北师大版七年级数学下册课件:第三章 变量之间的关系 3 用图象表示的变量间关系

合集下载

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

七年级数学下册 第3章 变量之间的关系 3.3 用图像表示的变量间关系课件 (新版)北师大版

例1 新成药业集团研究了一种新药,在试验药效时发现,如果儿童按规 定剂量服用,那么2时时血液中的含药量最高,接着逐步衰减,每毫升血液 中的含药量y(微克)随时间x(时)的变化情况如图3-3-1所示,当儿童按规 定剂量服药后:
图3-3-1
(1)何时血液中的含药量最高?是多少微克? (2)A点表示什么意义? (3)每毫升血液中含药量为2微克以上时治疗疾病有效,那么这个有效时 间多长?
解析 (1)2时时血液中的含药量最高,为4微克. (2)A点表示体内的含药量衰减到0微克. (3)服药后达到2微克的时间是1时,衰减到2微克的时间是6时,因此有效 时间是5时.
知识点二 行程问题 “路程与时间”图象和“速度与时间”图象 (1)在路程与时间关系的图象中,通常用横轴表示时间,用纵轴表示路程, “水平线”表示停止. (2)在速度与时间关系的图象中,通常用横轴表示时间,用纵轴表示速度, “水平线”表示匀速运动. (3)在行程问题中,“速度与时间”图象和“路程与时间”图象是从两 个不同的角度描述行程问题中变量之间的关系,它们既有区别又有联 系.现将“速度与时间”图象和“路程与时间”图象各部分所表示的意 义作如下对比:
易错警示 由于不理解函数的意义,特别是不理解函数图象中平行于x 轴的线段表示“一段时间内离家的距离保持不变”,只能根据图象的形 状来选择行走的路线.
从图象中获取信息的直观想象 素养解读 直观想象是指借助几何直观和空间想象感知事物的形态与 变化,利用空间形式特别是图形,理解和解决数学问题的素养.主要包括: 借助空间认识事物的位置关系、形态变化与运动规律;利用图形描述、 分析数学问题;建立形与数的联系,构建数学问题的直观模型,探索解决 问题的思路. 直观想象是发现和提出问题、分析和解决问题的重要手段,是探索和形 成论证思路、进行数学推理、构建抽象结构的思维基础. 在直观想象核心素养的形成过程中,学生能提升数形综合的能力,发展 几何直观和空间想象能力;增强运用几何直观和空间想象思考问题的意 识;形成数学直观,在具体的情境中感悟事物的本质.

(北师大版)七年级数学下册:第三章变量之间的关系3.3用图像表示的变量的关系第2课时 折线型图象备课素材

(北师大版)七年级数学下册:第三章变量之间的关系3.3用图像表示的变量的关系第2课时 折线型图象备课素材

素材一新课导入设计情景导入置疑导入归纳导入复习导入类比导入悬念激趣情景导入图3-3-13抱犊崮,海拔584米,与龟龙湖交融一体,山水相连,壮观巍峨,为天下第一崮.恰值清明假期,小强一家前去踏春,兴之所至,小强用学过的变量的知识绘了一幅图(如图3-3-13)来表示他们当天的行程.其中横轴表示当时的时刻t(时),纵轴表示他们与家的距离s(千米).图3-3-14设疑:同学们,你能想象出他们一天的情境吗?说明:引导学生在欣赏抱犊崮秀丽的美景中,自然引入有趣的变量知识,既培养了学生从图象中获取信息的能力,又锻炼了学生的语言表达能力.建议:学生欣赏抱犊崮的美景,简单了解抱犊崮的有关知识.然后观察小强绘制的图象,从中获取两个变量之间关系的信息,叙述一天情境时,学生还是存在困惑,教师不要急着提示,进而指出这就是本节课要继续学习的内容——用图象表示的变量间关系.复习导入图3-3-15问题1:我们已经学习了哪几种表示变量之间关系的方法?问题2:某种西瓜子每千克2元,小明购买西瓜子的总价y元与购买的数量x千克之间有什么关系?(1)用表格的形式表示总价y与数量x的关系:(2)试写出y与x的关系式__y=2x__;(3)在下面的图象中能够正确表示总价y与数量x关系的图象是(C)图3-3-16说明:让学生通过表格、关系式、图象三种方式来表示西瓜子的总价与购买的数量之间的关系,旨在复习三种表示变量间关系的方法,并初步感受三种方法各自的优越性,为本节课的学习做好铺垫.建议:三种表示变量之间关系的方法可让学生快速回答,然后学生独立完成问题2中的三个题目,教师出示答案,及时纠正.教材母题挖掘74页随堂练习第2题一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶.过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?图3-3-17【模型建立】分析变量图形时要明确自变量和因变量,更要清楚每一个点对应的变量和它表示的实际意义以及整个图象变化的趋势,其中比较特殊的是当图象与横轴平行时,说明在对应的自变量的范围内因变量不发生变化.【变式变形】1.如图3-3-18,在直径为AB 的半圆O 上有一动点P 从点A 出发,按顺时针方向绕半圆匀速运动到点B ,然后再以相同的速度沿着直径回到点A 停止,线段OP 的长度d 与运动时间t 之间的函数关系用图象描述大致是(A )图3-3-18图3-3-19.如图3-3-19,爸爸从家(点O)出发,沿着扇形AOB 上OA →AB ︵→BO 的路径去匀速散步.设爸爸距家(点O)的距离为s ,散步的时间为t ,则下列各图中,能大致刻画s 与t 之间函数关系的图象是(C )图3-3-20图3-3-21.万州某运输公司的一艘轮船在长江上航行,往返于万州、朝天门两地.假设轮船在静水中的速度不变,长江的水流速度不变,该轮船从万州出发,逆水航行到朝天门,停留一段时间(卸货、装货、加燃料等)又顺水航行返回万州,若该轮船从万州出发后所用的时间为x(时),轮船距万州的距离为y(千米),则下列各图中,能反映y 与x 之间函数关系的大致图象是(C )图3-3-214.2013年“中国好声音”全国巡演重庆站在奥体中心举行.童童从家出发前往观看,先匀速步行至轻轨车站,等了一会儿,童童搭乘轻轨至奥体中心观看演出,演出结束后,童童搭乘邻居刘叔叔的车顺利到家.其中x表示童童从家出发后所用的时间,y表示童童离家的距离.下图能反映y与x的函数关系式的大致图象是(A)图3-3-22图3-3-235.甲、乙两人在一次百米赛跑中,路程s(米)与赛跑时间t(秒)的关系如图3-3-23所示,则下列说法正确的是(B)A.甲、乙两人的速度相同B.甲先到达终点C.乙用的时间短D.乙比甲跑的路程多6.小红的爷爷每天坚持体育锻炼,某天他慢步行走到离家较远的公园,打了一会儿太极拳,然后沿原路跑步到家里,下面能够反映当天小红爷爷离家的距离y(米)与时间x(分)之间的关系的大致图象是(C)图3-3-24图3-3-257.某城市为了节约用水,采用分段收费标准,若某用户居民每月应交水费y(元)与用水量x(吨)之间的关系如图3-3-25所示,根据图象回答:(1)该市自来水收费时,每户用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收费多少元?(2)若某用户居民某月用水3.5吨,应交水费多少元?若某月交水费17元,该用户用水多少吨?解:(1)由图象可知:当x =5时,y =10,所以用水不足5吨时,每吨交费105=2(元);当x =8时,y =20.5,故超过5吨部分每吨交水费20.5-108-5=3.5(元).(2)因为x =3.5<5,所以y =3.5×2=7(元);若交17元水费,则用水5+17-103.5=7(吨).考情考向分析利用图象分析、体现变量变化的趋势结合图象中每个点对应的自变量和因变量,可以得到变量变化的趋势,一般是随着自变量的变大(图象从左向右),图象对应的因变量的值的变化情况(上升为变大,下降为变小).如课本第79页复习题第11题.例1 某人匀速跑步到公园,在公园里某处停留了一段时间,再沿原路匀速步行回家,此人离家的距离y 与时间x 的关系的大致图象是(B )图3-3-26例2 图3-3-27中所反映的过程是:张强从家跑步去体图3-3-27育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家,其中x 表示时间,y 表示张强离家的距离.根据图象提供的信息,以下四个说法错误的是(C )A .体育场离张强家2.5千米B .张强在体育场锻炼了15分钟C .体育场离早餐店4千米D .张强从早餐店回家的平均速度是3千米/时 利用图象给出的信息计算用图象表示变量之间的关系时,每一个点都有一定的实际意义,过图象上一点向横轴作垂线,垂足对应的数就是自变量,向纵轴作垂线,垂足对应的数就是对应的因变量.图3-3-28例王大爷带了若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价出售一些后,又降价出售,售出土豆的千克数x与他手中持有的钱数y(含备用零钱)的关系如图3-3-28所示.根据图象回答下列问题:(1)王大爷自带的零钱是多少?(2)降价前他每千克土豆出售的价格是多少?(3)降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,问他一共带了多少千克土豆?解:(1)根据图象可知王大爷自带的零钱是5元.(2)降价前,每千克土豆的价格是(20-5)÷30=0.5(元).(3)降价前,他一共卖了30千克土豆,手中的钱有20元;降价后,他卖完剩余的土豆,手中的钱有26元,降价后他收入了26-20=6(元),按每千克0.4元卖出,他卖出了6÷0.4=15(千克)土豆,他一共带的土豆有30+15=45(千克).素材四教材习题答案P74随堂练习1.柿子熟了,从树上落下来,下面的哪一幅图可以大致刻画出柿子下落过程中(即落地前)的速度变化情况?解:(3).2.一辆公共汽车从车站开出,加速行驶一段后开始匀速行驶. 过了一段时间,汽车到达下一个车站.乘客上、下车后汽车开始加速,一段时间后又开始匀速行驶.下面的哪一幅图可以近似地刻画出汽车在这段时间内的速度变化情况?解:(2).P74习题3.41.根据图3-7填写下面的表格:解:2.亮亮今天发烧了,早晨他烧得很厉害,吃过药后感觉好多了,中午时亮亮的体温基本正常.但是下午他的体温又开始上升,直到夜里亮亮才感觉身上不那么发烫了.下面哪一幅图能较好地刻画出亮亮今天体温的变化情况?解:(3).3.下面的图表示小明放学回家途中骑车速度与时间的关系,你能想象出他回家路上的情境吗?解:小亮刚出校门时加速行驶一段后改成匀速行驶,在离家不远处减速行驶,到家后停下.4.小明站在离家不远的公共汽车站等车.图中哪一个图能最好地刻画等车这段时间离家距离与时间的关系?解:(3).图书增值练习专题一曲线型图象1.温度的变化是人们经常谈论的话题.请你根据图象,讨论某地某天温度变化的情况如图所示:(1)上午10时的温度是度,14时的温度是度;(2)这一天最高温度是度,是在时达到的;最低温度是度,是在时达到的;(3)这一天从最低温度到最高温度经过了小时;(4)温度上升的时间范围为,温度下降的时间范围为;(5)你预测次日凌晨1时的温度是.2.如图,水以恒速(即单位时间内注入水的体积相同)注入下面四种底面积相同的容器中.(1)请分别找出与各容器对应的水的高度h和时间t的变化关系的图象,用直线段连接起来;(2)当容器中的水恰好达到一半高度时,请在关系图的t轴上标出此时t值对应点T的位置.专题二折线型图象1.如图,表现了一辆汽车在行驶途中的速度随时间的变化情况.(1)A、B两点分别表示汽车是什么状态?(2)请你分段描写汽车在第0分钟到第19分钟的行驶状况.(3)司机休息5分钟后继续上路,加速1分钟后开始以60 km/h的速度匀速行驶,5分钟后减速,用了2分钟汽车停止,请在原图上画出这段时间内汽车的速度与时间的关系图.【知识要点】图象法:用图象来表示两个变量之间的关系的方法叫做图象法.在用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,图象上每个点都表示自变量和因变量之间的相互关系.【温馨提示】图象法能直观、形象地描述两个变量之间的关系,但只是反映两个变量之间的关系的一部分,而不是整体,且由图象确定的数值往往是近似的.【方法技巧】1.借助图象,过某点分别向横轴、纵轴作垂线可以知道自变量取某个值时,因变量取什么值.1.借助图象可判断因变量的变化趋势:图象自左向右是上升的,则说明因变量随着自变量的增大而增大,图象自左向右是上升下降的,则说明因变量随着自变量的增大而增大减小,图象自左向右是与横轴平行的,则说明因变量在自变量的增大的过程中保持不变.答案:1.(1)4 10(2)10 14 -2 4(3)12(4)4 h~14 h 0 h~4 h和14 h~24 h(5)1℃2.解:(1)对应关系连接如下:(2)当容器中的水恰好达到一半高度时,关系图上T的位置如上图.3.解:(1)A点表示匀速运动,B点表示停止;(2)0到3分钟加速,3到12分钟匀速,速度为90 km/h,12到15分钟减速,减到约每小时20千米,后再匀速到18分钟开始减速,19分钟运动停止.(3)司机休息5分钟后的运动情况如图所示.素材六数学素养提升情景中图象信息题将实际生活中蕴涵的变量关系,用图形的方式呈现出来,图文并茂,富有生活气息,不仅提高我们从图形中获取信息的能力,而且是数形结合思想应用的重要体现,请看举例..例1商店里把塑料凳整齐地叠放在一起,据图1的信息,解答下列问题(1)当有10张塑料凳整齐地叠放在一起时的高度是多少?(2)求叠放塑料凳的个数x(个)与叠放的高度y(cm)之间的变量关系?图1分析:本题是一道图形信息试题,从图形观察可知:三个塑料凳的叠放在一起的高度是29cm,此时的29cm 包括凳子腿的高度和三个凳子面的厚度;五个塑料凳叠放在一起的高度为35cm,此时的35cm包括凳子腿的高度和5个塑料凳面的厚度.由此可知两个凳子面的厚度为35-29=6cm.所以一个凳子面的厚度为3cm,三个凳子叠放在一起高度减去三个凳子面的厚度,即可29-3×3=20为凳子腿的高度.这样可以求解(1),(2)两问.解:(1)观察图形,可得一个凳子面的厚度为3cm,凳子腿的高度为20cm.所以叠放10个凳子的高度为10×3+20=50cm;(2)y与x之间的关系为y=3x+20.评注:解决本题需要仔细观察图形中的数据信息以及塑料凳叠放的特征,根据这些特征确定一个凳子面的厚度以及凳子腿的高度 .例2请根据图2中给出的信息,解答下列问题:图2(1)放入一个小球量筒中水面升高 cm;(2)求放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的关系式;(3)量筒中至少放入几个小球时有水溢出?分析:本题是图形信息问题,解决问题需要从图形中正确得到解题信息,从前两个量筒可以观察到,当放入三个球时,水面增加6cm,这样可得到放入一个球水上升的高度,由此可得到放x个球时,水面高度y与x之间的关系式.解: (1)(36-30)÷3=2; 即放入一个小球量筒中水面升高2cm.(2) 放入小球后量筒中水面的高度y(cm)与小球个数x(个)之间的一次函数关系式y=30+2x(3) 当y=49时,30+2x=49,x=9.5, 所以至少放入10个小球时有水溢出.评注:解决图形信息问题,其关键是认真观察图形中的信息,从图形中发现存在的数量关系.。

