光纤基础知识简介

合集下载

光纤知识

光纤知识

关于光纤,看完了,就懂了光纤是一种纤细的、柔软的固态玻璃物质,它由纤芯、包层、涂覆层三部分组成,可作为光传导工具。

光纤的纤芯主要采用高纯度的二氧化硅(SiO2),并掺有少量的掺杂剂,提高纤芯的光折射率n1;包层也是高纯度的二氧化(SiO2),也掺有一些的掺杂剂,以降低包层的光折射率n2,n1>n2,发生全反射;涂覆层采用丙烯酸酯、硅橡胶、尼龙,增加机械强度和可弯曲性。

光纤传输原理全反射原理:因光在不同物质中的传播速度是不同的,所以光从一种物质射向另一种物质时,在两种物质的交界面处会产生折射和反射。

而且,折射光的角度会随入射光的角度变化而变化。

当入射光的角度达到或超过某一角度时,折射光会消失,入射光全部被反射回来,这就是光的全反射。

不同的物质对相同波长光的折射角度是不同的(即不同的物质有不同的光折射率),相同的物质对不同波长光的折射角度也是不同。

光纤通讯就是基于以上原理而形成的。

按照几何光学全反射原理,射线在纤芯和包层的交界面产生全反射,并形成把光闭锁在光纤芯内部向前传播的必要条件,即使经过弯曲的路由光线也不射出光纤之外。

光纤技术的起源与发展1966年,美籍华人高锟和霍克哈姆发表论文,光纤的概念由此产生。

1970年,美国康宁公司首次研制成功损耗为20dB/km的光纤,光纤通信时代由此开始。

1977年美国在芝加哥首次用多模光纤成功地进行了光纤通信试验。

当时8.5微米波段的多模光波为第一代光纤通信系统。

随即在1981年、1984年以及19世纪80年代中后期,光纤通信系统迅速发展到第四代。

第五代光纤通信系统达到了应用的标准,实现了光波的长距离传输。

光纤通信的发展阶段第一阶段:1966-1976年,是从基础研究到商业应用的开发时期。

在这一阶段,实现了短波长0.85μm低速率45或34Mb/s多模光纤通信系统,无中继传输距离约10km。

第二阶段:1976-1986年,这是以提高传输速率和增加传输距离为研究目标和大力推广应用的大发展时期。

1.光纤光缆基础知识

1.光纤光缆基础知识

THANK YOU!
产生光损耗的原因大部分为光纤具有的固有损耗和光纤制造后 的附加损耗。前者主要包括瑞利散射损耗、吸收损耗、波导结构不完 善引起的损耗;后者包括微弯损耗、弯曲损耗、接续损耗等。
损耗成因
瑞利散射损耗
吸收损耗
固有损耗
附加损耗
对于光纤损耗的成因及其解决方案,在这里不做深入的研究,了解即可。
微弯损耗
弯曲损耗
接续损耗
N/A
GSK/GMK/GCF
B5
G656
N/A
B6
G657
N/A
多模62.5/125
A1b
N/A
OM1
MCF
OM2
ACF
多模50/125
A1a
G651.1
OM3
OM4
我们公司最常用的光 纤为G652D和G655
G.652是常规单模光纤,零色散 点在1300nm,此点色散最小;同 时根据PMD又分为G. 652A、B、C、 D四种。
按传输模式分类
类型
解释
纤芯只能传输 单模光纤 单个模式的光

多模光纤
纤芯能传输多 个模式的光纤
纤芯直径 包层外径
8μm-10μm 125μm
50μm、 62.5μm
125μm
2. 光纤分类
2.3 总结
光纤 类型
单模 光纤
传输模式
只能传输单 模式的光纤
多模 光纤
能传输多个 模式的光纤
传输距离 传输距离远
6. 光缆简介
6.2 光缆分类
用途
光纤种类
光纤芯数
加强件配置
传输导体、介质状况 铺设方式
结构方式
用户光缆 单模光缆 单芯光缆

光纤基础知识

光纤基础知识

5.按照波长分类 可分为短波长光纤、长波长光纤和超长波长光纤。
短波长光纤:=0.70.9m,用于短距离、小容量光 纤通信系统,它属于多模光纤。
长波长光纤: =1.11.6m,用于中、长距离,大容 量光纤通信系统,单模和多模都有。 超长波长光纤: ≥2m。它属于单模光纤,是光纤 的发展方向。
··
二次涂覆层 一次涂覆层
优点:机械性能好,温度特性好,防水性能好。 紧套管 松套管 缺点:测量不方便。
图2.2
结构原理
光导纤维是由两层折射率不同的玻璃组成。内层 为光内芯,直径在几微米至几十微米,外层的直径 0.1~0.2mm。一般内芯玻璃的折射率比外层玻璃大 1%。根据光的折射和全反射原理,当光线射到内芯 和外层界面的角度大于产生全反射的临界角时,光 线透不过界面,全部反射。
6.按照制造方法分类 预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD) 等,拉丝法有管律法(Rod intube)和双坩锅法等。
目前在通信上使用的光纤主要有:
(1)突变型多模光纤(SIF) (2)渐变型多模光纤(GIF) (2)单模光纤(SMF)
如图2.4所示 图2.4
表2.1
三种光纤的主要区别
纤芯的作用是传导光波。包层的作用是将光 波封闭在光纤中传播。 一、光纤的结构 光纤是用石英玻璃制成的截面很小的双层或 多模光纤的纤芯直径为50m。 多层同心圆柱体。 光纤非常细,比头发稍粗,单模光纤的纤芯 单模光纤和多模光纤的包层直径都是125m。 直径为10m。
125m
纤芯
50μm 10μm
目前广泛使用的是突变型光纤和渐变型光纤。
图2.3 光纤的折射率剖面分布 (a)突变型光纤;(b)渐变型光纤;(c)W型光纤
4.按照光纤传输模式分类

