4C .D .±【答案】D 【解析】试题分析:直接根据平方根的定义进行解答即可解决问题.试题解析:∵(28±=,∴8的平方根是±.故选D .考点:平方根的定义点评:本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根. 30.(2015年浙江嘉兴4分) 2014年嘉兴市地区生产总值为335 280 000 000元,该数据用科学记数法表示为( )A .33528×107B .0.33528×1012C .3.3528×1010D .3.3528×1011【答案】D 【解析】试题分析:根据科学记数法的定义,科学记数法的表示形式为a ×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.在确定n 的值时,看该数是大于或等于1还是小于1.当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0).∵335 280 000 000一共12位,∴335 280 000 000=3.3528×1011,故选D . 考点:科学记数法.31.下列说法正确的是( )A .1的相反数是-1B .1的倒数是-1C .1的立方根是±1D .-1是无理数 【答案】A 【解析】试题分析:根据相反数、倒数、立方根、无理数的定义判断即可. A 、1的相反数为-1,故A 正确; B 、1的倒数是1,故B 错误; C 、1的立方根是1,故C 错误;D 、-1是有理数,是整数,故D 错误. 故选:A考点:相反数的定义32.如图,数轴上有A ,B ,C ,D 四个点,其中到原点距离相等的两个点是( )A .点B 与点D B .点A 与点C C .点A 与点D D .点B 与点C 【答案】C 【解析】试题分析:到原点距离相等的两个点所表示的数互为相反数.-2与2是互为相反数,故选C .33 )A .2x > D .2x ≥ 【解析】试题分析:非正数的绝对值等于它的相反数,则x -2≤0,解得 x ≤2.故选B . 考点:绝对值的性质.34.下列各数中是负数的是( ) A .()13--- B .()23-- C .113-⎛⎫⎪⎝⎭D .|﹣2|【答案】B 【解析】试题分析:根据幂的运算性质及二次根式的性质,绝对值可求结果. A 、()11113033-⎛⎫--=--= ⎪⎝⎭>,故选项A 不正确;B 、()2390--=-<,故选项B 正确;C 、11303-⎛⎫= ⎪⎝⎭>,故选项C 不正确;D 、|﹣2|=2>0,故选项D 不正确. 故选B .考点:幂的运算性质及二次根式的性质,绝对值 35.(2015年江苏南通3分)如果水位升高6m 时水位变化记作+6m ,那么水位下降6m 时水位变化记作( ) A .﹣3m B .3m C .6m D .﹣6m 【答案】D【解析】在一对具有相反意义的量中,先规定其中一个为正,则另一个就用负表示 因此, ∵“上升”和“下降”相对,∴水位升高6m 时水位变化记作+6m ,则水位下降6m 时水位变化记作﹣6m . 故选D .考点:正数和负数.36.已知下列各数:8,3.14,-2,3π,0,14,0.31•,-,则无理数有 ;分数有 .【答案】3π,-3.14,14,0.31•.【解析】试题分析:无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念.有理数是整数与分数的统称,即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.所以无理数有:3π,3.14,14,0.31•.考点:实数.37.要到玻璃店配一块面积为1.21 m 2的正方形玻璃,那么该玻璃的边长为 m . 【答案】1.1 【解析】试题分析:正方形的边长是其面积的算术平方根,故该玻璃的边长为21.1=1.1(m).故答案为1.1.点评:解答此类问题主要注意以下几点:一是开平方和开立方的区别;二是看题目要求,弄清被开方数.解此题的关键是要弄清正方形的面积和边长的关系.38.已知x 、y为实数,且4y =,则x ﹣y= . 【答案】-1或-7 【解析】试题分析:因为x 2-9≥0,9-x 2≥0,所以x 2-9=9-x 2=0,所以x=±3,y=4,所以x ﹣y=-1或-7 39.将近似数23460保留两个有效数字,并用科学记数法表示是__________________.【答案】2.3×104【解析】试题分析:科学记数法的表示形式为a ×10n的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n 是正数;当原数的绝对值小于1时,n 是负数.有效数字是从左边第一个不是0的数字起后面所有的数字都是有效数字.23460≈2.3×104.考点:本题考查的是科学记数法,近似数与有效数字点评:解答本题的关键是注意用科学记数法表示的数a ×10n的有效数字只与前面的a 有关,与n 无关.40.若(a-1)2+|b+2|=0,则a+ b = . 【答案】-1 【解析】试题分析:由于(a-1)2≥0,|b+2|≥0,又(a-1)2+|b+2|=0,因此 (a-1)2=0且|b+2|=0,则a =1,b =-2,所以a +b =-1.点评:若几个非负数的和为0,则这几个数分别为0. 41.(2012四川达州3分)实数、在数轴上的位置如下图所示,化简:= .【答案】n -m .m n m n-【解析】试题分析:∵在数轴上实数m 位于n 的左侧,∴m<n . ∴m-n <0∴|m-n|=-(m -n )=n -m . 考点:实数与数轴,绝对值的概念.42.(2013•巴中)若直角三角形的两直角边长为a 、b40b -=,则该直角三角形的斜边长为 . 【答案】 【解析】试题分析:根据非负数的性质求得a 、b 的值,然后利用勾股定理即可求得该直角三角形的斜边长.40b -=, ∴a 2﹣6a+9=0,b ﹣4=0. 解得a=3,b=4.∵直角三角形的两直角边长为a 、b ,∴该直角三角形的斜边长5===. 故答案是:5.考点:勾股定理;非负数的性质;绝对值;非负数的性质;算术平方根.43.(1)(-1.44)2的算术平方根为________________=________; (2)(-2)-3的立方根是________;立方等于-216的数是________;3=________.【答案】(1)1.44 ±3 0.2;(2)-12-6 125 【解析】试题分析:(1)(-1.44)2|-1.44|=1.449,9=0.2; (2)∵(-2)-3=()31-2,∴(-2)-312; ∵(-6)3=-2166;3=3=53=125.点评:对于算术平方根,要注意:(1)一个正数只有一个算术平方根,它是一个正数;(2)0的算术平方根是0;(3)负数没有算术平方根;(4)具有双重非负性:①被开方数a 是非负数,a ≥0;②算术平方根≥0.而在立方根中,注意3.44.若实数x ,y +(3-y)2=0,则代数式xy -x 2的值为__________.【答案】2 【解析】≥0,(3-y)2≥0,+(3-y)2=0,所以x -2=0,3-y =0.解得x =2,y =3.则xy -x 2=2×3-22=2.答案:2点评:常见的非负数的形式有三种:|a|≥0),a 2,若它们的和为零,则每一个式子都为0. 45.如果某个数的平方根是a +3和2a -15,那么这个数等于__________. 【答案】49 【解析】 试题分析:根据任何正数a 都有两个平方根,它们互为相反数,而互为相反数的两个数之和为零列方程求解即可求a 的值,再求(a+3)2即可.试题解析:根据题意,得a +3+2a -15=0,解得a=4所以这个数等于(a+3)2=49.考点:平方根,互为相反数的两个数的性质46.一个数的相反数的倒数是2,这个数是________. 【答案】12- 【解析】试题分析:此题考查相反数与倒数的概念设一个数为x ,则这个数的相反数的倒数为1x -,所以1122x x -=∴=-, 答案12-47.当x=_________时,代数式x -1与2x+10的值互为相反数【答案】-3【解析】根据相反数的定义先列出方程,然后求解.试题解析:根据题意得:x-1=-(2x+10),去括号,得 x-1=-2x-10,移项,合并同类项得 3x=-9,系数化为1得 x=-3.即当x=-3时代数式x-1与2x+10的值互为相反数.点评:本题的关键在于根据题意列出方程,注意读准题意.48.3-22的相反数是 .【答案】22-3【解析】试题分析:根据只有符号不同的数是相反数进行解答.试题解析:∵-(3-22)=22-3,∴3-22的相反数是:22-3.故答案为:22-3.点评:本题考查了实数的性质,主要利用了只有符号不同的数是相反数的定义,比较简单.49的相反数是 ,的倒数是【解析】试题分析:-(,故∵乘积为1 50.5的相反数的平方是______, -的倒数是______.【答案】25 ,【解析】试题分析:5的相反数是-5,而25)5(2=-;51.如果零上2℃记作+2℃,那么零下3℃记作 .【答案】-3℃.【解析】试题分析:根据正数和负数是表示意义相反的量即可求得.∵零上2℃记作+2℃,∴零下3℃记作﹣3℃.故答案为:-3℃.考点:正数和负数.52.在数轴与原点的距离为2个单位的点所表示的有理数是__________.【答案】±2.【解析】试题分析:根据数轴上两点间距离的定义进行解答即可.试题解析:设数轴上,到原点的距离等于2个单位长度的点所表示的有理数是x ,则|x|=2,解得 x=±2.考点:数轴.53.把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.••02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1). (1)正有理数集合:{ …};(2)有理数集合:{ …};(3)无理数集合:{ …};(4)实数集合:{ …}.【答案】(1)正有理数集合:{38,722,1.414,…}. (2)有理数集合:{38,-3.14159,722,87-,0,-0.••02,1.414,…}. (3)无理数集合:{3,3π,32-,1.21121112l 1112…,7-,…}. (4)实数集合:{ 38,3,-3.14159,3π,722,32-,87-,0,-0.••02,1.414,7-,42.2112111211112…(每两个相邻的2中间依次多1个1)…}.【解析】试题分析:准确理解实数的概念,按要求分类,注意不要遗漏.点评:(1)带根号的数不一定是无理数:(2)分数是有理数,但3π这种形式的数是无理数;(3)只有无限不循环小数才是无理数.54.(2015安徽省)-64的立方根是 .【答案】-4【解析】试题分析:根据立方根的定义求解即可.试题解析:∵(﹣4)3=﹣64,∴﹣64的立方根是﹣4.故答案为﹣4.考点:立方根.点评:此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.55.(2015年广东4分)观察下列一组数:,,,,,…,根据该组数的排列规律,可推出第10个数是 . 【答案】1221. 【解析】 试题分析:观察得该组数的排列规律为:分母为连续奇数,分子为连续自然数,第n 个数为21n n +,所以,第10个数是1012210121=⨯+. 考点:探索规律题(数字的变化类).56.已知b =a 3+2c ,其中b 的算术平方根为19,c 的平方根是±3,求a 的值.【答案】7【解析】132********试题分析:因为b 的算术平方根是19,所以b =192=361.又因为c 的平方根是±3,所以c =(±3)2=9.代入已知条件即可求出a 的值.试题解析:因为b 的算术平方根是19,所以b =192=361.又c 的平方根是±3.所以c =(±3)2=9.所以a 3=b -2c =361-18=343,即a =7.57.已知a ,b 为数轴上的点,如图所示,求ba b a ++的值.【答案】-1【解析】试题分析:解决此题的关键在于去掉分子的绝对值符号,也就是要确定a +b 的正负.由图可知a >0,b <0,且b >a ,所以a +b <0,因此b a +=-(a +b).试题解析:由题意可知a >0,b <0,且b >a ,所以a +b <0,即b a +=-(a +b). 所以1)(-=++-=++ba b a b a b a . 58.已知:a ,b ,c 都是实数,且满足(2-a)2+82++++c c b a =0,且ax 2+bx +c =0,求代数式3x 2+6x +1的值.【答案】13【解析】试题分析:若几个非负数的和为0,则这几个数分别为0.先根据非负数的性质求出a ,b ,c 的值,再整体代入求值.试题解析:依题意知(2-a)2≥0,c b a ++2≥0,8+c ≥0, 所以⎪⎩⎪⎨⎧=+=++=-,08,0,022c c b a a 解得⎪⎩⎪⎨⎧-===,8,4,2c b a所以ax 2+bx +c =0即为2x 2+4x -8=0,可化为x 2+2x =4,故3x 2+6x +1=3(x 2+2x)+1=3×4+1=13.点评:本题在求代数式的值时充分采用了整体代入的方法.59.已知实数x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根. 【答案】32±【解析】 试题分析:要求y x 542-的平方根,关键是知道x ,y 的值,由非负数的性质知,几个非负数之和等于零,则每个非负数都等于零,从而得到一个关于x ,y 的二元一次方程组.解出x ,y 的值. 试题解析:因为022132=+-+--y x y x , 又132--y x ≥0,22+-y x ≥0,所以⎩⎨⎧=+-=--,022,0132y x y x 解得⎩⎨⎧==.5,8y x 所以1255482542=⨯-⨯=-y x . 所以3212542±=±=-±y x . 60.若a ,b 为实数,且11122++-+-=a a a ab ,求3-+-b a 的值. 【答案】-3【解析】试题分析:因为要使12-a 与21a -均有意义.所以a 2-1≥0,且1-a 2≥0,可得出a 2-1=0.即a =±1.又a +1≠0.所以a =1.进而代入求值.试题解析:因为a ,b 为实数,且a 2-1≥0,1-a 2≥0,所以a 2-1=1-a 2=0. 所以a =±1.又因为a +1≠0,所以a =1.代入11122++-+-=a a a ab ,得b =21. 所以3-+-b a =-3.。

第1课 实数

第1课 实数
等;第三类是人为构造的数,如 0.1010010001…(两个“1”之间依次 多一个“0”).
特别关注
1.区分有理数与无理数,不能只看形式,要看化简的结果.有限小数 和无限循环小数都是有理数,只有无限不循环小数才是无理数. 2.-a 不一定是负数,应根据 a 本身的数值进行综合判断.
3 3 【典例 1】 (2015· 内蒙古通辽)在实数 tan 45° , 8, 0, - π, 9, 5 1 - ,sin 60° ,0.3131131113…(两个“3”之间依次多一个“1”)中, 3
用科学记数法表示的数 a× 10n 中,要求 1≤ a<10,且 n 为
整数.确定 n 的值时,要看把原数变成 a 时,小数点移动了多少 位,n 的绝对值与小数点移动的位数相同.当原数的绝对值 ≥1 时,n 是自然数;当原数的绝对值<1 时,n 是负整数.
特别关注 对于用科学记数法表示的数 a× 10n, 在判断其精确到
是解题的关键. 【解析】 根据科学记数法的定义,科学记数法的表示形式为
a× 10n, 其中 1≤|a|<10, n 为整数. ∴11.4 万=114000=1.14× 105.
【答案】 C
考点四
平方根、算术平方根、立方根、无理数的估算
考点清单
1.平方根:如果一个数 x 的平方等于 a,那么 x 叫作 a 的平 方根,记作± a.
无理数的个数是 A.4
【点评】
( C.2 D.1
)
B. 3
本题主要考查无理数的定义,弄清有理数与无理数的
区别是解题的关键.
3 【解析】 所给实数中, - π, sin 60° , 0. 3131131113…(两个“3” 5 之间依次多一个“1”)这 3 个数是无理数.

