专题3.4 函数与导数的综合问题-2016届高三数学二轮复习考点总动员(原卷版)

合集下载

3.3 导数与函数的综合问题

3.3 导数与函数的综合问题

3.3 导数与函数的综合问题一、学习目标 明确考纲要求1.会用导数解决实际问题.2.利用导数研究函数的单调性、极(最)值,并会解决与之有关的方程(不等式)问题. 二、整合教材知识,落实基本能力 三、精研高考题点,提升备考知能考点一利用导数研究生活中的优化问题[典例] 为了保护环境,某工厂在政府部门的支持下,进行技术改进:把二氧化碳转化为某种化工产品,经测算,该处理成本y (万元)与处理量x (吨)之间的函数关系可近似地表示为:y =⎩⎪⎨⎪⎧125x 3+640,x ∈[10,30),x 2-40x +1 600,x ∈[30,50],且每处理一吨二氧化碳可得价值为20万元的某种化工产品.(1)当x ∈[30,50]时,判断该技术改进能否获利?如果能获利,求出最大利润;如果不能获利,则国家至少需要补贴多少万元,该工厂才不亏损?(2)当处理量为多少吨时,每吨的平均处理成本最少? [解] (1)当x ∈[30,50]时,设该工厂获利为S , 则S =20x -(x 2-40x +1 600)=-(x -30)2-700, 所以当x ∈[30,50]时,S <0,因此,该工厂不会获利,所以国家至少需要补贴700万元,才能使工厂不亏损. (2)由题意可知,二氧化碳的每吨平均处理成本为 P (x )=y x=⎩⎨⎧125x 2+640x,x ∈[10,30),x +1 600x -40,x ∈[30,50].①当x ∈[10,30)时, P (x )=125x 2+640x,所以P ′(x )=225x -640x 2=2(x 3-8 000)25x 2.因为x ∈[10,30),所以当10≤x <20时,P ′(x )<0,P (x )为减函数; 当20<x <30时,P ′(x )>0,P (x )为增函数. 所以当x =20时,P (x )取得最小值 P (20)=20225+64020=48.②当x ∈[30,50]时, P (x )=x +1 600x-40≥2x ·1 600x-40=40,当且仅当x =1 600x ,即x =40∈[30,50]时, P (x )取最小值P (40)=40,因为48>40,所以当处理量为40吨时,每吨的平均处理成本最少.生活中经常遇到求利润最大、用料最省、效率最高等问题,这些问题通常称为优化问题. 利用导数解决生活中优化问题的基本思路为:[提示] (1)在求实际问题的最大值、最小值时,一定要考虑实际问题的意义,不符合实际意义的值应舍去.(2)在实际问题中,如果函数在定义域内只有一个极值点,一般情况下,只要根据实际意义判定是最大值还是最小值即可,不必再与端点处的函数值比较.[变式训练]请你设计一个包装盒.如图所示,ABCD 是边长为60 cm 的正方形硬纸片,切去阴影部分所示的四个全等的等腰直角三角形,再沿虚线折起,使得A ,B ,C ,D 四个点重合于图中的点P ,正好形成一个正四棱柱形状的包装盒.E ,F 在AB 上,是被切去的一个等腰直角三角形斜边的两个端点.设AE =FB =x (cm).(1)若广告商要求包装盒的侧面积S (cm 2)最大,试问x 应取何值?(2)某厂商要求包装盒的容积V (cm 3)最大,试问x 应取何值?并求出此时包装盒的高与底面边长的比值.解:设包装盒的高为h (cm),底面边长为a (cm). 由已知得a =2x ,h =60-2x2=2(30-x ),0<x <30.(1)S =4ah =8x (30-x )=-8(x -15)2+1 800, 所以当x =15时,S 取得最大值.(2)V =a 2h =22(-x 3+30x 2),V ′=62x (20-x ). 由V ′=0得x =0(舍去)或x =20.[方法指导]当x ∈(0,20)时,V ′>0;当x ∈(20,30)时,V ′<0. 所以当x =20时,V 取得极大值,也是最大值. 此时h a =12,即包装盒的高与底面边长的比值为12.考点二利用导数研究函数零点或方程的根 [典例] (2016·郑州模拟)已知函数f (x )=(x 2-2x )·ln x +ax 2+2. (1)当a =-1时,求曲线y =f (x )在点(1,f (1))处的切线方程;(2)当a >0时,设函数g (x )=f (x )-x -2,且函数g (x )有且仅有一个零点,若e -2<x <e ,g (x )≤m ,求m 的取值范围.[解] (1)当a =-1时,f (x )=(x 2-2x )ln x -x 2+2,定义域为(0,+∞), f ′(x )=(2x -2)ln x +(x -2)-2x . ∴f ′(1)=-3,又f (1)=1,∴曲线y =f (x )在点(1,f (1))处的切线方程为3x +y -4=0. (2)令g (x )=f (x )-x -2=0, 则(x 2-2x )ln x +ax 2+2=x +2, 即a =1-(x -2)·ln x x ,令h (x )=1-(x -2)·ln xx,则h ′(x )=-1x 2-1x +2-2ln x x 2=1-x -2ln xx 2.令t (x )=1-x -2ln x ,t ′(x )=-1-2x =-x -2x ,∴t ′(x )<0,∴t (x )在(0,+∞)上单调递减, 又∵t (1)=h ′(1)=0,∴当0<x <1时,h ′(x )>0,当x >1时,h ′(x )<0, ∴h (x )在(0,1)上单调递增,在(1,+∞)上单调递减, ∴h (x )max =h (1)=1.∵a >0,∴当函数g (x )有且仅有一个零点时,a =1. 当a =1时,g (x )=(x 2-2x )ln x +x 2-x , g ′(x )=(x -1)(3+2ln x ), 令g ′(x )=0得x =1或x =e 32-,又∵e -2<x <e ,∴函数g (x )在(e -2,e 32-)上单调递增,在(e32-,1)上单调递减,在(1,e)上单调递增,又g (e32-)=-12e -3+2e 32-,g (e)=2e 2-3e ,g (e32-)=-12e -3+2e 32-<2e 32-<2e<2e ⎝⎛⎭⎫e -32=g (e), ∴g (e32-)<g (e),g (x )<g (e)=2e 2-3e ,∴m ≥2e 2-3e.故m 的取值范围为[2e 2-3e ,+∞).利用导数研究方程根的方法研究方程根的情况,可以通过导数研究函数的单调性、最大值、最小值、变化趋势等,根据题目要求,画出函数图象的走势规律,标明函数极(最)值的位置,通过数形结合的思想去分析问题,可以使问题的求解有一个清晰、直观的整体展现.[变式训练](2016·贵州七校联考)函数f (x )=(ax 2+x )e x ,其中e 是自然对数的底数,a ∈R. (1)当a >0时,解不等式f (x )≤0;(2)当a =0时,求整数t 的所有值,使方程f (x )=x +2在[t ,t +1]上有解.解:(1)因为e x >0,所以不等式f (x )≤0即为ax 2+x ≤0,又因为a >0,所以不等式可化为x ⎝⎛⎭⎫x +1a ≤0, 所以不等式f (x )≤0的解集为⎣⎡⎦⎤-1a ,0. (2)当a =0时,方程即为x e x =x +2, 由于e x >0,所以x =0不是方程的解, 所以原方程等价于e x -2x -1=0.令h (x )=e x -2x-1,因为h ′(x )=e x +2x 2>0对于x ∈(-∞,0)∪(0,+∞)恒成立,所以h (x )在(-∞,0)和(0,+∞)内是单调递增函数,又h (1)=e -3<0,h (2)=e 2-2>0,h (-3)=e -3-13<0,h (-2)=e -2>0,所以方程f (x )=x +2有且只有两个实数根,且分别在区间[1,2]和[-3,-2]上, 所以整数t 的所有值为{-3,1}.考点三利用导数研究与不等式有关的问题 题点一:不等式证明的问题1.(2016·沈阳一模)已知函数f (x )=a ln x (a >0),e 为自然对数的底数. (1)若过点A (2,f (2))的切线斜率为2,求实数a 的值; (2)当x >0时,求证:f (x )≥a ⎝⎛⎭⎫1-1x . [方法指导]解:(1)f ′(x )=a x ,f ′(2)=a2=2,a =4.故实数a 的值为4.(2)证明:要证f (x )≥a ⎝⎛⎭⎫1-1x , 只需证a ln x -a ⎝⎛⎭⎫1-1x =a ⎝⎛⎭⎫ln x -1+1x ≥0, 令g (x )=a ⎝⎛⎭⎫ln x -1+1x , 则g ′(x )=a ⎝⎛⎭⎫1x -1x 2=a (x -1)x 2. 令g ′(x )=0,得x =1,所以g (x )在(0,1)上单调递减,在(1,+∞)上单调递增. 所以g (x )的最小值为g (1)=0, 所以f (x )≥a ⎝⎛⎭⎫1-1x .利用导数证明不等式若证明f (x )<g (x ),x ∈(a ,b ),可以构造函数F (x )=f (x )-g (x ),如果F ′(x )<0,则F (x )在(a ,b )上是减函数,同时若F (a )≤0,由减函数的定义可知,x ∈(a ,b )时,有F (x )<0,即证明了f (x )<g (x ).题点二:不等式的恒成立问题2.(2016·西安八校联考)已知函数f (x )=m (x -1)e x +x 2(m ∈R). (1)若m =-1,求函数f (x )的单调区间;(2)若对任意的x <0,不等式x 2+(m +2)x >f ′(x )恒成立,求m 的取值范围. 解:(1)当m =-1时,f (x )=(1-x )e x +x 2, 则f ′(x )=x (2-e x ), 由f ′(x )>0得,0<x <ln 2, 由f ′(x )<0得,x <0或x >ln 2,故函数f (x )的单调递增区间为(0,ln 2),单调递减区间为(-∞,0),(ln 2,+∞). (2)依题意,f ′(x )=mx ⎝⎛⎭⎫e x +2m <x 2+(m +2)x ,x <0, 因为x <0,所以m e x -x -m >0, 令h (x )=m e x -x -m ,则h ′(x )=m e x -1, 当m ≤1时,h ′(x )≤e x -1<0, 则h (x )在(-∞,0)上单调递减, 所以h (x )>h (0)=0,符合题意;当m >1时,h (x )在(-∞,-ln m )上单调递减,在(-ln m,0)上单调递增, 所以h (x )min =h (-ln m )<h (0)=0,不合题意. 综上所述,m 的取值范围为(-∞,1].[方法指导]利用导数解决不等式的恒成立问题利用导数研究不等式恒成立问题,首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.题点三:不等式成立存在性问题3.(2016·大连双基测试)已知函数f (x )=xa -e x (a >0).(1)求函数f (x )的单调区间; (2)求函数f (x )在[1,2]上的最大值;(3)若存在x 1,x 2(x 1<x 2),使得f (x 1)=f (x 2)=0,证明:x 1x 2<a e.解:(1)f (x )=x a -e x (a >0),则f ′(x )=1a -e x .令1a -e x =0,得x =ln 1a. 则f (x ),f ′(x )随x 的变化情况如表所示:x ⎝⎛⎭⎫-∞,ln 1aln 1a ⎝⎛⎭⎫ln 1a ,+∞ f ′(x ) + 0 - f (x )极大值故函数f (x )的单调递增区间为⎝⎛⎭⎫-∞,ln 1a ,单调递减区间为⎝⎛⎭⎫ln 1a ,+∞. (2)由(1)知当ln 1a ≥2,即0<a ≤1e 2时,f (x )max =f (2)=2a -e 2.当1<ln 1a <2,即1e 2<a <1e时,f (x )在⎣⎡⎦⎤1,ln 1a 上是增函数,在⎣⎡⎦⎤ln 1a ,2上是减函数. 故f (x )max =f ⎝⎛⎭⎫ln 1a =1a ln 1a -1a. 当ln 1a ≤1,即a ≥1e 时,f (x )max =f (1)=1a -e.(3)证明:若函数f (x )有两个零点, 则f ⎝⎛⎭⎫ln 1a =1a ln 1a -1a>0, 即a <1e ,而此时,f (1)=1a-e>0,[方法指导]由此可得x 1<1<ln 1a <x 2,故x 2-x 1>ln 1a -1,即x 1-x 2<1-ln 1a.又∵f (x 1)=x 1a -e 1x =0,f (x 2)=x 2a-e 2x=0,∴x 1x 2=e 1xe2x =e 12-x x <e 11ln -a=e ln a e =a e.四、高考真题 方向,比努力更重要 1.(2014·湖南高考)若0<x 1<x 2<1 ,则( ) A .e2x -e 1x>ln x 2-ln x 1B .e2x -e 1x<ln x 2-ln x 1C .x 2e 1x>x 1e x 2D .x 2e 1x<x 1e2x解析:选C 构造函数f (x )=e x-ln x ,则f ′(x )=e x-1x =x e x-1x ,令f ′(x )=0,得x e x -1=0,根据函数y =e x 与y =1x 的图象可知两函数图象的交点x 0∈(0,1),即f (x )=e x -ln x 在(0,1)上不是单调函数,无法判断f (x 1)与f (x 2)的大小,故A ,B 错;构造函数g (x )=e xx ,则g ′(x )=x e x -e x x 2=e x (x -1)x 2,故函数g (x )=e x x在(0,1)上单调递减,故g (x 1)>g (x 2),x 2e x 1>x 1e 2x. 2.(2015·全国卷Ⅰ)设函数f (x )=e x (2x -1)-ax +a ,其中a <1,若存在唯一的整数x 0使得f (x 0)<0,则a 的取值范围是( )A.⎣⎡⎭⎫-32e ,1 B.⎣⎡⎭⎫-32e ,34 C.⎣⎡⎭⎫32e ,34D.⎣⎡⎭⎫32e ,1 解析:选D ∵f (0)=-1+a <0,∴x 0=0. 又∵x 0=0是唯一的使f (x )<0的整数,∴⎩⎪⎨⎪⎧f (-1)≥0,f (1)≥0, 即⎩⎪⎨⎪⎧e -1[2×(-1)-1]+a +a ≥0,e (2×1-1)-a +a ≥0,解得a ≥32e .又∵a <1,∴32e≤a <1.3.(2015·全国卷Ⅰ)设函数f (x )=e 2x -a ln x . (1)讨论f (x )的导函数f ′(x )零点的个数;(2)证明:当a >0时,f (x )≥2a +a ln 2a .解:(1)f (x )的定义域为(0,+∞), f ′(x )=2e 2x -ax.当a ≤0时,f ′(x )>0,f ′(x )没有零点; 当a >0时,设u (x )=e 2x ,v (x )=-ax,因为u (x )=e 2x 在(0,+∞)上单调递增,v (x )=-ax 在(0,+∞)上单调递增,所以f ′(x )在(0,+∞)上单调递增.又f ′(a )>0,当b 满足0<b <a 4且b <14时,f ′(b )<0,故当a >0时,f ′(x )存在唯一零点.(2)证明:由(1),可设f ′(x )在(0,+∞)上的唯一零点为x 0,当x ∈(0,x 0)时,f ′(x )<0; 当x ∈(x 0,+∞)时,f ′(x )>0.故f (x )在(0,x 0)上单调递减,在(x 0,+∞)上单调递增, 所以当x =x 0时,f (x )取得最小值,最小值为f (x 0). 由于2e2x 0-ax 0=0,所以f (x 0)=a 2x 0+2ax 0+a ln 2a ≥2a +a ln 2a .故当a >0时,f (x )≥2a +a ln 2a.4.(2015·山东高考)设函数f (x )=(x +a )ln x ,g (x )=x 2e x .已知曲线y =f (x )在点(1,f (1))处的切线与直线2x -y =0平行.(1)求a 的值;(2)是否存在自然数k ,使得方程f (x )=g (x )在(k ,k +1)内存在唯一的根?如果存在,求出k ;如果不存在,请说明理由;(3)设函数m (x )=min{f (x ),g (x )}(min{p ,q }表示p ,q 中的较小值),求m (x )的最大值. 解:(1)由题意知,曲线y =f (x )在点(1,f (1))处的切线斜率为2,所以f ′(1)=2. 又f ′(x )=ln x +ax+1,所以a =1.(2)当k =1时,方程f (x )=g (x )在(1,2)内存在唯一的根. 设h (x )=f (x )-g (x )=(x +1)ln x -x 2e x ,当x ∈(0,1]时,h (x )<0.又h (2)=3ln 2-4e 2=ln 8-4e2>1-1=0,所以存在x 0∈(1,2),使得h (x 0)=0. 因为h ′(x )=ln x +1x +1+x (x -2)e x ,所以当x ∈(1,2)时,h ′(x )>1-1e >0,当x ∈[2,+∞)时,h ′(x )>0, 所以当x ∈(1,+∞)时,h (x )单调递增.所以当k =1时,方程f (x )=g (x )在(k ,k +1)内存在唯一的根.(3)由(2)知,方程f (x )=g (x )在(1,2)内存在唯一的根x 0,且x ∈(0,x 0)时,f (x )<g (x ), x ∈(x 0,+∞)时,f (x )>g (x ),所以m (x )=⎩⎪⎨⎪⎧(x +1)ln x ,x ∈(0,x 0],x 2e x , x ∈(x 0,+∞).当x ∈(0,x 0]时,若x ∈(0,1],m (x )≤0; 若x ∈(1,x 0],由m ′(x )=ln x +1x +1>0,可知0<m (x )≤m (x 0); 故m (x )≤m (x 0).当x ∈(x 0,+∞)时,由m ′(x )=x (2-x )e x ,可得x ∈(x 0,2)时,m ′(x )>0,m (x )单调递增; x ∈(2,+∞)时,m ′(x )<0,m (x )单调递减. 可知m (x )≤m (2)=4e 2,且m (x 0)<m (2).综上可得,函数m (x )的最大值为4e 2.五、经典模拟 落实,比学过更重要1.(2016·兰州模拟)已知定义在R 上的可导函数f (x )的导函数为f ′(x ),满足f ′(x )<f (x ),且f (x +2)为偶函数,f (4)=1,则不等式f (x )<e x 的解集为( )A .(-2,+∞)B .(0,+∞)C .(1,+∞)D .(4,+∞)解析:选B ∵f (x +2)为偶函数, ∴f (x +2)的图象关于x =0对称, ∴f (x )的图象关于x =2对称, ∴f (4)=f (0)=1.设g (x )=f (x )e x (x ∈R),则g ′(x )=f ′(x )e x -f (x )e x (e x )2=f ′(x )-f (x )e x ,又∵f ′(x )<f (x ),∴g ′(x )<0(x ∈R), ∴函数g (x )在定义域上单调递减, ∵f (x )<e x ⇔g (x )=f (x )e x <1,而g (0)=f (0)e 0=1,∴f (x )<e x ⇔g (x )<g (0), ∴x >0,故选B.2.(2016·太原一模)已知函数f (x )=ln x +tan α⎝⎛⎭⎫0<α<π2的导函数为f ′(x ),若方程f ′(x )=f (x )的根x 0小于1,则α的取值范围为( )A.⎝⎛⎭⎫π4,π2 B.⎝⎛⎭⎫0,π3 C.⎝⎛⎭⎫π6,π4D.⎝⎛⎭⎫0,π4 解析:选A ∵f (x )=ln x +tan α,∴f ′(x )=1x ,令f (x )=f ′(x ),得ln x +tan α=1x ,即tan α=1x-ln x .设g (x )=1x -ln x ,显然g (x )在(0,+∞)上单调递减,而当x →0时,g (x )→+∞,∴要使满足f ′(x )=f (x )的根x 0<1,只需tan α>g (1)=1, 又∵0<α<π2,∴α∈⎝⎛⎭⎫π4,π2. 3.(2016·兰州双基测试)定义在实数集上的函数f (x )=x 2+x ,g (x )=13x 3-2x +m .(1)求函数f (x )的图象在x =1处的切线方程;(2)若f (x )≥g (x )对任意的x ∈[-4,4]恒成立,求实数m 的取值范围. 解:(1)∵f (x )=x 2+x ,∴当x =1时,f (1)=2, ∵f ′(x )=2x +1,∴f ′(1)=3,∴所求切线方程为y -2=3(x -1),即3x -y -1=0. (2)令h (x )=g (x )-f (x )=13x 3-x 2-3x +m ,则h ′(x )=(x -3)(x +1). ∴当-4<x <-1时,h ′(x )>0; 当-1<x <3时,h ′(x )<0; 当3<x <4时,h ′(x )>0.要使f (x )≥g (x )恒成立,即h (x )max ≤0, 由上知h (x )的最大值在x =-1或x =4处取得, 而h (-1)=m +53,h (4)=m -203,所以m +53≤0,即m ≤-53,∴实数m 的取值范围为⎝⎛⎦⎤-∞,-53. 4.(2016·山西质监)已知函数f (x )=x ln x . (1)试求曲线y =f (x )在点(e ,f (e))处的切线方程;(2)若x >1,试判断方程f (x )=(x -1)(ax -a +1)的解的个数. 解:(1)f ′(x )=ln x +x ·1x =1+ln x ,∴f ′(e)=2.又f (e)=e ,∴切线方程为2x -y -e =0.(2)方程f (x )=(x -1)(ax -a +1)的解即为方程ln x -(x -1)(ax -a +1)x =0的解.设h (x )=ln x -(x -1)(ax -a +1)x,x >1.则h ′(x )=-ax 2-x -a +1x 2=-(x -1)(ax +a -1)x 2,x >1. ①当a =0时,h ′(x )>0,h (x )为增函数,∴h (x )>h (1)=0,方程无解. ②当a ≠0时,令h ′(x )=0得x 1=1,x 2=1-aa.(ⅰ)当a <0,即x 2=1-aa <1时,∵x >1,∴h ′(x )>0,则h (x )为(1,+∞)上的增函数,∴h (x )>h (1)=0,方程无解.(ⅱ)当0<a <12,即1-a a >1时,x ∈⎝⎛⎭⎫1,1-a a 时,h ′(x )>0,h (x )为增函数;x ∈⎝⎛⎭⎫1-a a ,+∞时,h ′(x )<0,h (x )为减函数.又x →+∞时,h (x )=ln x -ax +1-ax +2a -1<0,h (1)=0,∴方程有一个解.(ⅲ)当a ≥12,即1-a a ≤1时,∵x >1,∴h ′(x )<0,h (x )为减函数, 而h (x )<h (1)=0,方程无解.综上所述,当a ∈(-∞,0]∪⎣⎡⎭⎫12,+∞时,原方程无解; 当0<a <12时,原方程有一个解.1.已知函数f (x )=ax -ae x (a <0).(1)当a =-1时,求函数f (x )的极值;(2)若函数F (x )=f (x )+1没有零点,求实数a 的取值范围. 解:(1)当a =-1时,f (x )=-x +1e x ,f ′(x )=x -2ex .由f ′(x )=0,得x =2. 当x 变化时,f ′(x ),f (x )的变化情况如下表:x (-∞,2)2 (2,+∞)f ′(x ) - 0 + f (x )极小值所以,函数f (x )的极小值为f (2)=-1e 2,函数f (x )无极大值.(2)F ′(x )=f ′(x )=a e x -(ax -a )e x e 2x =-a (x -2)e x .当a <0时,F ′(x ),F (x )的变化情况如下表:x (-∞,2)2 (2,+∞)F ′(x ) - 0 + F (x )极小值若使函数F (x )没有零点,当且仅当F (2)=ae 2+1>0,解得a >-e 2,所以此时-e 2<a <0.故实数a 的取值范围为(-e 2,0).2.已知a 为实数,函数f (x )=a ln x +x 2-4x .(1)是否存在实数a ,使得f (x )在x =1处取得极值?证明你的结论;(2)设g (x )=(a -2)x ,若∃x 0∈⎣⎡⎦⎤1e ,e ,使得f (x 0)≤g (x 0)成立,求实数a 的取值范围. 解:(1)函数f (x )定义域为(0,+∞),f (x )=ax +2x -4=2x 2-4x +a x .假设存在实数a ,使f (x )在x =1处取极值,则f (1)=0, ∴a =2,此时,f ′(x )=2(x -1)2x ,当x >0时,f ′(x )≥0恒成立,∴f (x )在(0,+∞)上单调递增, ∴x =1不是f (x )的极值点.故不存在实数a ,使得f (x )在x =1处取得极值. (2)由f (x 0)≤g (x 0),得(x 0-ln x 0)a ≥x 20-2x 0, 记F (x )=x -ln x (x >0),∴F ′(x )=x -1x (x >0),∴当0<x <1时,F ′(x )<0,F (x )单调递减;当x >1时,F ′(x )>0,F (x )单调递增. ∴F (x )>F (1)=1>0,∴a ≥x 20-2x 0x 0-ln x 0,记G (x )=x 2-2x x -ln x ,x ∈⎣⎡⎦⎤1e ,e , ∴G ′(x )=(2x -2)(x -ln x )-(x -2)(x -1)(x -ln x )2=(x -1)(x -2ln x +2)(x -ln x )2.∵x ∈⎣⎡⎦⎤1e ,e ,∴2-2ln x =2(1-ln x )≥0, ∴x -2ln x +2>0,∴x ∈⎝⎛⎭⎫1e ,1时,G ′(x )<0,G (x )单调递减; x ∈(1,e)时,G ′(x )>0,G (x )单调递增, ∴G (x )min =G (1)=-1,∴a ≥G (x )min =-1. 故实数a 的取值范围为[-1,+∞).。

