重庆市人教新课标A版高中数学必修3第二章统计2.1随机抽样2.1.3分层抽样同步测试
人教A版高中数学必修3第二章 统计2.1 随机抽样教案(1)
《简单随机抽样》教案教学目标一、知识与技能1.通过生活中的实例,体会不同的抽样方法会得到不同的调查结果;2.了解简单随机抽样的意义;二、过程与方法1.通过实验与探究的方法,让学生进一步感受在随机抽样中,结果的随机性和只有样本容量足够便可推断总体;2.通过探究进一步了解、掌握简单随机抽样的特点;三、情感态度和价值观1.使学生认识到数学和日常生活息息相关,从而增进学习数学的乐趣,在活动中培养学生的合作竞争意识和解决问题的能力;2.通过分组讨论学习,体会合作学习的兴趣;教学重点简单随机抽样的意义;教学难点获取数据时,会判断调查方式是否合适;教学方法引导发现法、启发猜想、讲练结合法课前准备教师准备课件、多媒体;学生准备三角板,练习本;课时安排1课时教学过程一、导入新课为了了解本校学生暑假期间参加体育活动的情况,学校准备抽取一部分学生进行调查,你认为按下面的调查方法取得的结果能反映全校学生的一般情况吗?如果不能反映,应当如何改进调查方法?二、新课学习方法1:调查学校田径队的30名同学选取的样本是田径队的同学,他们暑假中体育活动多方法2:调查每个班的男同学只调查男同学,没调查女同学方法3:从每班抽取1名学生进行调查选取的样本容量太小,不能客观的反映全校学生方法4:选取每个班级中的一半学生进行调查选取的容量太大,需要花费较多的时间和人力对于上面所提出的问题,我们只要得到一部分样本数据就可以对于总体情况进行估计。
如果得到的样本能够客观地反映问题,那么对总体的估计就会准确一些,否则估计就会差一些,为此,我们总是希望寻找一个抽取样本的好方法。
简单随机抽样的含义:为了获取能够客观反映问题的结果,通常按照总体中每个个体都有相同的被抽取机会的原则抽取样本,这种抽取样本的方法叫做简单随机抽样。
注:随机抽样并不是随意或随便抽取,因为随意或随便抽取都会带有主观或客观的影响因素。
在学校门口随机询问,或者利用学号,抽取一定数量的学生进行调查。
人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(6)
2.1.3分层抽样一.教学任务分析:(1)以探究具体问题为导向,引入分层抽样的概念,引导学生从现实生活或其他学科中提出具有一定价值的统计问题;在解决统计问题的过程中,学会用分层抽样的方法从总体中抽取样本.(2正确理解分层抽样的概念,掌握分层抽样的步骤,并能灵活应用相关知识从总体中抽取样本.(3)通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决实际问题的方法. 二.教学重点与难点:教学重点:分层抽样的概念,分层抽样的操作步骤.教学难点:对样本随机性的理解.三.教学基本流程:↓↓↓↓四.教学情境设计:1.创设情景,揭示课题探究: 假设某地区有高中生2400人,初中生10900人,小学生11000人,此地区教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的中小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?教师引导学生思考,交流,讨论.-----(1)哪些因素可能影响学生的视力?设计抽样方法时需要考虑这些因素吗?(2)要想样本有好的代表性,就应该在样本中使各年级段的学生都有代表,层中的个体多,就应该在样本中的个体数目多,如何合理分配各层所取样本数?(3)各层中的样本如何抽取?(4)叙述抽样过程.教师指出上述实际问题解决的方法就是分层抽样方法.2.分层抽样一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样(stratified sampling).分层抽样的操作步骤:总体分层 ,按照比例, 独立抽取,组成样本总体分层:按某种特征将总体分成若干部分.按照比例: 按比例确定每层抽取个体的个数.独立抽取: 各层分别按简单随机抽样的方法抽取.综合每层抽样,组成样本.3. 分层抽样应用举例例1:某高中共有900人,其中高一年级300人,高二年级200人,高三年级400人,现采用分层抽样抽取容量为45的样本,那么高一、高二、高三各年级抽取的人数分别为( D )A.15,5,25B.15,15,15C.10,5,30 D15,10,20例2:某班有男生36人,女生24人,从全班抽取一个容量为10的样本,分析某种身体素质指标,已知这种身体素质指标与性别有关. 问应采取什么样抽样方法?并写出抽样过程.解:因为这种身体素质指标与性别有关,所以男生,女生身体素质指标差异明显,因而采用分层抽样的方法.具体过程如下:(1)将60人分为2层,其中男,女生各为一层.(2)按照样本容量的比例随机抽取各层应抽取的样本.36×1/6=6(人),24×1/6=4(人)因此男,女生各抽取人数分别为6人和4人.(3)利用简单随机抽样方法分别在36名男生中抽取6人, 24名女生中抽取4人.(4)将这10人组到一起,即得到一个样本.4.简单随机抽样、系统抽样、分层抽样的比较探究: 简单随机抽样、系统抽样、分层抽样各有其特点和使用范围,请对这三种抽样方法进行比较,说说它们的优点和缺点.教师引导学生交流,讨论,归纳总结.简单随机抽样、系统抽样、分层抽样的比较5.课堂练习P64.练习6.课后作业:<随堂导练>P27-28.2.阅读与思考:广告中的数据的可靠性.。
人教新课标A版 高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样 同步测试D卷
人教新课标A版高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样同步测试D卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2016高一下·吉安期末) “二孩政策”的出台,给很多单位安排带来新的挑战,某单位为了更好安排下半年的工作,该单位领导想对本单位女职工做一个调研,已知该单位有女职工300人,其中年龄在40岁以上的有50人,年龄在[30,40]之间的有150人,30岁以下的有100人,现按照分层抽样取30人,则各年龄段抽取的人数分别为()A . 5,15,10B . 5,10,15C . 10,10,10D . 5,5,202. (2分) (2018高二上·宾县期中) 为了了解某校今年准备报考飞行员的学生的体重情况,将所得的数据整理后,画出了频率分布直方图如图,已知图中从左到右的前3个小组的频率之比为1:2:3,第1小组的频数为6,则报考飞行员的学生人数是()A . 36B . 40C . 48D . 503. (2分)若许昌学院共有在校大学生16050名,其中专科生4500人,本科生9750人,研究生1800人,现在需要采用分层抽样的方法调查学生的家庭情况,已知从专科生抽取了60人,则需要从本科生、研究生两类学生分别抽取多少人()A . 130 ,24B . 260,24C . 390,48D . 130,364. (2分)(2012·天津理) 要从60人中抽取6人进行身体健康检查,现釆用分层抽样方法进行抽取,若这60人中老年人和中年人分别是40人,20人,则老年人中被抽取到参加健康检查的人数是()A . 2 人B . 3 人C . 4 人D . 5人5. (2分)我校高中生共有2700人,其中高一年级900人,高二年级1200人,高三年级600人,现采取分层抽样法抽取容量为135的样本,那么高一、高二、高三各年级抽取的人数分别为()A . 45,75,15B . 45,45,45C . 30,90,15D . 45,60,306. (2分) (2016高二上·东莞开学考) 一个单位有职工800人,期中具有高级职称的160人,具有中级职称的320人,具有初级职称的200人,其余人员120人.为了解职工收入情况,决定采用分层抽样的方法,从中抽取容量为40的样本.则从上述各层中依次抽取的人数分别是()A . 12,24,15,9B . 9,12,12,7C . 8,15,12,5D . 8,16,10,67. (2分) (2017·怀化模拟) 某学校有高一、高二、高三三个年级,已知高一、高二、高三的学生数之比为2:3;5,现从该学校中抽取一个容量为100的样本,从高一学生中用简单随机抽样抽取样本时,学生甲被抽到的概率为,则该学校学生的总数为()A . 200B . 400C . 500D . 10008. (2分) (2018高一下·抚顺期末) 2014年3月,为了调查教师对第十二届全国人民代表大会第二次会议的了解程度,抚顺市拟采用分层抽样的方法从三所不同的中学抽取60名教师进行调查。
人教版高中数学必修3第二章统计-《2.1.1简单随机抽样》教案