光纤基础介绍

光纤基础介绍

光工作的波段
1. 可见光波段(Visible Light Band):可见光波段通常指波长范围在380纳米(nm)到780
纳米(nm)之间的光。可见光波段是人眼可见的光谱范围,常用于照明、显示和一些 短距离通信应用。
2. 近红外波段(Near Infrared Band):近红外波段通常指波长范围在780纳米(nm)到
4. 根据特殊用途:
1. 光纤传感器用光纤(Fiber Optic Sensor Fiber):用于光纤传感器中,具有特殊的结构和特性。 2. 光纤光栅(Fiber Bragg Grating Fiber):在光纤中引入光栅结构,用于光纤传感和光谱分析等应用。
光纤和光缆关系
• 光纤(Fiber):光纤是一种细长的柔韧的光导纤维,通常由
光纤基础介绍
什么是光纤
• 光纤是一种用于传输光信号的细长柔韧的光导纤维。它由高纯度的
玻璃或塑料制成,具有非常高的折射率,可以将光信号在其内部进 行传输。
光纤原理
• 光纤的原理是基于全反射的现象。当光线从光纤的一端进入时,由
于光纤的折射率高于周围介质,光线会在光纤的界面上发生全反射, 并沿着光纤的轴向传输。由于光线在光纤内部的传输是基于全反射 的,所以光信号可以在光纤中传输较长的距离而不会明显衰减。
2500纳米(nm)之间的光。近红外波段在光通信和光传感等领域得到广泛应用,因为 在这个波段上,光纤的传输损耗较低。
3. 中红外波段(Mid Infrared Band):中红外波段通常指波长范围在2500纳米(nm)到
5000纳米(nm)之间的光。中红外波段在红外传感和光谱分析等领域具有重要应用具有高带 宽、低损耗和抗干扰等优点。
• 光缆(Cable):光缆是由一个或多个光纤组成的电缆,用于

光纤基础知识

光纤基础知识

光纤基础知识光纤,是一种光导纤维,广泛应用于通信、医疗、工业等领域。

它可以高效传输光信号,具有较大的带宽和低的衰减,被认为是现代通信技术的重要组成部分。

本文将介绍光纤的基本原理、结构和常见应用。

一、光纤的基本原理光纤的传输基于光的全反射原理。

当光从一种介质射向密度较大的介质时,会发生全反射现象。

利用这个特性,将光信号封装在一根玻璃或塑料纤维中,通过纤维内部的反射来传输光信号。

二、光纤的结构1. 光纤芯:光纤芯是光信号传输的核心部分,通常由高纯度的二氧化硅或塑料材料制成。

光信号在光纤芯内进行全反射,不会发生衰减。

2. 光纤包层:光纤包层是包围光纤芯的一层材料,通常由折射率较低的材料制成。

它的作用是减少光信号的损失,并保持光信号沿着光纤传输的方向。

3. 光纤护套:光纤护套是外部的保护层,通常由聚氨脂或聚乙烯等材料制成。

它可以保护光纤免受机械和环境损坏。

三、光纤的工作原理光纤的传输过程可以分为发射、传输和接收三个过程。

1. 发射:发射端通过光源产生光信号,并将信号输入光纤芯中。

常用的光源有激光器和发光二极管等。

2. 传输:光信号在光纤芯中以全内反射的方式传输,信号可以在光纤中长距离传输而不发生明显衰减。

3. 接收:接收端利用光探测器接收传输过来的光信号,并将其转换为电信号进行进一步处理和传输。

四、光纤的优势与应用光纤具有许多优势,使其成为通信和其他行业首选的传输介质。

1. 大带宽:光纤具有较大的带宽,可以支持高速数据传输和大容量通信。

2. 长传输距离:光信号在光纤中传输衰减较小,可以实现较长的传输距离。

3. 抗干扰性:光纤不受电磁干扰和射频干扰,适用于复杂环境和电磁敏感设备。

4. 安全性:光纤传输的信号无法被窃听,具有较高的安全性。

光纤的应用广泛,包括但不限于以下领域:1. 通信领域:光纤用于电话、互联网和有线电视等通信网络,提供高速、可靠的通信服务。

2. 医疗领域:光纤在内窥镜、光纤导光束等医疗设备中得到应用,用于检测、诊断和手术。

光纤基础知识简介

光纤基础知识简介

光纤简介一、光纤概述光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤一端的发射装置使用发光二极管〔light emitting diode,LED〕或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。

