1.1.1你能证明他们吗
1.1.1+空间向量及其线性运算+教学设计-高二上学期数学人教A版(2019)选择性必修第一册
《1.1.1空间向量及其线性运算》教学设计一、教学内容解析《1.1空间向量及其运算》是人教A版《普通高中教科书·数学(选择性必修)》第一册(以下简称“教科书”) 第一章《空间向量与立体几何》的第一节内容,包括“空间向量及其线性运算”和“空间向量的数量积运算”两小节内容,其中第1课时“空间向量及其线性运算”要学习的核心知识有: 空间向量的概念;零向量、单位向量、相等向量、相反向量、共线向量、共面向量;空间向量的加法、减法以及数乘运算.这些核心知识是后续学习空间向量基本定理、空间向量运算的坐标表示、应用空间向量解决立体几何图形位置关系与度量关系的基石.二、学情分析在学习本节课内容之前,学生已在人教A版必修第二册中学习了《平面向量及其应用》和《立体几何初步》内容.大致了解了平面向量的基本研究思路与框架即“实际背景→基本概念→向量运算( 线性运算、数量积) →向量基本定理及坐标表示→向量的应用”,这也是研究和学习空间向量的基本研究思路.三、教学目标(1)了解空间向量的实际背景;理解空间向量及相关概念;掌握空间向量的加法、减法和数乘运算;(2)经历由平面向量的概念、运算推广到空间向量的过程;通过空间向量加法结合律的证明体会维数增加对向量推广带来的变化;(3)在借助几何图形解释空间向量相关概念中进一步发展直观想象核心素养,领悟数形结合的思想方法,提升数学运算和逻辑推理能力; 从平面向量推广得到空间向量、空间向量问题转化为平面向量问题的过程中提升数学抽象素养,领悟类比、特殊与一般、转化与化归等思想.四、教学重难点重点: 空间向量及其相关概念,空间向量的线性运算;难点: 空间向量加法结合律的证明,空间向量的线性运算.五、教学策略分析本节课采用创设问题情境,设置问题链引导学生类比平面向量层层深入学习空间向量的概念、线性运算、运算律和位置关系等内容.学生通过自主探究、交流、师生互动等教学活动参与学习过程,突破学习中的难点和疑点.利用PPT等教学软件绘制图形、平移图形、展示图片,借助几何直观图形帮助学生分析和理解概念.六、教学过程设计1、情境引入如图所示,一只蚂蚁从A点出发,一直沿着棱爬行,先爬行到B点,再爬行到C点,那么它的实际位移是什么?若蚂蚁继续沿着棱从C点向上爬行到C1点,那么它的实际位移是什么?追问:位移在数学中可以用什么概念表示?这些向量是否位于同一平面?【设计意图】通过学生情境引入,引导学生回忆熟悉的平面向量,同时发现空间向量,感受到与平面向量的差异,进而激发学生的求知欲.师:通过平面向量及其应用的学习,我们知道平面内的点、直线可以通过平面向量及其运算来表示,他们之间的平行、垂直、夹角、距离等关系,可以通过平面向量运算得到,从而有关平面图形的问题可以利用平面向量的方法解决。
2020秋高中数学人教版2-1学案:1.1.1命题含解析
2020秋高中数学人教A版选修2-1学案:1.1.1命题含解析第一章常用逻辑用语德国伟大的诗人歌德,有一次在魏玛公园散步.当他走在一条仅能容一个人通过的小路上时,迎面走来了一位曾经把歌德的所有作品都贬得一文不值的文艺批评家.那位批评家站在歌德的对面,傲慢地说:“对一个傻子,我绝不让路." “我却正好相反."歌德边说边微笑着站到了一边.顿时,那位批评家满脸通红,羞得无地自容.这里反映的就是常用逻辑用语在现实生活中的应用.日常生活中,我们经常涉及一些逻辑上的问题.无论是进行思考、交流,还是从事各项工作,都需要正确地运用逻辑用语表达自己的思维,需要对一些命题进行判断和推理.因此,正确地使用逻辑用语是现代社会公民应该具备的基本素质.本章我们将学习常用逻辑用语,体会逻辑用语在表述和论证中的作用.学习目标1.了解命题的概念,会判断命题的真假.2.通过生活和数学中的丰富实例,理解全称量词与存在量词的意义.3.通过数学实例,了解逻辑联结词“且”“或"“非”的含义.4.能够正确地对含有一个量词的命题进行否定.5.理解必要条件、充分条件与充要条件的意义.6.了解命题的逆命题、否命题与逆否命题,会分析四种命题的相互关系.本章重点命题及其关系;充分条件、必要条件、充要条件的意义;逻辑联结词“或”“且”“非”的含义;全称量词与存在量词的应用.本章难点必要条件的含义;含有一个量词的全称命题和特称命题的否定.1。
1命题及其关系1。
1。
1命题自主预习·探新知情景引入中国古代伟大的逻辑学家公孙龙提出过一个命题:白马非马.对于一般人来说,“白马是马”就如同说“苹果是水果”一样清楚明白,怎么可能“白马非马”呢?孔子的六世孙孔穿,为了驳倒公孙龙的主张,找上门去辩论,结果公孙龙说:“如果白马是马,那么黑马也是马,因此就有白马是黑马,也就是说白等于黑.像你这样黑白不分,我不值得和你辩论.”孔穿几句话就败下阵来.公孙龙在这里正是运用了逻辑推理才将这个错误的命题“证明”了,它的破绽在哪里呢?新知导学命题及相关的概念(1)定义:用__语言、符号或式子__表达的,可以__判断真假__的陈述句.(2)分类:①真命题:判断为__真__的语句;②假命题:判断为__假__的语句.(3)形式:命题的结构形式是“__若p,则q__”,其中__p__是命题的条件,__q__是命题的结论.预习自测1.下列语句中,命题的个数是(C)①空集是任何集合的真子集;②请起立;③单位向量的模为1;④你是高二的学生吗?A.0B.1C.2D.3[解析]由命题的定义知,语句①③能判断真假,所以是命题,故选C.2.下列语句中是命题的是(D)A.两点确定一条直线吗?B.在线段AB上任取一点C.作∠A的平分线AMD.两个锐角的和大于直角[解析]两个锐角的和大于直角是一个假命题,A、B、C都不能判断真假.3.下列命题为假命题的是(C)A.log24=2B.直线x=0的倾斜角是错误!C.若|a|=|b|,则a=bD.若直线a⊥平面α,直线a⊥平面β,则α∥β[解析]由|a|=|b|得a与b的模相等,但方向不定,故a与b不一定相等,故选C.4.下列命题为真命题的是(A)A.若错误!=错误!,则x=y B.若x2=1,则x=1C.若x=y,则错误!=错误!D.若x〈y,则x2〈y2[解析]B中,若x2=1,则x=±1;C中,若x=y<0,则x与错误!无意义;D中,若x=-2,y=-1,满足x〈y,但x2〉y2,故选A.5.把命题“函数f(x)=sin x是奇函数”改写成“若p,则q”的形式是__若一个函数是f(x)=sin x,则该函数是奇函数__。
高中数学 1.1.1 命题教案 选修1-1
1.1.1 命题(教师用书独具)●三维目标1.知识与技能理解命题的概念和命题的构成,能判断给定陈述句是否为命题,能判断命题的真假;能把命题改写成“若p,则q”的形式.2.过程与方法多让学生举命题的例子,培养他们的辨析能力;以及培养他们的分析问题和解决问题的能力.3.情感、态度与价值观通过学生的参与,激发学生学习数学的兴趣.●重点、难点重点:命题的概念、命题的构成.难点:分清命题的条件、结论和判断命题的真假.(教师用书独具)●教学建议命题的概念在初中已经学习过,可以通过回顾初中知识引入,讲清命题概念中的两个问题,判断是否为陈述句,能否判断真假;重点放在命题的形式和判断命题真假的教学中,基于教材内容简单且以前曾经接触过,可以采用提问式、讨论式的教学方法,让学生在讨论、回答问题的过程中学习知识,增长技能,进而突破重难点.●教学流程创设问题情境,引出命题的概念,通过实例形成概念原型.⇒引导学生结合初中学习过的命题概念,比较、分析,揭示命题的特点及构成形式.⇒通过引导学生回答所提问题理解判断命题真假的方法.⇒通过例1及其变式训练,使学生掌握如何判断一个语句是否为命题.⇒通过例2及其互动探究,使学生掌握命题真假的判断方法,并对相关知识进行复习.⇒通过例3及其变式训练,完成对命题形式的认识与巩固,学会对命题进行改写.⇒归纳整理,进行课堂小结,整体认识本节课所学知识.⇒完成当堂双基达标,巩固所学知识并进行反馈矫正.(对应学生用书第1页)课标解读1.了解命题的概念及构成.(重点)2.会判断命题的真假.(难点、易错点) 命题的概念【问题导思】观察下列实例:①一条直线l,不是与平面α平行就是相交;②4是集合{1,2,3,4}的元素;③若x∈R,方程x2-x+2=0无实根;④作△ABC∽△A′B′C′上述语句中,哪些能判断真假?【提示】①、②、③、④是祈使句不能判断真假.1.定义在数学中,把用语言、符号或式子表达的,可以判断真假的陈述句叫做命题.2.分类①真命题:判断为真的语句叫做真命题;②假命题:判断为假的语句叫做假命题.命题的形式【问题导思】1.“同位角相等”是命题吗?如果是命题,是真命题还是假命题?【提示】是命题,为假命题.2.你能把“同位角相等”写成“若……,则……”的形式吗?【提示】若两个角为同位角,则这两个角相等.命题的形式:“若p,则q”,其中命题的条件是p,结论是q.(对应学生用书第1页)命题的判断判断下列语句是否为命题,并说明理由.(1)x-2>0;(2)梯形是不是平面图形呢?(3)若a与b是无理数,则ab是无理数;(4)这盆花长得太好了!(5)若x<2,则x<3.【思路探究】(1)这些语句是陈述句吗?(2)你能判断它们的真假吗?【自主解答】(1)不是命题,因为变量x的值没有给定,不能判断真假.(2)不是命题,疑问句不是命题.(3)是命题,因为此语句是陈述句且是假的.(反例a=b =2)(4)不是命题,感叹句不是命题.(5)是命题,因为此语句是陈述句且是真的.判断一个语句是否为命题的步骤:(1)语句格式是否为陈述句,只有陈述句才有可能是命题.(2)该语句能否判断真假,语句叙述的内容是否与客观实际相符,是否符合已学过的公理、定理,是明确的,不能模棱两可.判断下列语句是否为命题,并说明理由.(1)一条直线l,与平面α不是平行就是相交;(2)若xy=1,则x,y互为倒数;(3)作△ABC∽△A′B′C′.【解】(1)是命题.直线l与平面α有相交、平行、l在平面α内三种关系,为假.(2)是命题.因xy=1时,x,y互为倒数,为真.(3)不是命题,祈使句不是命题.命题真假的判定判断下列语句是否是命题,若是,判断其真假,并说明理由.(1)函数y=sin4x-cos4x的最小正周期是π;(2)若x=4,则2x+1<0;(3)一个等比数列的公比大于1时,该数列为递增数列;(4)求证:x∈R时,方程x2-x+2=0无实根.【思路探究】语句――→命题定义判定是否是命题――→证明举反例真假命题【自主解答】(1)(2)(3)是命题,(4)不是命题.命题(1)中,y=sin4x-cos4x=sin2x-cos2x=-cos 2x,显然其最小正周期为π,为真命题.命题(2)中,当x=4,2x+1>0,是假命题.命题(3)中,当等比数列的首项a1<0,公比q>1时,该数列为递减数列,是假命题.(4)是一个祈使句,没有作出判断,不是命题.1.真假命题的判定方法:(1)真命题的判定方法:真命题的判定过程实际就是利用命题的条件,结合正确的逻辑推理方法进行正确逻辑推理的一个过程.判断命题为真的关键是弄清命题的条件,选择正确的逻辑推理方法.(2)假命题的判定方法:通过构造一个反例否定命题的正确性,这是判断一个命题为假命题的常用方法.2.解决本类问题的难点是对相关知识的理解与掌握.在本例中,把不是命题的改为命题后,再把假命题改为真命题.【解】(2)是假命题,改为真命题为:若x=4时,则2x+1>0.(3)是假命题,改为真命题为:一个等比数列的公比大于1,首项大于零时,该数列为递增数列.(4)不是命题,改为真命题为:若x∈R,则方程x2-x+2=0无实根.命题的形式及改写把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)两个周长相等的三角形面积相等;(2)已知x,y为正整数,当y=x+1时,y=3,x=2;(3)当m>1时,x2-2x+m=0无实根;(4)当abc=0时,a=0且b=0且c=0.【思路探究】(1)这些命题的条件与结论分别是什么?(2)第2小题中大前提“已知x、y为正整数”该怎样处理?【自主解答】(1)若两个三角形周长相等,则这两个三角形面积相等,假命题;(2)已知x,y为正整数,若y=x+1,则y=3,x=2,假命题;(3)若m>1,则x2-2x+m=0无实根,真命题;(4)若abc=0,则a=0且b=0且c=0,假命题.1.解决本例问题的关键是找准命题的条件和结论,进而化成“若p,则q”的形式.2.对于命题的大前提,应当写在前面,不要写在条件中;对于改写时语句不通顺的情况,要适当补充使语句顺畅.把下列命题改写成“若p,则q”的形式,并判断命题的真假.(1)奇数不能被2整除;(2)当(a-1)2+(b-1)2=0时,a=b=1;(3)两个相似三角形是全等三角形;(4)在空间中,平行于同一个平面的两条直线平行.【解】(1)若一个数是奇数,则它不能被2整除,是真命题;(2)若(a-1)2+(b-1)2=0,则a=b=1,是真命题;(3)若两个三角形是相似三角形,则这两个三角形是全等三角形,是假命题.(4)在空间中,若两条直线平行于同一个平面,则这两条直线平行,是假命题.(对应学生用书第4页)因知识欠缺,导致对命题真假判断失误判断下列命题的真假.(1)若a >b ,则1a <1b; (2)x =1是方程(x -1)(x -2)=0的一个根.【错解】 (1)真命题. (2)假命题.【错因分析】 (1)误认为“两数比较大小时,大数的倒数反而小”,而忽视a 、b 的条件,当a >0,b <0时,a >b 但1a >1b. (2)因为方程的根为x =1或x =2,解题时误认为x =1不全面,而没有分析清逻辑关系.【防范措施】 平时学习时一定要对每一个基础知识理解透彻.【正解】 (1)假命题 (2)真命题1.判断一个语句是否是命题要注意两点:(1)是不是陈述句;(2)能否判断真假.2.命题的真假判断要结合已有知识,进行严格的逻辑推理,对于描述较为简洁的命题可以分清条件和结论后改写成“若p ,则q ”的形式再加以判断.(对应学生用书第4页)1.下列语句中是命题的是( )A.π2是无限不循环小数 B .3x ≤5C .什么是“温室效应”D .《非常学案》真好呀! 【解析】 疑问句和祈使句不是命题,C 、D 不是命题,对于B 无法判断真假,只有A 是命题.【答案】 A2.下列命题中是假命题的是( )A .5是15的约数B .