2.1.1 简单随机抽样整体设计教学分析教材是以探究一批小包装饼干的卫生是否达标为问题导向,逐步引入简单随机抽样概念.并通过实例介绍了两种简单随机抽样方法:抽签法和随机数法.值得注意的是为了使学生获得简单随机抽样的经验,教学中要注意增加学生实践的机会.例如,用抽签法决定班里参加某项活动的代表人选,用随机数法从全年级同学中抽取样本计算平均身高等等.三维目标1.能从现实生活或其他学科中推出具有一定价值的统计问题,提高学生分析问题的能力. 2.理解随机抽样的必要性和重要性,提高学生学习数学的兴趣.3.学会用抽签法和随机数法抽取样本,培养学生的应用能力.重点难点教学重点:理解随机抽样的必要性和重要性,用抽签法和随机数法抽取样本.教学难点:抽签法和随机数法的实施步骤.课时安排1课时教学过程导入新课抽样的方法很多,某个抽样方法都有各自的优越性与局限性,针对不同的问题应当选择适当的抽样方法.教师点出课题:简单随机抽样.推进新课新知探究提出问题(1)在1936年美国总统选举前,一份颇有名气的杂志(Literary Digest)的工作人员做了一次民意测验.调查兰顿(ndon)(当时任堪萨斯州州长)和罗斯福(F.D.Roosevelt)(当时的总统)中谁将当选下一届总统.为了了解公众意向,调查者通过电话簿和车辆登记簿上的名单给一大批人发了调查表(注意在1936年电话和汽车只有少数富人拥有).通过分析收回的调查表,显示兰顿非常受欢迎,于是此杂志预测兰顿将在选举中获胜.实际选举结果正好相反,最后罗斯福在选举中获胜,其数据如下:你认为预测结果出错的原因是什么?由此可以总结出什么教训?(2)假设你作为一名食品卫生工作人员,要对某食品店内的一批小包装饼干进行卫生达标检验,你准备怎样做?显然,你只能从中抽取一定数量的饼干作为检验的样本.那么,应当怎样获取样本呢?(3)请总结简单随机抽样的定义.讨论结果:(1)预测结果出错的原因是:在民意测验的过程中,即抽取样本时,抽取的样本不具有代表性.1936年拥有电话和汽车的美国人只是一小部分,那时大部分人还很穷.其调查的结果只是富人的意见,不能代表穷人的意见.由此可以看出,抽取样本时,要使抽取出的样本具有代表性,否则调查的结果与实际相差较大.(2)要对这批小包装饼干进行卫生达标检查,只能从中抽取一定数量的饼干作为检验的样本,用样本的卫生情况来估计这批饼干的卫生情况.如果对这批饼干全部检验,那么费时费力,等检查完了,这批饼干可能就超过保质期了,再就是会破坏这批饼干的质量,导致无法出售.获取样本的方法是:将这批小包装饼干,放入一个不透明的袋子中,搅拌均匀,然后不放回地摸取(这样可以保证每一袋饼干被抽到的可能性相等),这样就可以得到一个样本.通过检验样本来估计这批饼干的卫生情况.这种抽样方法称为简单随机抽样.(3)一般地,设一个总体含有N个个体,从中逐个不放回地抽取n个个体作为样本(n≤N),如果每次抽取时总体内的各个个体被抽到的机会都相等,就把这种抽样方法叫做简单随机抽样.最常用的简单随机抽样方法有两种:抽签法和随机数法.提出问题(1)抽签法是大家最熟悉的,也许同学们在做某种游戏,或者选派一部分人参加某项活动时就用过抽签法.例如,高一(2)班有45名学生,现要从中抽出8名学生去参加一个座谈会,每名学生的机会均等.我们可以把45名学生的学号写在小纸片上,揉成小球,放到一个不透明袋子中,充分搅拌后,再从中逐个抽出8个号签,从而抽出8名参加座谈会的学生.请归纳抽签法的定义.总结抽签法的步骤.(2)你认为抽签法有什么优点和缺点?当总体中的个体数很多时,用抽签法方便吗?(3)随机数法是利用随机数表或随机骰子或计算机产生的随机数进行抽样.我们仅学习随机数表法即利用随机数表产生的随机数进行简单随机抽样的方法.怎样利用随机数表产生样本呢?下面通过例子来说明.假设我们要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验.利用随机数表抽取样本时,可以按照下面的步骤进行.第一步,先将800袋牛奶编号,可以编为000,001, (799)第二步,在随机数表中任选一个数.例如选出第8行第7列的数7(为了便于说明,下面摘取了附表1的第6行至第10行.)16 22 77 94 39 49 54 43 54 82 17 37 93 23 78 87 35 20 96 43 84 26 34 91 6484 42 17 53 31 57 24 55 06 88 77 04 74 47 67 21 76 33 50 25 83 92 12 06 7663 01 63 78 59 16 95 55 67 19 98 10 50 71 75 12 86 73 58 07 44 39 52 38 7933 21 12 34 29 78 64 56 07 82 52 42 07 44 38 15 51 00 13 42 99 66 02 79 5457 60 86 32 44 09 47 27 96 54 49 17 46 09 62 90 52 84 77 27 08 02 73 43 28第三步,从选定的数7开始向右读(读数的方向也可以是向左、向上、向下等),得到一个三位数785,由于785<799,说明号码785在总体内,将它取出;继续向右读,得到916,由于916>799,将它去掉.按照这种方法继续向右读,又取出567,199,507,…,依次下去,直到样本的60个号码全部取出.这样我们就得到一个容量为60的样本.请归纳随机数表法的步骤.(4)当N=100时,分别以0,3,6为起点对总体编号,再利用随机数表抽取10个号码.你能说出从0开始对总体编号的好处吗?(5)请归纳随机数表法的优点和缺点.讨论结果:(1)一般地,抽签法就是把总体中的N个个体编号,把号码写在号签上,将号签放在一个容器中,搅拌均匀后,每次从中抽取一个号签,连续抽取n次,就得到一个容量为n的样本.抽签法的步骤是:1°将总体中个体从1—N编号;2°将所有编号1—N写在形状、大小相同的号签上;3°将号签放在一个不透明的容器中,搅拌均匀;4°从容器中每次抽取一个号签,并记录其编号,连续抽取n次;5°从总体中将与抽取到的签的编号相一致的个体取出.(2)抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,如果标号的签搅拌得不均匀,会导致抽样不公平.因此说当总体中的个体数很多时,用抽签法不方便.这时用随机数法.(3)随机数表法的步骤:1°将总体中个体编号;2°在随机数表中任选一个数作为开始;3°规定从选定的数读取数字的方向;4°开始读取数字,若不在编号中,则跳过,若在编号中则取出,依次取下去,直到取满为止;5°根据选定的号码抽取样本.(4)从0开始编号时,号码是00,01,02,…,99;从3开始编号时,号码是003,004,…,102;从6开始编号时,号码是006,007,…,105.所以以3,6为起点对总体编号时,所编的号码是三位,而从0开始编号时,所编的号码是两位,在随机数表中读数时,读取两位比读取三位要省时,所以从0开始对总体编号较好.(5)综上所述可知,简单随机抽样有操作简便易行的优点,在总体个数不多的情况下是行之有效的.但是,如果总体中的个体数很多时,对个体编号的工作量太大,即使用随机数表法操作也并不方便快捷.另外,要想“搅拌均匀”也非常困难,这就容易导致样本的代表性差.应用示例例1 某车间工人加工一种轴共100件,为了了解这种轴的直径,要从中抽取10件轴在同一条件下测量,如何采用简单随机抽样的方法抽取样本?分析:简单随机抽样有两种方法:抽签法和随机数表法,所以有两种思路.解法一(抽签法):①将100件轴编号为1,2, (100)②做好大小、形状相同的号签,分别写上这100个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④逐个抽取10个号签;⑤然后测量这10个号签对应的轴的直径的样本.解法二(随机数表法):①将100件轴编号为00,01,…99;②在随机数表中选定一个起始位置,如取第22行第1个数开始(见教材附录1:随机数表);③规定读数的方向,如向右读;④依次选取10个为68,34,30,13,70,55,74,77,40,44,则这10个号签相应的个体即为所要抽取的样本.点评:本题主要考查简单随机抽样的步骤.抽签法的关键是为了保证每个个体被抽到的可能性相等而必须搅拌均匀,当总体中的个体无差异,并且总体容量较小时,用抽签法;用随机数表法读数时,所编的号码是几位,读数时相应地取连续的几个数字,当总体中的个体无差异,并且总体容量较多时,用抽签法.变式训练1.下列抽样的方式属于简单随机抽样的有____________.(1)从无限多个个体中抽取50个个体作为样本.(2)从1 000个个体中一次性抽取50个个体作为样本.(3)将1 000个个体编号,把号签放在一个足够大的不透明的容器内搅拌均匀,从中逐个抽取50个个体作为样本.(4)箱子里共有100个零件,从中选出10个零件进行质量检验,在抽样操作中,从中任意取出一个零件进行质量检验后,再把它放回箱子.