北师大七年级数学下册教学课件3.3用图象表示的变量间关系——温度的变化

北师大七年级数学下册教学课件3.3用图象表示的变量间关系——温度的变化
(6)你还知道哪些关于骆驼的趣事?与同伴进行交流.
42 温度/℃
40
A
38
36
34
32
30 0 4 8 12 16 20 24 28 32 36 40 44 48
(图中25时表示次日凌晨1时)时间/ 时
四、自学互研
活动1 自主探究1
阅读教材P69-70,完成下面的问题: 什么是图象法表示变量间的关系? 答:利用图象表示两个变量之间的关系,叫做图象法,从图象上获取变量间 的关系非常直观.
活动2 合作探究1 范例1.如图是北京市某一天的气温T(℃)随时间t(h)变化的图象,那么这天 ( C)
A.最高气温是10℃,最低气温是0℃ B.最高气温是6℃,最低气温是-2℃ C.从5时到12时气温在逐渐升高 D.从12时到24时气温在逐渐升高
仿例1.如图所示是一日内一个水池的水深随时间变化的图象.
练习
2.右图表示 某市2016年6月份某一天的气温随时 间变化的情况,请观察此图回答下列问题: (1)这天的最高气温 是 38度 ;
(2)这天在 3至15时 范围内温度在上升;
温度/ C
38 34 30 26 22 18 14 10 6 2
036
(3)请你预测一下,次日凌晨1点的气温大约是多少度?
(图中25时表示次日凌晨1时)时间/时
(1)一天中,骆驼的体温的变化范围是什么?它的体温从最低上升到最高需 要多少时间?
35至40℃
12小时
(2)从16时到24时,骆驼的体温下降了多少? 3℃
(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在 下降? 上升:4至16时和28至40时
三、情境导入
活动1 旧知回顾 1.对于两个变量之间的关系,我们已经分别学习了_表__格__法__和_关__系__式__法__两 种表示方法. 2.观察下图,你能从中获取怎样的信息?

北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)

北师大版七年级数学下册第三章 变量之间的关系(考点讲解)(含解析)

第三章 变量之间的关系【学习目标】1.知道现实生活中存在变量和常量,变量在变化的过程中有其固有的范围(即变量的取值范围); 2.感受生活中存在的变量之间的依赖关系. 3.能读懂以不同方式呈现的变量之间的关系.4.能用适当的方式表示实际情境中变量之间的关系,并进行简单的预测. 【考点总结】要点一、变量、常量的概念在一个变化过程中,我们称数值发生变化的量为变量.数值始终不变的量叫做常量.特别说明:一般地,常量是不发生变化的量,变量是发生变化的量,这些都是针对某个变化过程而言的.例如,60s t =,速度60千米/时是常量,时间t 和里程s 为变量. t 是自变量,s 是因变量. 要点二、用表格表示变量间关系借助表格,我们可以表示因变量随自变量的变化而变化的情况.特别说明:表格可以清楚地列出一些自变量和因变量的对应值,这会对某些特定的数值带来一目了然的效果,例如火车的时刻表,平方表等. 要点三、用关系式表示变量间关系关系式是我们表示变量之间关系的另一种方法.利用关系式(如3y x =),我们可以根据任何一个自变量的值求出相应的因变量的值.特别说明:关系式能揭示出变量之间的内在联系,但较抽象,不是所有的变量之间都能列出关系式. 要点四、用图象表示变量间关系图象是我们表示变量之间关系的又一种方法,它的特点是非常直观.用图象表达两个变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.特别说明:图象法可以直观形象地反映变量的变化趋势,而且对于一些无法用关系式表达的变量,图象可以充当重要角色. 【例题讲解】类型一、常量、自变量与因变量例1、根据心理学家研究发现,学生对一个新概念的接受能力y 与提出概念所用的时间x (分钟)之间有如表所示的关系:(1)上表中反映的两个变量之间的关系,哪个是自变量?哪个是因变量?(2)根据表格中的数据,提出概念所用时间是多少分钟时,学生的接受能力最强?(3)学生对一个新概念的接受能力从什么时间开始逐渐减弱?【答案】(1)“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)13分钟;(3)从第13分钟以后开始逐渐减弱【分析】(1)根据表格中提供的数量的变化关系,得出答案;(2)根据表格中两个变量变化数据得出答案;(3)提供变化情况得出结论.【详解】解:(1)表格中反映的是:提出概念所用时间与对概念的接受能力这两个变量,其中“提出概念所用时间”是自变量,“对概念的接受能力”为因变量;(2)根据表格中的数据,提出概念所用时间是13分钟时,学生的接受能力最强达到59.9;(3)学生对一个新概念的接受能力从第13分钟以后开始逐渐减弱.【点睛】本题考查用表格表示变量之间的关系,理解自变量、因变量的意义以及变化关系是解决问题的关键.【训练】某公交车每月的支出费用为4000元,每月的乘车人数x(人)与每月利润(利润=收入费用﹣支出费用)y(元)的变化关系如表所示(每位乘客的公交票价是固定不变的).(1)在这个变化过程中,每月的乘车人数x与每月利润y分别是变量和变量;(2)观察表中数据可知,每月乘客量达到人以上时,该公交车才不会亏损;(3)当每月乘车人数为4000人时,每月利润为多少元?【答案】(1)每月的乘车人数,每月利润;(2)2000人;(3)4000元【分析】(1)根据函数的定义即可求解;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,即可求解;(3)有表中的数据推理即可求解.【详解】解:(1)在这个变化过程中,每月的乘车人数是自变量,每月利润是因变量;故答案为:每月的乘车人数,每月利润;(2)根据表格可得:当每月乘客量达到2000人以上时,该公交车才不会亏损,故答案为:2000;(3)有表中的数据可知,每月的乘车人数每增加500人,每月的利润可增加1000元,当每月的乘车人数为2000人时,利润为0元,故每月乘车人数为4000人时,每月的利润是(4000-2000)÷500×1000=4000元.【点睛】本题考查了根据表格与函数知识,正确读懂表格,理解表格体现变化趋势是解题关键.类型二、用表格表示变量间关系例2、一辆小汽车在告诉公路上从静止到起动10秒内的速度经测量如下表:(1)上表反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)如果用时间t表示时间,v表示速度,那么随着t的变化,v的变化趋势是什么?(3)当t每增加1秒,v的变化情况相同吗?在哪个时间段内,v增加的最快?(4)若高速公路上小汽车行驶速度的上限为120千米/小时,试估计大约还需几秒这辆小汽车的速度就将达到这个上限.【答案】(1)时间与速度;时间;速度;(2)0到3和4到10,v随着t的增大而增大,而3到4,v随着t的增大而减小;(3)不相同;第9秒时;(4)1秒.【分析】(1)根据表中的数据,即可得出两个变量以及自变量、因变量;(2)根据时间与速度之间的关系,即可求出v的变化趋势;(3)根据表中的数据可得出V的变化情况以及在哪1秒钟,V的增加最大;(4)根据小汽车行驶速度的上限为120千米/小时,再根据时间与速度的关系式即可得出答案.【详解】解:(1)上表反映了时间与速度之间的关系,时间是自变量,速度是因变量;(2)如果用t 表示时间,v 表示速度,那么随着t 的变化,v 的变化趋势是0到3和4到10,v 随着t 的增大而增大,而3到4,v 随着t 的增大而减小;(3)当t 每增加1秒,v 的变化情况不相同,在第9秒时,v 的增加最大; (4)由题意得:120千米/小时=12010003600⨯(米/秒),由33.328.9 4.4-=,且28.924.2 4.7 4.4-=>, 所以估计大约还需1秒.【点睛】本题主要考查函数的表示方法,常量与变量;关键是理解题意判断常量与变量,然后结合图表得到问题的答案即可.【训练】某路公交车每月有x 人次乘坐,每月的收入为y 元,每人次乘坐的票价相同,下面的表格是y 与x 的部分数据.x /人次500 1000 1500 2000 2500 3000 … y /元1000200040006000…(1)上表中反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量? (2)请将表格补充完整.(3)若该路公交车每月的支出费用为4000元,如果该路公交车每月的利润要达到10000元,则每月乘坐该路公交车要达到多少人次?(利润=收入-支出费用)【答案】(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量;(2)表格见解析;(3)7000人次. 【分析】(1)根据表格即可得出结论;(2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元,即可得出结论; (3)先求出每增加1人次乘坐,每月的收入就增加2元,然后求出总收入即可求出结论; 解:(1)反映了收入y 与人次x 两个变量之间的关系,其中x 是自变量,y 是因变量. (2)由表格可知:每增加500人次乘坐,每月的收入就增加1000元, 表格补充如下:÷=(元)(3)10005002()÷(人次)4000+100002=7000答:每月乘坐该路公交车要达到7000人次【点睛】此题考查的是变量与常量的应用,掌握实际问题中的等量关系是解决此题的关键.类型三、用关系式表示变量间关系例3.按如图方式摆放餐桌和椅子.用x来表示餐桌的张数,用y来表示可坐人数.①题中有几个变量?②你能写出两个变量之间的关系吗?【答案】①有2个变量;②能,函数关系式可以为y=4x+2.【解析】试题分析:①根据变量和常量的定义可得结果;②由图形可知,第一张餐桌上可以摆放6把椅子,进一步观察发现:多一张餐桌,多放4把椅子.x张餐桌共有6+4(x﹣1)=4x+2.试题解析:①观察图形:x=1时,y=6,x=2时,y=10;x=3时,y=14;…可见每增加一张桌子,便增加4个座位,因此x张餐桌共有6+4(x﹣1)=4x+2个座位.故可坐人数y=4x+2,故答案为:有2个变量;②能,由①分析可得:函数关系式可以为y=4x+2.【训练】已知,如图,在直角三角形ABC中,∠ABC=90°,AC=10,BC=6,AB=8.P是线段AC上的一个动点,当点P从点C向点A运动时,运动到点A停止,设PC=x,△ABP的面积为y.求y与x之间的关系式.【答案】y=﹣125x+24.【分析】过点B作BD⊥AC于D,则BD为AC边上的高.根据△ABC的面积不变即可求出BD;根据三角形的面积公式得出S△ABP=12AP•BD,代入数值,即可求出y与x之间的关系式.【详解】如图,过点B作BD⊥AC于D.∵S△ABC=12AC•BD=12AB•BC,∴BD=8624105 AB BCAC⋅⨯==;∵AC=10,PC=x,∴AP=AC﹣PC=10﹣x,∴S△ABP=12AP•BD=12×(10﹣x)×245=﹣125x+24,∴y与x之间的关系式为:y=﹣125x+24.【点睛】此题考查直角三角形的面积求法,列关系式的方法,能理解图形中三角形的面积求法得到高线BD的值是解题的关键.类型四、用图象表示变量间关系例4、巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?【答案】(1)t,s;(2)2,6;(3)小明距起点的距离为300米.【分析】解析(1)观察函数图象即可找出谁是自变量谁是因变(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题关键在于看懂图中数据【训练】如图是甲、乙两人同一地点出发后,路程随时间变化的图象.(1)此变化过程中, 是自变量, 是因变量;(2)甲的速度乙的速度(大于、等于、小于);(3)6时表示;(4)路程为150km,甲行驶了小时,乙行驶了小时;(5)9时甲在乙的(前面、后面、相同位置);(6)乙比甲先走了3小时,对吗?.【答案】(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 【解析】试题分析:(1)根据自变量与因变量的含义得到时间是自变量,路程是因变量;(2)甲走6小时行驶100千米,乙走3小时走100千米,则可得到他们的速度的大小;(3)6时两图象相交,说明他们相遇;(4)观察图形得到路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)观察图象得到t=9时,乙的图象在甲的上方,即乙行驶的路程远些;(6)观察图象得到甲先出发3小时后,乙才开始出发.试题解析:解:(1)函数图象反映路程随时间变化的图象,则t是自变量,s是因变量;(2)甲的速度是100÷6=503千米/小时,乙的速度是100÷3=1003千米/小时,所以甲的速度小于乙的速度;(3)6时表示他们相遇,即乙追赶上了甲;(4)路程为150千米,甲行驶9小时,乙行驶了7-3=4小时;(5)t=9时,乙的图象在甲的上方,即乙行驶的路程远些,所以9时甲在乙的后面;(6)不对,是乙比甲晚走了3小时.故答案为(1)t;s;(2)小于;(3)乙追赶上了甲;(4)9;4;(5)后面;(6)不对. 考点:函数的图象.【训练】根据图回答下列问题.(1)图中表示哪两个变量间的关系?(2)A、B两点代表了什么?(3)你能设计一个实际事例与图中表示的情况一致吗?【答案】(1)时间与价钱;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元【解析】试题分析:认真分析表中数据再结合身边的事例即可得到结果.(1)图中表示时间与价钱的关系;(2)A点表示250元,B点表示150元;(3)这可以表示某户人家在“五一”长假中的消费情况:5月1日花150元5月2日花100元5月3日花250元5月4日花200元5月5日花300元5月6日花150元5月7日花250元考点:本题考查的是函数的图象点评:解答本题的关键是读懂图象,得到图象的特征及规律,再根据这个规律解决问题.。