二、光纤工作波长光是一种电磁波。

可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。

μμμμ,μμμm以上的损耗趋向加大。

三、光纤分类光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。

〔1〕工作波长:紫外光纤、可观光纤、近红外光纤μμμm〕。

〔2〕折射率分布:阶跃〔SI〕型光纤、近阶跃型光纤、渐变〔GI〕型光纤、其它〔如三角型、W型、凹陷型等〕。

〔3〕传输模式:单模光纤〔含偏振保持光纤、非偏振保持光纤〕、多模光纤。

〔4〕原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤〔如塑料包层、液体纤芯等〕、红外材料等。

按被覆材料还可分为无机材料〔碳等〕、金属材料〔铜、镍等〕和塑料等。

〔5〕制造方法:预塑有汽相轴向沉积〔VAD〕、化学汽相沉积〔CVD〕等,拉丝法有管律法〔Rod intube〕和双坩锅法等。

四、单模光纤与多模光纤光纤是一种光波导,因而光波在其中传播也存在模式问题。

所谓“模”是指以一定角速度进入光纤的一束光。

模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。

一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。

基模是截止波长最长的模式。

除基模外,截止波长较短的其它模式称为高次模。

根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。

多模光纤允许多束光在光纤中同时传播,从而形成模分散〔因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散〕。

光纤基础知识

光纤基础知识

光纤基础知识(组网)一、光纤的构造、种类、接线、规格光纤的构造通讯用光纤是由通过内部全反射来传输光信号的玻璃构成的。

玻璃光纤的标准直径为125微米(0.125毫米),表面覆盖有直径250微米或900微米的树脂保护涂敷层。

玻璃光纤的传送光的中心部分称为“纤芯”,其周围的包层的折射率比纤芯低,从而限制了光的流失。

石英玻璃非常脆弱,因此覆有保护涂层。

通常有三种典型的光纤涂敷层。

一次涂敷光纤覆有直径为0.25毫米紫外线固化丙烯酸树脂涂敷层的光纤。

其直径非常小,增加了光缆内可容纳光纤的密度,使用非常普遍。

二次涂敷光纤亦称为紧包缓冲层光纤或半紧包缓冲层光纤。

光纤表面覆有直径为0.9毫米的热塑性树脂。

与0.25毫米的光纤相比,其具有更坚固,易操作的优点。

广泛应用于局域网布线及光纤数量较少的光缆。

带状光纤带状光纤提高了连接器组装的效率,有利于多芯融接,从而提高了作业效率。

带状光纤由4根、8根或12根不同颜色的光纤组成,芯纤数最大可达1,000根。

光纤表层覆有紫外线固化丙烯酸脂材料,使用标准光纤剥套钳便可轻松去除涂敷层,方便多芯融接或取出单个光纤。

使用多芯融接机,带状光纤可一次性融接,在光纤数量多的光缆中能轻易识别出来。

光纤种类以下是对最常用的通信光纤种类的描述。

MMF(多模光纤)- OM1光纤或多模光纤(62.5⁄125)- OM2⁄OM3光纤(G.651光纤或多模光纤(50⁄125))SMF(单模光纤)- G.652(色散非位移单模光纤)- G.653(色散位移光纤)- G.654(截止波长位移光纤)- G.655(非零色散位移光纤)- G.656(低斜率非零色散位移光纤)- G.657(耐弯光纤)只要光预算允许,技术上来讲,任何合适的光纤都可应用于FTTx技术,但FTTx技术最常用的光纤为G.652和G.657。

G.651(多模光纤)G.651主要应用于局域网,不适用于长距离传输,但在300至500米的范围内,G.651是成本较低的多模传输光纤。

光纤基础知识汇总

光纤基础知识汇总

光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤的一端的发射装置使用发光二极管或一束激光将光脉冲传送至光纤,光纤的另一端的接收装置使用光敏元件检测脉冲。

在日常生活中,由于光在光导纤维的传导损耗比电在电线传导的损耗低得多,光纤被用作长距离的信息传递。

光纤结构1、光纤(Optical Fiber)的典型结构是多层同轴圆柱体,自内向外由纤芯、包层和涂敷层三部分组成。

纤芯作用——传导光波成分——高纯度SiO2+极少量掺杂剂(如P2O5)掺杂目的是提高纤芯对光的折射率包层作用——为光的传输提供反射面和光隔离,并起一定的机械保护作用。

将光波限制在纤芯中传播成分——高纯度SiO2+极少量掺杂剂(如B2O3)掺杂目的是使折射率略低于纤芯折射率设纤芯和包层的折射率分别为n1和n2,光能量在光纤中传输的必要条件是n1>n2。

涂覆层作用——保护光纤不受水汽的侵蚀和机械擦伤。

同时增加光纤柔韧性。

一次涂覆层:丙烯酸酯,有机硅或硅橡胶材料缓冲层:一般为性能良好的填充油膏二次涂覆层:聚丙烯或尼龙等高聚物光纤分类(1)按照制造光纤所用的材料分类有:石英系光纤;多组分玻璃光纤;塑料包层石英芯光纤;全塑料光纤。