(5)福利彩票用摇奖机摇奖.解析:(1)中,很明显简单随机抽样是从有限多个个体中抽取,所以(1)不属于;(2)中,简单随机抽样是逐个抽取,不能是一次性抽取,所以(2)不属于;很明显(3)属于简单随机抽样;(4)中,抽样是放回抽样,但是简单随机抽样是不放回抽样,所以(4)不属于;很明显(5)属于简单随机抽样.答案:(3)(5)2.要从某厂生产的30台机器中随机抽取3台进行测试,写出用抽签法抽样样本的过程.分析:由于总体容量和样本容量都较小,所以用抽签法.解:抽签法,步骤:第一步,将30台机器编号,号码是01,02, (30)第二步,将号码分别写在一张纸条上,揉成团,制成号签.第三步,将得到的号签放入不透明的袋子中,并充分搅匀.第四步,从袋子中依次抽取3个号签,并记录上面的编号.第五步,所得号码对应的3台机器就是要抽取的样本.例2 人们打桥牌时,将洗好的扑克牌随机确定一张为起始牌,这时按次序搬牌时,对任何一家来说,都是从52张牌中抽取13张牌,问这种抽样方法是否是简单随机抽样?解:简单随机抽样的实质是逐个地从总体中随机抽取样本,而这里只是随机确定了起始张,其他各张牌虽然是逐张起牌,但是各张在谁手里已被确定,所以不是简单随机抽样.点评:判断简单随机抽样时,要紧扣简单随机抽样的特征:逐个、不放回抽取且保证每个个体被抽到的可能性相等.变式训练现在有一种“够级”游戏,其用具为四副扑克,包括大小鬼(又称为花)在内共216张牌,参与人数为6人并坐成一圈.“够级”开始时,从这6人中随机指定一人从已经洗好的扑克牌中随机抽取一张牌(这叫开牌),然后按逆时针方向,根据这张牌上的数字来确定谁先抓牌,这6人依次从216张牌中抓取36张牌,问这种抓牌方法是否是简单随机抽样?解:在这里只有抽取的第一张扑克牌是随机抽取的,其他215张牌已经确定,即这215张扑克牌被抽取的可能性与第一张扑克牌可能性不相同,所以不是简单随机抽样.知能训练1.为了了解全校240名学生的身高情况,从中抽取40名学生进行测量,下列说法正确的是()A.总体是240B.个体C.样本是40名学生D.样本容量是40答案:D2.为了了解所加工一批零件的长度,抽测了其中200个零件的长度,在这个问题中,200个零件的长度是()A.总体B.个体C.总体的一个样本D.样本容量答案:C3.一个总体中共有200个个体,用简单随机抽样的方法从中抽取一个容量为20的样本,则某一特定个体被抽到的可能性是____________.1答案:104.为了检验某种产品的质量,决定从40件产品中抽取10件进行检查,如何用简单随机抽样抽取样本?解:方法一(抽签法):①将这40件产品编号为1,2, (40)②做好大小、形状相同的号签,分别写上这40个号码;③将这些号签放在一个不透明的容器内,搅拌均匀;④连续抽取10个号签;⑤然后对这10个号签对应的产品检验.方法二(随机数表法):①将40件产品编号,可以编为00,01,02,…,38,39;②在随机数表中任选一个数作为开始,例如从第8行第9列的数5开始,;③从选定的数5开始向右读下去,得到一个两位数字号码59,由于59>39,将它去掉;继续向右读,得到16,将它取出;继续下去,又得到19,10,12,07,39,38,33,21,随后的两位数字号码是12,由于它在前面已经取出,将它去掉,再继续下去,得到34.至此,10个样本号码已经取满,于是,所要抽取的样本号码是16,19,10,12,07,39,38,33,21,34.拓展提升现有一批编号为10,11,…,99,100,…,600的元件,打算从中抽取一个容量为6的样本进行质量检验.如何用随机数法设计抽样方案?分析:重新编号,使每个号码的位数相同.解:方法一:第一步,将元件的编号调整为010,011,012,...,099,100, (600)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第6行第7个数“9”,向右读.第三步,从数“9”开始,向右读,每次读取三位,凡不在010—600中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到544,354,378,520,384,263.第四步,以上这6个号码所对应的6个元件就是所要抽取的对象.方法二:第一步,将每个元件的编号加100,重新编号为110,111,112,...,199,200, (700)第二步,在随机数表中任选一数作为开始,任选一方向作为读数方向.比如,选第8行第1个数“6”,向右读.第三步,从数“6”开始,向右读,每次读取三位,凡不在110—700中的数跳过去不读,前面已经读过的也跳过去不读,依次可得到630,163,567,199,507,175.第四步,这6个号码分别对应原来的530,63,467,99,407,75.这些号码对应的6个元件就是要抽取的对象.课堂小结1.简单随机抽样是一种最简单、最基本的抽样方法,简单随机抽样有两种选取个体的方法:放回和不放回,我们在抽样调查中用的是不放回抽样,常用的简单随机抽样方法有抽签法和随机数法.2.抽签法的优点是简单易行,缺点是当总体的容量非常大时,费时、费力,又不方便,如果标号的签搅拌得不均匀,会导致抽样不公平,随机数表法的优点与抽签法相同,缺点是当总体容量较大时,仍然不是很方便,但是比抽签法公平,因此这两种方法只适合总体容量较小的抽样类型.3.简单随机抽样每个个体入样的可能性都相等,均为Nn ,但是这里一定要将每个个体入样的可能性、第n 次每个个体入样的可能性、特定的个体在第n 次被抽到的可能性这三种情况区分开来,避免在解题中出现错误.作业课本本节练习2、3.。
人教新课标A版 高中数学必修3第二章统计 2.1随机抽样 2.1.1简单随机抽样 同步测试B卷
人教新课标A版高中数学必修3第二章统计 2.1随机抽样 2.1.1简单随机抽样同步测试B卷姓名:________ 班级:________ 成绩:________一、单选题 (共11题;共22分)1. (2分)有20位同学,编号为从1至20,现在从中抽取4人进行问卷调查,若用系统抽样方法,则所抽的编号可能为()A . 5,10,15,20B . 2,6,10,14C . 2,4,6,8D . 5,8,9,142. (2分) (2016高一下·汕头期末) 省农科站要检测某品牌种子的发芽率,计划采用随机数表法从该品牌800粒种子中抽取60粒进行检测,现将这800粒种子编号如下001,002,…,800,若从随机数表第8行第7列的数7开始向右读,则所抽取的第4粒种子的编号是()(如表是随机数表第7行至第9行)A . 105B . 507C . 071D . 7173. (2分)(2020·漳州模拟) 某公司决定利用随机数表对今年新招聘的800名员工进行抽样调查他们对目前工作的满意程度,先将这800名员工进行编号,编号分别为001,002,…,799,800,从中抽取80名进行调查,下图提供随机数表的第4行到第6行32 21 18 34 29 78 64 54 07 32 52 42 06 44 38 12 23 43 56 77 35 78 90 56 4284 42 12 53 31 34 57 86 07 36 25 30 07 32 86 23 45 78 89 07 23 68 96 08 0432 56 78 08 43 67 89 53 55 77 34 89 94 83 75 22 53 55 78 32 43 77 89 23 45若从表中第5行第6列开始向右依次读取3个数据,则抽到的第5名员工的编号是()A . 007B . 253C . 328D . 7364. (2分)(2017·渝中模拟) 我国古代数学名著《九章算术》有“米谷粒分”题:粮仓开仓收粮,有人送来米1534石,验得米内夹谷,抽样取米一把,数得254粒肉夹谷56粒,则这批米内夹谷约为()A . 1365石B . 338 石C . 168石D . 134石5. (2分) (2018高二上·铜仁期中) 总体由编号为01,02,…,19,20的20个个体组成。
人教版高中数学必修3第二章统计《2.1随机抽样:2.1.2 系统抽样》教学PPT
l (3)在第一段中用简单随机抽样确定起始的个体编号 ;
(4)将编号为 l,l k,l 2k,...,l (n 1)k 的个体抽出。
简记为:编号;分段;在第一段确定起始号;加 间隔获取样本。
3、系统抽样的特点:
(1)用系统抽样抽取样本时,每个个体被抽 到的可能性是相等的,个体被抽取的概率等于
2、系统抽样的步骤:
(1)采用随机的方式将总体中的个体编号;
(2)将整个的编号按一定的间隔(设为K)分段,当
N
n (N为总体中的个体数,n为样本容量)是整数 时,k N ;当 N 不是整数时,从总体中剔除一些
nn 个体,使剩下的总体中个体的个数 N ' 能被n整除,这 时, k N ' ,并将剩下的总体重新编号;
知识回顾
1、简单随机抽样包括__抽__签__法__和__随__机__数__表__法__.