北师大版七年级下册第三章变量之间的关系知识点归纳与复习

北师大版七年级下册第三章变量之间的关系知识点归纳与复习

第三章 变量之间的关系 知识点归纳与复习知识点1 常量与变量1.小亮以每小时8千米的速度匀速行走时,所走路程s(千米)随时间t (小时)的增大而增大,则下列说法正确的是 ( ) A.8和s,t 都是变量 B.8和t 都是变量C. s 和t 都是变量D.8和s 都是变量2.在三角形ABC 中,它的底边是a,底边上的高是h,则三角形面积S=21ah.当a 为定长时,在此式中 ( )A. S,h 是变量,21,a 是常量 B. S,h,a 是变量,21是常量 C. a,h 是变量,21,S 是常量D.S 是变量,21a,h 是常量3.小亮帮母亲预算家庭月份电费开支情况,下表是小亮家4月初连续8天每天早上电表显示的读数: 表格中反映的变量是 ,自变量是 ,因变量是 .知识点2 用表格表示变量间的关系4.1-6个月的婴儿生长发育得非常快,出生体重为4000克的婴儿,他们的体重y (克)和月龄x (月)之间的关系如表所示,则6个月大的婴儿的体重为 ( )A. 7600克B. 7800克C. 8200克D. 8500克5.弹簧挂上物体后会伸长,测得一弹簧的长度y(cm)与所挂的物体的质量x(kg)之间有下面的关系,则下列说法中不正确的是 ( )A.x 与y 都是变量,且x 是自变量,y 是因变量B.所挂物体质量为4kg 时.弹簧长度为12cmC.弹簧不挂重物时的长度为0cmD.物体质量每增加1kg,弹簧长度增加0.5cm6.邓老师设计一个计算程序,输入和输出的数据如下表所示,那么当输入数据是正整数n 时,输出的数据是 .7. 下表是三发电器厂2017年上半年每个月的产量:(1)根据表格中的数据,你能否根据x 的变化,得到y 的变化趋势?(2)根据表格你知道哪几个月的月产量保持不变?哪几个月的月产量在匀速增长?哪个月的产量最高? (3)试求2017年上半年的平均月产量是多少?(结果保留整数)知识点3 用关系式表示的变量间关系8.如果一盒圆珠笔有12支,售价18元,用y(元)表示圆珠笔售价,x(支)表示圆珠笔的支数,那么y 与x 之间的关系应该是 ( )9.一个正方形的边长为3cm,它的各边边长减少xcm 厅,得到的新正方形的周长为ycm,则y 与x 之间的关系式是 ( ) A .y=12-4x B .y=4x-12 C .y=12-x D .以上都不对10..在某次试验中,测得两个变量m 和之间的4组对应数据如下表:则m 与v 之间的关系最接近于下列各关系式中的 ( )A. v=2m-2B. v=m 2-1 C. v=3m-3 D. v=m+111.在一定条件下,若物体运动的路程s(米)与时间t (秒)的关系式为s=3t 2+2t+1,则当t=4秒时,该物体所经过的路程为 ( ) A .28米 B .48米 C .57米 D .88米12.某公司制作毕业纪念册的收费如下:设计费与加工费共1000元,另外每册收取材料费4元,则总收费y 与制作纪念册的册数x 的关系式为 .13.同一温度的华氏度数y(°F)与摄氏度数x(℃)之间的关系式是y=59x+32.若某一温度的摄氏度数值与华氏度数值恰好相等,则此温度的摄氏度数为________℃.14.十一期间,小明和父母一起开车到距家200千米的景点旅游.出发前,汽车油箱内储油45升,当行驶150千米时,发现油箱剩余油量为30升.(假设行驶过程中汽车的耗油量是均匀的)(1)求该车平均每千米的耗油量,并写出剩余油量Q(升)与行驶路程x(于米)的关系式;(2)当x=280千米时,求剩余油量Q的值.15.将长为40cm、宽为15cm的长方形白纸按图所示的方法黏合起来,黏合部分宽为5cm(1)根据上图,将表格补充完整.(2)设x张白纸粘合后的总长度为ycm,则y与x之间的关系式是什么?(3)你认为多少张白纸粘合起来总长度可能为2018cm吗?为什么?知识点4 用图象表示的变量间关系16.夏天,一杯开水放在桌子土,杯中水的温度T(℃)随时间t变化的关系的大致图象是()17.二十四节气是中国古代劳动人民长期经验积累的结品,它与白昼时长密切相关.当春分秋分时,昼夜时长大致相等;当夏至时,白昼时长最长.如图是一年中部分节气所对应的白昼时长示意图.在下列选项中,白昼时长超过13小时的节气是 ( )A. 惊蛰B. 小满C. 秋分D. 大寒18.如图,图象(折线OEFPMN )描述了某汽车在行驶过程中速度与时间的函数关系,下列说法中错误的是( )A .第3分时汽车的速度是40千米/时B .第12分时汽车的速度是0千米/时C .从第3分到第6分,汽车行驶了120千米D .从第9分到第12分,汽车的速度从60千米/时减少到0千米/时19.如图所示的函数图象反映的过程是:小明从家去书店,又去学校取封信后马上回家,其中x 表示时间,y 表示小明离他家的距离,则小明从学校回家的平均速度为______千米∕小时.20. 甲骑自行车,乙乘公交车,从同一地点出发沿相同路线前往某校参加绘画比赛,图中l 甲、l 乙分别表示甲、乙两人前往目的地所行使的路程s (千米)随时间t (分)变化的函数图象,则每分钟乙比甲多21.如图所示,是某港口从上午8时到下午8时的水深情况,据图回答下列问题: (1)在8时到20时这段时间内,大约什么时间港口的水位最深,深度是多少米? (2)在8时到20时这段时间内,大约什么时间港口的水位最浅,深度是多少米? (3)在这段时间里,水深是如何变化的?第20题图第21题图。

北师大版七年级数学下册教学课件3.3用图象表示的变量间关系——速度的变化

北师大版七年级数学下册教学课件3.3用图象表示的变量间关系——速度的变化
用均匀的速度向一个容器注水,最后把容器注满.在注水过程中,水面高度h随时间t的变化规律如图所示(图中OAB为折线),这个容器
活动1 自主探究1 的形状是图中( )
根据图象的变化趋势或周期性特征,不仅可回顾事情的过去,还可预测事情的未来. (1)这是一次____m跑;
理阅解读分 教阅段材图P读7象3-的教7意4,材义完,成掌P下握73列分-问段7题图4,:完象各成个部下分列的含问义.题: 如理果解O分A范段、图B例象A分的1别意.(表义汕示,掌尾甲握、分中乙段两考图名象)学各汽生个运车部动分以的的路含6程0义s.和km时间/ht的的关速系,度根据在图公象判路断快上者匀的速速度比行慢驶者的,1速度h每后秒进快(入高)速 ((C2))甲18、分路乙钟两,继人中续___以_先1到(0D达0)2终0k分点m钟;/h的速度匀速行驶,则汽车行驶的路程s(km)与行驶的时间
第三章 变量之间的关系
课题 用图象表示的变量间关系——速度的变化
一、学习目标 1.理解分段图象的意义,掌握分段图象各个部分的含义. 2.复习巩固运用图象表示变量间关系的方法,能够运用其解决实际问题.
二、学习重难点 重点 学习速度型分段图象的意义,能说出各部分图象的含义.
难点 根据图象信息解决相关问题.
学时一致,那么他从学校到家需要的时间是( D )
(A)14分钟
(B)17分钟
(C)18分钟
(D)20分钟
练习 5.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停 下来修车,车修好后,因怕耽误上学时间,于是加快马加鞭车速,在下 图中给出的示意图中(s为距离,t为时间)符合以上情况的是(D )
仿例5.如图,小亮在操场上玩,一段时间内沿M→A→B→M的路径匀速散步, 能近似刻画小亮到出发点M的距离y与时间x之间关系的函数图象是图中 的( C )

最新北师大版七年级数学下册第三章变量之间的关系PPT

最新北师大版七年级数学下册第三章变量之间的关系PPT

关系式,如 y=3x ,我们可以根
据任何一个自变量值求出相应 的因变量的值。
巩固提高 你还记得圆锥的体积公式是什么吗?
1 2 V r h 3
其中的字母表示什么?
巩固提高 • 圆锥的高度是 4 厘米,当圆锥的底面半径由小到大 变化时,圆锥的体积也随之发生了变化。
• ( 1 )在这个变化过程中,
(5)随着支撑物高度h的变化,还有哪些量发生变化?
哪些量始终不发生变化? 时间发生了变化,木板的长度没变化.
在《小车下滑的时间》 中: 支撑物的高度h和小车下滑的时间t都在变化,它们都 是变量(variable). 其中小车下滑的时间t随支撑物的高度h的变化而变化。 支撑物的高度h是自变量 (independent variable). 小车下滑的时间t是因变量 (dependent variable)。 小车下滑的距离(木板长度)一直没有变化.在变化过程 中始终不变的量叫常量 借助表格可以表示因变量随自变量变化而变化的情况。
(3)你能预测出距离地面6千米的高空温度是多少吗? 根据规律,高度每升高1千米,温度降低6℃,
所以距离地面6千米时的温度是-10-6=-16(℃).
当堂练习 1.骆驼被称为“沙漠之舟”,它的体温随时间的变 化而变化.在这一问题中,自变量是( C ) A.沙漠 B.体温 C.时间 D.骆驼 【解析】因为骆驼的体温随时间的变化而变化, 所以自变量是时间.
超过13亿
典例精析 例 父亲告诉小明:“距离地面越远,温度越低”, 并且出示了下面的表格:
父亲给小明出了下面几个问题,请你和小明一起
回答:
(1)如果用h表示距离地面的高度,用t表示温度,那么
随着h的变化,t如何变化?
随着h的升高,t在降低.