对任意实数x ,有x 2<0C .对顶角相等D .0不是奇数 【解析】 对任意实数x ,有x 2≥0,所以B 为假命题.A 、C 、D 均为真命题.【答案】 B3.把命题“垂直于同一平面的两条直线互相平行”改写成“若p ,则q ”的形式为________.【答案】 若两条直线都垂直于同一个平面,则这两条直线互相平行4.判断下列语句是否为命题,若是命题,判断其真假.(1)求证:2是无理数.(2)若G 2=ab ,则a 、G 、b 成等比数列.(3)末位数字是0的整数能被5整除.(4)你是高二的学生吗? 【解】 (1)不是命题,(2)假命题,(3)真命题,(4)不是命题.一、选择题1.(2013·郑州高二检测)在空间,下列命题正确的是( )A .平行直线的平行投影重合B .平行于同一直线的两个平面平行C .垂直于同一平面的两个平面平行D .垂直于同一平面的两条直线平行【解析】 A 中平行投影可能平行,A 为假命题.B 、C 中的两个平面可以平行或相交,为假命题.由线面垂直的性质,D 为真命题.【答案】 D2.命题“6的倍数既能被2整除,也能被3整除”的结论是( )A .这个数能被2整除B .这个数能被3整除C .这个数既能被2整除,也能被3整除D .这个数是6的倍数【解析】 “若p ,则q ”的形式:若一个数是6的倍数,则这个数既能被2整除,也能被3整除.【答案】 C3.下列命题中,是真命题的是( )A .{x ∈R |x 2+1=0}不是空集B .若x 2=1,则x =1C .空集是任何集合的真子集D .若1x =1y,则x =y 【解析】 A 中方程在实数范围内无解,故为假命题;B 中,若x 2=1,则x =±1,也为假命题;因为空集是任何非空集合的真子集,故C 为假命题,D 为真.【答案】 D4.给出命题:方程x 2+ax +1=0没有实数根,则使该命题为真命题的a 的一个值可以是( )A .4B .2C .0D .-3【解析】 方程无实根应满足Δ=a 2-4<0即a 2<4,故当a =0时适合条件.【答案】 C5.有下列命题:①若xy =0,则|x |+|y |=0;②若a >b ,则a +c >b +c ;③矩形的对角线互相垂直. 其中真命题共有( )A .0个B .1个C .2个 【解析】 ①由x ·y =0得到x =0或y =0,所以|x |+|y |=0不正确,是假命题;②当a >b 时,有a +c >b +c 成立,正确,所以是真命题;③矩形的对角线不一定垂直,不正确.是假命题.【答案】 B二、填空题6.把“正弦函数是周期函数”写成“若p ,则q ”的形式是________.【答案】 若函数为正弦函数,则此函数是周期函数.7.如果命题“若x ∈A ,则x +1x≥2”为真命题,则集合A 可以是________.(写出一个即可)【解析】 当x >0时,有x +1x≥2,故A 可以为{x |x >0}. 【答案】 {x |x >0}8.下列命题:①若xy =1,则x ,y 互为倒数,②平行四边形是梯形,③若a >b ,则ac 2>bc 2,④若x 、y 互为相反数,则x +y =0,其中真命题为________.【解析】 ①是真命题,②平行四边形不是梯形,假命题,③若a >b ,则ac 2≥bc 2,故为假命题,④为真命题.【答案】 ①④三、解答题9.把下列命题改写成“若p ,则q ”的形式,并判断真假:(1)实数的平方是非负数;(2)等底等高的两个三角形是全等三角形;(3)当ac >bc 时,a >b ;(4)角的平分线上的点到角的两边的距离相等.【解】 (1)若一个数是实数,则它的平方是非负数,真命题.(2)若两个三角形等底等高,则这两个三角形是全等三角形,假命题.(3)若ac >bc ,则a >b ,假命题.(4)若一个点是一个角的平分线上的点,则该点到这个角的两边的距离相等,真命题.10.判断下列命题的真假并说明理由.(1)合数一定是偶数;(2)若ab >0,且a +b >0,则a >0且b >0;(3)若m >14,则方程mx 2-x +1=0无实根. 【解】 (1)假命题.例如9是合数,但不是偶数.(2)真命题.因为ab >0,则a 、b 同号.又a +b >0故a 、b 不能同负,故a 、b 只能同正,即a >0且b >0.(3)真命题.因为当m >14时,Δ=1-4m <0; ∴方程无实根.11.若命题“ax 2-2ax -3>0不成立”是真命题,求实数a 的取值范围.【解】 因为ax 2-2ax -3>0不成立,所以ax 2-2ax -3≤0恒成立.(1)当a =0时,-3≤0成立;(2)当a ≠0时,应满足⎩⎪⎨⎪⎧ a <0,Δ≤0,解之得-3≤a <0.由(1)(2),得a 的取值范围为[-3,0].(教师用书独具)下列四个命题:①若向量a ,b 满足a·b <0,则a 与b 的夹角为钝角;②已知集合A ={正四棱柱},B ={长方体},则A ∩B =B ;③在平面直角坐标系内,点M (|a |,|a -3|)与N (cos α,sin α)在直线x +y -2=0的异侧;④规定下式对任意a ,b ,c ,d 都成立.⎝ ⎛⎭⎪⎫a b c d 2=⎝ ⎛⎭⎪⎫a b c d ·⎝ ⎛⎭⎪⎫a b c d =⎝ ⎛⎭⎪⎫a 2+bc ab +bd ac +cd bc +d 2,则⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫1 00 1. 其中真命题是________(将你认为正确的命题序号都填上).【解析】 当a 与b 的夹角为π时,有a·b <0,但此时的夹角不为钝角,所以①是错误的;因为正四棱柱的底面是正方形,所以A ∩B =A ,故②也是错误的;因为|a |+|a -3|-2≥|a -a +3|-2=1>0,cos α+sin α-2=2sin ⎝⎛⎭⎪⎫α+π4-2<0,所以点M ,N 在直线x +y -2=0的异侧,故③是真命题;根据题意有⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α2=⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α·⎝ ⎛⎭⎪⎫-sin α cos α cos α sin α =⎝ ⎛⎭⎪⎫-sin α2+cos 2α -sin αcos α+cos αsin α-sin αcos α+cos αsin α cos 2α+sin 2α=⎝ ⎛⎭⎪⎫1 001, 所以④是真命题,故填③④.【答案】 ③④把下面命题补充完整,使其成为一个真命题.若函数f (x )=3+log 2x (x >0)的图象与g (x )的图象关于x 轴对称,则g (x )=________.【解析】 设g (x )图象上任一点(x ,y ),则它关于x 轴的对称点为(x ,-y ),此点在f (x )的图象上,故有:-y =3+log 2x 成立,即y =-3-log 2x (x >0).【答案】 -3-log 2x (x >0)。
部编版道德与法治九下1.1.1第一课《同住地球村-开放互动的世界》教学设计
部编版道德与法治九下1.1.1第一课《同住地球村-开放互动的世界》教学设计一. 教材分析部编版道德与法治九下1.1.1第一课《同住地球村-开放互动的世界》主要介绍当今世界是一个开放、互动的世界。
通过本节课的学习,学生能够理解全球化的概念,认识到世界各国之间的联系日益紧密,了解到我国在全球化过程中的地位和作用,以及如何做一个负责任的全球公民。
二. 学情分析九年级的学生已经具备了一定的全球化观念,对世界各国的地理、文化、经济等方面有了一定的了解。
但部分学生对全球化的认识可能仍停留在表面,缺乏深入的理解。
此外,学生对我国在全球化过程中的地位和作用的认识还不够清晰,需要通过本节课的学习加以强化。
三. 教学目标1.知识与技能:理解全球化的概念,认识到世界各国之间的联系日益紧密,了解到我国在全球化过程中的地位和作用。
2.过程与方法:通过自主学习、合作探究等方式,提高学生分析问题和解决问题的能力。
3.情感态度与价值观:培养学生热爱祖国,关注全球,树立负责任的全球公民意识。
四. 教学重难点1.重点:全球化的概念,世界各国之间的联系,我国在全球化过程中的地位和作用。
2.难点:如何引导学生深入理解全球化,树立负责任的全球公民意识。
五. 教学方法1.情境教学法:通过设置相关情境,让学生身临其境地感受全球化。
2.案例分析法:通过分析具体案例,引导学生深入理解全球化。
3.小组讨论法:分组讨论,培养学生的合作精神和团队意识。
4.自主学习法:鼓励学生自主探究,提高学生的学习兴趣和能力。
六. 教学准备1.教材:部编版道德与法治九下1.1.1第一课《同住地球村-开放互动的世界》。
2.课件:制作相关课件,辅助教学。
3.案例:收集相关全球化的案例,用于分析讲解。
4.视频:准备一些与全球化相关的视频资料,用于导入和情境创设。
七. 教学过程1.导入(5分钟)利用课件展示地球村的图片,引导学生思考全球化对世界的影响。
然后播放一段关于全球化的视频,让学生对全球化有一个直观的认识。
1—10数字网名
1—10数字网名在网络领域,数字网名是非常流行的。
它们代表着不同的个性,可以表达出你的个性、价值观以及你的期望。
大家都可以用数字网名来展示他们的个性,使他们的名字更加丰富有趣。
但是,你知道以110数字网名的创作方式吗?1.1 1号这个号码最常见的形式就是用冠词“1号”来表示,表示人们觉得自己是第一位。
它也代表着你是一个自信的人,表明你不怕挑战,有勇气去尝试新事物,勇于担当和展现自我,具备极高的创造力和想象力。
2.2号2号表示你是一个充满着幻想、惊喜和梦想的人,有着创意的想法,能够利用资源灵活运用,适应不同的环境,追求完美。
3.3号3号表示你是一个有趣的、机灵的人,善于发现、研究和分析新鲜事物,有较强的逻辑思维,不怕面对挑战。
4.4号4号表示你是一个坚毅的、勤奋的、谨慎的人,认真负责,善于计划和实施,把每件事情都做到完美绝不拖拉。
5.5号5号表示你是一个成熟、独立的人,有着坚定的信念和实干的精神,能够坚持自己的想法,并坚定信仰自己的目标。
6.6号6号表示你是一个灵活的、有趣的人,能够适应不同的环境和变化,追求自己的创意,喜欢思考和发现,能够融入新的地方,具备爱好和创造力。
7.7号7号表示你是一个喜欢细细思考的人,有着双重性格,有趣又谨慎,心态开朗而又谦和,善于倾听,有着自己的思想。
8.8号8号表示你是一个拥有深厚实力的人,有着智慧、耐心和强大的能力,勇于突破自我,积极进取,不断超越自己,追求更高层次的成功。
9.9号9号表示你是一个拥有良好文学气质的人,有着坚定的信念和崇高的理想,善于敏锐地把握时机,对自己的事情认真负责,对周围的朋友乐于助人。
10.10号10号表示你是一个具有非凡智慧和洞察力的人,有着强大的心理抗压能力,有耐心和睿智,能够很好地掌控自身情绪,让自己更加理智地对待生活。
通过以上介绍,大家应该对以110数字网名的创作方式有了一定的了解。
每一个数字都有着不同的含义,你可以根据自身情况和特点来决定数字网名。
1.1.1探索勾股定理(教案)
-掌握勾股定理的证明方法:讲解几何拼贴法和代数推导法两种证明方法,帮助学生理解定理的严谨性。
举例:在直角三角形ABC中,设a、b分别为直角边,c为斜边,则勾股定理可表示为:a² + b² = c²。
4.培养学生的数学文化素养,了解勾股定理的历史背景,感受数学在人类文明发展中的价值,激发学生学习数学的兴趣。
三、教学难点与重点
1.教学重点
-理解并掌握勾股定理的概念:勾股定理是指直角三角形中,直角边(即“勾”和“股”)的平方和等于斜边(即“弦”)的平方。重点讲解直角三角形的边长关系,使学生明确勾股定理的核心内容。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解勾股定理的基本概念。勾股定理是指直角三角形中,直角边的平方和等于斜边的平方。它是解决直角三角形边长计算问题的关键。
2.案例分析:接下来,我们来看一个具体的案例。通过计算直角三角形的边长,展示勾股定理在实际中的应用,以及它如何帮助我们解决问题。
另外,小组讨论的环节也让我看到了学生们的合作精神和解决问题的能力。他们能够积极地参与到讨论中,提出自己的见解,也能倾听同伴的意见。不过,我也观察到有些小组在讨论时可能会偏离主题,需要我适时地引导他们回到正题上。这可能提示我在设置讨论主题时,需要更加明确和具体,以便学生们能够更有针对性地展开讨论。
此外,我觉得在课程中增加实验操作环节是一个不错的尝试,它能够让学生们通过动手实践来加深对勾股定理的理解。但在操作过程中,我也发现有些学生对于实验的步骤和目的不够清晰,导致实验效果不尽如人意。因此,我需要在下一次的实验前,更详细地解释实验步骤和目的,确保每个学生都能够从实验中获得收获。
1.1。1你能证明他们吗?导学案
第一章证明(二)§1.1.1你能证明他们吗?学习目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定理。
学习重点:了解所学公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。
学习难点:证明等腰三角形性质时辅助线做法。
学习过程:1、前置准备:列举我们已知道的公理:①公理:同位角,两直线平行。
②公理:两直线,同位角。
③公理:的两个三角形全等。
④公理:的两个三角形全等。
⑤公理:的两个三角形全等。
⑥公理:全等三角形的对应边,对应角。
注:等式的有关性质和不等式的有关性质都可以看作公理。
2、自主学习:用已有的公理和定理证明:“两角及其中一角的对边对应相等的两个三角形全等。
”3、合作交流;议一议:(1)还记得我们探索过的等腰三角形的性质吗?(2)你能利用已有的公理及定理证明这些结论吗?4、例题解析:在△ABC中,AD是角平分线,DE⊥AB, DF⊥AC,试猜想EF与AD之间有什么关系?并证明你的猜想。
5、当堂训练:(1)、下列各组几何图形中,一定全等的是()A、各有一个角是550的两个等腰三角形;B、两个等边三角形;C、腰长相等的两个等腰直角三角形;D、各有一个角是500,腰长都为6cm的两个等腰三角形.(2)、如图,已知:AB∥CD,AB=CD,若要使△ABE≌△CDF,仍需添加一个条件,下列条件中,哪一个不能使△ABE≌△CDF的是()A、∠A=∠B ;B、BF=CE;C、AE∥DF;D、AE=DF.(3)、如果等腰三角形的一个内角等于500则其余两角的度数为。