2、在简单随机抽样中,某一个个体被抽到的可
能性是( C )。
A.与第几次抽样有关,第一次抽的可能性最大 B.与第几次抽样有关,第一次抽的可能性最小 C.与第几次抽样无关,每次抽到的可能性相等 D.与第几次抽样无关,与抽取几个样本无关
2.1.2 系统抽样
教学目标: 1、知识与技能:(1)正确理解系统抽样的概念;(2) 掌握系统抽样的一般步骤;(3)正确理解系统抽样与 简单随机抽样的关系; 2、过程与方法:通过对实际问题的探究,归纳应用数 学知识解决实际问题的方法,理解分类讨论的数学方 法, 3、情感态度与价值观:通过数学活动,感受数学对实 际生活的需要,体会现实世界和数学知识的联系。 4、重点与难点:正确理解系统抽样的概念,能够灵活 应用系统抽样的方法解决统计问题。
问题:某校高一年级共有20个班,每班有
人教A版高中数学必修三笔记(全册)
第一章 算法初步(略)第二章 统计2.1 随机抽样1、总体和样本(1)总体:在统计学中 , 把研究对象的全体叫做总体. (2)个体:把每个研究对象叫做个体.(3)总体容量:把总体中个体的总数叫做总体容量.(4)样本容量:为了研究总体x 的有关性质,一般从总体中随机抽取一部分:1x ,2x ,3x , ……,n x 研究,我们称它为样本...其中个体的个数称为样本容量..... 2、简单随机抽样(1)定义:一般地,设一个总体包含有N 个个体,从中逐个不放回地抽取n 个个体作为样本)(N n ≤,如果每次抽取时总体内的各个个体被抽到的机会相等,就称这样的抽样方法为简单随机抽样.(2)特点:① 被抽取样本的总体个数N 是有限的;② 样本是从总体中逐个抽取的; ③ 是一种不放回抽样;④ 每个样本被抽中的可能性相同(概率相等);⑤ 总体单位之间差异程度较小和数目较少时,采用简单随机抽样. (3)常用的方法⎩⎨⎧.②;①随机数法抽签法3、系统抽样(等距抽样或机械抽样):(1)定义:当总体中的个体较多时,可将总体分为均衡的几个部分,然后按照预先定出的规则,从每一部分抽取一个个体,得到所需的样本,这种抽样叫做系统抽样.(2)步骤:① 编号:先将总体的N 个个体编号;② 分段:确定分段间隔k ,对编号进行分段,当n N 是整数时,取n N k =(当nN 不是整数时,要先剔除零头);③ 确定第1个编号:在第1段用简单随机抽样确定第一个个体编号l ;④ 成样:按照一定的规则抽取样本.通常是将l 加上间隔k 得到第2个个体编号(k l +),再加k 得到第3个个体编号(k l 2+),依次进行下去,直到获取整个样本.4、分层抽样:(1)定义:在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法就叫做分层抽样.(2)步骤:① 分层:根据题意,将总体分成互不交叉的层;② 定抽样比:根据总体中的个体数N 和样本容量n 计算抽样比Nn k =; ③ 定各层抽取的数目:确定第i 层应该抽取的个体数目k N n i i ⨯=; ④ 抽取个体:在各层中随机抽取该层确定的个体数目.5、三种抽样方法的异同点:2.2 用样本估计总体1、频率、样本容量、频数的关系2、作频率分布直方图的步骤(1) 求极差,即计算最大值与最小值的差; (2) 决定组距与组数; (3) 将数据分组;(4) 计算各小组的频率,列频率分布表; (5) 画频率分布直方图.3、众数、中位数、平均数4、平均数、方差、标准差(1)平均数:nx x x x x n++++=321(2)方 差:nx x x x x x x x s n 22322212)()()()(-++-+-+-=(3)标准差:[]22322212)()()()(1x x x x x x x x ns s n -++-+-+-==. 5、从频率分布直方图中估计众数、平均数、中位数(1)众 数:最高矩形所在组的组中值即为众数的估计值. (2)平均数:每个小矩形的面积乘以小矩形底边中点的横坐标之和. (3)中位数:中位数左边和右边直方图的面积相等.2.3 变量间的相关关系1、散点图将样本中的n 个数据点),(11y x ,),(22y x ,…,),(n n y x 描在直角坐标系中,所得到的图形叫做散点图.2、正相关与负相关(1)正相关:从散点图上看,点分布在从左下角到右上角的区域内. (2)负相关:从散点图上看,点分布在从左上角到右下角的区域内.3、回归直线如果散点图中点的分布从整体上看大致在一条直线附近,就称这两个变量之间具有线性相关关系,这条直线叫做回归直线.【重要结论】散点可能在回归直线上,也可能不再回归直线上,但样本点的中心),(y x 必在回归直线上.(其中x 、y 分别为变量x 和y 的平均数.)4、最小二乘法(1)定义:使得样本数据的点到回归直线的距离的平方和最小...............的方法叫做最小二乘法. (2)求法:设线性回归方程为a x b yˆˆˆ+=,则 ⎪⎪⎩⎪⎪⎨⎧-=--=---=∑∑∑∑====.ˆˆ,)())((ˆ1221121x b y ax n x yx n y x x x y y x x b ni i ni ii n i i ni i i例1:根据上表得到回归直线方程为a x yˆ7.0ˆ+=,据此可预测,当x =15时,y 的值为( ) A . 7.8 B . 8.2 C . 9.6 D . 8.5例2:为了研究某大型超市开业天数与销售额的情况,随机抽取了5天,其开业天数与每天根据上表得到回归直线方程为9.5467.0ˆ+=x y,由于表中一个数据模糊不清,请你推断该数据的值为( )A . 67B . 68C . 68.3D . 71 例3:【2014全国2卷理18】某地区2007年至2013年农村居民家庭纯收入y (单位:千元)的数据如下表:(2)利用(1)中的回归方程,分析2007年至2013年该地区农村居民家庭人均纯收入的变化情况,并预测该地区2015年农村居民家庭人均纯收入.附:回归直线的斜率和截距的最小二乘法估计公式分别为:∑∑==---=ni ini iix x y yx x b121)())((ˆ,x b y aˆˆ-=. 解:(1)方法一(利用第一个bˆ的公式):根据题意,列表如下:所以,∑∑==---=ni ii iix x y yx x b121)())((ˆ5.02814==,x b y aˆˆ-=3.245.03.4=⨯-=. 所以,线性回归方程为3.25.0ˆ+=x y. 方法二(利用第二个bˆ的公式):根据题意,列表如下: 所以,∑∑==--=ni ii ii x n xyx n yx b1221ˆ5.0471403.4474.1342=⨯-⨯⨯-=,x b y a ˆˆ-=3.245.03.4=⨯-=. 所以,线性回归方程为3.25.0ˆ+=x y.(2)由于线性回归方程3.25.0ˆ+=x y是增函数,所以,2007年至2013年该地区农村居民家庭人均纯收入逐年增加.2015年对应的x =9,此时8.63.295.0ˆ=+⨯=y,即该地区2015年农村居民家庭人均纯收入约为6.8千元.第三章 概率3.1 随机事件的概率1、基本概念:(1)必然事件:在条件S 下,一定会发生的事件,叫相对于条件S 的必然事件; (2)不可能事件:在条件S 下,一定不会发生的事件,叫相对于条件S 的不可能事件; (3)确定事件:必然事件和不可能事件统称为相对于条件S 的确定事件;(4)随机事件:在条件S 下可能发生也可能不发生的事件叫相对于条件S 的随机事件; (5)频数与频率:在相同的条件S 下重复n 次试验,观察某一事件A 是否出现,称n 次试验中事件A 出现的次数n A 为事件A 出现的频数;称事件A 出现的比例nn A f An =)(为事件A 出现的概率:对于给定的随机事件A ,如果随着试验次数的增加,事件A 发生的频率)(A f n 稳定在某个常数上,把这个常数记作)(A P ,称为事件A 的概率.(6)频率与概率的关系:频率是概率的近似值,概率是频率的稳定值.2、事件的关系与运算【注】:互斥事件不一定是对立事件,但对立事件一定是互斥事件.3、概率的基本性质(1)任何事件的概率0≤P (A )≤1;(2)必然事件的概率为1,不可能事件的概率为0;(3)当事件A 与B 互斥时,满足加法公式:P (A ∪B )= P (A )+ P (B );(4)若事件A 与B 为对立事件,则A ∪B 为必然事件,所以P (A ∪B )=1,P (A )=1—P (B ).3.2 古典概型 3.3 几何概型1、基本事件(1)概念:一次试验中可能出现的每一个结果称为一个基本事件,它是试验中不可再分的最简单的随机事件,在一次试验中只能有一个基本事件发生.(2)特点 ⎩⎨⎧.基本事件的和件)都可以表示成几个任何事件(除不可能事②斥的;任何两个基本事件是互①2、古典概型(1)定义:我们将具有以下两个特点的概率模型称为古典概率模型,简称为古典概型. ① 试验中所有可能出现的基本事件只有有限个; ② 每个基本事件出现的可能性都相等. (2)古典概型概率公式 基本事件的总数包含的基本事件的个数事件A A P =)(.3、几何概型(1)定义:如果每个事件发生的概率只与构成该事件区域的长度(面积或体积)成比例,则称这样的概率模型为几何概率模型,简称为几何概型.(2)特点 ⎩⎨⎧.事件发生的概率都相等等可能性,即每个基本②限个;结果(基本事件)有无无限性,即每次试验的①(3)计算公式: 积)的区域长度(面积或体试验的全部结果所构成积)的区域长度(面积或体构成事件A A P =)(.。
高中数学必修3(人教A版)第二章统计2.1知识点总结含同步练习及答案
⑤确定样本:从总体中找出与号签上的号码对应的个体,组成样本.