北师大版七年级数学下册 第三讲 用图象表示变量间的关系(基础讲解)(含解析)

北师大版七年级数学下册 第三讲 用图象表示变量间的关系(基础讲解)(含解析)

第三讲用图象表示变量间的关系【学习目标】1、图象是刻画变量之间关系的又一重要方式,其特点是非常直观.2、用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.【知识总结】一、用图象分析变量之间的关系图象是刻画变量之间关系的又一重要方式,其特点是非常直观.用图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量.[说明] (1)利用图象法来表示两个变量之间的关系具有较好的直观性,因而人们常用它来反映两个变量的关系,并用它来指导生活、生产中的实际问题;(2)由图象的概念可知,在利用图象解决问题时,分清水平方向的数轴和竖直方向的数轴各表示的是什么量尤为重要,所以在做题时,一定要注意这一点.二、变量之间关系的表达方式与特点表达方式特点表格多个变量可以同时出现在一张表格中关系式准确地反映了因变量与自变量的数值关系图象形象地给出了因变量随自变量的变化趋势[明确] 表示变量之间关系的三种方法,各有各的优与劣,列表直观又明了,但不是很全面;关系式简洁又明了,反映了两个变量间的内在联系,但是分析时常需要计算;图象也很直观,但是取值多近似.其中关系式是基础,表格是画图象的关键.各种方法都要掌握,做到有备无患三、速度图象的意义1.速度、时间图象各部分所代表的意义如图3-3-51所示.图3-3-51①代表物体从0开始加速运动②代表物体匀速运动③代表物体减速运动到停止.2.路程、时间图象各部分所代表的意义如图3-3-52所示.图3-3-52①代表物体匀速运动.②代表物体停止.③代表物体反向运动直到回到原地.[说明] 对比图3-3-52和图3-3-53进行记忆,有助于分析图象的实质.3.价格、时间图象各部分代表的意义如图3-3-53所示.图3-3-53①代表价格从0开始逐渐增大.②代表价格不变.③代表价格逐渐变小.四、理解图象信息[明确] (1)怎样看图:在速度与时间关系的图象中,从左往右若图象上升,表明速度在增大;若图象下降,表明速度在减小;若图象与横轴平行,表明速度保持不变,匀速.(2)图象所表示的变量间的关系直观形象,而且图象包含着丰富的信息资源,请同学们仔细观察,不断加工提炼,并利用这些信息解决问题.【典型例题】【类型】一、利用图象表示变量间的关系例1如图3-3-6所示的图象记录了某地区1月份某天的温度随时间变化的情况,请你仔细观察图象后回答下面的问题:图3-3-6(1)20时的温度是多少?(2)温度是0 ℃的时刻是什么时刻?最暖和的时刻是什么时刻?(3)温度在-3 ℃以下的持续时间为多少?解:(1)20时的温度是-1 ℃.(2)温度是0 ℃的时刻是12时和18时;最暖和的时刻是14时.(3)温度在-3 ℃以下的持续时间为8个小时.[归纳总结] (1)借助图象可以知道自变量取某个值时,因变量取什么值.(2)利用图象判断因变量的变化趋势.(3)利用图象上一系列的点所表示的自变量与因变量的对应值,可以得到表示两个变量之间关系的表格.【类型】二、通过图象获得与分析信息例2某港受潮汐的影响,近日每天24时港内的水深变化大体如图3-3-7所示.一艘货轮于上午7时在该港口码头开始卸货,计划当天卸完后离港.已知这艘货轮卸完货后吃水深度为2.5 m(吃水深度即船底离开水面的距离).该港口规定:为保证航行安全,只有当船底与港内水底间的距离不少于3.5 m时,才能进出该港.图3-3-7根据题目中所给的条件,回答下列问题:(1)要使该船能在当天卸完货,并安全出港,则出港时水深不能少于________ m;(2)卸货时间最多只能用________ h.[答案] (1)6(2)8[解析] 吃水深度为2.5 m,并且只有当船底与港内水底间的距离不少于3.5 m时,才能进出该港,所以出港时水深不能少于2.5+3.5=6(m).从图象上看,水深不低于6 m的时间为6至15时,共9小时.从上午7时开始卸货,故最多只能用8小时.[归纳总结] 要从图象中获取信息,我们必须结合具体情境理解图象上的点所表示的意义.理解图象上某一个点的意义,一要看横轴、纵轴分别表示哪个变量;二要看该点所在的水平方向、竖直方向的位置,这样才能得到该点的正确意义.【类型】三、用图象表示路程与时间之间的关系例3甲、乙两同学从A地出发,骑自行车在同一条路上行驶到B地,他们离出发地的距离s(千米)和行驶时间t(时)之间的函数关系的图象如图3-3-54所示,根据图中提供的信息,有下列说法:(1)他们都行驶了18千米;(2)甲在途中停留了0.5小时;(3)乙比甲晚出发了0.5小时;(4)相遇后,甲的速度小于乙的速度;(5)甲、乙两人同时到达目的地.其中,符合图象描述的说法有()图3-3-54A.2个B.3个C.4个D.5个[解析] C由图象我们可知:甲、乙两同学从A地出发都行驶了18千米;甲在途中停留了0.5小时;乙比甲晚出发了0.5小时而又提前0.5小时到达离出发地18千米处;相遇后,甲的速度小于乙的速度,所以(1)(2)(3)(4)的说法都是符合图象描述的,故应选C.[归纳总结] 利用图象观察自变量的变化,应掌握几个要点:(1)如果图象自左向右是上升的,则说明因变量随着自变量的增大而增大;(2)如果图象自左向右是下降的,则说明因变量随着自变量的增大而减小;(3)如果图象自左向右是与x轴平行的,则说明因变量随着自变量的增大而保持不变.【类型】四、根据图象解决生活中的问题例2 如图3-3-55,表示小明骑自行车离家的距离与时间的关系,他9时离开家,15时回到家,请根据图象回答下列问题:图3-3-55(1)小明到达离家最远的地方是什么时间?离家多远?(2)他何时开始第一次休息?休息多长时间?(3)第一次休息时,离家多远?(4)11:00到12:00,他骑了多少千米?(5)他可能在哪段时间休息,并吃午餐?(6)返回时的平均速度是多少?[解析] 图象中,横轴表示时间,纵轴表示距离,图象中的“点”是时间与距离的对应值,从这些特殊点出发可读取所需信息,线段与横轴平行表示小明在休息.解:(1)由图象知小明到达离家最远的地方是12:00~13:00,离家30千米.(2)10:30开始第一次休息,休息半个小时.(3)第一次休息时,离家17千米.(4)11:00到12:00,他骑了13千米.(5)他可能在12:00~13:00休息,并吃午餐.(6)返回时的路程为30千米,时间为2小时,故返回时的平均速度为15千米/时.[总结] 用图象分析实际问题中变量之间的关系或者用图象大致表示实际问题中变量之间的关系,关键是图文对照,准确理解横轴、纵轴的意义,并注意以下几点:(1)变化过程中,随着自变量的增大,因变量是如何变化的;(2)图象上一些关键点的含义要与实际相符,如自变量为0时,图象上的点对应的因变量是什么,而实际情况又如何;因变量为0时,图象上的点对应的自变量是什么,而实际情况又如何;图象上因变量达到最大(或最小)值时的情况与实际相符.。

年春七年级数学下册第三章变量之间的关系3用图像表示的变量间关系课件新版北师大版

年春七年级数学下册第三章变量之间的关系3用图像表示的变量间关系课件新版北师大版
图3-3-2
(1)三个图象中哪个对应小明?哪个对应爸爸?哪个对应爷爷? (2)小明家距离目的地多远? (3)小明与爷爷骑自行车的速度是多少?爸爸步行的速度是多少?
分析 (1)由题图可以看出,A中图象表示去时用时长,返回时用时短,对 应爷爷;B中图象表示去时和返回时用时一样长,对应爸爸;C中图象表示 去时用时短,返回时用时长,对应小明.(2)由题图可以看出,小明家与目的 地的距离为1 200 m.(3)分别从A,B,C的图象中求出小明、爸爸和爷爷的 速度(速度=路程÷时间).
图3-3-3 A.1 B.2 C.3 D.4
6.(2016山东文登期末)周末,小明从家骑自行车去图书馆,他骑了一段时
间,想起要买只笔,于是折回到刚经过的文具店,买到笔后,继续骑行到达
图书馆.他离家的距离s(m)与所用时间t(min)之间的关系如图3-3-4所示.
请根据图中提供的信息,回答下列问题:
典例剖析 例 某城市为了节约用水,采用分段收费标准,居民每月应交水费y(元) 与用水量x(吨)之间的关系图象如图3-3-4所示,根据图象回答: (1)每月用水不足5吨时,每吨收费多少元?超过5吨时,超过的部分每吨收 费多少元? (2)若某户居民某月用水3.5吨,则应交水费多少元?若该户某月交水费17 元,则该户居民用水多少吨?
3.(2017浙江义乌中考)均匀地向一个容器注水,最后把容器注满.在注水 过程中,水面高度h随时间t的变化规律如图3-3-1所示(图中OABC为折 线),这个容器的形状可以是 ( )
图3-3-1
A
B

C
D
答案 D 由均匀地向容器注水可知,单位时间内注水量相同.对于长方 体容器,底面积越大,水面高度上升的速度越小,根据图象可得,最上面的 容器底面积最小,中间的容器底面积最大,所以容器的形状可以是D.

北师版七年级数学下册课件(BS) 第三章 变量之间的关系 用图像表示变量间关系 第2课时 折线型图象

北师版七年级数学下册课件(BS) 第三章 变量之间的关系 用图像表示变量间关系 第2课时 折线型图象

解:(2)小王到达离家最远的地方是出发 2 h 后,此时离家 30 km (3)最快的速度是302--110 =20(km/h),最慢的速度是304--220 =5(km/h) (4)小王在出发后 1.5 h 和 4 h 时与家相距 20 km
【素养提升】 10.(15分)如图,分别表示甲步行与乙骑自行车(在同一路上) 行走的路程s甲,s乙与时间t的关系,观察图象并回答下列问题: (1)乙出发时,乙与甲相距__1_0_千米; (2)走了一段路程后,乙的自行车发生故障,停下来修车的时间为_1___小时; (3)乙从出发起,经过_3___小时与甲相遇; (4)乙骑自行车出故障前的速度与修车后的速度一样吗?为什么?
解:(4)乙骑自行车出故障前的速度与修车后的速度不一样. 乙骑自行车出故障前的速度为70..55 =15(千米/小时), 修车后的速度为223.-5-1.75.5 =10(千米/小时),因为 15>10, 所以乙骑自行车出故障前的速度与修车后的速度不一样
三、解答题(共30分) 9.(15分)(宝丰月考)如图所示的是小王骑自行车离家的距离s(km)与时间t(h)之间 的关系. (1)根据图象填表: 时间t/h,0,1,2,3,4,5距离s/km,0,10,30,25,20,0(2)小王到达离家最远的地方时是什么 时间?离家多远? (3)他骑自行车最快的速度是多少?最慢的速度是多少? (4)小王在什么时间与家相距20 km?

8.(重庆中考)甲、乙两人在一条笔直的道路上相向而行,甲骑自行车从A地到B地, 乙驾车从B地到A地,他们分别以不同的速度匀速行驶,已知甲先出发6分钟后,乙才 出发,在整个过程中,甲、乙两人的距离y(千米)与甲出发的时间x(分)之间的关系如 图所示,当乙到达终点A时,甲还需____分7钟8 到达终点B.