专题20 函数与导数综合大题-2016年高考数学三轮讲练测核心热点总动员(江苏版)(原卷版)

专题20 函数与导数综合大题-2016年高考数学三轮讲练测核心热点总动员(江苏版)(原卷版)

2016年学易高考三轮复习系列:讲练测之核心热点 【江苏版】热点二十 函数与导数综合大题【名师精讲指南篇】【高考真题再现】例1 【2013江苏高考】设函数()ln f x x ax =-,()xg x e ax =-,其中a 为实数.(1)若()f x 在(1,)+∞上是单调减函数,且()g x 在(1,)+∞上有最小值,求a 的取值范围; (2)若()g x 在(1,)-+∞上是单调增函数,试求()f x 的零点个数,并证明你的结论. 例2 【2014江苏高考】(满分16分)已知函数()xx f x e e -=+,其中e 是自然对数的底数.(1)证明:()f x 是R 上的偶函数; (2)若关于x 的不等式()1xmf x em -≤+-在(0,)+∞上恒成立,求实数m 的取值范围;(3)已知正数a 满足:存在0(1,)x ∈+∞,使得3000()(3)f x a x x <-+成立,试比较1a e-与1e a-的大小,并证明你的结论.例3 【2015江苏高考】已知函数),()(23R b a b ax x x f ∈++=. (1)试讨论)(x f 的单调性;(2)若a c b -=(实数c 是a 与无关的常数),当函数)(x f 有三个不同的零点时,a 的取值范围恰好是),23()23,1()3,(+∞--∞ ,求c 的值.【热点深度剖析】1. 从近几年的高考试题来看,利用导数来研究函数的性质问题已成为炙手可热的考点,与导数知识相比,导数方法更显重要,它比初等数学的方法刻画更精细、计算更快捷、运用更广泛,所以高考真正重视的是对导数方法的考查.预测2016年高考仍将以利用导数研究函数的性质为主要考向.2. 在高考题的大题中,每年都要设计一道函数大题. 在函数的解答题中有一类是研究不等式或是研究方程根的情况,基本的题目类型是研究在一个区间上恒成立的不等式(实际上就是证明这个不等式),研究不等式在一个区间上成立时不等式的某个参数的取值范围,研究含有指数式、对数式、三角函数式等超越式的方程在某个区间上的根的个数等,这些问题依据基础初等函数的知识已经无能为力,就需要根据导数的方法进行解决.使用导数的方法研究不等式和方程的基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数.因为导数的引入,为函数问题的解决提供了操作工具.因此入手大家比较清楚,但是深入解决函数与不等式相结合的题目时,往往一筹莫展.原因是找不到两者的结合点,不清楚解决技巧.解题技巧总结如下(1)树立服务意识:所谓“服务意识”是指利用给定函数的某些性质(一般第一问先让解决出来),如函数的单调性、最值等,服务于第二问要证明的不等式.(2)强化变形技巧:所谓“强化变形技巧”是指对于给出的不等式直接证明无法下手,可考虑对不等式进行必要的等价变形后,再去证明.例如采用两边取对数(指数),移项通分等等.要注意变形的方向:因为要利用函数的性质,力求变形后不等式一边需要出现函数关系式.(3)巧妙构造函数:所谓“巧妙构造函数”是指根据不等式的结构特征,构造函数,利用函数的最值进行解决.在构造函数的时候灵活多样,注意积累经验,体现一个“巧妙”.4.预计16年函数依然是考查重点,必考大题,只不过函数题可以有初等方法或导数方法两种思路的区别.也可以在同一解中,初等方法和导数方法交替使用. 【最新考纲解读】【重点知识整合】一、n a 与n S 的关系:11(1)(2)n nn S n a S S n -=⎧=⎨-⎩≥.二、(1)定义:从第2项起每一项与它前一项的差(比)等于同一常数的数列叫等差(比)数列.(2)递推公式:110n n n n a a d a a q q n *++-==≠∈N ,·,,. (3)通项公式:111(1)n n n a a n d a a q n -*=+-=∈N ,,.(4)等差数列性质①单调性:0d ≥时为递增数列,0d ≤时为递减数列,0d =时为常数列. ②若m n p q +=+,则()m n p q a a a a m n p q *+=+∈N ,,,.特别地,当2m n p +=时,有2m n p a a a +=③()()n m a a n m d m n *-=-∈N ,. ④232k k k k k S S S S S --,,,…成等差数列. 等比数列性质①单调性:当1001a q <⎧⎨<<⎩,或101a q >⎧⎨>⎩时,为递增数列;当101a q <⎧⎨>⎩,,,或1001a q >⎧⎨<<⎩时为递减数列;当0q <时为摆动数列;当1q =时为常数列.②若m n p q +=+,则()m n p q a a a a m n p q *=∈N ··,,,特别地若2m n p +=则2m n p a a a =·③(0)n m nma q m n q a -*=∈≠N ,,.④232k k k k k S S S S S --,,,…,当1q ≠-时为等比数列;当1q =-时,若k 为偶数,不是等比数列.若k 为奇数是公比为1-的等比数列. 【应试技巧点拨】一、数列通项公式的求解常用方法:1、定义法,直接利用等差数列或等比数列的定义求通项的方法叫定义法,这种方法适应于已知数列类型的题目.2、公式法, 若已知数列的前n 项和n S 与n a 的关系,求数列{}n a 的通项n a 可用公式⎩⎨⎧≥⋅⋅⋅⋅⋅⋅⋅-=⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅⋅=-2111n S S n S a n n n 求解。

高优指导2016高考数学二轮复习 专题二 函数与导数 第二讲

高优指导2016高考数学二轮复习 专题二 函数与导数 第二讲
第二讲 导数
最新考纲解读
高频考点
考点
(1)导数的问题在高 考中常考查以下几 点:导数的几何意 义、函数的单调性 及单调区间、极 值、最值、与不等 式的综合. (2)导数的实际应用 一般是写出函数解 析式(一般是三次 的多项式函数),然 后求极值或最值. (3)会使用数形结合 思想与导数解答函 数的综合问题.
故 f'(1)=3a-3.
又 f(1)=1,
所以所求的切线方程为 y=(3a-3)x-3a+4. (2)由于 f'(x)=3(x-1)2+3(a-1),0≤x≤2, 故①当 a≤0 时,有 f'(x)≤0,此时 f(x)在[0,2]上单调递减,
故|f(x)|max=max{|f(0)|,|f(2)|}=3-3a. ②当 a≥1 时,有 f'(x)≥0,此时 f(x)在[0,2]上单调递增,
考点1 考点2 考点3 考点4
利用导数求函数的极值与最值
例 3(2014 河南洛阳高三统一测试,21)已知函数 f(x)=1������-������������+ln
x+1.
(1)若函数 f(x)在[1,2]上单调递减,求实数 a 的取值范围;
(2)若
a=1,k∈R,且
k<1e,设
F(x)=f(x)+(k-1)ln
=
������
������-1������ ������2
.
(ⅰ)若
k<0,在
1 e
,e
������
上,恒有
������-1������ ������2
<0,
∴F(x)在
1 e
,e
上单调递减,

高考数学压轴专题新备战高考《函数与导数》知识点总复习有答案

高考数学压轴专题新备战高考《函数与导数》知识点总复习有答案

新数学《函数与导数》复习资料一、选择题1.设函数()f x 在R 上存在导数()f x ',x R ∀∈有()()22f x f x x +-=,在()0+∞,上()2f x x '<,若()()4168f m f m m --≥-,则实数m 的取值范围是( )A .[)2+∞,B .[)0+∞,C .[]22-,D .(][)22-∞-⋃+∞,, 【答案】A 【解析】 【分析】通过x R ∀∈有()()22f x f x x +-=,构造新函数()()2g x f x x =-,可得()g x 为奇函数;利用()2f x x '<,求()g x 的导函数得出()g x 的单调性,再将不等式()()4168f m f m m --≥-转化,可求实数m 的取值范围.【详解】设()()2g x f x x =-,∵()()()()220g x g x f x x f x x +-=-+--=,∴函数()g x 为奇函数,∵在()0,x ∈+∞上,()2f x x '<,即()20f x x '-<, ∴()()20g x f x x ''=-<,∴函数()g x 在()0,x ∈+∞上是减函数, ∴函数()g x 在(),0x ∈-∞上也是减函数, 且()00g =,∴函数()g x 在x ∈R 上是减函数, ∵()()4168f m f m m --≥-,∴()()()2244168g m m g m m m ⎡⎤⎡⎤-+--+≥-⎣⎦⎣⎦, ∴()()4g m g m -≥, ∴4m m -≤, 即2m ≥. 故选:A. 【点睛】本题考查函数的奇偶性、单调性的应用,考查运算求解能力、转化与化归的数学思想,是中档题.2.3ax ⎛ ⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式3ax ⎛- ⎝⎭的展开式的通项公式得221213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.3.已知定义在R 上的函数()f x 满足()()242f x f x x +-=+,设()()22g x f x x =-,若()g x 的最大值和最小值分别为M 和m ,则M m +=( ) A .1 B .2 C .3 D .4【答案】B 【解析】∵()()242f x f x x +-=+,()()22g x f x x =-∴2222()()()2()24242g x g x f x x f x x x x +-=-+--=+-= ∴函数()g x 关于点(0,1)对称∵()g x 的最大值和最小值分别为M 和m ∴122M m +=⨯= 故选B.4.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( )A .7B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .5.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x -'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x-'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.6.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

高考数学压轴专题人教版备战高考《函数与导数》知识点总复习附答案

高考数学压轴专题人教版备战高考《函数与导数》知识点总复习附答案

【高中数学】数学《函数与导数》复习知识点一、选择题1.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

【详解】()1sin112sin110f =+-=-<,排除,B ,C ,当0x =时,sin 0x x ==, 则0x →时,sin 1xx→,()101f x →+=,排除A , 故选:D . 【点睛】本题主要考查函数图象的识别和判断,利用排除法结合函数的极限思想是解决本题的关键。

2.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..3.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B 【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.4.已知3215()632f x x ax ax b =-++的两个极值点分别为()1212,x x x x ≠,且2132x x =,则函数12()()f x f x -=( ) A .1- B .16C .1D .与b 有关【答案】B 【解析】 【分析】求出函数的导数,利用韦达定理得到12,,a x x 满足的方程组,解方程组可以得到12,,a x x ,从而可求()()12f x f x -. 【详解】()2'56f x x ax a =-+,故125x x a +=,126x x a =,且225240a a ->,又2132x x =,所以122,3x a x a ==,故266a a =,解得0a =(舎)或者1a =. 此时122,3x x ==, ()3215632f x x x x b =-++, 故()()()()()1215182749623326f x f x -=⨯---+-= 故选B . 【点睛】如果()f x 在0x 处及附近可导且0x 的左右两侧导数的符号发生变化,则0x x =必为函数的极值点且()00f x =.极大值点、极小值点的判断方法如下:(1)在0x 的左侧附近,有()'0f x >,在0x 的右侧附近,有()'0f x <,则0x x =为函数的极大值点;(2)在0x 的左侧附近,有()'0f x <,在0x 的右侧附近()'0f x >,有,则0x x =为函数的极小值点.5.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x-'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x-'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.6.已知21()cos 4f x x x =+,'()f x 为()f x 的导函数,则'()f x 的图像是( )A .B .C .D .【答案】A 【解析】Q ()21f cos 4x x x =+,()()1'sin ,'2f x x x y f x ∴=-=为奇函数,∴图象关于原点对称,排除,B D ,又()'10f <Q ,可排除C ,故选A.【方法点晴】本题通过对多个图象的选择主要考查考查函数的图象与性质,属于中档题. 这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及0,0,,x x x x +-→→→+∞→-∞时函数图象的变化趋势,利用排除法,将不合题意的选项一一排除.7.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.8.函数()1ln f x x x ⎛⎫=-⎪⎝⎭的图象大致是( ) A . B .C .D .【答案】B 【解析】通过函数在2x =处函数有意义,在2x =-处函数无意义,可排除A 、D ;通过判断当1x >时,函数的单调性可排除C ,即可得结果. 【详解】当2x =时,110x x -=>,函数有意义,可排除A ;当2x =-时,1302x x -=-<,函数无意义,可排除D ;又∵当1x >时,函数1y x x=-单调递增, 结合对数函数的单调性可得函数()1ln f x x x ⎛⎫=- ⎪⎝⎭单调递增,可排除C ;故选:B. 【点睛】本题主要考查函数的图象,考查同学们对函数基础知识的把握程度以及数形结合与分类讨论的思维能力,属于中档题.9.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.10.如图,将边长为1的正六边形铁皮的六个角各切去一个全等的四边形,再沿虚线折起,做成一个无盖的正六棱柱容器.当这个正六棱柱容器的底面边长为( )时,其容积A .34B .23C .13D .12【答案】B 【解析】 【分析】设正六棱柱容器的底面边长为x ,)31x -,则可得正六棱柱容器的容积为()())()32339214V x x x x x x x =+-=-+,再利用导函数求得最值,即可求解. 【详解】设正六棱柱容器的底面边长为x ,则正六棱柱容器的高为)312x -, 所以正六棱柱容器的容积为()()()()3233921224V x x x x x x x =+⋅⋅-=-+, 所以()227942V x x x '=-+,则在20,3⎛⎫ ⎪⎝⎭上,()0V x '>;在2,13⎛⎫ ⎪⎝⎭上,()0V x '<,所以()V x 在20,3⎛⎫ ⎪⎝⎭上单调递增,在2,13⎛⎫⎪⎝⎭上单调递减, 所以当23x =时,()V x 取得最大值, 故选:B 【点睛】本题考查利用导函数求最值,考查棱柱的体积,考查运算能力.11.已知函数()2943,02log 9,0x x x f x x x ⎧+≤=⎨+->⎩,则函数()()y f f x =的零点所在区间为( )A .73,2⎛⎫ ⎪⎝⎭B .()1,0-C .7,42⎛⎫ ⎪⎝⎭D .()4,5【答案】A 【解析】 【分析】首先求得0x ≤时,()f x 的取值范围.然后求得0x >时,()f x 的单调性和零点,令()()0f f x =,根据“0x ≤时,()f x 的取值范围”得到()32log 93x f x x =+-=,利用零点存在性定理,求得函数()()y f f x =的零点所在区间.【详解】当0x ≤时,()34f x <≤.当0x ≥时,()2932log 92log 9xxx f x x =+-=+-为增函数,且()30f =,则3x =是()f x 唯一零点.由于“当0x ≤时,()34f x <≤.”,所以 令()()0ff x =,得()32log 93xf x x =+-=,因为()303f =<,3377log 98 1.414log 39 3.312322f ⎛⎫=->⨯+-=> ⎪⎝⎭,所以函数()()y f f x =的零点所在区间为73,2⎛⎫⎪⎝⎭. 故选:A 【点睛】本小题主要考查分段函数的性质,考查符合函数零点,考查零点存在性定理,考查函数的单调性,考查化归与转化的数学思想方法,属于中档题.12.若曲线43y x x ax =-+(0x >)存在斜率小于1的切线,则a 的取值范围为( ) A .3,2⎛⎫-∞ ⎪⎝⎭B .1,2⎛⎫-∞ ⎪⎝⎭C .5,4⎛⎫-∞ ⎪⎝⎭D .1,4⎛⎫-∞ ⎪⎝⎭【答案】C 【解析】 【分析】对函数进行求导,将问题转化为不等式有解问题,再构造函数利用导数研究函数的最值,即可得答案; 【详解】由题意可得32431y x x a '=-+<在()0,x ∈+∞上有解,设()3243f x x x a =-+(0x >),()()2126621f x x x x x '=-=-,令()0f x '<,得102x <<;令()0f x '>,得12x >, ∴()f x 在1(0,)2单调递减,在1(,)2+∞单调递增,∴()min 11124f x f a ⎛⎫==-< ⎪⎝⎭,解得:54a <.故选:C.【点睛】本题考查导数的几何意义、不等式有解问题,考查函数与方程思想、转化与化归思想,考查逻辑推理能力、运算求解能力.13.()263,034,0x x x x f x x ⎧---≤=⎨->⎩,则函数()y f f x =⎡⎤⎣⎦的零点个数为( )A .3B .5C .6D .7 【答案】D 【解析】 【分析】作出()f x 的图像,将()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数,令()t f x =,解()0f t =有三个实数根,再结合图像即可得到答案.【详解】由题意,()y f f x =⎡⎤⎣⎦的零点个数即()0f f x =⎡⎤⎣⎦的实数根个数, 作()f x 的图像如图所示,设()t f x =,则()0f t =,当0t ≤时,即2630t t ---=,解得,1236,36t t =-=- 当0t >时,即340t -=,解得33log 4t =; 结合图像知,()36f x =-()36f x =-+3()log 4f x =时有三个根,所以()0f f x =⎡⎤⎣⎦有7个根,即()y f f x =⎡⎤⎣⎦的零点个数为7. 故选:D 【点睛】本题主要考查函数的零点问题、解函数值以及一元二次函数和指数函数的图像,考查学生数形结合的思想,属于中档题.14.已知ln 3ln 4ln ,,34a b e c e===(e是自然对数的底数),则,,a b c 的大小关系是( ) A .c a b << B .a c b <<C .b a c <<D .c b a <<【答案】C 【解析】 【分析】根据ln 3ln 4ln ,,34a b e c e===的结构特点,令()ln x f x x =,求导()21ln xf x x-'=,可得()f x 在()0,e 上递增,在(),+e ∞上递减,再利用单调性求解. 【详解】令()ln xf x x=,所以()21ln xf x x -'=,当0x e <<时, ()0f x '>,当x e >时,()0f x '<, 所以()f x 在()0,e 上递增,在(),+e ∞上递减. 因为34e <<,所以 ()()()34>>f e f f , 即b a c <<. 故选:C 【点睛】本题主要考查导数与函数的单调性比较大小,还考查了推理论证的能力,属于中档题.15.已知函数()()1110x x e f x x e++-=<与()()1ln x xg x e x ae =+-的图象上存在关于y 轴对称的点,则实数a 的取值范围是( )A .1,1e ⎛⎫-∞+ ⎪⎝⎭B .1,e ⎛⎫-+∞ ⎪⎝⎭C .1,1e ⎛⎫-∞- ⎪⎝⎭D .11,e⎛⎫-+∞ ⎪⎝⎭【答案】D 【解析】 【分析】先求得()f x 关于y 轴对称的函数()h x ,则()()h x g x =,整理可得()11ln 1e ex x a ++-=在()0,∞+上有解,设()()11ln 1e ex x x ϕ=++-,可转化问题为()y x ϕ=与y a =的图象在()0,∞+上有交点,再利用导函数求得()x ϕ的范围,进而求解.【详解】由()f x 关于y 轴对称的函数为()()()1111e e 10ex x x h x f x x -+--+-=-==->, 令()()h x g x =,得()1e1e ln 1e x x x x a --=+-()0x >, 则方程()1e1e ln 1e x x x x a --=+-在()0,∞+上有解, 即方程()11ln 1e ex x a ++-=在()0,∞+上有解, 设()()11ln 1e e x x x ϕ=++-, 即可转化为()y x ϕ=与y a =的图象在()0,∞+上有交点,()()11e 1e 1e 1x x x x x x x ϕ--=-+='++Q , 令()=e 1x m x x --,则()=e 10x m x '->在()0,∞+上恒成立,所以()=e 1xm x x --在()0,∞+上为增函数,∴()()00m x m >=,即()0x ϕ'>Q 在()0,∞+上恒成立,∴()x ϕ在()0,∞+上为增函数,当0x >时,则()()101x e ϕϕ>=-, 所以11e a >-, 故选:D【点睛】本题考查利用导函数判断函数单调性,考查利用导函数处理函数的零点问题,考查转化思想.16.下列求导运算正确的是( )A .()cos sin x x '=B .()1ln 2x x '=C .()333log x x e '=D .()22x x x e xe '= 【答案】B【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x =⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222x x x x e xe x e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.17.如图,对应此函数图象的函数可能是( )A .21(1)2x y x ⎛⎫=- ⎪⎝⎭B .22(1)x y x =-C .ln y x =D .1x y xe =-【答案】B【解析】【分析】 观察图象,从函数的定义域,零点,以及零点个数,特征函数值判断,排除选项,得到正确答案.【详解】由图象可知当0x =时,1y =-,C 不满足;当1x =时,0y =,D 不满足条件;A.由函数性质可知当2x =-时,()2141122y -⎛⎫=⨯-= ⎪⎝⎭,显然A 不成立; 而B 都成立.故选:B【点睛】本题考查根据函数图象,判断函数的解析式,重点考查函数性质的判断,包含函数的定义域,函数零点,零点个数,单调性,特殊值,等信息排除选项,本题属于中档题型.18.对于任意性和存在性问题的处理,遵循以下规则:19.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,2)c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=, 32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.20.已知函数()2ln 2xx f x e x =+-的极值点为1x ,函数()2x g x e x =+-的零点为2x ,函数()ln 2x h x x=的最大值为3x ,则( ) A .123x x x >>B .213x x x >>C .312x x x >>D .321x x x >> 【答案】A【解析】【分析】根据()f x '在()0,∞+上单调递增,且11024f f ⎛⎫⎛⎫''⋅< ⎪ ⎪⎝⎭⎝⎭,可知导函数零点在区间11,42⎛⎫ ⎪⎝⎭内,即()f x 的极值点111,42x ⎛⎫∈ ⎪⎝⎭;根据()g x 单调递增且11024g g ⎛⎫⎛⎫⋅< ⎪ ⎪⎝⎭⎝⎭可知211,42x ⎛⎫∈ ⎪⎝⎭;通过判断()()12g x g x >,结合()g x 单调性可得12x x >;利用导数可求得()max 1124h x e =<,即314x <,从而可得三者的大小关系. 【详解】 ()1x f x e x x'=+-Q 在()0,∞+上单调递增且1213022f e ⎛⎫'=-> ⎪⎝⎭,14115044f e ⎛⎫'=-< ⎪⎝⎭ 111,42x ⎛⎫∴∈ ⎪⎝⎭且11110x e x x +-= Q 函数()2x g x e x =+-在()0,∞+上单调递增 且1213022g e ⎛⎫=-> ⎪⎝⎭,14112044g e ⎛⎫=+-< ⎪⎝⎭ 211,42x ⎛⎫∴∈ ⎪⎝⎭ 又()()11111211112220x g x e x x x g x x x ⎛⎫=+-=-+-=->= ⎪⎝⎭且()g x 单调递增 12x x ∴>由()21ln 2x h x x-'=可得:()()max 12h x h e e ==,即31124x e =< 123x x x ∴>>本题正确选项:A【点睛】本题考查函数极值点、零点、最值的判断和求解问题,涉及到零点存在定理的应用,易错点是判断12,x x 大小关系时,未结合()g x 单调性判断出()()12g x g x >,造成求解困难.。