随机数表法是随机数表由数字 0 ,1 ,2,3,⋯,9 这 10 个数字组成,并且每个数字在表中 各个位置上出现的机会都是一样的,通过随机数表,根据实际需要和方便使用的原则,将几个数
组成一组,然后通过随机数表抽取样本.随机数表的优点是简单易行,它很好的解决了当总体中
样.因为 50 名官兵是从中挑出来的,是最优秀的,每个个体被抽到的可能性不同,不符合简单 随机抽样中“等可能抽样”的要求.(3)是简单随机抽样.因为总体中的个体数是有限的,并且
是从总体中逐个进行抽取的,是不放回、等可能的抽取.
2013年第27届世界大学生运动会在俄罗斯举行,为了支持这次运动会,某大学从报名的 20 名大 三学生中选取 6 人组成志愿小组,请用抽签法设计抽样方案. 解:(1)将 20 名志愿者编号,编号为 1,2,3,4,⋯,20; (2)将 20 个号码分别写在 20 张形状相同的卡片上,制成号签; (3)将 20 张卡片放入一个不透明的盒子里,搅拌均匀; (4)从盒子中逐个不放回地抽取 6 个号签,并记录上面的号码;
A.2
B.3
C.6
D.7
解:C
间隔相等,所以 126 − 8 × 15 = 6.
4.分层抽样
描述: 将总体中各个个体按某种特征分成若干个互不重叠的几部分,每一部分叫做层,在各层中按层在 总体中所占比例进行简单随机抽样或系统抽样,这种抽样的方法叫做分层抽样.当总体由明显差 别的几部分组成时,为了使抽取样本更好地反映总体的情况,常采用分层抽样.
③简单随机抽样是一种不放回抽样.
④简单随机抽样是一种等可能的抽样,每个个体被抽取到的可能性均为
n N
.
常用的简单随机抽样方法有抽签法和随机数表法.
人教版高中数学必修3第二章统计-《2.1.3分层抽样》教案(9)
2.1.3 分层抽样【教学目标】1、理解分层抽样的概念与特征,巩固简单随机抽样、系统抽样两种抽样方法;2、掌握简单随机抽样、系统抽样、分层抽样的区别与联系.【教学难重点】正确理解分层抽样的定义,灵活应用分层抽样抽取样本,并恰当的选择三种抽样方法解决现实生活中的抽样问题.【教学过程】1、创设情景(1)复习简单随机抽样、系统抽样的概念、特征以及适用范围.(2)实例:某校高一、高二和高三年级分别有学生1000,800,700名,为了了解全校学生的视力情况,从中抽取容量为100的样本,怎样抽取较为合理?能否用简单随机抽样或系统抽样进行抽样,为什么?2、构建教学(1)分层抽样的概念:当已知总体由差异明显的几部分组成时,为了使样本更客观地反映总体的情况,常将总体按不同的特点分成层次比较分明的几部分,然后按各部分在总体中所占比例....进行抽样,这种抽样叫做分层抽样....,其中所分成的各部分叫“层”.(2)分层抽样的步骤:①分层:将总体按某种特征分成若干部分;②确定比例:计算各层的个体数与总体的个体数的比;③确定各层应抽取的样本容量;④在每一层进行抽样(各层分别按简单随机抽样或系统抽样的方法抽取),综合每层抽样,组成样本.(3)三种抽样方法对照表:3、数学应用例1、(1)在分层抽样中,在每一层进行抽样可用______________________________.(2)①教育局督学组到学校检查工作,临时在每个班各抽调2人参加座谈;②某班期中考试有15人在85分以上,40人在60-84分,1人不及格。
现欲从中抽出8人研讨进一步改进教和学;③某班元旦聚会,要产生两名“幸运者”.对这三件事,合适的抽样方法分别为、、.(3)工厂生产的某种产品用传输带将产品送入包装车间,检验人员从传送带上每隔5分钟抽一件产品进行检验,问这是一种什么抽样法?(4)已知甲、乙、丙三个车间一天内生产的产品分别是150件、130件、120件,为了掌握各车间产品质量情况,从中取出一个容量为40的样本,该用什么抽样方法?简述抽样过程?例2、某电视台在因特网上就观众对某一节目的喜爱程度进行调查,参加调查的总人数为12 000人,其中持各种态度的人数如表中所示:电视台为进一步了解观众的具体想法和意见,打算从中抽取60人进行更为详细的调查,应怎样进行抽样?(只列式,不计算)【归纳小结】1.分层抽样的概念与特征;2.三种抽样方法相互之间的区别与联系.【反馈练习】1.在某年有奖明信片销售活动中,规定每100万张为一个开奖组,通过随机抽取的方式确定号码的后4位数是2709的为三等奖.这样确定获奖号码的抽奖方法是 .2.某公司生产3种型号的轿车,产量分别为1200辆、6000辆和2000辆.为检验该公司的产品质量,现用分层抽样的方法抽取46辆进行检验,这3种型号的轿车应分别抽取 辆、 辆、 辆.3.某所学校有小学部、初中部和高中部,在校小学生、初中生和高中生人数之比为5:2:3,且已知初中生有800人.现要从这所学校中抽取一个容量为80的样本以了解他们对某一问题的看法,应采用的抽样方法是 ,从小学部、初中部及高中部各抽取 人、 人、 人.从总体上看,平均 名学生中抽取到一名学生.4.下列问题中,采用怎样的抽样方法较为合理?简述抽样过程. (1)从10台电冰箱中抽取3台进行质量检查;(2)某电影院有32排座位,每排有40个座位 ,座位号为140。
人教新课标A版 高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样 同步测试B卷
人教新课标A版高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样同步测试B卷姓名:________ 班级:________ 成绩:________一、单选题 (共15题;共30分)1. (2分) (2018高二上·遂宁期末) 从孝感地区中小学生中抽取部分学生,进行肺活量调查.经了解,该地区小学、初中、高中三个学段学生的肺活量有较大差异,而同一学段男女生的肺活量差异不大.在下面的抽样方法中,最合理的抽样方法是()A . 简单的随机抽样B . 按性别分层抽样C . 按学段分层抽样D . 系统抽样2. (2分) (2019高二上·河北期中) 某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中取一个容量为36的样本,则老年人、中年人、青年人依次抽取的人数是A . 7,11,19B . 7,12,17C . 6,13,17D . 6,12,183. (2分) (2019高二上·内蒙古月考) 完成下列抽样调查,较为合理的抽样方法依次是()①从件产品中抽取件进行检查;②某校高中三个年级共有人,其中高一人、高二人、高三人,为了了解学生对数学的建议,拟抽取一个容量为的样本;③某剧场有排,每排有个座位,在一次报告中恰好坐满了听众,报告结束后,为了了解听众意见,需要请名听众进行座谈.A . 简单随机抽样,系统抽样,分层抽样;B . 分层抽样,系统抽样,简单随机抽样;C . 系统抽样,简单随机抽样,分层抽样;D . 简单随机抽样,分层抽样,系统抽样;4. (2分)某单位有老年人28人,中年人54人,青年人81人.为了调查他们的身体状况,需从他们中抽取一个容量为36的样本,最适合抽取样本的方法是()A . 简单随机抽样B . 系统抽样C . 分层抽样D . 先从老年人中剔除一人,然后分层抽样5. (2分) (2017高二下·深圳月考) 对一个容量为的总体抽取容量为的样本,当选取简单随机抽样、系统抽样和分层抽样三种不同方法抽取样本时,总体中每个个体被抽中的概率依次为,,,则().A .B .C .D .6. (2分)下面有关抽样的描述中,错误的是()A . 在简单抽样中,某一个个体被抽中的可能性与第n次抽样有关,先抽到的可能性较大B . 系统抽样又称为等距抽样,每个个体入样的可能性相等C . 分层抽样为了保证每个个体入样的可能性相等必须每层等可能性抽样D . 抽样的原则是“搅拌均匀”且“等可能地抽到每个个体”7. (2分) (2017高一下·西城期末) 如表是某校120名学生假期阅读时间(单位:小时)的频率分布表,现用分层抽样的方法从[10,15),[15,20),[20,25),[25,30)四组中抽取20名学生了解其阅读内容,那么从这四组中依次抽取的人数是()分组频数频率[10,15)120,10[15,20)30a[20,25)m0.40[25,30)n0.25合计120 1.00A . 2,5,8,5B . 2,5,9,4C . 4,10,4,2D . 4,10,3,38. (2分) (2018高二下·集宁期末) 从8名女生4名男生中,选出3名学生组成课外小组,如果按性别比例分层抽样,则不同的抽取方法数为()A . 112种B . 100种C . 90种D . 