2)按折射率分布情况分类:光纤主要有三种基本类型:(多模阶跃折射率光纤)——纤芯折射率为n1保持不变,到包层突然变为n2。

这种光纤一般纤芯直径2a=50~80μm,光线以折线形状沿纤芯中心轴线方向传播,特点是信号畸变大。

渐变型多模光纤(多模渐变射率光纤)——在纤芯中心折射率最大为n1,沿径向r向外围逐渐变小,直到包层变为n2。

这种光纤一般纤芯直径2a为50μm,光线以正弦形状沿纤芯中心轴线方向传播,特点是信号畸变小。

单模光纤——折射率分布和突变型光纤相似,纤芯直径只有8~10 μm,光线以直线形状沿纤芯中心轴线方向传播。

光纤重要基础知识点

光纤重要基础知识点

光纤重要基础知识点
光纤是一种用于传输光信号的细长柔韧的光学纤维。

光纤作为一种高效、高速、大带宽的通信传输介质,在现代通信领域中发挥着重要的
作用。

下面我们将介绍一些光纤的重要基础知识点。

1. 光纤的结构:光纤由一个或多个玻璃或塑料制成的芯线和包裹在外
面的护套组成。

光纤的芯线是光信号传输的核心部分,护套则起到保
护和绝缘的作用。

2. 光纤的工作原理:光信号通过光纤内的多次全反射来进行传输。


光信号从光纤的一端进入时,在芯线内部不断发生全反射,从而使光
信号沿着光纤的长度传播。

光信号会在光纤两端的光接口处进行转换,从光纤中释放出或接收光信号。

3. 光纤的优势:相比传统的电缆传输方式,光纤具有许多优势。

光纤
传输速度快,能够支持大容量的数据传输;光纤抗干扰能力强,不受
电磁干扰和辐射影响;光纤传输距离远,信号衰减较小;光纤重量轻、体积小,便于安装和布线等。

4. 光纤的应用领域:光纤广泛应用于通信、互联网、计算机网络、医疗、军事、航天等领域。

在通信领域中,光纤网络被广泛应用于长途
电话、宽带接入、数据中心连接等。

5. 光纤的分类:根据光纤的制作材料和结构不同,可以将光纤分为多
种类型,如单模光纤和多模光纤、塑料光纤和玻璃光纤等。

每种类型
的光纤在不同的应用场景中有着各自的特点和适用性。

总的来说,了解光纤的基础知识对于我们理解现代通信技术的发展和
使用具有重要意义。

光纤作为一种高效可靠的通信传输介质,不断推动着信息技术的进步和创新。

光纤的基本知识

光纤的基本知识

光纤的基本知识光纤是传光的纤维波导或光导纤维的简称。

它是工作在光波波段的一种介质波导,通常是圆柱形。

它把以光的形式出现的电磁波能量利用全反射原理约束在其界面内,并引导光波沿着光纤轴线的方向前进。

光纤的传输特性由其结构和材料决定。

通常,光纤是由高纯度的石英玻璃为主掺少量杂质锗(Ge)、硼(B)、磷(P)等的材料制成的细长的圆柱形,细如发丝(通常直径为几微米到几百微米)。

实用的结构有两个同轴区,内区称为纤芯,外区称为包层。

通常,在包层外面还有一层起支撑保护作用的涂覆层。

因为光是电磁波,所以光在光纤中的传播可用麦克斯韦波动方程来分析。

断面尺寸比光波长大很多时,可用几何光学的概念来处理。

图A.1当光线从较高折射率介质向较低折射率介质传播时,在界面处的折射和反射图A.1为光在不同介质中的传播。

图中介质1的折射率为n 1,介质2的折射率为n 2。

当光束以较小的θ1角入射到介质界面上时,部分光进入介质2并产生折射,部分光被反射。

它们之间的相对强度取决于两种介质的折射率。

介质的折射率定义为光在空气中的速度与光在介质中的速度之比。

由菲涅耳定律可知31θθ= (A.1) 1221sin sin n n θθ= (A.2)在n 1>n 2时,逐渐增大θ1,进入介质2的折射光束进一步趋向界面,直到θ1趋于90°。