中考数学总复习1.实数的概念

中考数学总复习1.实数的概念

3 ⎩ ⎩1.实数的概念一、知识要点1. 实数的分类(两种分类方式——①按定义分类;②按性质分类):⎧ ⎧ ⎧正整数 ⎫ ⎧ ⎧ ⎧正整数⎪ ⎪ ⎨零⎪ ⎪⎪ ⎪正有理数⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪正实数⎨ ⎩正分数 负整数 小数或 小数; 正无理数 ⎪ ⎨ ⎩ ⎬⎪ ⎩ (1) )实数⎨ ⎪⎪ ⎨ ⎪ ⎪ ⎪ 实数⎨零 ⎪ ⎧⎪ ⎪ ⎩ ⎩ ⎪⎭ ⎪负实数⎪负有理数⎨ ⎪  小数. ⎪⎩ ⎨ ⎬ ⎩⎪ ⎩ ⎭ ⎪⎩⎪负无理数 ()2 数轴上的点与 一一对应;在平面直角坐标系中,平面上的点与 一一对应. (3) 常见无理数的 4 种形式:①字母型:如π和 ;②构造型:如 0.101001…和 ;③根式型:如 和 ;④三角函数型:如sin150和 等.2. 数轴:数轴的三要素是、 和 ......... 在数轴上右边的数总是 左边的数;3. 相反数:实数 a 的相反数为. 若a ,b 互为相反数,则a + b = ............ 在数轴上表示互为相反数的两个点(原点除外)分别在两侧,且与原点的 .................................4. 倒数:非零实数 a 的倒数为 . 若a ,b 互为倒数,则ab = ................ 5. 绝对值: ⑴性质:正数的绝对值是 ,负数的绝对值是 ,0 的绝对值是 .... 即a = ⎧⎪ ⎨ (a > 0)(a = 0)⑵几何意义:一个数的绝对值就是数轴上表示这个数的点 ................................... ⑶任何数的绝对值都是,即 a0 ;若a ,b 互为相反数,则 a b ;⎪ (a < 0) ⎧3 a 3 ① ( ) 若 a = b ,则a b 或 a + b = .6. 科学计数法:把一个数表示成 的形式,其中1≤ a <10 的数,n 是整数. 其方法是:①确定 a , a 是只有一位整数的数;②确定 n ,当原数的绝对值≥10 时,n 为正整数,n 等于原数中整数部分的数位减去;当原数的绝对值<1 时,n 为负整数,如 0.00305=,-0.000236=.7. 若 x 2=a ,则x 叫作 a 的 ,记作,a 叫作 x 的 ........... 任何正数 a 都有个平方根,它们互为,其中正的平方根 叫,没有平方根,0 的算术平方根为 ........8.若 x 3=a ,则 x 叫作 a 的 ,记作 ;a 叫作 x 的.任何实数a 都有立方根,记为 .............9. 非负数: a 0;a 20; a 0 ;性质是:若几个非负数的和等于 0,则这几个非负数同时为 ...........10.绝对值是它本身的数是;相反数是它本身的数是 ;倒数是它本身的数是 ; 平方是它本身的数是 ;立方是它本身的数是 ;平方根是它本身的数是;算术平方根是它本身的数是;立方根是它本身的数是 .............................二、例题分析【例 1】在 2 , ②3.14, ③π, ④( 2- 3)0 , ⑤ 1 -2 , ⑥0.010⋅⋅⋅, ⑦0.10110111⋅⋅⋅, ⑧tan 450,2 21⑨ 中 , 是 无 理 数 的 是 ( 只 写 序 号 ).π【例 2】(1)在数轴上表示-2 的点,离原点的距离等于 ....................(2)实数 a ,b 在数轴上的对应点如图所示,则下列不等式中错.误.的是( ).A. ab > 0B. a + b < 0C. a < 1bD.a -b < 0 ab(3) 在数轴上的点 A 、B 位置如图所示,则线段 AB 的长度为 ................. AB-5 0 2(4)实数 x 、y 在数轴上的位置如图所示,则 x ,y ,0 的大小是 ...............................x y()5 如图所示,数轴上 A ,B 两点表示的数分别为-1和 ,点 B 关于点 A 的对称点为 C ,则点 C 所表示的数为 ................C A 0 B【例 3】(1)如果规定向东走 80m 记为 80m ,那么向西走 60m 记为.(2) -2 的相反数是 .............(3)对于式子“ -(-8) ”,有下列理解:①可表示-8 的相反数;②可表示-1与-8 的乘积;③可表示-8 的绝对值;④运算结果等于 8.其中理解正确的是 (只写序号). 【例 4】(1) - 1 的倒数为 ;2的倒数为;(2)若 x = (-2) ⨯ 3 ,则x 的倒数是 .................【例 5】(1)-5 的绝对值是 ;- 的绝对值是; 3 -27 的绝对值是 .....................(2)式子“ | 6 - 3 |”在数轴上的几何意义是:“数轴上表示 6 的点与表示 3 的点之间的距离”.类似地,3 2b +1 9 9 b -3 式 子 “| a + 5 |” 在 数 轴 上 的 几 何 意 义 是 “ ”. (3)①如果 a 与 1 互为相反数,则| a + 2 | =. ②若 a = 3 ,则a 的值是 .................(4) 若 m - n = n - m , 且 m = 4 , n = 3 , 则 (m + n )2 = . (5)若 a = 5,b = -2,且ab > 0,则a + b = .(6)如果实数 a 在数轴上的位置如图所示,那么|1- a | + a 2 =----------------- 1 0 a 1【例 6】(1)16 的平方根是 ,16 的算术平方根是 , 16 的平方根是 ;16 的算术平方根 ;-8 的立方根是 .....................(2) 一个自然数的算术平方根为a ,则和这个自然数相邻的下一个自然数是 .........................(3)下列运算正确的是( ). A.= ±3 B. - 3 = -3 C. - = -3 D. - 32 = 9(4)在实数﹣2,0,2,3 中,最小的实数是( ).A.-2B.0C.2D.3 (5)若 ab ≠ 0 ,则a +b 的取值不可能是().bA.0B.1C.2D.-2【例 7】(1)目前,我国人口总数大约是 13.7 亿,用科学记数法表示为 人.(2) 港珠澳大桥工程估算总投资 726 亿元,用科学记数法表示是 元,精确到万位是 .................(3) “鸟巢”的建筑面积达 25.8 万平方米,用科学记数法表示约为 平方米.(4) 太阳内部高温核聚变反应释放的“辐射能”功率为3.8⨯1023千瓦,而到达地球的仅占 20 亿分之一,到达地球的“辐射能”功率为 千瓦(用科学计数法表示) (5)已知空气的单位体积质量为1.24⨯10-3g /cm 3,1.24 ⨯10-3用小数表示为 g /cm 3.(6) “黄金分割比”是= 0.61803398…,将“黄金分割比”精确到 0.001 的近似数是.2(7) 下列说法正确的是( )A.近似数 3.9×10 3 精确到十分位B.按科学计数法表示的数 8.04×10 5 其原数是 80400C.把数 50430 精确到千位是 5.0×10 4D.用四舍五入得到的近似数 8.1780 精确到 0.001 【例 8】(1)若 a - 2 + + (c - 4)2= 0 则 a - b + c = .(2) 等腰三角形一边长为 a ,一边长b ,且(2a -b )2+ 9 - a 2 = 0 ,则它的周长为 .....................(3) 已知 a + 3 += 0 ,则实数a + b 的相反数 .........................5 -1 aa +b(- 2)2873 3 3 3(4) a,b 互为相反数,c,d 互为倒数,m 的绝对值是 2,则2m2 +1+ 4m - 3cd = ......................(5) = 0,则a +b = ......................三、课后作业1.在22,π,0,,sin60°,(cos60°)-1,2-, 2.313131…,0.010010001…,3- 64 中,无7 2理数有个 .2.下列说法不正确的是( ).A.没有最大的有理数B.没有最小的有理数C.有最大的负数D.有绝对值最小的有理数8⨯1+( 2)0 的结果为( ).3.计算2A.B.C.3 D.54.下列各组数中是互为相反数的一组是( ).A.- 2与B. - 2与3- 8C. - 2与-1D. - 2 与225.如图A,B,C 三点所表示的数分别为a,b,c ,根据图中各点位置,下列各式正确的是( ).A. (a -1)(b -1) > 0B. (b -1)(c -1) >0C. (a +1)(b +1) < 0D. (b +1)(c +1) < 0C O A B-1 0 a 16.数轴上的点并不都表示有理数,如图中数轴上的点P 所表示的数是这种说明问题的方式体现的数学思想方法叫做( ).A.代人法 B.换元法 C.数形结合D.分类讨论7.如果将三个数“ - 3,7,”表示在数轴上,其中被如图所示的墨迹覆盖的数是.8.如右图所示的数轴上,点B 与点C 关于点A 对称,A、B 两点 B A C对应的实数是3 和-1,则点C 所对应的实数是( ).-1 0 3A. 1+B. 2+C. 2 -1D. 2 +19.一个正方形的面积是15,估计它的边长大小在( ).A.2与3之间B.3与4之间C.4与5之间D.5与6之间10.由四舍五入法得到的近似数8.8×103,下列说法中正确的是( ).A.精确到十分位B.精确到个位C.精确到百位D.精确到千位11.某市 2014 年实现生产总值(GDP)1545.35 亿元,用科学记数法表示是元.112 ”,(a - 3b)2 +a2 - 4a + 212.近似数 13.7 万是精确到位.3 + 1 b - c 2 12 3 3 64 x 2 a -1 13. -5 的倒数是 , -3 的绝对值是,绝对值大于 1 小于 4 的整数的和是 .................14. 已知一个正数的平方根是3x - 2 和5x + 6 ,则这个数是 ,若 a > 0 且a x = 2 ,a y = 3 ,则a x - y的值为 ................. 的 立 方 根 是 ;若 = 5, 则 x = ; 若 3 15. 已知一个正数的平方根是3x - 2 和 x + 6 ,则这个数是 ..................... 16. 已知, + a + b +1 = 0 ,则 a b = . 17. 把 7 的平方根和立方根按从小到大的顺序排列为.1 -1= 5,则x = ...........18.计算: ( ) 3- (3 - 3)0 - 4 sin 60︒+ 12 =.19.已知 a = 3 ,且(4 tan 45︒ - b )2+ = 0 ,以a ,b ,c 为边组成的三角形面积等于 .................20.计算: 2-1﹣3tan30° +(2 + 2)0 + .参考答案:三、例题分析 【例 1】①③⑦⑨;【例 2;(1) 2; (2)C ; (3)7; (4)0<x <y ; (5) -2- ; 【例 3】 (1)-60m ; (2) -2; (3)①②③④;x 3336【例 5】(1) 5, - 2 ,3;;(2)数轴上表示 a 的点与数轴上表示-5 的点之间的距离; (3) ①1; ② ±3 ; (4) 1 或 49; (5)-7; (6)1;【例 6】(1) ±4,4,±2,2,-2; (2)a 2+1; (3)C ;(4) A ;(5) B ;【例 7】(1) 1.37×109;(2) 7.26×1010,7260000 万元;(3) 2.581.37×105;B ;(4) 1.9×1014;(5) 0.00124; (6) 0.618; (7) C ;【例 8】(1) 3; (2)15; (3)4; (4) 5 或-11; 8(5) ;3四、课后作业 1.5;2. C ;3. C ;【例 4】(1)-2, 3 ,(2) - 1;7 3 7 7. 7 ;4. A ;5. D ;6. C ;8. D ; 9. B ; 10. C ;11.1.54535×1011; 12.千; 13.- 1,3,0;5 49214., , 3 4 , ±5 ,5;4 315.25; 16.1;17. - < < 7 ; 18.2;19.6;20.3 + 2 3 ;2。

2019-2020年中考数学试题分类专题1实数

2019-2020年中考数学试题分类专题1实数

2019-2020年中考数学试题分类 专题1实数选择题 1.(2002年江苏淮安3分)—3的绝对值是【】【答案】C ・ L 考点】绝对值°【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义,在数轴上,点・3到 原点的距离是灵所[次-』的绝对值是灵 故选G 2.(2002年江苏淮安3分)长江三峡工程电站的总装机容量是18 200 000千瓦,如果用科学记数法表示电站的总装机容量,应记作【 】千瓦.A. 1.82 X 106 B . 1.82 X 107 C . 0.182 X 108 D . 18.2 X 106【答案1B.【若点】科学记颤法.【分析】根据科学记数法的定义,科学记数法的表示形式为廿1〔鬥 其中l<a<135 n 淘整 熟 表示时关诞要正确确定a 的值収及n 的值.在确定n 的值时,養该数是大于或等于1 还是小于1H 当该数犬于或等于1时,n 为它的整魏位数滅h 当该数小于1时,-n 沖它藹 一个有放数字前0的个数(含小数点前的1个0)・18 200 009 -共&位,从而 I£200000-L82xl0\ 故选玄13.(2003年江苏淮安3分) 2的相反数是【】 11A. — 2 B 2 C. 2 D2【答案】 Bo【考点】 相反数。

【分析】相反数的定义是:如果两个数只有符号不同, 我们称其中一个数为另一个数的相反11数,特别地,0的相反数还是0。

因此 2的相反数是2。

故选B 。

4.(2003年江苏淮安3分)截至5月22日全国各地民政、卫生部门、红十字会、中华 慈善总会等系统共接收防治非典型肺炎社会捐赠款物总计约 177000万元,用科学记数法应表示为(【 】A. 1.77 X 104 万元 B . 1.77 X 105 万元 C . 17.7 X 104 万元 D . 177X 106万元A. 2 B12 C .3 D . ±3【答^13.I考点】科学记数法.【分析】根据科学记数法的定义,科学记数法的表示形式为凶叽其中口沟整数,表示时关键要正确确定a的值以及n的值B在确定n的值时,看诗数是大于或等于1 还是小于1.当该数大于或等于1时,n为它的整数位数减I;当该数小于1时.一口为它第—个有■效数字前0的个数(含小数点前的1个0)・177000 —共6位,从而17兀曲=1一?"1叽故选Bn5. (2004年江苏淮安3分)下列式子中,不成立的是【】A .—2>—l B. 3>2 C. 0>—I D. 2>—1【答案】九【考点】有理数的大小比较.【分析】有理数犬小的比较方法;一、数轴比较法;在数轴上表示的两个数匚右边朗数总比左边的数大.二、直捋比较法;h正数都犬于零,负数都小于零.正数大于一切负敷* 2.两个正数匕濒大小,购个负数比较大小,绝对值大的数反而小.因此,一2>—1错误.故选丄6. (2004年江苏淮安3分)据统计,今年1至4月份,全国入境旅游约3371.9万人次,将它保留两位有效数字的结果为【】A. 3.37 X 103 万人次B. 3.4 X 103 万人次C. 3.3 X 10 3 万人次D. 3.4 X 104万人次【答案】氏【若点】科学记数法,有效数字.【分析】根据科学记数法的定义,科学记数法的表示形式为沪1俨,其中l<a<10, 整数,表示时关键要正确确定a的值以及n怖值.在确定n的值时,看该数是丈于或等于1 还是小于L当该数大于或等于1时,n为它的整数位数减1,当该数小于1时,一H为它第字前0的个数(含小数点前的1个0)・3371.9 —共」位,从而33^1.9=1371 -有效数字的计算方法是’从左辺第一个不是。

专题一 实数(助考课件)——2023届中考数学一轮复习学考全掌握

专题一 实数(助考课件)——2023届中考数学一轮复习学考全掌握

2.( a )2 a(a 0)
3.
a2
a
a(a a(a
0) 0)
5. a a (a 0,b 0) bb
知识梳理
三、二次根式的运算法则
类别
法则
乘法
a b ab(a 0,b 0)
除法 加减法
a a (a 0,b 0) bb
①化简成最简二次根式 ②合并同类二次根式举例3 Nhomakorabea5 15
24 2 2 3
( C)
A. x 1
B. x 1
C. x 1且 x 0
D. x 1且x 0
【解析】 x 1 0, x 0,x 1且 x 0,故选 C.
典型例题 12.(2022.山东济宁)已知a 2 5 ,b 2 5 ,求代数式a2b ab2的值.
【解析】
a2b ab2 ab(a b)
A. 4 9 2 3
B. 4 9 2 3
C. 94 32
典型例题 D. 49 0.7
【解析】
4 9 13; 49 22 32 23;
94 92 2 92; 4.9 49 7 10 . 10 10
典型例题
11.(2022.黑龙江绥化)若式子 x 1 x2在实数范围内有意义,则 x 的取值范围是
A.103.57 103.6(精确到个位)
B.2.708 2.71(精确到十分位)
C.0.054 0.1(精确到 0.1)
D.0.0136 0.013(精确到 0.001)
【解析】
A.103.57 104;B.2.708 2.7;D.0.0136 0.014,只有选项 C 正确.故选 C.
b
知识梳理
三、实数的乘方
求n个相同因数的积的运算,叫做乘方,乘方的结果叫做幂a a a an

2022年全国中考数学真题分项汇编专题1:实数(含解析)

2022年全国中考数学真题分项汇编专题1:实数(含解析)