北师大版七下数学下册第3单元3.3用图像表示变量关系

北师大版七下数学下册第3单元3.3用图像表示变量关系

3.3(1)用图象表示的变量间关系学习目标1、经历从图象中分析变量之间关系的过程,进一步体会变量之间的关系。

2、结合具体情境,理解图象上的点所表示的意义。

3、能从图象中获取变量之间关系的信息,并能用语言进行描述温故知新1、我们知道,用表格或关系式可以表示变量间的关系:请根据自变量x与因变量的y的关系式2=-+,填表:248y x x2、假设圆柱的高是5厘米,当圆柱的底面半径由小到大变化时;圆柱的体积如何变化?(1)在这个变化中,自变量是______、因变量是__________(2)如果圆柱底面半径为r(厘米),圆柱的体积v可以表示为 .(3)当r由1厘米变化到10厘米时,v由变化到 .自主探究:阅读课本p69-701.某地某天的温度变化情况如下图示,观察下表回答下列问题:(1)上午9时的温度是;12时的温度是 .(2)这一天时的温度最高,最高温度是;这一天时的温度最低,最低温度是 .(3)这一天的温差是,从最高温度到最低温度经过了小时(4)在什么时间范围内温度在上升?在什么时间范围内温度在下降?(5)图中的A点表示的是什么?_________________B点呢?(6)你能预测次日凌晨1时的温度吗?说说你的理由.小结:前图表示了温度随时间的变化而变化的情况,它是温度与时间之间关系的图象。

图象是我们表示变量之间关系的又一种方法,它的特点是___________。

图象表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示_____________量,用竖直方向的数轴(称为纵轴)上的点表示______________。

议一议骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化。

(1)一天中,骆驼的体温的变化范围是什么?它的体温从最低上升到最高需要多少时间?(2)从16时到24时,骆驼的体温下降了多少?(3)在什么时间范围内骆驼的体温在上升?在什么时间范围内骆驼的体温在下降?(4)你能看出第二天8时骆驼的体温与第一天8时有什么关系吗?其他时刻呢?(5)A点表示的是什么?还有几时的温度与A点所表示的温度相同?(6)你还知道那些关于骆驼的趣事?随堂练习1、海水受日月的引力而产生潮汐现象,早晨海水上涨叫做潮,黄昏海水上涨叫做汐,合称潮汐。

北师大版数学七年级下册第三章变量之间的关系第3节用图像表示的变量间关系课后练习

北师大版数学七年级下册第三章变量之间的关系第3节用图像表示的变量间关系课后练习

第三章变量之间的关系第3节用图像表示的变量间关系课后练习学校:___________姓名:___________班级:___________考生__________评卷人得分一、单选题1.如图是甲、乙两车在某时段速度随时间变化的图象,下列结论错误的是()A .乙前4秒行驶的路程为48米B.在0到8秒内甲的速度每秒增加4米/秒C.两车到第3秒时行驶的路程相等D.在4至8秒内甲的速度都大于乙的速度2.小张的爷爷每天坚持体育锻炼,星期天爷爷从家里跑步到公园,打了一会太极拳,然后沿原路慢步走到家,下面能反映当天爷爷离家的距离y(米)与时间t(分钟)之间关系的大致图象是()A.B.C.D.3.如图所示的函数图象反映的过程是:小徐从家去菜地浇水,又去玉米地除草,然后回家.其中x表示时间,y表示小徐离他家的距离.读图可知菜地离小徐家的距离为()A.1.1千米B.2千米C.15千米D.37千米4.小刚徒步到同学家取自行车,在同学家逗留几分钟后他骑车原路返回,他骑车速度是徒步速度的3倍.设他从家出发后所用的时间为t(分钟),所走的路程为s(米),则s 与t的函数图象大致是()A.B.C.D.5.某天,小王去朋友家借书,在朋友家停留一段时间后,返回家中,如图是他离家的路程(千米)与时间(分)的关系的图象,根据图象信息,下列说法正确的是()A.小王去时的速度大于回家的速度B.小王在朋友家停留了10分钟C.小王去时所花时间少于回家所花时间D.小王去时走上坡路施,回家时走下坡路6.如图,向高为H的圆柱形空水杯中注水,表示注水量y与水深x的关系的图象是下面哪一个?()A.B.C.D.7.梅梅以每件6元的价格购进某商品若干件到市场去销售,销售金额y(元)与销售量x(件)的函数关系的图象如图所示,则降价后每件商品销售的价格为()A.5元B.15元C.12.5元D.10元评卷人得分二、填空题8.小明的父母出去散步,从家走了20分钟到一个离家900米的报亭,母亲随即按原速度返回家,父亲在报亭看了10分钟报纸后,用15分钟返回家,则表示父亲、母亲离家距离与时间之间的关系是________(只需填序号)9.用图象来表示两个变量之间的关系的方法叫做__________,在利用图象法表示变量之间的关系时,通常用__________方向的数轴(称为__________)上的点表示自变量,用__________方向的数轴(称为__________)上的点表示因变量.10.某农场租用收割机收割小麦,甲收割机单独收割2天后,又调来乙收割机参与收割,直至完成800亩的收割任务,收割亩数与天数之间的关系如图所示,那么乙参与收割________天.11.某市出租车收费与行驶路程关系如图所示.如果小明姥姥乘出租车去小明家花去了22元,那么小明姥姥乘车路程为__________千米.12.火车匀速通过隧道时,火车在隧道内的长度y(米)与火车行驶时间x(秒)之间的关系用图象描述如图所示,则隧道长度为________米.13.甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;①甲的平均速度为15千米/小时;①乙走了8km后遇到甲;①乙出发6分钟后追上甲.其中正确的有_____________(填所有正确的序号).14.某城市用电收费实行阶梯电价,收费标准如下表所示,用户5月份交电费45元,则所用电量为_____度.月用电量不超过12度的部分超过12度不超过18度的部分超过18度的部分收费标准(元/度)2.00 2.503.00评卷人得分三、解答题15.一农民带上若干千克自产的土豆进城出售,为了方便,他带了一些零钱备用,按市场价售出一些后,又降价出售,售出的土豆千克数与他手中持有的钱数(含备用零钱)的关系,如图所示,结合图象回答下列问题.(1)农民自带的零钱是多少?(2) 由表达式你能求出降价前每千克的土豆价格是多少?试求降价前y与x之间的关系式(3) 降价后他按每千克0.4元将剩余土豆售完,这时他手中的钱(含备用零钱)是26元,试问他一共带了多少千克土豆16.温度的变化是人们在生活中经常谈论的话题,请你根据下图回答下列问题:(1)上午9时的温度是多少?这一天的最高温度是多少?(2)这一天的温差是多少?从最低温度到最高温度经过了多长时间?(3)在什么时间范围内温度在下降?图中的A点表示的是什么?17.下图表示购买某种商品的个数与付款数之间的关系(1)根据图形完成下列表格购买商品个数(个)2467付款数(元)(2)请写出表示付款数y(元)与购买这种商品的个数x(个)之间的关系式.18.小南一家到某度假村度假.小南和妈妈坐公交车先出发,爸爸自驾车沿着相同的道路后出发.爸爸到达度假村后,发现忘了东西在家里,于是立即返回家里取,取到东西后又马上驾车前往度假村(取东西的时间忽略不计).如下图是他们离家的距离s(km)与小南离家的时间t(h)的关系图.请根据图回答下列问题:(1)图中的自变量是_________,因变量是_________,小南家到该度假村的距离是_____km.(2)小南出发___________小时后爸爸驾车出发,爸爸驾车的平均速度为___________km/h,图中点A表示.(3)小南从家到度假村的路途中,当他与爸爸相遇时,离家的距离约是___________km.19.巴蜀中学的小明和朱老师一起到一条笔直的跑道上锻炼身体,到达起点后小明做了一会准备活动,朱老师先跑.当小明出发时,朱老师已经距起点200米了.他们距起点的距离s(米)与小明出发的时间t(秒)之间的关系如图所示(不完整).据图中给出的信息,解答下列问题:(1)在上述变化过程中,自变量是______,因变量是______;(2)朱老师的速度为_____米/秒,小明的速度为______米/秒;(3)当小明第一次追上朱老师时,求小明距起点的距离是多少米?20.某车间的甲、乙两名工人分别同时生产同种零件,他们一天生产零件y(个)与生产时间t(小时)的关系如图所示.(1)根据图象回答:①甲、乙中,谁先完成一天的生产任务;在生产过程中,谁因机器故障停止生产多少小时;①当t等于多少时,甲、乙所生产的零件个数相等;(2)谁在哪一段时间内的生产速度最快?求该段时间内,他每小时生产零件的个数.参考答案:1.C【解析】【详解】A.根据图象可得,乙前4秒行驶的路程为12×4=48米,正确;B.根据图象得:在0到8秒内甲的速度每秒增加4米秒/,正确;C.根据图象可得两车到第3秒时行驶的路程不相等,故本选项错误;D.在4至8秒内甲的速度都大于乙的速度,正确;故选C.2.B【解析】【详解】①y轴表示当天爷爷离家的距离,X轴表示时间又①爷爷从家里跑步到公园,在公园打了一会儿太极拳,然后沿原路慢步走到家,①刚开始离家的距离越来越远,到公园打太极拳时离家的距离不变,然后回家时离家的距离越来越近又知去时是跑步,用时较短,回来是慢走,用时较多①选项B中的图形满足条件.故选B.3.A【解析】【详解】解:由图象可以看出菜地离小徐家1.1千米.故选A.点睛:本题考查了利用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义是解题的关键.4.B【解析】【分析】根据小刚取车的整个过程共分三个阶段:慢匀速步行,图像是坡直线,然后休息反应时间变化路程不变,再快匀速骑自行车,图像是陡直线即可.【详解】解:小刚取车的整个过程共分三个阶段:①徒步从家到同学家,s随时间t的增大而增大;①在同学家逗留期间,s不变;①骑车返回途中,速度是徒步速度的3倍,s随t的增大而增大,并且比徒步时的直线更陡;纵观各选项,只有B选项符合,故选B.【点睛】本题考查图像识别,掌握图形的特征和表示的意义是解题关键.5.B【解析】【分析】A、根据速度=路程÷时间,可求出小王去时的速度和回家的速度,比较后可得出A不正确;B、观察函数图象,求出小王在朋友家停留的时间,故B正确;;C、先求出小王回家所用时间,比较后可得出C不正确;D、题干中未给出路况如何,故D不正确.综上即可得出结论.【详解】解:A、小王去时的速度为2000÷20=100(米/分),小王回家的速度为2000÷(40−30)=200(米/分),①100<200,①小王去时的速度小于回家的速度,A不正确;B、①30−20=10(分),①小王在朋友家停留了10分,B正确;C、40−30=10(分),①20>10,①小王去时所花时间多于回家所花时间,C不正确;D、①题干中未给出小王去朋友家的路有坡度,①D不正确.故选B.【点睛】本题考查了函数图象,观察函数图象逐一分析四条结论的正误是解题的关键.6.A【解析】【详解】由于圆柱形水杯是均匀的物体,随着水的深度变高,需要的注水量也是均匀升高的.可知,只有选项A适合均匀升高这个条件.故选A.7.D【解析】【详解】(1000-600)÷(80-40)=10(元)8.①①【解析】【详解】①小明的父母出去散步,从家走了20分到一个离家900米的报亭,母亲随即按原速返回,①表示母亲离家的时间与距离之间的关系的图象是①;①父亲看了10分报纸后,用了15分返回家,①表示父亲离家的时间与距离之间的关系的图象是①9.图象法水平横轴竖直纵轴【解析】【详解】用图象来表示两个变量之间的关系的方法叫做图象法,在利用图象法表示变量之间的关系时,通常用水平方向的数轴(称为横轴)上的点表示自变量,用竖直方向的数轴(称为纵轴)上的点表示因变量,故答案为图象法,水平,横轴,竖直,纵轴.10.4【解析】【详解】解:由图可知,甲、乙收割机每天共收割350-200=150亩,共同收割600亩,所以,乙参与收割的天数是600÷150=4天.故答案为4.【点睛】此题主要考查学生的读图获取信息的能力,要注意分析其中的“关键点”.11.13【解析】【详解】设AB的解析式为y=kx+b,由题意,得63148k bk b=+⎧⎨=+⎩,解得:1.61.2kb=⎧⎨=⎩,①直线AB的解析式为y=1.6x+1.2(x≥3),当y=22时,22=1.6x+1.2,解得:x=13,故答案为13.【点睛】本题考查了运用待定系数法求一次函数的解析式的运用,根据解析式由函数值求自变量的值的运用.解答时求出函数的解析式是关键.12.900【解析】【分析】根据图象可知,火车的长度为150米,火车的速度可用火车的长度除以火车本身出(或进)隧道内所用的时间即35-30=5秒,列式计算即可得到火车行驶的速度;隧道的长度等于火车走过的总路程减去火车的长度,可列式为35×30-150,列式计算即可得到答案.【详解】解:由图象可直接得到火车的长度为150米,火车的速度是:150÷(35−30)=150÷5=30(米/秒),隧道的长度:35×30−150=1050−150=900(米).故答案为900.【点睛】本题主要考查了用函数的图象解决实际问题,正确理解函数图象横纵坐标表示的意义,理解问题的过程,就能够通过图象得到函数问题的相应解决.13.①①①【解析】【详解】①乙在28分时到达,甲在40分时到达,所以乙比甲提前了12分钟到达;故①正确;①根据甲到达目的地时的路程和时间知:甲的平均速度=10÷4060=15千米/时;故①正确;①设乙出发x分钟后追上甲,则有:102818-×x=1040×(18+x),解得x=6,故①正确;①由①知:乙第一次遇到甲时,所走的距离为:6×102818-=6km,故①错误;所以正确的结论有三个:①①①,故答案为①①①.14.20【解析】【详解】设所用电量为x度,由题意得:12×2+6×2.5+3(x﹣18)=45,解得:x=20,故答案为20.【点睛】本题考查了一元一次方程的应用,解题的关键是读懂表格,根据表格列出相应的方程进行求解.15.(1) 5元(2) 0.5元/千克;y=12x+5(0≤x≤30);(3)他一共带了45千克土豆.【解析】【分析】(1)根据题意得出自带的零钱;(2)根据图象可知降价前售出的土豆数量为30千克,总金额为15元,然后计算单价;根据降价后的价格和金额求出降价后售出的数量,然后计算总质量.【详解】(1)根据图示可得:农民自带的零钱是5元.x+5(0≤x≤30)(2)(20-5)÷30=0.5(元/千克)①y=12答:降价前他出售的土豆每千克是0.5元.(3)(26-20)÷0.4+30=15+30=45(千克)答:他一共带了45千克土豆.考点:一次函数的应用.16.(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【解析】【分析】(1)观察函数图象找出时间9时的温度和这一天的最高温度;(2)找出函数图象的最高点(最高温度)和最低点(最低温度),然后再找最高点和最低点分别对应的时间;用最高温度减去最低温度得到这天的温差,最低温度到最高温度经过的时间等于最高点和最低点对应的时间的差;(3)观察图象0时到3时和15时到24时温度在下降.【详解】解:(1)利用图象得出上午9时的温度是27①,这一天的最高温度是37①.(2)这一天的温差是37-23=14(①),从最低温度到最高温度经过了15-3=12(小时).(3)温度下降的时间范围为0时至3时及15时至24时,图中的A点表示的是21点时的气温.故答案为(1)27①,37①;(2)14①,12小时;(3)0时至3时及15时至24时,A点表示21点时的气温.【点睛】本题考查了函数图象,利用函数图象反映两变量之间的变化规律,通过该规律解决有关的实际问题.17.(1)4;8;12;14;(2)付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【解析】【分析】根据折线统计图即可写得答案根据题意可得关系式为y=kx,代入x与y的值即可解得k为2,及关系式为y=2x.【详解】(1)当购买商品个数为2个时,付款数为4元;当购买商品个数为4个时,付款数为8元;当购买商品个数为6个时,付款数为12元;当购买商品个数为7个时,付款数为14元;故答案为4;8;12;14;(2)设付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=kx,根据题意得:4=2k,解得k=2,∴付款数y(元)与购买这种商品的个数x(个)之间的关系式为y=2x.【点睛】本题考查一元一次方程,根据题意列出关系式并解出k的值是解题的关键.18.(1)t,s,60;(2) 1,60,小南出发2.5小时后,离家的距离为50km ;(3)30或45.【解析】【分析】(1)直接利用常量与变量的定义得出答案;直接利用函数图象结合纵坐标得出答案;(2)利用函数图象求出爸爸晚出发1小时,根据速度=路程÷时间求解即可;根据函数图象的横纵坐标的意义得出A点的意义;(3)利用函数图象得出交点的位置进而得出答案.【详解】(1)自变量是时间或t,因变量是距离或s;小亮家到该度假村的距离是:60;(2)小亮出发1小时后爸爸驾车出发:爸爸驾车的平均速度为60÷1=km/h;图中点A表示:小亮出发2.5小时后,离度假村的距离为10km;(3)当20t=60(t-1),解得:t=1.5则离家20×1.5=30(千米)当20t=120-60(t-1),解得:t=2.25则离家20×2.25=45(千米)小亮从家到度假村的路途中,当他与他爸爸相遇时.离家的距离约是30或45.【点睛】此题主要考查了函数图象以及常量与变量,利用函数图象获取正确信息是解题关键.19.(1)t,s;(2)2,6;(3)小明距起点的距离为300米【解析】【分析】(1)观察函数图象即可找出谁是自变量谁是因变;(2)根据速度=路程÷时间,即可分别算出朱老师以及小明的速度;(3)设t秒时,小明第一次追上朱老师,列出关系式即可解答.【详解】解:(1)在上述变化过程中,自变量是t,因变量是s;(2)朱老师的速度420200110=2(米/秒),小明的速度为42070=6(米/秒);故答案为t,s;2,6;(3)设t秒时,小明第一次追上朱老师,根据题意得6t=200+2t,解得t=50(s),则50×6=300(米),所以当小明第一次追上朱老师时,小明距起点的距离为300米.【点睛】此题考查一次函数的应用,解题的关键在于看懂图中数据,通过数形结合来求解.20.(1) ①甲,甲,3小时;①3和193;(2) 甲在5~7时的生产速度最快,每小时生产零件15个.【解析】【分析】(1)根据图象不难得出结论;(2)从图上看出甲在5~7时直线斜率最大,即生产速度最快.【详解】解:(1) ①甲、乙中,甲先完成一天的生产任务;在生产过程中,甲因机器故障停止生产3小时;①由图象可知,甲、乙两条折线相交时,表示甲、乙所生产的零件个数相等.当t=3时,甲乙第一次相交;设甲乙第二次相交时生产时间为t2,得:10+()24010575t ---=4+40482--(2t -2), 解得:t 2=193, ①当t 等于3和193时,甲、乙所生产的零件个数相等; (2)甲在5~7时的生产速度最快,①(40-10)÷(7-5)=15,①他在这段时间内每小时生产零件15个.故答案为(1) ①甲,甲,3小时;①3和193; (2) 甲在5~7时的生产速度最快,每小时生产零件15个.【点睛】从图象中获取信息是学习函数的基本功,要结合题意熟练掌握.。