此时,进入介质2的光强显著减小并趋于零,而反射光强接近入射光强。

当θ1=90°极限值时,相应的θ1角定义为临界角θc 。

由于sin90°=l ,所以临界角21arcsin()c n n θ= (A.3)当θ1>θc 时,入射光线将产生全反射。

应当注意,只有当光从折射率大的介质进入折射率小的介质,即n 1>n 2时,在界面上才能产生全反射。

图A.2子午光线的全反射全反射现象是光纤传输的基础。

对于一根具体的光纤,如图A.2所示。

为分析方便,以下主要讨论光线为子午光线的情况。

光纤基础知识

光纤基础知识

多模光纤
常用的多模光纤主要有IEC-60793-2光纤产品 规范中的A1a类(50/125μm)和A1b类(62.5/ 125μm)两种; 为满足10Gbit/s以太网传输的要求,现在出现 了新型50/125μm多模光纤。与62.5/125μm光纤 相比,50/125μm光纤的数值孔径和芯径较小、传 导模的数目较少、带宽较高而成本较低。
分光器原理
熔锥型分路器的制作
熔锥型分路器的制作
熔锥法就是将两根(或两根以上)除去涂覆层的光纤以一定 的方法靠扰,在高温加热下熔融,同时向两侧拉伸,最终在 加热区形成双锥体形式的特殊波导结构,通过控制光纤扭转 的角度和拉伸的长度,可得到不同的分光比例。最后把拉锥 区用固化胶固化在石英基片上插入不锈铜管内,这就是光分 路器。这种生产工艺因固化胶的热膨胀系数与石英基片、不 锈钢管的不一致,在环境温度变化时热胀冷缩的程度就不一 致,此种情况容易导致光分路器损坏,尤其把光分路器放在 野外的情况更甚,这也是光分路失效的最主要原因。
光纤分类
多模光纤的纤芯直径为50~62.5m,包层外直径125m; 单模光纤的纤芯直径为8.3m,包层外直径125m; 光纤的工作波长有短波长0.85m、长波长1.31m和1.55m; 光纤损耗一般是随波长加长而减小,0.85m的损耗为 2.5dB/km,1.31m的损耗为0.35dB/km,1.55m的损耗为 0.20dB/km,这是光纤的最低损耗,波长1.65m以上的损耗趋 向加大。
G.652C光纤参数指标
支持 10Gbit/s速率的传输
光纤类型
G.654光纤:1550nm损耗最小光纤,主要用于长再生中继 距离的海底光缆。 G.655光纤:克服了G.652光纤在1550nm处色散受限和 G.653光纤在1550nm处出现四波混频效应的缺陷,适用于 WDM系统。