专题01 实数一.选择题1.(2022·湖南长沙)-6的相反数是()A. B. -6 C. D. 62.(2022·四川成都)的相反数是()A.B.C.D.3.(2022·安徽)下列为负数的是()A.B.C.0D.4.(2022·江西)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.B.C.D.5.(2022·江苏苏州)下列实数中,比3大的数是()A.5B.1C.0D.-26.(2022·山东泰安)计算的结果是()A.-3B.3C.-12D.127.(2022·湖南娄底)截至2022年6月2日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学计数法表示为()A.B.C.D.8.(2022·湖南娄底)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A.1335天B.516天C.435天D.54天9.(2022·湖南湘潭)如图,点、表示的实数互为相反数,则点表示的实数是()A.2B.-2C.D.10.(2022·云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃11.(2022·四川南充)下列计算结果为5的是()A.B.C.D.12.(2022·江苏宿迁)-2的绝对值是()A.2B.C.D.13.(2022·山东泰安)的倒数是()A.B.C.5D.14.(2022·天津)计算的结果等于()A.B.C.5D.115.(2022·湖南邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为,则的值是()A.0.11B.1.1C.11D.1100016.(2022·浙江杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.-8℃B.-4℃C.4℃D.8℃17.(2022·浙江杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.B.C.D.18.(2022·江苏连云港)-3的倒数是()A.3B.-3C.D.19.(2022·四川自贡)下列运算正确的是()A. B. C. D.20.(2022·浙江宁波)的相反数是()A.2022B.C.D.21.(2022·四川达州)下列四个数中,最小的数是()A.0B.-2C.1D.22.(2022·浙江舟山)估计的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间23.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.24.(2022·四川泸州)()A.B.C.D.225.(2022·四川凉山)化简:=()A.±2B.-2C.4D.226.(2022·浙江金华)在中,是无理数的是()A.B.C.D.227.(2022·湖南株洲)在0、、-1、这四个数中,最小的数是()A.0B.C.-1D.28.(2022·四川眉山)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为()A.B.C.D.29.(2022·四川泸州)与最接近的整数是()A.4B.5C.6D.7二.填空题30.(2022·江苏宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____.31.(2022·浙江杭州)计算:_________;_________.32.(2022·湖南株洲)计算:3+(﹣2)=_____.33.(2022·江苏扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.34.(2022·江苏宿迁)满足的最大整数是_______.35.(2022·陕西)实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)36.(2022·陕西)计算:______.37.(2022·江苏连云港)写出一个在1到3之间的无理数:_________.38.(2022·浙江宁波)写出一个大于2的无理数_____.39.(2022·重庆)计算:_________.40.(2022·四川南充)比较大小:_______________.(选填>,=,<)41.(2022·四川泸州)若,则________.42.(2022·湖南湘潭)四个数-1,0,,中,为无理数的是_________.三.解答题43.(2022·新疆)计算:44.(2022·四川泸州)计算:.45.(2022·浙江丽水)计算:.46.(2022·湖南邵阳)计算:.47.(2022·陕西)计算:.48.(2022·江苏宿迁)计算:4°.49.(2022·湖南株洲)计算:.50.(2022·四川眉山)计算:.51.(2022·江苏连云港)计算:.52.(2022·浙江金华)计算:.53.(2022·四川德阳)计算:.54.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.专题01 实数一.选择题1.(2022·湖南长沙)-6的相反数是()A. B. -6 C. D. 6【答案】D【分析】根据只有符号不同的两个数互为相反数进行解答即可得.【详解】解:相反数是6.故选D.【点睛】本题考查了相反数的定义,熟练掌握相反数的定义是解题的关键.2.(2022·四川成都)的相反数是()A.B.C.D.【答案】A【分析】直接根据相反数的求法求解即可.【详解】解:任意一个实数a的相反数为-a由 −的相反数是;故选A.【点睛】本题主要考查相反数,熟练掌握求一个数的相反数是解题的关键.3.(2022·安徽)下列为负数的是()A.B.C.0D.【答案】D【分析】根据正负数的意义分析即可;【详解】解:A、=2是正数,故该选项不符合题意;B、是正数,故该选项不符合题意;C、0不是负数,故该选项不符合题意;D、-5<0是负数,故该选项符合题意.故选D.【点睛】本题考查正负数的概念和意义,熟练掌握绝对值、算术平方根和正负数的意义是解决本题的关键.4.(2022·江西)实数a,b在数轴上的对应点的位置如图所示,则下列结论中,正确的是()A.B.C.D.【答案】C【分析】根据数轴上点的特点,进行判断即可.【详解】ABC.根据数轴上点a、b的位置可知,,,∴,故AB错误,C正确;根据数轴上点a、b的位置可知,,故D错误.故选:C.【点睛】本题主要考查了数轴上点的特点,熟练掌握数轴上点表示的数,越向右越大,是解题的关键.5.(2022·江苏苏州)下列实数中,比3大的数是()A.5B.1C.0D.-2【答案】A【分析】根据有理数的大小比较法则比较即可.【详解】解:因为-2<0<1<3<5,所以比3大的数是5,故选:A.【点睛】本题考查了有理数的大小比较法则,能熟记有理数的大小比较法则的内容是解此题的关键.6.(2022·山东泰安)计算的结果是()A.-3B.3C.-12D.12【答案】B【分析】直接计算即可得到答案.【详解】==3故选:B.【点睛】本题考查有理数的乘法,解题的关键是熟练掌握有理数乘法的知识.7.(2022·湖南娄底)截至2022年6月2日,世界第四大水电站——云南昭通溪洛渡水电站累计生产清洁电能突破5000亿千瓦时,相当于替代标准煤约1.52亿吨,减排二氧化碳约4.16亿.5000亿用科学计数法表示为()A.B.C.D.【答案】B【分析】用科学记数法表示较大的数时,一般形式为,其中,为整数,先将5000亿转化成数字,然后按要求表示即可.【详解】解:5000亿,根据科学记数法要求500000000000的5后面有11个0,从而用科学记数法表示为,故选:B.【点睛】本题考查科学记数法,按照定义,确定与的值是解决问题的关键.8.(2022·湖南娄底)在古代,人们通过在绳子上打结来计数.即“结绳计数”.当时有位父亲为了准确记录孩子的出生天数,在粗细不同的绳子上打结(如图),由细到粗(右细左粗),满七进一,那么孩子已经出生了()A.1335天B.516天C.435天D.54天【答案】B【分析】根据题意以及图形分析,根据满七进一,即可求解.【详解】解:绳结表示的数为故选B 【点睛】本题考查了有理数的混合运算,理解“满七进一”是解题的关键.9.(2022·湖南湘潭)如图,点、表示的实数互为相反数,则点表示的实数是()A.2B.-2C.D.【答案】A【分析】根据互为相反数的两个数的和为0即可求解.【详解】解:因为数轴上两点A,B表示的数互为相反数,点A表示的数是-2,所以点B表示的数是2,故选:A.【点睛】此题考查了相反数的性质,数轴上两点间的距离,解题的关键是利用数形结合思想解答.10.(2022·云南)中国是最早采用正负数表示相反意义的量,并进行负数运算的国家.若零上10℃记作+10℃,则零下10℃可记作()A.10℃B.0℃C.-10 ℃D.-20℃【答案】C【分析】零上温度记为正,则零下温度就记为负,则可得出结论.【详解】解:若零上记作,则零下可记作:.故选:C.【点睛】此题主要考查正负数的意义,正数与负数表示意义相反的两种量,看清规定哪一个为正,则和它意义相反的就为负.11.(2022·四川南充)下列计算结果为5的是()A.B.C.D.【答案】C【分析】根据去括号法则及绝对值化简依次计算判断即可.【详解】解:A、-(+5)=-5,不符合题意;B、+(-5)=-5,不符合题意;C、-(-5)=5,符合题意;D、,不符合题意;故选:C.【点睛】题目主要考查去括号法则及化简绝对值,熟练掌握去括号法则是解题关键.12.(2022·江苏宿迁)-2的绝对值是()A.2B.C.D.【答案】A【分析】根据数轴上某个数与原点的距离叫做这个数的绝对值的定义进行求解即可.【详解】在数轴上,点-2到原点的距离是2,所以-2的绝对值是2,故选:A.13.(2022·山东泰安)的倒数是()A.B.C.5D.【答案】A【详解】根据两个数乘积是1的数互为倒数的定义,因此求一个数的倒数即用1除以这个数.所以结合绝对值的意义,得的倒数为.故选A.14.(2022·天津)计算的结果等于()A.B.C.5D.1【答案】A【分析】直接计算得到答案.【详解】==故选:A.【点睛】本题考查有理数的运算,解题的关键是熟练掌握有理数的运算知识.15.(2022·湖南邵阳)5月29日腾讯新闻报道,2022年第一季度,湖南全省地区生产总值约为11000亿元,11000亿用科学记数法可表示为,则的值是()A.0.11B.1.1C.11D.11000【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,整数位数减1即可.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:因为1亿=108,所以11000亿用科学记数法表示为1.1×104×108=1.1×1012.故选:B.【点睛】此题考查了科学记数法表示绝对值大于1的数.解题的关键是关键知道1亿=108,要正确确定a的值以及n的值.16.(2022·浙江杭州)圆圆想了解某地某天的天气情况,在某气象网站查询到该地这天的最低气温为-6℃,最高气温为2℃,则该地这天的温差(最高气温与最低气温的差)为()A.-8℃B.-4℃C.4℃D.8℃【答案】D【分析】这天的温差就是最高气温减去最低气温的差,由此列式得出答案即可.【详解】解:这天最高温度与最低温度的温差为2-(-6)=8.故选:D.【点睛】本题主要考查有理数的减法法则,关键是根据减去一个数等于加上这个数的相反数解答.17.(2022·浙江杭州)国家统计局网站公布我国2021年年末总人口约1412600000人,数据1412600000用科学记数法可以表示为()A.B.C.D.【答案】B【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正整数,当原数绝对值<1时,n是负整数.【详解】解:1412600000=.故选:B.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.18.(2022·江苏连云港)-3的倒数是()A.3B.-3C.D.【答案】D【分析】根据倒数的定义,即可计算出结果.【详解】解:-3的倒数是;故选:D【点睛】本题考查了倒数的定义:乘积是1的两数互为倒数.19.(2022·四川自贡)下列运算正确的是()A. B. C. D.【答案】B【分析】根据乘方运算,平方差公式,同底数幂的除法法则,零指数幂的运算法则进行运算即可.【详解】A.,故A错误;B.,故B正确;C.,故C错误;D.,故D错误.故选:B.【点睛】本题主要考查了整式的运算和实数的运算,熟练掌握平方差公式,同底数幂的除法法则,零指数幂的运算法则,是解题的关键.20.(2022·浙江宁波)的相反数是()A.2022B.C.D.【答案】A【分析】根据相反数的意义即只有符号不同的两个数互为相反数,即可解答.【详解】解:﹣2022的相反数是2022,故选:A.【点睛】本题考查了相反数,熟练掌握相反数的意义是解题的关键.21.(2022·四川达州)下列四个数中,最小的数是()A.0B.-2C.1D.【答案】B【分析】根据实数的大小比较即可求解.【详解】解:∵,∴最小的数是,故选B.【点睛】本题考查了实数的大小比较,掌握实数的大小比较是解题的关键.22.(2022·浙江舟山)估计的值在()A.4和5之间B.3和4之间C.2和3之间D.1和2之间【答案】C【分析】根据无理数的估算方法估算即可.【详解】∵∴故选:C.【点睛】本题主要考查了无理数的估算能力,要求掌握无理数的基本估算技能,灵活应用.“夹逼法”是估算的一般方法,也是常用方法.23.(2022·山东滨州)下列计算结果,正确的是()A.B.C.D.【答案】C【分析】据幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值逐一进行计算即可.【详解】解:A、,该选项错误;B、,该选项错误;C、,该选项正确;D、,该选项错误;故选:C.【点睛】本题考查了幂的乘方、算术平方根的计算、立方根的化简和特殊角的三角函数值,熟练掌握运算法则是解题的关键.24.(2022·四川泸州)()A.B.C.D.2【答案】A【分析】根据算术平方根的定义可求.【详解】解:-2,故选A.【点睛】本题考查了算术平方根的定义,要注意正确区分平方根与算术平方根,解题的关键是掌握算术平方根的定义.25.(2022·四川凉山)化简:=()A.±2B.-2C.4D.2【答案】D【分析】先计算(-2)2=4,再求算术平方根即可.【详解】解:,故选:D.【点睛】本题考查算术平方根,熟练掌握算术平方根的定义是解题的关键.26.(2022·浙江金华)在中,是无理数的是()A.B.C.D.2【答案】C【分析】根据无理数的定义判断即可;【详解】解:∵-2,,2是有理数,是无理数,故选: C.【点睛】本题考查了无理数的定义:无限不循环小数叫做无理数,如开方开不尽的数的方根、π.27.(2022·湖南株洲)在0、、-1、这四个数中,最小的数是()A.0B.C.-1D.【答案】C【分析】正实数都大于0,负实数都小于0,正实数大于一切负实数,两个负实数绝对值大的反而小,据此判断即可.【详解】解:根据实数比较大小的方法,可得:,∴在0、、-1、这四个数中,最小的数是-1.故选C.【点睛】此题主要考查了实数大小比较的方法.解答此题的关键是要明确:正实数>0>负实数,两个负实数绝对值大的反而小.28.(2022·四川眉山)截至2021年12月31日,全国共有共青团组织约367.7万个.将367.7万用科学记数法表示为()A.B.C.D.【答案】C【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值≥10时,n是正数;当原数的绝对值<1时,n是负数.【详解】解:367.7万=3677000=;选:C【点睛】此题考查了科学记数法.解题的关键是掌握科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.29.(2022·四川泸州)与最接近的整数是()A.4B.5C.6D.7【答案】C【分析】估算无理数的大小即可得出答案.【详解】解:∵12.25<15<16,∴3.5<<4,∴5.5<2+<6,∴最接近的整数是6,故选:C.【点睛】本题考查了估算无理数的大小,无理数的估算常用夹逼法,用有理数夹逼无理数是解题的关键.二.填空题30.(2022·江苏宿迁)2022年5月,国家林业和草原局湿地管理司在第二季度侧行发布会上表示,到“十四五”末,我国力争将湿地保护率提高到55%,其中修复红树林146200亩,请将146200用科学记数法表示是____.【答案】【分析】科学记数法就是把绝对值大于1的数表示成的形式,其中n就等于原数的位数减1.【详解】解:.故答案为:.【点睛】本题主要考查了科学记数法,牢记科学记数法的定义并准确求出中的n是做出本题的关键.31.(2022·浙江杭州)计算:_________;_________.【答案】 2 4【分析】根据算术平方根的性质,乘方的运算法则,即可求解.【详解】解:;.故答案为:2,4【点睛】本题主要考查了求一个数的算术平方根,乘方运算,熟练掌握算术平方根的性质,乘方的运算法则是解题的关键.32.(2022·湖南株洲)计算:3+(﹣2)=_____.【答案】1【分析】根据有理数的加法法则计算即可.【详解】3+(﹣2)=+(3﹣2)=1,故答案为1【点睛】本题主要考查了有理数的加法,熟练掌握法则是解答本题的关键.33.(2022·江苏扬州)扬州市某天的最高气温是6℃,最低气温是-2℃,那么当天的日温差是__.【答案】8℃.【详解】用最高温度减去最低温度即可得当天的日温差:6-(-2)=6+2=8℃.34.(2022·江苏宿迁)满足的最大整数是_______.【答案】3【分析】先判断从而可得答案.【详解】解:满足的最大整数是3.故答案为:3.【点睛】本题考查的是无理数的估算,掌握“无理数的估算方法”是解本题的关键.35.(2022·陕西)实数a,b在数轴上对应点的位置如图所示,则a______.(填“>”“=”或“<”)【答案】<【分析】根据在数轴上右边的数据大于左边的数据即可得出答案.【详解】解:如图所示:-4<b<-3,1<a<2,∴,∴.故答案为:<.【点睛】此题主要考查了实数与数轴,正确掌握数轴上数据大小关系是解题关键.36.(2022·陕西)计算:______.【答案】【分析】先计算,再计算3-5即可得到答案.【详解】解:.故答案为:-2.【点睛】本题主要考查了实数的运算,化简是解答本题的关键.37.(2022·江苏连云港)写出一个在1到3之间的无理数:_________.【答案】(答案不唯一)【分析】由于12=1,32=9,所以只需写出被开方数在1和9之间的,且不是完全平方数的数即可求解.【详解】解:1和3之间的无理数如.故答案为:(答案不唯一).【点睛】本题主要考查常见无理数的定义和性质,解题关键是估算无理数的整数部分和小数部分.38.(2022·浙江宁波)写出一个大于2的无理数_____.【答案】如(答案不唯一)【分析】首先2可以写成,由于开方开不尽的数是无理数,由此即可求解.【详解】解:∵2=,∴大于2的无理数须使被开方数大于4即可,如(答案不唯一).【点睛】本题考查无理数定义及比较大小.熟练掌握无理数的定义是解题的关键.39.(2022·重庆)计算:_________.【答案】5【分析】根据绝对值和零指数幂进行计算即可.【详解】解:,故答案为:5.【点睛】本题考查了绝对值和零指数幂的计算,熟练掌握定义是解题的关键.40.(2022·四川南充)比较大小:_______________.(选填>,=,<)【答案】<【分析】先计算,,然后比较大小即可.【详解】解:,,∵,∴,故答案为:<.【点睛】本题主要考查有理数的大小比较,负整数指数幂的运算,零次幂的运算,熟练掌握运算法则是解题关键.41.(2022·四川泸州)若,则________.【答案】【分析】由可得,,进而可求出和的值.【详解】∵,∴,,∴=2,,∴.故答案为-6.【点睛】本题考查了非负数的性质,①非负数有最小值是零;②有限个非负数之和仍然是非负数;③有限个非负数的和为零,那么每一个加数也必为零.,初中范围内的非负数有:绝对值,算术平方根和偶次方.42.(2022·湖南湘潭)四个数-1,0,,中,为无理数的是_________.【答案】【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.【详解】解:-1,0,是有理数;是无理数;故答案为:.【点睛】此题考查了无理数的识别,无限不循环小数叫无理数,解题的关键是知道初中范围内常见的无理数有三类:①π类,如2π,π3等;②开方开不尽的数,如等;③虽有规律但却是无限不循环的小数,如0.1010010001…(两个1之间依次增加1个0),0.2121121112…(两个2之间依次增加1个1)等.三.解答题43.(2022·新疆)计算:【答案】【分析】分别计算有理数的乘方、绝对值、二次根式及零指数幂,再进行加减即可.【详解】解:原式.【点睛】本题考查有理数的乘方,绝对值和二次根式的化简及零指数幂的性质,属于基础题,正确运算是解题的关键.要熟练掌握:任何一个不等于零的数的零次幂都等于1,.44.(2022·四川泸州)计算:.【答案】2【分析】根据零指数幂、负整数指数幂、特殊角三角函数、绝对值的性质化简即可.【详解】原式==2.【点睛】本题考查了实数的运算,熟练掌握运算法则是解题的关键.45.(2022·浙江丽水)计算:.【答案】【分析】根据求一个数的算术平方根、零指数和负整数指数幂的运算法则进行运算,即可求得.【详解】解:.【点睛】本题考查了求一个数的算术平方根、零指数和负整数指数幂的运算法则,熟练掌握和运用各运算法则是解决本题的关键.46.(2022·湖南邵阳)计算:.【答案】5-【分析】先计算零指数幂、负指数幂、锐角三角函数值,再计算二次根式的乘法和加减法.【详解】解:=1+4-2×=5-.【点睛】此题考查了零指数幂、负指数幂、锐角三角函数值,解题的关键是熟练掌握零指数幂、负指数幂、锐角三角函数值的计算法则.47.(2022·陕西)计算:.【答案】【分析】先算绝对值、算术平方根,零指数幂,再算乘法和加减法,即可求解.【详解】解:【点睛】本题主要考查实数的混合运算,掌握零指数幂和运算法则是解题的关键.48.(2022·江苏宿迁)计算:4°.【答案】2【分析】先计算负整数指数幂,二次根式的化简,特殊角的三角函数值,再计算乘法,再合并即可.【详解】解:【点睛】本题考查的是特殊角的三角函数值的运算,负整数指数幂的含义,二次根式的化简,掌握“运算基础运算”是解本题的关键.49.(2022·湖南株洲)计算:.【答案】3【分析】分别计算负数的偶次幂、二次根式、特殊角的正弦值,再进行加减即可.【详解】解:.【点睛】本题考查负数的偶次幂、二次根式化简以及特殊角的三角函数值,属于基础题,正确计算是解题的关键.50.(2022·四川眉山)计算:.【答案】7【分析】利用零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则计算即可.【详解】解:原式【点睛】本题考查零指数幂的运算法则,绝对值的意义,二次根式的化简及负整数指数幂的运算法则,熟练掌握实数的运算法则是解答此类问题的关键.51.(2022·江苏连云港)计算:.【答案】2【分析】根据有理数的乘法,二次根式的性质,零指数的计算法则求解即可.【详解】解:原式.【点睛】本题主要考查了有理数的乘法,二次根式的性质,零指数,熟知相关计算法则是解题的关键.52.(2022·浙江金华)计算:.【答案】4【分析】根据零指数幂,正切三角函数值,绝对值的化简,算术平方根的定义计算求值即可;【详解】解:原式;【点睛】本题考查了实数的混合运算,掌握特殊角的三角函数值是解题关键.53.(2022·四川德阳)计算:.【答案】【分析】根据二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则分别化简后再进行实数的加减法运算.【详解】解:.【点睛】此题考查实数的运算法则,正确掌握二次根式的化简,零指数幂的定义,特殊角的三角函数值,绝对值的性质以及负整数指数幂的运算法则是解题的关键.54.(2022·浙江杭州)计算:.圆圆在做作业时,发现题中有一个数字被墨水污染了.(1)如果被污染的数字是,请计算.(2)如果计算结果等于6,求被污染的数字.【答案】(1)-9(2)3【分析】(1)根据有理数混合运算法则计算即可;(2)设被污染的数字为x,由题意,得,解方程即可;(1)解:;(2)设被污染的数字为x,由题意,得,解得,所以被污染的数字是3.【点睛】本题主要考查有理数的混合运算、一元一次方程的应用,掌握相关运算法则和步骤是接替的关键.。