高三数学二轮复习专题讲解14 函数与导数

高三数学二轮复习专题讲解14 函数与导数

高三数学二轮复习专题讲解 第14讲 易错点-函数与导数专题综述函数与导数是高考中的重点和难点,各种题型都有考查,也有一定的计算量!但我们要必拿选择填空的中等题分数,主要考查的知识点有函数的概念(函数的定义域、解析式、值域)、性质(单调性、奇偶性、对称性)、图象,导数的概念及其几何意义;对这些知识理解不到位或把握不全面或对题意理解不准确,就容易造成会而不对、对而不全的结果专题探究探究1:函数性质掌握不牢致错函数的单调性、奇偶性、周期性等在考题中不限制于以课本的定义给出,我们要关注它们等价变形形式和相关结论,如单调性的等价变形形式有: (1)若[]12,,x x a b ∀∈,12x x ≠,()()()12120x x f x f x -->⎡⎤⎣⎦()()12120f x f x x x -⇔>-()f x ⇔在[],a b 上是增函数;()()()12120x x f x f x --<⎡⎤⎣⎦()()12120f x f x x x -⇔<-()f x ⇔在[],a b 上是减函数.(2) 若12x x ≠,且()()1212f x f x k x x ->-,则()y f x kx =-是增函数.奇偶性的相关结论有:(1)()f x 是偶函数⇔()()()()()()0f x f x f x f x f x f x =-⇔=⇔--=; (2)()f x 是奇函数⇔()()()()0f x f x f x f x -=-⇔+-=; (3)若函数()f x 在0x =处有意义,则()00f =;(4)()f x a +是偶函数,则()()f x a f x a +=-+,()f x 是偶函数,则()()f x a f x a +=-+. 利用函数的对称性与奇偶性会推导函数的周期性:(1)函数()y f x =满足()()f a x f a x +=-(0a >),若()f x 为奇函数,则其周期为4T a =;若()f x 为偶函数,则其周期为2T a =.(2)函数()y f x =()x ∈R 的图象关于直线x a =和x b =()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x R ∈的图象关于两点()0,A a y 、()0,B b y ()a b <都对称,则函数()f x 是以()2b a -为周期的周期函数;函数()y f x =()x ∈R 的图象关于()0,A a y 和直线x b =()a b <都对称,则函数()f x 是以()4b a -为周期的周期函数.(2022江苏联考)已知函数(1)y f x =-的图象关于直线1x =-对称,且对x R ∀∈有()() 4.f x f x +-=当(0,2]x ∈时,() 2.f x x =+则下列说法正确的是(). ()f x 的最小正周期是8 . ()f x 的最大值为5 . (2022)0f = . (2)f x +为偶函数 【规范解析】解:.A 因为(1)y f x =-的图象关于直线1x =-对称,所以()f x 关于直线2x =-对称;即有()(4)f x f x =--,()(4)f x f x -=-,又()()4f xf x +-=,所以(4)(4)4f x f x --++=,即()(4)4f x f x ++=,所以()4(f x f x =-+,又()4f x f x=--,()(4)(4)f x f x f x -=+=-,所以()(8)f x f x =+,所以()f x 的周期8T =,故 正确; .由 知(2022)(20228)f f =-(202288)(6)(2)4(2)440f f f f =--===-=-=-=,故 正确; .由 知()(4)f x f x -=+所以(2)(2)f x f x +=-+,则(2)f x +为偶函数,故 正确; .当(0,2]x ∈时,()2f x x =+,结合以上知函数图象大致为则()f x 的最大值为4,故 错误.故答案选:.ACD(2022福建联考)已知定义在 上的函数()f x ,对任意实数x 有(4)()f x f x +=-,函数(1)f x +的图象关于直线1x =-对称,若当(0,1]x ∈时()f x x =,则()A. ()f x 为偶函数B. ()f x 为周期函数C. (2023)1f =-D. 当[3,4)x ∈时,()f x =探究2:函数图象识别时不细致致错函数图象是函数性质的直观反映,由函数表达式识别函数图象时由于我们平时形成的一些错误的认识,还有惯性思维,不做深入的研究,导致得出错误的结论.我们在辨别图象时可从奇偶性、单调性、特殊值等方面来排除不合适的,从而得到正确答案.(2022福建联考)函数31()cos (66)31x x f x x x -=-+剟的图象大致为()A. B. C. D.【规范解析】解:函数31()cos (66)31x x f x x x -=-+剟,满足3113()cos()cos ()3113x xx x f x x x f x -----=-==-++,()f x ∴为奇函数,()f x 的图象关于原点对称,排除 ,.B 当x π=时,13()013f πππ-=<+,排除.C 故选.D (2022福建省福州市期中)我国著名数学家华罗庚先生曾说:数缺形时少直观,形缺数时难入微,数形结合百般好,隔裂分家万事休.在数学的学习和研究中,常用函数的图象来研究函数的性质,也常用函数的解析式来研究函数图象的特征.观察以下四个图象的特征,试判断与函数()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟相对应的图象是()A. B. C.D.探究3:比较大小时没有选对方法致错在比较数与式的大小时常利用指数函数、幂函数及对数函数单调性比较大小.若比较指数式与对数式的大小,或同是指数式(对数式)但底数不相同,这些情况下常利用中间量比较大小,常用的中间量是0,1,1-,有时也可借助13,2,22等中间量来比较大小.若两个式子结构比较复杂,但结构类似,这种情况下常利用式子的结构构造函数,然后利用函数单调性比较大小.(2022江苏联考)如果01a <<,那么下列不等式中正确的是()A. 1132(1)(1)a a ->- B. (1)log (1)0a a -+>C. 32(1)(1)a a ->+D. 1(1)1a a +->【规范解析】解:由题意 01a <<,所以()()10,1a -∈,()()11,2a +∈,得()1xy a =-为R 上的减函数,又1123>,所以()()113211a a ->-,10(1)(1=)1a a a +-<-而(1)log a y x -=单调递减,(1)(1)log (1)log 1=0a a a --+<, 32(1)1(1)a a -<<+,故选:.A(2022安徽省池州市单元测试)已知函数(2)y f x =-的图象关于直线2x =对称,在(0,)x ∈+∞时,()f x 单调递增.若ln3(4)a f =,(2)eb f -=,1(ln)(c f π=其中e 为自然对数的底数,π为圆周率),则a ,b ,c 的大小关系为()A. a c b >>B. a b c >>C. c a b >>D. c b a >>探究4:混淆两类切线致错求曲线的切线方程一定要注意区分“过点A 的切线方程”与“在点A 处的切线方程”的不同.虽只有一字之差,意义完全不同,“在”说明这点就是切点,“过”只说明切线过这个点,这个点不一定是切点,求曲线过某点的切线方程一般先设切点把问题转化为在某点处的切线,求过某点的切线条数一般也是先设切点,把问题转化为关于切点横坐标的方程实根个数问题.(2022山东模拟)已知直线y kx =是曲线x y e =的切线,也是曲线ln y x m =+的切线,则实数k =__________,实数m =__________. 【规范解析】解:设y kx =与x y e =和ln y x m =+的切点分别为11(,)x x e ,22(,ln )x x m +,x y e =的导数xy e '=,1x e k ∴=,且11x k x e=,解得11x =,k e ∴=;ln y x m =+的导数1y x'=,21k e x ∴==,21x e ∴=,又22ln kx x m =+,11ln 2.m e e e∴=⨯-=故答案为 ;2.(2022河南信阳月考)若曲线2y x =与ln()y x a =-有一条斜率为2的公切线,则()a =A. 1ln 22- B. 1ln 22C. ln 2-D. ln 2探究5:混淆导数与单调性的关系致错研究函数的单调性与其导函数的关系时一定要注意:一个函数的导函数在某个区间上单调递增(减)的充要条件是这个函数的导函数在此区间上恒大(小)于等于0,且导函数在此区间的任意子区间上都不恒为零.若研究函数的单调性可转化为解不等式()()()()1200a x x x x x --><>或0,首先根据a 的符号进行讨论,当a 的符号确定后,再根据12,x x 是否在定义域内讨论,当12,x x 都在定义域内时在根据12,x x 的大小进行讨论.(2022福建省福州市期中)已知函数()ln nx f x x mx xe =+-(1)当0n =时,讨论函数()f x 在区间(0,3)的单调性【规范解析】解:(1)当0n =时,函数()ln (03)f x x mx x x =+-<<,1(1)1()1m x f x m x x-+'=+-=当1m …时,(0,3)x ∈,()0f x '>,()f x ∴在(0,3)上单调递增, 当1m <时,令1()0,1f x x m'==-, ①当131m <-时,即23m <时, 由()0f x '>得:101x m <<-,由()0f x '<得:131x m<<-, ∴当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m-上单调递减. ②当131m-…时,即213m <…时,由03,()0x f x <<'>得03x <<,∴当213m <…时,函数()f x 在(0,3)上单调递增,综上所述:当23m …时,函数()f x 在(0,3)上单调递增;当23m <时,函数()f x 在1(0,)1m -上单调递增,在1(,3)1m -上单调递减.(2022河北联考)已知函数()ln sin f x a x x x =-+,其中a 为非零常数.(1)若函数()f x 在(0,)+∞上单调递增,求a 的取值范围;探究6:混淆导数与极值的关系致错对于可导函数f (x ):x 0是极值点的充要条件是在x 0点两侧导数异号,且0()0f x '=,即0()0f x '=是x 0为极值点的必要而不充分条件.对于给出函数极大(小)值的条件,一定要既考虑0()0f x '=,又考虑检验“左正右负”或“左负右正”,防止产生增根.(2022河北省张家口市期中)已知函数()f x 的导函数()f x '的图象如图,则下列叙述正确的是()A. 函数()f x 只有一个极值点B. 函数()f x 满足(4)(1)f f -<-,且在4x =-处取得极小值C. 函数()f x 在2x =处取得极大值D. 函数()f x 在(),4-∞-内单调递减【规范解析】解:由导函数的图象可得,当2x <时,()0f x '≥,函数()f x 单调递增;当2x >时,()0f x '<,函数()f x 单调递减.所以函数()f x 的单调递减区间为()2,+∞, 只有当2x =时函数取得极大值,无极小值. 故选:.AC(2022湖南联考)已知函数()(3)2.x f x x e x -=++(1)证明:()f x 恰有两个极值点;探究7:函数零点与方程的根不会转化致错确定函数零点所在区间、零点个数或已知函数零点情况求参数,常通过数形结合转化为两个函数图象的交点个数问题,所以研究函数与方程问题不要得“意”忘“形”.(2022河北期中)已知函数,()e ,x xx a f x x x a⎧⎪=⎨⎪<⎩…,若存在不相等的1x ,2x ,3x ,满足123()()()f x f x f x ==,则实数a 的取值范围是__________.【规范解析】解:由题意可知,对于()xx f x e=,则1().x xf x e -'=当1x <时,()0f x '>,()f x 单调递增;当1x >时,()0f x '<,()f x 单调递减,当1x =时,函数()f x 取得最大值为1(1)f e =,如图,分别画出函数x xy e =和y x =在 上的图象,用一条平行于x 轴的直线y m =截图象,有3个交点时,即存在1x ,2x ,3x ,使得123()()()f x f x f x m ===,当(1,)a ∈+∞或(,0]a ∈-∞时,最多有2个交点,所以不成立;当(0,1)a ∈时,存在3个交点,所以a 的取值范围是(0,1). 故答案为:(0,1)(2022福建月考)函数()ln (),0()(2),(0)x x f x x x x ⎧-<=⎨-⎩…,若关于x 的方程22()()10f x af x -+=有6个不相等的实数根,则a 的取值范围是__________.专题升华函数的定义域是研究函数图象与性质的第一要素,性质是函数的基本属性,图象是其性质的外在表现;把握各性质的定义和等价表达式是根本;导数是研究函数性质的的根本工具,遇到参数时要紧记“分类讨论”;导函数图象与原函数图象的关系不能混淆!复合函数要会分解,定义域先行,内层函数的值域是外层函数的定义域,要清醒对待两者的身份!【答案详解】变式训练1【答案】.ABD【解析】由函数(1)f x +的图象关于直线1x =-对称可知,函数()f x 的图象关于 轴对称, 故()f x 为偶函数.选项 正确;由(4)()f x f x +=-,得(44)(4)()f x f x f x ++=-+=,()f x ∴是周期8T =的偶函数,(2023)(25381)(1)(1) 1.f f f f ∴=⨯-=-==选项 正确,选项 错误;设[3,4)x ∈,则4[1,0),4(0,1],x x -∈--∈()f x 为偶函数,(4)(4)f x f x ∴-=-,由(0,1]x ∈时,()f x =,得(4)(4.f x f x -=--又(4)()f x f x +=-,()(4)f x f x ∴=--=选项 正确.故选:.ABD变式训练2【答案】【解析】因为()1sin ,(,0)f x x x x x x ππ⎛⎫=--≠ ⎪⎝⎭剟,所以()()1sin f x x x f x x ⎛⎫-=-+=- ⎪⎝⎭,所以()f x 为奇函数,其图象关于原点中心对称,故排除 、 选项; 又0x π<<时,()10f =,令6x π=,则6sin 0666f ππππ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,故排除 选项.故选:.D变式训练3【答案】【解析】根据题意,函数(2)y f x =-的图象关于直线2x =对称,则函数()f x 的图象关于 轴对称,即函数()f x 为偶函数,满足()()f x f x -=,则1(l n )(l n )c f f ππ==,ln31444ln ln 120e e π->=>>=>>, 又由(0,)x ∈+∞时,()f x 单调递增,则有a c b >>;故选:.A变式训练4【答案】【解析】由2y x =得2y x '=,令22y x '==,解得1x =,由点斜式得切线方程:12(1)y x -=-,即21y x =-,由l n ()y x a =-,得1y x a '=-,令12y x a '==-,解得12x a =+,代入ln()y x a =-得:ln 2y =-,将1(,ln 2)2a +-代入21y x =-,得:11ln 22()1ln 222a a -=+-⇒=-,故选:.A变式训练5【解析】(1)由题知()cos 1(0)af x x x x'=-+>,若0a >,因为0x >,1cos 0x -…,则()0f x '>,所以()f x 在(0,)+∞上单调递增,若0a <,则当0,2a x ⎛⎫∈- ⎪⎝⎭时,2a x <-,从而11 / 11 ()2cos 1(1cos )0f x x x '<--+=-+…,所以()f x 在0,2a ⎛⎫- ⎪⎝⎭上单调递减,不满足题意,综上分析,a的取值范围是(0,).+∞变式训练6【解析】(1)证明:依题意()f x 的定义域为 ,()(2)2x f x x e -'=-++,令()(2)2x m x x e -=-++,()(1).x m x x e -'=+当(1,)x ∈-+∞时,()0m x '>,所以()f x '在(1,)-+∞单调递增;当(,1)x ∈-∞-时,()0m x '<,所以()f x '在(),1-∞-单调递减.又因为(1)20f e '-=-<,(0)0f '=,(2)20f '-=>,所以()f x '在(),1-∞-恰有1个零点0x ,在()1,-+∞恰有1个零点0,且当0(,)x x ∈-∞时,()0f x '>,当0(,0)x x ∈时,()0f x '<,当(0,)x ∈+∞时,()0.f x '>所以()f x 在0(,)x -∞单调递增,在0(,0)x 单调递减,在(0,)+∞单调递增.所以()f x 恰有一个极大值点0x 和一个极小值点0,即()f x 恰有两个极值点.变式训练7【解析】函数()f x 的图象如图所示,令()t f x =,结合图象可知,若关于x 的方程22()()10f x af x -+=有6个不等的实数根,则关于 的方程2210t at -+=在[0,1)有两个不等实数根,因为221y t at =-+的图象过点(0,1),则280014210a a a ⎧∆=->⎪⎪<<⎨⎪-+>⎪⎩,解得3.a <<故答案为:。

高三数学二轮复习重点

高三数学二轮复习重点

高三数学二轮复习重点高三数学第二轮重点复习内容专题一:函数与不等式,以函数为主线,不等式和函数综合题型是考点函数的性质:着重掌握函数的单调性,奇偶性,周期性,对称性。

这些性质通常会综合起来一起考察,并且有时会考察具体函数的这些性质,有时会考察抽象函数的这些性质。

一元二次函数:一元二次函数是贯穿中学阶段的一大函数,初中阶段主要对它的一些基础性质进行了了解,高中阶段更多的是将它与导数进行衔接,根据抛物线的开口方向,与x轴的交点位置,进而讨论与定义域在x轴上的摆放顺序,这样可以判断导数的正负,最终达到求出单调区间的目的,求出极值及最值。

不等式:这一类问题常常出现在恒成立,或存在性问题中,其实质是求函数的最值。

当然关于不等式的解法,均值不等式,这些不等式的基础知识点需掌握,还有一类较难的综合性问题为不等式与数列的结合问题,掌握几种不等式的放缩技巧是非常必要的。

专题二:数列。

以等差等比数列为载体,考察等差等比数列的通项公式,求和公式,通项公式和求和公式的关系,求通项公式的几种常用方法,求前n项和的几种常用方法,这些知识点需要掌握。

专题三:三角函数,平面向量,解三角形。

三角函数是每年必考的知识点,难度较小,选择,填空,解答题中都有涉及,有时候考察三角函数的公式之间的互相转化,进而求单调区间或值域;有时候考察三角函数与解三角形,向量的综合性问题,当然正弦,余弦定理是很好的工具。