80种9. (2分) (2019高二下·吉林月考) 完成下列两项调查:从某社区户高收入家庭、户中等收入家庭、户低收入家庭中选出户,调查社会购买能力的某项指标;从某中学的名艺术特长生中选出名调查学习负担情况.这两项调查宜采用的抽样方法依次是()A . 简单随机抽样,系统抽样B . 分层抽样,简单随机抽样C . 系统抽样,分层抽样D . 都用分层抽样10. (2分)某单位有老年人27人,中年人54人,青年人81人,为了调查他们的身体状况的某项指标,需从他们中间抽取一个容量为36样本,则老年人、中年人、青年人分别各抽取的人数是()A . 6,12,18B . 7,11,19C . 6,13,17D . 7,12,1711. (2分)某企业有职工150人,其中高级职称15人,中级职称45人,一般职员90人,现抽取30人进行分层抽样,则各职称人数分别为()A . 5,10,15B . 3,9,18C . 3,10,17D . 5,9,1612. (2分) (2018高一下·葫芦岛期末) 葫芦岛市交通局为了解机动车驾驶员对交通法规的知晓情况,对渤海、丰乐、安宁、天正四个社区做分层抽样调查.其中渤海社区有驾驶员96人.若在渤海、丰乐、安宁、天正四个社区抽取驾驶员的人数分别为12,21,25,43,则丰乐、安宁、天正三个社区驾驶员人数是多少()A . 101B . 808C . 712D . 8913. (2分)一支田径运动队有男运动员56人,女运动员42人,若采用分层抽样的方法在全体运动员中抽出28人进行体质测试,则抽到进行体质测试的男运动员的人数为()A . 12B . 14C . 16D . 2014. (2分)某校要从高一、高二、高三共2010名学生中选取50名组成2010年上海世博会的志愿团,若采用下面的方法选取;先用简单随机抽样的方法从2010人中剔除10人,剩下的2000人再按分层抽样的方法进行,则每人入选的概率()A . 不全相等B . 均不相等C . 都相等且为D . 都相等且为15. (2分)(2017·莱芜模拟) 交通管理部门为了解机动车驾驶员(简称驾驶员)对某新法规的知晓情况,对甲、乙、丙、丁四个社区做分层抽样调查.假设四个社区驾驶员的总人数为N,其中甲社区有驾驶员96人.若在甲、乙、丙、丁四个社区抽取驾驶员的人数分别为12,21,25,43,则这四个社区驾驶员的总人数N为()A . 101B . 808C . 1212D . 2012二、填空题 (共5题;共6分)16. (1分)一个单位有职工160人,其中业务员104人,管理员32人,后勤服务员24人,要从中选取一个容量为20的样本,应用分层抽样法,则应抽取业务员________名.17. (1分) (2019高一上·太原月考) 一学校高中部有学生2 000人,其中高一学生800人,高二学生600人,高三学生600人.现采用分层抽样的方法抽取容量为50的样本,那么高一、高二、高三各年级被抽取的学生人数分别为________.18. (1分) (2017高二上·张家口期末) 某校老年教师90人、中年教师180人和青年教师160人,采用分层抽样的方法调查教师的身体情况,在抽取的样本中,青年教师有32人,则该样本的老年教师人数为________.19. (2分)(2017·南京模拟) 下表是关于青年观众的性别与是否喜欢戏剧的调查数据,人数如表所示:不喜欢戏剧喜欢戏剧男性青年观众4010女性青年观众4060现要在所有参与调查的人中用分层抽样的方法抽取n个人做进一步的调研,若在“不喜欢戏剧的男性青年观众”的人中抽取了8人,则n的值为________.20. (1分) (2017高一下·静海期末) 200名职工年龄分布如图所示,从中随机抽取40名职工作样本,采用系统抽样方式,按1~200编号分为40组,分别为1~5,6~10,…,196~200,第5组抽取号码为23,第9组抽取号码为________;若采用分层抽样,40﹣50岁年龄段应抽取________人.三、解答题 (共3题;共15分)21. (5分) (2019高三上·汉中月考) 清华大学自主招生考试题中要求考生从A,B,C三道题中任选一题作答,考试结束后,统计数据显示共有600名学生参加测试,选择A,B,C三题答卷数如下表:题A B C答卷数180300120(Ⅰ)负责招生的教授为了解参加测试的学生答卷情况,现用分层抽样的方法从600份答案中抽出若干份答卷,其中从选择A题作答的答卷中抽出了3份,则应分别从选择B,C题作答的答卷中各抽出多少份?(Ⅱ)测试后的统计数据显示,A题的答卷得优的有60份,若以频率作为概率,在(Ⅰ)问中被抽出的选择A 题作答的答卷中,记其中得优的份数为,求的分布列及其数学期望.22. (5分)(2016·上饶模拟) 某中学对男女学生是否喜爱古典音乐进行了一个调查,调查者对学校高三年级随机抽取了100名学生,调查结果如表:喜爱不喜爱总计男学生6080女学生总计7030附:K2=P(K2≥k0)0.1000.0500.010k0 2.7063.8416.635(1)完成如表,并根据表中数据,判断是否有95%的把握认为“男学生和女学生喜欢古典音乐的程度有差异”;(2)从以上被调查的学生中以性别为依据采用分层抽样的方式抽取10名学生,再从这10名学生中随机抽取5名学生去某古典音乐会的现场观看演出,求正好有X个男生去观看演出的分布列及期望.23. (5分) (2017高一下·宿州期末) 苏州市一木地板厂生产A、B、C三类木地板,每类木地板均有环保型和普通两种型号,某月的产量如下表(单位:片):类型木地板A木地板B木地板C环保型150200Z普通型250400600按分层抽样的方法在这个月生产的木地板中抽取50片,其中A类木地板10片.(1)求Z的值;(2)用随机抽样的方法从B类环保木地板抽取8片,作为一个样本,经检测它们的得分如下:9.4、8.6、9.2、9.6、8.7、9.3、9.0、8.2,从中任取一个数,求该数与样本平均数之差的绝对不超过0.5的概率.参考答案一、单选题 (共15题;共30分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、11-1、12-1、13-1、14-1、15-1、二、填空题 (共5题;共6分)16-1、17-1、18-1、19-1、20-1、三、解答题 (共3题;共15分)21-1、22-1、22-2、23-1、23-2、。
人教A版高中数学必修3第2章 2.1.1 简单随机抽样
随机数表法的方案设计
现有 120 台机器,请用随机数表法抽取 10 台机器,写出抽样过程. 【 精 彩 点 拨 】 已 知 N = 120 , n = 10 , 用 随 机 数 表 法 抽 样 时 编 号 000,001,002,…,119,抽取 10 个编号(都是三位数),对应的机器组成样本. 【尝试解答】 第一步,先将 120 台机器编号,可以编为 000,001,002,…, 119; 第二步,在随机数表中任选一个数作为开始,任选一个方向作为读数方向, 例如选出第 9 行第 7 列的数 3,向右读;
抽签法的方案设计
要从某汽车厂生产的 30 辆汽车中随机抽取 3 辆进行测试,请选择合
适的抽样方法,并写出抽样过程. 【精彩点拨】 已知 N=30,n=3,抽签法抽样时编号 1,2,…,30,抽取
3 个编号,对应的汽车组成样本. 【尝试解答】 应使用抽签法,步骤如下: ①将 30 辆汽车编号,号码是 1,2,3,…,30; ②将 1~30 这 30 个编号写在大小、形状都相同的号签上; ③将写好的号签放入一个不透明的容器中,并搅拌均匀; ④从容器中每次抽取一个号签,连续抽取 3 次,并记录上面的编号; ⑤所得号码对应的 3 辆汽车就是要抽取的对象.
1.在简单随机抽样中,某一个个体被抽中的可能性( ) A.与第几次抽样有关,第一次抽中的可能性要大些 B.与第几次抽样无关,每次抽中的可能性都相等 C.与第几次抽样有关,最后一次抽中的可能性要大些 D.每个个体被抽中的可能性无法确定 【解析】 在简单随机抽样中,每一个个体被抽中的可能性都相等,与第
②随机数表法的步骤如下: (ⅰ) _编__号___. 将各个个体编号. (ⅱ) _选__定__初__始__值__(_数__)__. 为了保证所选数字的随机性,在查看随机数表前就 指出开始数字的横、纵位置. (ⅲ) __选__号__. 从选定的数字开始按照一定的方向读下去,得到的号码若不在 编号中或已被选用,则跳过,直到选满 n 个为止. (ⅳ) _确__定__样__本__. 按步骤③选出的号码从总体中找出与其对应的个体,组成 样本.