(4)、①如果等腰三角形的一条边长为3,另一边长为5,则它的周长为。
②等腰三角形的周长为13cm,其中一边长为3cm,则该等腰三角形的腰长为。
(5)、△ABC中, AB=AC, 且BD=BC=AD,则∠A的度数为。
(6)、如图,已知D、E在△ABC的边BC上,AB=AC,AD=AE,求证:BD=CE中考真题:已知:如图,△ABC中,AD是高,CE是中线,DC=BE, DG⊥CE,G是垂足,求证:(1)G是CE中点(2)∠B=2∠BCE。
北师大版初中数学教材目录
北师大版初中数学教材目录北师版初中数学教材总目录七年级上学期第一章丰富的图形世界1.1生活中的立体图形1.2展开与折叠1.3截一个几何体1.4从不同方向看1.5生活中的平面图形第二章有理数及其运算2.1数怎么不够用了2.2数轴2.3绝对值2.4有理数的加法2.5有理数的减法2.6有理数的加减混合运算2.7水位的变化2.8有理数的乘法2.9有理数的除法2.10有理数的乘方2.11有理数的混合运算2.12计算器的使用第三章字母表示数3.1字母能表示什么3.2代数式3.3代数式求值3.4合并同类项3.5去括号3.6探索规律第四章平面图形及其位置关系4.1线段、射线、直线4.2比较线段的长短4.3角的度量与表示4.4角的比较4.5平行4.6垂直4.7有趣的七巧板第五章一元一次方程5.1你今年几岁了5.2解方程5.3日历中的方程5.4我变胖了5.5打折销售5.6“希望工程”义演5.7能追上小明吗5.8教育储蓄第六章生活中的数据6.1 认识100万6.2科学记数法6.3扇形统计图6.4你有信心吗6.5统计图的选择第七章可能性7.1一定摸到红球吗7.2转盘游戏7.3谁转出的“四位数”大课题学习★制作一个尽可能大的无盖长方体七年级下学期第一章整式的运算1.1整式1.2整式的加减1.3同底数幂的乘法1.4幂的乘方与积的乘方1.5同底数幂的除法1.6整式的乘法1.7平方差公式1.8完全平方公式1.9整式的除法第二章平行线与相交线2.1余角与补角2.2探索直线平行的条件2.3平行线的特征2.4用尺规做线段和角第三章生活中的数据3.1认识百万分之一3.2近似数和有效数3.3世界新生儿图第四章概率4.1游戏公平吗4.2摸到红球的概率4.3停留在黑砖的概率课题学习★制作“人口图”第五章三角形5.1认识三角形5.2图形的全等5.3全等三角形5.4探索全等三角形条件5.5作三角形5.6利用三角形全等测量距离5.7探索直角三角形全等的条件第六章变量之间的关系6.1小车下滑的时间6.2变化中的三角形6.3温度的变化6.4速度的变化第七章生活中的轴对称7.1轴对称现象7.2简单的轴对称图形7.3探索轴对称的性质7.4利用轴对称设计图案7.5镜子改变了什么7.6镶边与剪纸八年级上学期第一章勾股定理1.1探索勾股定理1.2能得到直角三角形吗1.3蚂蚁怎样走最近第二章实数2.1数怎么又不够用了2.2平方根2.3立方根2.4公园有多宽2.5用计算器开方2.6实数第三章图形的平移与旋转3.1生活中的平移3.2简单的平移作图3.3生活中的旋转3.4简单的旋转作图3. 5它是怎样变过来的3.6简单的图案设计第四章四边形性质探索4.1平行四边形的性质4.2平行四边形的判别4.3菱形4.4矩形、正方形4.5梯形4.6探索多边形的内角与外角和4.7中心对称图形课题学习★制作平面图性的镶嵌第五章位置的确定5.1确定位置5.2平面直角坐标系5.3变化的鱼第六章一次函数6.1函数6.2一次函数6.3一次函数的图象6.4确定一次函数表达式6.5一次函数图象的应用第七章二元一次方程组7.1谁的包裹多7.2解二元一次方程组7.3鸡图同笼7.4增收节支7.5里程碑上的数7.6二元一次方程与一次函数第八章数据的代表8.1平均数8.2中位数与众数8.3利用计算器求平均数八年级下学期第一章一元一次不等式和一元一次不等式组1.1不等关系1.2不等式的基本性质1.3不等式的解集1.4一元一次不等式1.5一元一次不等式与一次函数1.6一元一次不等式组第二章分解因式2.1分解因式2.2提公因式法2.3运用公式法第三章分式3.1分式3.2分式的乘除法3.3分式的加减3.4分式方程第四章相似图形4.1线段的比4.2黄金分割4.3形状相同的图形4.4相似多边形4.5相似三角形4.6探索三角形相似的条件4.7测量旗杆的高度4.8相似多边形的性质4.9图形的放大与缩小课题学习★制作视力表第五章数据的收集与处理5.1每天干家务活的时间5.2数据的收集5.3频数与频率5.4数据的波动课题学习★吸烟的危害第六章证明(一)6.1你能肯定吗6.2定义与命题6.3为什么它们平行6.4三角形内角和定理的证明6.6关注三角形的外角九年级上学期第一章证明(二)1.1你能证明它们吗1.2直角三角形1.3线段的垂直平分线1.4角平分线第二章一元二次方程2.1花边有多宽2.2配方法2.3公式法2.4分解因式法2.5为什么是0.168第三章证明(三)3.1平行四边形3.2特殊平行四边形第四章视图与投影4.1视图4.2太阳光与影子4.3灯光与影子第五章反比例函数5.1反比例函数5.2反比例函数的图象与性质5.3反比例函数的应用课题学习★猜想、证明与拓广第六章频率与概率6.1频率与概率6.2投针试验6.3生日相同的概率6.4池塘有多少条鱼九年级下学期第一章直角三角形的边角关系1.1从梯子的倾斜程度谈起1.230o,45o,60o角的三角函数值1.3三角函数的有关计算1.4船有触角的危险吗1.5测量物体的高度第二章二次函数2.1二次函数所描述的关系2.2结识抛物线2.3刹车距离与二次函数2.4二次函数y=ax2+bx+c的图象2.5用三种方式表示二次函数2.6何时获得最大利润2.7最大面积是多少2.8二次函数与一元二次方程课题学习★拱桥设计第三章圆3.1车轮为什么做成圆型3.2圆的对称性3.3圆周角和圆心角的关系3.4确定圆的条件3.5直线和圆的位置关系3.6圆和圆的位置关系3.7弧长及扇形的面积3. 8圆锥的侧面积课题学习★设计遮阳篷第四章统计与概率4.1 50年的变化4.2哪种方式更合算4.3游戏公平吗。
1.1.1集合的含义与表示
练:使用描述法表示下列集合:
(1) 不等式2x-1>3的解集;
(2)不超过30的所有非负偶数的集合;
(3)方程 2x2
+1 = 9 的所有实数根组成的集合;
(4)所有的菱形;
3x + 2y = 2 (5)方程组 的解集. 2x + 3y = 27
解: (1)设满足不等式2x-1>3的解为x,满 足 x R且x > 2 条件,用描述法表示为
符号:{集合中元素的符号|集合中元素所具有的共同特征}
如: {x R | x
2
+1 = 0}.
所有直角三角形,可表示为A={x|x是直角三角形}
两种描方法: (1)文字描述法——用文字把元素所具有 的属性描述出来,如﹛自然数﹜. (2)符号描述法——用符号把元素所具有的属 性描述出来,即 {x| P ( x ) } 或 {x∈A| P ( x ) } 等. 含义:在集合A中满足条件P(x)的x的集合.
2
(4)设菱形为x,则用描述法表示为
A = {x x是菱形}.
(5)设此方程组的解为(x,y),且满足
3x + 2y = 2 则用描述法表示为 2x + 3y = 27
3x + 2y = 2 A = {(x, y) } 2x + 3y = 27
注:“{}”本身包含“所有”“全体”的意义,在 {}内元素应去除“所有”“全体”的字样.
3.元素与集合的关系: a属于集合A ,记作 (1)如果a是集合A的元素,就说___________ a∈A . ______ a不属于集合A, (2)如果a不是集合A的元素,就说_____________ a∉A . 记作_____ 4.常用数集及表示符号:
(滕州市育才中学李梅)1.1你能证明它们吗(1)
课题:第一章第一节你能证明它们吗第一课时课型:新授课授课人:滕州市育才中学李梅授课时间:2013年9月3日星期二第二节课教学目标:1.了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式.2.经历“探索-发现-猜想-证明”的过程.能够用综合法证明等腰三角形的关性质定理,增长几何学习经验,进一步提高三种数学语言的转化能力.3.运用等腰三角形性质定理及其推论证明角相等或线段相等,进一步提高逻辑推理能力.4.体会特殊与一般的辩证关系,提高学习兴趣.教学重点:了解作为证明基础的几条公理的内容,通过对等腰三角形性质的证明,掌握证明的基本步骤和书写格式.教学难点:证明等腰三角形性质时辅助线的添加.教法及学法指导:从引导学生自制学具开始,我采用了观察实践法,分组讨论法,讲练结合法,自主探究法等,多法并举,使学生突破证明等腰三角形性质定理的难点,并让学生总结出各种辅助线的特征,体现了学生主动进行知识建构的过程,同时也培养了学生合作探究.分析问题及解决问题的能力.课前准备:多媒体课件,自制等腰三角形纸片,三角尺,量角器.教学过程:一、创设情境师:在这秋高气爽,阳光明媚的日子里,我们又开始了新的学期,大家回到了熟悉的校园..这是我昨天拍摄的大家拉着行李箱入住的一些场景,请看大屏幕.展示:马路上,有的学生骑自行车(三角车架),有的是家长开车送学生入校(车标),有个女生为爸爸打伞(伞面的一部分).宿舍里,大家在整理床铺,扎起窗帘(窗帘垂下的造型),挂放衣物(衣架的形状),一位饥肠辘辘的同学正在吃面包(三明治)······(学生怀着愉悦的心情看图,叽叽喳喳,追逐自己或同学的身影,还不时做出感叹和评论)师:在刚才的展示里你有没有看到熟悉的几何图形呢?生1:三角形生2:等边三角形生3:等腰三角形师:嗯,不错.在我们生活中,大家经常可以看到等腰三角形“靓丽”的身影,等腰三角形以其独特的魅力在我们几何学习是占有重要的地位.今天我们就来学习等腰三角形的一些相关知识.(板书课题:你能证明它们吗)【设计意图】利用从学生入校的场景着眼,从学生自己身边的图片入手,吸引学生的注意力,借助于适当的问题引导,激发学生的学习兴趣,为发现新知识创设一个最佳的心理和认知环境,后续课堂上学生的思维活动就会明显增多.二、复习旧知师:认识等腰三角形之前,让我们先来回顾八年级下册证明(一)中的一些知识.公理:三边对应相等的两个三角形全等(SSS).公理:两边及其夹角对应相等的两个三角形全等(SAS).公理:两角及其夹边对应相等的两个三角形全等(ASA).公理:全等三角形的对应边相等,对应角相等.(组织学生阅读课本第2页“议一议”之上的内容,思考推论的证明方法.时间2分钟.)推论:两角及其中一角的对边对应相等的两个三角形全等(AAS).两生板演证明过程【设计意图】该推论的证明较简单,让学生板演的目的是熟悉命题证明的基本要求和步骤.文字命题的证明的一般步骤:1.分清命题中的题设和结论 2.画出图形写出相应已知和求证3.证明过程.二、探索新知师:现在让我们研究等腰三角形.请思考以下两个问题1.什么叫等腰三角形?2.等腰三角形有哪些性质?生1:两腰相等的三角形是等腰三角形.生2:等腰三角形的性质:两腰相等、两底角相等.生3:还有三线合一师:你是怎么得到我这些性质呢?(拿出等腰三角形纸片,引导学生用等腰三角形纸片或其它工具来研究)生1:量角器度量.可说明两底角相等.生2:折叠已准备好的等腰三角形纸片,能够完全重合即可说明.(对于实验验证,教师要改变以往直接给学生指明方法去做的方式,让学生自己通过讨论得出验证的方法,要为学生提供了发展思维能力的空间.)师:刚才大家用了不同的实验方法,都可以得出这两个结论,但是要说明一个结论的成立,仅仅依靠观察、度量、实验、操作是不够的,证明是必要的.那么现在你能用已有的公理和定理,去证明这些结论吗?我们先来证明第一个结论“等腰三角形两底角相等”(组织分析文字命题的题设和结论,画出图形,写出相应的已知求证.)(然后根据学生的板演,及时评价,并对解题方法提出新的要求:“你还有其他证明方法吗?”.辅助线的添加是本节课的难点,让学生对同一个问题从不同的角度去思考.证明过程可小组内合作交流.3分钟后学生板演展示. 再次合作交流,汇总解题方案.)方法1:取BC中点D,连接AD,构造三角形全等.(SSS)证明:取BC的中点D,连接AD.∵AB=AC,BD=CD,AD=AD,∴△ABC△≌△ACD (SSS)∴∠B=∠C (全等三角形的对应边角相等)方法2:作∠ABC的角平分线,交BC于点D,构造三角形全等.(SAS)证明:作∠ABC的角平分线,交BC于点D∵AB=AC,∠1=∠2,AD=AD,∴△ABC△≌△ACD (SAS)∴∠B=∠C (全等三角形的对应边角相等)方法3:过点A,做AD⊥BC,构造三角形全等.(HL)(我们虽然以前学习过“勾股定理”、“HL定理”但从《证明(1)》建立起公理系统以后,还没有证明过这两个定理,因此它们暂时不能作为证明的依据.但仍要对给出方法3的学生予以肯定.)师:我们把等腰三角形的两个底角相等,简单的叙述为“等边对等角”.接下来谁能证明,“三线合一”这一结论呢?生:刚才的证明过程实际上就可以证明,无论我做了哪种辅助线,都构造了三角形全等,则可得出对应边相等,对就角相等.所以这条线的特征就更加丰富了,也就是“三线合一”啦. 师:看来我们在证明等腰三角形的两底角相等的过程中“生产”出这么多让人兴奋的结论,真是可喜可贺.像这种一举两得的事情是大家善于观察、发现的结果,我们要继续努力.(叙述推论内容:“等腰三角形顶角的平分线、底边上的中线、底边上的高互相重合”)【设计意图】本环节开始的问题给予学生富有思考性的猜想机会,激发学生进一步实验验证和理论证明的兴趣,所以才会出现折纸和度量这些操作活动,然后在探索性质的证明时小组合作交流中易于碰撞出智慧的火花,探索出多种证法.一系列活动的开展让学生明确研究数学问题的思路和方法,培养严谨的学习习惯.教师要善于表扬且要及时表扬,让学生在学习之中能时常体验成功的喜悦.)三、学以致用1.(2012广元)已知等腰三角形的一个内角为80°,则另两个角的度数是【考查知识点】等腰三角形的性质,三角形内角和定理,分类讨论思想(区别等腰三角形顶角和底角).2.(2012肇庆)等腰三角形两边长分别为4和8,则这个等腰三角形的周长为()A.16 B.18 C.20 D.16或20【考查知识点】分类讨论的数学思想,源于等腰三角形腰和底边的区别,但是分类后该题有取舍,用三边关系判断确定三角形的第三边长,最后求得其周长.3.