向量可以很好得实现数与形的转化,是一个很重要的知识衔接点,它还可以和数学的一大难点解析几何整合。

专题四:立体几何。

立体几何中,三视图是每年必考点,主要出现在选择,填空题中。

大题中的立体几何主要考察建立空间直角坐标系,通过向量这一手段求空间距离,线面角,二面角等。

另外,需要掌握棱锥,棱柱的性质,在棱锥中,着重掌握三棱锥,四棱锥,棱柱中,应该掌握三棱柱,长方体。

空间直线与平面的位置关系应以证明垂直为重点,当然常考察的方法为间接证明。

专题五:解析几何。

(完整word)高考数学-函数与导数(知识点归纳+习题),推荐文档

(完整word)高考数学-函数与导数(知识点归纳+习题),推荐文档

专题六函数导数专题【命题趋向】函数是高考考查能力的重要素材,以函数为基础编制的考查能力的试题在历年的高考试卷中占有较大的比重. 这部分内容既有以选择题、 填空题形式出现的试题, 也有以解答题形式出现的试题. 一 般说来,选择题、填空题主要考查函数的概念、单调性与奇偶性、函数图象、导数的几何意义等重要知识,关 注函数知识的应用以及函数思想方法的渗透,着力体现概念性、思辨性和应用意识.解答题大多以基本初等函数为载体,综合应用函数、导数、方程、不等式等知识,并与数学思想方法紧密结合,对函数与方程思想、数 形结合思想、分类与整合思想、有限与无限思想等进行较为深入的考查, 体现了能力立意的命题原则.这些综合地统揽各种知识、应用各种方法和能力的试题充分显示了函数与导数的主干知识地位.在中学引入导数知识,为研究函数的性质提供了简单有效的方法.解决函数与导数结合的问题, 一般有规范的方法,利用导数判断函数的单调性也有规定的步骤, 具有较强的可操作性.高考中,函数与导数的结合,往往不是简单地考查公式的应用,而是与数学思想方法相结合,突出考查函数与方程思想、有限与无限思想等,所考查的问题具有一定的综合性.在一套高考试卷中一般有 2-3个小题有针对性地考查函数与导数的重要知识和方法, 合考查函数与导数,特别是导数在研究函数问题中的应用,这道解答题是试卷的把关题之一.图象与性质,函数与方程,函数模型及其应用,点评:本题考查分段函数的概念和运算能力.解决的关键是由内到外逐步有选择”的代入函数解析式, 求出函数值.1例2如图,函数f x 的图象是曲线 OAB ,其中点O,A,B 的坐标分别为 0,0 ,(1,2),(3,1),则f —f 3的值等于 ______ .分析:从图象上理解自变量与函数值的对应关系.解析:对于 f (3) 1, f (1) 2 .题型2函数的图象与性质【考点透析】函数和导数的主要考点包括函数的概念、 导数及其应用、微积分及微积分基本定理等.【例题解析】题型1函数的概念及其表示 例1(2008高考山东文5) 设函数 f (x)2,1,1- 的值为()f(2)1527A .B .1616分析:由内向外逐步计算. 18解析: 24, 12上 1上1, 1 15 ff 1 -f 24 416有一道解答题综2.答案A .4,故x 1分析:图象的对称性反应在函数性质上就是这个函数是奇函数,根据奇函数对定义域内任意x都有f x点特点可得一个关于x的恒等式,根据这个恒等式就可以确定m的值,特别地f 0 f 0 f 00也可以解决问题.解析:对于函数y ln( mx1)的图象关于原点中心对称,则对于f 0 0,因此有1ln( m 1)0, m 11,m 2 .答案2.点评:函数的奇偶性是函数的重要性质之一,这两个性质反应了函数图象的某种对称性,这二者之间是可以相互转换的.0.2 11 -例 4 设a log13,b ,c 23,则()23A. a b c B . c b a C . cab D . b a c 分析:以0和1为分界线,根据指数函数与对数和的性质解决.10.2 1解析:对于a log13 0,1 b - o,c 231,因此a b c .答案A.2 3点评:大小比较问题,可以归结为某个函数就归结为一个函数、禾U用函数的单调性比较,不能归结为某个函数一般就是找分界线.题型3函数与方程X2X31 x 的零点的个数是2 3A . 0B . 1C . 2分析:这是一个三次函数,可以通过研究这个函数的单调性与极值,结合函数图象的基本特征解决.2 1 23解析:对于fx 1xx2(x )0,因此函数fx在R上单调递增,而对于2 45 23f( 2)- 0, f (2)0,因此其零点的个数为1个.答案B .3 3点评:本例和例9在本质方法上是一致的,其基本道理就是单调函数至多有一个零点”,再结合连续函数的零点定理,探究问题的答案.例6 .函数f x mx22x 1有且仅有一个正实数的零点,则实数m的取值范围是A. ,1 B . ,0 U 1 C . ,0 U 0,1 D . ,1分析:函数中的二次项系数是个参数,先要确定对其分类讨论,再结合一次函数、二次函数的图象布列不等式解决.1解析:当m 0时,x —为函数的零点;当m 0是,若0,即m 1时,x 1是函数唯一的零点,2若0 ,显然函数x 0不是函数的零点,这样函数有且仅有一个正实数零点等价与方程2f x mx 2x 1 0有一个正根一个负根,即mf 0 0,即m 0.综合知答案B .点评:分类讨论思想、函数与方程思想是高考所着重考查的两种数学思想,在本题体现的淋漓尽致. 还要注意函数的零点有变号零点”和不变号零点”,如本题中的x 1就是函数的不变号零点”,对于不变号零点”,函例5.函数题型4简单的函数模型及其应用例7.经市场调查,某超市的一种小商品在过去的近20天内的销售量(件)与价格(元)均为时间t (天)的函数,且销售量近似满足g t 80 2t (件),价格近似满足f(t) 20 -|t 10| (元).2(1)试写出该种商品的日销售额 y 与时间t ( 0 t 20 )的函数表达式;(2 )求该种商品的日销售额y 的最大值与最小值.分析:函数模型就是销售量乘以价格, 价格函数带有绝对值, 去掉绝对值后本质上是一个分段函数,建立起这个分段函数模型后,求其最值即可. 1解析:(1) y g(t) f (t) (80 2t) (20 |t 10|)(40 t)(40 |t 10 |)2_ (30 t)(40t), (0< t 10),(40 t)(50 t), (10 W t W 20).(2) 当0 t 10时,y 的取值范围是1200,1225,在t 5时,y 取得最大值为1225; 解析:答案:In2 1 .点评:本题考查导数几何意义的应用, 口是切点坐标,这也是解决曲线的切线问题时的一个重要思维策略.在解题中不少考生往往忽视 切线上”这个简单的事实,要引以为戒.当10t 201时,y 的取值范围是 600,1200,20时,y 取得最小值为600 •答案: 总之,第5天,日销售额y 取得最大为1225元;第20天,日销售额y 取得最小为600元. 点评: 对值的解析式统一表达, 对值号再把它化为分段函数. 题型5导数的意义、运算以及简单应用18)直线y x b 是曲线y In x(x 0)的一条切线,则实数2分段函数模型是课标的考试大纲所明确提出要求的一个, 分段函数在一些情况下可以用一个带有绝要知道带有绝对值的函数本质上是分段函数,可以通过零点分区”的方法去掉绝例8.( 2008咼考江苏1分析:切线的斜率是1 2,就可以确定切点的坐标,切点在切线上,就求出来 b 的值. 1方法一 y ' ,令yxb In 2 1.2,即切点的横坐标是 2,则纵坐标是In 2,切线过点 2,1 n2,所以方法二:设曲线上一点点坐标是x 0,Inx 0,由y 1知道过该点的曲线的切线的斜率是x1x ;,故过该点 的曲线的切线方程是 y In x °x X °,即y 丄In X 。

高考数学压轴专题新备战高考《函数与导数》知识点总复习含答案

高考数学压轴专题新备战高考《函数与导数》知识点总复习含答案

【高中数学】《函数与导数》知识点汇总一、选择题1.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-<⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.2.36ax ⎛⎫- ⎪ ⎪⎝⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1【答案】A 【解析】 【分析】首先根据二项式定理求出a ,把a 的值带入11adx x⎰即可求出结果. 【详解】解题分析根据二项式36ax ⎛- ⎝⎭的展开式的通项公式得221213()4aT C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44aa ∴=∴=,则4411111d d ln 2ln 2a x x x x x ===⎰⎰.故选:A 【点睛】本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k kk n T a b -+=.属于中等题.3.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A 【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.4.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.5.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m =与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e<<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.6.函数f (x )=x ﹣g (x )的图象在点x =2处的切线方程是y =﹣x ﹣1,则g (2)+g '(2)=( ) A .7B .4C .0D .﹣4【答案】A 【解析】()()()(),'1'f x x g x f x g x =-∴=-Q ,因为函数()()f x x g x =-的图像在点2x =处的切线方程是1y x =--,所以()()23,'21f f =-=-,()()()()2'2221'27g g f f ∴+=-+-=,故选A .7.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B 【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r ra T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1) 所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.8.设复数z a bi =+(i 为虚数单位,,a b ∈R ),若,a b 满足关系式2a b t =-,且z 在复平面上的轨迹经过三个象限,则t 的取值范围是( )A .[0,1]B .[1,1]-C .(0,1)(1,)⋃+∞D .(1,)-+∞【答案】C 【解析】 【分析】首先根据复数的几何意义得到z 的轨迹方程2xy t =-,再根据指数函数的图象,得到关于t 的不等式,求解.【详解】由复数的几何意义可知,设复数对应的复平面内的点为(),x y ,2ax ay b t=⎧⎨==-⎩ ,即2x y t =- , 因为z 在复平面上的轨迹经过三个象限, 则当0x =时,11t -< 且10t -≠ , 解得0t >且1t ≠ ,即t 的取值范围是()()0,11,+∞U . 故选:C 【点睛】本题考查复数的几何意义,以及轨迹方程,函数图象,重点考查数形结合分析问题的能力,属于基础题型.9.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

专题1.24 导数与微积分(理)-2016届高三数学二轮复习考点总动员(原卷版)

专题1.24 导数与微积分(理)-2016届高三数学二轮复习考点总动员(原卷版)

2016届高考数学考点总动员【二轮精品】第一篇热点二十四 导数与微积分(理)【热点考法】导数的应用涉及的知识点多,综合性强,要么直接求极值或最值,要么利用极值或最值求参数的取值范围,常与函数的单调性,方程的零点,不等式及实际问题,形成知识的交汇问题,难度较大. 预测2016年的高考,在有压轴的综合题的同时,可能会出现考查导数计算、导数的几何意义即切线问题的小题.【热点考向】考向一 导数的运算和几何意义【解决法宝】利用导数的几何意义解题,主要是利用导数、切点坐标、切线斜率之间的关系来进行转化.以平行、垂直直线斜率间的关系为载体求参数的值,则要求掌握平行、垂直与斜率之间的关系,进而和导数联系起来求解. 求曲线的切线要注意“过点P 的切线”与“在点P 处的切线”的差异,过点P 的切线中,点P 不一定是切点,点P 也不一定在已知曲线上,而在点P 处的切线,必以点P 为切点. 例1【甘肃省定西市通渭县榜罗中学2016届高三上学期期末】曲线在点(﹣1,﹣1)处的切线方程 .考向二 利用导数研究函数的性质【解决法宝】利用导数研究函数性质的一般步骤: (1)确定函数的定义域; (2)求导函数f ′(x);(3)①若求单调区间(或证明单调性),只要在函数定义域内解(或证明)不等式f ′(x)>0或f ′(x)<0. ②若已知函数的单调性,则转化为不等式f ′(x )≥0或f ′(x )≤0在单调区间上恒成立问题来求解. (4)①若求极值,则先求方程f ′(x)=0的根,再检查f ′(x)在方程根和导数不存在而函数仍有意义点的左右函数值的符号.②若已知极值大小或存在情况,则转化为已知方程f ′(x)=0根的大小或存在情况来求解.(5)求函数f(x)在闭区间[a ,b]的最值时,在得到极值的基础上,结合区间端点的函数值f(a),f(b)与f(x)的各极值进行比较得到函数的最值.例2【北京市海淀区2016届高三第一学期期末】已知函数1()(1)ln f x kx k x x=-+-. (Ⅰ)当12k =时,求函数()f x 的单调区间和极值; (Ⅱ)求证:当01k <<时,关于x 的不等式()1f x >在区间[1,e]上无解.(其中e 2.71828=)考向三 导数与方程、不等式【解决法宝】研究方程及不等式问题,都要运用函数性质,而导数是研究函数性质的一种重要工具.基本思路是构造函数,通过导数的方法研究这个函数的单调性、极值和特殊点的函数值,根据函数的性质推断不等式成立的情况以及方程实根的个数,必要时画出函数的草图辅助思考.例3【福建省泉州市2016届高三下学期3月质量检查】已知函数()()()(,1a e x a x f x--=常数R a ∈且)0=/a .(Ⅰ)证明:当0>a 时,函数()x f 有且只有一个极值点; (Ⅱ)若函数()x f 存在两个极值点,21,x x 证明:()2140e x f <<且()2240e x f <<. 例4【贵州省黔南州2016届高三(上)期末】已知函数f (x )=e x﹣ax ﹣1(a >0,e 为自然数的底数). (1)求函数f (x )的最小值;(2)若f (x )≥0对任意的x ∈R 恒成立,求实数a 的值; (3)在(2)的条件下,证明:1+++…+>ln (n+1)(n ∈N *).考向四 定积分及其应用【解决法宝】(1)求定积分有两种思路,思路1,利用微积分基本定理求定积分,其关键是求出被积函数的原函数,而求一个函数的原函数与求一个函数的导数是互逆运算,因此应注意掌握一些常见函数的导数;此外,如果被积函数是绝对值函数或分段函数,那么可以利用定积分的性质()baf x dx ⎰=()+()cbacf x dx f x dx ⎰⎰,根据函数的定义域,将积分区间分为几部分,代入相应的解析式,分别求出积分值,相加即可;思路2,若函数的几何意义明显,且面积易求,常用几何法求定积分. (2)求平面图形的面积是定积分最重要的应用之一,其基本步骤是: ①根据题意画出图形;②找出范围,定出积分上、下限; ③确定被积函数;④写出相应的定积分表达式;⑤用微积分基本定理计算定积分,求得结果.例5【广西钦州市钦州港经济技术开发区中学2016届高三上学期期末】由直线y=2x 及曲线y=4﹣2x 2围成的封闭图形的面积为( )A .1B .3C .6D .9【热点集训】1. 【黑龙江省哈尔滨三十二中2016届高三上学期期末】积分(x 2+sinx )dx=( )A .B .C .1D .2.【山东省临沂市2016届高三上学期期中】函数y=在点(0,1)处切线的斜率为( )A .﹣2B .2C .﹣D .3.【辽宁省沈阳市2016届高三教学质量监测(一)】已知函数2y x =的图象在点()200,x x 处的切线为l ,若l 也与函数ln y x =,)1,0(∈x 的图象相切,则0x 必满足( )A .012x <<0 B .012x <<1C .2220<<x D 0x <<4.【新疆乌鲁木齐地区2016年高三年级第一次诊断性测试】设函数()f x 在R 上存在导函数()f x ',对任意x R ∈,都有2()()f x f x x +-=,且()0+x ∈∞,时,()f x x '>,若2(2-)()22f a f a a ≥--,则实数a 的取值范围是( )A. [)1+∞,B. (],1-∞C. (],2-∞D. [)2+∞, 5.【甘肃省定西市通渭县榜罗中学2016届高三上学期期末】已知二次函数y=f (x )的图象如图所示,则它与X 轴所围图形的面积为 ( )A .B .C .D .6.【黑龙江省哈尔滨六中2016届高三上学期期末】已知函数f (x )=﹣lnx+x+h ,在区间上任取三个实数a ,b ,c 均存在以f (a ),f (b ),f (c )为边长的三角形,则实数h 的取值范围是( ) A .(﹣∞,﹣1) B .(﹣∞,e ﹣3)C .(﹣1,+∞)D .(e ﹣3,+∞)7.【甘肃省河西五市部分普通高中2016年1月高三第一次联考】正项等比数列{}n a 中的 1a ,4031a 是函数321()4633f x x x x =-+-的极值点,则2016a =( )A .1-B .1CD .28.【甘肃省张掖市2016届高三第一次诊断考试】函数)(x f 在定义域R 内可导,若)2()(x f x f -=,且当)1,(-∞∈x 时,0)()1(<'-x f x ,设)3(),21(),0(f c f b f a ===,则 ( )A .c b a <<B .a b c <<C .b a c <<D .a c b <<9.【2015届云南省师范大学附属中学高考适应性月考】曲线xy a =在0x =点处的切线方程是ln 210x y +-=,则a =( )A .12 B .2 C .ln 2 D .1ln 210.【2015届湖南省浏阳、醴陵、攸县三校高三联考】由直线12y =,2y =,曲线1y x=及y 轴所围成的封闭图形的面积是 ( )A.2ln 2B.2ln 21-C.1ln 22 D.5411.【2015届安师大附中、马鞍山二中统一考试】若32()132x a f x x x =-++函数在区间1,43⎛⎫⎪⎝⎭上有极值点,则实数a 的取值范围是( ) A .102,3⎛⎫ ⎪⎝⎭ B .102,3⎡⎫⎪⎢⎣⎭ C .1017,34⎛⎫⎪⎝⎭D .172,4⎛⎫ ⎪⎝⎭ 12.【2015届广东江门市调研测试】已知函数13)(23+-=x ax x f ,若)(x f 存在唯一的零点0x ,且00>x ,则常数a 的取值范围是A .)2 , (--∞B .)1 , (--∞C .) , 1(∞+D .) , 2(∞+ 13. 【2015届山东省泰安市高三年级期末考试】定义在R 上的函数()f x 满足:()()()()()1,00,f x f x f f x f x ''>-=是的导函数,则不等式()1x x e f x e >-(其中e 为自然对数的底数)的解集为A. ()(),10,-∞-⋃+∞B. ()0,+∞C. ()(),01,-∞⋃+∞D. ()1,-+∞14. 【2015届云南省师范大学附属中学高考适应性月考】设函数()(sin cos )xf x e x x =-(02015)x π≤≤,则函数()f x 的各极小值之和为( )A .220152(1)1e e e πππ---B .22015(1)1e e e πππ---C .2015211e e ππ---D .220142(1)1e e e πππ---15. 【2015届河北省“五个一名校联盟”高三教学质量监测(二)】若曲线21:C y ax =(0)a >与曲线2:x C y e =存在公共切线,则a 的取值范围为A .2,8e ⎡⎫+∞⎪⎢⎣⎭B .20,8e ⎛⎤ ⎥⎝⎦C .2,4e ⎡⎫+∞⎪⎢⎣⎭D .20,4e ⎛⎤⎥⎝⎦16. 【2015届四川成都七中第一次诊断性检测】已知f(x)为R 上的可导函数,且对任意的x ∈R 均有f(x)>()f x ',则下列说法正确的是( ) A 、e 2014f(-2014)<f(0),f(2014)>e 2014f(0) B 、e 2014f(-2014)<f(0),f(2014)<e 2014f(0) C 、e 2014f(-2014)>f(0),f(2014)<e 2014f(0) D 、e2014f(-2014)>f(0),f(2014)>e2014f(0)17. 【2015届山东济宁市育才中学第一学期期中考试】已知函数()x f 对定义域R 内的任意x 都有()()x f x f -=4,且当2≠x 时其导函数()x f '满足()(),2x f x f x '>'若42<<a ,则A .2(2)(3)(log )a f f f a <<B .2(3)(log )(2)a f f a f <<C .2(log )(3)(2)a f a f f <<D .2(log )(2)(3)a f a f f <<18. 【2014届重庆一中上期期中考试】若点P 是函数x x x f ln )(2-=上任意一点,则点P 到直线02=--y x 的最小距离为 ( )A .2B .22 C .21D .3 19. 【三明一中2014—2015学年高三上学期学段考】已知定义在R 上的函数()()f x g x 、满足()()x f x a g x =,且'()()()'()f x g x f x g x <, 25)1()1()1()1(=--+g f g f ,若有穷数列()()f n g n ⎧⎫⎨⎬⎩⎭(n N *∈)的前n 项和等于3231,则n 等于 ( )A .4B .5C .6D . 720. 【2015届四川成都示范性高中12月月考】设函数2()21ln f x x x a x =-++有两个极值点12,x x ,且12x x <,则( )A 212ln 2()4f x +<-B .212ln 2()4f x -<C .212ln 2()4f x +>D .212ln 2()4f x -> 21.【长春市普通高中2016届高三质量监测(二)】已知0>a ,6)x -展开式的常数项为15,则2(aax x dx -++=⎰___________.22.【北京市丰台区2016届高三第一学期期末】设函数(1),()ln()(1).x a x f x x a x ⎧-<=⎨+≥⎩e 其中1a >-.①当0a =时,若()0f x =,则x =__________;②若()f x 在),(∞+∞-上是单调递增函数,则a 的取值范围________. 23.【甘肃省白银市会宁四中2016届高三(上)期末】如图是y=f (x )导数的图象,对于下列四个判断: ①f(x )在[﹣2,﹣1]上是增函数 ②x=﹣1是f (x )的极小值点;③f(x )在[﹣1,2]上是增函数,在[2,4]上是减函数; ④x=3是f (x )的极小值点. 其中判断正确的是 .24.【长春市普通高中2016届高三质量监测(二)】(已知函数22ln ()a xf x x-=在点(1,(1))f 处的切线与直线41y x =-+平行.(1)求实数a 的值及()f x 的极值; (2)若对任意1x ,2x 1(0,]e∈,有1222221212()()||>f x f x kx x x x --⋅,求实数k 的取值范围; 25.【辽宁省沈阳市2016届高三教学质量监测(一)】已知函数a x x a x x x f +--=22ln )((a ∈R )在其定义域内有两个不同的极值点. (Ⅰ)求a 的取值范围;(Ⅱ)记两个极值点分别为1x ,2x ,且21x x <.已知0>λ,若不等式112e x x λλ+<⋅恒成立,求λ的范围. 26.【新疆乌鲁木齐地区2016年高三年级第一次诊断性测试】已知函数()()e ln 1.xf x x =++(Ⅰ)求曲线()y f x =在点()0(0)f ,处的切线方程; (Ⅱ)当0x ≥时,()1f x ax ≥+成立,求实数a 的取值范围.27.【甘肃省白银市会宁四中2016届高三(上)期末】已知函数(1)当a=0时,求f (x )的极值; (2)若f (x )在区间上是增函数,求实数a 的取值范围.28.【甘肃省定西市通渭县榜罗中学2016届高三上学期期末】已知函数f (x )=ax 2+blnx 在x=1处有极值. (1)求a ,b 的值;(2)判断函数y=f (x )的单调性并求出单调区间. 29.【黑龙江省哈尔滨六中2016届高三上学期期末】设函数.(Ⅰ)当时,求f (x )的最大值;(Ⅱ)令,(0<x≤3),其图象上任意一点P (x 0,y 0)处切线的斜率k≤恒成立,求实数a 的取值范围;(Ⅲ)当a=0,b=﹣1,方程2mf (x )=x 2有唯一实数解,求正数m 的值.30.【北京市四中2016届高三第一学期开学考试】设两个函数()f x 和()g x ,其中()f x 是三次函数,且对任意的实数x ,都有2()2()9f x f x x '+'-=-43x --,(0)1f =,()ln mg x x x x =+ (1)m ≥.(1)求函数()f x 的极值;(2)证明:对于任意的12,(0,)x x ∈+∞都有12()()f x g x ≤成立.:。

2016届高考数学三轮讲练测核心热点总动员(新课标版)专题03基本函数的性质(原卷版)

2016届高考数学三轮讲练测核心热点总动员(新课标版)专题03基本函数的性质(原卷版)