高中数学 第二章 统计 2.1.3分层抽样教案 新人教A版必修3(2021年整理)
重庆市高中数学第二章统计2.1.3分层抽样教案新人教A版必修3 编辑整理:尊敬的读者朋友们:这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(重庆市高中数学第二章统计2.1.3分层抽样教案新人教A版必修3)的内容能够给您的工作和学习带来便利。
同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。
本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为重庆市高中数学第二章统计2.1.3分层抽样教案新人教A版必修3的全部内容。
2。
1.3 分层抽样整体设计教学分析教材从“了解某地区中小学生的近视情况及其形成原因”的探究中引入的概念.在探究过程中,应该引导学生体会:调查者是利用事先掌握的各种信息对总体进行分层,这可以保证每一层一定有个体被抽到,从而使得样本具有更好的代表性.为了达到此目的,教材利用右栏问题“你认为哪些因素可能影响到学生的视力?设计抽样方法时,需要考虑这些因素吗?”来引导学生思考,在教学中要充分注意这一点.教材在探究初中和小学的抽样个数时,在右栏提出问题“想一想,为什么要这样取各个学段的个体数?”用意是向学生强调:含有个体多的层,在样本中的代表也应该多,即样本在该层的个体数也应该多.这样的样本才具有更好的代表性.三维目标1.理解分层抽样的概念,掌握其实施步骤,培养学生发现问题和解决问题的能力;2.掌握分层抽样与简单随机抽样和系统抽样的区别与联系,提高学生的总结和归纳能力,让学生领会到客观世界的普遍联系性.重点难点教学重点:分层抽样的概念及其步骤.教学难点:确定各层的入样个体数目,以及根据实际情况选择正确的抽样方法.课时安排1课时教学过程导入新课思路1中国共产党第十七次代表大会的代表名额原则上是按各选举单位的党组织数、党员人数进行分配的,并适当考虑前几次代表大会代表名额数等因素.按照这一分配办法,各选举单位的代表名额,比十六大时都有增加.另外,按惯例,中央将确定一部分已经退出领导岗位的老党员作为特邀代表出席大会.这种产生代表的方法是简单随机抽样还是系统抽样?教师点出课题:分层抽样.思路2我们已经学习了两种抽样方法:简单随机抽样和系统抽样,本节课我们学习分层抽样.推进新课新知探究提出问题(1)假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小学的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查,你认为应当怎样抽取样本?(2)想一想为什么这样取各个学段的个体数?(3)请归纳分层抽样的定义。
人教A版高中数学必修3《二章统计2.1随机抽样2.3分层抽样》优质课教案
第二章统计2.1.3 分层抽样(第 1 课时)教学设计★教学目标知识与技能:正确理解分层抽样的概念,掌握分层抽样的一般步骤;过程与方法:通过对现实生活中实际问题进行分层抽样,感知应用数学知识解决问题的方法;情感态度与价值观:通过对统计学知识的研究,感知数学知识中“估计与精确性”的矛盾统一,培养学生的辩证唯物主义世界观与价值观★教学重难点重点:正确理解分层抽样的定义,灵活应用分层抽样抽取样本难点:利用分层抽样抽取样本时,确定各层的入样个体数目及相关的计算★教学过程一、复习回顾:【教师】1、什么是简单随机抽样?2、什么是系统抽样?问题:调查我校高二学生的平均身高,如何进行抽样?【学生】让学生回忆系统抽样的内容回答问题,并过度到本节课的内容.二、创设情境假设某地区有高中生2 400人,初中生10 900人,小学生11 000人,此地教育部门为了了解本地区中小的近视情况及其形成原因,要从本地区的小学生中抽取1%的学生进行调查。
(1) 你认为应当怎样抽取样本?(2) 为什么这样取各个学段的个体数?(3) 请归纳分层抽样的定义.(4) 其适用于什么样的总体?设计意图:通过创设问题情境,激发学生的兴趣三、新课讲解结果展示⑴分别利用系统抽样在高中生中抽取2 400 X 1%=24人,在初中生中抽取10 900 X 1%=109人,在小学生中抽取11 000 X 1%=110人.这种抽样方法称为分层抽样.(2) 含有个体多的层,在样本中的代表也应该多,即样本从该层中抽取的个体数也应该多.这样的样本才有更好的代表性.(3) 一般地,在抽样时,将总体分成互不交叉的层,然后按照一定的比例,从各层独立地抽取一定数量的个体,将各层取出的个体合在一起作为样本,这种抽样的方法叫分层抽样.(板书)(4) 当总体个体差异明显时,采用分层抽样.注意:分层抽样为保证每个个体等可能入样,需遵循在各层中进行简单随机抽样.四、合作探究设计意图:分层抽样利用了调查者对调查对象实现掌握的各种信息,考虑了保持样本结构与总体结构的一致性,从而使样本更具有代表性,在实际调查中被广泛应用•探究1 一个单位有职工500人,其中不到35岁的有125人,35岁至49 岁的有280人,50岁以上的有95人,为了了解这个单位职工与身体状况有关的某项指标,要从中抽取100名职工作为样本,职工年龄与这项指标有关,应该怎样抽取?分析:由于职工年龄与这项指标有关,所以应选取分层抽样来抽取样本•解:用分层抽样来抽取样本,步骤是:(1) 分层:按年龄将150名职工分成三层:不到35岁的职工;35岁至49岁的职工;50岁以上的职工.1⑵确定每层抽取个体的个数.抽样比为 -,51在不到35岁的职工中抽125X —=25人;在35岁至49岁的职工中抽2805X 1 =56;在50岁以上的职工中抽95X 1 =19人.5 5(3) 在各层分别按抽签法或随机数表法抽取样本.(4) 综合每层抽样,组成样本.【教师】分层抽样的操作步骤是怎样的?【学生】分层抽样的操作步骤:第一步,将总体分成互不交叉的层•第二步,计算样本容量与总体的个体数之比(抽样比),按比例确定各层抽取的个体数.第三步,用简单随机抽样或系统抽样在各层中抽取相应数量的个体•第四步,将各层抽取的个体合在一起,就得到所取样本•思考:在分层抽样中,若总体的个体数为N,样本容量为n,第i层个体数为k,则在第i层应抽取的个体数如何计算? - kN【教师】说明:(1)分层需遵循不重复、不遗漏的原则.(2)抽取比例由每层个体占总体的比例确定.(3)各层抽样按简单随机抽样进行.思考:样本容量与总体的个体数之比是分层抽样的比例常数,按这个比例可以确定各层应抽取的个体数,如果各层应抽取的个体数不都是整数该如何处理?调节样本容量,剔除个体.探究2某单位有老年人28人,中年人54人,青年人81人,为了调查他们的身体状况,从他们中抽取容量为36的样本,最适合抽取样本的方法是()A.简单随机抽样B.系统抽样C.分层抽样D.先从老年人中剔除1人,再用分层抽样分析:总人数为28+54+8仁163样本容量为36,由于总体由差异明显的三部分组成,考虑用分层抽样.若按36 : 163取样,无法得到整解,故考虑先剔除1人,抽取比例变为36:162=2: 9,则中年人取12人,青年人取18人,先从老年人中剔除1人,老年人取6人,组成36的样本。
高中数学第二章统计2.1随机抽样2.1.3分层抽样课件新人
考纲定位
重难突破
1.理解分层抽样的定义及其步骤. 2.掌握分层抽样的适用条件,能利
用分层抽样抽取样本.
重点:理解分层抽样的定义及其步 骤. 难点:分层抽样的适用条件,以及
利用分层抽样抽取样本.
01 课前 自主梳理 02 课堂 合作探究 03 课后 巩固提升
课时作业
[自主梳理] 一、分层抽样的概念 在抽样时,将总体分成 互不交叉 的层,然后按照 一定比例 ,从各 层 独立地 抽取一定数量的个体,将各层取出的个体合在一起作为样 本,这种抽样方法是一种分层抽样.
36 n6,n3,n2,所以 n 应是 6 的倍数, 所以 n=6 或 12 或 18 或 36. 当样本容量为 n+1 时,总体中先剔除 1 人时还有 35 人,系统抽样间隔
为n3+51∈N+所以 n 只能是 6. [答案] 6
[错因与防范] 由3n6,n6,n3,n2∈N+求 n 时,n 的值有遗漏;n3+51∈N +易错写成n3+61∈N+.
3.有一批产品,其中一等品 10 件,二等品 25 件,次品 5 件.用分层
抽样从这批产品中抽出 8 件进行质量分析,则抽取二等品的件数应该为
________. 解析:总体容量 N=10+25+5=40,样本容量 n=8,故二等品被抽取
的个数,480×25=5. 答案:5
探究一 分层抽样的概念 [典例 1] 某企业共有 3 200 名职工,其中青、中、老年职工的比例为 3∶ 5∶2.若从所有职工中抽取一个容量为 400 的样本,则采用哪种抽样方法 更合理?青、中、老年职工应分别抽取多少人?每人被抽到的可能性相 同吗?