专题01 实数(第一篇)-2019年中考数学母题题源系列(原卷版)

专题01 实数(第一篇)-2019年中考数学母题题源系列(原卷版)

【母题来源一】【2019•河北】规定:(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作A.+3 B.-3 C.-13D.+13【答案】B【解析】“正”和“负”相对,所以,如果(→2)表示向右移动2记作+2,则(←3)表示向左移动3记作-3.故选B.【名师点睛】此题考查了正数和负数,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量.【母题来源二】【2019•吉林】如图,数轴上蝴蝶所在点表示的数可能为A.3 B.2 C.1 D.-1【答案】D【解析】数轴上蝴蝶所在点表示的数可能为-1,故选D.【名师点睛】本题考查了数轴、根据数轴-1是解题关键.【母题来源三】【2019•安顺】2019的相反数是A.-2019 B.2019 C.-D.【答案】A【解析】2019的相反数是-2019,故选A.【名师点睛】主要考查相反数的概念及性质.相反数的定义:只有符号不同的两个数互为相反数,0的相反数是0.【母题来源四】【2019•河南】-12的绝对值是专题01 实数A.-12B.12C.2 D.-2【答案】B【解析】|-12|=12,故选B.【名师点睛】本题考查的是绝对值的性质,掌握一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0是解题的关键.【母题来源五】【2019•桂林】23的倒数是A.32B.-32C.-23D.23【答案】A【解析】23的倒数是:32.故选A.【名师点睛】此题主要考查了倒数,正确把握定义是解题关键.【母题来源六】【2019•安徽】在-2,-1,0,1这四个数中,最小的数是A.-2 B.-1 C.0 D.1【答案】A【解析】根据有理数比较大小的方法,可得-2<-1<0<1,∴在-2,-1,0,1这四个数中,最小的数是-2.故选A.【名师点睛】此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【命题意图】这类试题主要考查有理数的有关知识,包括正数和负数、数轴、相反数、绝对值、倒数、有理数的比较大小等.【方法总结】1.正数和负数的表示方法一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的.正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如5、7、50、+14200等;负的量用小学学过的数前面放上“–”(读作负)号来表示,如–3、–8、–47、–4745等.2.相反数(1)注意:①相反数是成对出现的;②相反数只有符号不同,若一个为正,则另一个为负;③0的相反数是它本身;相反数为本身的数是0.(2)多重符号的化简方法:①在一个数前面添加一个“+”,所得的数与原数相等;②在一个数前面添加一个“–”,所得的数是原数的相反数;③对于有三个或三个以上符号的数的化简,首先要注意,一个数前面不管有多少个“+”,都可以把“+”去掉,其次要看“–”的个数,当“–”的个数为偶数时,结果取“+”,当“–”的个数为奇数时,结果取“–”. 3.绝对值 即:(0)(0)(0)a a a a a a >⎧⎪==⎨⎪-<⎩或 (0)(0)aa a a a ≥⎧=⎨-<⎩.【母题来源七】【2019•天津】计算(-3)×9的结果等于 A .-27B .-6C .27D .6【答案】A【解析】(-3)×9=-27,故选A . 【名师点睛】本题考查有理数的乘法;熟练掌握正数与负数的乘法法则是解题的关键.【母题来源八】【2019•贵港】计算(-1)3的结果是A .-1B .1C .-3D .3【答案】A【解析】(-1)3表示3个(-1)的乘积,所以(-1)3=-1.故选A .【名师点睛】乘方是乘法的特例,乘方的运算可以利用乘法的运算来进行.负数的奇数次幂是负数,负数的偶数次幂是正数;-1的奇数次幂是-1,-1的偶数次幂是1.【母题来源九】【2019•北京】4月24日是中国航天日,1970年的这一天,我国自行设计、制造的第一颗人造地球卫星“东方红一号”成功发射,标志着中国从此进入了太空时代,它的运行轨道,距地球最近点439000米,将439000用科学记数法表示应为 A .0.439×106B .4.39×106C .4.39×105D .439×103【答案】C【解析】将439000用科学记数法表示为4.39×105.故选C.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十】【2019•安徽】2019年“五一”假日期间,我省银联网络交易总金额接近161亿元,其中161亿用科学记数法表示为A.1.61×109B.1.61×1010C.1.61×1011D.1.61×1012【答案】B【解析】根据题意161亿用科学记数法表示为1.61×1010.故选B.【名师点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.【母题来源十一】【2019•河南】成人每天维生素D的摄入量约为0.0000046克.数据“0.0000046”用科学记数法表示为A.46×10-7B.4.6×10-7C.4.6×10-6D.0.46×10-5【答案】C【解析】0.0000046=4.6×10-6.故选C.【名师点睛】本题用科学记数法的知识点,关键是很小的数用科学记数法表示时负指数与0的个数的关系要掌握好.【母题来源十二】【2019•聊城】计算:115()324--÷=__________.【答案】2 3 -【解析】原式=542()653-⨯=-,故答案为:23-.【名师点睛】本题主要考查有理数的混合运算,解题的关键是掌握有理数混合运算顺序.【命题意图】这类试题主要考查有理数的运算,包括有理数的加减法、乘除法、乘方、混合运算、科学记数法等.【方法总结】1.有理数的加法有理数加法法则:①同号两数相加,取相同符号,并把绝对值相加;②绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值;③互为相反数的两个数相加得0.2.有理数的减法对于有理数的减法运算,应先转化为加法,再根据有理数加法法则计算,即加法与减法是互逆运算.3.有理数的乘法两个数相乘,同号得正,异号得负,并把绝对值相乘;任何数与0相乘,都得0.4.有理数的除法(1)有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数.即a b÷=1ab⨯(b≠0);(2)在进行除法运算时,若能整除,则根据“两数相除,同号得正,异号得负,并把绝对值相除”进行计算;若不能整除,则根据“除以一个不等于0的数,等于乘以这个数的倒数”进行计算;5.有理数的混合运算有理数的乘除混合运算往往先将除法化为乘法,然后确定积的符号,最后求出结果.6.有理数的乘方(1)负数的奇次幂是负数,负数的偶次幂是正数;(2)正数的任何次幂都是正数,0的任何正整数次幂都是0.7.科学记数法科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.当原数绝对值大于10时,写成a×10n 的形式,其中1≤|a|<10,n等于原数的整数位数减1;当原数绝对值小于1时,写成a×10−n的形式,其中1≤|a|<10,n等于原数左边第一个非零的数字前的所有零的个数(包括小数点前面的零).【母题来源十三】【2019•攀枝花】用四舍五入法将130542精确到千位,正确的是A.131000 B.0.131×106C.1.31×105D.13.1×104【答案】C【解析】130542精确到千位是1.31×105.故选C.【名师点睛】本题考查了近似数和有效数字:从一个数的左边第一个不是0的数字起到末位数字止,所有的数字都是这个数的有效数字.近似数与精确数的接近程度,可以用精确度表示.一般有,精确到哪一位,保留几个有效数字等说法.【母题来源十四】【2019•广东】的结果是A.-4 B.4 C.±4 D.2【答案】B2416.故选B.【名师点睛】此题主要考查了算术平方根的性质和应用,要熟练掌握,解答此题的关键是要明确:①被开方数a是非负数;②算术平方根a本身是非负数.求一个非负数的算术平方根与求一个数的平方互为逆运算,在求一个非负数的算术平方根时,可以借助乘方运算来寻找.【母题来源十五】【2019•烟台】-8的立方根是A.2 B.-2 C.±2 D.-22【答案】B【解析】∵-2的立方等于-8,∴-8的立方根等于-2.故选B.【名师点睛】本题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.【母题来源十六】【2019•邵阳】下列各数中,属于无理数的是A.13B.1.414 C2D4【答案】C4=22是无理数,故选C.【名师点睛】本题考查无理数;能够化简二次根式,理解无理数的定义是解题的关键.【母题来源十七】【2019•聊城】2的相反数是A.-22B.22C.2D2【答案】D【解析】,故选D.【名师点睛】本题考查了实数的性质,解决本题的关键是熟记实数的性质.【母题来源十八】【2019•广东】实数a、b在数轴上的对应点的位置如图所示,下列式子成立的是A.a>b B.|a|<|b| C.a+b>0 D.ab<0【答案】D【解析】由图可得:-2<a<-1,0<b<1,∴a<b,故A错误;|a|>|b|,故B错误;a+b<0,故C错误;ab<0,故D正确,故选D.【名师点睛】本题主要考查了实数与数轴,解题的关键是利用数轴确定a,b的取值范围.利用数轴可以比较任意两个实数的大小,即在数轴上表示的两个实数,右边的总比左边的大,在原点左侧,绝对值大的反而小.【母题来源十九】【2019•扬州】下列各数中,小于-2的数是A.5B.3C.2D.-1【答案】A【解析】比-2小的数是应该是负数,且绝对值大于2的数,分析选项可得,5-2<3<2-1,只有A符合.故选A.【名师点睛】本题考查的是有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.【母题来源二十】【2019•天津】33的值在A.2和3之间B.3和4之间C.4和5之间D.5和6之间【答案】D【解析】∵25<33<3625333633.故选D.【名师点睛】本题考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.【母题来源二十一】【2019•无锡】49的平方根为__________.【答案】2 3±【解析】49的平方根为23=±.故答案为:23±.【名师点睛】本题考查了平方根的知识,注意一个正数有两个平方根,它们互为相反数.【母题来源二十二】【2019•河南】12-=__________. 【答案】32142-=2-12=32.故答案为:32. 【名师点睛】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是熟练掌握负整数指数幂、二次根式等考点的运算.【母题来源二十三】【2019•北京】计算:|3-(4-π)0+2sin60°+(14)-1. 【解析】原式31+2×323-3+4=3+23 【名师点睛】此题主要考查了实数运算,正确化简各数是解题关键.【命题意图】这类试题主要考查实数的有关知识,包括平方根、立方根、无理数、实数的比较大小、无理数的估算、实数的运算等. 【方法总结】 1.精确度与近似数近似数与准确数的接近程度通常用精确度来表示,近似数一般由四舍五入取得,四舍五入到哪一位,就说这个近似数精确到哪一位. 2.平方根22()(0)(0)()000a a a a a a a a a ⎧⎪⎪⎪=≥⎨≥⎧==⎨-<⎩只有非负数才有平方根,的平方根和算术平方根都义是意 3.立方根3意义a a==⎪⎩4.实数大小的比较实数大小的比较可以利用数轴上的点,右边的数总比左边的数大;以及绝对值比较法等比较实数大小的方法.除此之外,常用的方法有“差值比较法”适用于比较任何两数的大小;“商值比较法”只适用于比较两个正数的大小;“平方法”、“倒数法”常用于比较二次根式的大小;“底数比较法”、“指数比较法”常用于比较幂的大小. 5.实数的运算法则(1)实数的混合运算中,在同一个式子里,先乘方、开方,然后乘、除,最后加、减.有括号时,先算括号里面.(2)熟记特殊角的三角函数值,熟练掌握负整数指数幂、零指数幂、二次根式、绝对值等的运算.注意运算顺序,分清先算什么,再算什么.1.【河北省张家口市桥西区2019届九年级中考6月模拟】中国人最早使用负数,下列各数中是负数的是 A .|1|--B .(1)--C .0()-πD .2(1)-2.【2019年浙江省宁波市北仑区中考数学模拟】2的相反数是 A .12B .-12 C .±12D .-23.【河南省新乡市2019届九年级第二次全真模拟】-2的绝对值是 A .-2B .12-C .12D .24.【福建省福州市2019年初中毕业班适应性数学试卷】已知A 、B 、C 三点在数轴上从左向右排列,且AC =3AB =6,若B 为原点,则点C 所表示的数是 A .-6B .2C .4D .65.【2019年湖北省孝感市孝南区中考数学二模】给出-2,-1,0,13这四个数,其中最小的是 A .13B .0C .-2D .-1【名师点睛】本题考查了有理数大小的比较法则,其关键是负数的绝对值越大,其本身越小. 6.【2019年福建省南平市六校联考中考数学模拟】计算-6+4的结果为 A .10B .-10C .2D .-27.【广东省东莞市2019届九年级中考数学二模】13-的倒数 A .13B .3C .-3D .30.⋅-8.【2019年河南省第二届名校联盟中考数学5月份模拟】2018年8月31日,中国最新一代芯片--麒麟980来了,它的诞生打破了欧美对芯片行业的垄断,该芯片堪称世界最强“心”,在比指甲盖稍大一点的芯片里安装了69亿颗晶体管,数据”69亿“用科学记数法表示为 A .6.9×109B .6.9×108C .69×108D .6.9×10109.【2019年广西贵港市中考数学三模】6.8×105这个数的原数是 A .68000B .680000C .0.000086D .-68000010.【河北省石家庄市新华区2019届九年级毕业生教学质量检测】近似数1.23×103精确到A .百分位B .十分位C .个位D .十位11.【浙江省杭州市下城区2019届九年级二模】16的平方根为A .±4B .±2C .+4D .212.【2019年广东省广州市南沙区中考数学一模】8的立方根等于A .-2B .2C .-4D .413.【2019年重庆市江北新区联盟中考数学一模】下列四个数中是无理数的是A .3B .3πC .3.14159D 914.【2019年河南省第二届名校联盟中考数学5月份模拟】下面四个实数中最大的是A 5B .0C .-2D .115.【天津市河西区201957的值在A .5和6之间B .6和7之间C .7和8之间D .8和9之间16.【湖北省武汉市部分学校20199__________. 17.【福建省厦门市双十中学2019届九年级3月月考】计算:|-3|+11()2=__________. 18.【2019年广东省深圳市罗湖区中考数学二模】计算:(12)-2-4cos30°+(-2)012.。