北师大数学七年级下册 第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-培优拔高》无答案

北师大数学七年级下册  第三章3.3 用图像表示的变量间关系 《板块专题20道—期中真题-培优拔高》无答案

用图像表示的变量间关系1.(2019春•崇川区校级期中)小潘同学在1000米训练中跑动的路程S(米)与时间t(分钟)的关系如图所示,则他跑步速度大小v(米/分钟)与时间t(分钟)的关系图象为()A.B.C.D.2.(2019春•迎泽区校级期中)自动测温仪仅记录的图象如图所示,它反映了某市的春季某一天气T(℃)如何随时间t(时)的变化而变化的.下列从图象中得到的信息正确的是()A.0点时气温达到最低B.最低气温是零下4℃C.最高气温是零上8℃D.0点到14点之间气温持续上升3.(2019春•凤翔县期中)小丽早上步行去车站然后坐车去学校,下列能近似的刻画她离学校的距离随时间变化的大致图象是()A.B.C.D.4.(2019春•乐清市期中)小聪步行去上学,5分钟走了总路程的,估计步行不能准时到校,于是他改乘出租车赶往学校,他的行程与时间关系如图所示,(假定总路程为1,出租车匀速行驶),则他到校所花的时间比一直步行提前了()分钟.A.16B.18C.20 D.245.(2019春•高新区校级期中)健走活动中先以均匀的速度走完了规定路程,休息了一段时间后加快速度走完剩余的路程.设“佩奇小组”健走的时间为x,健走的路程为y,如图所示的能反映y与x的函数关系的大致图象是()A.B.C.D.6.(2019春•沙坪坝区校级期中)小明骑自行车上学,开始以正常速度匀速行驶,但行至中途自行车出了故障,只好停下来修车,车修好后,因怕耽误上课,便以更快的速度匀速行驶去学校.下面能大致反映小明离家距离s与出发时间t的关系的图象是()A.B.C.D.7.(2019春•南山区校级期中)一支蜡烛长20cm.若点燃后每小时燃烧5cm.则燃烧剩余的长度y(cm)与燃烧时间x(小时)之间的函数关系的图象大致为()A.B.C.D.8.(2019春•南关区校级期中)数学课上,老师提出一个问题:如图①,在平面直角坐标系中,点A的坐标为(0,1),点B是x轴正半轴上一动点,以AB为边作等腰直角三角形ABC,使∠BAC=90°,点C在第一象限,设点B的横坐标为x,设……为y,y与x之间的函数图象如图②所示,题中用“……”表示的缺失的条件应补为()A.点C的横坐标B.点C的纵坐标C.△ABC的周长D.△ABC的面积9.(2019春•天河区校级期中)甲、乙两同学骑自行车从A地沿同一条路到B地,已知乙比甲先出发,他们离出发地的距离s(km)和骑行时间t(h)之间的函数关系如图所示,根据图象信息,以上说法正确的是()A.甲和乙两人同时到达目的地B.甲在途中停留了0.5hC.相遇后,甲的速度小于乙的速度D.他们都骑了20km10.(2019春•资中县期中)一天,李师傅骑车上班途中因车发生故除,修车耽误了一段时间后继续骑行,按时赶到了单位,如图描述了他上班途中的情景,下列说法中错误的是()A.李师傅上班处距他家2000米B.李师傅修车用了15分钟C.修车后李师傅骑车速度是修车前的2倍D.李师傅路上耗时20分钟11.(2019春•南山区校级期中)如图1,长方形ABCD中,动点P从B出发,沿B→C→D →A路径匀速运动至点A处停止,设点P运动的路程为x,△P AB的面积为y,如果y关于x的函数图象如图2所示,则长方形ABCD的面积等于.12.(2019春•叶县期中)如图所示:图象中所反映的过程是:小冬从家跑步去体育场,在那里锻炼了一阵后,又去早餐店吃早餐,然后散步走回家.其中x轴表示时间,y轴表示小冬离家的距离.根据图象提供的信息,下列说法正确的有①体育场离小冬家2.5千米②小冬在体育场锻炼了15分钟③体育场离早餐店4千米④小冬从早餐店回家的平均速度是3千米/小时.13.(2018秋•白塔区校级期中)小李从沂南通过某快递公司给在南昌的外婆寄一盒樱桃,快递时,他了解到这个公司除收取每次6元的包装费外,樱桃不超过1kg收费22元,超过1kg,则超出部分按每千克10元加收费用.已知小李给外婆快寄了2.5kg樱桃,请你求出这次快寄的费用是元.14.(2018春•于洪区校级期中)如图,图象L1反映了某公司产品的销售收入与销售量之间的关系,图象L2反映了某公司产品的销售成本与销售量之间的关系,当销售量吨时,公司亏本.15.(2018春•岐山县期中)如图表示一辆汽车从出发到停止的行驶过程中速度v(米/分)随时间t(分)变化的情况,下列判断中正确的是(填写正确答案的序号)①汽车从出发到停止共行驶了14分②汽车保持匀速行驶了8分③出发后4分到12分之间,汽车处于停止状态④汽车从减速行驶到停止用了2分16.(2019春•高新区校级期中)2018年5月14日川航3U863航班挡风玻璃在高空爆裂,机组临危不乱,果断应对.正确处置,顺利返航,避免了一场灾难的发生,创造了世界航空史上的奇迹!下表给出了距离地面高度与所在位置的温度之间的大致关系.根据下表,请回答以下几个问题:(1)上表反映的两个变量中,是自变量,是因变量?(2)若用h表示距离地面的高度,用y表示表示温度,则y与h的之间的关系式是:;当距离地面高度5千米时,所在位置的温度为:℃.如图是当日飞机下降过程中海拔高度与玻璃爆裂后立即返回地面所用时间关系图.根据图象回答以下问题:(3)返回途中飞机再2千米高空水平大约盘旋了几分钟?(4)飞机发生事故时所在高空的温度是多少?17.(2019春•岐山县期中)如图,是反映一辆出租车从甲地到乙地的速度(千米/时)与时间(分钟)的关系图象;根据图象,回答下列问题:(1)汽车从出发到最后停止共经过了多长时间?它的最高时速是多少?(2)汽车在哪段时间保持匀速行驶?时速是多少?(3)出发后25分钟到30分钟之间可能发生了什么情况?(4)用自己的语言大致描述这辆汽车的行驶情况.18.(2019春•凤翔县期中)周六上午,小亮去图书馆查资料,图书馆离家不远,他步行去图书馆,查完资料后他又边走边转去书店买书,在书店停留了几分钟后骑共享单车回家已知小亮高家的距离s(米)与离开家的时间t(分)之间的关系如图所示.请根据图象回答下列问题:(1)小亮出发几分钟后到达图书馆?(2)小亮查完资料后步行的速度是多少?(3)小亮10:00离开图书馆,几点回到家?19.(2019春•大邑县期中)小李骑摩托车在一条笔直的公路上行驶,摩托车离出发地的距离s(千米)和行驶时间t(小时)之间关系的图象如图所示.根据图象回答下列问题:(1)在上述变化过程中,自变量是什么?因变量是什么?(2)摩托车共行驶了多少千米?(3)摩托车在行驶过程中休息了多久?(4)摩托车在整个行驶过程中的平均速度是多少?(5)用自己的语言描述摩托车的行驶情况.20.(2019春•福田区校级期中)小凡与小光从学校出发到距学校5千米的图书馆看书,途中小凡从路边超市买了一些学习用品,如图反应了他们俩人离开学校的路程s(千米)与时间t(分钟)的关系,请根据图象提供的信息回答问题:(1)l1和l2中,描述小凡的运动过程;(2)谁先出发,先出发了分钟;(3)先到达图书馆,先到了分钟;(4)当t=分钟时,小凡与小光在去学校的路上相遇;(5)小凡与小光从学校到图书馆的平均速度各是多少千米/小时?(不包括中间停留的时间)。

北师大版七年级系数学:第三章:变量之间的关系章末题型讲义(非常全面非常好!)