样本容量 为获取各层入样数目,需先正确计算出抽样比 k=总体容量,若 k 与某 层个体数的积不是整数时,可先将该层等可能性剔除多余个体.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
重庆市人教新课标A版高中数学必修3 第二章统计 2.1随机抽样 2.1.3分层抽样同
步测试
姓名:________ 班级:________ 成绩:________
一、单选题 (共15题;共30分)
1. (2分) (2016高一下·永年期末) 某工厂生产A、B、C三种不同型号的产品,其数量之比依次是3:4:7,现在用分层抽样的方法抽出样本容量为n的样本,样本中A型号产品有15件,那么n等于()
A . 50
B . 60
C . 70
D . 80
2. (2分) (2019高二上·双鸭山期末) 某高中有学生1 000人,其中一、二、三年级的人数比为4∶3∶1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为()
A . 100
B . 40
C . 75
D . 25
3. (2分) (2018高二上·宜昌期末) 某中学有学生300人,其中一年级120人,二,三年级各90人,现要利用抽样方法取10人参加某项调查,考虑选用简单随机抽样、分层抽样和系统抽样三种方案,使用简单随机抽样和分层抽样时,将学生按一,二,三年级依次统一编号为1,2,…300;使用系统抽样时,将学生统一编号为1,2,…300,并将整个编号依次分为10段.如果抽得的号码有下列四种情况:
①7,37,67,97,127,157,187,217,247,277;
②5,9,100,107,121,180,195,221,265,299;
③11,41,71,101,131,161,191,221,251,281;
④31,61,91,121,151,181,211,241,271,300
关于上述样本的下列结论中,正确的是()
A . ①③都可能为分层抽样
B . ②④都不能为分层抽样
C . ①④都可能为系统抽样
D . ②③都不能为系统抽样
4. (2分)(2020·达县模拟) 在名运动员和名教练员中用分层抽样的方法共抽取人参加新闻发布会,若抽取的人中教练员只有人,则()
A .
B .
C .
D .
5. (2分)要完成下列两项调查:①从某社区125户高收入家庭、200户中等收入家庭、95户低收入家庭中选出100户,调查社会购买能力的某项指标;② 从某中学的5名艺术特长生中选出3名调查学习负担情况.宜采用的方法依次为()
A . ①简单随机抽样调查,②系统抽样
B . ①分层抽样,②简单随机抽样
C . ①系统抽样,②分层抽样
D . ①② 都用分层抽样
6. (2分)(2017·绵阳模拟) 某校共有在职教师200人,其中高级教师20人,中级教师100人,初级教师80人,现采用分层抽样抽取容量为50的样本进行职称改革调研,则抽取的初级教师的人数为()
A . 25
B . 20
C . 12
D . 5
7. (2分)(2013·湖南理) 某学校有男、女学生各500名,为了解男、女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()
A . 抽签法
B . 随机数法
C . 系统抽样法
D . 分层抽样法
8. (2分)某学校高一、高二、高三年级的人数依次是750人,x人,500人,先要用分层抽样的方法从这些学生抽取一个容量为80的样本,其中高三年级应抽取的人数为20人,则x的值为()
A . 650
B . 700
C . 750
D . 800
9. (2分) (2018高二下·晋江期末) 某单位有职工160人,其中业务员有104人,管理人员32人,后勤服务人员24人,现用分层抽样法从中抽取一容量为20的样本,则抽取管理人员()
A . 3人
B . 4人
C . 7人
D . 12人
10. (2分) (2018高一下·抚顺期末) 某班有男生30人,女生20人,按分层抽样方法从班级中选出5人负
责校园开放日的接待工作.现从这5人中随机选取2人,至少有1名男生的概率是()
A .
B .
C .
D .
11. (2分) (2016高二上·秀山期中) 某班50名学生中有女生20名,按男女比例用分层抽样的方法,从全班学生中抽取部分学生进行调查,已知抽到的女生有4名,则本次调查抽取的人数是()
A . 8
B . 10
C . 12
D . 15
12. (2分) (2018高一下·中山期末) 在一次马拉松比赛中,35名运动员的成绩(单位:分钟)如图所示:
若将运动员按成绩好到差编为1-35号,再用系统抽样方法从中抽取7人,则其中成绩在区间上的运动员人数是()
A . 3
B . 4
C . 5
D . 6
13. (2分)某田径队有男运动员42人,女运动员30人,用分层抽样的方法从全体运动员中抽取一个容量为n的样本.若抽到的女运动员有5人,则n的值为()
A . 5
B . 7
C . 12
D . 18
14. (2分)某单位有职工750人,其中青年职工350人,中年职工250人,老年职工150人,为了解该单位职工的心理状况,用分层抽样的方法从中抽取样本,若样本中的青年职工为7人,则样本容量为()
A . 7
B . 15
C . 35
D . 25
15. (2分)某中学高中学生有900名.为了考察他们的体重状况,打算抽取容量为45的一个样本.已知高一有400名学生,高二有300名学生,高三有200名学生.若采取分层抽样的办法抽取,则高一学生需要抽取的学生个数为()
A . 20人
B . 15人
C . 10人
D . 5人
二、填空题 (共5题;共6分)
16. (1分) (2015高二上·滨州期末) 某公司在甲、乙、丙、丁四个地区分别有150个、120个、180个、150个销售点,公司为了调查产品销售的情况,需从这600个销售点中,抽取一个容量为100的样本,则应从丙地区中抽取________个销售点.
17. (1分)为了解某市甲、乙、丙三所学校高三数学模拟考试成绩,采取分层抽样方法,从甲校1400份试卷、乙校640份试卷、丙校800份试卷中进行抽样调研.若从丙校800份试卷中抽取了40份试卷,则这次高三共抽查的试卷份数为________
18. (1分)一个单位有职工160人,其中业务员104人,管理员32人,后勤服务员24人,要从中选取一个容量为20的样本,应用分层抽样法,则应抽取业务员________名.
19. (2分) (2017高三下·河北开学考) 某校共有高一、高二、高三学生共有1290人,其中高一480人,高二比高三多30人.为了解该校学生健康状况,现采用分层抽样方法进行调查,在抽取的样本中有高一学生96人,则该样本中的高三学生人数为________.
20. (1分) (2016高二下·姜堰期中) 某校高一、高二和高三年级分别有学生1000名、800名和700名,现用分层抽样的方法从中抽取容量为100的样本,则抽出的高二年级的学生人数为________.
三、解答题 (共3题;共15分)
21. (5分) (2016高一下·鞍山期中) 汽车厂生产A,B,C三类轿车,每类轿车均有舒适型和标准型两种型号,某月的产量如下表(单位:辆);
按类用分层抽样的方法在这个月生产的轿车中抽取50辆,其中有A类轿车10辆.
(1)求z的值;
(2)用分层抽样的方法在C类轿车中抽取一个容量为5的样本,将该样本看成一个总体,从中任取2辆,求至少有1辆舒适型轿车的概率;
(3)用随机抽样的方法从B类舒适型轿车中抽取8辆,经检测它们的得分如下:9.4,8.6,9.2,9.6,8.7,9.3,9.0,8.2.把这8辆轿车的得分看成一个总体,从中任取一个数,求该数与样本平均数之差的绝对值不超过0.5的概率.
22. (5分) (2017高二下·深圳月考) 近年空气质量逐步恶化,雾霾天气现象增多,大气污染危害加重.大气污染可引起心悸、呼吸困难等心肺疾病.为了解某市心肺疾病是否与性别有关,在某医院随机对入院的50人进
行问卷调查,得到了如下的列联表:
患心肺疾病不患心肺疾病合计
男20525
女101525
合计302050(Ⅰ)用分层抽样的方法在患心肺疾病的人群中抽6人,其中男性抽多少人?
(Ⅱ)在上述抽取的6人中选2人,求恰好有1名女性的概率;
(Ⅲ)为了研究心肺疾病是否与性别有关,请计算出统计量,你有多大把握认为心肺疾病与性别有关?(结果保留三个有效数字)
下面的临界值表供参考:
0.150.100.050.0250.0100.0050.001
k 2.072 2.706 3.841 5.024 6.6357.87910.828参考公式:,其中.
23. (5分)某企业共有3 200名职工,其中青、中、老年职工的比例为3:5:2.若从所有职工中抽取一个容量为400的样本,则采用哪种抽样方法更合理?青、中、老年职工应分别抽取多少人?每人被抽取的可能性相同吗?
参考答案一、单选题 (共15题;共30分)
1-1、
2-1、
3-1、
4-1、
5-1、
6-1、
7-1、
8-1、
9-1、
10-1、
11-1、
12-1、
13-1、
14-1、
15-1、
二、填空题 (共5题;共6分) 16-1、
17-1、
18-1、
19-1、
20-1、
三、解答题 (共3题;共15分) 21-1、
21-2、
21-3、
22-1、
23-1、
第11 页共11 页。