2022年全国中考数学真题分类汇编专题1:实数(附答案解析)

2022年全国中考数学真题分类汇编专题1:实数(附答案解析)

A.c>d
B.|c|>|d|
C.﹣c<d
D.c+d<0
【解答】解:由题意得:
c<0,d>0 且|c|<|d|,
A、c<d,故 A 不符合题意;
B、|c|<|d|,故 B 不符合题意;
C、﹣c<d,故 C 符合题意;
D、c+d>0,故 D 不符合题意;
故选:C.
8.实数 a,b 在数轴上对应点的位置如图所示,则 a,b 的大小关系为( )
故选 C.
11.如图,数轴上的两点 A、B 对应的实数分别是 a、b,则下列式子中成立的是( )
第 6 页 共 13 页
A.1﹣2a>1﹣2b B.﹣a<﹣b
C.a+b<0
D.|a|﹣|b|>0
【解答】解:由题意得:a<b,
∴﹣2a>﹣2b,
∴1﹣2a>1﹣2b,
∴A 选项的结论成立;
∵a<b,
∴﹣a>﹣b,
30.计算:| |

【解答】解:| |
=1 .
第 10 页 共 13 页
31.计算:(﹣1)2022﹣2cos30°+|1 |+( )﹣1. 【解答】解:(﹣1)2022﹣2cos30°+|1 |+( )﹣1
=1﹣2
1+3
=1
1+3
=3.
32.计算: 【解答】解:
|﹣2|+( 1)0﹣tan45°. |﹣2|+( 1)0﹣tan45°
11.如图,数轴上的两点 A、B 对应的实数分别是 a、b,则下列式子中成立的是( )
A.1﹣2a>1﹣2b B.﹣a<﹣b
C.a+b<0
二.填空题(共 10 小题)

浙江省温州市2001-2012年中考数学试题分类解析 专题1 实数

浙江省温州市2001-2012年中考数学试题分类解析 专题1 实数

2001-2012年浙江温州中考数学试题分类解析汇编(12专题)专题1:实数一、选择题1. (2001年浙江温州3 】A . C .2 D .2【答案】A 。

【考点】相反数。

【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数还是0的相反数是A 。

2.(2001年浙江温州3分)用科学记数法表示数0.031,其结果是【 】 A .3.1×102B .3.1×10-2C .0.31×10-1D .31×103【答案】B 。

【考点】科学记数法。

【分析】根据科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值。

在确定n 的值时,看该数是大于或等于1还是小于1。

当该数大于或等于1时,n 为它的整数位数减1;当该数小于1时,-n 为它第一个有效数字前0的个数(含小数点前的1个0)。

0.031第一个有效数字前有2个0(含小数点前的1个0),从而20.031 3.110=⨯-。

故选B 。

3. (2001年浙江温州3分)已知线段a ,b ,c ,其中c 是a 和b 的比例中项,a=4,b=9,则c 等于【 】 A .4 B .6 C .9 D .36 【答案】B 。

【考点】比例线段。

【分析】根据比例中项的概念,当两个比例内项相同时,就叫比例中项,再列出比例式即可得出c :根据比例中项的概念,得c 2=ab=36,c=±6。

又线段不能是负数,-6应舍去,取c=6。

故选B 。

4. (2002年浙江温州4分)计算(+2)+(-3)其结果是【 】 A .+1 B .-1 C .+6 D ,-6 【答案】B 。

【考点】有理数的加法。

【分析】根据有理数的加法法则绝对值不等的异号加减,取绝对值较大的加数符号,并用较大的绝对值减去较小的绝对值来计算:(+2)+(-3)=-1。

2024年中考数学总复习专题01实数命题1实数的有关概念

2024年中考数学总复习专题01实数命题1实数的有关概念

中考·数学
答案:C 解析:由数轴可知,点 C 离原点最近,所以 在|a|,|b|,|c|,|d|中,值最小的是|c|.故选 C.
第6页
返回目录
C
中考命题1 实数的有关概念
中考·数学
答案:C 解析:x≤2 在数轴上表示为:
第7页
返回目录
中考命题1 实数的有关概念
中考·数学
B 6.[2023 聊城,1,3 分](-2__023)0 的值为( )
又∵|x-4|=2,∴x1=6,x2=2,
第18页
返回目录
中考命题1 实数的有关概念
中考·数学
∵a 为方程|x-4|=2 的解且 a,b,c 为△ABC 的三边 长, ∴a=2, ∴△ABC 是等腰三角形.
第19页
返回目录
第11页
返回目录
中考命题1 实数的有关概念
B 将 140 000 000 用科学记数法表示应为( )
A.14×107
B.1.4×108
C.0.14×109
D.1.4×109
中考·数学
答案:B 解析:140 000 000=1.4×108.故选 B.
第12页
返回目录
中考命题1 实数的有关概念
中考·数学
答案:-5 解析:∵“正”和“负”相对,∴进货 10 件 记作+10,那么出货 5 件应记作-5.故答案为-5.
第15页
返回目录
பைடு நூலகம்
中考命题1 实数的有关概念
中考·数学
11.[2021 江西,2,3 分]国务院第七次全国人口普查领 导小组办公室 5 月 11 日公布人口普查结果,其中江西人 口数约为 45 100 000 人,将 45 100 000 用科学记数法表 示为__4._5_1_×___1.07

中考数学常考易错专题 1-1《实数》

中考数学常考易错专题 1-1《实数》

实数易错清单1.用科学记数法表示较大或较小的数时指数n的确定.【例1】(2014·湖北随州)2013年,我市以保障和改善民生为重点的“十件实事”全面完成,财政保障民生支出达74亿元,占公共财政预算支出的75%,数据74亿元用科学记数法表示为().A. 74×108元B. 7.4×108元C. 7.4×109元D. 0.74×1010元【解析】①本题考查了科学记数法的相关知识.一些较大的数,可以用a×10n的形式来表示,其中1≤a<10,n是所表示的数的整数位数减1.②a×10n中n所表示的数容易搞错.74亿元=7.4×109元.【答案】 C2.实数的运算,要先弄清楚按怎样的顺序进行,要注意负指数幂、零次幂和三角函数等在算式中的出现.【解析】本题考查实数的运算法则、方法、技巧.运算时要认真审题,确定符号,明确运算顺序.本题易错点有三处:①不能正确理解算术平方根、负指数幂、绝对值的意义;②不能正确确定符号;③把三角函数值记错.3.实数计算中整体思想的运用.【例3】(2014.甘肃兰州)为了求1+2+22+23+...+2100的值,可令S=1+2+22+23+ (2100)则2S=2+22+23+24+…+2101,因此2S-S=2101-1,所以S=2101-1,即1+2+22+23+…+2100=2101-1,仿照以上推理计算1+3+32+33+…+32014的值是.【解析】根据等式的性质,可得和的3倍,根据两式相减,可得和的2倍,根据等式的性质,可得答案.设M=1+3+32+33+…+32014,①则3M=3+32+33+…+32015.②②-①得2M=32015-1,两边都除以2,得名师点拨1.能记住有理数、数轴、相反数、倒数、绝对值等概念,运用概念进行判断.2.能说明任意两个有理数之间的大小关系.3.能利用有理数运算法则熟练进行有理数的混合运算.4.利用科学记数法表示当下热点问题.5.能解释实数与数轴的一一对应关系.6.能利用估算思想估算一个无理数的大致大小.7.能利用运算律快速进行实数的运算.提分策略1.实数的运算.(1)在进行实数的混合运算时,首先要明确与实数有关的概念、性质、运算法则和运算律,要弄清按怎样的运算顺序进行.中考中常常把绝对值、锐角三角函数、二次根式结合在一起考查.(2)要注意零指数幂和负指数幂的意义.负指数幂的运算:a-p=(a≠0,且p是正整数),零指数幂的运算:a0=1(a≠0).【例1】计算:+(-1)0+2×(-3).【解析】根据零指数幂:a0=1(a≠0),以及负整数指数幂运算法则得出即可.【答案】原式=5+1-6=0.2.实数的大小比较.两个实数的大小比较方法有:(1)正数大于零,负数小于零;(2)利用数轴;(3)差值比较法;(4)商值比较法;(5)倒数法;(6)取特殊值法;(7)计算器比较法等.3.探索实数中的规律.关于数式规律性问题的一般解题思路:(1)先对给出的特殊数式进行观察、比较;(2)根据观察猜想、归纳出一般规律;(3)用得到的规律去解决其他问题.对数式进行观察的角度及方法:(1)横向观察:看等号左右两边什么不变,什么在变,以及变化的数字或式子间的关系;(2)纵向观察:将连续的几个式子上下对齐,观察上下对应位置的式子什么不变,什么在变,以及变化的数字或式子间的关系.【例3】观察下列等式:请解答下列问题:(1)按以上规律列出第5个等式:a5= = ;(2)用含n的代数式表示第n个等式:a n= = (n为正整数);(3)求a1+a2+a3+a4+…+a100的值.专项训练一、选择题2. (2014·河南洛阳模拟)在实数中,最小的数是().A. 0B. -πC. D. -43. (2014·浙江温州模拟)在0,-1,-2,-3.5这四个数中,最小的负整数是().A. 0B. -1C. -2D. -3.54. (2014·江苏泰州洋思中学模拟)在数轴上表示-2的点离原点的距离等于().A. 2B. -2C. ±2D. 45. (2014·浙江杭州模拟)若|x-5|=5-x,则下列不等式成立的是().A. x-5>0B. x-5<0C. x-5≥0D. x-5≤06. (2014·安徽安庆二模)数轴上点A表示的实数可能是().(第6题)8. (2013·吉林镇赉县一模)下列各数中最大的是().A. -2B. 09. (2013·浙江湖州模拟) 的平方根是().A. 4B. 2C. ±4D. ±210.(2013·浙江湖州模拟)3月11日,日本发生地震和海啸,3月12日,中国红十字会向日本红十字会提供100万元人民币的紧急援助,同时发出慰问电,向日本受灾群众表示诚挚的慰问,对地震遇难者表示深切的哀悼,并表示将根据灾区需求继续提供及时的人道援助.100万这个数用科学记数法表示为().A. 1.0×104B. 1.0×106C. 1.0×105D. 0.1×10611. (2013·河北三模)在下列各数(-1)0,-|-1|,(-1)3,(-1)-2中,负数的个数为().A. 0B. 1C. 2D. 312. (2013·江苏扬州弘扬中学二模)下列计算错误的是().13. (2013·山东德州一模)-7的相反数的倒数是().二、填空题15. (2014·甘肃天水一模)若0<a<1,则三者的大小关系是.16. (2013·安徽芜湖一模)2012年5月8日,“最美教师”张丽莉为救学生身负重伤,张老师舍己救人的事迹受到全国人民的极大关注,在住院期间,共有695万人以不同方式向她表示问候和祝福,将695万人用科学记数法表示为人.(结果精确到十万位)17.(2013·山东德州一模)某种商品的标价为200元,按标价的八折出售,这时仍可盈利25%,则这种商品的进价是元.三、解答题20. (2014·江苏南通海安县模拟)计算:21. (2014·内蒙古赤峰模拟)计算:22. (2014·甘肃天水一模)计算:|-3|+(-1)2014×(-2)0-+.23. (2013·浙江湖州模拟)计算:24. (2013·广东深圳育才二中一模)计算:参考答案与解析1. C[解析]可利用特殊值法解,例如令n=2,m=-3.2. D[解析]正数大于零,负数小于零,正数大于负数.3. C[解析]-3.5不是整数.4. A[解析]-2的绝对值等于2.5. D[解析]非负数的绝对值等于其相反数.7. D[解析]正数大于零,负数小于零,正数大于负数.10. B[解析]100万=1.0×106.11. C[解析](-1)0=1,-|-1|=-1,(-1)3=-1,(-1)-2=1.13. C[解析]-7的相反数是7,7的的倒数是.16. 7.0×106[解析]695万=6.95×106≈7.0×106.17. 128[解析]设每件的进价为x元,由题意,得200×80%=x(1+25%),解得x=128.18.原式=9+2-1-3+2=9.22.原式=3+1-3+4=5.23.原式=2+2×-3+1-1=1.学法指导: 怎样学好数学☆人生是一种体验,一种经历,一种探索,一种生活,而人生目标,则是一种自我的设定。

初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)

初中数学:专题1 实数的运算专项训练50道(举一反三)(解析版)