证明: 等边三角形的三个角都相等,并且每个角都等于60°.【考查知识点】文字命题的规范证明,等边三角形的形状4.(2011湖南怀化)如图6,在△ABC中,AB=AC,∠BAC的角平分线交BC边于点D,AB=5,BC=6,则AD=_________.【考查知识点】等腰三角形的三线合一,直角三角形的勾股定理5.(2012滨州)如图,在△ABC中,AB=AD=DC,∠BAD=20°,则∠C=.【考查知识点】本题考查等腰三角形的性质和三角形的外角性质:三角形的一个外角等于和它不相邻的两个内角的和,AB=AD,又已知∠BAD的大小,可求出∠B、∠ADB的大小.又已知AD=DC,由三角形内角和定理可得∠C的大小.四、畅谈收获本节课你有哪些收获和体会?生:我知道了等边对等角,三线合一.生:我们可以利用等腰三角形的性质来解决相关的许多问题.生:证明我最擅长三角形全等,我还学到了一题多解.生:除了相关定义和定理之外,我更感觉到了数学中的思想方法的重要性,如分类讨论.生:定理我能理解,但是在应用时,往往还不知如何下手,特别是需要添加辅助线的时候.生:我在证明时有点不规范……【设计意图】学生通过回顾本节课的学习过程,体会“探索—发现—猜想—证明”这样的科学探究过程,通过回顾本节课辅助线的添加,进一步丰富自己的解题经验,提高解题能力和一题多解的能力.五、分层作业1.(A类):课本5页知识技能1、2题助学1、2、4、5、72.(B类)助学3、8、93.(C类)助学6、巩固训练2【设计意图】作业分层,让能力不同的每个学生都能各有所得板书设计学生板演及课堂练习________________________________教后反思一、教学中的成功经验1.通过教学中的动手实验把学生和教师紧紧联系在一起,并且贯穿于教学过程的始终.教师努力把握情感目标的契机,积极参加学生的各项活动,努力使自己成为学生中的一员,并认真精细地组织教学,在教育教学的各个环节善于对学生进行情感诱导,竭尽全力帮助学生获得成功,使学生自觉的产生奋发向上的内在动力推动他们不断进步.2.减少教师的活动量,给学生充足的时间发展.教师做好学法指导,做到少讲,少问,力求做到精而美,使学生有时间和空间进行自我调控,自主发展,自我创造,自我评价,促使学生学会学习.二、需进一步提高的能力学生方面:在课堂学生之间交往的过程中,所有学生都应学会如何与同学合作,为趣味和快乐而学习而竞争,自主地进行独立学习.教师方面:1.应进一步加强课堂教学的调控,不断提高自身的业务水平和更新知识结构.2.对时间的把握要掌控好,还要努力做的收放自如.。
[数学]泛函分析
1.1.1 证明完备度量空间的闭子集是完备的子空间,而任一度量空间中的完备子空间必是闭子集.证明:(1) 设(X, ρ)是完备度量空间,A⊆X,A是X的闭子集.若{x n}是A中的Cauchy列,则{x n}也是X中的Cauchy列.因(X, ρ)完备,故{x n}收敛于X中某点x.而A是X的闭子集,且{x n}是A中的点列,故其极限x也在A中.因此,{x n}是子空间A中收敛列.所以,子空间(A, ρ)是完备的.(2) 设(X, ρ)是度量空间,B⊆X,B是X的完备子空间.若{x n}是B中的点列,且在X中收敛于x∈X.则{x n}是X中的Cauchy列,因此{x n}也是B中的Cauchy列.由B是X的完备子空间,故{x n}也是B中的收敛列.若{x n}在B中收敛于y∈B,则{x n}作为X中的点列也收敛于y.由极限的唯一性,x∈y.故x∈B.所以B是X中的闭子集.1.1.4 设T是度量空间上的压缩映射,求证T是连续的.证明:设(X, ρ)是度量空间,0 < α< 1,T : X→X是满足ρ(Tx, Ty) ≤α·ρ(x, y) (∀x, y∈X )的压缩映射.若{x n}是X中收敛于x的点列,则ρ(x n, x)→ 0.而ρ(Tx n, Tx) ≤α·ρ(x n, x),故有ρ(Tx n, Tx) → 0.因此T连续.1.1.5 设T是压缩映射,求证T n (n∈N+)也是压缩映射,并说明逆命题不一定成立.证明:(1) 设(X, ρ)是度量空间,0 < α< 1,T : X→X是满足ρ(Tx, Ty) ≤α·ρ(x, y) (∀x, y∈X )的压缩映射.∀n∈N+,若S = T n是压缩映射,则∀x, y∈X,有ρ(T n+1x, T n+1y) = ρ(T n(Tx), T n(Ty)) = ρ(S(Tx), S(Ty)) ≤ρ(Tx, Ty) ≤α·ρ(x, y).所以T n+1也是压缩映射.由数学归纳法原理,T n (n∈N+)都是压缩映射.(2) 逆命题不成立的例子:考虑T : [0, 2]→ [0, 2],其中T定义如下:当x∈[0, 1]时,T(x) = 0;当x∈(1, 2]时,T(x) = x - 1.显然T不是压缩映射.但∀x∈[0, 2],T(T(x)) = 0.因此,T2是压缩映射.1.1.6 设M是(P n, ρ)中的有界闭集,映射T : M→M满足:ρ(Tx, Ty) < ρ(x, y)(∀x, y∈M,x ≠y).求证T在M中存在唯一的不动点.证明:(反证法) 假若T在M中没有不动点.显然,T在M上是连续的,故函数ρ(x, Tx)在M上连续且恒大于0.因M是(P n, ρ)中的有界闭集,故ρ(x, Tx)在M中某点x0处达到下确界.0 < ρ(x0 , Tx0 ) ≤ρ(Tx0 , T2x0 ) < ρ(x0 , Tx0),矛盾.所以,T在M中存在不动点.根据1.1.3,该不动点是唯一的.1.1.7 对于积分方程x(t) -λ⎰[0, 1]e t–s x(s) ds = y(t),其中y(t)∈C[0, 1]为一给定函数,λ为常数.| λ| < 1,求证存在唯一解x(t)∈C[0, 1].证明:首先积分方程等价于e–t x(t) -λ⎰[0, 1]e–s x(s) ds = e–t y(t),令z(t) = e–t x(t),w(t) = e–t w(t),则方程变为z(t) -λ⎰[0, 1]z(s) ds = w(t).因此只要证明上面的方程有唯一解z(t)∈C[0, 1].设T : C[0, 1] →C[0, 1],(Tz)(t) = w(t) + λ⎰[0, 1]z(s) ds.则∀z1, z2∈C[0, 1],| (Tz1)(t) - (Tz2)(t) | = | λ| · | ⎰[0, 1] (z1(s) -z2(s)) ds |≤ | λ| ·⎰[0, 1] | z1(s) -z2(s) | ds ≤ | λ| · max t∈[0, 1] | z1(t) -z2(t) |;故ρ(Tz1, Tz2) ≤ | λ| ·ρ(z1, z2).因此,T是C[0, 1]上的压缩映射.故T在C[0, 1]上有唯一不动点.即存在唯一的z(t)∈C[0, 1],使得z(t) = w(t) + λ⎰[0, 1]z(s) ds.1.2.2 在一个度量空间(X, ρ)上,求证:基本列是收敛列,当且仅当其中存在一串收敛子列.证明:必要性是显然的,只证明充分性.设{x n}是X中的一个Cauchy列,且{x n}有一个收敛子列{x n(k)},记x n(k) →x.∀ε > 0,存在N∈N+,使得∀m, n≥N都有ρ(x n, x m) < ε /2.对此ε,存在K∈N+,使得∀k≥K都有ρ(x n(k), x) < ε /2.令L = max{K, N},则ρ(x n(L), x) < ε /2,且n(L) ≥L ≥N.当n≥N时,ρ(x n, x n(L)) < ε /2.故ρ(x n, x) ≤ρ(x n, x n(L)) + ρ(x n(L), x) < ε /2 + ε /2 = ε.所以,x n→x ( n→∞).因此{x n}是X中的收敛列.1.2.3 设F是只有有限项不为0的实数列全体,在F上引进距离ρ(x, y) = sup k ≥ 1 | ξk -ηk |,其中x = {ξk }∈F,y = {ηk }∈F.求证(F,ρ)不完备,并指出它的完备化空间.证明:(1) 首先,容易验证(F,ρ)是度量空间.∀n∈N+,令x n = {1, 1/2, 1/3, ..., 1/n, 0, 0, ...},则x n∈F.当m > n时,ρ(x n, x m) = sup k ≥ 1 | ξk(n)-ξk(m)|= max{1/(n + 1), 1/(n + 2), ..., 1/m}= 1/(n + 1) → 0 ( n→∞).故{x n}为F中的Cauchy列.下面证明{x n}不是F中的收敛列.若不然,设x n →x∈F.记x = ( ξ1, ξ2, ..., ξN, 0, 0, ... ).当n > N时,总有ρ(x n, x) ≥ | 1/(N + 1) – 0 | = 1/(N + 1),故ρ(x n, x)不收敛于0,这与前面的假设x n →x相矛盾.因此,{x n}不是F中的收敛列.这就说明了(F,ρ)不是完备的.(2) 从前述的{x n}的构造可以看出,我们可以任意选定一个收敛于0的实数列{u k},令y n = {u1, u2, ..., u n, 0, 0, ...},则{y n}必为F中的Cauchy列.我们设c0是收敛于0的实数列全体,在c0上引进距离ρ(x, y) = sup k ≥ 1 | ξk -ηk |,其中x = ( ξ1, ξ2, ..., ξk, ... )∈c0,y = ( η1, η2, ..., ηk, ... )∈c0.首先我们证明(c0,ρ)是度量空间.事实上,我们只需要证明三角不等式.设x = (ξk), y = (ηk ), y = (ζk )∈c0,则ρ(x, y) = sup k ≥ 1 | ξk -ηk | ≤ sup k ≥ 1 (| ξk -ζk | + | ζk -ηk | )≤ sup k ≥ 1 | ξk -ζk | + sup k ≥ 1 | ζk -ηk | = ρ(x, z) + ρ(z, y).所以,(c0,ρ)是度量空间.显然,(F,ρ)是(c0,ρ)的一个子空间.现在我们证明(c0,ρ)是完备度量空间.设{x n}是(c0,ρ)中的一个Cauchy列,记x n = ( ξ1(n), ξ2(n), ..., ξk(n), ... ).∀k∈N+,因为ρ(x n, x m) = sup k ≥ 1 | ξk(n)-ξk(m)| ≥ | ξk(n)-ξk(m)|,故{ξk(n)}n是P中的Cauchy列,故为收敛列.设ξk(n) →ξk ( n→∞).并设x = ( ξ1, ξ2, ..., ξk, ... ).下面证明x∈c0.∀ε > 0,存在N∈N+,使得∀m, n≥N,有ρ(x n, x m) < ε/2.特别地,ρ(x n, x N) < ε/2.因此,∀k∈N+,有| ξk(n)-ξk(N)| < ε/2.令n→∞,得| ξk -ξk(N)| ≤ε/2.而x N = (ξ1(N), ξ2(N), ..., ξk(N), ... )是一个收敛于0的数列.故存在K∈N+,使得∀k≥K,| ξk(N)| < ε/2.因此,| ξk | ≤ | ξk -ξk(N)| + | ξk(N)| < ε/2 + ε/2 = ε.即x = ( ξ1, ξ2, ..., ξk, ... )为一个收敛于0的数列,因此,x∈c0.下面证明{x n}是c0中收敛于x的点列.∀ε > 0,存在N∈N+,使得∀m, n≥N,有ρ(x n, x m) < ε.因此∀k∈N+,有| ξk(n)-ξk(m)| < ε.令m→∞,得| ξk(n)-ξk | ≤ε.所以,ρ(x n, x) ≤ε.这样就证明{x n}收敛于x.综上所述,我们可以把(F,ρ)嵌入到完备度量空间(c0,ρ)中.最后,我们只要再证明F是c0的稠密子集即可.事实上,对照(2)的开始部分,对于任意x = ( ξ1, ξ2, ..., ξk, ... )∈c0,令y n = {ξ1, ξ2, ..., ξn, 0, 0, ...},则{y n}是F中的点列,而且是c0中的Cauchy列.根据c0的完备性的证明,我们知道,{y n}必然收敛于x = ( ξ1, ξ2, ..., ξk, ... ).所以F在(c0,ρ)中稠密.根据教材p11命题1.2.5,(c0,ρ)是(F,ρ)的完备化.1.2.4 求证:[0, 1]上的多项式全体按照距离ρ1( p, q ) = ⎰[0, 1] | p(x) -q(x) | dx ( p, q是多项式)是不完备的,并指出它的完备化空间.证明:记[0, 1]上的多项式全体为P,连续函数全体为C,Lebesgue可积函数全体为L1,则有P⊆C⊆L1.记C上的度量为ρ( f, g ) = max x∈[0, 1] | f(x) -g(x) |.(1) 令f n(x) = arctan( x- 1/2 ),h(x) = (π/2) sign( x- 1/2 ),x∈[0, 1].则f n∈C,且{ f n}在(L1, ρ1)中收敛于h,因此{ f n}是(L1, ρ1)中的基本列.根据数学分析中的Weierstrass定理,P在(C, ρ)中稠密.故∀n∈N+,存在p n∈P,使得ρ( p n, f n) < 1/n.因此ρ1( p n, f n) = ⎰[0, 1] | p n(x) -f n(x) | dx ≤ρ( p n, f n) < 1/n.所以,ρ1( p n, h) ≤ρ1( p n, f n) + ρ1( f n, h) → 0 ( n→∞).这说明{ p n}是(L1, ρ1)中的收敛列,从而{ p n}是(L1, ρ1)中的基本列.因此{ p n}也是(P, ρ1)中的基本列.假如{ p n}在(P, ρ1)中收敛于g∈P,则{ p n}在(L1, ρ1)中也收敛于g∈P.故g和h是(L1, ρ1)中的同一点(几乎处处相等).显然,h不能与连续函数几乎处处相等,故h∉C,因此h∉P.从而g∉P.矛盾.这样我们就找到了(P, ρ1)中的基本列,而它不是(P, ρ1)中的收敛列.所以(P, ρ1)不完备.(2) 根据实分析中的结论,C在(L1, ρ1)中稠密.设ϕ∈L1.则∀ε > 0,存在f∈C,使得ρ1( f, ϕ) < ε/2.而P在(C, ρ)中稠密,故存在p∈P,使得ρ( p, f ) < ε/2.