2016年学易高考三轮复习系列:讲练测之核心热点 【全国通用版】【名师精讲指南篇】【高考真题再现】1.【2013⋅新课标全国卷】 若函数f (x )=(1-x 2)(x 2+ax +b )的图像关于直线x =-2对称,则f (x )的最大值是______.2.【2014高考全国1卷】设函数)(),(x g x f 的定义域为R ,且)(x f 是奇函数,)(x g 是偶函数,则下列结论中正确的是( )A.)()(x g x f 是偶函数B. )(|)(|x g x f 是奇函数C. |)(|)(x g x f 是奇函数D. |)()(|x g x f 是奇函数3.【2014高考全国1卷文】设函数()113,1,,1,x e x f x x x -⎧<⎪=⎨⎪≥⎩则使得()2f x ≤成立的x 的取值范围是________.4.【2015全国II 文】已知函数()32f x ax x =-的图像过点()14,-,则=a .5.【2015全国I 文】已知函数1222,1()log (1),1x x f x x x -⎧-=⎨-+>⎩… ,且()3f a =-,则(6)f a -=( ).A. 74-B. 54-C. 34-D. 14- 6.【2015全国I 文】设函数()y f x =的图像与2x ay +=的图像关于直线y x =-对称,且(2)(4)1f f -+-=,则a =( ).A.1-B. 1C. 2D. 47.【2015全国II 理】设函数()()2111log 2,12,x x x f x x -⎧+-<⎪=⎨⎪⎩…,则()()22log 12f f -+=( ).A.3B.6C.9D.12 8.【2015全国I 理】若函数()(ln =f x x x 为偶函数,则=a .9.【2015全国II 理】如图所示,长方形ABCD 的边2AB =,1BC =,O 是AB 的中点,点P 沿着边,BC CD 与DA 运动,BOP x ∠=.将动点P 到,A B 两点距离之和表示为x 的函数()f x ,则()f x 的图像大致为( ).xPODCBA2π3π4π2π4y O x2xO y π4π23π4π2xO y π4π23π4π2π3π4π2π4y O xA. B. C. D. 【热点深度剖析】高考考查的基本函数有一次函数、二次函数、指数函数、对数函数和幂函数,其中以指数函数和对数函数的性质为命题热点,且常以复合函数或分段函数的形式出现,达到一题多考的目的.题型一般为选择题、填空题,属中低档题,主要考查利用指数和对数函数的图像与性质比较对数值大小,求定义域、值域、最值,对数函数与相应指数函数的关系,函数的奇偶性与单调性,周期性,以及函数零点问题.也应为同学们必须得分的题目.2013年考查了函数的对称性与奇偶性,2014年理科考查了函数的奇偶性,文科一道考查了函数的奇偶性,一道考查了以指数函数与幂函数为背景的分段函数,与解不等式,2015年分别考查了分段函数求值、函数奇偶性、函数图像及对称性,预测2016年高考可能会涉及函数的奇偶性及单调性及函数图像,其中指数函数、对数函数及分段函数依然是考查重点. 【重点知识整合】 1指数式、对数式:m na =,1m nm naa -=,,01a =,log 10a =,log 1a a =,lg 2lg 51+=,log ln e x x =,log (0,1,0)b a a N N b a a N =⇔=>≠>,log a N a N =,log log logc a c b b a=,log log m n a a nb b m=.2.指数、对数值的大小比较:(1)化同底后利用函数的单调性;(2)作差或作商法;(3)利用中间量(0或1);(4)化同指数(或同真数)后利用图象比较. 3.指数函数:(1)指数函数图象和性质(2)xy a =(0a >且1a ≠)的图象特征:①1>a 时,图象像一撇,过点()0,1,且在y 轴左侧a 越大,图象越靠近y 轴(如图1); ②01a <<时,图象像一捺,过点()0,1,且在y 轴左侧a 越小,图象越靠近y 轴(如图2); ③xy a =与xay -=的图象关于y 轴对称(如图3).④xy a =的图象如图44. 对数函数(1)对数的图象和性质:xx(2))10(log ≠>=a a x y a 且的图象特征: ①1>a 时,图象像一撇,过()1,0点,在x 轴上方a 越大越靠近x 轴;②01a <<时,图象像一捺,过()1,0点,在x 轴上方a 越小越靠近x 轴.③x a y =(1,1a a >≠)与x y a log =互为反函数,图象关于y x =对称;如图2 ④log (1)a y x a =>的图象3.⑤log (1)a y x a =>的图象4.5.幂函数的定义和图象(1)定义:形如y =x α的函数叫幂函数(α为常数)要重点掌握α=1,2,3,21,-1,0,-21,-2时的幂函数.(2)图象:(只作出第一象限图象)(3)性质:(1)当α>0时,幂函数图象都过(0,0)点和(1,1)点;且在第一象限都是增函数;当0<α<1时曲线上凸;当α>1时,曲线下凸;α=1时,为过(0,0)点和(1,1)点的直线(2)当α<0时,幂函数图象总经过(1,1)点,且在第一象限为减函数.(3)α=0时y=x0,表示过(1,1)点平行于x轴的直线(除去(0,1)点).6. 常见复合函数类型1.单调性的判断方法:a.利用基本初等函数的单调性与图像:只需作出函数的图象便可判断函数在相应区间上的单调性;b.性质法:(1)增函数+增函数=增函数,减函数+减函数=减函数,增函数-减函数=增函数,减函数-增函数=减函数;(2)函数()f x -与函数()f x 的单调性相反; (3)0k >时,函数()f x 与()k f x 的单调性相反(()0f x ≠);0k <时,函数()f x 与()k f x 的单调性相同(()0f x ≠).c.导数法:()0f x '≥在区间D 上恒成立,则函数()f x 在区间D 上单调递增;()0f x '≤在区间D 上恒成立,则函数()f x 在区间D 上单调递减.d.定义法:作差法与作商法(常用来函数单调性的证明,一般使用作差法).【注】分段函数的单调性要求每段函数都满足原函数的整体单调性,还需注意断点处两边函数值的大小比较. 2.单调区间的求法:a.利用已知函数的单调区间来求;b.图象法:对于基本初等函数及其函数的变形函数,可以作出函数图象求出函数的单调区间.c.复合函数法:对于函数()y f g x =⎡⎤⎣⎦,可设内层函数为()u g x =,外层函数为()y f u =,可以利用复合函数法来进行求解,遵循“同增异减”,即内层函数与外层函数在区间D 上的单调性相同,则函数()y f g x =⎡⎤⎣⎦在区间D 上单调递增;内层函数与外层函数在区间D 上的单调性相反,则函数()y f g x =⎡⎤⎣⎦在区间D 上单调递减.d.导数法:不等式()0f x '>的解集与函数()f x 的定义域的交集即为函数()f x 的单调递增区间,不等式()0f x '<的解集与函数()f x 的定义域的交集即为函数()f x 的单调递减区间. 【注】函数的多个递增区间或递减区间不能合并,在表示的时候一般将各区间用逗号或“和”字进行连接.3. 在公共定义域内,①两个奇函数的和是奇函数,两个奇函数的积是偶函数; ②两个偶函数的和、积是偶函数; ③一个奇函数,一个偶函数的积是奇函数.4. 奇偶性与单调性综合时要注意奇函数在关于原点对称的区间上的单调性相同,偶函数在关于原点对称的区间上的单调性相反.5. 关于函数周期性常用的结论(1)若满足()()f x a f x +=-,则()(2)[()]()f x a f x a a f x a f x +=++=-+=,所以2a 是函数的一个周期(0a ≠); (2)若满足1()()f x a f x +=,则(2)[()]f x a f x a a +=++= 1()f x a +=()f x ,所以2a 是函数的一个周期(0a ≠); (3)若函数满足1()()f x a f x +=-,同理可得2a 是函数的一个周期(0a ≠). (4)如果)(x f y =是R 上的周期函数,且一个周期为T,那么))(()(Z n x f nT x f ∈=±. (5)函数图像关于b x a x ==,轴对称)(2b a T -=⇒. (6)函数图像关于()()0,,0,b a 中心对称)(2b a T -=⇒.(7)函数图像关于a x =轴对称,关于()0,b 中心对称)(4b a T -=⇒.6.指数运算的实质是指数式的积、商、幂的运算,对于指数式的和、差应充分运用恒等变形和乘法公式;对数运算的实质是把积、商、幂的对数转化为对数的和、差、倍.7.指数函数(0,xy a a =>且1)a ≠与对数函数(0,xy a a =>且1)a ≠互为反函数,应从概念、图象和性质三个方面理解它们之间的联系与区别.8.明确函数图象的位置和形状要通过研究函数的性质,要记忆函数的性质可借助于函数的图象.因此要掌握指数函数和对数函数的性质首先要熟记指数函数和对数函数的图象. 9.求解与指数函数有关的复合函数问题时,首先要熟知指数函数的定义域、值域、单调性等相关性质,其次要明确复合函数的构成,涉及值域、单调区间、最值等问题时,都要借助“同增异减”这一性质分析判断,最终将问题归纳为与内层函数相关的问题加以解决. 【考场经验分享】1.高考对函数性质的考查,一般在选择题或填空题的中间,难度中档,应该是得分的题目,在解答此类题目时注意解答选择题的常用方法;验证法和排除法的应用,若是函数的零点问题,注意数形结合的应用.2. 指数函数(0,x y a a =>且1)a ≠的图象和性质与a 的取值有关,要特别注意区分1a >与01a <<来研究.3.对可化为20x x a b a c +⋅+=或()200xx ab ac +⋅+≥≤形式的方程或不等式,常借助换元法解决,但应注意换元后“新元”的范围.4.指数式b a N =(0a >且1)a ≠与对数式log a N b =(0a >且1,0)a N ≠>的关系以及这两种形式的互化是对数运算法则的关键.5.在运算性质log log n a a M n M = (0a >且1,0)a M ≠>时,要特别注意条件,在无0M >的条件下应为log log na a M n M = (n N *∈,且n 为偶数).6.幂函数的图象一定会出现在第一象限,一定不会出现在第四象限,至于是否出现在第二、三象限,要看函数的奇偶性;幂函数的图象最多只能同时出现在两个象限内;如果幂函数图象与坐标轴相交,则交点一定是原点.7.函数图像识别题一直是高考热点,解决此类问题一般是利用函数性质排除不符合条件的选项.【名题精选练兵篇】1. 【2016河北定州高三第一次测试】若0.23a =,πlog 3b =,3log c =,则 ( ) A .b c a >>B . b a c >>C .a b c >>D .c a b >>2.【2016湖北省荆州高三第一次质检】下列函数是奇函数的是( ).A . x x x f =)(B .x x f lg )(=C . x x x f -+=22)(D .1)(3-=x x f3.【2016襄阳五中 宜昌一中 龙泉中学高三联考】已知定义在R 上的函数()12-=-mx x f (m R ∈)为偶函数.记()()m f c f b f a 2,log ,log 52431==⎪⎪⎭⎫ ⎝⎛=,则c b a ,,的大小关系为( )A .c b a <<B .b a c <<C .b c a <<D .a b c << 4.【2016鹰潭市高三第一次模拟】若1)(+=x xx f ,)()(1x f x f =,()[]()*1,2)(N n n x f f x f n n ∈≥=-,则()()的值为)1()1()1()1()2015(212015321f f f f f f f ++++++( )A .2014B .2015C .4028D .40305.【河北冀州高三第二次测试】已知函数()3sin 34(,)f x a x bx a R b R =++∈∈,()f x '为()f x 的导函数,则()()2014(2014)2015(2015)f f f f ''+-+--=( )A .8B .2014C .2015D .06.【江西九江市七校高三第一次联考】对于函数()f x ,若存在区间[],A m n =,使得(){},y y f x x A A =∈=,则称函数()f x 为“可等域函数”,区间A 为函数()f x 的一个“可等域区间”.给出下列4个函数:①()sin 2f x x π⎛⎫=⎪⎝⎭;②()221f x x =-; ③()12x f x =-; ④()()2log 22f x x =-.其中存在唯一“可等域区间”的“可等域函数”为( ) A .①②③ B .②③ C .①③ D .②③④7.【2016届江西师大附中、鹰潭一中高三下第一次联考】已知)(x f 是定义域,值域都为(0,)+∞的函数, 满足2()()0f x xf x '+>,则下列不等式正确的是( )A .2016(2016)2015(2015)f f >B .2016(2016)2015(2015)f f <C. 332015(2015)2016(2016)f f < D.332015(2015)2016(2016)f f > 8.【2016届江西南昌高三上第四次考试】若定义在R 上的偶函数()y f x =是[)0,+∞上的递增函数,则不等式()()2log 1f x f <-的解集是( ) A .1,22⎛⎫⎪⎝⎭B .()(),22,-∞-+∞C .RD .()2,2-9.【2016宁夏银川高三上学期统练】定义在R 上的函数()f x 满足)()6(x f x f =+.当)1,3[--∈x 时,2)2()(+-=x x f ,当)3,1[-∈x 时,x x f =)(,则(1)(2)(3)(2015)f f f f ++++=( )A .336B .355C .1676D .201510.【2015临川一中期末考试 】已知函数,e x ex a x f ≤≤-=1(,)(2e 为自然对数的底数)与x x g ln 2)(=的图象上存在关于x 轴对称的点,则实数a 的取值范围是( )A .21[1,2]e + B .221[2,2]e e+- C .2[1,2]e - D .2[2,)e -+∞ 11.【2016黑龙江省哈尔滨市六中高三12月月考】定义在R 上的奇函数()f x 满足()()1f x f x +=-,当10,2x ⎛⎤∈ ⎥⎝⎦时,()()2log 1f x x =+,则()f x 在区间31,2⎛⎫⎪⎝⎭内是( )A .减函数且()0f x <B .减函数且()0f x >C .增函数且()0f x >D .增函数且()0f x <12.【2016黑龙江省大庆高三12月月考】分析函数()f x的性质: ①()f x 的图象是中心对称图形; ②()f x 的图象是轴对称图形; ③函数()f x的值域为)+∞; ④方程(())1f f x =+有两个解.其中描述正确个数是( )A .1B .2C .3D .413.定义符号函数 ⎪⎩⎪⎨⎧<-=>=0,10,00,1)sgn(x x x x ,则下列结论中错误的是A .||)sgn(x x x ⋅=B .)0(||)sgn(≠=x x xx C .)sgn()sgn()sgn(y x xy ⋅= D .)sgn()sgn()sgn(y x y x +=+14. 【2015届山东省日照市高三3月模拟考试】已知函数()22,1,22,1,x x f x x x -⎧≤-=⎨+>-⎩则满足()2f a ≥的实数a 的取值范围是( )A.()(),20,-∞-⋃+∞B.()1,0-C.()2,0-D.(][),10,-∞-⋃+∞15. 已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( ) A .()1,2 B .(][),12,-∞+∞ C .[]1,2 D .()(),12,-∞+∞16. 现有四个函数:①y x sin x =⋅;②cos y x x =⋅;③|cos |y x x =⋅; ④2xy x =⋅的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是A .④①②③B .①④③②C .①④②③D .③④②①17.【2016届襄阳五中 、宜昌一中 、龙泉中学高三联考】若正数,a b 满足2363log 2log log ()a b a b +=+=+,则11a b+的值为_________. 18.【2016鹰潭市高三第一次模拟】()f x 是定义在D 上的函数,若存在区间[]m n D ⊆,,使函数()f x 在[]m n ,上的值域恰为[]km kn ,,则称函数()f x 是k 型函数.给出下列说法: ①4()3f x x=-不可能是k 型函数;②若函数22()1(0)a a x y a a x +-=≠是1型函数,则n m - ③设函数32()2f x x x x =++(x≤0)是k 型函数,则k 的最小值为49. ④若函数212y x x =-+是3型函数,则40m n =-=,;其中正确的说法为 .(填入所有正确说法的序号) 【名师原创测试篇】1. 下列函数中,既是奇函数,又在区间()1,-∞-内是减函数的为( ).A .x y 2sin =B .x y 21log =C .x x y 22-=-D .13+=x y2. 若()21y f x x =+-是奇函数,且()12f =-,则()1f -= .3. 定义在R 上的奇函数()f x ,对任意x ∈R 都有(2)()f x f x +=-,当(02)x ∈,时,()4x f x =, 则(2015)f = .4. 下列函数图像中,函数()()cos sin f x x =大致图像是( )A B C D5. 设函数()f x 的定义域为D ,若函数()f x 满足条件:存在[],a b D ⊆,使得()f x 在区间[],a b 上的值域为,a b n n ⎡⎤⎢⎥⎣⎦()*n N ∈,则称()f x 为“n 倍缩函数”,若函数()()3log 3x f x t =+为“3倍缩函数”,则t 的取值范围为( ) A.10,3⎛⎫ ⎪⎝⎭B.⎛ ⎝C.⎛ ⎝D.()0,1 6. 已知函数()y f x =是定义域为R ,且(1)f x -关于1x =对称. 当0x ≥时,若关于x 的方程[]25()(56)()60f x a f x a -++= (a R ∈),有且仅有6个不同实数根,则实数a 的取值范围是( )AC。

高考数学压轴专题人教版备战高考《函数与导数》知识点总复习有答案

高考数学压轴专题人教版备战高考《函数与导数》知识点总复习有答案

新数学《函数与导数》复习资料一、选择题1.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-<⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-<⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32f f ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.2.已知()f x 是定义在R 上的偶函数,其图象关于点(1,0)对称.以下关于()f x 的结论:①()f x 是周期函数;②()f x 满足()(4)f x f x =-;③()f x 在(0,2)单调递减;④()cos 2xf x π=是满足条件的一个函数.其中正确结论的个数是( ) A .4 B .3C .2D .1【答案】B 【解析】 【分析】题目中条件:(2)()f x f x +=-可得(4)()f x f x +=知其周期,利用奇函数图象的对称性,及函数图象的平移变换,可得函数的对称中心,结合这些条件可探讨函数的奇偶性,及单调性. 【详解】解:对于①:()()f x f x -=Q ,其图象关于点(1,0)对称(2)()f x f x +=- 所以(4)(2)()f x f x f x +=-+=,∴函数()f x 是周期函数且其周期为4,故①正确;对于②:由①知,对于任意的x ∈R ,都有()f x 满足()(4)f x f x -=-, 函数是偶函数,即()(4)f x f x =-,故②正确. 对于③:反例:如图所示的函数,关于y 轴对称,图象关于点(1,0)对称,函数的周期为4,但是()f x 在(0,2)上不是单调函数,故③不正确;对于④:()cos 2xf x π=是定义在R 上的偶函数,其图象关于点(1,0)对称的一个函数,故④正确. 故选:B . 【点睛】本题考查函数的基本性质,包括单调性、奇偶性、对称性和周期性,属于基础题.3.设定义在(0,)+∞的函数()f x 的导函数为()f x ',且满足()()3f x f x x'->,则关于x 的不等式31(3)(3)03x f x f ⎛⎫---< ⎪⎝⎭的解集为( )A .()3,6B .()0,3C .()0,6D .()6,+∞【答案】A 【解析】 【分析】根据条件,构造函数3()()g x x f x =,利用函数的单调性和导数之间的关系即可判断出该函数在(,0)-∞上为增函数,然后将所求不等式转化为对应函数值的关系,根据单调性得出自变量值的关系从而解出不等式即可. 【详解】解:Q 3(1)(3)(3)03x f x f ---<,3(3)(3)27x f x f ∴---(3)0<, 3(3)(3)27x f x f ∴--<(3),Q 定义在(0,)+∞的函数()f x ,3x ∴<,令3()()g x x f x =,∴不等式3(3)(3)27x f x f --<(3),即为(3)g x g -<(3),323()(())3()()g x x f x x f x x f x '='=+',Q()()3f x f x x'->, ()3()xf x f x ∴'>-, ()3()0xf x f x ∴'+>,32()3()0x f x x f x ∴+>,()0g x ∴'>, ()g x ∴单调递增,又因为由上可知(3)g x g -<(3), 33x ∴-<,3x <Q , 36x ∴<<.故选:A . 【点睛】本题主要考查不等式的解法:利用条件构造函数,利用函数单调性和导数之间的关系判断函数的单调性,属于中档题.4.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.5.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x -'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.6.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B 【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积. 【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.7.已知函数f (x )=(k +4k )lnx +24x x-,k ∈[4,+∞),曲线y =f (x )上总存在两点M (x 1,y 1),N (x 2,y 2),使曲线y =f (x )在M ,N 两点处的切线互相平行,则x 1+x 2的取值范围为A .(85,+∞) B .(165,+∞) C .[85,+∞) D .[165,+∞) 【答案】B【解析】 【分析】利用过M 、N 点处的切线互相平行,建立方程,结合基本不等式,再求最值,即可求x 1+x 2 的取值范围. 【详解】 由题得f′(x )=4k k x +﹣24x ﹣1=﹣2244x k x k x ⎛⎫-++ ⎪⎝⎭=﹣()24x k x k x ⎛⎫-- ⎪⎝⎭,(x >0,k >0)由题意,可得f′(x 1)=f′(x 2)(x 1,x 2>0,且x 1≠x 2),即21144k k x x +-﹣1=24k k x +﹣224x ﹣1,化简得4(x 1+x 2)=(k+4k)x 1x 2, 而x 1x 2<212()2x x +, 4(x 1+x 2)<(k+4k )212()2x x +, 即x 1+x 2>164k k+对k ∈[4,+∞)恒成立, 令g (k )=k+4k, 则g′(k )=1﹣24k =()()222k k k +->0对k ∈[4,+∞)恒成立, ∴g (k )≥g (4)=5, ∴164k k+≤165, ∴x 1+x 2>165, 故x 1+x 2的取值范围为(165,+∞). 故答案为B 【点睛】本题运用导数可以解决曲线的切线问题,函数的单调性、极值与最值,正确求导是我们解题的关键,属于中档题.8.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2-B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭. 故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.9.已知函数在区间上有最小值,则函数在区间上一定( )A .有最小值B .有最大值C .是减函数D .是增函数【解析】 【分析】 由二次函数在区间上有最小值得知其对称轴,再由基本初等函数的单调性或单调性的性质可得出函数在区间上的单调性.【详解】 由于二次函数在区间上有最小值,可知其对称轴,.当时,由于函数和函数在上都为增函数,此时,函数在上为增函数;当时,在上为增函数;当时,由双勾函数的单调性知,函数在上单调递增,,所以,函数在上为增函数.综上所述:函数在区间上为增函数,故选D.【点睛】本题考查二次函数的最值,同时也考查了型函数单调性的分析,解题时要注意对的符号进行分类讨论,考查分类讨论数学思想,属于中等题.10.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.11.在平面直角坐标系中,若P ,Q 满足条件:(1)P ,Q 都在函数f (x )的图象上;(2)P ,Q 两点关于直线y=x 对称,则称点对{P ,Q}是函数f(x)的一对“可交换点对”.({P ,Q}与{Q,P}看作同一“可交换点”.试问函数2232(0)(){log (0)x x x f x x x ++≤=>的“可交换点对有( )A .0对B .1对C .2对D .3对【答案】C 【解析】试题分析:设p (x ,y )是满足条件的“可交换点”,则对应的关于直线y=x 的对称点Q 是(y ,x ),所以232x x ++=2x ,由于函数y=232x x ++和y=2x 的图象由两个交点,因此满足条件的“可交换点对”有两个,故选C. 考点:函数的性质12.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--,∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.13.已知函数()ln xf x x=,则使ln ()()()f x g x a f x =-有2个零点的a 的取值范围( ) A .(0,1) B .10,e ⎛⎫ ⎪⎝⎭C .1,1e ⎛⎫ ⎪⎝⎭D .1,e ⎛⎫-∞ ⎪⎝⎭【答案】B 【解析】 【分析】令()ln xt f x x==,利用导数研究其图象和值域,再将ln ()()()f x g x a f x =-有2个零点,转化为ln ta t=在[),e +∞上只有一解求解. 【详解】 令()ln x t f x x ==,当01x <<时,()0ln xt f x x==<, 当1x >时,()2ln 1()ln x t f x x -''==,当1x e <<时,0t '<,当x e >时,0t '>, 所以当x e =时,t 取得最小值e ,所以t e ≥, 如图所示:所以ln ()()()f x g x a f x =-有2个零点,转化为ln t a t =在[),e +∞上只有一解, 令ln t m t =,21ln 0t m t -'=≤,所以ln t m t=在[),e +∞上递减, 所以10m e <≤, 所以10a e <≤,当1a e =时,x e =,只有一个零点,不合题意, 所以10a e<<故选:B【点睛】 本题主要考查导数与函数的零点,还考查了数形结合的思想和运算求解的能力,属于中档题.14.已知函数()()2f x x +∈R 为奇函数,且函数()y f x =的图象关于直线1x =对称,当[]0,1x ∈时,()2020x f x =,则()2020f =( ) A .2020B .12020C .11010D .0【答案】D【解析】【分析】 根据题意,由函数()f x 的对称性可得()()42f x f x +=-+,即()()2f x f x +=-,进而可得()()4f x f x +=,即函数()f x 是周期为4的周期函数,据此可得()()20200f f =,由函数的解析式计算可得答案.【详解】解:根据题意,函数()2f x +为奇函数,即函数()f x 的图象关于点()2,0对称,则有()()4f x f x -=-+,函数()y f x =的图象关于直线1x =对称,则()()2f x f x -=+,变形可得:()()42f x f x +=-+,即()()2f x f x +=-,则有()()4f x f x +=,即函数()f x 是周期为4的周期函数,()()()20200505400f f f ∴=+⨯==;故选:D .【点睛】本题考查函数的奇偶性、对称性、周期性的综合应用,难度一般.一般地,若一个奇函数有对称轴(或一个偶函数有对称中心),可分析出函数具有周期性.15.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥16.若关于x 的不等式220x ax -+>在区间[1,5]上有解,则a 的取值范围是( )A .)+∞B .(,-∞C .(,3)-∞D .27(,)5-∞ 【答案】D【解析】【分析】把220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x+>⇒+>,解出()f x 的最大值. 【详解】 220x ax -+>在区间[]1,5上有解,转化为存在一个[]1,5x ∈使得22x 2ax x a x +>⇒+>,设()2f x x x =+,即是()f x 的最大值a >,()f x 的最大值275=,当5x =时取得,故选D 【点睛】17.下列求导运算正确的是( )A .()cos sin x x '=B .()1ln 2x x '=C .()333log x x e '=D .()22x x x e xe '= 【答案】B【解析】分析:利用基本初等函数的导数公式、导数的运算法则对给出的四种运算逐一验证,即可得到正确答案.详解:()'cos sin x x =-,A 不正确;()'11ln222x x x =⨯= ,B 正确;()'33ln3x x =,C 不正确;()'222x x x x e xe x e =+,D 不正确,故选B.点睛:本题主要考查基本初等函数的导数公式、导数的运算法以及简单的复合函数求导法则,属于基础题.18.如图,对应此函数图象的函数可能是( )A .21(1)2x y x ⎛⎫=- ⎪⎝⎭B .22(1)x y x =-C .ln y x =D .1x y xe =-【答案】B【解析】【分析】 观察图象,从函数的定义域,零点,以及零点个数,特征函数值判断,排除选项,得到正确答案.【详解】由图象可知当0x =时,1y =-,C 不满足;当1x =时,0y =,D 不满足条件;A.由函数性质可知当2x =-时,()2141122y -⎛⎫=⨯-= ⎪⎝⎭,显然A 不成立; 而B 都成立.故选:B【点睛】本题考查根据函数图象,判断函数的解析式,重点考查函数性质的判断,包含函数的定义域,函数零点,零点个数,单调性,特殊值,等信息排除选项,本题属于中档题型.19.设函数()xf x x e =⋅,则( ) A .()f x 有极大值1e B .()f x 有极小值1e- C .()f x 有极大值eD .()f x 有极小值e -【答案】B【解析】【分析】 利用导数求出函数()y f x =的极值点,分析导数符号的变化,即可得出结论.【详解】()x f x x e =⋅Q ,定义域为R ,()()1x f x x e '∴=+,令()0f x '=,可得1x =-. 当1x <-时,()0f x '<;当1x >-时,()0f x '>.所以,函数()x f x x e =⋅在1x =-处取得极小值()11f e-=-, 故选:B.【点睛】本题考查利用导数求函数的极值,在求出极值点后,还应分析出导数符号的变化,考查计算能力,属于中等题.20.已知函数221,0()log ,0x x f x x x ⎧+-≤=⎨>⎩,若()1f a ≤,则实数a 的取值范围是( ) A .(4][2,)-∞-+∞U B .[1,2]-C .[4,0)(0,2]-UD .[4,2]- 【答案】D【解析】【分析】不等式()1f a ≤等价于0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩分别解不等式组后,取并集可求得a 的取值范围.【详解】 ()1f a ≤⇔0,211,a a ≤⎧⎨+-≤⎩或20,log 1,a a >⎧⎨≤⎩, 解得:40a -≤≤或02a <≤,即[4,2]a ∈-,故选D.【点睛】本题考查与分段函数有关的不等式,会对a 进行分类讨论,使()f a 取不同的解析式,从而将不等式转化为解绝对值不等式和对数不等式.。