专题6.5 实数的运算专项训练(50道)参考答案与试题解析3+(﹣1)2021.1.(1分)(2021春•陆河县校级期末)计算:√9+|√5−3|+√−64【分析】先求算术平方根、绝对值、立方根运算,再进行计算即可.3+(﹣1)2021【解答】解:√9+|√5−3|+√−64=3+3−√5−4﹣1=1−√5.3+|√3−2|.2.(1分)(2021春•珠海期中)计算:(﹣2)2+√(−3)2−√27【分析】运用负数的平方、二次根式、三次根式,绝对值的定义及性质进行计算.3+2−√3【解答】解:原式=4+√32−√33=4+3﹣3+2−√3=6−√3.3.(1分)(2021•天心区开学)计算:|7−√2|−|√2−π|−√(−7)2.【分析】由去绝对值及算术平方根运算法则计算即可.【解答】解:原式=7−√2−(π−√2)﹣7=7−√2−π+√2−7=﹣π.3+|2−√5|+|3−√5|.4.(1分)(2021春•浏阳市期末)计算:√81+√−27【分析】本题涉及绝对值、二次根式化简、三次根式化简3个知识点.在计算时,需要针对每个知识点分别进行计算,然后根据实数的运算法则求得计算结果.3+|2−√5|+|3−√5|【解答】解:√81+√−27=9﹣3+√5−2+3−√5=7.3+(﹣3)2−√25+|√3−2|+(√3)2.5.(1分)(2021春•淮北期末)√(−5)3【分析】先计算开方、乘方、绝对值的运算,再合并即可得到答案.【解答】解:原式=−5+9−5+2−√3+3=4−√3.3−√4.6.(1分)(2021春•昆明期末)计算:(﹣1)3+|−√2|+√27【分析】直接利用立方根的性质以及绝对值的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:原式=﹣1+√2+3﹣2=√2. 7.(1分)(2021春•宁乡市期末)计算:√−13+√49+|3−π|−(−√3)2.【分析】直接利用立方根的性质以及绝对值的性质和二次根式的性质分别化简,再利用实数加减运算法则计算得出答案.【解答】解:原式=﹣1+7+π﹣3﹣3=π. 8.(1分)(2021春•临沧期末)计算:√83−(−1)2021+√(−3)2−|1−√3|.【分析】首先计算乘方、开方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√83−(−1)2021+√(−3)2−|1−√3|=2﹣(﹣1)+3﹣(√3−1)=6−√3+1=7−√3.9.(1分)(2021春•曲靖期末)计算:﹣22×√14−√83+√9×(﹣1)2021. 【分析】先化简有理数的乘方,算术平方根,立方根,然后先算乘法,再算加减.【解答】解:原式=﹣4×12−2+3×(﹣1)=﹣2﹣2﹣3=﹣7. 10.(1分)(2021春•海拉尔区期末)计算:√−83÷√0.04+√14×(−2)2−(−1)2020.【分析】先化简立方根,算术平方根,有理数的乘方,然后先算乘除,再算加减.【解答】解:原式=﹣2÷0.2+12×4﹣1=﹣10+2﹣1=﹣9.11.(1分)(2021春•红塔区期末)计算:(﹣1)2020﹣(﹣2)2+√4+√−273. 【分析】直接利用有理数的乘方运算法则以及立方根的性质、算术平方根分解化简得出答案.【解答】解:原式=1﹣4+2﹣3=﹣4.12.(1分)(2021春•盘龙区期末)计算:(﹣1)2021+|3﹣π|+√16+√−83−π.【分析】根据﹣1的奇、偶次方,绝对值、算术平方根、立方根的运算法则进行计算即可得出答案.【解答】解:原式=﹣1﹣(3﹣π)+4﹣2﹣π=﹣1﹣3+π+2﹣π=﹣2. 13.(1分)(2021春•开福区校级期末)√(−1)2+√273+(−1)2021+|√3−3|.【分析】先计算平方根、乘方和绝对值运算,再合并同类项即可.【解答】解:原式=|﹣1|+3+(﹣1)+3−√3=1+3﹣1+3−√3=6−√3.14.(1分)(2021春•利川市期末)计算|√2−√3|﹣2(14+√22)−√−183. 【分析】根据绝对值的性质、立方根的定义以及实数的加减运算以及乘除运算法则即可求出答案. 【解答】解:原式=√3−√2−12−√2+12 =√3−2√2. 15.(1分)(2021春•永城市期末)计算:√16+√−643−√1−(35)2−|π﹣3.2|. 【分析】直接利用立方根的性质以及二次根式的性质、绝对值的性质分别化简得出答案.【解答】解:原式=4﹣4−45−(3.2﹣π)=4﹣4−45−3.2+π=﹣4+π. 16.(1分)(2021春•鹿邑县期末)计算:√(−1)33−√3116+√(1−78)23. 【分析】首先计算开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:√(−1)33−√3116+√(1−78)23=﹣1−74+14=−52. 17.(1分)(2021春•恩平市期末)计算:√25+√−83−√49+√8273+(−1)2021. 【分析】利用实数的运算法则对所求式子进行求解即可.【解答】解:√25+√−83−√49+√8273+(−1)2021 =5﹣2−23+23−1=2.18.(1分)(2021春•潮阳区期末)计算:−12021+√(−2)2−√−1253+|√2−3|.【分析】直接利用绝对值的性质和立方根的性质和二次根式的性质分别化简得出答案.【解答】解:原式=﹣1+2+5+3−√2=9−√2. 19.(1分)(2021春•白云区期末)计算:√−273−√256−√116+√1−63643. 【分析】实数的混合运算,先分别化简立方根,算术平方根,然后再计算.【解答】解:原式=﹣3﹣16−14+√1643 =﹣3﹣16−14+14=﹣19. 20.(1分)(2021春•杨浦区期中)计算:√−0.0013−(√23−√10003)−√162.【分析】直接利用立方根以及二次根式的性质分别化简得出答案.【解答】解:原式=﹣0.1−√23+10−42 =﹣0.1−√23+10﹣2 =7.9−√23.21.(2分)(2021春•青川县期末)计算:(1)(﹣3)2+2×(√2−1)﹣|﹣2√2|;(2)√−83−√1−1625+|2−√5|+√(−4)2.【分析】(1)先算乘方,化简绝对值,去括号,然后再算加减;(2)先化简立方根,算术平方根,绝对值,然后再计算.【解答】解:(1)原式=9+2√2−2﹣2√2=7; (2)原式=﹣2−√925+√5−2+4=﹣2−35+√5−2+4=√5−35.22.(2分)(2021春•西城区校级期中)计算:(1)(−√7)2−√62+√−83;(2)√49−√273+|1−√2|+√(1−54)2.【分析】(1)先化简,再计算加减法;(2)先算二次根式、三次根式,再计算加减法.【解答】解:(1)原式=7﹣6+(﹣2)=7﹣6﹣2=﹣1;(2)原式=7﹣3+√2−1+54−1=2+54+√2=134+√2. 23.(2分)(2021春•抚顺期末)计算:(1)√−83+√36−√49;(2)√254+√−273−|2−√3|+√(−2)2. 【分析】(1)根据立方根,算术平方根的运算法则进行运算,即可得出答案;(2)根据算术平方根,立方根,绝对值的法则进行运算,即可得出答案.【解答】解:(1)解:原式=﹣2+6﹣7=﹣3;(2)原式=52−3﹣2+√3+2 =−12+√3. 24.(2分)(2021春•乾安县期末)计算:(1)|√3−2|−(√3−1)+√−643;(2)√9+|﹣2|+√273+(﹣1)2021. 【分析】(1)直接利用绝对值的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质以及立方根的性质、有理数的乘方运算法则分别化简得出答案.【解答】解:(1)原式=2−√3−√3+1﹣4=﹣2√3−1;(2)原式=3+2+3﹣1=7.25.(2分)(2021春•曾都区期末)计算下列各式:(1)√(−1)2+√14×(﹣2)2−√−643;(2)|√3−√2|+|√3−2|﹣|√2−1|.【分析】(1)直接利用二次根式的性质以及立方根的性质分别化简得出答案;(2)直接利用绝对值的性质化简,再合并二次根式得出答案.【解答】解:(1)原式=1+12×4+4=1+2+4=7;(2)原式=√3−√2+2−√3−(√2−1)=√3−√2+2−√3−√2+1=3﹣2√2.26.(2分)(2021春•林州市期末)计算:(1)|3−√13|+√−273−√13+√25;(2)−12−(−2)3×18+√−273×|−13|+|1−√3|.【分析】(1)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案;(2)直接利用绝对值的性质、立方根的性质、二次根式的性质分别化简得出答案.【解答】解:(1)原式=√13−3﹣3−√13+5=﹣1;(2)原式=﹣1+8×18−3×13+√3−1=﹣1+1﹣1+√3−1=√3−2.27.(2分)(2021春•黄冈期末)计算:(1)(−√2)2+|1−√2|+√−83; (2)﹣22+√(−4)2+√32+42−(﹣1)2021.【分析】(1)首先计算乘方、开立方和绝对值,然后从左向右依次计算,求出算式的值是多少即可.(2)首先计算乘方和开方,然后从左向右依次计算,求出算式的值是多少即可.【解答】解:(1)(−√2)2+|1−√2|+√−83=2+√2−1+(﹣2)=√2−1.(2)﹣22+√(−4)2+√32+42−(﹣1)2021=﹣4+4+5﹣(﹣1)=6.28.(2分)(2021春•越秀区期末)(1)计算:√183+√(−2)2+√14;(2)计算:2(√3−1)﹣|√3−2|−√−643.【分析】(1)根据立方根以及算术平方根的定义解决此题.(2)由|√3−2|=2−√3,√−643=−4,得2(√3−1)−|√3−2|−√−643=3√3.【解答】解:(1)√183+√(−2)2+√14=12+2+12=3.(2)2(√3−1)−|√3−2|−√−643=2√3−2−(2−√3)−(−4)=2√3−2−2+√3+4=3√3.29.(2分)(2021春•西城区校级期末)计算题(1)√83+√0−√14+√−183+|3−√2|; (2)√−273−√0−√14+√0.1253+√1−63643.【分析】(1)根据立方根,算术平方根,绝对值的性质计算即可;(2)先化简,再求这个数的立方根,化简即可.【解答】解:(1)原式=2+0−12−12+3−√2=4−√2;(2)原式=﹣3﹣0−12+√183+√1643 =﹣3−12+12+14=−114.30.(2分)(2020春•合川区期末)计算:(1)|﹣2|+(﹣1)2020+√214−√−183; (2)(﹣24)﹣(12−23)÷(−16)×[﹣2−√(−3)2]﹣|14−0.52|. 【分析】(1)直接利用有理数的乘方运算法则以及立方根的性质、算术平方根、绝对值的性质分别化简得出答案;(2)直接利用有理数的混合运算以及二次根式的性质、绝对值的性质分别化简得出答案. 【解答】解:(1)原式=2+1+√94+12=2+1+32+12=5;(2)原式=﹣16﹣(36−46)×(﹣6)×(﹣2﹣3)﹣|14−(12)2| =﹣16+16×(﹣6)×(﹣5)﹣0=﹣16+5﹣0=﹣11.31.(2分)(2020春•甘南县期中)计算下列各式:(1)√16−√273+√−183+√94 (2)|1−√2|+√−8273×√14−√2【分析】(1)原式利用平方根、立方根定义计算即可求出值;(2)原式利用绝对值的代数意义,平方根、立方根定义计算即可求出值.【解答】解:(1)原式=4﹣3−12+32=2;(2)原式=√2−1−23×12−√2=−43.32.(2分)(2020春•岳麓区校级月考)计算:(1)√83−√4−√(−3)2+|1−√2|(2)√6×(√6−√6)−√214−|2﹣π| 【分析】(1)首先计算立方根,化简二次根式,计算绝对值,然后再计算加减即可;(2)首先计算乘法、化简二次根式,计算绝对值,然后再计算加减即可.【解答】解:(1)原式=2﹣2﹣3+√2−1=√2−4;(2)原式=1﹣6−32−(π﹣2),=1﹣6−32−π+2,=﹣412−π. 33.(2分)(2020春•蕲春县期中)计算:(1)√−273+√(−3)2+√−13;(2)√16+√−27643×√(−43)2−|2−√5|. 【分析】(1)首先根据二次根式和立方根的性质进行化简,再计算加减即可;(2)首先根据二次根式和立方根和绝对值的性质进行化简,再计算乘法,后算加减即可.【解答】解:(1)原式=﹣3+3﹣1=﹣1;(2)原式=4−34×43−(√5−2)=4﹣1−√5+2=5−√5.34.(2分)(2020春•西市区期末)计算:(1)√−13−√83÷√(−6)2;(2)(2−√3)2020×(2+√3)2021﹣2√34.【分析】(1)首先计算乘方、开方,然后计算除法,最后计算减法,求出算式的值是多少即可.(2)首先根据积的乘方计算,然后计算乘法、减法,求出算式的值是多少即可.【解答】解:(1)√−13−√83÷√(−6)2=﹣1﹣2÷6=﹣1−13=−43.(2)(2−√3)2020×(2+√3)2021﹣2√34 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×√32=2+√3−√3=2.35.(2分)(2020春•渝北区校级月考)计算下列各题. (1)|3−2√3|−√643+(√6)2;(2)√1.44+√1033−√0.04−√83−√−13.【分析】(1)直接利用立方根的性质以及二次根式的性质、绝对值的性质等知识分别化简得出答案;(2)直接利用立方根的性质以及二次根式的性质等知识分别化简得出答案.【解答】解:(1)原式=2√3−3﹣4+6=2√3−1;(2)原式=1.2+10﹣0.2﹣2+1=10.36.(2分)(2020春•牡丹江期中)计算题:(1)√81+√−273+√(−2)2+|√3−2|;(2)√22−√214+√78−13−√−13. 【分析】各式利用算术平方根、立方根性质计算即可求出值.【解答】解:(1)原式=9﹣3+2+2−√3=10−√3;(2)原式=2−32−12−(﹣1)=2﹣2+1=1.37.(2分)(2020春•凉州区校级期中)计算:(1)√2549+|﹣5|+√−643−(﹣1)2020; (2)√16+√−273−√3−|√3−2|+√(−5)2.【分析】利用二次根式的性质、绝对值得先年改制、立方根的性质、乘方的意义进行计算,再算加减即可.【解答】解:(1)原式=57+5﹣4﹣1=57;(2)原式=4﹣3−√3−2+√3+5=4.38.(2分)(2020秋•东港市期中)(1)(√6−√7)2019×(√6+√7)2020.(2)√32−√−273−√(−23)2+|1−√2|.【分析】(1)直接利用积的乘方运算法则,将原式变形得出答案;(2)直接利用立方根以及算术平方根的性质、绝对值的性质分别化简得出答案.【解答】解:(1)原式=[(√6−√7)(√6+√7)]2019×(√6+√7)=﹣1×(√6+√7) =−√6−√7;(2)原式=4√2+3−23+√2−1 =5√2+43.39.(2分)(2020春•越秀区校级月考)计算:(1)√36−√273+√(−2)2−√214;(2)|√3−2|−√4−(3−√3).【分析】(1)直接利用立方根的定义和算术平方根的定义分别化简得出答案;(2)直接利用绝对值的性质以及算术平方根的定义分别化简得出答案.【解答】解:(1)原式=6﹣3+2−32=3.5;(2)原式=2−√3−2﹣3+√3=﹣3.40.(2分)(2020春•和平区校级月考)计算(1)√273+|3−√5|﹣(√9−√83)2+√5; (2)√16−√83−√13+√1+916+|1−√2|﹣|√3−√2|.【分析】(1)直接利用立方根的性质以及绝对值的性质分别化简得出答案;(2)直接利用立方根的性质以及绝对值的性质分别化简得出答案.【解答】解:(1)原式=3+3−√5−(3﹣2)2+√5=3+3−√5−1+√5=5;(2)原式=4﹣2﹣1+54+√2−1﹣(√3−√2)=4﹣2﹣1+54+√2−1−√3+√2 =2√2−√3+54.41.(4分)(2020春•硚口区期中)(1)计算:①√−8273×√14−√(−2)2;②√3−√25+|√3−3|+√1−63643.(2)求下列式子中的x 的值:①4(x ﹣2)2=49;②(x ﹣1)3=64.【分析】(1)①直接利用立方根以及二次根式的性质分别化简得出答案;②直接利用立方根以及二次根式的性质分别化简得出答案;(2)①直接利用平方根的定义化简得出答案;②直接利用立方根的定义化简得出答案.【解答】解:(1)①原式=−23×12−2=﹣213;②原式=√3−5+3−√3+14=−74;(2)①∵4(x ﹣2)2=49, ∴(x −2)2=494, ∴x −2=±72,∴x =2±72,∴x =112或x =−32.②∵(x ﹣1)3=64,∴x ﹣1=4,∴x =5.42.(4分)(2020秋•射洪市月考)(1)计算:√16+√−643−√(−3)2+|√3−1|;(2)解方程:18﹣2x 2=0;(3)解方程:(x +1)3+27=0;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2.【分析】(1)利用平方根与立方根的定义及绝对值的意义,先化简,再利用实数混合运算进行运算即可;(2)对方程进行转化,利用平方根的定义即可解答;(3)对方程进行转化,利用立方根的定义即可解答;(4)先利用幂运算法则和平方差公式进行简便运算,利用算术平方根的定义进行化简,再利用实数混合运算进行运算即可;【解答】解:(1)原式=4﹣4﹣3+√3−1=﹣4+√3;(2)∵18﹣2x 2=0,∴2x 2=18,即x 2=9,∴x =±3;(3)∵(x +1)3+27=0,∴(x +1)3=﹣27,∴x +1=﹣3,∴x =﹣4;(4)(2−√3)2020×(2+√3)2021﹣2√1−(35)2 =[(2−√3)×(2+√3)]2020×(2+√3)﹣2×45=2+√3−85=25+√3.43.(4分)(2021春•南开区期中)(1)化简|1−√2|+|√2−√3|+|√3−2|.(2)计算:√−643+√16×√94÷(−√2)2.(3)解方程(x ﹣1)3=27.(4)解方程2x 2﹣50=0.【分析】(1)去掉绝对值符号,合并同类二次根式即可;(2)利用实数的混合运算法则进行运算即可;(3)利用立方根的意义解答;(4)利用平方根的意义解答.【解答】解:(1)原式=√2−1+√3−√2+2−√3=1;(2)原式=﹣4+4×32÷2=﹣4+3=﹣1;(3)两边开立方得:x ﹣1=3.∴x =4.∴原方程的解为:x =4.(4)原方程变为:2x 2=50.∴x 2=25.两边开平方得:x =±5.∴原方程的解为:x 1=5,x 2=﹣5.44.(4分)(2021春•红桥区期中)计算:(1)3√2+√2−6√2;(2)√5(√5+1√5); (3)√−273+√(−2)2−|1−√3|;(4)√9−√−83+√(−3)2−(√2)2. 【分析】(1)直接利用二次根式的加减运算法则计算得出答案;(2)直接利用二次根式的混合运算法则计算得出答案;(3)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案;(4)直接利用立方根以及二次根式、绝对值的性质分别化简得出答案.【解答】解:(1)原式=﹣2√2;(2)原式=5+1=6;(3)原式=﹣3+2﹣(√3−1)=﹣3+2−√3+1=−√3;(4)原式=3+2+3﹣2=6.45.(4分)(2021春•硚口区期中)(1)计算:①√16−√273+√214;②√3(√3√3)+|2−√5|. (2)求下列式子中的x 的值:①(x ﹣2)2=9;②3(x +1)3+81=0.【分析】(1)①首先计算开方,然后从左向右依次计算即可.②首先计算绝对值和乘法,然后从左向右依次计算即可.(2)①根据平方根的含义和求法,求出x 的值是多少即可.②根据立方根的含义和求法,求出x 的值是多少即可.【解答】解(1)①√16−√273+√214=4﹣3+32=52.②√3(√31√3)+|2−√5| =3﹣1+√5−2=√5.(2)①∵(x ﹣2)2=9,∴x ﹣2=±3,解得:x =5或﹣1.②∵3(x +1)3+81=0,∴3(x +1)3=﹣81,∴(x +1)3=﹣27,∴x +1=﹣3,解得:x =﹣4.46.(4分)(2021春•岷县月考)计算:(1)√−8×(−0.5).(2)√4+√225−√400.(3)√−13+√(−1)33+√(−1)23.(4)√183−52×√−11253+√−3433−√−273. 【分析】根据算术平方根和立方根的定义,分别计算即可.【解答】解:(1)原式=√4=2;(2)原式=2+15﹣20=﹣3;(3)原式=﹣1+√−13+√13=﹣1+(﹣1)+1=﹣1;(4)原式=12−52×(−15)+(﹣7)﹣(﹣3)=12−(−12)+(﹣7)+3=12+12+(﹣7)+3 =1﹣7+3=﹣3.47.(4分)(2020秋•海曙区期中)计算.(1)−34×(−8+23−13).(2)17﹣8÷(﹣4)+4×(﹣5).(3)√25+(√−1273+13)−6. (4)−32×[−32×(−23)2−2].【分析】(1)利用乘法分配律使得计算简便;(2)先算乘除,然后再算加减;(3)先化简算术平方根,立方根,然后算小括号里面的,再算括号外面的;(4)先算乘方,然后算乘除,最后算加减,有小括号先算小括号里面的.【解答】解:(1)原式=34×8−34×23+34×13=6−12+14 =512+14=524+14 =534;(2)原式=17+2﹣20=19﹣20=﹣1; (3)原式=5+(−13+13)﹣6=5+0﹣6=5﹣6=﹣1;(4)原式=−32×(﹣9×49−2)=−32×(﹣4﹣2)=−32×(﹣6)=9.48.(4分)(2020秋•嵊州市期中)计算:(1)(+1013)+(﹣11.5)+(﹣1013)﹣4.5; (2)(﹣6)2×(13−12)﹣23; (3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25); (4)−√36+6÷(−23)×√−83.【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律以及有理数的混合运算法则计算得出答案;(3)直接提取公因式14,进而计算得出答案; (4)直接利用算术平方根的性质以及立方根的性质分别化简得出答案.【解答】解:(1)原式=﹣11.5﹣4.5+(1013−1013) =﹣16+0=﹣16;(2)(﹣6)2×(13−12)﹣23 =36×13−36×12−8=12﹣18﹣8=﹣14;(3)(﹣270)×14+0.25×21.5+(﹣812)×(﹣0.25) =14×(﹣270+21.5+812) =14×(﹣240)=﹣60;(4)−√36+6÷(−23)×√−83=﹣6﹣9×(﹣2)=﹣6+18=12.49.(4分)(2020秋•北仑区期中)计算:(1)(﹣3)2﹣(112)3×29−6÷|−23|; (2)﹣12020+|﹣3|+√−1273−√(−4)2; (3)3×(√3−√5)+2×(−32×√3+32);(4)|√6−√2|+|√2−1|﹣|3−√6|.【分析】(1)直接利用有理数的混合运算法则计算得出答案;(2)直接利用立方根以及绝对值的性质、算术平方根的性质分别化简得出答案;(3)直接利用二次根式的混合运算法则计算得出答案;(4)直接利用绝对值的性质化简,进而得出答案.【解答】解:(1)(﹣3)2﹣(112)3×29−6÷|−23|=9−278×29−6×32=9−34−9=−34;(2)﹣12020+|﹣3|+√−1273−√(−4)2=﹣1+3−13−4=﹣213; (3)3×(√3−√5)+2×(−32×√3+32)=3√3−3√5−3√3+3=﹣3√5+3;(4)|√6−√2|+|√2−1|﹣|3−√6|=√6−√2+√2−1﹣(3−√6)=√6−√2+√2−1﹣3+√6=2√6−4.50.(4分)(2020秋•下城区校级期中)计算.(1)(+15)﹣(+11)﹣(﹣18)+(﹣15);(2)(﹣72)×(49−38+512−13); (3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2];(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020|.(结果保留根号形式)【分析】(1)直接利用有理数的加减运算法则计算得出答案;(2)直接利用乘法分配律进而计算得出答案;(3)直接利用有理数的混合运算法则计算得出答案;(4)直接去绝对值进而计算得出答案.【解答】解:(1)(+15)﹣(+11)﹣(﹣18)+(﹣15)=15﹣11+18﹣15=7;(2)(﹣72)×(49−38+512−13) =(﹣72)×49+(﹣72)×(−38)+(﹣72)×512+(﹣72)×(−13)=﹣32+27﹣30+24=﹣11;(3)﹣12﹣(1﹣0.5)÷15×[2﹣(﹣2)2]=﹣1−12×5×(2﹣4)=﹣1−52×(﹣2)=﹣1+5=4;(4)|1−√2|+|√2−√3|+|√3−√4|+……+|√2019−√2020| =√2−1+√3−√2+√4−√3+⋯+√2020−√2019 =√2020−1.。