北师大版七年级系数学:第三章:变量之间的关系章末题型讲义(非常全面非常好!)

第三章《变量之间的关系》一、变量、自变量、因变量的概念在—个变化过程中, 可以取不同数值的量, 叫做变量, 数值保持不变的量叫做常量.例如在表示路程关系式s=50t中, 速度50恒定不变为常量, 随t取不同数值时也取不同数值, s 与t都为变量. t是自变量, s是因变量.二、变量之间关系表示方式1.关系式法: 可以定量表示自变量和因变量的关系(给定自变量的值可以求因变量的值);2.表格法: 可以大致确定因变量随自变量的变化趋势;3.图像法: 可以清晰地观察自变量随因变量的变化趋势.三、重要数学模型1. 小车下滑的时间;2. 变化中的三角形;3. 温度的变化;4. 速度的变化.四、知识网络图(1)上述表格反映了哪两个变量之间的关系?哪个是自变量?哪个是因变量?(2)当所挂重物为4kg时, 弹簧多长?不挂重物呢?(3)若所挂重物为6kg时(在弹簧的允许范围内), 你能说出此时弹簧的长度吗?2. 如图6—1所示, 梯形上底的长是x, 下底的长是15, 高是8.(1)梯形面积y与上底长x之间的关系式是什么?(2)用表格表示当x从10变到20时(每次增加1), y的相应值;(3)当x每增加1时, y如何变化?说说你的理由;(4)当x=0时, y等于什么?此时它表示的是什么?3. 地壳的厚度约为8到40km. 在地表以下不太深的地方, 温度可按y=35x+t计算, 其中x是深度(km), t是地球表面温度(℃), y是所达深度的温度(℃).(1)在这个变化过程中, 自变量、因变量各是什么?(2)分别计算当x为lkm, 5km, 10km,20km时地壳的温度(地表温度为2℃).4.图6—4是某地一天的气温随时间变化的图象. 根据图象回答, 在这一天中:(1)什么时间气温最高?什么时间气温最低?最高气温和最低气温各是多少?(2)20时的气温是多少?(3)什么时间的气温为6℃?(4)哪段时间内气温不断下降?(5)哪段时间内气温持续不变?设某户该月用水量为x, 应交水费为y(元).(1)求a、c的值, 并写出用水不超过和超过时, y与x之间的关系式;(2)若该户5月份的用水量为, 求该户5月份的水费是多少元?6.如图6—26表示一骑自行车者和一骑摩托车者沿相同路线由甲地到乙地行驶过程的函数图象(分别为正比例函数和一次函数). 两地间的距离是80km. 请你根据图象回答或解决下面的问题:(1)谁出发的较早?早多长时间?谁到达乙地较早?早到多长时间?(2)两人在途中行驶的速度分别是多少?(3)请你分别求出表示自行车和摩托车行驶过程的函数解析式(不要求写出自变量的取值范围);(4)指出在什么时间段内两车均行驶在途中(不包括端点);在这一时间段内, 请你分别按下列条件列出关于时间x的方程或不等式(不要化简, 也不要求解):①自行车行驶在摩托车前面;②自行车与摩托车相遇;③自行车行驶在摩托车后面.练习题1.如图1, 射线, 分别表示甲、乙两名运动员在自行车比赛中所走路程与时间的关系, 则他们行进的速度关系是()A. 甲比乙快B. 乙比甲快C. 甲、乙同速D. 不一定2. 为节约用水, 某冲厕水箱经改造后, 当水箱水满后就按一定的速度放掉水箱的一半水, 随后立即按一定的速度注水, 等水箱的水满后, 又立即按一定的速度放掉水箱一半的水. 下面的哪一幅图可以大致刻画水箱的存水量V(立方米)与放水或注水的时间T(分钟)之间的关系()3. 某山区今年6月中旬的天气情况是: 前5天小雨, 后5天暴雨. 那么反映该地区某河流水位变化的图象大致是()4. 父亲节, 学校“文苑”专栏登出了某同学回忆父亲的小诗: “同辞家门赴车站, 别时叮咛语千万, 学子满载信心去, 老父怀抱希望还. ”如果用纵轴y表示父亲和学子在行进中离家的距离, 横轴x表示离家的时间, 那么下面与上述诗意大致相吻的图象是()A.B.C.D.5.已知△ABC的底边BC上的高为8cm, 当它的底边BC从16cm变化到5cm时, △ABC的面积()A.从20cm变化到64cm B、从64cm变化到20cm50 80 100 150C.从128cm变化到40cmD.从40cm变化到128cm6.下面的表格列出了一个实验的统计数据,表示将皮球从高处落下时,弹跳高度b与下降高度d的关系,下面能表示这种关系的式子是()db 25 40 50 75A. B. C. D.7.如图是某市一天的温度随时间变化的图象,通过观察可知下列说法错误的是( )A. 这天15点时温度最高B. 这天3点时温度最低C. 这天21点时温度是30 ℃D. 这天最高温度与最低温度的差是13 ℃8.李明骑车上学,一开始以某一速度行进,途中车子发生故障,只好停下修车,车修好后,因怕耽误时间,于是加快了车速.如用s表示李明离家的距离,t为时间.在下面给出的表示s与t的关系图中,符合上述情况的是()9. 下面说法正确的是()A. 两个变量间的关系只能用关系式表示B. 图象不能直观的表示两个变量间的数量关系C. 借助表格可以表示出因变量随自变量的变化情况D. 以上说法都不对10.经测量,人运动时心跳速率通常和人的年龄有关.如果用x表示一个人的年龄,用Y表示正常情况下这个人在运动时所能承受的每分钟心跳的最高次数,那么Y=0.8(220-x),根据此关系式计算一个18岁的青少年所能承受的每分钟的最高心跳次数是(取整数)()A. 80B. 100C. 162D. 161二、填空题(每空2分, 共30分)11. 汽车以60千米/时的速度行驶了t小时, 路程s随着时间t的变化而变化, 其中______是自变量, ______因变量.12. △ABC的高是3cm, 则面积S与底边x间的数量关系可表示为______. 13.在圆的面积公式中, ______随______变化而变化, ______是自变量.14. 购买单价8.50元的书x本所要的钱数y=______.15.某种储蓄的年利率为1.5%, 存入1000元本金后, 则本息和y(元)与所存年数x之间的关系式为______, 3年后的本息和为______元(此利息要交纳所得税的20%).16.小明和弟弟进行百米赛跑,小明比弟弟跑得快,如果两人同时起跑,小明肯定赢.如图2所示,现在小明让弟弟先跑______米,直线______表示小明的路程与时间的关系,大约______秒时,小明追上了弟弟,弟弟在这次赛跑中的速度是______米/秒.17.如图3, 小明用3秒的时间跑了______米.18.如果没盒圆珠笔有12支, 售价18元, 用y (元)表示圆珠笔的售价, x 表示圆珠笔的支数, 那么y 与x 之间的关系应该是 .三、解答题(每小题10分, 共40分)19.某文具店出售书包和文具盒,书包每个定价30元,文具盒每个定价5元.该店制定了两种优惠方案;①买一个书包赠送一个文具盒;②按总价的9折(总价的90%)付款,某班学生需购买8个书包、文具盒若干(不少于8个),如果设文具盒数x(个),付款数为y(元).(1)分别求出两种优惠方案中y 与x 之间的关系式.(2)购买文具盒多少个时, 两种方案付款相同, 购买文具盒数大于8时, 两种方案中哪一种更省钱?20.为了了解某小区居民的用水情况, 随机抽查了该小区10户家庭的月用水量, 结果如下:月用水量(吨)10 13 14 17 18 户数 2 2 3 2 1(1) 计算这家庭的平均月用水量;(2) 如果该小区有500户家庭, 根据上面的计算结果, 估计该小区居民每月共用水多少吨?图2图321.已知长方形的相邻两边的长分别是和, 设长方形的周长为.①试写出长方形的周长y与x之间的关系式;②求当长为, 时的周长;③求当周长分别为, 时的值.22.小明晚饭后外出散步, 遇见同学, 交谈一会, 返回途中在读报厅看了一会报. 下图是根据此情景画出的图象, 请你回答下列问题:(1)小明在距家多远遇见同学的, 交谈了多少时间?(2)读报厅离家多远?(3)小明在哪一段路程中走得最快, 速度是多少?。

北师大版七年级数学下册第3章变量之间的关系PPT习题课件

北师大版七年级数学下册第3章变量之间的关系PPT习题课件
返回
2.用黑白两种颜色的正六边形地板砖按如图所示的规律 拼成若干图案,则第n个图案中白色地板砖的总块数N N=4n+2 ,其中常量是 与n之间的关系式为__________________
4,变量是 ,2 N ,n ________ ________ .
返回
3.油箱中存油20 L,油从油箱中均匀流出,流速为
下列用数量x表示售价y的关系式中,正确的是( B )
A.y=8x+0.3 B.y=(8+0.3)x
C.y=8+0.3x
D.y=8+0.3+x
返回
7.已知两个变量x和y,它们之间的3组对应值如下表:
x y
-1 -1
0 1
1 3
则 y 与 x 之间的关系式可能是( B ) A.y=x C.y=x +x+1
下列说法正确的是( C )
A.定价是常量,销量是变量
B.定价是变量,销量是常量
C.定价与销量都是变量,定价是自变量,销量是因变量
D.定价与销量都是变量,销量是自变量,定价是因变量
返回
知识点
3 用表格表示两个变量间的关系
7.借助表格,可以表示自变量与因变量之间的变化情况,一般 自 变量,第二行是______ 因 变量.同时必须具备: 第一行是____ (1)用表格反映两个变量之间的关系时,必须保证数据的真实性 顺序性 及对自变量所取数值排列的________________________ ; 一一对应 (2)因变量的数值必须与自变量的数值________________ . 返回
2
B.y=2x+1 3 D.y=x
返回
知识点
3 用关系式求值
1 2 8. 变量 x 与 y 之间的关系满足 y= x -1, 当自变量 x=2 时, 2 因变量 y 的值是( C ) A.-2 C.1 B.-1 D.2

北师大版七年级下册数学《用图象表示的变量关系》变量之间的关系说课教学课件复习巩固

北师大版七年级下册数学《用图象表示的变量关系》变量之间的关系说课教学课件复习巩固

课堂检测
探索推广题
如果OA、BA分别表示甲、乙两名学生
运动的路程s和时间t的关系,根据图象
判断快者的速度比慢者的速度每秒快
(C )
A、2.5m
B、2m C、1.5m
D、1m
s (m)
64
A
B
12
0
t(s )
8
解析:由图象可知在8s时间内,学生甲的路程为64m,学生乙
的路程为(64-12)=52m,所以V甲=64/8=8(m/s)
课堂检测
基础巩固题
3.“龟兔首次赛跑”之后,输了比赛的兔子没有气馁,总
结反思后,和乌龟约定再赛一场.图中的图象刻画了“龟兔
再次赛跑”的故事(x表示乌龟从起点出发所行的时间,y1
表示乌龟所行的路程,y2表示兔子所行的路程).下列说法
错误的是( B )
A.“龟兔再次赛跑”
的路程为1000米
B.兔子和乌龟同时从起点出发
哪队先到达终点?
例3
解:由纵坐标看出,这次龙舟
赛的全程是1000米;由横坐标
看出,乙队先到达终点;
探究新知
(2)求乙与甲相遇时乙的速度.
解:由图象看出,相遇是在乙加速
后,加速后的路程是1000-400=
600(米),加速后用的时间是3.8-
2.2=1.6(分钟),乙与甲相遇时乙
的速度600÷1.6=375(米/分钟).
V乙=52/8=6.5(m/s) 故V甲- V乙=1.5(m/s)
北师大版 数学 七年级 下册
第三章 变量之间的关系
用图象表示的变量关系
课件
学习目标
1、结合具体情境,能理解图象上的点所表示的意义。
2、能从图象中获取变量之间关系的信息,并对未来的