ρ1( p, f) = ⎰[0, 1] | p(x) -f(x) | dx ≤ρ( p, f ) < ε/2.所以,ρ1( p, ϕ) ≤ρ1( p, f ) +ρ1( f, ϕ) < ε.因此P在(L1, ρ1)中稠密.根据教材p11命题1.2.5以及(L1, ρ1)的完备性得知(L1, ρ1)是(P, ρ1)的完备化.1.2.5 在完备度量空间(X, ρ)中给定点列{x n},如果∀ε > 0,存在基本列{y n},使得ρ( x n, y n) < ε (n∈N+).求证{x n}收敛.证明:只要证明{x n}也是基本列即可.事实上,∀ε > 0,存在基本列{y n},使得ρ( x n, y n) < ε/3 (n∈N+).存在N∈N+,使得∀m, n≥N,有ρ(y n, y m) < ε/3.此时,ρ( x n, x m) ≤ρ(x n, y n) + ρ(y n, y m) + ρ(y m, x m) < ε.故{x n}是基本列,所以{x n}收敛.1.3.2 在度量空间中,求证:紧集上的连续函数必是有界的,并且能达到它的上、下确界.证明:设(X, ρ)是度量空间,D是紧子集,f : D→P是连续函数.(1) 若f无上界,则∀n∈N+,存在x n∈D,使得f (x n) > 1/n.因D是紧集,故D是自列紧的.所以{x n}存在收敛子列x n(k) →x0∈D (k→∞).由f的连续性,f (x n(k))→f (x0) (k→∞).但由f (x n) > 1/n知f (x n)→ +∞(n→∞),所以f (x n(k))→ +∞ (k→∞),矛盾.故f有上界.同理,故f有下界.(2) 设M = sup x∈D f(x),则∀n∈N+,存在y n∈D,使得f (y n) > M- 1/n.{y n}存在子列y n(k) →y0∈D (k→∞).因此f ( y0 ) ≥M.而根据M的定义,又有f ( y0 ) ≤M.所以f ( y0 ) = M.因此f能达到它的上确界.同理,f能达到它的下确界.1.3.3 在度量空间中,求证:完全有界的集合是有界的,并通过考虑l 2的子集E= {e k }k≥e k = { 0, 0, ..., 1, 0, ... } (只是第k个坐标为1,其余都是0 ),来说明一1,其中个集合可以是有界的但不完全有界的.证明:(1) 若A是度量空间(X, ρ)中的完全有界集.则存在A的有限1-网N = { x0, x1, x2, ..., x n }.令R = ∑1 ≤j≤nρ(x0, x j) + 1.则∀x∈A,存在某个j使得 0 ≤j≤n,且ρ(x, x j) < 1.因此,ρ(x, x0) ≤ρ(x, x j) + ρ(x j, x0) ≤ 1 + ∑1 ≤j≤nρ(x0, x j) = R.所以A是度量空间(X, ρ)中的有界集.(2) 注意到ρ(e k , e j) = 21/2 ( ∀k ≠ j ),故E中任意点列都不是Cauchy列.所以,E中任意点列都没有收敛子列(否则,该收敛子列就是Cauchy列,矛盾).因此,E不是列紧集.由l 2是完备的,以及Hausdorff定理,知E不是全有界集.但E显然是有界集.1.3.4 设(X, ρ)是度量空间,F1, F2是它的两个紧子集,求证:∃x i ∈F i( i = 1, 2),使得ρ(F1, F2) = ρ(x1, x2).其中ρ(F1, F2) = inf {ρ(x, y) | x∈F1, y∈F2 }证明:由ρ(F1, F2)的定义,∀n∈N+,∃x i(n)∈F i( i = 1, 2),使得ρ(x1(n), x2(n)) < ρ(F1, F2) + 1/n.因F1, F2紧,故不妨假设{x1(n)}, {x2(n)}都是收敛列.设它们的极限分别为x1, x2,则ρ(x1, x2) ≤ρ(F1, F2).因此ρ(F1, F2) = ρ(x1, x2).1.3.5 设M是C[a, b]中的有界集,求证集合{F(x) =⎰[a, x]f(t) dt | f∈M }是列紧集.证明:设A = {F(x) =⎰[a, x]f(t) dt | f∈M }.由M有界,故存在K > 0,使得∀f∈M,ρ( f, 0) ≤K.先证明A是一致有界的和等度连续的.∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(t) dt.由于ρ(F, 0) = max x∈[a, b] | F(x) | = max x∈[a, b] | ⎰[a, x]f(t) dt |≤ max x∈[a, b] | f(t) | · (b -a ) = ρ( f, 0) · (b -a ) ≤K (b -a ).故A是一致有界的.∀ε > 0,∀s, t∈[a, b],当| s-t| < ε/K时,∀F∈A,存在f∈M,使得F(x) =⎰[a, x]f(u) du.| F(s) -F(t) | = | ⎰[s, t]f(u) du | ≤ max u∈[a, b] | f(u) | · | s -t |= ρ( f, 0) · | s -t | ≤K· (ε/K) = ε.故A是等度连续的.由Arzela-Ascoli定理,A是列紧集.1.3.6 设E = {sin nt}n≥ 1,求证:E在C[0, π]中不是列紧的.证明:显然E是一致有界的.根据Arzela-Ascoli定理,我们只要证明E不是等度连续的即可.我们的想法是找一个E中的点列f n,以及[0, π]中的两个点列s n和t n,使得| s n -t n | → 0,但| f n(s n)-f n(t n)|不收敛于0.事实上,这是可以做到的,只要令f n (u) = sin (2n u),s n = (π/2)(1 + 1/(2n)),t n = (π/2)(1 - 1/(2n)).则s n + t n = π;s n -t n = π/(2n)→ 0 (n→∞).因此,| f n(s n)-f n(t n)| = 2 | sin (2n s n) - sin (2n t n) |= 2 | sin (n (s n -t n)) cos (n (s n + t n)) |= 2 | sin (π/2) cos (n π) | = 2.所以,E不是等度连续的.进而,E在C[0, π]中不是列紧的..3.7 求证S空间的子集A是列紧的充要条件是:∀n∈N+,∃C n> 0,使得∀x = (ξ1, ξ2, ..., ξn, ...)∈A,都有| ξn | ≤C n ( n = 1, 2, ...).证明:(⇐) 设x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... )是A中的点列.存在{x k}的子列{x1, k}使得其第1个坐标ξ1(1, k)收敛;存在{x1, k}的子列{x2, k}使得其第2个坐标ξ2(2, k)收敛;如此下去,得到一个{x k}的子列的序列,第( j +1)个子列是第j个子列的子列,且第j个子列的第j个坐标是收敛的.选取对角线构成的点列{x j, j},则{x j, j}是{x k}的子列,且每个坐标都收敛.根据习题1.2.1的证明可知,S空间的点列收敛的充要条件是坐标收敛.故{x j, j}是收敛点列.所以,A是列紧的.(⇒) 我们只要证明,∀n∈N+,A中的点的第n个坐标所构成的集合是有界集.若不然,设A中的点的第N个坐标所构成的集合是无界的.则存在A中的点列x k = (ξ1(k), ξ2(k), ..., ξn(k), ...) ( k = 1, 2, ... ),使得| ξN(k) | > k.显然,{ ξN(k) }无收敛子列,故{ x k }也无收敛子列,这与A列紧相矛盾.这样就完成了必要性的证明.1.3.8 设(X, ρ)是度量空间,M是X中的列紧集,映射f : X →M满足ρ( f (x1), f (x2)) < ρ( x1, x2 ) (∀x1, x2∈M, x1≠x2).求证:f在X中存在唯一的不动点.证明:(1) 首先证明cl(M)是紧集.为此只要证明cl(M)列紧即可.设{ x n }是cl(M)中的点列,则存在M中的点列{ y n }使得ρ( x n, y n) < 1/n.因M列紧,故{ y n }有收敛子列{ y n(k)},设y n(k) →u∈cl(M).显然{ x n(k)}也是收敛的,并且也收敛于u∈cl(M).所以cl(M)是自列紧的,因而是紧集.(2) 令g(x) = ρ( x, f (x)),则g是X上的连续函数.事实上,由ρ( f (x1), f (x2)) < ρ( x1, x2 )可知f : X →M是连续的,因而g也连续.由习题1.3.2知存在x0∈cl(M),使得g(x0) = inf {ρ( x, f (x)) | x∈cl(M) }.(3) 若g(x0) > 0,则ρ( x0, f (x0)) > 0,即x0≠f (x0).故ρ( x0, f (x0)) = g(x0) ≤g( f (x0)) = ρ( f (x0), f ( f (x0))) < ρ( x0, f (x0)),矛盾.所以,必有g(x0) = 0,即ρ( x0, f (x0)) = 0,因此x0就是f的不动点.1.3.9 设(M, ρ)是一个紧距离空间,又E⊆C(M),E中的函数一致有界并且满足下列的Hölder 条件:| x(t1) -x(t2) | ≤Cρ(t1, t2)α(∀x∈E,∀t1, t2∈M ),其中0 < α≤ 1,C > 0.求证:E在C(M)中是列紧集.证明:由Hölder条件易知E是等度连续的.又E中的函数一致有界,由Arzela-Ascoli定理知E是C(M)中的列紧集.1.4.2 设c[0, 1]表示(0, 1]上连续且有界的函数x(t)全体.∀x∈c[0, 1],令|| x || = sup{| x(t) | | 0 < t≤ 1}.求证:(1) || ·||是c[0, 1]空间上的范数.(2) l∞与c[0, 1]的一个子空间是等距同构的.证明:(1) 正定性和齐次性都是明显的,我们只证明三角不等式.|| x || = sup{| x(t) | | 0 < t≤ 1}.|| x || + || y || = sup{| x(t) | | 0 < t≤ 1} + sup{| y(t) | | 0 < t≤ 1}≥ sup{| x(t) + y(t) | 0 < t≤ 1} = || x + y ||.所以|| ·||是c[0, 1]空间上的范数.(2) 任意取定(0, 1]中的一个单调递减列{a k },满足(i) a1 = 1;(ii) lim k→∞a k = 0.显然,在每个[a k + 1, a k]上为线性函数的f∈c[0, 1]是存在的.设X = { f∈c[0, 1] | f在每个[a k + 1, a k]上为线性函数 }.容易验证X是c[0, 1]的子空间.定义ϕ : X →l∞,f #ϕ ( f ) = ( f (a1), f (a2), ...).则ϕ : X →l∞是线性双射,且|| ϕ ( f ) ||∞= sup k ≥ 1 | f (a k) | = sup0 < t≤ 1 { | f (t ) | } = || f ||.所以,ϕ : X →l∞是等距同构.因此,l∞与c[0, 1]的一个子空间是等距同构的.1.4.3 在C1[a, b]中,令|| f ||1 = (⎰[a, b] ( | f(x) |2 + | f’(x) |2) dx )1/2 (∀f∈C1[a,b]).(1) 求证:|| · ||1是C1[a, b]上的范数.(2) 问(C1[a, b], || · ||1)是否完备?证明:(1) 正定性和齐次性都是明显的,和前面的习题一样,只验证三角不等式.我们先来证明一个比较一般的结果:若线性空间X上的非负实值函数p, q都满足三角不等式:p(x) + p(y) ≥p(x +y),q(x) + q(y) ≥q(x +y),∀x, y∈X;则函数h = ( p2 + q2 )1/2也满足三角不等式.事实上,∀x, y∈X,由Minkowski不等式,我们有h(x) + h(y) = ( p(x)2 + q(x)2 )1/2 + ( p(y)2 + q(y)2 )1/2≥ (( p(x)+ p(y))2 + ( q(x) + q(y))2 )1/2 ≥ ( p(x + y)2 + q(x + y)2 )1/2 = h(x + y).回到本题:若令p( f ) = (⎰[a, b] | f(x) |2dx )1/2,q( f ) = (⎰[a, b] | f’(x) |2dx )1/2,则( p( f ) + p( g ))2 = ((⎰[a, b] | f(x) |2dx )1/2 + (⎰[a, b] | g(x) |2dx )1/2)2= ⎰[a, b] | f(x) |2dx + 2(⎰[a, b] | f(x) |2dx )1/2 · (⎰[a, b] | g(x)|2dx )1/2 + ⎰[a, b] | g(x) |2 dx≥⎰[a, b] | f(x)|2dx + 2 ⎰[a, b] | f(x) | · | g(x)| dx + ⎰[a, b] | g(x)|2dx= ⎰[a, b] ( | f(x) | + | g(x)| )2dx ≥⎰[a, b] ( | f(x) + g(x)| )2dx = ( p( f + g ))2.所以有p( f ) + p( g ) ≥p( f + g ).特别地,p( f’) + p( g’) ≥p( f’+ g’),即q( f ) + q( g ) ≥q( f + g ).因此,线性空间C1[a, b]上的非负实值函数p, q都满足三角不等式.根据开始证明的结论,|| · ||1也满足三角不等式.所以,|| · ||1是C1[a, b]上的范数.(2) 在C1[- 1, 1]中,令f n(x) = (x2 + 1/n2 )1/2 ( ∀x∈[- 1, 1] ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).则f’n(x) = 2x (x2 + 1/n2 )-1/2 ( ∀x∈[- 1, 1] ).显然,f n(x)几乎处处收敛于| x |,f’n(x)几乎处处收敛于2sign( x ).