一实数

一实数

实数知识性专题专题1 实数的分类 在-2,0,2,1,43,-0.4中,正数有 ( )A .2个B .3个C .4个D .5个 正数包括正有理数和正无理数,本题中2,1,43三个数为正数.故选B .0既不是正数,也不是负数.无理数也有正、负之分.专题2 平方根、立方根的概念要到玻璃店配一块面积为1.21 m 2的正方形玻璃,那么该玻璃的边长为 m .正方形的边长是其面积的算术平方根,故该玻璃的边长为21.1=1.1(m).故填1.1.121)32010(8-⎪⎭⎫ ⎝⎛--+分析2211211==⎪⎭⎫ ⎝⎛-解:原式=1222122-=-+.已知b =a 3+2c ,其中b 的算术平方根为19,c 的平方根是±3,求a 的值. 因为b 的算术平方根是19,所以b =192=361.又因为c 的平方根是±3,所以c =(±3)2=9.代入已知条件即可求出a 的值. 解:因为b 的算术平方根是19,所以b =192=361.又c 的平方根是±3.所以c =(±3)2=9.所以a 3=b -2c =361-18=343,即a =7. 专题3 实数的有关概念及计算本知识点是中考的热点,也是必考内容,主要考查实数的分类,实数的相反数、绝对值、倒数等性质,与数轴的对应关系及简单的计算,多以选择题、填空题的形式出现.例6 把下列各数分别填入相应的集合里:38,3,-3.14159,3π,722,32-,87-,0,-0.∙∙02,1.414,7-,1.2112111211112…(每两个相邻的2中间依次多1个1).(1)正有理数集合:{ …}; (2)有理数集合:{ …}; (3)无理数集合:{ …}; (4)实数集合:{ …}. 分析 准确理解实数的概念,按要求分类,注意不要遗漏.解:(1)正有理数集合:{38,722,1.414,…}.(4)全体数均属实数.(2)有理数集合:{38,-3.14159,722,87-,0,-0.∙∙02,1.414,…}.(3)无理数集合:{3,3π,32-,1.21121112l 1112 (7),…}.(1)带根号的数不一定是无理数:(2)分数是有理数,但3π这种形式的数是无理数;(3)只有无限不循环小数才是无理故.如图13-13所示,在数轴上点A 和B 之间的整数点有 __个.解决本题的关键是确定-2与7之间有哪些整数,由于-2<-2<-1,2<7<3,所以-2与7之间的整数有-1,0,1,2,所以A ,B 两点之间的整数点有4个.故填4.规律·方法 数轴上的点表示的数并非都是有理数,数轴上的点与实数是一一对应的. 已知a ,b 为数轴上的点,如图13-14所示,求ba b a ++的值.解决此题的关键在于去掉分子的绝对值符号,也就是要确定a +b 的正负.由图可知a >0,b <0,且b >a ,所以a +b <0,因此b a +=-(a +b ). 解:由题意可知a >0,b <0,且b >a ,所以a +b <0,即b a +=-(a +b ).所以1)(-=++-=++ba b a ba b a .专题4 非负数的性质及其应用解决有关非负数的问题的关键是灵活运用非负数的性质,如:若几个非负数之和为零,则这几个非负数都为零;若两个非负数互为相反数,则这两个非负数分别为零等等.另外,还要熟悉一些常见的非负数的形式,如偶次方、绝对值、算术平方根等. 若2)3(a -与1-b 互为相反数,则ba -2的值为 .依题意知01)3(2=-+-b a ,根据非负数的性质可知2)3(a -=0,1-b =0,即03=-a ,b -1=0,所以3=a ,b =1,所以原式=13132+=-.故填13+. 有限个非负数之和为零,则必有每个非负数同时为零,即若x 1≥0,x 2≥0,…,x n ≥0,且x 1+x 2+…+x n =0,则x 1=x 2=…=xn =0.已知a ,b ,c 都是实数,且满足(2-a )2+82++++c c b a =0,且ax 2+bx +c =0,求代数式3x 2+6x +1的值.分析 先根据非负数的性质求出a ,b ,c 的值,再整体代入求值.解:依题意知(2-a )2≥0,c b a ++2≥0,8+c ≥0,所以⎪⎩⎪⎨⎧=+=++=-,08,0,022c c b a a 解得⎪⎩⎪⎨⎧-===,8,4,2c b a 所以ax 2+bc +c =0即为2x 2+4x -8=0,可化为x 2+2x =4,故3x 2+6x +1=3(x 2+2x )+1=3×4+1=13. 本题在求代数式的值时充分采用了整体代入的方法. 已知实数x ,y 满足022132=+-+--y x y x ,求y x 542-的平方根.分析 要求y x 542-的平方根,关键是知道x ,y 的值,由非负数的性质知,有限个非负数之和等于零,则每个非负数都等于零,从而得到一个关于x ,y 的二元一次方程组.解出x ,y 的值.解:因为022132=+-+--y x y x .又132--y x ≥0,22+-y x ≥0,所以⎩⎨⎧=+-=--,022,0132y x y x 解得⎩⎨⎧==.5,8y x 所以1255482542=⨯-⨯=-y x .所以3212542±=±=-±y x .例12 若a ,b 为实数,且11122++-+-=a aa ab ,求3-+-ba 的值.分析 因为12-a 与21a -均成立.所以a 2-1≥0,且1-a 2≥0,可得出a 2-1=0.即a =±1.又a +1≠0.所以a =1.进而代入求值.解:因为a ,b 为实数,且a 2-1≥0,1-a 2≥0,所以a 2-1=1-a 2=0. 所以a =±1.又因为a +1≠0,所以a =1.代入原式,得b =21.所以3-+-ba =-3.二、规律方法专题专题5 实数比较大小的方法 1.平方法当a >0,b >0时,a >b b a >⇔.例13 比较32和23的大小.解:因为2)32(=12,2)23(=18, 12<18,所以32<23.2.移动因数法利用a =2a (a ≥0),将根号外的因数移到根号内,再比较被开方数的大小. 例14 比较34和25的大小.分析 本题应先将根号外的4和5分别移到根号内,然后比较被开方数的大小即可;另外,本题也可用平方法来解.解:因为4834=,5025=,48<50,所以34<25.3.作差法当a -b =0时,可知a =b ;当a -b >0时,可知a >b ;当a -b <0时,可知a <b . 例15 比较34与63的大小.分析 本题用作差法比较.将4和3移到根号内. 解:因为34-63=5448-<0.所以34<63.4.作商法 若1=BA ,则A =B ;若BA >1.则A >B ;若BA <1.则A <B .(A ,B >0且B ≠0)例16 比较354和11的大小.分析 本题考查应用作商法比较大小. 解:因为998011135411354=⨯=÷<1,所以354<11.三、思想方法专题专题6 分类讨论思想【专题解读】 当被研究的问题包含多种可能情况,不能一概而论时,应按所有可能的情况分别讨论.实数的分类是这一思想的具体体现.要学会运用分类讨论思想对可能存在的情况进行分类讨论.要不重不漏.本章在研究平方根、立方根及算术平方根的性质以及化简绝对值时均用到了分类讨论思想.例17 已知数轴上有A ,B 两点,且这两点之间的距离为24,若点A 在数轴上表示的数为23,则点B 在数轴上表示的数为 .分析 本题要分为两种情况进行分析:①当B 点在A 点的左边时;②当B 点在A 点的右边时.当B 点在A 点的左边时,则22423-=-,故B 点表示的数是2-;②当B 点在A 点的右边时,则272324=+,故B 点表示的数是27.综上,点B 在数轴上表示的数为2-或27.故填2-或27.【解题策略】 本题也可运用数轴上两点间的距离公式来解决,设表示B 点的数为x ,则2423=-x ,故2423-=-x 或2423=-x ,则x =27或x =2-.专题7 数形结合思想【专题解读】实数与数轴上的点是一一对应的,实数在数轴上的表示是数形结合思想的具体表现,通过把实数在数轴上直观地表示出来,可以形象、直观地感受实数的客观存在.为理解实数的概念及其相关性质提供了有力的帮助.例18a,b在数轴上的位置如图13-15所示,那么化简2a-的结果是a-b( )A.2a-b B.bC.-b D.-2a+b分析先由数轴判断实数a,b的正负,再判断a-b的正负,最后化简、合并.由数轴知a>0,b<0,a>b,所以a-b>0,所以2a-=a-b-a=-b.故选C.ba-专题8类比思想【专题解读】本章在学习实数的有关概念及性质、运算时,可以类比已学过的有理数加以理解和运用.例19已知四个命题:①如果一个数的相反数等于它本身,那么这个数是0;②若一个数的倒数等于它本身,则这个数是1;③若一个数的算术平方根等于它本身,则这个数是1或0;④如果一个数的绝对值等于它本身.那么这个数是正数.其中真命题有( ) A.1个B.2个C.3个D.4个分析倒数等于它本身的数为±1,故②错;绝对值等于它本身的数除了正数还有0.故④错.①③是正确的.故选B.例20设a为实数,则aa-的值( )A.可以是负数B.不可能是负数C.必是正数D.正数、负数均可分析若a<0,则aa=,所以aa-=0.因a-=-2a>0;若a≥0,则a=,所以aa-a-不可能为负数.故选B.此a一、选择题(每小题3分,共30分) 1. 9-的平方根是 ( )A .81B .±3C .3D .-3 2.计算2)3(的结果是 ( )A .9B .-9C .3D .-3 3.与10最接近的两个整数是 ( )A .1和2B .2和3C .3和4D .4和5 4.如图13-16所示,数轴上的点P 表示的数可能是 ( )A .5B .-5C .-3.8D .-10 5.下列实数中,是无理数的为 ( ) A .3.14 B .31 C .3 D .96.81-的平方的立方根的相反数为 ( )A .4B .81 C .41-D .417.64的算术平方根是 ( )A .8B .±8C .22±D .228.如图13-17所示,数轴上A ,B 两点表示的数分别为-1和3,点B 关于点A 的对称点为C ,则点C 所表示的数为( ) A .-2-3 B .-1-3 C .-2+3 D .1+39.已知a ,b 为实数,则下列命题中,正确的是 ( ) A .若a >b ,则a 2>b 2B .若a >b ,则a 2>b 2C .若a <b ,则a 2>b 2D .若a 3>3,则a 2<b 2 10.下列说法中,正确的是 ( ) A .两个无理数的和是无理数B .一个有理数与一个无理数的和是无理数C .两个无理数的积还是无理数D .一个有理数与一个无理数的积是无理数 二、填空题(每小题3分,共30分)11.已知a 为实数,那么2a -等于 .12.已知一个正数的两个平方根分别是3x -2和5x +6,则这个数是 . 13.若x 3=64,则x 的平方根为 .14.若5是a 的平方根,则a = ,a 的另一个平方根是 . 15.25-的相反数为 .16.若37-=x ,则x = .17.若m <0.则化简332m m m -+= .18.若51=x ,则x = .19.设a ,b 为有理数,且2232-=+b a ,则a b 的值为 . 20.若3对应数轴上的点A ,-5对应数轴上的点B ,那么A ,B 之间的距离为 . 三、解答题(每小题10分,共60分) 21.已知x ,y 满足y <2111+-+-x x ,化简11--y y .22.已知9x 2-16=0,且x 是负数,求x 332-的值. 23.设2+7的小数部分是a ,求a (a +2)的值. 24.计算232)1(2004125.0221-++⨯-⎪⎭⎫ ⎝⎛-.25.用48米长的篱笆在空地上围一个绿化场地,现有两种设计方案:一种是围成正方形场地;另一种是围成圆形场地.选用哪一种方案围成的场地的面积较大?并说明理由.26.已知△ABC 三边长分别为a ,b ,c ,且满足0)2(12=-+-b a ,试求c 的取值范围.参考答案1.B[提示:9-=9,9的平方根是±3.] 2.C3.C[提示:∵9<10<16,∴3<10<4.]4.B[提示:因为5≈2.236,所以-5≈-2.236.] 5.C 6.C7.D[提示:将64化简.即64=8.]8.A[提示:因为A 表示-1,B 表示3,所以AB 的长是13)1(3+=--,点C表示的数是-1-(3+1)=-1-3-1=-2-3.]9.B 10.B11.0[提示:因为2a -有意义,所以-a 2≥0.又因为a 2≥0,所以a 2=0,所以a =0,所以2a -=0.]12.449[提示:由已知得3x -2与5x +6互为相反数,所以3x -2+5x +6=0,所以8x +4=0,所以x =21-.3x -2=3×(21-)-2=27-,5x +6=5×(21-)+6=27,所以这个数是449.]13.±2[提示:由x 3=64可知x =4,故本题要求4的平方根.]14.25 -5[提示:一个数的平方根的平方即为这个数,正数有两个平方根,它们互为相反数.]15.52- 16.37-或73-17.-3m 18.5119.91[提示:应先求出a ,b 的值,再求a b的值.由a +2b =3-22,得a =3,b =-2,所以a b =3-2=91.]20.53-[提示:画数轴分析即可.] 减号改为加号21解.由题意可知 ⎩⎨⎧≥-≥-,01,01x x 所以⎩⎨⎧≤≥,1,1x x 即x =1,所以y <2111+-+-x x 即为y <21,所以11--y y = 不等于号都不规范11--y y =-1.22.解:由9x 2-16=0得9x 2=16,即x =±34.又因为x 为负数,所以x =-34.将x =-34代入x 332-,可得3634332332=⎪⎭⎫⎝⎛-⨯-=-x =6.23.解:因为7的整数部分为2,所以2+7的整数部分为4,所以2+7的小数部分为(2+7)-4,即a =7-2,所以a (a +2)=(7-2)×(7-2+2)=(7-2)×7=7-72.24.解:原式=4-1+1+1=5.25.解:选用围成圆形场地的方案围成的面积大.设S 1,S 2分别表示围成的正方形场地和圆形场地的面积,则S 1=2448⎪⎭⎫⎝⎛=144=4576 (平方米),S 2=π·2248⎪⎭⎫ ⎝⎛π=π576 (平方米).∵π<4,∴π1>41,∴π576>4576,∴π576>144,∴S 1>S 2,即围成的圆形场地的面积大.26.解:因为2)2(1-+-b a =0,而1-a ≥0,(b -2)2≥0,所以1-a =0,(b -2)2=0,所以a =1,b =2.由三角形的三边关系知1<c <3.。