北师大版七年级下册数学-变量之间的关系

北师大版七年级下册数学-变量之间的关系

第三章变量之间的关系1.理解有关变量的基本概念、变量的表示方法2.熟悉在速度-时间变化、温度-时间变化、高度/深度-时间变化图像题的解题方法3.第二章相交线平行线提高题知识点一:有关变量的基本概念1、变量:在某一过程中发生变化的量,其中包括自变量与因变量。

2、自变量是最初变动的量,它在研究对象反应形式、特征、目的上是独立的;3、因变量是由于自变量变动而引起变动的量,它“依赖于” 自变量的改变。

4、常量:一个变化过程中数值始终保持不变的量叫做常量.知识点二:变量的表示方法1.列表法采用数表相结合的形式,运用表格可以表示两个变量之间的关系。

列表时一般第一行代表自变量,第二行代表因变量,选取能代表自变量的一些数据,并按从小到大的顺序列出,再分别求出对应的因变量的值。

优点:直观,可以直接从表中找出自变量与因变量的对应值,缺点:具有局限性,只能表示因变量的一部分。

2.图象法对于在某一变化过程中的两个变量,把自变量x与因变量y的每对对应值分别作为点的横坐标与纵坐标,在坐标平面内描出这些点,这些点所组成的图形就是它们的图象(这个图象就叫做平面直角坐标系)。

它是我们所表示两个变量之间关系的另一种方法。

特点:非常直观。

不足之处是所画的图象是近似的、局部的,通过观察或由图象所确定的因变量的值往往是不准确的。

表示的步骤是:①列表:列表给出自变量与因变量的一些特殊的对应值。

一般给出的数越多,画出的图象越精确。

②描点:在用图象表示变量之间的关系时,通常用水平方向的数轴(横轴或x轴)上的点来表示自变量,用竖直方向的数轴(纵轴或y轴)上的点来表示因变量。

③连线:按照自变量从小到大的顺序,用平滑的曲线把所描的各点连结起来。

注意:a.认真理解图象的含义,注意选择一个能反映题意的图象;3.关系式法(解析法)关系式(即解析式)是利用数学式子来表示变量之间关系的等式,利用关系式,可以根据任何一个自变量的值求出相应的因变量的值,也可以已知因变量的值求出相应的自变量的值。

相关主题
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

家,下面能反映当天爷爷离家的距离y(米)与时间t
(分钟)之间关系的大致图象是
(B )
4. 小高从家门口骑车去单位上班,先走平路到达点A, 再走上坡路到达点B,最后走下坡路到达工作单位,所 用的时间与路程的关系如图3-3-2所示.下班后,如果 他沿原路返回,且走平路、 上坡路、下坡路的速度分别 保持和去上班时一致,那么 他从单位到家门口需要的时 间是_____1_5____min.
的函数图象大致是
(C )
4. 甲、乙两人利用不同的交通工具,沿同一路线从A地
出发前往B地,两人行驶的路程y(km)与甲出发的时间
x(h)之间的关系图象如图3-3-11所示.根据图象得到
如下结论,其中错误的是
(C )
A.甲的速度是60 km/h
B.乙比甲早1 h到达
C.乙出发3 h追上甲
D.乙在AB的中点处追上甲
9. 星期天,玲玲骑自行车到郊外游玩,她离家的距离 与时间的关系如图3-3-15所示,请根据图象回答下列问 题.
(1)玲玲到达离家最远的地方是什么时间?离家多远? (2)她何时开始第一次休息?休息了多长时间? (3)她骑车速度最快是在什么时候?车速多少? (4)玲玲全程骑车的平均速度是多少?
解:(1)玲玲到达离家最远的地方是在12时,此时离 家30 km. (2)10点半时开始第一次休息;休息了半小时. (3)玲玲郊游过程中,各时间段的速度分别为: 9~10时,速度为10÷(10-9)=10(km/h); 10~10.5时,速度为(17.5-10)÷(10.5-10)=15 (km/h); 10.5~11时,速度为0; 11~12时,速度为(30-17.5)÷(12-11)=12.5 (km/h);
(1)小杯子的高度为_____6_____cm,将小杯子注满水 所用的时间为_____5_____s,大杯子的高是小杯子高的 _____2_____倍; (2)请求出图象中a的值,并说明它表示的实际意义;
设小杯子杯口半径为r,则大杯子的杯口半径为2r. 将小杯子注满需要的水量为6π r2,
当大杯子中水位高度是6 cm时,需要的水量为 6π ·(2r)2-6π r2=18π r2,
解:(1)从图象上可以看出:摩托车从出发到最后停 止共经过了80min,离家最远的距离是40km. (2)从图象上可以看出:摩托车在第60min到第80min 这段时间内速度最快,在这20min时间内,摩托车行驶 了40km,所以速度为40÷(20÷60)=120 (km/h). (3)从图象上可以看出:出发后20min到30min的时段 内离家的距离保持不变,说明这段时间可能是停下休 息. (4)摩托车在开始20min内行驶了10km,然后休息了 10min,这之后,在20min的时间内又行驶了30km,再 休息10min,最后用20min的时间赶回了家.
【例4】小明的家和苏州图书馆在同一条笔直的马路 (人民路)旁,周六小明准备沿着这条马路去图书馆. 她先从家步行到公交车站台甲,然后乘车到公交车站 台乙下车,最后步行到图书馆(假设在整个过程中小 明步行的速度不变,公交 车匀速行驶).如图3-3-8 的折线ABCDE表示的是小明 和图书馆之间的距离y(m) 与她离家时间x(min)之 间的关系.
(1)联系生活实际说出线段BC表示的实际意义; (2)求公交车的速度及图书馆与公交站台乙之间的距离.
解:(1)线段BC表示的实际意义为:小明在离家250 m的公交站台甲等了3 min公交车. (2)小明步行的速度为(3 900-3 650)÷5=50 (m/min), 图书馆与公交站台乙之间的距离为50×(18-15)=150 (m), 公交车的速度为(3 650-150)÷(15-8)=500 (m/min). 答:公交车的速度为500 m/min,图书馆与公交站台乙 之间的距离为150 m.
落过程中(落地前),速度变化的情况
( B)
2. 汽车经过启动、加速行驶、匀速行驶、减速行驶之
后停车,这一过程中汽车的行驶速度v和行驶时间t之间
的关系用图象表示,其图象可能是
(B )
3. 如图3-3-10,挂在弹簧秤上的长方体铁块浸没在水
中,提着弹簧匀速上移,直至铁块浮出水面停留在空中
(不计空气阻力),弹簧秤的读数F(kg)与时间t(s)
所以当大杯子中水位高度是6 cm时所用的时间为

18π r2 6π r2
=15(s),
即a=15.
a的实际意义是注水15 s后大杯子中水位高度是6 cm,
与小杯子高度齐平. (3)将整个容器注满水所需要的时间为_____3_0____s.
课后作业
夯实基础
新知1 图象法
1. 下面哪幅图,可以大致刻画出苹果成熟后从树上下
A. 小明吃早餐用时5 min B. 小华到学校的平均速度是240 m/min C. 小明跑步的平均速度是100 m/min D. 小华到学校的时间是7:55
模拟演练
1. 下面四幅图象表示某汽车在行驶过程中,速度与 时间之间的关系在不同状态下的表现. 请把图象的序 号填在相应语句后的横线上.
(1) 汽车起动速度越来越快___A__; (2) 汽车在行驶中遇到一坑地速度逐步降下来,越过 坑地后速度加大__C___; (3) 行驶过程中速度保持不变___B__; (4) 汽车到达目的地,速度逐渐减小最后停下来 __D___.
【例2】小明和小华是同班同学,也是邻居,某日早晨, 小明7:40先出发去学校,走了一段后,在途中停下吃 了早餐,后来发现上学时间快到了,就跑步到学校; 小华离家后直接乘公交 汽车到了学校.如图3-3 -4是他们从家到学校已 走的路程s(m)和所用 时间t(min)的关系图. 则下列说法中错误的是
(D)
2. 生产某种产品每小 时可生产100件,生产 前没有积压,生产3小 时后安排工人装箱, 每小时可装150件,未 装箱的产品数量y(件) 与时间t(时)的关系 可用下面的图象来准 确反映的是 (A )
3. 小张的爷爷每天坚持体育锻炼,星期天爷爷从家里
跑步到公园,打了一会太极拳,然后沿原路慢步走到
能力提升
8. 某天早晨,王老师从家出发,骑摩托车前往学校, 途中在路旁一家饭店吃早餐,如图3-3-14所示反映的是 王老师从家到学校这一过程中行驶路程s(km)与时间 t(min) 之间的关系.
(1)学校离他家多远?从出发到学校,用了多少时间? (2)王老师吃早餐用了多少时间? (3)王老师吃早餐以前的速度快还是吃完早餐以后的 速度快?最快时速达到多少?
12~13时,速度为0; 13~15时,在返回的途中,速度为30÷(15-13)=15 (km/h); 可见骑行最快有两段时间:10~10.5时;13~15时.两 段时间的速度都是15 km/h.
(4)玲玲全程骑车的平均速度为(30+30)÷(15-9) =10(km/h).
新知2 分段图象 5. 为了节能减排,鼓励居民节约用电,某市将出台新 的居民用电收费标准: (1)若每户居民每月用电量不超过100度,则按0.50 元/度计算; (2)若每户居民每月用电量超过100度,则超过部分按 0.80元/度计算(未超过部分仍按每度电0.50元计算). 现假设某户居民某月用电量是x(单位:度),电费为y (单位:元),则y与x的关系用图象表示正确的是 (C )
课堂讲练
新知1 图象法
典型例题
【例1】温度的变 化是人们经常谈 论的话题.请你根 据图3-3-3的图象, 讨论某地某天温 度的变化情况:
(1) 这一天温度的变化范围是___2_3_~_3_7___℃,从最 低温度到最高温度经过了____1_2_____小时; (2) 温度上升的时间范围为_3_时__到__1_5_时__,温度下降 的时间范围为____0_时__到__3_时__及__1_5_时__到__2_4_时________; (3) 图中A点表示的是___21_时__温__度__为__3_1_℃______,B点 表示的是__0_时__温__度__为__2_6_℃__; (4) 你预测次日凌晨1时的温度是___2_4_℃__左__右_____.
第三章 变量之间的关系
3 用图象表示的变量间关系
课前预习
1. 如图3-3-1是某地一天的气温随时间变化的图象, 根据图象回答在这一天中:
(1) __1_6__时气温最高,__2___时气温最低,最高气 温是__1_0__℃,最低气温是__-_2__℃; (2) 10时的气温是__5___℃; (3) __9___和__2_2__时气温是4℃; (4) _2_时__至__1_2_时__和__1_4_时__至__1_6_时__时间内,气温不断上 升; (5) __1_2_时_到__1_4_时___时间内,气温持续不变.
6. 为了节约水资源,自来水公司按分段收费标准收费,
如图3-3-12所示反映的是每月收取水费y(元)与用水
量x(t)之间的关系.按照分段收费标准,小颖家三月
份交水费29元,则三月份她家用水
(B )
Hale Waihona Puke A. 23 tB. 24 t
C. 25 t
D. 26 t
7. 周日,小涛从家沿着一条笔直的公路步行去报亭看
解:(1)依题意,得学校离王老师家有10 km,从出发 到学校王老师用了25 min. (2)依题意,得王老师吃早餐用了10 min. (3)吃早餐以前的速度为5÷10=0.5(km/min),吃完 早餐以后的速度为:(10-5)÷(25-20)=1(km/min) =60(km/h), 所以王老师吃完早餐以后速度快,最快时速达到60 km/h.
报,看了一段时间后,他按原路返回家中,小涛离家的
距离y(m)与他所用的时间t(min)之间的关系如图3-
3-13所示,下列说法正确的是 A. 小涛家离报亭的距离
(D )
是900 m
B. 小涛从家去报亭的平
相关文档
最新文档