因此,f n(x)依测度收敛于| x |,f’n(x)依测度收敛于2sign( x ).故在L2[- 1, 1]中,f n(x) → | x |,f’n(x) → 2sign( x ).因此,它们都是L2[- 1, 1]中的基本列,故⎰[- 1, 1] | f n(x) -f m(x) |2 dx → 0 (m, n→∞);⎰[- 1, 1] | f’n(x) -f m’(x) |2 dx → 0 (m, n→∞).故|| f n-f m ||1 = (⎰[- 1, 1] ( | f n(x) -f m(x) |2 + | f’n(x) -f m’(x) |2 ) dx )1/2→ 0 (m, n→∞).即{ f n }是C1[- 1, 1]中的基本列.下面我们证明{ f n }不是C1[- 1, 1]中的收敛列.若不然,设{ f n }在C1[- 1, 1]中的收敛于f∈C1[- 1, 1].因|| f n-f ||1 = (⎰[- 1, 1] ( | f n(x) -f(x) |2 + | f’n(x) -f’(x) |2 ) dx )1/2≥ (⎰[- 1, 1] | f n(x) -f(x) |2dx )1/2,故在L2[- 1, 1]中,f n(x) →f.而在前面已说明L2[- 1, 1]中,f n(x) → | x |;由L2[- 1, 1]中极限的唯一性以及f的连续性,知f(x) = | x |.这样就得到f∉C1[- 1, 1],矛盾.所以,{ f n }不是C1[- 1, 1]中的收敛列.这说明C1[- 1, 1]不是完备的.对一般的C1[a, b],只要令f n(x) = (x - (a + b )/2)2 + 1/n2 )1/2 ( ∀x∈[a, b] )就可以做同样的讨论,就可以证明C1[a, b]不是完备空间.1.4.4 在C[0, 1]中,对每个f∈C[0, 1],令|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2.求证:|| · ||1和|| · ||2是C[0, 1]中的两个等价范数.证明:(1) 在习题1.4.3的证明中已经包含了|| · ||1是C[0, 1]中的范数的证明.下面我们证明|| · ||2是C[0, 1]中的范数,我们仍然只要验证三角不等式.|| f ||2 + || g ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 + (⎰[0, 1] ( 1 + x) | g(x) |2dx )1/2 = || (1 + x)1/2f(x) ||1 + || (1 + x)1/2g(x) ||1≥ || (1 + x)1/2f(x) + (1 + x)1/2g(x) ||1= || (1 + x)1/2 ( f(x) + g(x) ) ||1≥ (⎰[0, 1] (1 + x) | f(x) + g(x) |2dx )1/2 = || f + g ||2.所以,|| · ||2也是C[0, 1]中的范数.(2) 我们来证明两个范数的等价性.∀f∈C[0, 1]|| f ||1 = (⎰[0, 1] | f(x) |2dx )1/2 ≤ (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 = || f ||2,|| f ||2 = (⎰[0, 1] ( 1 + x) | f(x) |2dx )1/2 ≤ 2 (⎰[0, 1] | f(x) |2dx )1/2 = 2 || f ||1.因此两个范数等价.1.4.10 求证范数的严格凸性等价于下列条件:|| x + y || = || x || + || y || ( ∀x≠θ, y≠θ) ⇒x = c y ( c > 0).证明:(⇒) 设范数是严格凸的,若x, y ≠θ满足|| x + y || = || x || + || y ||,事实上,我们总有|| (x/|| x ||) || = || (y/|| y ||) || = 1.因x, y ≠θ,故|| x || + || y || > 0,所以|| x + y || ≠ 0.于是|| x ||/|| x + y || + || y ||/|| x + y || = 1.假若x/|| x || ≠y/|| y ||,由严格凸性,得到|| (|| x ||/|| x + y ||)(x/|| x ||) + (|| y ||/|| x + y ||)(y/|| y ||) || < 1,即|| (( x + y )/|| x + y ||) || < 1,矛盾.因此必然有x/|| x || = y/|| y ||,即x = (|| x ||/|| y ||) y.(⇐) 设∀x, y ≠θ,|| x + y || = || x || + || y ||蕴涵x = c y ( c > 0).下面证明范数是严格凸的.设x≠y,且|| x || = || y || = 1,又设α, β∈(0, 1),且α + β= 1.我们知道|| α x + β y || ≤ || α x || + || β y || = α || x || + β|| y || = α + β= 1.假若|| α x + β y || = 1,根据我们的条件,就得到α x = c (β y),其中c > 0.那么,就有|| α x || = || c (β y) ||,而|| x || = || y || = 1,所以α= c β;故x = y,这就与x≠y相矛盾.所以必然有|| α x + β y || < 1,即范数是严格凸的.1.4.11 设X是线性赋范空间,函数ϕ : X →P1称为凸的,如果不等式ϕ( λ x + (1 -λ) y ) ≤λϕ( x ) + (1 -λ)ϕ( y ) ( ∀ 0 ≤λ≤ 1) 成立.求证凸函数的局部极小值必然是全空间的最小值.证明:设x0是凸函数ϕ的一个局部极小点.如果存在x∈X,使得ϕ( x ) < ϕ( x0),则∀ t ∈(0, 1),ϕ( t x + (1 -t ) x0) ≤t ϕ( x ) + (1 -t )ϕ( x0) < t ϕ( x0) + (1 -t )ϕ( x0) = ϕ( x0).而对x0的任意邻域U,都存在t ∈(0, 1),使得t x + (1 -t ) x0∈U.这就与x0是局部极小点相矛盾.因此∀x∈X,都有ϕ( x0) ≤ϕ( x ),即x0是ϕ的最小点.1.4.12 设(X, || · ||)是一线性赋范空间,M是X的有限维子空间,{e1, e2, ..., e n}是M的一组基,给定g∈X,引进函数F : K n →K1.对∀c = (c1, c2, ..., c n)∈K n,规定F(c) = F(c1, c2, ..., c n) = || ∑1 ≤i≤n c i e i-g ||.(1) 求证F是一个凸函数;(2) 若F的最小值点是c = (c1, c2, ..., c n),求证f = ∑1 ≤i≤n c i e i给出g在M中的最佳逼近元.证明:(1) 设c = (c1, c2, ..., c n), d = (d1, d2, ..., d n)∈K n, λ∈[0, 1],则F(λ c + ( 1 -λ) d ) = || ∑1 ≤i≤n ( λ c i + ( 1 -λ) d i ) e i-g ||= || λ∑1 ≤i≤n c i e i + ( 1 -λ) ∑1 ≤i≤n d i e i- (λ g+ ( 1 -λ)g )||= || λ(∑1 ≤i≤n c i e i -g) + ( 1 -λ) ( ∑1 ≤i≤n d i e i-g )||≤λ|| ∑1 ≤i≤n c i e i -g || + ( 1 -λ) || ∑1 ≤i≤n d i e i-g ||= λ F(c)+ ( 1 -λ)F(d),故F是一个凸函数.(2) 因为{e1, e2, ..., e n}是M的一组基,故M中的每个元h都可表示为h = ∑1 ≤i≤n d i e i,其中d = (d1, d2, ..., d n)∈K n.因为F(c) ≤F(d),故|| f-g || = F(c) ≤F(d) = || h-g ||.那么f就是g在M中的最佳逼近元.1.4.15 设X是B*空间,M是X的有限维真子空间,求证:∃y∈X,|| y|| = 1,使得|| y–x || ≥ 1 ( ∀x ∈M ).证明:取定z∈X \ M,令Y = span{z} + M.记S = { y∈Y | || y || = 1 }.则M是Y的真闭子空间,而S是Y中的单位球面.由Riesz引理,∀n∈N+,存在y n∈S,使得d( y n, M ) ≥ 1 - 1/n.因为Y也是有限维的,故其中的单位球面为自列紧集.存在{y n}的收敛子列.不妨设y n(k) →y∈S.则d( y n(k), M ) ≥ 1 - 1/n(k),故有d( y, M ) ≥ 1.即|| y–x || ≥ 1 ( ∀x ∈M ).1.4.17 (商空间) 设X是线性赋范空间,X0是X的闭线性子空间,将X中的向量分类,凡是适合x’-x’’∈X0的两个向量x’, x’’归于同一类,称其为等价类,把一个等价类看成一个新的向量,这种向量的全体组成的集合为X/X0表示,并称其为商空间.下列是关于商空间的命题.(1) 设[ y ]∈X/X0,x∈X,求证:x∈[ y ]的充分必要条件是[ y ] = x + X0.证明:设x’, x’’∈X,若它们归于同一类,则记为x’~x’’.我们用[ x ]表示x所在的等价类(大家注意,题目形式已经作了相应的修改).(⇒) 若x∈[ y ],则x~y.∀u ∈[ y ],u~y,故u~x,即u –x∈X0.因此u ∈x + X0.所以[ y ] ⊆x + X0.反过来,∀u ∈x + X0,则u~x,故u~y.因此u ∈[ y ].所以x + X0 ⊆ [ y ].所以[ y ] = x + X0.(⇐) 若[ y ] = x + X0,则y –x∈X0,即y~x.从而x∈[ y ].(2) 在X/X0中定义加法与数乘如下:[ x ] + [ y ] = x + y + X0(∀[ x ], [ y ] ∈X/X0 )λ[ x ] = λ x + X0(∀[ x ]∈X/X0 , ∀λ∈K )其中x和y分别表示属于等价类[ x ]和[ y ]的任一元素.又规定范数|| [ x ] ||0 = inf z∈[ x ] || z || ( ∀[ x ]∈X/X0 )求证:(X/X0, || · ||0)是一个B*空间.证明:第(1)部分说明了[ x ] = x + X0.容易看出加法与乘法的定义是合理的.进一步可以证明X/X0 构成数域K上的线性空间,且其零元为[ θ] = X0.下面证明|| · ||0是X/X0 上的范数.显然,∀[ x ]∈X/X0,|| [ x ] ||0≥ 0.若[ x ] = [ θ] = X0,则|| [ x ] ||0 = 0.若|| [ x ] ||0 = 0,则inf z∈[ x ] || z || = 0.存在z n∈[ x ]使得|| z n || → 0,即z n→θ (n→∞).那么,x-z n∈X0,x-z n→x (n→∞),而X0是闭集,故x∈X0.所以x~θ,即[ x ] = X0.因此|| · ||0有正定性.∀[ x ]∈X/X0,∀λ∈K,|| λ[ x ]||0 = || [ λ x ] ||0 = inf y∈[ x ] || λ y || = inf y∈[ x ] | λ| · || y || = | λ| · inf y∈[ x ] || y || = | λ| · ||[ x ]||0.因此|| · ||0有齐次性.∀[ x ], [ y ]∈X/X0,|| [ x ] + [ y ] ||0 = inf z∈[ x ] + [ y ] || z || = inf u∈[ x ], v∈[ y ] || u + v ||≤ inf u∈[ x ], v∈[ y ] { || u || + || v || } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } ≤ inf u∈[ x ] { inf v∈[ y ] { || u || + || v ||} } = inf u∈[ x ] { || u || + inf v∈[ y ] || v || } = inf u∈[ x ] || u || + inf v∈[ y ] || v || = || [ x ] ||0 + || [ y ] ||0.因此|| · ||0的三角不等式成立.所以,(X/X0, || · ||0)是一个B*空间.(3) 设[ x ]∈X/X0, 求证对∀y∈[ x ]有inf { || y -z || | z∈X0 } = || [ x ] ||0.证明:|| [ x ] ||0 = inf u∈[ x ] || u || = inf u∈[ y ] || u || = inf { || u || | u∈y + X0 }= inf { || y + v || | v∈X0 } = inf { || y -z || | z∈X0 }.(4) 定义映射ϕ : X →X/X0为ϕ (x) = [ x ] = x + X0 (∀x∈X ).求证ϕ是线性连续映射.证明:∀x, y∈X,∀α, β∈K,ϕ( α x + β y ) = [α x + β y ] = [α x ] + [ β y ] = α [ x ] + β[ y ] = αϕ (x) + βϕ (y).|| ϕ (x) -ϕ (y) ||0 = || [ x ] - [ y ] ||0 = || [ x-y ] ||0 = inf z∈[ x-y ] || z || ≤ || x-y ||.所以,ϕ是线性连续映射.(5) ∀[ x ]∈X/X0,求证∃y∈X,使得ϕ (y) = [ x ],且|| y || ≤ 2|| [ x ] ||0.证明:因为|| [ x ] ||0 = inf z∈[ x ] || z ||,若|| [ x ] ||0 = 0,则由|| · ||0的正定性,知[ x ] = X0,取y = θ即满足要求.