【题目】专题一 实数基本概念及化简

【题目】专题一 实数基本概念及化简

专题一 实数基本概念及化简【板块一 平方根、立方根、实数】实数可按下图进行详细分类:0⎧⎧⎫⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎨⎬⎩⎪⎪⎪⎪⎧⎨⎪⎪⎨⎪⎪⎪⎩⎭⎩⎪⎪⎫⎧⎪⎪⎨⎬⎪⎪⎩⎭⎩正整数整数负整数有理数有限小数或无限循环小数正分数实数分数负分数正无理数无理数无限不循环小数负无理数实数与数轴上的点一一对应.(以下概念均在实数域范围内讨论) 平方根的定义及表示方法:如果一个数的平方等于a ,那么这个数叫做a 的平方根.也就是说,若2x a =,则x 就叫做a 的平方根. 一个非负数a 的平方根可用符号表示为“”.算术平方根:一个正数a 有两个互为相反数的平方根,其中正的平方根叫做a 的算术平方根,可用符号表示为”;0有一个平方根,就是0,0的算术平方根也是0,负数没有平方根,当然也没有算术平方根.(负数的平方根在实数域内不存在,具体内容高中将进一步学习研究)一个非负数的平方根不一定是非负数,但它的算术平方根一定是非负数,即若0a ≥0≥.平方根的计算:求一个非负数的平方根的运算,叫做开平方.开平方与平方是互逆运算,可以通过平方运算来求一个数的平方根或算术平方根,以及检验一个数是不是另一个数的平方根或算术平方根.通过验算我们可以知道:⑴当被开方数扩大(或缩小)2n 倍,它的算术平方根相应地扩大(或缩小)n 倍(0n ≥). ⑵平方根和算术平方根与被开方数之间的关系:①若0a ≥,则2a =;②不管a (0)||(0)a a a a a ≥⎧==⎨-<⎩注意二者之间的区别及联系.⑶若一个非负数a 介于另外两个非负数1a 、2a 之间,即120a a a ≤<<时,间,即:0≤<立方根的定义及表示方法:如果一个数的立方等于a ,那么这个数叫做a 的立方根,也就是说,若3,x a =则x 就叫做a 的立方根. 一个数a 的立方根可用符号表,其中“3”叫做根指数,不能省略. 前面学习的其实省略了根指数“2”“三次根号a ”“二次根号a ”“根号a ”. 任何一个数都有立方根,且只有一个立方根,正数的立方根为正数,负数的立方根为负数,0的立方根为0.立方根的计算:求一个数的立方根的运算,叫做开立方,开立方与立方是互逆运算,可以通过立方运算来求一个数的立方根,以及检验一个数是不是另一个数的立方根.通过归纳我们可以知道:⑴当被开方数(大于0)扩大(或缩小)3n 倍,它的立方根相应地扩大(或缩小)n 倍.a =,3a =⑶若一个数a 介于另外两个数1a 、2a 之间,即12a a a <<,<< 利用这个结论我们可以来估算一个数的立方根的大致范围.一、实数的概念1. 22π 3.140.614140.10010001000017-,,,,这7个实数中,无理数的个数是( )A .0B .1C .2D .32. 有一个数值转换器原理如图所示,则当输入x 为64时,输出的y 是( )输出y输入xA .8 B. C. D.3..4. 说明边长为15. 下面有四个命题:①有理数与无理数之和是无理数. ②有理数与无理数之积是无理数. ③无理数与无理数之和是无理数. ④无理数与无理数之积是无理数.请你判断哪些是正确的,哪些是不正确的,并说明理由.6. 已知在等式ax bs cx d+=+中,a b c d ,,,为有理数,x 是无理数. (1)当a b c d ,,,满足什么条件是,s 是有理数? (2)当a b c d ,,,满足什么条件是,s 是无理数?7. 若a b a b +-是不等于1的有理数,求证:ab为有理数.8. 已知a b ,是两个任意有理数,且a b <,问是否存在无理数α,使得a b α<<成立?二、数的开方9. |9|-的平方根是( )A .81B .3±C .3D .3-10. 下列命题中,真命题是( )A .22001的平方根是2001B .49-的平方根是7±C 8=±D .若22a b ==11. 的平方根是 ;2( 2.5)-的平方根是 ;2(的平方根是 .12. 若22(2)a =-,则a = ;若22()(3)x -=-,则x = .13. 2=,则(25)x +的平方根是 ;若5=,则x = .14. 若A =A 的算术平方根是_________.15. 设a a 的值是________.16. 判断下列各题,并说明理由的平方根是9±. ( )( ) ⑶2a 的算术平方根是a . ( )5=,则5a =-. ( )3=±.( ) ⑹6-是2(6)-的平方根. ( ) ⑺2(6)-的平方根是6-.( )⑻若236x =,则6x ==±. ( )⑼若两个数平方后相等,则这两个数也一定相等. ( ) ⑽如果两个非负数相等,那么这两个数各自的算术平方根也一定相等. ( ) ⑾算术平方根一定是正数. ( ) ⑿2a -没有算术平方根. ( ) ⒀64的立方根是4±.( ) ⒁12-是16-的立方根.( )x =. ( ) ⒃互为相反数的两个数的立方根互为相反数. ( ) ⒄正数有两个互为相反数的偶数次方根,任何数都有唯一的奇数次方根. ( )17. 已知某正数的两个平方根是35a -与1a +,求这个正数.18. 一个数的平方根是22a b +和4613a b -+,求这个数.19. 已知23m-是正数p的平方根,试求p的值.m-和1220. 已知a b,为两个连续整数,且a b<<,则a b+=_______.21. 的小数部分是b,求432+++-b b b b123762022. 当0m<,2m的算术平方根是.23. 2-,则a b.-算术平方根是a ba b()24. 若一个自然数的一个平方根是m,那么比它大1的自然数的平方根是.25. 平方根等于本身的数是,算术平方根等于它本身的数是,立方根等于它本身的数是;平方根与立方根相等的数是.26. 8的立方根是( )A .2B .2±C .4D .4±27.)A .3B .3-C .13D .13-28. 的相反数是 ;的立方根是 .29. 1.22== _____.30. 若22(3)x =-,33(2)y =-,求x y +所有可能值.31.32. 已知3(2)27a b +=-5=,求21(3)n a b ++的值(n 为正整数).33. 已知2a -的平方根是2±,27a b ++的立方根是3,求22a b +的平方根.34. a =,2y b =(0y <)8=(4b a >)18=,求xy 的值.35. 2a b x -=3a +的算术平方根,3b a y -=是3b -的立方根,求y x -的立方根.36. 设3320082006200820082008200720082005a =⨯-⨯37. (1995年第6届希望杯全国数学邀请赛试题)设[]x 表示不大于x 的最大整数,如[π]3=,则100______⎤⎤⎡⎤++++=⎦⎦⎣⎦.板块二 二次根式0a ≥)的式子叫做二次根式.二次根式的基本性质:0≥(0a ≥)双重非负性;⑵2a =(0a ≥); (0)(0)a a a a a ≥⎧==⎨-<⎩38. x 取何值时,下列各式有意义:(7))12--39. 当x 时,有意义.40. 已知a 为实数,且满足200a a -=,求2200a -的值.41. 已知x 1πx -的值是多少?42. 化简:25-43. 若a 、b 为实数,且|1|0a -=,求1111(1)(1)(2)(2)(1993)(1993)a b a b a b a b ++++++++++的值.44. 若m 199y x =--,试确定m 的值.板块三 a =二次根式的化简45. 2)a <-.46. -112a≤≤)47.48.+49. (0a>,0b>)50. 设012x y<<<<+-=__________.51. 设a b ,都是实数,且0a a +=,ab ab =,0c c -=,那么化简b a c --为( )A .2c b -B .22b a -C .b - D.b52. 把根号外的因式适当变形后移入根号内:(a +53. 已知a b c ,,为ABC △+54. x 2(2)0x -=,求x 的值.。

初中奥数-专题一(实数)

初中奥数-专题一(实数)

专题一 实数第一讲 数的整除(一)一、内容提要:如果整数A 除以整数B(B ≠0)所得的商A/B 是整数,那么叫做A 被B 整除. 0能被所有非零的整数整除.能被7 ①抹去个位数 ②减去原个位数的2倍 ③其差能被7整除。

如 1001 100-2=98(能被7整除)又如7007 700-14=686, 68-12=56(能被7整除) 能被11整除的数的特征:①抹去个位数 ②减去原个位数 ③其差能被11整除 如 1001 100-1=99(能11整除)又如10285 1028-5=1023 102-3=99(能11整除)二、例题例1已知两个三位数328和92x 的和仍是三位数75y 且能被9整除。

求x,y例2己知五位数x 1234能被12整除,求X 例3求能被11整除且各位字都不相同的最小五位数三、练习1 分解质因数:(写成质因数为底的幂的連乘积)①593 ② 1859 ③1287 ④3276 ⑤10101 ⑥10296 2 若四位数a 987能被3整除,那么 a=_______________ 3 若五位数3412X 能被11整除,那么 X =__________- 4 当 m=_________时,535m 能被25整除 5 当 n=__________时,n 9610能被7整除6 能被11整除的最小五位数是________,最大五位数是_________7 能被4整除的最大四位数是____________,能被8整除的最小四位数是_________8 8个数:①125,②756,③1011,④2457,⑤7855,⑥8104,⑦9152,⑧70972中,能被下列各数整除的有(填上编号):6________,8__________,9_________,11__________ 9 从1到100这100个自然数中,能同时被2和3整除的共_____个,能被3整除但不是5的倍数的共______个。

10 由1,2,3,4,5这五个自然数,任意调换位置而组成的五位数中,不能被3整除的数共有几个?为什么? 11 己知五位数A 1234能被15整除,试求A 的值。

福建各2019年中考数学分类解析-专项1:实数

福建各2019年中考数学分类解析-专项1:实数

福建各2019年中考数学分类解析-专项1:实数专题1:实数一、选择题1.计算:2-3=【】A、-1B、1C、-5D、5【答案】A。

【考点】有理数的加减法。

【分析】依照有理数的加减法运算法那么直截了当得到结果:2-3=-1。

应选A。

2.〔2018福建南平4分〕-3的相反数是【】A、13B、-13C、3D、-3【答案】C。

【考点】相反数。

【分析】相反数的定义是:假如两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数依旧0。

因此-3的相反数是3。

应选C。

3.〔2018福建南平4分〕【】A、5C D【答案】A。

【考点】二次根式的乘除法【分析】)a0b0>≥,。

应选A4.〔2018福建宁德4分〕2018的相反数是【】A、-2018B、2018C、-12012D、12012【答案】A。

【考点】相反数。

【分析】相反数的定义是:假如两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,0的相反数依旧0。

因此2018的相反数是-2018。

应选A。

5.〔2018福建宁德4分〕2018年伦敦奥运会体育场位于伦敦东部的斯特拉特福,因外形上阔下窄,又被称为“伦敦碗”,预计可容纳80000人、将80000用科学记数法表示为【】A、80×103B、0.8×105C、8×104D、8×103【答案】C。

【考点】科学记数法。

【分析】依照科学记数法的定义,科学记数法的表示形式为a×10n,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值。

在确定n的值时,看该数是大于或等于1依旧小于1。

当该数大于或等于1时,n为它的整数位数减1;当该数小于1时,-n为它第一个有效数字前0的个数〔含小数点前的1个0〕。

80000一共5位,从而80000=8×104。

应选C 。

8.〔2018福建漳州4分〕6的倒数是【】A 、61B 、-61C.6D.-6【答案】A 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

专题1:实数
一、选择题
1. 计算(2﹣3)+(﹣1)的结果是【 】
A .﹣2
B .0
C .1
D .2
2.已知(m 3⎛=-⨯- ⎝⎭,则有【 】 A .5<m <6 B .4<m <5 C .﹣5<m <﹣4 D .﹣6<m <﹣5
3. -2的绝对值等于【 】
A .2
B .-2
C .
12 D .±2
4. (﹣2)0等于【 】
A . 1
B . 2
C . 0
D .﹣2 5. 南海资源丰富,其面积约为350万平方千米,相当于我国的渤海、黄海和东海总面积的3倍.其中350万用科学记数法表示为【 】
A . 0.35×108
B . 3.5×107
C . 3.5×106
D . 35×105
6. 如果零上2℃记作+2℃,那么零下3℃记作【 】
A .-3℃
B .-2℃
C .+3℃
D .+2℃
7. 如图,数轴的单位长度为1,如果点A ,B 表示的数的绝对值相等,那么点A 表示的数是【 】
A .-4
B .-2
C .0
D .4
8. (﹣2)0
的值为【 】
A .﹣2
B .0
C .1
D .2
9. 据宁波市统计局年报,去年我市人均生产总值为104485元,104485元用科学记数法表示为【 】
A .1.04485×106元
B .0.104485×106元
C .1.04485×105元
D .10.4485×104元
10. 下列四个数中,最小的数是【 】
A .2
B .﹣2
C .0
D .﹣
11. 衢州市是国家优秀旅游城市,吸引了众多的海内外游客.据衢州市2011年国民经济和社会发展统计报显示,全年旅游总收入达121.04亿元.将121.04亿元用科学记数法可表示为【】
A.12.104×109元B.12.104×1010元C.1.2104×1010元D.1.2104×1011元12. 3的相反数是【】
A. 3 B.3
-C.1
3
D.
1
3
-
13. 据科学家估计,地球年龄大约是4 600 000 000年,这个数用科学记数法表示为【】 A. 4.6×108 B.46×108 C.4.6×109D. 0.46×1010
14. 计算-1+1的结果是【】
A.1
B.0
C.-1
D.-2
15. 给出四个数-1,0, 0.5】
A. -1.
B. 0
C. 0.5
D.
16. ﹣2的相反数是【】
A.2B.﹣2C.1
2
D.
1
2
-
17. 一个正方形的面积是15,估计它的边长大小在【】
A.2与3之间B.3与4之间C.4与5之间D.5与6之间
二、填空题
1. 写出一个比-3大的无理数是▲ .
2. 写出一个比4小的正无理数▲ .
3. 请你规定一种适合任意非零实数a,b的新运算“a⊕b”,使得下列算式成立:
1⊕2=2⊕1=3,(﹣3)⊕(﹣4)=(﹣4)⊕(﹣3)=﹣,(﹣3)⊕5=5⊕(﹣3)=﹣,…你规定的新运算a⊕b= ▲ (用a,b的一个代数式表示).
三、解答题
1.
2
1
2tan45 2012
⎛⎫
-+-+︒

⎝⎭
().
2. 计算:2
53
-
3. 计算:2sin60°+|-3|--.
4. 计算:|﹣2|+2﹣1﹣cos60°﹣(1﹣)0.
5. 计算:211
2()2cos 6033--+-︒+-;
6. 计算:11
22--
+-。

相关文档
最新文档