专题2.2 函数与导数-2016届高三数学三轮考点总动员(原卷版)

专题2.2 函数与导数-2016届高三数学三轮考点总动员(原卷版)

第二篇易错考点大清查专题2 函数与导数1. 函数概念不清致误函数的定义域、值域、对应法则是函数的三要素注意(())f g x 与f(x)是两个不同的函数,它们有不同的法则和定义域.求函数定义域,首先应弄清函数的特征或解析式,可避免出错. 例1 【2015山东10】设函数()31,1,2,1xx x f x x -<⎧=⎨≥⎩错误!未找到引用源。

则满足()()()2f a f f a =的a 取值范围是( )A.2,13⎡⎤⎢⎥⎣⎦B.[]0,1C.2,3⎡⎫+∞⎪⎢⎣⎭D.[)1,+∞【举一反三】已知函数()22,1,22,1,x x f x x x -⎧≤-=⎨+>-⎩则满足()2f a ≥的实数a 的取值范围是________.2.忽视函数的定义域致误函数的定义域是函数的用三要素之一,是研究函数图像与性质的重要依据之一,在研究函数的奇偶性、单调性、极值、图像时,一定要定义域先行,可以避免忽视定义域致错. 例2函数()()212log 4f x x =-的单调递增区间是 ( )A.()0,+¥B.(),0-¥C.()2,+¥D.(),2-?【举一反三】【2015上海7】方程()()1122log 95log 322x x ---=-+的解为 .3. 将曲线在某点的切线与过某点的切线搞混淆致错在解曲线的切线问题时,一定要注意区分“过点A (x 0,y 0)的切线方程”与“在点A 处的切线方程”的不同.虽只有一字之差,意义完全不同,“在”说明这点就是切点,“过”只说明切线过这个点,这个点不一定是切点.例3.已知函数()f x =24x --,则函数()f x 过点P(1,1-)的切线方程为 .【举一反三】已知直线l 过点)1,0(-,且与曲线x x y ln =相切,则直线l 的方程为 . 4.极值的概念不清致误“函数y=f(x)在x=x 0处的导数值为0”是“函数y=f(x)在点x=x 0处取极值”的必要条件,而非充分条件,但解题中却把“可导函数f(x)在x=x 0处取极值”的必要条件误作充要条件.对于可导函数f(x):x 0是极值点的充要条件是x 0点两侧导数异号,即若f ′(x)在方程f ′(x)=0的根x 0的左右的符号:“左正右负”f(x)在x 0处取极大值;“左负右正”f(x)在x 0处取极小值,而不仅是f ′(x 0)=0.f ′(x 0)=0是x 0为极值点的必要而不充分条件.对于给出函数极大(小)值的条件,一定要既考虑f ′(x 0)=0,又考虑检验“左正右负”(“左负右正”)的转化,否则易产生增根. 例4【2015重庆19】已知函数32()f x ax x =+(a R ∈)在34-=x 处取得极值. (Ⅰ)确定a 的值,(Ⅱ)若()()x g x f x e =,讨论的单调性.【举一反三】已知()f x =322x ax bx a +++在x =1处有极值为10,则a b += . 5.导数与单调性的关系理解不准致误已知在某个区间上的单调性求参数问题,先求导函数,将其转化为导函数在这个区间上大于(增函数)(小于(减函数))0恒成立问题,通过函数方法或参变分离求出参数范围,注意要验证参数取等号时,函数是否满足题中条件,若满足把取等号的情况加上,否则不加.例5已知函数()f x =11ax x +-在(1,+∞)内单调递减,则实数a 的取值范围为 . 【举一反三】若函数32()3f x x tx x =-+在区间[1,4]上单调递减,则实数t 的取值范围是( ) A .51(,]8-∞ B .(,3]-∞ C .51[,)8+∞ D .[3,)+∞ 6.错误利用定积分求面积(文科不作)利用积分求平面图形面积,应首先画出平面图形的大概图形,然后根据图形的特点,选择相应的积分变量以确定积分区间,写出图形面积的积分表达式,再进行求解,要把定积分与利用定积分计算平面图形的面积这两个概念区分开,定积分是一种积分和的极限,可正,也可以为负数或零;而平面图形的面积在一般意义下总是为正,因此当()0f x ≤时,要通过取绝对值处理成正,可避免利用定积分计算两个曲边线围成图形的面积错误.例6【2015陕西16】如图,一横截面为等腰梯形的水渠,因泥沙沉积,导致水渠截面边界呈抛物线型(图中虚线表示),则原始的最大流量与当前最大流量的比值为 .【举一反三】由曲线1=xy ,直线3,==y x y 所围成的平面图形的面积为( ) A .329B .2-ln 3C .4+ln 3D .4-ln 31. 函数()f x = )A .()0,2B .[]0,2C .()()0,11,2 D .[)(]0,11,22. 已知定义域为R 的奇函数)(x f y =的导函数为)(x f y '=,当0≠x 时,0)()(>+'xx f x f ,若)21(21f a =,)2(2--=f b ,)21(ln )21(ln f c =,则c b a ,,的大小关系正确的是( ) A .b c a << B .a c b << C .c b a << D .b a c <<3.(理)函数()2, 0,2,x x f x x -≤⎧⎪=<≤,则()22f x dx -⎰的值为 ( ) A. 6π+ B.2π- C.2π D. 8 (文)在ABC ∆中,c b a ,,分别为C B A ∠∠∠,,所对的边,若函数1)(31)(2223+-+++=x ac c a bx x x f 有极值点,则B ∠的范围是( ) A.)3,0(πB.]3,0(πC.],3[ππD.),3(ππ4. 已知定义在R 上的奇函数()f x 满足()()2f x f x +=-,若()12f ->-,()1732a f a+-=-,则实数a 的取值范围为( ) A .3,12⎛⎫-- ⎪⎝⎭ B .()2,1- C .31,2⎛⎫ ⎪⎝⎭ D .()3,1,2⎛⎫-∞+∞ ⎪⎝⎭5.已知(12)3,1()ln ,1a x a x f x x x -+<⎧=⎨≥⎩在R 上单调递增,那么实数a 的取值范围是( )A .(,1]-∞-B .1(1,)2-C .1[1,)2-D .1(0,)26.若()f x 是奇函数,且在(0,)+∞上是减函数,又有(2)0f -=,则不等式()0x f x ⋅<的解集为( ) A. (,2)(2,)-∞-⋃+∞ B.(2,0)(0,2)-⋃ C.(2,0)(2,)-⋃+∞ D.(,2)(0,2)-∞-⋃ 7.函数3()f x ax x =-在R 上为减函数,则( ) A .0a ≤ B .1a < C .0a < D .1a ≤8. 现有四个函数:①y x sin x =⋅;②cos y x x =⋅;③|cos |y x x =⋅; ④2xy x =⋅的图象(部分)如下,但顺序被打乱,则按照从左到右将图象对应的函数序号安排正确的一组是A .④①②③B .①④③②C .①④②③D .③④②①9.【2016届北京市东城区第二学期高三综合练习(一)】已知4log 6a =,4log 0.2b =,2log 3c =,则三个数的大小关系是A.c a b >>B.a c b >>C.a b c >>D.b c a >>10. 【2016届北京市东城区第二学期高三综合练习(一)】函数()f x 的定义域为[]1,1-,图象如图1所示;函数()g x 的定义域为[]1,2-,图象如图2所示.若集合{}(())0A x f g x ==,{}(())0B x g f x ==,则A B 中元素的个数为( )A.1B.2C.3D.411.定义域是R 上的函数()f x 满足()()22f x f x +=,当(]0,2x ∈时,()(](]22,0,1log ,1,2x x x f x x x ⎧-∈⎪=⎨-∈⎪⎩,若(]4,2x ∈--时,()142t f x t≤-有解,则实数t 的取值范围是 A.[)()2,00,1-⋃ B.[)[)2,01,-⋃+∞ C.[]2,1- D.(](],20,1-∞-⋃12. 【2016年漳州市高三毕业班适应性练习(二)】已知函数()=-x af x x e 存在单调递减区间,且()=y f x 的图象在0=x 处的切线l 与曲线xy e =相切,符合情况的切线l ( )A.有3条B.有2条C. 有1条D.不存在 13.不等式222log (4)log (3)x x ->的解集为 .14.已知幂函数()223(mm f x xm --+=∈Z )为偶函数,且在区间()0,+∞上是单调增函数,则()2f 的值为 .15. 设0<a ,若函数R x ax e y x∈+=,2有小于零的极值点,则实数a 的取值范围是 . 16.已知集合{}R x x mx x M ∈=--+=,031,若φ=M ,则实数m 的取值范围是________ .17. 已知函数ln ()a x bf x x+=(其中20a a ≤≠且),函数()f x 在点(1,(1))f 处的切线过点(3,0). (Ⅰ)求函数()f x 的单调区间;(Ⅱ)若函数()f x 与函数2()2g x a x x=+--的图像在(0,2]有且只有一个交点,求实数a 的取值范围. 18.【2016届北京市东城区第二学期高三综合练习(一)】已知函数2()ln f x x a x =-,a ∈R . (Ⅰ)若()f x 在1x =处取得极值,求a 的值;(Ⅱ)求()f x 在区间[1,)+∞上的最小值;(Ⅲ)在(Ⅰ)的条件下,若2()()h x x f x =-,求证:当21e x <<时,恒有4()4()h x x h x +<-成立.19. 【2016年漳州市高三毕业班适应性练习(二)】已知函数x ax x x f ln 1221)(2++-=(Ⅰ)当0=a 时,若函数)(x f 在其图象上任意一点A 处的切线斜率为k ,求k 的最小值,并求此时的切线方程;(Ⅱ)若函数)(x f 的极大值点为1x ,证明:1ln 2111->-ax x x . 20.【2016届广东广州高三综合测试(一)】已知函数+3()ex mf x x =-,()()ln 12g x x =++.(Ⅰ)若曲线()y f x =在点()()00f ,处的切线斜率为1,求实数m 的值; (Ⅱ)当1m ≥时,证明:()3()f x g x x >-.:。

专题1.5 函数与方程-2016届高三数学二轮复习考点总动员(原卷版)

专题1.5 函数与方程-2016届高三数学二轮复习考点总动员(原卷版)

2016届高考数学考点总动员【二轮精品】第一篇热点5 函数与方程【热点考法】本热点大多数情况考小题,选择填空都有可能,属于中等难度的题目,在大题中出现也有可能,但如果考应用题主要在理解题意上容易造成得分两极分化.但命题组多次表示只要出得到好的应用题就会在高考中用.做有函数应用大题的打算会让你成功更有把握.分值5-14分。

【热点考向】考向一函数零点的确定与应用【解决法宝】常见的函数零点(即方程的根)的确定问题有:①函数零点值或大致存在区间的确定;②零点个数的确定;③两函数图象交点的横坐标的确定或有几个交点.解决这类问题的常用方法有解方程法、利用零点存在的判定或数形结合法,尤其是那些两端对应的函数类型不同的方程多用数形结合法求解.函数零点(即方程的根)的应用问题,是指已知函数零点的存在情况求参数的值或取值范围的问题.解决该类问题的关键是用函数方程思想或数形结合思想,构建关于参数的方程或不等式求解.注意:方程f(x)=0有实根⇔函数y=f(x)的图象与x轴有交点⇔函数y=f(x)有零点.函数F(x)=f(x)-g(x)的零点就是方程f(x)=g(x)的实数根,也就是函数y=f(x)图象与函数y=g(x)图象交点的横坐标.例1【黑龙江省哈尔滨三十二中2016届高三上学期期末】函数f(x)=2x+3x的零点所在的一个区间是()A.(﹣2,﹣1) B.(﹣1,0)C.(0,1) D.(1,2)例2【山东省临沂市2016届高三上学期期中】定义在R上的奇函数f(x),当x≥0时,f(x)=,则关于x的方程f(x)=a(0<a<1)的所有根之和为()A.3﹣a﹣1 B.1﹣3﹣a C.3a﹣1 D.1﹣3a考向二函数的实际应用【解决法宝】解应用题首先要正确理解题意,将实际问题化为数学问题,再利用数学知识:函数、导数、不等式解决数学问题,再回归到实际问题来解决.找函数关系是关键,一定要准确理解题目意思,弄清题设条件,最终将之化为函数问题解决.例3北京市丰台区2016届高三第一学期期末数学文8)某地实行阶梯电价,以日历年(每年1月1日至12月31日)为周期执行居民阶梯电价,即:一户居民用户全年不超过2880度(1度=千瓦时)的电量,执行第一档电价标准,每度电0.4883元;全年超过2880度至4800度之间的电量,执行第二档电价标准,每度电0.5383元;全年超过4800度以上的电量,执行第三档电价标准,每度电0.7883元.下面是关于阶梯电价的图形表示,其中正确的有 0.48830.53830.7883单价(元/度)年用电量(度)28804800o 电费(元/年)年用电量(度)480028802439.841406.30BAO ① ②0.7883元/度0.5383元/度0.4883元/度线段PQ 左侧阴影部分的面积表示年用电量为x 度时的电费x o 48002880年用电量(度)PQ③参考数据:0.4883元/度⨯2880度=1406.30元,0.5383元/度⨯(4800-2880)度+1406.30元=2439.84元.A.①②B.②③C. ①③D.①②③【热点集训】1. 【吉林省长春外国语学校2016届高三上学期期末】函数y=(x+2)ln|x|的图象大致为()2.【五校联合体高三基础知识摸底考试数学试题】3()2x f x x =+的零点所在区间为( )A .(0,1)B .(-1,0)C .(1,2)D .(-2,-l)3.【惠安一中、养正中学、安溪一中2015届高三上学期期中联合考试】已知函数1,0()1,0x f x x x≤⎧⎪=⎨>⎪⎩,则使方程()x f x m +=有解的实数m 的取值范围是( )A .(1,2)B .(,2]-∞-C .(,1)(2,)-∞+∞D .(,1][2,)-∞+∞4. 【拉萨中学高三年级(2015届)第三次月考试卷】在下列区间中,函数34)(-+=x e x f x 的零点所在的区间为( ) A. )41,0( B. )21,41( C. )43,21( D. )1,43( 5. 【甘肃省河西五市部分普通高中2016年1月高三第一次联考】已知函数3|log |, 03()cos(),393x x f x x x π<<⎧⎪=⎨-≤≤⎪⎩,若存在实数1x ,2x ,3x ,4x ,当1234x x x x <<<时满足1234()()()()f x f x f x f x ===,则1234x x x x ⋅⋅⋅的取值范围是( )A .29(7,)4B .135(21,)4C .[27,30)D .135(27,)46. 【江西省五校第二次联考高三数学试卷】已知定义在R 上的函数()f x 满足①()(2)0f x f x +-=,②()(2)0f x f x ---=,③在[1,1]-上表达式为[1,0]()1(0,1]x f x x x ∈-=- ∈⎪⎩,则函数()f x 与函数1220()log 0x x g x x x ⎧ ⎪=⎨ >⎪⎩≤的图像在区间[3,3]-上的交点个数为( )A. 5B. 6C. 7D. 87. 【长春市普通高中2016届高三质量监测(二)】 已知函数()f x 满足()(2)2f x f x +-=,当(0,1]x ∈时,2()f x x =,当(1,0]x ∈-时,()2f x +=若定义在(1,3)-上的函数()()(1)g x f x t x =-+有三个不同的零点,则实数t 的取值范围是 A. 1(0,]2 B. 1[,)2+∞C. (0,6+D. (0,6-8. 【浙江省慈溪市、余姚市2015届高三上学期期中联考】设函数()f x 的零点为1x ,()422x g x x =+-的零点为2x ,若120.25x x -≤,则()f x 可以是A .2()(1)f x x =-B .()1x f x e =-C .21()ln()2f x x =- D .()41f x x =-9. 【拉萨中学高三年级(2015届)第三次月考试卷】设)(x f 是定义在R 上的偶函数,对R x ∈,都有)2()2(+=-x f x f ,且当[]02,-∈x 时,1)21()(-=x x f ,若在区间]62(,-内关于x 的方程)1(0)2(log )(>=+-a x x f a 恰有3个不同的实数根,则a 的取值范围是( )A. (1,2)B. (2,+∞)C. (1, 34)D. )2,4(310.【甘肃省定西市通渭县榜罗中学2016届高三上学期期末】已知函数f (x )=的图象与直线y=x 恰有三个公共点,则实数m 的取值范围是( )A .(﹣∞,﹣1]B .[﹣1,2)C .[﹣1,2]D .[2,+∞) 11. 【宁夏银川九中高三年级期中试卷】下面是函数f(x)在区间[1,2]上的一些点的函数值由此可判断:方程f(x)=0在[1,2]解的个数( )A.至少5个B.5个C.至多5个D.4个12. 【山东省临沂市2016届高三上学期期中】某商场2014年一月份到十二月份销售额呈现先下降后上升的趋势,下列函数模型中能较准确反映该商场月销售额f (x )与月份x 关系的是( )A .f (x )=a•b n(b >0,且b≠1) B .f (x )=log n x+b (a >0,且a≠1)C .f (x )=x 2+ax+bD .f (x )= 13.【 2015届高三六校联考(一)】已知函数00x a e ,x f (x )ln x,x ⎧⋅≤=⎨->⎩,其中e 为自然对数的底数,若关于x 的方程0f (f (x ))=,有且只有一个实数解,则实数a 的取值范围为( )A. ()0,-∞B. ()()001,,-∞C. ()01,D. ()()011,,+∞14. 【山东省临沂市2016届高三上学期期中】已知实数a ,b 满足2a =3,3b =2,则函数f (x )=a x+x ﹣b 的零点所在的区间是( )A .(﹣2,﹣1)B .(﹣1,0)C .(0,1)D .(1,2)15.【三明一中2014—2015学年第一学期学段考试高三数学试题】函数f (x )=x -cos x 在[0,+∞)内 ( ) A .没有零点 B .有且仅有一个零点C .有且仅有两个零点D .有无穷多个零点16.【贵州省黔南州2016届高三(上)期末】已知函数f (x )=x 2﹣ax ,g (x )=b+aln (x ﹣1),存在实数a (a≥1),使y=f (x )的图象与y=g (x )的图象无公共点,则实数b 的取值范围为( )A .[1,+∞)B .[1,)C .[)D .(﹣) 18.【 广西钦州市钦州港经济技术开发区中学2016届高三上学期期末】已知函数f (x )=的图象上关于y 轴对称的点至少有3对,则实数a 的取值范围是( )A .B .C .D .19.【黑龙江省哈尔滨六中2016届高三上学期期末】若f (x )为偶函数,且x 0是的y=f (x )+e x 一个零点,则﹣x 0一定是下列哪个函数的零点( )A .y=f (﹣x )e x ﹣1B .y=f (x )e x +1C .y=f (x )e x ﹣1D .y=f (x )e ﹣x +120.【长春市普通高中2016届高三质量监测(二)】已知函数()2f x +=,当(0,1]x ∈时,2()f x x =,若在区间(1,1]-内,()()(1)g x f x t x =-+有两个不同的零点,则实数t 的取值范围是 A. 1[,)2+∞ B. 11[,]22- C. 1[,0)2- D. 1(0,]221.【北京市东城区2016届高三第一学期期末】已知函数11,02()ln ,2x f x x x x ⎧+<≤⎪=⎨⎪>⎩,如果关于x 的方程()f x k =有两个不同的实根,那么实数k 的取值范围是( )A. (1,)+∞B.3[,)2+∞ C.32[,)e +∞ D.[ln 2,)+∞ 22.【甘肃省白银市会宁四中2016届高三上学期期末】方程x 2﹣2x=3(|x ﹣1|﹣1)的根是 .23. 【江苏省苏州市2014—2015学年第一学期高三期中调研测试试卷】函数1lg 1y x x=-+的零点个数是 .24.【甘肃省白银市会宁四中2016届高三上学期期末】已知f (x )=ln (1+x )﹣ln (1﹣x ),x ∈(﹣1,1).现有下列命题:①f(﹣x )=f (x );②f()=2f (x );③|f(x )|≥2|x|.其中的所有正确命题的序号是 .25. 【江苏省泰州中学2016届第一学期高三第二次月考19】设a x x x f R a -=∈)(,. (1)若函数)(x f 在[)+∞,0上为单调函数,求实数a 的取值范围;(2)设0>a . ①证明:函数x x f x F 21)()(-=有3个零点; ②若存在实数)(a t t >,当[]t x ,0∈时函数)(x f 的值域为⎥⎦⎤⎢⎣⎡2,0t ,求实数a 的取值范围. 26. 【山东潍坊一中2016届高三10月考20】某地空气中出现污染,须喷洒一定量的去污剂进行处理.据测算,每喷洒1个单位的去污剂,空气中释放的浓度y (单位:毫克/立方米)随着时间x (单位:天)变化的函数关系式近似为⎪⎩⎪⎨⎧≤<-≤≤--=104215401816x x x x y ,,,若多次喷洒,则某一时刻空气中的去污剂浓度为每次投放的去污剂在相应时刻所释放的浓度之和.由实验知,当空气中去污剂的浓度不低于4(毫克/立方米)时,它才能起到去污作用.(Ⅰ)若一次喷洒4个单位的去污剂,则去污时间可达几天?(Ⅱ)若第一次喷洒2个单位的去污剂,6天后再喷洒)41(≤≤a a 个单位的去污剂,要使接下来的4天中能够持续有效去污,试求a 的最小值(精确到1.0,参考数据:2取1.4).27. 【2015届黄石二中、鄂南高中、鄂州高中三校高三上学期期中联考数学试题】为改善购物环境,提高经济效益,某商场决定投资800万元改造商场内部环境,据调查,改造好购物环境后,任何一个月内(每月按30天计算)每天的顾客人数()x f 与第x 天近似地满足()xx f 88+=(千人),且每位顾客人均购物金额数()x g 近似地满足()22143--=x x g (元). (1)求该商场第x 天的销售收入()x p (单位千元,1≤x ≤30,*∈N x )的函数关系;(2)若以最低日收入的20%作为每一天纯收入的计量依据,商场决定以每日纯收入的5%收回投资成本,试问商场在两年内能否收回全部投资成本.28.【常州市武进区2015届高三上学期期中考试】为了保护环境,某工厂在国家的号召下,把废弃物回收转化为某种产品,经测算,处理成本y (万元)与处理量x (吨)之间的函数关系可近似的表示为:240900y x x =-+,⑴ 当处理量为多少吨时,每吨的平均处理成本最少?⑵ 若每处理一吨废弃物可得价值为20万元的某种产品,同时获得国家补贴10万元.当[]20,25x ∈时,判断该项举措能否获利?如果能获利,求出最大利润;如果不能获利,请求出国家最少补贴多少万元,该工厂才不会亏损?:。