若|| [ x ] ||0≠ 0,则inf z∈[ x ] || z || = || [ x ] ||0 < 2 || [ x ] ||0,存在∃y∈[ x ],使得|| y || ≤ 2|| [ x ] ||0.此时显然有ϕ (y) = [ x ] = [ y ].(6) 设(X, || · ||)完备,求证(X/X0, || · ||0)也是完备的.证明:设{ [ x ]n }是X/X0中的基本列.为证明它是收敛列,只需证明它存在收敛子列.由基本列性质,可选出子列{ [ x ]n(k)}使得|| [ x ]n(k) - [ x ]n(k+1) ||0 ≤ 1/2k.故∑k ≥ 1 || [ x ]n(k) - [ x ]n(k+1) ||0 收敛.根据(5),∀k∈N+,∃y k∈[ x ]n(k+1) - [ x ]n(k),使得|| y k || ≤ 2|| [ x ]n(k+1) - [ x ]n(k) ||0.那么,∑k ≥ 1|| y k ||收敛.由X的完备性,s k = ∑ 1 ≤j ≤k y j是X中的收敛列.设其极限为s.由(5)中ϕ的连续性,在X/X0中,ϕ(s k) →ϕ(s) ( k→∞ ).而ϕ(s k) = ϕ( ∑ 1 ≤j ≤k y j ) = ∑ 1 ≤j ≤k ϕ( y j )= ∑ 1 ≤j ≤k ( [ x ]n(j+1) - [ x ]n(j)) = [ x ]n(k+1) - [ x ]n(1).故{[ x ]n(k+1) - [ x ]n(1)}收敛,因而{[ x ]n(k)}是收敛列.因此X/X0中的基本列{ [ x ]n }存在收敛子列{[ x ]n(k)},所以,{ [ x ]n }是X/X0中的收敛列.因此,(X/X0, || · ||0)是完备的.(7) 设X = C[0, 1],X0 = { f∈X | f (0) = 0 },求证:X/X0 ≅K,其中记号“≅”表示等距同构.证明:显然,X0是C[0, 1]中的线性子空间.记X0所确定的等价关系为~,则f~g ⇔ f (0) = g (0).定义Φ : X/X0 →K,Φ([ f ]) = f (0).显然定义是合理的.∀f, g∈X,∀α, β∈K,Φ(α[ f ] + β[ g ]) = Φ([αf + β g ]) = (αf + β g )(0)= αf (0)+ β g (0) = αΦ([ f ])+ βΦ([ g ]).因此Φ是线性映射.因Φ(X0) = 0,故Φ是单射.而∀c∈K,若记所对应的常值函数为h c∈C[0, 1],则Φ( [ h c] ) = c.故Φ是满射.综上所述,Φ : X/X0 →K是线性同构.∀f∈X,|| [ f ]||0 = inf g∈[ f ] { || g || } ≥ inf g∈[ f ] { | g (0) | }= inf g∈[ f ] { | f (0) | } = | f (0) | = | Φ([ f ]) |.另一方面,因为常值函数h f (0)∈[ f ],故|| [ f ]||0 = inf g∈[ f ] { || g || } ≤ || h f (0) || = | f (0) | = | Φ([ f ]) |.所以,∀f∈X,都有|| [ f ]||0 = | Φ([ f ]) |,因此Φ : X/X0 →K是等距同构.1.5.1 设X是B*空间,E是以θ为内点的真凸子集,P是由E产生的Minkowski泛函,求证:(1) x∈int(E) ⇔P(x) < 1;(2) cl(int(E)) = cl(E).证明:(1) (⇒) 若x∈int(E),存在δ > 0,使得Bδ(x) ⊆E.注意到x + x/n→x ( n→∞ ),故存在N ∈N+,使得x + x/N ∈Bδ(x) ⊆E.即x/( N/( 1 + N ) ) ∈E.因此P(x) ≤N/( 1 + N ) < 1.(⇐) 若P(x) < 1.则存在a > 1,使得y = a x∈E.因θ∈int(E),故存在δ > 0,使得Bδ(θ) ⊆E.令η = δ(a - 1)/a,∀z∈Bη(x),令w = (a z-y )/(a - 1),则|| w || = || (a z-y )/(a - 1) || = || a z-y ||/(a - 1)= || a z-a x ||/(a - 1) = a || z-x ||/(a - 1) < aη/(a - 1) = δ.故w∈Bδ(θ) ⊆E.故z = ((a - 1)w + y )/a ∈E,因此,Bη(x) ⊆E.所以x∈int(E).(2) 因int(E) = E,故有cl(int(E)) ⊆ cl(E).下面证明相反的包含关系.若x∈cl(E),则∀ε > 0,存在y∈E,使得|| x -y || < ε/2.因ny/(n + 1) →y ( n →∞ ).故存在N ∈N+,使得|| Ny/(N + 1) -y || < ε/2.令z = Ny/(N + 1),则z∈E,且P(z) ≤N/(N + 1) < 1,由(1)知z∈int(E).而|| z -x || ≤ || z -y || + || y -x || < ε/2 + ε/2 = ε.故x∈cl(int(E)),因此cl(E) ⊆ cl(int(E))所以cl(int(E)) = cl(E).1.5.2 求证在B空间中,列紧集的凸包是列紧集.证明:设A是B空间X中的列紧集,∀ε > 0,存在A的有限ε /3网B.设B = {b1, b2, ..., b n},M = max j{ || b j || },取δ > 0,使得n δ M < ε /3.设[0, 1]分划D为0 = t0 < t1 < t2 < ... < t m = 1,使得max 1 ≤j ≤m {| t j–t j–1|} < δ.设∀x∈co(A),设x= λ1 a1 + λ2 a2+ ... + λ k a k,其中a j∈A,λ j > 0,∑ j λ j = 1.对每个j ≤k,存在b i( j )∈B使得|| a j-b i( j ) || < ε /3;令y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k),则|| x - y || = || λ1 (a1 -b i(1)) + λ2 (a2 -b i(2))+ ... + λ k (a k-b i(k))||,≤λ1· || a1 -b i(1) || + λ2 · || a2 -b i(2) || + ... + λ k· || a k-b i(k) ||≤ ( λ1 + λ2 + ... + λ k ) · (ε /2) = ε /3.将y= λ1 b i(1) + λ2 b i(2)+ ... + λ k b i(k)中的那些含有相同b j的项合并起来,于是,y可表示为y= μ1 b1 + μ2 b2+ ... + μ n b n,其中μj ≥ 0,且∑ j μj = 1.对每个l ≤n,存在t s( l )∈D,使得|| μl-t s( l ) || < δ;令z= t s(1) b1 + t s(2) b2+ ... + t s(n) b n,则|| y - z || = || (μ1 -t s(1))b1 + (μ2 -t s(2))b2+ ... + (μn -t s(n))b n ||≤∑ l | μl-t s( l ) | · max j{ || b j || } ≤n δ M < ε /3;令C = {t s(1) b1 + t s(2) b2+ ... + t s(n) b n | t s(i)∈D,1 ≤i≤n},则C是有限集,且C是co(A)的有限ε网.因空间是完备的,故co(A)是列紧集.1.5.3 设C是B*空间X中的一个紧凸集,映射T : C →C连续,求证T在C上有一个不动点.证明:因为C是紧集,所以C是闭集.因为C是紧集,故C的任意子集都列紧.而T(C) ⊆C,故T(C)列紧.于是,由Schauder不动点定理,T在C上有一个不动点.[Schauder定理:B*空间中闭凸集C上使T(C)列紧的连续自映射T必有不动点]1.5.4 设C是B空间X中的一个有界闭凸集,映射T i : C→X (i = 1, 2)适合(1) ∀x, y∈C ⇒T1x + T2y∈C;(2) T1是一个压缩映射,T2是一个紧映射.求证:T1 + T2在C上至少有一个不动点.证明:[邸双亮老师解] 设压缩映射T1的压缩系数为α∈(0, 1).∀y∈C,映射K y : C→C,x#T1x + T2y是压缩映射,因此K y有唯一不动点u y∈C (即u y满足u y = T1 u y + T2 y).故可定义映射U : C→C,y #u y;考察映射I–T1 : C→X,x#x -T1x,则∀x, y∈C,||( I–T1 ) x - ( I–T1 )y || = ||( x -y) – (T1 x -T1y) ||≥ || x -y || – || T1 x -T1y || ≥ || x -y || –α|| x -y || = (1 –α) || x -y ||;故I–T1为单射.因此存在逆映射( I–T1 )–1 : (I–T1)(C) →C.而不等式||( I–T1 ) x - ( I–T1 )y || ≥ (1 –α) || x -y ||表明,( I–T1 )–1还是连续的.因∀y∈C,U(y)= u y ∈C满足U(y) = T1(U(y)) + T2 y,即( I–T1 )U(y) = T2 y;故U(y) = ( I–T1 )–1 T2 y,即U = ( I–T1 )–1 ◦T2.因T2紧且( I–T1 )–1连续,故U = ( I–T1 )–1 ◦T2是紧映射.由Schauder不动点定理,U有不动点.即存在u∈C,使得( I–T1 )–1 T2 u = u;即T2 u = ( I–T1 )u;也就是T1u + T2u = u.1.6.4 设M, N是内积空间中的两个子集,求证:M⊆N ⇒N⊥⊆M⊥.证明:若x∈N⊥,则∀y∈N,(x, y) = 0.而M⊆N,故∀y∈M,也有(x, y) = 0.因此x∈M⊥.所以,N⊥⊆M⊥.1.6.13 设X是内积空间,∀x0 ∈X,∀r > 0,令C = { x ∈X | || x - x0 || ≤r }.(1) 求证:C是X中的闭凸集;(2) ∀x∈X,令y = x0 + r (x - x0)/|| x - x0 || (当x ∉C );y = x (当x ∈C ).求证:y是x在C中的最佳逼近元.证明:(1) 因范数是连续函数,故C = { x ∈X | || x - x0 || ≤r }是闭集.∀x, y∈C,因|| x - x0 || ≤r,|| x - x0 || ≤r },故∀λ∈[0, 1],|| (λ x + (1-λ) y ) - x0 || = || λ( x-x0 ) + (1-λ) (y - x0)||≤ || λ( x-x0 ) + (1-λ) (y - x0)|| ≤λ|| x-x0 || + (1-λ) || y - x0 ||≤λ r + (1-λ) r = r.所以,C是X中的闭凸集.(2) 当x ∈C时,y = x.显然y是x在C中的最佳逼近元.当x ∈C时,y = x0 + r (x - x0)/|| x - x0 ||.∀z∈C,|| x-y || = || ( x-x0 -r (x - x0)/|| x - x0 ||) ||= || (1 -r/|| x - x0 ||) (x - x0) || = || x - x0 || -r.≤ || x - x0 || - || z - x0 || ≤ || x - z||.因此,y是x在C中的最佳逼近元.1.在P1中令ρ1(x, y) = (x -y)2,ρ2(x, y) = | x -y |1/2,,问ρ1, ρ2是否为P1上的距离?[解] 显然ρ1, ρ2满足距离空间定义中的非负性和对称性.但ρ1不满足三角不等式:取点x = -1, y= 0, z = 1,则ρ1(x, z) = 4 > 2 = ρ1(x, y) + ρ1(y, z),所以ρ1不是P1上的距离。
最新编辑北师大版九年级数学上册第一章教案
北师大版九年级上册数学教案2013-2014 学年第一章证明(二)第1课时课题:§1.1、你能证明它们吗(一)课型:新授教学目标:1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。
能够用综合法证明等腰三角形的关性质定理和判定定理。
3、结合实例体会反证法的含义。
教学重点:了解作为证明基础的几条公理的内容,通过等腰三角形性质证明,掌握证明的基本步骤和书写格式。
教学难点:能够用综合法证明等腰三角形的关性质定理和判定定理(特别是证明等腰三角形性质时辅助线做法)。
教学过程:复习:1、什么是等腰三角形?2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质?新课讲解:在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。
同学们和我一起来回忆上学期学过的公理♦本套教材选用如下命题作为公理 :♦ 1.两直线被第三条直线所截,如果同位角相等,那么这两条直线平行;♦ 2.两条平行线被第三条直线所截,同位角相等;♦ 3.两边夹角对应相等的两个三角形全等; (SAS)♦ 4.两角及其夹边对应相等的两个三角形全等; (ASA)♦ 5.三边对应相等的两个三角形全等; (SSS)♦ 6.全等三角形的对应边相等,对应角相等.由公理5、3、4、6可容易证明下面的推论:推论两角及其中一角的对边对应相等的两个三角形全等。
(AAS)证明过程:已知:∠A=∠D,∠B=∠E,BC=EF求证:△ABC≌△DEF证明:∵∠A+∠B+∠C=180°,∠D+∠E+∠F=180°(三角形内角和等于180°)∴∠C=180°-(∠A+∠B)∠F=180°-(∠D+∠E)又∵∠A=∠D,∠B=∠E(已知)∴∠C=∠F又∵BC=EF(已知)∴△ABC≌△DEF(ASA)定理:等腰三角形的两个底角相等。
人教版七年级数学上册课件:1.1.1正数和负数(共20张PPT)
在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( A ). 2 %,
中国 7.