光纤维知识点归纳总结

光纤维知识点归纳总结

光纤维知识点归纳总结一、光纤的基本原理光纤传播的基本原理是全反射原理。

光在光纤中的传播是由于光在光密介质与光疏介质之间反射所致。

当光线入射在两种介质交界面上,发生的折射和反射是由折射率决定的。

而光纤通过改变折射率的设计,使得当光线沿着光纤传输时,不会发生漏光,从而保证了光信号的传输。

二、光纤的结构光纤通常由芯、包层和外护套组成。

芯是光纤传输光信号的主体,包层用于约束和保护光信号,外护套则用于保护光纤本身以及增强其机械性能。

光纤的结构设计与材料的选择对光信号的传输性能有着重要的影响。

三、光纤的类型根据光纤芯和包层的折射率,可以将光纤分为单模光纤和多模光纤。

单模光纤是指在光纤芯中只有一条光路,适用于远距离通信和高速数据传输;多模光纤是指光纤芯中存在多条光路,适用于短距离通信和局域网传输。

另外,光纤还可根据其传输性能和应用环境的不同分为标准单模光纤、非标单模光纤、高分子光纤等类型。

四、光纤的传输特性光纤的传输特性主要包括传输损耗、色散、非线性效应等。

传输损耗是指光信号在光纤传输过程中损失的能量,主要包括吸收损耗、散射损耗、泄漏损耗等。

色散是指光信号在光纤中传播速度与光波长有关,从而引起信号失真的现象。

非线性效应是指光信号在光纤中传播过程中出现的非线性光学效应,如光子效应、拉曼效应等。

五、光纤的应用光纤在通信领域被广泛应用,包括长距离传输、城市通信、局域网、光纤传感等。

同时,光纤还在医学、军事、工业、科研等领域也有着重要的应用,如光纤传感器、激光器、光纤放大器等。

光纤作为一种重要的光学传输介质,在信息通信、光电子技术、生物医学、制造技术等众多领域都有着重要的应用价值。

通过了解光纤的基本原理、结构、类型、传输特性和应用,我们可以更深入地理解光纤技术的发展和应用前景。

希望本文对大家有所帮助,欢迎指正补充。

光纤光缆21条基础知识

光纤光缆21条基础知识

光纤光缆基础知识1. 光纤的结构是怎么样的?光纤裸纤一般分为三层:纤芯、包层和涂覆层。

光纤的结构:光纤纤芯和包层是由不同折射率的玻璃组成,中心为高折射率玻璃纤芯(掺锗二氧化硅),中间为低折射率硅玻璃包层(纯二氧化硅)。

光以一特定的入射角度射入光纤,在光纤和包层间发生全发射(由于包层的折射率稍低于纤芯),从而可以在光纤中传播。

涂覆层的主要作用是保护光纤不受外界的损伤,同时又增加光纤的柔韧性。

正如前面所述,纤芯和包层都是玻璃材质,不能弯曲易碎,涂覆层的使用则起到保护并延长光纤寿命的作用。

2.光缆的组成光纤由纯石英以特别的工艺拉丝成比头发还细中间有几介质的玻璃管,它的质地脆易断,因此需要外加一层保护层。

光纤外层加上塑料保护套管及塑料外皮就成了光缆。

光缆包含光纤,光纤就是光缆内的玻璃纤维,广泛上来说光纤是光缆,都是一种传输介质。

但严格意义上讲,两者是不相同的产品,光纤和光缆的区别:光纤是一种传输光束的细而柔软的媒质。

多数光纤在使用前必须由几层保护结构包覆,包覆后的缆线即被称为光缆。

所以光纤是光缆的核心部分,光纤经过一些构件极其附属保护层的保护就构成了光缆。

3.光纤的工作波长?光是由它的波长来定义,在光纤通信中,使用的光是在红外区域中的光,此处光的波长大于可见光。

在光纤通信中,典型的波长是800到1600nm,其中最常用的波长是850nm、1310nm和1550nm。

在选择传输波长时,主要综合考虑光纤损耗和散射。

目的是通过向最远的距离、以最小的光纤损耗来传输最多的数据。

在传输中信号强度的损耗就是衰减。

衰减度与波形的长度有关,波形越长,衰减越小。

光纤中使用的光在850、1310、1550nm处的波长较长,故此光纤的衰减较小,这也导致较少的光纤损耗。

并且这三个波长几乎具有零吸收,最为适合作为可用光源在光纤中传输。

4.最小色散波长和最小损耗波长在目前商用光纤中,什么波长的光具有最小色散?什么波长的光具有具有最小损耗?1310nm波长的光具有最小色散,1550nm波长的光具有最小损耗。

(完整word版)光纤光缆的基础知识

(完整word版)光纤光缆的基础知识

光纤光缆的基础知识一、光纤1.光纤的定义光纤是光导纤维的简称,即用来通光传输的石英玻璃丝。

2.光纤的结构组成和作用1)光纤的构成:光纤是由光折射率较高的纤芯和折射率较低的包层组成,为了保护光纤不受外力和环境的影响,在包层的外面都加上一层塑料护套(也叫涂覆层)。

2)光纤各组成部分的作用:纤芯:siO2+GeO2(作用是导光通信)包层:siO2(作用是使全反射成为可能)涂覆层:光固化丙烯酸环氧树脂或热固化的硅酮树脂(作用是防止光纤表面受损产生微裂纹,将光纤表面与环境中的水分、化学物质隔开,防止已有的微小裂纹逐步生长扩大)3.光纤的分类A:按组成光纤的材料分类:玻璃(石英)光纤、塑料光纤;B:按光纤横截面上折射率分布分类:有突变型光纤(普通单模光纤)、渐变型光纤(多模光纤)、阶跃型光纤等;C:按光纤传输模式分类:多模光纤、单模光纤等.单模光纤中光偏振状态要传输过程中是否保持不变,又可分为偏振模保持光纤和非偏振模保持光纤;D:按工作波长窗口分类:长波长光纤和短波长光纤等注:单模光纤是指只能传输一种模式(基模或最低阶模)的光纤,其信号畸变很小。

多模光纤是一种能承载多种模式的光纤,即能够允许多个传导模的通过。

模是指光在光纤中的传输方式(单模/多模)。

单模光纤具有很小的芯径,以确保其传输单模,但是其包层直径要比芯径在十多倍,以避免光的损耗。

单模光纤以其衰减小、频带宽、容量大、成本低和易于扩容等优点,作为一种理想的光通信媒介,在全世界得到及为广泛的应用。

4.光纤的特性A:几何特性和光学特性(主要针对单模光纤)纤芯直径:A、多模光纤(50um/62。

5um两种标称直径)B、单模光纤(8.3um)包层直径:125。

0±1.0um包层不圆度:≤1。

0%涂层外径:245±5.0um纤芯、包层同心度:≤0。

5um翘曲度:曲率半径≥4.0m模场直径:指光纤中基模场的电场强度随空间的分布。

它描述了单模光纤中光能集中程度的参量。

光纤的基本知识

光纤的基本知识

光纤的基本知识光纤是传光的纤维波导或光导纤维的简称。

它是工作在光波波段的一种介质波导,通常是圆柱形。

它把以光的形式出现的电磁波能量利用全反射原理约束在其界面内,并引导光波沿着光纤轴线的方向前进。

光纤的传输特性由其结构和材料决定。

通常,光纤是由高纯度的石英玻璃为主掺少量杂质锗(Ge)、硼(B)、磷(P)等的材料制成的细长的圆柱形,细如发丝(通常直径为几微米到几百微米)。

实用的结构有两个同轴区,内区称为纤芯,外区称为包层。

通常,在包层外面还有一层起支撑保护作用的涂覆层。

因为光是电磁波,所以光在光纤中的传播可用麦克斯韦波动方程来分析。

断面尺寸比光波长大很多时,可用几何光学的概念来处理。

图A.1 当光线从较高折射率介质向较低折射率介质传播时,在界面处的折射和反射 图A.1为光在不同介质中的传播。

图中介质1的折射率为n 1,介质2的折射率为n 2。

当光束以较小的θ1角入射到介质界面上时,部分光进入介质2并产生折射,部分光被反射。

它们之间的相对强度取决于两种介质的折射率。

介质的折射率定义为光在空气中的速度与光在介质中的速度之比。

由菲涅耳定律可知31θθ=(A.1) 1221sin sin n n θθ= (A.2)在n 1>n 2时,逐渐增大θ1,进入介质2的折射光束进一步趋向界面,直到θ1趋于90°。

此时,进入介质2的光强显著减小并趋于零,而反射光强接近入射光强。

当θ1=90°极限值时,相应的θ1角定义为临界角θc 。

由于sin90°=l ,所以临界角21arcsin()c n n θ= (A.3)当θ1>θc 时,入射光线将产生全反射。

应当注意,只有当光从折射率大的介质进入折射率小的介质,即n 1>n 2时,在界面上才能产生全反射。

图A.2 子午光线的全反射全反射现象是光纤传输的基础。

对于一根具体的光纤,如图A.2所示。

为分析方便,以下主要讨论光线为子午光线的情况。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

光纤简介一、光纤概述光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。

微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。

通常,光纤一端的发射装置使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤另一端的接收装置使用光敏元件检测脉冲。