高中数学高考冲刺:导数与函数的综合.doc

高中数学高考冲刺:导数与函数的综合.doc

高中数学高考冲刺:导数与函数的综合导数部分是高考热点,是压轴题必出题型。

这里我发出的是比大多数教辅要详细得多的知识点解析及配套练习。

本部分【高考考核点】:
1.函数在一点处导数的几何意义、切线的斜率、方程等常作为基础考察;
2.基本导数公式,两个函数和、差、积、商的求导法则,要熟记并应用;
3.理科试卷中往往考察复合函数的求导法则;
4.函数的单调性与其导数的关系,能利用导数研究函数的单调性,此为重点内容,也是重点考察的内容;
5.函数在某点取得极值的必要条件和充分条件(导数在极值点两侧异号),函数的极大值、极小值、最大值、最小值是考查重点;
6. 正确计算定积分,利用定积分求面积;
7.分类讨论的数学思想是本部分内容的重点考查内容,应熟练掌握这种数学思想。

高考数学压轴专题新备战高考《函数与导数》知识点总复习附解析

高考数学压轴专题新备战高考《函数与导数》知识点总复习附解析

新数学高考《函数与导数》复习资料一、选择题1.若函数()sin 2x x f x e e x -=-+,则满足2(21)()0f x f x -+>的x 的取值范围为( ) A .1(1,)2- B .1(,1)(,)2-∞-+∞U C .1(,1)2-D .1(,)(1,)2-∞-⋃+∞【答案】B 【解析】 【分析】判断函数()f x 为定义域R 上的奇函数,且为增函数,再把()()2210f x f x -+>化为221x x ->-,求出解集即可.【详解】解:函数()sin2xxf x e ex -=-+,定义域为R ,且满足()()sin 2xx f x ee x --=-+- ()()sin2x x e e xf x -=--+=-,∴()f x 为R 上的奇函数; 又()'2cos222cos20xxf x e ex x x -=++≥+≥恒成立,∴()f x 为R 上的单调增函数;又()()2210f x f x -+>,得()()()221f xf x f x ->-=-,∴221x x ->-, 即2210x x +->, 解得1x <-或12x >, 所以x 的取值范围是()1,1,2⎛⎫-∞-⋃+∞ ⎪⎝⎭.故选B . 【点睛】本题考查了利用定义判断函数的奇偶性和利用导数判断函数的单调性问题,考查了基本不等式,是中档题.2.给出下列说法: ①“tan 1x =”是“4x π=”的充分不必要条件;②定义在[],a b 上的偶函数2()(5)f x x a x b =+++的最大值为30; ③命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x ∀∈+>R ”. 其中错误说法的个数为( ) A .0 B .1C .2D .3【答案】C 【解析】 【分析】利用充分条件与必要条件的定义判断①;利用函数奇偶性的性质以及二次函数的性质判断②;利用特称命题的否定判断③,进而可得结果. 【详解】 对于①,当4x π=时,一定有tan 1x =,但是当tan 1x =时,,4x k k ππ=+∈Z ,所以“tan 1x =”是“4x π=”的必要不充分条件,所以①不正确;对于②,因为()f x 为偶函数,所以5a =-.因为定义域[],a b 关于原点对称,所以5b =,所以函数2()5,[5,5]f x x x =+∈-的最大值为()()5530f f -==,所以②正确;对于③,命题“0001,2x x x ∃∈+≥R ”的否定形式是“1,2x x x∀∈+<R ”,所以③不正确; 故错误说法的个数为2. 故选:C. 【点睛】本题考查了特称命题的否定、充分条件与必要条件,考查了函数奇偶性的性质,同时考查了二次函数的性质,属于中档题..3.设()f x 为R 上的奇函数,满足(2)(2)f x f x -=+,且当02x ≤≤时,()x f x xe =,则(1)(2)(3)(100)f f f f ++++=L ( ) A .222e e + B .25050e e + C .2100100e e + D .222e e --【答案】A 【解析】 【分析】由()()22f x f x -=+可得对称轴,结合奇偶性可知()f x 周期为8;可将所求式子通过周期化为()()()()1234f f f f +++,结合解析式可求得函数值. 【详解】由()()22f x f x -=+得:()f x 关于2x =对称又()f x Q 为R 上的奇函数 ()f x ∴是以8为周期的周期函数()()()()()()()()()1281241240f f f f f f f f f ++⋅⋅⋅+=++⋅⋅⋅++-+-+⋅⋅⋅+-=Q 且()()()()2123422f f f f e e +++=+()()()()()()()()()()12100121281234f f f f f f f f f f ∴++⋅⋅⋅+=++⋅⋅⋅+++++⎡⎤⎡⎤⎣⎦⎣⎦222e e =+故选:A 【点睛】本题考查利用函数的奇偶性、对称性和周期性求解函数值的问题,关键是能够利用奇偶性和对称轴得到函数的周期,并求得基础区间内的函数值.4.已知直线2y kx =-与曲线ln y x x =相切,则实数k 的值为( ) A .ln 2 B .1C .1ln2-D .1ln2+【答案】D 【解析】由ln y x x =得'ln 1y x =+,设切点为()00,x y ,则0ln 1k x =+,000002ln y kx y x x =-⎧⎨=⎩,0002ln kx x x ∴-=,002ln k x x ∴=+,对比0ln 1k x =+,02x ∴=,ln 21k ∴=+,故选D.5.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-,()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-, 即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.6.在二项式26()2a x x+的展开式中,其常数项是15.如下图所示,阴影部分是由曲线2y x =和圆22x y a +=及x 轴围成的封闭图形,则封闭图形的面积为( )A .146π+B .146π- C .4π D .16【答案】B 【解析】 【分析】用二项式定理得到中间项系数,解得a ,然后利用定积分求阴影部分的面积.【详解】(x 2+a 2x )6展开式中,由通项公式可得122r 162rr r r a T C x x --+⎛⎫= ⎪⎝⎭, 令12﹣3r =0,可得r =4,即常数项为4462a C ⎛⎫ ⎪⎝⎭,可得4462a C ⎛⎫ ⎪⎝⎭=15,解得a =2.曲线y =x 2和圆x 2+y 2=2的在第一象限的交点为(1,1)所以阴影部分的面积为()1223100111-x-x |442346dx x x πππ⎛⎫=--=- ⎪⎝⎭⎰. 故选:B 【点睛】本题主要考查二项式定理的应用,二项式展开式的通项公式,属于基础题.7.函数22cos x xy x x--=-的图像大致为( ).A .B .C .D .【答案】A 【解析】 【分析】 本题采用排除法: 由5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭排除选项D ;根据特殊值502f π⎛⎫>⎪⎝⎭排除选项C; 由0x >,且x 无限接近于0时, ()0f x <排除选项B ; 【详解】对于选项D:由题意可得, 令函数()f x = 22cos x xy x x--=-,则5522522522f ππππ--⎛⎫-= ⎪⎝⎭,5522522522f ππππ--⎛⎫= ⎪⎝⎭;即5522f f ππ⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭.故选项D 排除; 对于选项C :因为55225220522f ππππ--⎛⎫=> ⎪⎝⎭,故选项C 排除;对于选项B:当0x >,且x 无限接近于0时,cos x x -接近于10-<,220x x -->,此时()0f x <.故选项B 排除;故选项:A 【点睛】本题考查函数解析式较复杂的图象的判断;利用函数奇偶性、特殊值符号的正负等有关性质进行逐一排除是解题的关键;属于中档题.8.曲线2y x =与直线y x =所围成的封闭图形的面积为( ) A .16B .13C .12D .56【答案】A 【解析】曲线2y x =与直线y x =的交点坐标为()()0,0,1,1 ,由定积分的几何意义可得曲线2y x=与直线y x =所围成的封闭图形的面积为()1223100111|236x x dx x x ⎛⎫-=-= ⎪⎝⎭⎰ ,故选A.9.函数log (3)1a y x =-+(0a >且1a ≠)的图像恒过定点A ,若点A 在直线10mx ny +-=上,其中·0m n >,则41m n+的最小值为() A .16 B .24C .50D .25【答案】D 【解析】由题A (4,1),点A 在直线上得4m+n =1,用1的变换构造出可以用基本不等式求最值的形式求最值. 【详解】令x ﹣3=1,解得x =4,y =1,则函数y =log a (x ﹣3)+1(a >0且a≠1)的图象恒过定点A (4,1), ∴4m+n =1, ∴41m n +=(41m n +)(4m+n )=16+14n 4m m n++=17+8=25,当且仅当m =n 15=时取等号,故则41m n +的最小值为25, 故选D . 【点睛】本题考查均值不等式,在应用过程中,学生常忽视“等号成立条件”,特别是对“一正、二定、三相等”这一原则应有很好的掌握.10.已知()2ln33,33ln3,ln3a b c ==+=,则,,a b c 的大小关系是( ) A .c b a << B .c a b <<C .a c b <<D .a b c <<【答案】B 【解析】 【分析】根据,,a b c 与中间值3和6的大小关系,即可得到本题答案. 【详解】因为323e e <<,所以31ln 32<<, 则3ln3223336,33ln 36,(ln 3)3a b c <=<=<=+>=<,所以c a b <<.故选:B 【点睛】本题主要考查利用中间值比较几个式子的大小关系,属基础题.11.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.12.若定义在R 上的偶函数()f x 满足()()20f x f x +-=.当[]0,1x ∈,()21f x x =-,则( )A .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭B .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭ C .()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪⎪⎝⎭⎝⎭D .()2135log 3log 22f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭【答案】A 【解析】 【分析】推导出函数()y f x =的周期为4,根据题意计算出51022f f ⎛⎫⎛⎫=-< ⎪ ⎪⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭,()133log 2log 20f f ⎛⎫=> ⎪⎝⎭,再利用函数()y f x =在区间[]0,1上的单调性可得出结论. 【详解】因为定义在R 上的偶函数()y f x =满足()()20f x f x +-=,即()()20f x f x +-=,即()()2f x f x =--,()()()24f x f x f x ∴=--=-, 所以,函数()y f x =的周期为4,因为当[]0,1x ∈时,()21f x x =-单调递减,因为5110222f f f ⎛⎫⎛⎫⎛⎫=--=-< ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,()224log 3log 03f f ⎛⎫=-< ⎪⎝⎭, ()()1333log 2log 2log 20f f f ⎛⎫=-=> ⎪⎝⎭, 因为2410log 132<<<,所以241log 32ff ⎛⎫⎛⎫-<- ⎪ ⎪⎝⎭⎝⎭, 所以,12314log 2log 23f f f ⎛⎫⎛⎫⎛⎫>->- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,即()1235log 2log 32f f f ⎛⎫⎛⎫>> ⎪ ⎪⎝⎭⎝⎭,故选:A . 【点睛】本题主要考查函数值的大小比较,根据函数奇偶性和单调性之间的关系是解决本题的关键,属于中等题.13.已知函数()2f x x x =+,且()1231lnlog 223a f b f c f -⎛⎫⎛⎫=== ⎪ ⎪⎝⎭⎝⎭,,,则a b c ,,的大小关系为( )A .a c b <<B .b c a <<C .c a b <<D .b a c <<【答案】A 【解析】 【分析】由函数()2f x x x =+,可得()()f x f x -=,得到函数()f x 为偶函数,图象关于y 轴对称,又由由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,再根据对数函数的性质,结合图象,即可求解.【详解】由题意,函数()2f x x x =+,满足()()22()f x x x x x f x -=-+-=+=,所以函数()f x 为定义域上的偶函数,图象关于y 轴对称,又当0x ≥时,()2f x x x =+,由二次函数的性质可得,函数()f x 在[0,)+∞上为单调递增函数,则函数()f x 在(,0)-∞上为单调递减函数,又由31ln 22<=,113222log log 1<=-,1122-=,根据对称性,可得11323(ln )(2)(log )2f f f -<<,即a c b <<,故选A .【点睛】本题主要考查了函数的奇偶性和单调性的应用,其中解答中得到函数的单调性与奇偶性,以及熟练应用对数函数的性质是解答的关键,着重考查了推理与运算能力,属于基础题.14.若函数321()1232b f x x x bx ⎛⎫=-++ ⎪⎝⎭在区间[3,1]-上不是单调函数,则函数()f x 在R 上的极小值为( ).A .423b -B .3223b - C .0D .2316b b -【答案】A 【解析】 【分析】求出函数的导数,根据函数的单调性,求出b 的范围,从而求出函数的单调区间,得到(2)f 是函数的极小值即可.【详解】解:2()(2)2()(2)f x x b x b x b x '=-++=--, ∵函数()f x 在区间[3,1]-上不是单调函数,31b ∴-<<,由()0f x '>,解得:2x >或x b <, 由()0f x '<,解得:2b x <<,()f x ∴的极小值为()84(2)424233f b b b =-++=-,故选:A. 【点睛】本题考查了函数的单调性、极值问题,考查导数的应用,是一道中档题.15.[]0x a,b ∃∈使得()f x m ≥成立,等价于[]()0x a,b ,[f x ]m max ∈≥16.[]()x a,b ,f x m ∀∈≥恒成立,等价于[]()x a,b ,[f x ]m min ∈≥17.二次函数,二次方程,一元二次不等式三个二次的相互转换是解决一元二次不等式问题的常用方法,数形结合是解决函数问题的基本思想.18.如图,对应此函数图象的函数可能是( )A .21(1)2x y x ⎛⎫=- ⎪⎝⎭B .22(1)x y x =-C .ln y x =D .1x y xe =-【答案】B【解析】【分析】 观察图象,从函数的定义域,零点,以及零点个数,特征函数值判断,排除选项,得到正确答案.【详解】由图象可知当0x =时,1y =-,C 不满足;当1x =时,0y =,D 不满足条件;A.由函数性质可知当2x =-时,()2141122y -⎛⎫=⨯-= ⎪⎝⎭,显然A 不成立; 而B 都成立.故选:B【点睛】本题考查根据函数图象,判断函数的解析式,重点考查函数性质的判断,包含函数的定义域,函数零点,零点个数,单调性,特殊值,等信息排除选项,本题属于中档题型.19.40cos2d cos sin x x x xπ=+⎰( ) A .21)B 21C 21D .22【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】 因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.20.若函数()f x 的定义域为R ,其导函数为()f x '.若()3f x '<恒成立,()20f -=,则()36f x x <+ 解集为( )A .(),2-∞-B .()2,2-C .(),2-∞D .()2,-+∞【答案】D【解析】【分析】设()()36g x f x x =--,求导后可得()g x 在R 上单调递减,再结合()20g -=即可得解.【详解】设()()36g x f x x =--, Q ()3f x '<,∴()()30g x f x ''=-<,∴()g x 在R 上单调递减,又()()22660g f -=-+-=,不等式()36f x x <+即()0g x <,∴2x >-,∴不等式()36f x x <+的解集为()2,-+∞.故选:D.【点睛】本题考查了导数的应用,关键是由题意构造出新函数,属于中档题.。

高考数学压轴专题最新备战高考《函数与导数》知识点总复习附答案解析

高考数学压轴专题最新备战高考《函数与导数》知识点总复习附答案解析

【最新】数学《函数与导数》期末复习知识要点一、选择题1.函数()2sin 2xf x x x x=+-的大致图象为( ) A . B .C .D .【答案】D 【解析】 【分析】利用()10f <,以及函数的极限思想,可以排除错误选项得到正确答案。

【详解】()1sin112sin110f =+-=-<,排除,B ,C ,当0x =时,sin 0x x ==, 则0x →时,sin 1xx→,()101f x →+=,排除A , 故选:D . 【点睛】本题主要考查函数图象的识别和判断,利用排除法结合函数的极限思想是解决本题的关键。