例1 一个月内,小明体重增加 2 kg,小华体重减少 1 kg,小强体重无变化,写出他们这个月的体重增长值.
因此“-3”的含义是这天的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃.
A.-70 m 写出这些国家这一年商品进出口总额的增长率.
A. 0 个 B. 1 个 C. 2 个 D. 3 个
8.一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼在潜水艇下方 20 m 处,则鲨鱼所在的海拔高度为( ).
8%,油菜籽产量比上一年增长-2.
A.0
B.-2
C.1
8.D. 一艘潜水艇所在的海拔高度为 -50 m ,若一条鲨鱼
2,8,-1 , ,30 %.
④ 0 ℃表示没有温度,其中正确的有(
). A.0
B.-2
C.1
1 D.
举出身边具有相反意义的量的例子
2.下列各数Biblioteka 是负数的为( ).2 %,
中国 7.
2 3.在 -1,0,1,2 这四个数中,既不是正数也不是负
2,8,-1 , ,30 %.
数的是 ___0_____. 7%”表示油菜籽产量比上一年减少 2.
思考:你知道下面图片中数字的含义吗? 2这样在正数前面加上符号“-”(负)的数叫做负数.
B.-50 m C.20 m
D.-20 m
五、作业
1.教科书习题 1.1 第 1,2,3 题. 2.查阅资料,了解数的发展历史.
那么应该怎么表示呢?
一、新知导入
例题: (1)天气预报北京冬季里某天的气温为-3 ℃~ 3 ℃, -3 的确切含义是什么?这一天北京的温差是多少? 解:这天的最高温度是零上 3 ℃,最低温度是零下 3 ℃. 温差是最高温度与最低温度的差. 因此“-3”的含义是这天 的最低温度为零下 3 ℃,这一天北京的温差是 6 ℃. (2)某年,我国花生产量比上一年增长 1.8%,油菜籽 产量比上一年增长-2.7%. “增长-2.7%”表示什么意思? 解:“增长-2.7%”表示油菜籽产量比上一年减少 2.7%.
1.1.1命题(公开课)
“若p,则q” 否命题为:
思 考
下列四个命题中,命题(1)与命题(2)(3)(4)的条件和结论 之间分别有什么关系?
f (x) (2) 若 f (x) (3) 若 f (x) (4) 若 f (x)
(1) 若
f (x) 是周期函数; 是周期函数,则 f (x) 是正弦函数; 不是正弦函数,则 f (x) 不是周期函数; 不是周期函数,则 f (x) 不是正弦函数;
1.1 命题及其关系
命题及其关系
1.1.1 命题
思考
下列语句的表述形式有什么特点?你能判断 它们的真假吗? (1) 12>5; (2) 3是12的约数; 语句都是陈述句, (3) 0.5是整数; (4)对顶角相等; 并且可以判断真假。 (5)3 能被2整除; (6)若x2=1,则x=1.
一个符号
条件P的否定,记作“P”。读作“非P”。 原命题: 逆命题: 若p 则q 若q 则p
否命题: 若 p 则 q 逆否命题: 若 q 则 p
例题
1、把下列各命题写成 “若P则q”的形式: (1)正方形的四边相等。 (2)线段垂直平分线上
若一个点在线段的垂 直平 分线上, 则 它到这条线段两端点 的距离相等。
是正弦函数,则
命题(1) (4)的关系? 发现: 命题(4)把命题(1)的条件和结论互换否定.这两 个命题叫做互为逆否命题;其中一个命题叫做 原命题,另一个叫做原命题的逆否命题. “若p,则q” 原命题为:
“若q,则p” 逆否命题为:
三个概念
1、互逆命题:如果一个命题的条件和结论是另一个 命题的结论和条件,那么这两个命题叫做互逆命题。 如果把其中一个命题叫做原命题,那么另一个叫做原 命题的否命题。 2、互否命题:如果第一个命题的条件和结论是第二 个命题的条件和结论的否定,那么这两个命题叫做互 否命题。如果把其中一个命题叫做原命题,那么另一 个叫做原命题的否命题。 3、互为逆否命题:如果第一个命题的条件和结论分 别是第二个命题的结论的否定和条件的否定,那么这 两个命题叫做互为逆否命题。
1.1.1命题人教B版高中数学选修1-1
课堂小结
1. 命题的定义:用语言、符号或式子表达的, 可以判断真假的陈说句.命题可以分成两类:
真命题和假命题.
2.判断一语句是否为命题的根据是:
陈说句;可以判断真假
3.在“若p,则q”的情势的命题中,p为 命题的条件,q为命题的结论.
分析
这两条语句都是能判断真假的 陈说句,则他们都属于命题,不管 判断的结果是对的还是错的.
小练习
判断下面语句是否是命题?哪些是真命
题,哪些是假命题?
(1)空集是任何集合的子集;
真命题
(2)若整数a是素数,则a是奇数; 假命题
(3)指数函数是增函数吗? ? (4)x>15; ?
上面4个语句中,(3)不是陈说句, 所以它不是命题;(4)虽然是陈说句, 但因为它不能判断真假,所以它也不是 命题.
导入新课
初中已学过命题的知识,那么 请大家判断一下,下列句子是不是 命题?
(1)矩形的对角线相等;
(2)3>12 (3)3>12吗? (4)8是24的约数; (5)两条直线相交,有且只有一个 交点; (6)他是个高个子!
分析
由上面的语句,我们可以知道,句子 (1)(2)(4)(5)是陈说句,且能判断句子的 对错。句子(2)的说法是错的,句子 (1)(4)(5)的说法是正确的,而句子(3)是 疑问句,(6)是感叹句。所以要想判 断它们是否是命题,第一应知道命题有 什么特点.
(2)若四边形是菱形,则它的对角线互 相垂直平分.
解:(2)条件p : 四边形是菱形,
结论q :对角线互相垂直平分.
小练习
将下句化成若p,则q的情势. (1)两条直线相交有且只有一个交点 (2)对顶角相等; (3)全等的两个三角形面积也相等
1.1你能证明他们吗
第一章 证明(二)1.1 你能证明他们吗一、基本知识1、全等三角形的判定方法:ASA,AAS,SAS,SSS,HL.2、全等三角形的性质:对应边、对应角相等,面积、周长相等。
对应中线、高线、角平分线相等。
3、等腰三角形性质:等边对等角;三线合一。
(重点)4、等腰三角形的判定:等角对等边。
(重点)5、等边三角形性质:三边相等,三个角都等于60°。
6、等边三角形的判定:7、含30°的直角三角形性质:30°所对的直角边等于斜边的一半。
8、反证法。
(难点) 二、知识巩固与应用1.如图1.1.1,已知AB=AC,AD=AE,∠1=∠2,求证:∠B =∠C2.如图1.1.2,AB=AC,点D,E 在BC 上,且AD=AE ,求证:∠BAD =∠CAE3.如图1.1.3,AB=AC,点E 在CA 延长线上,EF 垂直BC 于G ,交AB 于F ,求证:AE=AF.4.如图1.1.4,AD=DC=DB,∠A=30°,求证:△ACD 是等边三角形。
5.△ABC 中,∠A:∠B:∠C=1:2:3,CD ⊥AB 于D ,求证:AB=4DB6.如图1.1.5,AD 是BC 上的中线,求证:AB+AC > 2AD⎪⎪⎩⎪⎪⎨⎧︒三角形一个角等于60的等腰两个角等于60三个角相等三边边相 1.1.1图AE D BC12AB CD E1.1.2图EABCGF 1.1.3图CA BDAB CD 1.1.5图7.如图1.1.6,AB=AC=DC,BD=AD,求:∠B 度数8.如图1.1.7,△ABC 中,∠CBA 、∠ACB 的平分线交于点F ,过点F 作DE ∥BC ,交AB 于D ,交AC 于E ,AB=12cm,AC=10cm ,求:△ADE 周长。
9.如图1.1.8,等边△ABC ,D 为BC 延长线上的点,CE 平分∠CAD ,CE=BD ,求证:△ADE 是等边三角形。
【新教材精品教案】1.1.1空间向量及线性运算
理问题的方法,能否把平面向量推广到空间向量,从而利用向量研究滑翔运动员呢,下面我们类比平面向量,研究空间向量,先从空间上的概念和平面向量的概念,给出空间向量的概念.的量叫做空间向量,向量的大小叫做向师生互动:1.想一想,向量线性运算的结果,与向量起点的选择有关吗?2.你能否证明这些运算律?证明结合律时,与证明平面向量的结合律有什么不同?】.-般地,对于三个不共为邻边作平行六面体,则c b a ,,的和等于以O为起点的平行六面体对角线所表示的向量,另外,利用向量加法的交换律和结合,由数乘向量的定义及向量共线的充要条件可知,存在实数λ,使得的方向向量.任意两个空间向量总是共面的,但三个空间向量既可能是共面的,也可能是不共面的,那么,什么情况下三个空间向量共面呢?【师生互动:板书示范.】四课堂练习四归纳总结1.利用向量的线性运算和空间向量基本定理表示向量是向量应用的基础.2.利用共线向量定理、共面向量定理可以证明一些平行、共面问题;利用数量积运算可以解决一些距离、夹角问题.3.利用向量解立体几何题的一般方法:把线段或角度转化为向量表示,用已知向量表示未知向量,然后通过向量的运算或证明去解决问题.其中合理选取基底是优化运算的关键.五课后作业同步基础训练六板书设计空间向量及其线性运算空间向量的概念方向向量与共面向量加减运算及运算律例题1随堂练习设计意图:通过练习巩固本节所学知识,通过学生解决问题,发展学生的数学运算、逻辑推理、数学建模的核心素养.教学反思:教学中主要突出了几个方面:一是创设问题情景,充分调动学生求知欲,并以此来激发学生的探究心理。
二是运用启发式教学方法,就是把教和学的各种方法综合起来统一组织运用于教学过程,以求获得最佳效果。
并且在整个教学设计尽量做到注意学生的心理特点和认知规律,触发学生的思维,使教学过程真正成为学生的学习过程,以思维教学代替单纯的记忆教学。
三是注重渗透类比法、归纳法等一般的数学思想方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
学生自学课本第一章第一节内容,从中画出自己看不懂的地方,在小组内小范围的交流讨论。
四、尝试练习
1、证明“等腰三角形两底角相等”
定理:等腰三角形的两个底角相等。
这一定理可以简单叙述为:等边对等角。
已知:如图,在ABC中,AB=AC。
求证:∠B=∠C
证明:取BC的中点D,连接AD。
课题
1.1、你能证明它们吗
课时
1
时间
学习目标
经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理。
重点、难点
能够用综合法证明等腰三角形的关性质定理和判定定理。
教法、学法
观察法
教具、学具
小黑板
教学过程:
一、ቤተ መጻሕፍቲ ባይዱ习提问,导入新课
1、什么是等腰三角形?
2、你会画一个等腰三角形吗?并把你画的等腰三角形栽剪下来。
3、试用折纸的办法回忆等腰三角形有哪些性质
二、展示目标:
1、了解作为证明基础的几条公理的内容,掌握证明的基本步骤和书写格式。
2、经历“探索-发现-猜想-证明”的过程。能够用综合法证明等腰三角形的关性质定理和判定定理
三、学生自学
在《证明(一)》一章中,我们已经证明了有关平行线的一些结论,运用下面的公理和已经证明的定理,我们还可以证明有关三角形的一些结论。
A、55°,55°B、70°,40°
C、55°,55°或70°,40°D、以上都不对
4、如图,在△ABC中,AB=AC,点D为BC边的中点,∠BAD=20°,则∠C=().
5、如图,在△ABC中,AB=AC,D为BC边上一点,∠B=30°,∠DAB=45°.
(1)求∠DAC的度数;(2)求证:DC=AB.
C、有两个锐角的和等于90°
D、内角和等于180°
4、等腰三角形的底角为40°,则这个等腰三角形的顶角为( )
A、40°B、80°C、100°D、100°或40°
五、点拨讲解:
在上图中,线段AD还具有怎样的性质?为什么?由此你能得到什么结论?
应让学生回顾前面的证明过程,思考线段AD具有的性质和特征,从而得到结论,这一结合通常简述为“三线合一”。
∵AB=AC,BD=CD,AD=AD,
∴△ABC△≌△ACD (SSS)
∴∠B=∠C (全等三角形的对应边角相等)
2、等腰三角形的两条边长分别为3,6,那么它的周长为( )
A、15B、12C、12或15D、不能确定
3.下列性质中,等腰三角形具有而直角三角形不一定具有的是( )
A、两边之和大于第三边
B、有一个角的平分线垂直于这个角的对边
教后反思
推论等腰三角形的顶角的平分线、底边上的中线、底边上的高互相重合。
六、达标测试
1、已知等腰三角形的两条边长分别是7和3,则下列四个数中,第三条边的长是( )
A、8B、7C、4D、3
2、等腰三角形的两边长为4、9,则它的周长是( )
A、17B、17或22C、20D、22
3、已知等腰三角形的一个内角为70°,则另两个内角的度数是( )