二、光纤工作波长光是一种电磁波。

可见光部分波长围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。

光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。

光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。

三、光纤分类光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。

(1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85μm、1.3μm、1.55μm)。

(2)折射率分布:阶跃(SI)型光纤、近阶跃型光纤、渐变(GI)型光纤、其它(如三角型、W型、凹陷型等)。

(3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。

(4)原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。

按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。

(5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。

四、单模光纤与多模光纤光纤是一种光波导,因而光波在其中传播也存在模式问题。

所谓“模”是指以一定角速度进入光纤的一束光。

模式是指传输线横截面和纵截面的电磁场结构图形,即电磁波的分布情况。

一般来说,不同的模式有不同的的场结构,且每一种传输线都有一个与其对应的基模或主模。

基模是截止波长最长的模式。

除基模外,截止波长较短的其它模式称为高次模。

根据光纤能传输的模式数目,可将其分为单模光纤和多模光纤。

多模光纤允许多束光在光纤中同时传播,从而形成模分散(因为每一个模光进入光纤的角度不同它们到达另一端点的时间也不同,这种特征称为模分散)。

模分散技术限制了多模光纤的带宽和距离。

单模光纤只能允许一束光传播,所以单模光纤没有模分散特性。

(1)单模光纤单模光纤(Single Mode Fiber)的中心高折射率玻璃芯直径有三种型号:8μm、9μm和10μm,只能传一种模式的光。

相同条件下,纤径越小衰减越小,可传输距离越远。

中心波长为1310nm或1550nm。

单模光纤用激光器作为光源。

单模光纤用于主干、大容量、长距离的系统。

单模口发射功率围一般在0dBm左右,一些超长距接口会高达+5dBm,接收功率的围在-23 dBm到0dBm之间。

(注:最大可接收功率叫做过载光功率,最小可接收功率叫做接收灵敏度。

工程上要求正常工作接收光功率小于过载光功率3-5dBm,大于接收灵敏度3-5dBm。

一般来讲不管单模接口还是多模接口,实际接收功率在-5至-15dBm之间算比较合理的工作围。

)单模光纤模间色散很小,适用于远程通讯,但还存在着材料色散和波导色散,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。

(2)多模光纤多模光纤(Multi Mode Fiber)的中心高折射率玻璃芯直径有两种型号:62.5μm和50μm,可传多种模式的光。

中心波长为多为850nm,也有用1310nm。

多模光纤用发光二极管作为光源。

多模光纤用于小容量,短距离的系统。

多模口发射功率比单模口小,与GBIC或SFP的型号直接相关,一般在-9.5dBm到-4dBm之间;多模口接收功率一般在-20dBm到0dBm之间。

(注:最大可接收功率叫做过载光功率,最小可接收功率叫做接收灵敏度。

工程上要求正常工作接收光功率小于过载光功率3-5dBm,大于接收灵敏度3-5dBm。

一般来讲不管单模接口还是多模接口,实际接收功率在-5至-15dBm之间算比较合理的工作围。

)多模光纤模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。

例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。

因此,多模光纤传输的距离就比较近,一般只有几公里。

新一代多模光纤是一种50/125μm,渐变折射率分布的多模光纤。

采用50μm芯径原因有:(1)50μm光纤中传输模的数目大约是62.5μm多模光纤中传输模的1/2.5。

这可有效降低多模光纤的模色散,增加带宽。

对850nm波长,50/125μm比62.5/125μm多模光纤带宽可增加三倍(500MHz.km比160MHz.km)。

(2)以前,LED光源的输出功率低,发散角大,连接器损耗大,使用芯径和数值孔径大的光纤以使尽多光功率注入是必须考虑的,因此62.5μm多模光纤应用较广。

随着技术的进步,LED输出功率和发散角的改进、连接器性能的提高,尤其是使用了VCSEL,光功率注入已不成问题。

(3)光纤标识单模光纤上印的型号字有:SM、Single Mode Fiber、9/125、B1.1、LX、等,单模跳纤多为黄色。

(注:1表示中心束管,B表示单模)多模光纤上印的型号字有:MM、Multi Mode Fiber、A1a、50/125、A1b、62.5/125、SX等,单模跳纤多为橙色。

(注:A表示多模,a表示50/125,b表示62.5/125)SX/LH表示可以使用单模或多模光纤。

五、跳纤与尾纤光纤跳线:来做从设备到光纤布线链路的跳接线。

有较厚的保护层,一般用在光端机和终端盒之间的连接。

(也就是双头)下图为集中常见的跳线。

光纤尾纤:只有一端有连接头,而另一端是一根光缆纤芯的断头,通过熔接与其他光缆纤芯相连,常出现在光纤终端盒,用于连接光缆与光纤收发器)(也就是单头)。

在生产中,为了便于测试,均生产为跳纤,即两头均有光纤连接器,施工时,从中间剪断,一根跳纤即成了两根尾纤。

在表示尾纤接头的标注中,我们常能见到“FC/PC”,“SC/PC”等,其含义如下:“/”前面部分表示尾纤的连接器型号,“/”后面表明光纤接头截面工艺,即研磨方式。