2.已知()(1)|ln |xf x x x =≠,若关于x 方程22[()](21)()0f x m f x m m -+++=恰有4个不相等的实根,则实数m 的取值范围是( ) A .1,2(2,)e e⎛⎫⋃ ⎪⎝⎭B .11,e e ⎛⎫+⎪⎝⎭C .(1,)e e -D .1e e ⎛⎫ ⎪⎝⎭,【答案】C 【解析】 【分析】由已知易知()f x m =与()1f x m =+的根一共有4个,作出()f x 图象,数形结合即可得到答案. 【详解】由22[()](21)()0f x m f x m m -+++=,得()f x m =或()1f x m =+,由题意()f x m = 与()1f x m =+两个方程的根一共有4个,又()f x 的定义域为(0,1)(1,)⋃+∞,所以()|ln |ln x x f x x x ==,令()ln x g x x=,则'2ln 1()(ln )x g x x -=,由'()0g x >得x e >, 由'()0g x <得1x e <<或01x <<,故()g x 在(0,1),(1,)e 单调递减,在(,)e +∞上单调递 增,由图象变换作出()f x 图象如图所示要使原方程有4个根,则01m em e<<⎧⎨+>⎩,解得1e m e -<<.故选:C 【点睛】本题考查函数与方程的应用,涉及到方程根的个数问题,考查学生等价转化、数形结合的思想,是一道中档题.3.已知奇函数()f x 在R 上是增函数,若21log 5a f ⎛⎫=- ⎪⎝⎭,()2log 4.1b f =,()0.82c f =,则,,a b c 的大小关系为( )A .a b c <<B .b a c <<C .c b a <<D .c a b <<【答案】C 【解析】由题意:()221log log 55a f f ⎛⎫=-= ⎪⎝⎭, 且:0.822log 5log 4.12,122>><<,据此:0.822log 5log 4.12>>,结合函数的单调性有:()()()0.822log 5log 4.12f f f >>,即,a b c c b a >><<. 本题选择C 选项.【考点】 指数、对数、函数的单调性【名师点睛】比较大小是高考常见题,指数式、对数式的比较大小要结合指数函数、对数函数,借助指数函数和对数函数的图象,利用函数的单调性进行比较大小,特别是灵活利用函数的奇偶性和单调性数形结合不仅能比较大小,还可以解不等式.4.已知()ln xf x x=,则下列结论中错误的是( ) A .()f x 在()0,e 上单调递增 B .()()24f f = C .当01a b <<<时,b a a b < D .20192020log 20202019>【答案】D 【解析】 【分析】根据21ln (),(0,)xf x x x -'=∈+∞,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,进而判断得出结论. 【详解】21ln (),(0,)xf x x x -'=∈+∞Q ∴对于选项A ,可得()f x 在()0,e 上单调递增,在(),e +∞上单调递减,故A 正确;对于选项B ,()2ln 4ln 2ln 24(2)442f f ====,故B 正确;对于选项C ,由选项A 知()f x 在()0,1上也是单调递增的,01a b <<<Q ,ln ln a ba b∴<,可得b a a b <,故选项C 正确; 对于选项D ,由选项A 知()f x 在(),e +∞上单调递减,(2019)(2020)f f ∴>,即ln 2019ln 202022019020>⇒20192020ln 2020log 2020ln 02019219>=, 故选项D 不正确. 故选:D 【点睛】本题考查导数与函数单调性、极值与最值的应用及方程与不等式的解法,考查了理解辨析能力与运算求解能力,属于中档题.5.已知函数()f x 是偶函数,当0x >时,()ln 1f x x x =+,则曲线()y f x =在1x =-处的切线方程为( ) A .y x =- B .2y x =-+C .y x =D .2y x =-【答案】A【解析】 【分析】首先根据函数的奇偶性,求得当0x <时,()f x 的解析式,然后求得切点坐标,利用导数求得斜率,从而求得切线方程. 【详解】因为0x <,()()ln()1f x f x x x =-=--+,()11f -=,()ln()1f x x '=---,(1)1f '-=-,所以曲线()y f x =在1x =-处的切线方程为()11y x -=-+,即y x =-.故选:A 【点睛】本小题主要考查根据函数奇偶性求函数解析式,考查利用导数求切线方程,属于基础题.6.三个数0.20.40.44,3,log 0.5的大小顺序是 ( ) A .0.40.20.43<4log 0.5<B .0.40.20.43<log 0.5<4C .0.40.20.4log 0.534<<D .0.20.40.4log 0.543<<【答案】D 【解析】由题意得,120.20.4550.40log0.514433<<<==== D.7.已知函数()f x 是定义在R 上的偶函数,且在()0,∞+上单调递增,则( ) A .()()()0.633log 132f f f -<-<B .()()()0.6332log 13f f f -<<-C .()()()0.632log 133f f f <-<- D .()()()0.6323log 13f f f <-<【答案】C 【解析】 【分析】利用指数函数和对数函数单调性可得到0.632log 133<<,结合单调性和偶函数的性质可得大小关系. 【详解】()f x Q 为R 上的偶函数,()()33f f ∴-=,()()33log 13log 13f f -=,0.633322log 9log 13log 273<=<<=Q 且()f x 在()0,∞+上单调递增,()()()0.632log 133f f f ∴<<,()()()0.632log 133f f f ∴<-<-.故选:C . 【点睛】本题考查函数值大小关系的比较,关键是能够利用奇偶性将自变量转化到同一单调区间内,由自变量的大小关系,利用函数单调性即可得到函数值的大小关系.8.已知定义在R 上的可导函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,且当()0,x ∈+∞时,都有()'f x x >成立,若()()112f a f a a -≥+-,则实数a 的取值范围为( ) A .1,2⎛⎤-∞ ⎥⎝⎦B .1,2⎡⎫+∞⎪⎢⎣⎭C .(],2-∞D .[)2,+∞【答案】A 【解析】 【分析】构造函数21()()2g x f x x =-,可判断函数()g x 为奇函数且在R 上是增函数,由函数的性质可得a 的不等式,解不等式即可得答案. 【详解】 令21()()2g x f x x =-,则()()g x f x x ''=-, ()0,x ∈+∞Q 时,都有()'f x x >成立,即有()0g x '>,∴在()0,∞+,()g x 单调递增,Q 定义在R 上的函数()f x ,对于任意实数x ,都有()()2f x f x x -+=成立,所以(0)0f =,2222111()()()()()222g x f x x x f x x x f x g x ⎡⎤∴-=--=--=-=-⎣⎦, ()g x ∴是定义在R 上的奇函数,又(0)(0)0g f == ∴在R 上()g x 单调递增.又()()112f a f a a -≥+-Q ()()()2211111222g a a g a a a ∴-+-≥++-, 即()()1112g a g a a a a -≥⇒-≥⇒≤. 因此实数a 的取值范围为1,2⎛⎤-∞ ⎥⎝⎦.故选:A 【点睛】本题考查构造函数、奇函数的判断,及导数与单调性的应用,且已知条件构造出21()()2g x f x x =-是解决本题的关键,考查了理解辨析能力与运算求解能力,属于中档题.9.函数()()2ln 43f x x x =+-的单调递减区间是( )A .3,2⎛⎤-∞ ⎥⎝⎦B .32⎡⎫+∞⎪⎢⎣⎭,C .31,2⎛⎤- ⎥⎝⎦D .342⎡⎫⎪⎢⎣⎭,【答案】D 【解析】 【分析】先求函数定义域,再由复合函数单调性得结论. 【详解】由2430x x +->得14x -<<,即函数定义域是(1,4)-,2232543()24u x x x =+-=--+在3(1,]2-上递增,在3[,4)2上递减,而ln y u =是增函数,∴()f x 的减区间是3[,4)2. 故选:D . 【点睛】本题考查对数型复合函数的单调性,解题时先求出函数的定义域,函数的单调区间应在定义域内考虑.10.已知函数()2100ax x f x lnx x ⎧+≤=⎨⎩,,>,,下列关于函数()()0f f x m +=的零点个数的判断,正确的是( )A .当a =0,m ∈R 时,有且只有1个B .当a >0,m ≤﹣1时,都有3个C .当a <0,m <﹣1时,都有4个D .当a <0,﹣1<m <0时,都有4个 【答案】B 【解析】 【分析】分别画出0a =,0a >,0a <时,()y f x =的图象,结合()t f x =,()0f t m +=的解的情况,数形结合可得所求零点个数. 【详解】令()t f x =,则()0f t m +=,当0a =时, 若1m =-,则0t ≤或t e =,即01x <≤或e x e =, 即当0a =,m R ∈时,不是有且只有1个零点,故A 错误;当0a >时,1m ≤-时,可得0t ≤或m t e e -=≥,可得x 的个数为123+=个,即B 正确;当0a <,1m <-或10m -<<时,由0m ->,且1m -≠,可得零点的个数为1个或3个,故C ,D 错误. 故选:B .【点睛】本题考查了函数零点的相关问题,考查了数形结合思想,属于中档题.11.函数()2log ,0,2,0,xx x f x x ⎧>=⎨≤⎩则函数()()()2384g x fx f x =-+的零点个数是( )A .5B .4C .3D .6【答案】A 【解析】 【分析】通过对()g x 式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数. 【详解】 函数()()()2384g x f x f x =-+=()()322f x f x --⎡⎤⎡⎤⎣⎦⎣⎦的零点即方程()23f x =和()2f x =的根, 函数()2log ,0,2,0x x x f x x ⎧>=⎨≤⎩的图象如图所示:由图可得方程()23f x =和()2f x =共有5个根, 即函数()()()2384g x f x f x =-+有5个零点,故选:A. 【点睛】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.12.设奇函数()f x 在[]11-,上为增函数,且()11f =,若[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,则t 的取值范围是( )A .22t -≤≤B .1122t -≤≤ C .2t ≥或2t ≤-或0t = D .12t ≥或12t ≤-或0t =【答案】C 【解析】 【分析】()f x 在[]11x ∈-,上为增函数,[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,只需对于[]11a ∀∈-,,()2121f t at -≤--即可.【详解】∵奇函数()f x 在[]11x ∈-,上为增函数,且()11f =, ∴函数在[]11x ∈-,上的最小值为()()111f f -=-=-,又∵[]11x ∃∈-,,使[]11a ∀∈-,,不等式()221f x t at ≤--成立,∴()22111t at f --≥-=-,即220t at -≥, ①0t =时,不等式成立;②0t >时,()2220t at t t a -=-≥恒成立,从而2t a ≥,解得2t ≥;③0t <时,()2220t at t t a -=-≥恒成立,从而2t a ≤,解得2t ≤-故选:C. 【点睛】本题考查了含参数不等式恒成立问题,需要将不等式问题转化为函数最值问题,考查了理解辨析能力、运算求解能力和分类讨论思想,是中档题.13.已知全集U =R ,函数()ln 1y x =-的定义域为M ,集合{}2|0?N x x x =-<,则下列结论正确的是 A .M N N =I B .()U M N =∅I ð C .M N U =U D .()U M N ⊆ð【答案】A 【解析】 【分析】求函数定义域得集合M ,N 后,再判断. 【详解】由题意{|1}M x x =<,{|01}N x x =<<,∴M N N =I . 故选A . 【点睛】本题考查集合的运算,解题关键是确定集合中的元素.确定集合的元素时要注意代表元形式,集合是函数的定义域,还是函数的值域,是不等式的解集还是曲线上的点集,都由代表元决定.14.若函数()()sin xf x e x a =+在区间,22ππ⎛⎫- ⎪⎝⎭上单调递增,则实数a 的取值范围是()A .)+∞ B .[)1,+∞ C .()1,+∞D .()+∞【答案】B 【解析】 【分析】将问题转化为()0f x '≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立;根据导函数解析式可知问题可进一步转化04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立;利用正弦型函数值域求法可求得(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭,则只需10a -+?即可,解不等式求得结果. 【详解】由题意得:()()sin cos 4xx x f x ex a e x e x a π⎫⎛⎫'=++=++ ⎪⎪⎝⎭⎭ ()f x Q 在,22ππ⎛⎫- ⎪⎝⎭上单调递增 ()0f x '∴≥在,22ππ⎛⎫- ⎪⎝⎭上恒成立又0x e > 04x a π⎛⎫++≥ ⎪⎝⎭在,22ππ⎛⎫-⎪⎝⎭上恒成立当,22x ππ⎛⎫∈- ⎪⎝⎭时,3,444x πππ⎛⎫+∈- ⎪⎝⎭ sin ,142x π⎛⎤⎛⎫∴+∈- ⎥ ⎪ ⎝⎭⎝⎦(14x a a a π⎛⎫⎤++∈-+ ⎪⎦⎝⎭10a ∴-+≥,解得:[)1,a ∈+∞ 本题正确选项:B 【点睛】本题考查根据函数在一段区间内的单调性求解参数范围问题,涉及到正弦型函数值域的求解问题;本题解题关键是能够将问题转化为导函数在区间内恒大于等于零的问题,从而利用三角函数的最值来求得结果.15.已知函数f (x )(x ∈R )满足f (x )=f (2−x ),若函数 y=|x 2−2x−3|与y=f (x )图像的交点为(x 1,y 1),(x 2,y 2),…,(x m ,y m ),则1=mi i x =∑A .0B .mC .2mD .4m【答案】B 【解析】试题分析:因为2(),23y f x y x x ==--的图像都关于1x =对称,所以它们图像的交点也关于1x =对称,当m 为偶数时,其和为22mm ⨯=;当m 为奇数时,其和为1212m m -⨯+=,因此选B. 【考点】 函数图像的对称性 【名师点睛】如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x +=-,那么函数的图象有对称轴2a bx +=;如果函数()f x ,x D ∀∈,满足x D ∀∈,恒有()()f a x f b x -=-+,那么函数()f x 的图象有对称中心(,0)2a b+.16.已知函数()f x 的导函数为()f x ',在()0,∞+上满足()()xf x f x '>,则下列一定成立的是( )A .()()2019202020202019f f >B .()()20192020f f >C .()()2019202020202019f f <D .()()20192020f f <【答案】A 【解析】 【分析】 构造函数()()f xg x x=,利用导数判断函数()y g x =在()0,∞+上的单调性,可得出()2019g 和()2020g 的大小关系,由此可得出结论.【详解】令()()()0f x g x x x =>,则()()()2xf x f x g x x '-'=. 由已知得,当0x >时,()0g x '>.故函数()y g x =在()0,∞+上是增函数,所以()()20202019g g >,即()()2020201920202019f f >,所以()()2019202020202019f f >. 故选:A.【点睛】 本题考查利用构造函数法得出不等式的大小关系,根据导数不等式的结构构造新函数是解答的关键,考查推理能力,属于中等题.17.已知函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直,若数列()1f n ⎧⎫⎪⎪⎨⎬⎪⎪⎩⎭的前n 项和为n S ,则2018S 的值为( ) A .20152016B .20162017C .20172018D .20182019【答案】D【解析】【分析】 求出原函数的导函数,得到()y f x =在1x =时的导数值,进一步求得m ,可得函数解析式,然后利用裂项相消法可计算出2018S 的值.【详解】由()2f x x mx =+,得()2f x x m '=+,()12f m '∴=+, 因为函数()2f x x mx =+图象在点()()1,1A f 处的切线l 与直线320x y ++=垂直, ()123f m '∴=+=,解得1m =,()2f x x x ∴=+,则()()21111111f n n n n n n n ===-+++. 因此,20181111112018112232018201920192019S =-+-++-=-=L . 故选:D.【点睛】本题考查利用导数研究过曲线上某点处的切线方程,训练了利用裂项相消法求数列的前n 项和,是中档题.18.一对夫妇为了给他们的独生孩子支付将来上大学的费用,从孩子一周岁生日开始,每年到银行储蓄a 元一年定期,若年利率为r 保持不变,且每年到期时存款(含利息)自动转为新的一年定期,当孩子18岁生日时不再存入,将所有存款(含利息)全部取回,则取回的钱的总数为( )A .17(1)a r +B .17[(1)(1)]a r r r +-+C .18(1)a r +D .18[(1)(1)]a r r r+-+ 【答案】D【解析】【分析】由题意可得:孩子18岁生日时将所有存款(含利息)全部取回,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,再由等比数列前n 项和公式求解即可.【详解】解:根据题意,当孩子18岁生日时,孩子在一周岁生日时存入的a 元产生的本利合计为17(1)a r +, 同理:孩子在2周岁生日时存入的a 元产生的本利合计为16(1)a r +,孩子在3周岁生日时存入的a 元产生的本利合计为15(1)a r +, ⋯⋯孩子在17周岁生日时存入的a 元产生的本利合计为(1)a r +,可以看成是以(1)a r +为首项,(1)r +为公比的等比数列的前17项的和,此时将存款(含利息)全部取回,则取回的钱的总数:17171618(1)[(1)1](1)(1)(1)[(1)(1)]11a r r a S a r a r a r r r r r ++-=++++⋯⋯++==+-++-; 故选:D .【点睛】本题考查了不完全归纳法及等比数列前n 项和,属中档题.19.40cos2d cos sin x x x xπ=+⎰( )A .1)B 1C 1D .2【答案】C【解析】【分析】利用三角恒等变换中的倍角公式,对被积函数进行化简,再求积分.【详解】因为22cos2cos sin cos sin cos sin cos sin x x x x x x x x x-==-++,∴4400cos 2d (cos sin )d (sin cos )14cos sin 0x x x x x x x x x πππ=-=+=+⎰⎰,故选C . 【点睛】本题考查三角恒等变换知与微积分基本定理的交汇.20.已知函数()f x 是定义在R 上的偶函数,当0x ≥,3()3f x x x =+,则32(2)a f =,31(log )27b f =,c f =的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .b c a >>【答案】C【解析】【分析】 利用导数判断3()3f x x x =+在[0,)+∞上单调递增,再根据自变量的大小得到函数值的大小.【详解】 Q 函数()f x 是定义在R 上的偶函数,31(log )(3)(3)27b f f f ∴==-=,32023<<=<Q ,当0x ≥,'2()330f x x =+>恒成立,∴3()3f x x x =+在[0,)+∞上单调递增,3231(log )(2)27f f f ∴>>,即b a c >>. 故选:C.【点睛】 本题考查利用函数的性质比较数的大小,考查函数与方程思想、转化与化归思想,考查逻辑推理能力和运算求解能力,求解时注意将自变量化到同一个单调区间中.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2016届高考数学考点总动员【二轮精品】第三篇
压轴4 函数与导数的综合问题
【热点考法】预计2016高考对本节内容的考查仍将突出导数的工具性,重点考查利用导数研究函数极值、
最值及单调性问题,其中蕴含对转化与化归,分类讨论和数形结合等数学思想方法的考查,利用导数研究含参变量的函数极值,最值及单调性等问题,在复习中应予以关注.
【热点考向】
以导数为背景的函数综合题
【解决法宝】利用导数解决参数问题主要涉及以下方面:
(1)已知不等式在某一区间上恒成立,求参数的取值范围:一般先分离参数,再转化为求函数在给定区间上的最值问题求解.
(2)已知函数的单调性求参数的取值范围:转化为'()0f x ≥(或'()0f x ≤)恒成立的问题.
(3)已知函数的零点个数求参数的取值范围:利用函数的单调性、极值画出函数的大致图象,数形结合求解.
利用导数方法证明不等式()()f x g x >在区间D 上恒成立的基本方法是构造函数()()()h x f x g x =-,然后根据函数的单调性,确定函数的最值证明()0h x >.
例1【2016届高三江西师大附中、鹰潭一中联考】(本小题满分12分)已知函数b ax x x x f +++=2
32
5()(b a ,为常数),其图象是曲线C .
(1)设函数)(x f 的导函数为)(x f ',若存在三个实数0x ,使得00)(x x f =与0)(0='x f 同时成立,求实数b 的取值范围;
(2)已知点A 为曲线C 上的动点,在点A 处作曲线C 的切线1l 与曲线C 交于另一点B ,在点B 处作曲线C 的切线2l ,设切线21,l l 的斜率分别为21,k k .问:是否存在常数λ,使得12k k λ=?若存在,求出λ的值;若不存在,请说明理由.
例2【湖北省(华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中孝感高中 鄂南高中)八校2016届高三第二次联考】(本小题满分12分)已知函数()()ln 4f x ax x a =--∈R . (Ⅰ)讨论()f x 的单调性;
(Ⅱ)当2a =时,若存在区间[]1,,2m n ⎡⎫⊆+∞⎪⎢⎣⎭,使()f x 在[],m n 上的值域是,11k k m n ⎡⎤⎢⎥++⎣⎦
,求k 的取值范围.
例3 【湖北省(华师一附中 黄冈中学黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中)八校2016届高三第二次联考】(本题满分12分)已知函数ln ()(0)1
x x
f x a a x =-<-. (Ⅰ)当(0,1)x ∈时,求()f x 的单调性;
(Ⅱ)若2()()()h x x x f x =-⋅,且方程()h x m =有两个不相等的实数根12,x x .求证:121x x +>.
【热点集训】
1. 【湖北省(华师一附中 黄冈中学 黄石二中 荆州中学 襄阳四中 襄阳五中 孝感高中 鄂南高中)八校2016届高三第二次联考】已知函数()
2()e x f x x ax b =++,当1b <时,函数()f x 在(),2-∞-,()1,+∞上均为增函数,则
2
a b
a +-的取值范围是( ) A .22,3⎛⎤- ⎥⎝⎦ B .1,23⎡⎫-⎪⎢⎣⎭ C .2,3⎛⎤-∞ ⎥⎝⎦ D .2,23⎡⎤
-⎢⎥⎣⎦
2. 【安徽省安庆市2016届高三下学期第二次模拟考试(二模)】给出定义:设()f x '是函数()y f x =的导函数,()f x ''是函数()f x '的导函数,若方程()0f x ''=有实数解0x ,则称点()()
00,x f x 为函数
()y f x =的“拐点”.已知函数()34sin cos f x x x x =+-的拐点是()()00,M x f x ,则点M ( )
A .在直线3y x =-上
B .在直线3y x =上
C .在直线4y x =-上
D .在直线4y x =上 3. 【重庆市巴蜀中学高2016级高三3月月考】已知曲线1
2-=x x
y 在点)4,2(P 处的切线与直线l 平行且距离为52,则直线l 的方程为( )
A .022=++y x
B .022=++y x 或0182=-+y x
C .0182=--y x
D .022=+-y x 或0182=--y x 4.设a R ∈,函数()x
x
f x e a e -=+⋅的导函数'()f x 是奇函数,若曲线()y f x =的一条切线的斜率是
32
,则切点的横坐标为( ) A .ln 22-
B .ln 2-
C .ln 2
2
D .ln 2 5. 【【新模式百强校】山西省忻州一中、长治一中、康杰中学、临汾一中2016届高三下学期第三次四校联考】设函数()sin cos f x x x x =+的图像在点(,())t f t 处切线的斜率为k ,则函数()k g t =的图像为( )
6.【2015届高考数学(理)一轮总复习专题突破】已知函数()(ln )f x x x ax =-有两个极值点,则实数a 的取值范围是( )
A .(,0)-∞
B .10,
2⎛⎫
⎪⎝⎭
C .(0,1)
D .(0,)+∞ 7.设函数()y f x =在(0,)+∞内有定义,对于给定的正数K ,定义函数(),()(),()K f x f x K
f x K f x K ≤⎧=⎨>⎩
,取函

ln 1
()x
x f x e
+=
,恒有()()K f x f x =,则( ) A .K 的最大值为
1e B .K 的最小值为1
e
C .K 的最大值为2
D .K 的最小值为2 8.【2014届上海交大附中高三数学总复习】已知函数()2
21sin ()1
x x
f x x ++=
+,其导函数记为'()f x ,则
(2012)'(2012)(2012)'(2012)f f f f ++---=________.
9.已知ln ()ln 1x
f x x x
=
-+,()f x 在0x x =处取最大值,以下各式正确的序号为 . ①00()f x x < ②00()f x x = ③00()f x x > ④01()9f x < ⑤01
()9
f x >
10.【【新模式百强校】山西省忻州一中、长治一中、康杰中学、临汾一中2016届高三下学期第三次四校联考】(本小题满分12分)已知函数1()ln ,()()a
f x x a x
g x a R x
+=-=-∈. (Ⅰ)设函数()()()h x f x g x =-,求函数()h x 的单调区间;
(Ⅱ)若不等式()f x ≤()g x 在区间[1,e](e=2.71828…)的解集为非空集合,求实数a 的取值范围. 11.【重庆市巴蜀中学高2016级高三3月月考】设函数x x f ln )(=,)(2)1)(2()(x f x a x g ---=. (1)当1=a 时,求函数)(x g 的单调区间和极值;
(2)设)0(1)()(>++=b x b x f x F .对任意2121],2,0(,x x x x ≠∈,都有1)()(2
121-<--x x x F x F ,求实数b 的取值范围.
12.【重庆市巴蜀中学高2016级高三3月月考】(本小题满分12分)
已知函数)(2
ln )(2
R a a x x a x x x f ∈+--=在其定义域内有两个不同的极值点. (1)求a 的取值范围;
(2)记两个极值点为21,x x ,且21x x <,已知0>λ,若不等式λ
λ+>⋅121e
x x 恒成立,求λ的取值范围.
13.【安徽省安庆市2016届高三下学期第二次模拟考试(二模)】(本小题满分12分)设函数
()()21f x x =-,()()2
ln g x a x =,其中a ∈R ,且0a ≠.
(I )若直线e x =(e 为自然对数的底数)与曲线()y f x =和()y g x =分别交于A 、B 两点,且曲线
()y f x =在点A 处的切线与曲线()y g x =在点B 处的切线互相平行,求a 的值;
(II )设()()ln h x f x m x =+(m ∈R ,且0m ≠)有两个极值点1x ,2x ,且12x x <,证明:
()212ln 2
4
h x ->
. 14.【安徽省安庆市2016届高三下学期第二次模拟考试(二模)】(本小题满分12分)已知函数
()ln f x x ax =+,a ∈R .
(I )讨论函数()f x 的单调性;
(II )若函数()f x 的两个零点为1x ,2x ,且
221
e x x ≥,求证:()()121265x x
f x x '-+>.
15.【2015届广东省广州市高三1月模拟】已知函数()2ln a
f x x x x
=--,a R ∈ . (1)讨论函数()f x 的单调性;
(2)若函数()f x 有两个极值点1x ,2x , 且12x x <, 求a 的取值范围; (3)在(2)的条件下, 证明:()221f x x <-.
:。

相关文档
最新文档