“PC”:接头截面是平的,在电信运营商的设备中应用得最为广泛。

“APC”:接头采用带倾角的端面,斜度一般看不出来,可使反射光不沿原路径返回。

在广电和早期的CATV中应用较多。

它可以改善电视信号的质量,主要原因是电视信号是模拟光调制,当接头耦合面是垂直的时候,反射光沿原路径返回。

一般数字信号一般不存在此问题。

“UPC”:它的衰耗比PC要小,一般有特殊需求的设备的法兰盘为FC/UPC。

国外厂家ODF架部跳纤用的就是FC/UPC,可提高ODF设备自身的指标。

六、光纤接头与光纤连接器光纤连接器(也叫光纤适配器、法兰盘)是光纤与光纤之间进行可拆卸(活动)连接的器件,它是把光纤的两个端面精密对接起来,以使发射光纤输出的光能量能最大限度地耦合到接收光纤中去,并使由于其介入光链路而对系统造成的影响减到最小。

在一定程度上,光纤连接器也影响了光传输系统的可靠性和各项性能。

在实际应用过程中,我们一般按照光纤连接器结构的不同来加以区分。

下面是一些目前比较常见的光纤接口和光纤连接器。

(1)FC型:FC(Ferrule Connector缩写)型接头是圆型带螺纹的金属接头,紧固方式为螺丝扣。

一般在ODF侧采用(配线架上用的最多),有一螺帽拧到适配器上,优点是牢靠、防灰尘,缺点是安装时间稍长。

左图为FC型接头,右图为FC光纤适配器。

(2)SC型:SC接头是卡接式方型塑料接头,所采用的插针与耦合套筒的结构尺寸与FC型完全相同,其中插针的端面多采用PC或APC型研磨方式;紧固方式是采用插拔销闩式,不需旋转。

SC接头直接插拔,使用很方便,缺点是容易掉出来,一般用于传输设备侧光接口。

1×9光模块、GBIC光模块都采用SC型接头。

下图为SC型接头。

下面图片,左图为SC单模双工适配器,右图为SC单模单工适配器。

(3)ST型ST接头是卡接式圆形外壳的金属接头,紧固方式为螺丝扣,常用于光纤配线架。

ST头插入后旋转半周有一卡口固定,缺点是容易折断。

下面左图为ST接头,右图为ST连接器。

说明:ST连接器的芯外露,SC连接器的芯在接头里面。

对于10Base-F 连接来说,连接器通常是ST类型的;对于100Base-FX来说,连接器大部分情况下为SC类型的。

(4)LC型LC接头是小方型的塑料接头,与SC接头形状相似,较SC接头小一些,采用操作方便的模块化插孔(RJ)闩锁机理制成。

SFP模块采用LC型接头。

在单模SFF方面,LC类型的连接器实际已经占据了主导地位,在多模方面的应用也增长迅速。

路由器常用。

下面左图为LC接头,右图为SC接头。

下面左图是LC单模双光光纤适配器,右图为LC单模单工光纤适配器。

(5)MT-RJ型MT-RJ接头是方型精密塑胶接头,起步于NTT开发的MT连接器,带有与RJ-45型LAN电连接器相同的闩锁机构,通过安装于小型套管两侧的导向销对准光纤。

MT-RJ接口的尺寸与标准插口的尺寸相当,可装入常规的RJ-45面板和配线架模块中。

为便于与光收发信机相连,连接器端面光纤为双芯(间隔0.75mm)排列设计,是主要用于数据传输的下一代高密度光纤连接器。

左图为MT-RJ接头,右图为MT-RJ连接器。

(6) 双锥型(Biconic Connector)这类光纤连接器中最有代表性的产品由美国贝尔实验室开发研制,它由两个经精密模压成形的端头呈截头圆锥形的圆筒插头和一个部装有双锥形塑料套筒的耦合组件组成。

(7) DIN47256型这是一种由德国开发的连接器。

这种连接器采用的插针和耦合套筒的结构尺寸与FC型相同,端面处理采用PC研磨方式。

与FC型连接器相比,其结构要复杂一些,部金属结构中有控制压力的弹簧,可以避免因插接压力过大而损伤端面。

另外,这种连接器的机械精度较高,因而介入损耗值较小。

(8)MU型MU(Miniature unit Coupling)连接器是以目前使用最多的SC型连接器为基础,由NTT研制开发出来的世界上最小的单芯光纤连接器,。

该连接器采用1.25mm直径的套管和自保持机构,其优势在于能实现高密度安装。

利用MU的l.25mm直径的套管,NTT已经开发了MU连接器系列。

它们有用于光缆连接的插座型连接器(MU-A系列);具有自保持机构的底板连接器(MU-B系列)以及用于连接LD/PD模块与插头的简化插座(MU-SR系列)等。

随着光纤网络向更大带宽更大容量方向的迅速发展和DWDM技术的广泛应用,对MU型连接器的需求也将迅速增长。

相关文档
最新文档